
1 
 

 



2 
 

Information Security 
Title of the Information Security Course/ Paper Core - 11 II Year & Third Semester Credit: 4  
 
Unit 1: Introduction: On 11 February 2013, residents of Great Falls, Montana 

received the following warning on their televisions [INF13]. The transmission displayed a 
message anner on the bottom of the screen (as 
depicted in Figure 1-1). 
 
And the following alert was broadcast: 
[Beep Beep Beep: the sound pattern of the U.S. 
government Emergency 
Alert System. The following text then scrolled 
across the screen:] Civil authorities in your 
area have reported that the bodies of the dead 
are rising from their graves and attacking the 
living. Follow the messages on screen that will 
be updated as information becomes available. 
Do not attempt to approach or apprehend 
these bodies as they are considered extremely 
dangerous. This warning applies to all areas 

receiving this broadcast. [Beep Beep Beep] 
The warning signal sounded authentic; it had the distinctive tone people recognize for 
warnings of serious emergencies such as hazardous weather or a natural disaster. And the 
text was displayed across a live broadcast television program. On the other hand, bodies 
rising from their graves sounds suspicious. 
What would you have done? 
Only four people contacted police for assurance that the warning was indeed a hoax. As you 
can well imagine, however, a different message could have caused thousands of people to 
jam the highways trying to escape. (On 30 October 1938 Orson Welles performed a radio 
broadcast of the H. G. Wells play War of the Worlds that did cause a minor panic of people 
believing that Martians had landed and were wreaking havoc in New Jersey.) 
The perpetrator of this hoax was never caught, nor has it become clear exactly how it was 
done. Likely someone was able to access the system that feeds emergency broadcasts to 
local radio and television stations. In other words, a hacker probably broke into a computer 
system. 
You encounter computers daily in countless situations, often in cases in which you are 
scarcely aware a computer is involved, like the emergency alert system for broadcast media. 
These computers move money, control airplanes, monitor health, lock doors, play music, 
heat buildings, regulate hearts, deploy airbags, tally votes, direct communications, regulate 
traffic, and do hundreds of other things that affect lives, health, finances, and well-being. 
Most of the time these computers work just as they should. But occasionally they do 
something horribly wrong, because of either a benign failure or a malicious attack. 
This book is about the security of computers, their data, and the devices and objects to 
which they relate. In this book you will learn some of the ways computers can fail—or be 
made to fail—and how to protect against those failures. We begin that study in the way any 
good report does: by answering the basic questions of what, who, why, and how.  
Security 
Computer security is the protection of the items you value, called the assets of a computer 
or computer system. There are many types of assets, involving hardware, software, data, 
people, processes, or combinations of these. To determine what to protect, we must first 
identify what has value and to whom. 
A computer device (including hardware, added components, and accessories) is certainly an 
asset. Because most computer hardware is pretty useless without programs, the software is 
also an asset. Software includes the operating system, utilities and device handlers; 
applications such as word processing, media players or email handlers; and even programs 
that you may have written yourself. Much hardware and software is off-theshelf, meaning 
that it is commercially available (not custom-made for your purpose) and that you can 
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easily get a replacement. The thing that makes your computer unique and important to you 
is its content: photos, tunes, papers, email messages, projects, calendar information, 
ebooks (with your annotations), contact information, code you created, and the like. Thus, 
data items on a computer are assets, too. Unlike most hardware and software, data can be 
hard—if not impossible—to recreate or replace. These assets are all shown in Figure 1-2. 
 

These three things—
hardware, software, and 
data—contain or express 
things like the design for 
your next new product, the 
photos from your recent 
vacation, the chapters of 
your new book, or the 
genome sequence resulting 
from your recent research. 
All of these things represent 
intellectual endeavor or 
property, and they have 
value that differs from one 
person or organization to 
another. It is that value that 
makes them assets worthy of 
protection, and they are the 
elements we want to protect. 
Other assets—such as 

access to data, quality of service, processes, human users, and network connectivity—
deserve protection, too; they are affected or enabled by the hardware, software, and data. So 
in most cases, protecting hardware, software, and data covers these other assets as well. 
Computer systems—hardware, software, and data—have value and deserve security 
protection. 
In this book, unless we specifically distinguish between hardware, software, and data, we 
refer to all these assets as the computer system, or sometimes as the computer. And 
because processors are embedded in so many devices, we also need to think about such 
variations as mobile phones, implanted pacemakers, heating controllers, and automobiles. 
Even if the primary purpose of the device is not computing, the device’s embedded 
computer can be involved in security incidents and represents an asset worthy of 
protection. 
Values of Assets 

After identifying the assets to protect, 
we next determine their value. We make 
value based decisions frequently, even 
when we are not aware of them. For 
example, when you go for a swim you 
can leave a bottle of water and a towel 
on the beach, but not your wallet or cell 
phone. The difference relates to the 
value of the assets. The value of an 
asset depends on the asset owner’s or 
user’s perspective, and it may be 
independent of monetary cost, as shown 
in Figure 1-3.  
 
Your photo of your sister, worth only a 
few cents in terms of paper and ink, 
may have high value to you and no 
value to your roommate. Other items’ 

value depends on replacement cost; some computer data are  difficult or impossible to 
replace. For example, that photo of you and your friends at a party may have cost you 
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nothing, but it is invaluable because there is no other copy. On the other hand, the DVD of 
your favorite film may have cost a significant portion of your take-home pay, but you can 
buy another one if the DVD is stolen or corrupted. Similarly, timing has bearing on asset 
value. For example, the value of the plans for a company’s new product line is very high, 
especially to competitors. But once the new product is released, the plans’ value drops 
dramatically. 
Assets’ values are personal, time dependent, and often imprecise. 
The Vulnerability–Threat–Control Paradigm 
The goal of computer security is protecting valuable assets. To study different ways of 
protection, we use a framework that describes how assets may be harmed and how to 
counter or mitigate that harm. 
A vulnerability is a weakness in the system, for example, in procedures, design, or 
implementation, that might be exploited to cause loss or harm. For instance, a particular 
system may be vulnerable to unauthorized data manipulation because the system does not 
verify a user’s identity before allowing data access. 
A vulnerability is a weakness that could be exploited to cause harm. 
A threat to a computing system is a set of circumstances that has the potential to cause 
loss or harm. To see the difference between a threat and a vulnerability, consider the 
illustration in Figure 1-4. Here, a wall is holding water back. The water to the left of the wall 
is a threat to the man on the right of the wall: The water could rise, overflowing onto the 
man, or it could stay beneath the height of the wall, causing the wall to collapse. So the 
threat of harm is the potential for the man to get wet, get hurt, or be drowned. For now, the 
wall is intact, so the threat to the man is unrealized. 
 

 
A threat is a set of 
circumstances that could 
cause harm. 
However, we can see a small 
crack in the wall—a 
vulnerability that threatens the 
man’s security. If the water 
rises to or beyond the level of 
the crack, it will exploit the 
vulnerability and harm the 
man. There are many threats to 
a computer system, including 
human-initiated and computer 
initiated ones. We have all 
experienced the results of 
inadvertent human errors, 
hardware design flaws, and 
software failures. But natural 

disasters are threats, too; they can bring a system down when the computer room is flooded 
or the data center collapses from an earthquake, for example. A human who exploits a 
vulnerability perpetrates an attack on the system. An attack can also be launched by 
another system, as when one system sends an overwhelming flood of messages to another, 
virtually shutting down the second system’s ability to function. 
Unfortunately, we have seen this type of attack frequently, as denial-of-service attacks 
deluge servers with more messages than they can handle. (We take a closer look at denial of 
service in Chapter 6.) 
How do we address these problems? We use a control or countermeasure as protection. 
That is, a control is an action, device, procedure, or technique that removes or reduces a 
vulnerability. In Figure 1-4, the man is placing his finger in the hole, controlling the threat 
of water leaks until he finds a more permanent solution to the problem. In general, we can 
describe the relationship between threats, controls, and vulnerabilities in this way: 
Controls prevent threats from exercising vulnerabilities. 
A threat is blocked by control of a vulnerability. 
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Before we can protect assets, we need to know the kinds of harm we have to protect them 
against, so now we explore threats to valuable assets. 

Attacks 
We can consider potential harm to assets in two ways: First, we can look at what bad things 
can happen to assets, and second, we can look at who or what can cause or allow those bad 
things to happen. These two perspectives enable us to determine how to protect assets. 
Think for a moment about what makes your computer valuable to you. First, you use it as a 
tool for sending and receiving email, searching the web, writing papers, and performing 
many other tasks, and you expect it to be available for use when you want it. 
Without your computer these tasks would be harder, if not impossible. Second, you rely 
heavily on your computer’s integrity. When you write a paper and save it, you trust that the 
paper will reload exactly as you saved it. Similarly, you expect that the photo a friend 
passes you on a flash drive will appear the same when you load it into your computer as 
when you saw it on your friend’s computer. Finally, you expect the “personal” aspect of a 
personal computer to stay personal, meaning you want it to protect your confidentiality. For 
example, you want your email messages to be just between you and your listed recipients; 
you don’t want them broadcast to other people. And when you write an essay, you expect 
that no one can copy it without your permission. 
These three aspects, confidentiality, integrity, and availability, make your computer 
valuable to you. But viewed from another perspective, they are three possible ways to make 
it less valuable, that is, to cause you harm. If someone steals your computer, scrambles 
data on your disk, or looks at your private data files, the value of your computer has been 
diminished or your computer use has been harmed. These characteristics are both basic 
security properties and the objects of security threats. 
We can define these three properties as follows. 
• availability: the ability of a system to ensure that an asset can be used by any authorized 
parties 
• integrity: the ability of a system to ensure that an asset is modified only by authorized 
parties 
• confidentiality: the ability of a system to ensure that an asset is viewed only by 
authorized parties 
These three properties, hallmarks of solid security, appear in the literature as early as 
James P. Anderson’s essay on computer security [AND73] and reappear frequently in more 
recent computer security papers and discussions. Taken together (and rearranged), the 
properties are called the C-I-A triad or the security triad. ISO 7498-2 [ISO89] adds to them 
two more properties that are desirable, particularly in communication networks: 
• authentication: the ability of a system to confirm the identity of a sender 
• nonrepudiation or accountability: the ability of a system to confirm that a sender 
cannot convincingly deny having sent something The U.S. Department of Defense [DOD85] 
adds auditability: the ability of a system to trace all actions related to a given asset. The C-
I-A triad forms a foundation for thinking about security. Authenticity and nonrepudiation 
extend security notions to network communications, and auditability is important in 
establishing individual accountability for computer activity. In this book we generally use 
the C-I-A triad as our security taxonomy so that we can frame threats, vulnerabilities, and 
controls in terms of the C-I-A properties affected. We highlight one of these other properties 
when it is relevant to a particular threat we are describing. For now, we focus on just the 
three elements of the triad. 
C-I-A triad: confidentiality, integrity, availability 
What can happen to harm the confidentiality, integrity, or availability of computer assets? If 
a thief steals your computer, you no longer have access, so you have lost availability; 
furthermore, if the thief looks at the pictures or documents you have stored, your 
confidentiality is compromised. And if the thief changes the content of your music files but 
then gives them back with your computer, the integrity of your data has been harmed. You 
can envision many scenarios based around these three properties. 
The C-I-A triad can be viewed from a different perspective: the nature of the harm caused to 
assets. Harm can also be characterized by four acts: interception, interruption, 
modification, and fabrication. These four acts are depicted in Figure 1-5. From this point 
of view, confidentiality can suffer if someone intercepts data, availability is lost if someone 
or something interrupts a flow of data or access to a computer, and integrity can fail if 
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someone or something modifies data or fabricates false data. Thinking of these four kinds of 
acts can help you determine what threats might exist against the computers you are trying 
to protect. 

To analyze harm, we next refine 
the C-I-A triad, looking more 
closely at each of its elements. 
Confidentiality 
Some things obviously need 
confidentiality protection. For 
example, students’ grades, 
financial transactions, medical 
records, and tax returns are 
sensitive. A proud student may 
run out of a classroom 
screaming “I got an A!” but the 
student should be the one to 
choose whether to reveal that 
grade to others. Other things, 
such as diplomatic and military 
secrets, companies’ marketing 
and product development plans, 
and educators’ tests, also must 
be carefully controlled. 
Sometimes, however, it is not so 

obvious that something is sensitive. For example, a military food order may seem like 
innocuous information, but a sudden increase in the order could be a sign of incipient 
engagement in conflict. Purchases of food, hourly changes in location, and access to books 
are not things you would ordinarily consider confidential, but they can reveal something 
that someone wants to be kept confidential. 
The definition of confidentiality is straightforward: Only authorized people or systems can 
access protected data. However, as we see in later chapters, ensuring confidentiality can be 
difficult. For example, who determines which people or systems are authorized to access the 
current system? By “accessing” data, do we mean that an authorized party can access a 
single bit? the whole collection? pieces of data out of context? Can someone who is 
authorized disclose data to other parties? Sometimes there is even a question of who owns 
the data: If you visit a web page, do you own the fact that you clicked on a link, or does the 
web page owner, the Internet provider, someone else, or all of you? In spite of these 
complicating examples, confidentiality is the security property we understand best because 
its meaning is narrower than that of the other two. We also understand confidentiality well 
because we can relate computing examples to those of preserving confidentiality in the real 
world.  
Confidentiality relates most obviously to data, although we can think of the confidentiality 
of a piece of hardware (a novel invention) or a person (the whereabouts of a wanted 
criminal). Here are some properties that could mean a failure of data confidentiality: 
• An unauthorized person accesses a data item. 
• An unauthorized process or program accesses a data item. 
• A person authorized to access certain data accesses other data not authorized (which is a 
specialized version of “an unauthorized person accesses a data item”). 
• An unauthorized person accesses an approximate data value (for example, not knowing 
someone’s exact salary but knowing that the salary falls in a particular range or exceeds a 
particular amount). 
• An unauthorized person learns the existence of a piece of data (for example, knowing that 
a company is developing a certain new product or that talks are underway about the merger 
of two companies). 
Notice the general pattern of these statements: A person, process, or program is (or is not) 
authorized to access a data item in a particular way. We call the person, process, or 
program a subject, the data item an object, the kind of access (such as read, write, or 
execute) an access mode, and the authorization a policy, as shown in Figure 1-6. These 
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four terms reappear throughout this book because they are fundamental aspects of 
computer security.  

 
One word that captures most 
aspects of confidentiality is 
view, although you should not 
take that term literally. A failure 
of confidentiality does not 
necessarily mean that someone 
sees an object and, in fact, it is 
virtually impossible to look at 
bits in any meaningful way 
(although you may look at their 
representation as characters or 
pictures). The word view does 
connote another aspect of 
confidentiality in computer 
security, through the 
association with viewing a 
movie or a painting in a 
museum: look but do not touch. 
In computer security, 

confidentiality usually means obtaining but not modifying. Modification is the subject of 
integrity, which we consider in the next section. 
Integrity 
Examples of integrity failures are easy to find. A number of years ago a malicious macro in 
a Word document inserted the word “not”  after some random instances of the word “is;” 
you can imagine the havoc that ensued. Because the document was generally syntactically 
correct, people did not immediately detect the change. In another case, a model of the 
Pentium computer chip produced an incorrect result in certain circumstances of floating-
point arithmetic. Although the circumstances of failure were rare, Intel decided to 
manufacture and replace the chips. Many of us receive mail that is misaddressed because 
someone typed something wrong when transcribing from a written list. A worse situation 
occurs when that inaccuracy is propagated to other mailing lists such that we can never 
seem to correct the root of the problem. Other times we find that a spreadsheet seems to be 
wrong, only to find that someone typed “space 123” in a cell, changing it from a numeric 
value to text, so the spreadsheet program misused that cell in computation. Suppose 
someone converted numeric data to roman numerals: One could argue that IV is the same 
as 4, but IV would not be useful in most applications, nor would it be obviously meaningful 
to someone expecting 4 as an answer. These cases show some of the breadth of examples of 
integrity failures. Integrity is harder to pin down than confidentiality. As Stephen Welke and 
Terry Mayfield [WEL90, MAY91, NCS91a] point out, integrity means different things in 
different contexts. When we survey the way some people use the term, we find several 
different meanings. For example, if we say that we have preserved the integrity of an item, 
we may mean that the item is 
• precise 
• accurate 
• unmodified 
• modified only in acceptable ways 
• modified only by authorized people 
• modified only by authorized processes 
• consistent 
• internally consistent 
• meaningful and usable 
Integrity can also mean two or more of these properties. Welke and Mayfield recognize three 
particular aspects of integrity—authorized actions, separation and protection of resources, 
and error detection and correction. Integrity can be enforced in much the same way as can 
confidentiality: by rigorous control of who or what can access which resources in what 
ways. 
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Availability 
A computer user’s worst nightmare: You turn on the switch and the computer does nothing. 
Your data and programs are presumably still there, but you cannot get at them. 
Fortunately, few of us experience that failure. Many of us do experience overload, however: 
access gets slower and slower; the computer responds but not in a way we consider normal 
or acceptable. 
Availability applies both to data and to services (that is, to information and to information 
processing), and it is similarly complex. As with the notion of confidentiality, different 
people expect availability to mean different things. For example, an object or service is 
thought to be available if the following are true: 
• It is present in a usable form. 
• It has enough capacity to meet the service’s needs. 
• It is making clear progress, and, if in wait mode, it has a bounded waiting time. 
• The service is completed in an acceptable period of time. 
We can construct an overall description of availability by combining these goals. 
Following are some criteria to define availability. 
• There is a timely response to our request. 
• Resources are allocated fairly so that some requesters are not favored over others. 
• Concurrency is controlled; that is, simultaneous access, deadlock management, and 
exclusive access are supported as required. 
• The service or system involved follows a philosophy of fault tolerance, 
whereby hardware or software faults lead to graceful cessation of service or to work-
arounds rather than to crashes and abrupt loss of information. (Cessation does mean end; 
whether it is graceful or not, ultimately the system is unavailable. However, with fair 
warning of the system’s stopping, the user may be able to move to another system and 
continue work.) 

• The service or system can be 
used easily and in the way it was 
intended to be used. (This is a 
characteristic of usability, but an 
unusable system may also cause 
an availability failure.) 
As you can see, expectations of 
availability are far-reaching. In 
Figure 1-7 we depict some of the 
properties with which availability 
overlaps. Indeed, the security 
community is just beginning to 
understand what availability 
implies and how to ensure it.  
 
A person or system can do three 
basic things with a data item: view 
it, modify it, or use it. Thus, 
viewing (confidentiality), modifying 
(integrity), and using (availability) 

are the basic modes of access that computer security seeks to preserve. 
Computer security seeks to prevent unauthorized viewing (confidentiality) or 
modification (integrity) of data while preserving access (availability). 
A paradigm of computer security is access control: To implement a policy, computer 
security controls all accesses by all subjects to all protected objects in all modes of access. 
A small, centralized control of access is fundamental to preserving confidentiality and 
integrity, but it is not clear that a single access control point can enforce availability. 
Indeed, experts on dependability will note that single points of control can become single 
points of failure, making it easy for an attacker to destroy availability by disabling the single 
control point. Much of computer security’s past success has focused on confidentiality and 
integrity; there are models of confidentiality and integrity, for example, see David Bell and 
Leonard La Padula [BEL73, BEL76] and Kenneth Biba [BIB77]. Availability is security’s next 
great challenge. 
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We have just described the C-I-A triad and the three fundamental security properties it 
represents. Our description of these properties was in the context of things that need 
protection. To motivate your understanding we gave some examples of harm and threats to 
cause harm. Our next step is to think about the nature of threats themselves. 
Types of Threats 
For some ideas of harm, look at Figure 1-8, taken from Willis Ware’s report [WAR70]. 
Although it was written when computers were so big, so expensive, and so difficult to 
operate that only large organizations like universities, major corporations, or government 
departments would have one, Ware’s discussion is still instructive today. Ware was 
concerned primarily with the protection of classified data, that is, preserving confidentiality. 
In the figure, he depicts humans such as programmers and maintenance staff gaining 
access to data, as well as radiation by which data can escape as signals. From the figure 
you can see some of the many kinds of threats to a computer system.  

 
 
FIGURE 1-8 Computer 
[Network] Vulnerabilities 
(from [WAR70]) One way to 
analyze harm is to consider 
the cause or source. We call a 
potential cause of harm a 
threat. Harm can be caused 
by either nonhuman events 
or humans. Examples of 
nonhuman threats include 
natural disasters like fires or 
floods; loss of electrical 
power; failure of a component 
such as a communications 
cable, processor chip, or disk 
drive; or attack by a wild 
boar. 
Threats are caused both by 

human and other sources. 
Human threats can be either benign (nonmalicious) or malicious. Nonmalicious kinds of 
harm include someone’s accidentally spilling a soft drink on a laptop, unintentionally 
deleting text, inadvertently sending an email message to the wrong person, and carelessly 
typing “12” instead of “21” when entering a phone number or clicking “yes” instead of “no” 
to overwrite a file. These inadvertent, human errors happen to most people; we just hope 
that the seriousness of harm is not too great, or if it is, that we will not repeat the mistake. 
Threats can be malicious or not. 
Most computer security activity relates to malicious, human-caused harm: A malicious 
person actually wants to cause harm, and so we often use the term attack for a malicious 
computer security event. Malicious attacks can be random or directed. In a random attack 
the attacker wants to harm any computer or user; such an attack is analogous to accosting 
the next pedestrian who walks down the street. An example of a random attack is malicious 
code posted on a website that could be visited by anybody. In a directed attack, the 
attacker intends harm to specific computers, perhaps at one organization (think of attacks 
against a political organization) or belonging to a specific individual (think of trying to drain 
a specific person’s bank account, for example, by impersonation). Another class of directed 
attack is against a particular product, such as any computer running a particular browser. 
(We do not want to split hairs about whether such an attack is directed—at that one 
software  product—or random, against any user of that product; the point is not semantic 
perfection but protecting against the attacks.) The range of possible directed attacks is 
practically unlimited. Different kinds of threats are shown in Figure 1-9. 
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Threats can be targeted or 
random. 
Although the distinctions 
shown in Figure 1-9 seem 
clear-cut, sometimes the 
nature of an attack is not 
obvious until the attack is 
well underway, or perhaps 
even ended. A normal 
hardware failure can seem 
like a directed, malicious 
attack to deny access, and 
hackers often try to conceal 
their activity to look like 
ordinary, authorized users. 
As computer security experts 
we need to anticipate what 
bad things might happen, 
instead of waiting for the 
attack to happen or debating 
whether the attack is 
intentional or accidental. 

Neither this book nor any checklist or method can show you all the kinds of harm that can 
happen to computer assets. There are too many ways to interfere with your use of these 
assets. Two retrospective lists of known vulnerabilities are of interest, however. The 
Common Vulnerabilities and Exposures (CVE) list (see http://cve.mitre.org/) is a dictionary 
of publicly known security vulnerabilities and exposures. CVE’s common identifiers enable 
data exchange between security products and provide a baseline index point for evaluating 
coverage of security tools and services. To measure the extent of harm, the Common 
Vulnerability Scoring System (CVSS) (see http://nvd.nist.gov/cvss.cfm) provides a standard 
measurement system that allows accurate and consistent scoring of vulnerability impact. 
Advanced Persistent Threat 
Security experts are becoming increasingly concerned about a type of threat called 
advanced persistent threat. A lone attacker might create a random attack that snares a 
few, or a few million, individuals, but the resulting impact is limited to what that single 
attacker can organize and manage. A collection of attackers—think, for example, of the 
cyber equivalent of a street gang or an organized crime squad—might work together to 
purloin credit card numbers or similar financial assets to fund other illegal activity. Such 
attackers tend to be opportunistic, picking unlucky victims’ pockets and moving on to other 
activities. Advanced persistent threat attacks come from organized, well financed, patient 
assailants. Often affiliated with governments or quasi-governmental groups, these attackers 
engage in long term campaigns. They carefully select their targets, crafting attacks that 
appeal to specifically those targets; email messages called spear phishing (described in 
Chapter 4) are intended to seduce their recipients. Typically the attacks are silent, avoiding 
any obvious impact that would alert a victim, thereby allowing the attacker to exploit the 
victim’s access rights over a long time.  
The motive of such attacks is sometimes unclear. One popular objective is economic 
espionage. A series of attacks, apparently organized and supported by the Chinese 
government, was used in 2012 and 2013 to obtain product designs from aerospace 
companies in the United States. There is evidence the stub of the attack code was loaded 
into victim machines long in advance of the attack; then, the attackers installed the more 
complex code and extracted the desired data. In May 2014 the Justice Department indicted 
five Chinese hackers in absentia for these attacks. In the summer of 2014 a series of 
attacks against J.P. Morgan Chase bank and up to a dozen similar financial institutions 
allowed the assailants access to 76 million names, phone numbers, and email addresses. 
The attackers—and even their country of origin— remain unknown, as does the motive. 
Perhaps the attackers wanted more sensitive financial data, such as account numbers or 
passwords, but were only able to get the less valuable contact information. It is also not 
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known if this attack was related to an attack a year earlier that disrupted service to that 
bank and several others. 
To imagine the full landscape of possible attacks, you may find it useful to consider the 
kinds of people who attack computer systems. Although potentially anyone is an attacker, 
certain classes of people stand out because of their backgrounds or objectives. Thus, in the 
following sections we look at profiles of some classes of attackers.  

 

Computer criminals 
Who are attackers? As we have seen, their motivations range from chance to a specific  
target. Putting aside attacks from natural and benign causes, we can explore who the 
attackers are and what motivates them. 
Most studies of attackers actually analyze computer criminals, that is, people who have 
actually been convicted of a crime, primarily because that group is easy to identify and 
study. The ones who got away or who carried off an attack without being detected may have 
characteristics different from those of the criminals who have been caught. Worse, by 
studying only the criminals we have caught, we may not learn how to catch attackers who 
know how to abuse the system without being apprehended. 
What does a cyber criminal look like? In television and films the villains wore shabby 
clothes, looked mean and sinister, and lived in gangs somewhere out of town. By contrast, 
the sheriff dressed well, stood proud and tall, was known and respected by everyone in 
town, and struck fear in the hearts of most criminals. 
To be sure, some computer criminals are mean and sinister types. But many more wear 
business suits, have university degrees, and appear to be pillars of their communities. 
Some are high school or university students. Others are middle-aged business executives. 
Some are mentally deranged, overtly hostile, or extremely committed to a cause, and they 
attack computers as a symbol. Others are ordinary people tempted by personal profit, 
revenge, challenge, advancement, or job security—like perpetrators of any crime, using a 
computer or not. Researchers have tried to find the psychological traits that distinguish 
attackers, as described in Sidebar 1-1. These studies are far from conclusive, however, and 
the traits they identify may show correlation but not necessarily causality. To appreciate 
this point, suppose a study found that a disproportionate number of people convicted of 
computer crime were left-handed. Does that result imply that all left-handed people are 
computer criminals or that only left-handed people are? Certainly not. No single profile 
captures the characteristics of a “typical” computer attacker, and the characteristics of 
some notorious attackers also match many people who are not attackers. As shown in 
Figure 1-10, attackers look just like anybody in a crowd. 

No one pattern matches all 
attackers. 
Sidebar 1-1 An Attacker’s 
Psychological Profile? 
Temple Grandin, a professor of 
animal science at Colorado 
State University and a sufferer 
from a mental disorder called 
Asperger syndrome (AS), thinks 
that Kevin Mitnick and several 
other widely described hackers 
show classic symptoms of 
Asperger syndrome. Although 
quick to point out that no 
research has established a link 
between AS and hacking, 
Grandin notes similar behavior 
traits among Mitnick, herself, 
and other AS sufferers. An 
article in USA Today (29 March 
2001) lists the following AS 

traits: 
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• poor social skills, often associated with being loners during childhood; the classic 
“computer nerd” 
• fidgeting, restlessness, inability to make eye contact, lack of response to cues in social 
interaction, such as facial expressions or body language  
• exceptional ability to remember long strings of numbers 
• ability to focus on a technical problem intensely and for a long time, although easily 
distracted on other problems and unable to manage several tasks at once 
• deep honesty and respect for laws 
Donn Parker [PAR98] has studied hacking and computer crime for many years. He states 
“hackers are characterized by an immature, excessively idealistic attitude … They delight in 
presenting themselves to the media as idealistic do-gooders, champions of the underdog.” 
Consider the following excerpt from an interview [SHA00] with “Mixter,” the German 
programmer who admitted he was the author of a widespread piece of attack software called 
Tribal Flood Network (TFN) and its sequel TFN2K: 
Q: Why did you write the software? 
A: I first heard about Trin00 [another piece of attack software] in July ’99 and I considered 
it as interesting from a technical perspective, but also potentially powerful in a negative 
way. I knew some facts of how Trin00 worked, and since I didn’t manage to get Trin00 
sources or binaries at that time, I wrote my own server-client network that was capable of 
performing denial of service. 
Q: Were you involved … in any of the recent high-profile attacks? 
A: No. The fact that I authored these tools does in no way mean that I condone their active 
use. I must admit I was quite shocked to hear about the latest attacks. It seems that the 
attackers are pretty clueless people who misuse powerful resources and tools for generally 
harmful and senseless activities just “because they can.” 
Notice that from some information about denial-of-service attacks, he wrote his own server-
client network and then a sophisticated attack. But he was “quite shocked” to hear they 
were used for harm. 
More research is needed before we can define the profile of a hacker. And even more work 
will be needed to extend that profile to the profile of a (malicious) attacker. Not all hackers 
become attackers; some hackers become extremely dedicated and conscientious system 
administrators, developers, or security experts. But some psychologists see in AS the 
rudiments of a hacker’s profile. 
Individuals 
Originally, computer attackers were individuals, acting with motives of fun, challenge, or 
revenge. Early attackers acted alone. Two of the most well known among them are Robert 
Morris Jr., the Cornell University graduate student who brought down the Internet in 1988 
[SPA89], and Kevin Mitnick, the man who broke into and stole data from dozens of 
computers, including the San Diego Supercomputer Center [MAR95].  
Organized, Worldwide Groups 
More recent attacks have involved groups of people. An attack against the government of 
the country of Estonia (described in more detail in Chapter 13) is believed to have been an 
uncoordinated outburst from a loose federation of attackers from around the world. 
Kevin Poulsen [POU05] quotes Tim Rosenberg, a research professor at George Washington 
University, warning of “multinational groups of hackers backed by organized crime” and 
showing the sophistication of prohibition-era mobsters. He also reports that Christopher 
Painter, deputy director of the U.S. Department of Justice’s computer crime section, argues 
that cyber criminals and serious fraud artists are increasingly working in concert or are one 
and the same. According to Painter, loosely connected groups of criminals all over the world 
work together to break into systems and steal and sell information, such as credit card 
numbers. For instance, in October 2004, U.S. and Canadian authorities arrested 28 people 
from 6 countries involved in an international, organized cybercrime ring to buy and sell 
credit card information and identities. Whereas early motives for computer attackers such 
as Morris and Mitnick were personal, such as prestige or accomplishment, recent attacks 
have been heavily influenced by financial gain. Security firm McAfee reports “Criminals 
have realized the huge financial gains to be made from the Internet with little risk. They 
bring the skills, knowledge, and connections needed for large scale, high-value criminal 
enterprise that, when combined with computer skills, expand the scope and risk of 
cybercrime.” [MCA05] 
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Organized Crime 
Attackers’ goals include fraud, extortion, money laundering, and drug trafficking, areas in 
which organized crime has a well-established presence. Evidence is growing that organized 
crime groups are engaging in computer crime. In fact, traditional criminals are recruiting 
hackers to join the lucrative world of cybercrime. For example, Albert Gonzales was 
sentenced in March 2010 to 20 years in prison for working with a crime ring to steal 40 
million credit card numbers from retailer TJMaxx and others, costing over $200 million 
(Reuters, 26 March 2010). 
Organized crime may use computer crime (such as stealing credit card numbers or bank 
account details) to finance other aspects of crime. Recent attacks suggest that professional 
criminals have discovered just how lucrative computer crime can be. Mike Danseglio, a 
security project manager with Microsoft, said, “In 2006, the attackers want to pay the rent. 
They don’t want to write a worm that destroys your hardware. They want to assimilate your 
computers and use them to make money.” [NAR06a] Mikko Hyppönen, Chief Research 
Officer with Finnish security company f-Secure, agrees that today’s attacks often come from 
Russia, Asia, and Brazil; the motive is now profit, not fame [BRA06]. Ken Dunham, Director 
of the Rapid Response Team for VeriSign says he is “convinced that groups of well-
organized mobsters have taken control of a global billion-dollar crime network powered by 
skillful hackers.” [NAR06b] 
Organized crime groups are discovering that computer crime can be lucrative. 
McAfee also describes the case of a hacker-for-hire: a businessman who hired a 16-year-old 
New Jersey hacker to attack the websites of his competitors. The hacker barraged the site 
for a five-month period and damaged not only the target companies but also their Internet 
service providers (ISPs) and other unrelated companies that used the same ISPs. 
By FBI estimates, the attacks cost all the companies over $2 million; the FBI arrested both 
hacker and businessman in March 2005 [MCA05]. 
Brian Snow [SNO05] observes that hackers want a score or some kind of evidence to give 
them bragging rights. Organized crime wants a resource; such criminals want to stay under 
the radar to be able to extract profit from the system over time. These different objectives 
lead to different approaches to computer crime: The novice hacker can use a crude attack, 
whereas the professional attacker wants a neat, robust, and undetectable method that can 
deliver rewards for a long time.  
Terrorists 
The link between computer security and terrorism is quite evident. We see terrorists using 
computers in four ways: 
• Computer as target of attack: Denial-of-service attacks and website defacements are 
popular activities for any political organization because they attract attention to the cause 
and bring undesired negative attention to the object of the attack. An example is the 
massive denial-of-service attack launched against the country of Estonia, detailed in 
Chapter 13. 
• Computer as method of attack: Launching offensive attacks requires the use of computers. 
Stuxnet, an example of malicious computer code called a worm, is known to attack 
automated control systems, specifically a model of control system manufactured by 
Siemens. Experts say the code is designed to disable machinery used in the control of 
nuclear reactors in Iran [MAR10]. The persons behind the attack are unknown, but the 
infection is believed to have spread through USB flash drives brought in by engineers 
maintaining the computer controllers. (We examine the Stuxnet worm in more detail in 
Chapters 6 and 13.) 
• Computer as enabler of attack: Websites, web logs, and email lists are effective, fast, and 
inexpensive ways to allow many people to coordinate. 
According to the Council on Foreign Relations, the terrorists responsible for the November 
2008 attack that killed over 200 people in Mumbai used GPS systems to guide their boats, 
Blackberries for their communication, and Google Earth to plot their routes.  

• Computer as enhancer of attack: The Internet has proved to be an invaluable means for 

terrorists to spread propaganda and recruit agents. In October 2009 the FBI arrested 

Colleen LaRose, also known as JihadJane, after she had spent months using email, 

YouTube, MySpace, and electronic message boards to recruit radicals in Europe and South 

Asia to “wage violent jihad,” according to a federal indictment. 
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We cannot accurately measure the degree to which terrorists use computers, because 
terrorists keep secret the nature of their activities and because our definitions and 
measurement tools are rather weak. Still, incidents like the one described in Sidebar 1-2 
provide evidence that all four of these activities are increasing. 
Sidebar 1-2 The Terrorists, Inc., IT Department 
In 2001, a reporter for the Wall Street Journal bought a used computer in Afghanistan. 
Much to his surprise, he found that the hard drive contained what appeared to be files from 
a senior al Qaeda operative. The reporter, Alan Cullison [CUL04], reports that he turned the 
computer over to the FBI. In his story published in 2004 in The Atlantic, he carefully avoids 
revealing anything he thinks might be sensitive. 
The disk contained over 1,000 documents, many of them encrypted with relatively weak 
encryption. Cullison found draft mission plans and white papers setting forth ideological 
and philosophical arguments for the attacks of 11 September 2001. Also found were copies 
of news stories on terrorist activities. 
Some of the found documents indicated that al Qaeda was not originally interested in 
chemical, biological, or nuclear weapons, but became interested after reading public news 
articles accusing al Qaeda of having those capabilities. 
Perhaps most unexpected were email messages of the kind one would find in a typical 
office: recommendations for promotions, justifications for petty cash expenditures, and 
arguments concerning budgets. 
The computer appears to have been used by al Qaeda from 1999 to 2001. Cullison notes 
that Afghanistan in late 2001 was a scene of chaos, and it is likely the laptop’s owner fled 
quickly, leaving the computer behind, where it fell into the hands of a secondhand goods 
merchant who did not know its contents. 
But this computer’s contents illustrate an important aspect of computer security and 
confidentiality: We can never predict the time at which a security disaster will strike, and 
thus we must always be prepared to act immediately if it suddenly happens. If someone on 
television sneezes, you do not worry about the possibility of catching a cold. But if someone 
standing next to you sneezes, you may become concerned. In the next section we examine 
the harm that can come from the presence of a computer security threat on your own 
computer systems. 
1.3 Harm 
The negative consequence of an actualized threat is harm; we protect ourselves against 
threats in order to reduce or eliminate harm. We have already described many examples of 
computer harm: a stolen computer, modified or lost file, revealed private letter, or denied 
access to data. These events cause harm that we want to avoid. 
In our earlier discussion of assets, we noted that value depends on owner or outsider 
perception and need. Some aspects of value are immeasurable, such as the value of the 
paper you need to submit to your professor tomorrow; if you lose the paper (that is, if its 
availability is lost), no amount of money will compensate you for it. Items on which you 
place little or no value might be more valuable to someone else; for example, the group 
photograph taken at last night’s party can reveal that your friend was not where he told his 
wife he would be. Even though it may be difficult to assign a specific number as the value of 
an asset, you can usually assign a value on a generic scale, such as moderate or minuscule 
or incredibly high, depending on the degree of harm that loss or damage to the object would 
cause. Or you can assign a value relative to other assets, based on comparable loss: This 
version of the file is more valuable to you than that version. 
In their 2010 global Internet threat report, security firm Symantec surveyed the kinds of 
goods and services offered for sale on underground web pages. The item most frequently 
offered in both 2009 and 2008 was credit card numbers, at prices ranging from $0.85 to 
$30.00 each. (Compare those prices to an individual’s effort to deal with the effect of a 
stolen credit card or the potential amount lost by the issuing bank.) Second most frequent 
was bank account credentials, at $15 to $850; these were offered for sale at 19% of 
websites in both years. Email accounts were next at $1 to $20, and lists of email addresses 
went for $1.70 to $15.00 per thousand. At position 10 in 2009 were website administration 
credentials, costing only $2 to $30. These black market websites demonstrate that the 
market price of computer assets can be dramatically different from their value to rightful 
owners. 
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The value of many assets can change over time, so the degree of harm (and therefore the 
severity of a threat) can change, too. With unlimited time, money, and capability, we might 
try to protect against all kinds of harm. But because our resources are limited, we must 
prioritize our protection, safeguarding only against serious threats and the ones we can 
control. Choosing the threats we try to mitigate involves a process called risk management, 
and it includes weighing the seriousness of a threat against our ability to protect. 
Risk management involves choosing which threats to control and what 
resources to devote to protection. 
Risk and Common Sense 
The number and kinds of threats are practically unlimited because devising an attack 
requires an active imagination, determination, persistence, and time (as well as access and 
resources). The nature and number of threats in the computer world reflect life in general: 
The causes of harm are limitless and largely unpredictable. Natural disasters like volcanoes 
and earthquakes happen with little or no warning, as do auto accidents, heart attacks, 
influenza, and random acts of violence. To protect against accidents or the flu, you might 
decide to stay indoors, never venturing outside. But by doing so, you trade one set of risks 
for another; while you are inside, you are vulnerable to building collapse. There are too 
many possible causes of harm for us to protect ourselves—or our computers— completely 
against all of them. 
In real life we make decisions every day about the best way to provide our security. For 
example, although we may choose to live in an area that is not prone to earthquakes, we 
cannot entirely eliminate earthquake risk. Some choices are conscious, such as deciding 
not to walk down a dark alley in an unsafe neighborhood; other times our subconscious 
guides us, from experience or expertise, to take some precaution. We evaluate the likelihood 
and severity of harm, and then consider ways (called countermeasures or controls) to 
address threats and determine the controls’ effectiveness. Computer security is similar. 
Because we cannot protect against everything, we prioritize: Only so much time, energy, or 
money is available for protection, so we address some risks and let others slide. Or we 
consider alternative courses of action, such as transferring risk by purchasing insurance or 
even doing nothing if the side effects of the countermeasure could be worse than the 
possible harm. The risk that remains uncovered by controls is called residual risk. 
A basic model of risk management involves a user’s calculating the value of all assets, 
determining the amount of harm from all possible threats, computing the costs of 
protection, selecting safeguards (that is, controls or countermeasures) based on the degree 
of risk and on limited resources, and applying the safeguards to optimize harm averted. 
This approach to risk management is a logical and sensible approach to protection, but it 
has significant drawbacks. In reality, it is difficult to assess the value of each asset; as we 
have seen, value can change depending on context, timing, and a host of other 
characteristics. Even harder is determining the impact of all possible threats. The range of 
possible threats is effectively limitless, and it is difficult (if not impossible in some 
situations) to know the short- and long-term impacts of an action. For instance, Sidebar 1- 
3 describes a study of the impact of security breaches over time on corporate finances, 
showing that a threat must be evaluated over time, not just at a single instance.  
Sidebar 1-3 Short- and Long-term Risks of Security Breaches 
It was long assumed that security breaches would be bad for business: that customers, 
fearful of losing their data, would veer away from insecure businesses and toward more 
secure ones. But empirical studies suggest that the picture is more complicated. Early 
studies of the effects of security breaches, such as that of Campbell [CAM03], examined the 
effects of breaches on stock price. They found that a breach’s impact could depend on the 
nature of the breach itself; the effects were higher when the breach involved unauthorized 
access to confidential data. Cavusoglu et al. [CAV04] discovered that a breach affects the 
value not only of the company experiencing the breach but also of security enterprises: On 
average, the breached firms lost 2.1 percent of market value within two days of the breach’s 
disclosure, but security developers’ market value actually increased 1.36 percent. 
Myung Ko and Carlos Dorantes [KO06] looked at the longer-term financial effects of publicly 
announced breaches. Based on the Campbell et al. study, they examined data for four 
quarters following the announcement of unauthorized access to confidential data. Ko and 
Dorantes note many types of possible breach-related costs: 
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“Examples of short-term costs include cost of repairs, cost of replacement of the system, 
lost business due to the disruption of business operations, and lost productivity of 
employees.  These are also considered tangible costs. On the other hand, long-term costs 
include the loss of existing customers due to loss of trust, failing to attract potential future 
customers due to negative reputation from the breach, loss of business partners due to loss 
of trust, and potential legal liabilities from the breach. Most of these costs are intangible 
costs that are difficult to calculate but extremely important in assessing the overall security 
breach costs to the organization.” 
Ko and Dorantes compared two groups of companies: one set (the treatment group) with 
data breaches, and the other (the control group) without a breach but matched for size and 
industry. Their findings were striking. Contrary to what you might suppose, the breached 
firms had no decrease in performance for the quarters following the breach, but their return 
on assets decreased in the third quarter. The comparison of treatment with control 
companies revealed that the control firms generally outperformed the breached firms. 
However, the breached firms outperformed the control firms in the fourth quarter. 
These results are consonant with the results of other researchers who conclude that there 
is minimal long-term economic impact from a security breach. There are many reasons why 
this is so. For example, customers may think that all competing firms have the same 
vulnerabilities and threats, so changing to another vendor does not reduce the risk. Another 
possible explanation may be a perception that a breached company has better security 
since the breach forces the company to strengthen controls and thus reduce the likelihood 
of similar breaches. Yet another explanation may simply be the customers’ short attention 
span; as time passes, customers forget about the breach and return to business as usual. 
All these studies have limitations, including small sample sizes and lack of sufficient data. 
But they clearly demonstrate the difficulties of quantifying and verifying the impacts of 
security risks, and point out a difference between shortand long-term effects. 
Although we should not apply protection haphazardly, we will necessarily protect against 
threats we consider most likely or most damaging. For this reason, it is essential to 
understand how we perceive threats and evaluate their likely occurrence and impact. 
Sidebar 1-4 summarizes some of the relevant research in risk perception and 
decisionmaking. Such research suggests that, for relatively rare instances such as high-
impact security problems, we must take into account the ways in which people focus more 
on the impact than on the actual likelihood of occurrence. 
Sidebar 1-4 Perception of the Risk of Extreme Events 
When a type of adverse event happens frequently, we can calculate its likelihood and impact 
by examining both frequency and nature of the collective set of events. For instance, we can 
calculate the likelihood that it will rain this week and take an educated guess at the 
number of inches of precipitation we will receive; rain is a fairly frequent occurrence. But 
security problems are often extreme events: They happen infrequently and under a wide 
variety of circumstances, so it is difficult to look at them as a group and draw general 
conclusions. 
Paul Slovic’s work on risk addresses the particular difficulties with extreme events. He 
points out that evaluating risk in such cases can be a political endeavor as much as a 
scientific one. He notes that we tend to let values, process, power, and trust influence our 
risk analysis [SLO99]. 
Beginning with Fischoff et al. [FIS78], researchers characterized extreme risk along two 
perception-based axes: the dread of the risk and the degree to which the risk is unknown. 
These feelings about risk, called affects by psychologists, enable researchers to discuss 
relative risks by placing them on a plane defined by the two perceptions as axes. A study by 
Loewenstein et al. [LOE01] describes how risk perceptions are influenced by association 
(with events already experienced) and by affect at least as much if not more than by reason. 
In fact, if the two influences compete, feelings usually trump reason. This characteristic of 
risk analysis is reinforced by prospect theory: studies of how people make decisions by 
using reason and feeling. Kahneman and Tversky [KAH79] showed that people tend to 
overestimate the likelihood of rare, unexperienced events because their feelings of dread 
and the unknown usually dominate analytical reasoning about the low likelihood of 
occurrence. By contrast, if people experience similar outcomes and their likelihood, their 
feeling of dread diminishes and they can actually underestimate rare events. In other 
words, if the impact of a rare event is high (high dread), then people focus on the impact, 
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regardless of the likelihood. But if the impact of a rare event issmall, then they pay 
attention to the likelihood. 
Let us look more carefully at the nature of a security threat. We have seen that one aspect—
its potential harm—is the amount of damage it can cause; this aspect is the impact 
component of the risk. We also consider the magnitude of the threat’s likelihood. 
A likely threat is not just one that someone might want to pull off but rather one that could 
actually occur. Some people might daydream about getting rich by robbing a bank; most, 
however, would reject that idea because of its difficulty (if not its immorality or risk). One 
aspect of likelihood is feasibility: Is it even possible to accomplish the attack? If the answer 
is no, then the likelihood is zero, and therefore so is the risk. So a good place to start in 
assessing risk is to look at whether the proposed action is feasible. Three factors determine 
feasibility, as we describe next. 
Spending for security is based on the impact and likelihood of potential 
harm—both of which are nearly impossible to measure precisely. 
Method–Opportunity–Motive 
A malicious attacker must have three things to ensure success: method, opportunity, and 
motive, depicted in Figure 1-11. Roughly speaking, method is the how; opportunity, the 
when; and motive, the why of an attack. Deny the attacker any of those three and the 
attack will not succeed. Let us examine these properties individually. 

 
Method 
By method we mean the skills, 
knowledge, tools, and other things with 
which to perpetrate the attack. Think 
of comic figures that want to do 
something, for example, to steal 
valuable jewelry, but the characters are 
so inept that their every move is 
doomed to fail. These people lack the 
capability or method to succeed, in 
part because there are no classes in 
jewel theft or books on burglary for 
dummies. Anyone can find plenty of 
courses and books about computing, 
however. Knowledge of specific models 
of computer systems is widely available 
in bookstores and on the Internet. 
Mass-market systems (such as the 
Microsoft or Apple or Unix operating 
systems) are readily available for 
purchase, as are common software 
products, such as word processors or 
database management systems, so 
potential attackers can even get 
hardware and software on which to 
experiment and perfect an attack. 
Some manufacturers release detailed 
specifications on how the system was 

designed or how it operates, as guides for users and integrators who want to implement 
other complementary products. Various attack tools—scripts, model programs, and tools to 
test for weaknesses—are available from hackers’ sites on the Internet, to the degree that 
many attacks require only the attacker’s ability to download and run a program. The term 
script kiddie describes someone who downloads a complete attack code package and needs 
only to enter a few details to identify the target and let the script perform the attack. Often, 
only time and inclination limit an attacker. 
Opportunity 
Opportunity is the time and access to execute an attack. You hear that a fabulous 
apartment has just become available, so you rush to the rental agent, only to find someone 
else rented it five minutes earlier. You missed your opportunity. 
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Many computer systems present ample opportunity for attack. Systems available to the 
public are, by definition, accessible; often their owners take special care to make them fully 
available so that if one hardware component fails, the owner has spares instantly ready to 
be pressed into service. Other people are oblivious to the need to protect their computers, 
so unattended laptops and unsecured network connections give ample opportunity for 
attack. Some systems have private or undocumented entry points for administration or 
maintenance, but attackers can also find and use those entry points to attack the systems. 
Motive 
Finally, an attacker must have a motive or reason to want to attack. You probably have 
ample opportunity and ability to throw a rock through your neighbor’s window, but you do 
not. Why not? Because you have no reason to want to harm your neighbor: You lack 
motive. 
We have already described some of the motives for computer crime: money, fame, 
selfesteem, politics, terror. It is often difficult to determine motive for an attack. Some 
places are “attractive targets,” meaning they are very appealing to attackers. Popular targets 
include law enforcement and defense department computers, perhaps because they are 
presumed to be well protected against attack (so they present a challenge and a successful 
attack shows the attacker’s prowess). Other systems are attacked because they are easy to 
attack. And some systems are attacked at random simply because they are there. 
Method, opportunity, and motive are all necessary for an attack to 
succeed; deny any of these and the attack will fail. 
By demonstrating feasibility, the factors of method, opportunity, and motive determine 
whether an attack can succeed. These factors give the advantage to the attacker because 
they are qualities or strengths the attacker must possess. Another factor, this time giving 
an advantage to the defender, determines whether an attack will succeed: The attacker 
needs a vulnerability, an undefended place to attack. If the defender removes 
vulnerabilities, the attacker cannot attack. 
1.4 Vulnerabilities 
As we noted earlier in this chapter, a vulnerability is a weakness in the security of the 
computer system, for example, in procedures, design, or implementation, that might be 
exploited to cause loss or harm. Think of a bank, with an armed guard at the front door, 
bulletproof glass protecting the tellers, and a heavy metal vault requiring multiple keys for 
entry. To rob a bank, you would have to think of how to exploit a weakness not covered by 
these defenses. For example, you might bribe a teller or pose as a maintenance worker. 
Computer systems have vulnerabilities, too. In this book we consider many, such as weak 
authentication, lack of access control, errors in programs, finite or insufficient resources, 
and inadequate physical protection. Paired with a credible attack, each of these 
vulnerabilities can allow harm to confidentiality, integrity, or availability. Each attack 
vector seeks to exploit a particular vulnerability.  
Vulnerabilities are weaknesses that can allow harm to occur. 
Security analysts speak of a system’s attack surface, which is the system’s full set of 
vulnerabilities—actual and potential. Thus, the attack surface includes physical hazards, 
malicious attacks by outsiders, stealth data theft by insiders, mistakes, and 
impersonations. 
Although such attacks range from easy to highly improbable, analysts must consider all 
possibilities. 
Our next step is to find ways to block threats by neutralizing vulnerabilities. 
In television and film westerns, the bad guys always wore shabby clothes, looked mean and 
sinister, and lived in gangs somewhere out of town. By contrast, the sheriff dressed well, 
stood proud and tall, was known and respected by everyone in town, and struck fear in the 
hearts of most criminals. 
To be sure, some computer criminals are mean and sinister types. But many more wear 
business suits, have university degrees, and appear to be pillars of their communities. 
Some are high school or university students. Others are middle-aged business executives. 
Some are mentally deranged, overtly hostile, or extremely committed to a cause, and they 
attack computers as a symbol. Others are ordinary people tempted by personal profit, 
revenge, challenge, advancement, or job security. No single profile captures the 
characteristics of a "typical" computer criminal, and many who fit the profile are not 
criminals at all. 
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Whatever their characteristics and motivations, computer criminals have access to 
enormous amounts of hardware, software, and data; they have the potential to cripple 
much of effective business and government throughout the world. In a sense, then, the 
purpose of computer security is to prevent these criminals from doing damage. 
For the purposes of studying computer security, we say computer crime is any crime 
involving a computer or aided by the use of one. Although this definition is admittedly 
broad, it allows us to consider ways to protect ourselves, our businesses, and our 
communities against those who use computers maliciously. 
The U.S. Federal Bureau of Investigation regularly reports uniform crime statistics. The 
data do not separate computer crime from crime of other sorts. Moreover, many companies 
do not report computer crime at all, perhaps because they fear damage to their reputation, 
they are ashamed to have allowed their systems to be compromised, or they have agreed not 
to prosecute if the criminal will "go away." These conditions make it difficult for us to 
estimate the economic losses we suffer as a result of computer crime; our dollar estimates 
are really only vague suspicions. Still, the estimates, ranging from $300 million to $500 
billion per year, tell us that it is important for us to pay attention to computer crime and to 
try to prevent it or at least to moderate its effects. 
One approach to prevention or moderation is to understand who commits these crimes and 
why. Many studies have attempted to determine the characteristics of computer criminals. 
By studying those who have already used computers to commit crimes, we may be able in 
the future to spot likely criminals and prevent the crimes from occurring. In this section, we 
examine some of these characteristics. 
Amateurs 
Amateurs have committed most of the computer crimes reported to date. Most embezzlers 
are not career criminals but rather are normal people who observe a weakness in a security 
system that allows them to access cash or other valuables. In the same sense, 
mostcomputer criminals are ordinary computer professionals or users who, while doing 
their jobs, discover they have access to something valuable. 
When no one objects, the amateur may start using the computer at work to write letters, 
maintain soccer league team standings, or do accounting. This apparently innocent time-
stealing may expand until the employee is pursuing a business in accounting, stock 
portfolio management, or desktop publishing on the side, using the employer's computing 
facilities. Alternatively, amateurs may become disgruntled over some negative work 
situation (such as a reprimand or denial of promotion) and vow to "get even" with 
management by wreaking havoc on a computing installation. 
Crackers or Malicious Hackers 
System crackersa[2] often high school or university students, attempt to access computing 
facilities for which they have not been authorized. Cracking a computer's defenses is seen 
as the ultimate victimless crime. The perception is that nobody is hurt or even endangered 
by a little stolen machine time. Crackers enjoy the simple challenge of trying to log in, just 
to see whether it can be done. Most crackers can do their harm without confronting 
anybody, not even making a sound. In the absence of explicit warnings not to trespass in a 
system, crackers infer that access is permitted. An underground network of hackers helps 
pass along secrets of success; as with a jigsaw puzzle, a few isolated pieces joined together 
may produce a large effect. Others attack for curiosity, personal gain, or self-satisfaction. 
And still others enjoy causing chaos, loss, or harm. There is no common profile or 
motivation for these attackers. 
[2] The security community distinguishes between a ahacker,a someone w ho 
(nonmaliciously) programs, manages, or uses computing systems, and a acracker,a 
someone w ho attempts to access computing systems for malicious purposes. Crackers are 
the aevildoers.a Now, hacker has come to be used outside security to mean both benign and 
malicious users. 
Career Criminals 
By contrast, the career computer criminal understands the targets of computer crime. 
Criminals seldom change fields from arson, murder, or auto theft to computing; more often, 
criminals begin as computer professionals who engage in computer crime, finding the 
prospects and payoff good. There is some evidence that organized crime and international 
groups are engaging in computer crime. Recently, electronic spies and information brokers 
have begun to recognize that trading in companies' or individuals' secrets can be lucrative. 



20 
 

Recent attacks have shown that organized crime and professional criminals have discovered 
just how lucrative computer crime can be. Mike Danseglio, a security project manager with 
Microsoft, said, "In 2006, the attackers want to pay the rent. They don't want to write a 
worm that destroys your hardware. They want to assimilate your computers and use them 
to make money" [NAR06a]. Mikko Hyppönen, Chief Research Officer with the Finnish 
security company f-Secure, agrees that today's attacks often come from Russia, Asia, and 
Brazil and the motive is now profit, not fame [BRA06]. Ken Dunham, Director of the Rapid 
Response Team for Verisign says he is "convinced that groups of well-organized mobsters 
have taken control of a global billion-dollar crime network powered by skillful hackers" 
[NAR06b]. 
Snow [SNO05] observes that a hacker wants a score, bragging rights. Organized crime 
wants a resource; they want to stay and extract profit from the system over time. These 
different objectives lead to different approaches: The hacker can use a quick-and-dirty 
attack, whereas the professional attacker wants a neat, robust, and undetected method. 
As mentioned earlier, some companies are reticent to prosecute computer criminals. In fact, 
after having discovered a computer crime, the companies are often thankful if the criminal 
quietly resigns. In other cases, the company is (understandably) more concerned about 
protecting its assets and so it closes down an attacked system rather than gathering 
evidence that could lead to identification and conviction of the criminal. The criminal is 
then free to continue the same illegal pattern with another company. 
Terrorists 
The link between computers and terrorism is quite evident. We see terrorists using 
computers in three ways: 

 targets of attack: denial-of-service attacks and web site defacements are popular for any 
political organization because they attract attention to the cause and bring  undesired 
negative attention to the target of the attack. 

 propaganda vehicles: web sites, web logs, and e-mail lists are effective, fast, and 
inexpensive ways to get a message to many people. 

 methods of attack: to launch offensive attacks requires use of computers. 
We cannot accurately measure the amount of computer-based terrorism because our 
definitions and measurement tools are rather weak. Still, there is evidence that all three of 
these activities are increasing. (For another look at terrorists' use of computers, see Sidebar 
1-6.) 
Pag 

Method of defense Program Security: 

we investigate the legal and ethical restrictions on computer-based crime. 
But unfortunately, computer crime is certain to continue for the foreseeable 

future. For this reason, we must look carefully at controls for preserving 

confidentiality, integrity, and availability. Sometimes these controls can 

prevent or mitigate attacks; other, less powerful methods can only inform us 
that security has been compromised, by detecting a breach as it happens or 

after it occurs. Harm occurs when a threat is realized against a 

vulnerability. To protect against harm, then, we can neutralize the threat, 
close the vulnerability, or both. The possibility for harm to occur is called 

risk. We can deal with harm in several ways. We can seek to x prevent it, by 

blocking the attack or closing the vulnerability x deter it, by making the 
attack harder but not impossible x deflect it, by making another target more 

attractive (or this one less so) x detect it, either as it happens or some time 

after the fact x recover from its effects.  
Of course, more than one of these can be done at once. So, for example, we 

might try to prevent intrusions. But in case we do not prevent them all, we 

might install a detection device to warn of an imminent attack. And we 
should have in place incident response procedures to help in the recovery in 

case an intrusion does succeed. 
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Controls To consider the controls or countermeasures that attempt to 

prevent exploiting a computing system's vulnerabilities, we begin by 
thinking about traditional ways to enhance physical security. In the Middle 

Ages, castles and fortresses were built to protect the people and valuable 

property inside. The fortress might have had one or more security 
characteristics, including x a strong gate or door, to repel invaders x heavy 

walls to withstand objects thrown or projected against them x a surrounding 

moat, to control access x arrow slits, to let archers shoot at approaching 

enemies x crenellations to allow inhabitants to lean out from the roof and 
pour hot or vile liquids on attackers x a drawbridge to limit access to 

authorized people x gatekeepers to verify that only authorized people and 

goods could enter Similarly, today we use a multipronged approach to 
protect our homes and offices. We may combine strong locks on the doors 

with a burglar alarm, reinforced windows, and even a nosy neighbor to keep 

an eye on our valuables. In each case, we select one or more ways to deter 
an intruder or attacker, and we base our selection not only on the value of 

what we protect but also on the effort we think an attacker or intruder will 

expend to get inside. Computer security has the same characteristics. We 
have many controls at our disposal. Some are easier than others to use or 

implement. Some are cheaper than others to use or implement. And some 

are more difficult than others for intruders to override. Figure 1-6 illustrates 

how we use a combination of controls to secure our valuable resources. We 
use one or more controls, according to what we are protecting, how the cost 

of protection compares with the risk of loss, and how hard we think 

intruders will work to get what they want. 
 

In this section, we 

present an overview of 
the controls available to 

us. In later chapters, 

we examine each 
control in much more 

detail. Encryption We 

noted earlier that we 

seek to protect 
hardware, software, 

and data. We can make 

it particularly hard for an intruder to find data useful if we somehow 
scramble the data so that interpretation is meaningless without the 

intruder's knowing how the scrambling was done. Indeed, the most powerful 

tool in providing computer security is this scrambling or encoding. 
Encryption is the formal name for the scrambling process. We take data in 

their normal, unscrambled state, called cleartext, and transform them so 

that they are unintelligible to the outside observer; the transformed data are 
called enciphered text or ciphertext. Using encryption, security professionals 

can virtually nullify the value of an interception and the possibility of 

effective modification or fabrication. In Chapters 2 and 12 we study many 
ways of devising and applying these transformations. Encryption clearly 

addresses the need for confidentiality of data. Additionally, it can be used to 
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ensure integrity; data that cannot be read generally cannot easily be 

changed in a meaningful manner. Furthermore, as we see throughout this 
book, encryption is the basis of protocols that enable us to provide security 

while accomplishing an important system or network task. A protocol is an 

agreed-on sequence of actions that leads to a desired result. For example, 
some operating system protocols ensure availability of resources as different 

tasks and users request them. Thus, encryption can also be thought of as 

supporting availability. That is, encryption is at the heart of methods for 

ensuring all aspects of computer security. Although encryption is an 
important tool in any computer security tool kit, we should not overrate its 

importance. Encryption does not solve all computer security problems, and 

other tools must complement its use. Furthermore, if encryption is not used 
properly, it may have no effect on security or could even degrade the 

performance of the entire system. Weak encryption can actually be worse 

than no encryption at all, because it gives users an unwarranted sense of 
protection. Therefore, we must understand those situations in which 

encryption is most useful as well as ways to use it effectively. 

Software Controls If encryption is the primary way of protecting valuables, 
programs themselves are the second facet of computer security. Programs 

must be secure enough to prevent outside attack. They must also be 

developed and maintained so that we can be confident of the programs' 

dependability. Program controls include the following: x internal program 
controls: parts of the program that enforce security restrictions, such as 

access limitations in a database management program x operating system 

and network system controls: limitations enforced by the operating system 
or network to protect each user from all other users x independent control 

programs: application programs, such as password checkers, intrusion 

detection utilities, or virus scanners, that protect against certain types of 
vulnerabilities x development controls: quality standards under which a 

program is designed, coded, tested, and maintained to prevent software 

faults from becoming exploitable vulnerabilities We can implement software 
controls by using tools and techniques such as hardware components, 

encryption, or information gathering. Software controls frequently affect 

users directly, such as when the user is interrupted and asked for a 

password before being given access to a program or data. For this reason, 
we often think of software controls when we think of how systems have been 

made secure in the past. Because they influence the way users interact with 

a computing system, software controls must be carefully designed. Ease of 
use and potency are often competing goals in the design of a collection of 

software controls.  

Hardware Controls 
Numerous hardware devices have been created to assist in providing 

computer security. These devices include a variety of means, such as x 

hardware or smart card implementations of encryption x locks or cables 
limiting access or deterring theft x devices to verify users' identities x 

firewalls x intrusion detection systems x circuit boards that control access to 

storage media Policies and Procedures Sometimes, we can rely on agreed-on 
procedures or policies among users rather than enforcing security through 

hardware or software means. In fact, some of the simplest controls, such as 
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frequent changes of passwords, can be achieved at essentially no cost but 

with tremendous effect. Training and administration follow immediately after 
establishment of policies, to reinforce the importance of security policy and 

to ensure their proper use. We must not forget the value of community 

standards and expectations when we consider how to enforce security. There 
are many acts that most thoughtful people would consider harmful, and we 

can leverage this commonality of belief in our policies. For this reason, legal 

and ethical controls are an important part of computer security. However, 

the law is slow to evolve, and the technology involving computers has 
emerged relatively suddenly. Although legal protection is necessary and 

desirable, it may not be as dependable in this area as it would be when 

applied to more well-understood and long-standing crimes. Society in 
general and the computing community in particular have not adopted formal 

standards of ethical behavior. As we see in Chapter 11, some organizations 

have devised codes of ethics for computer professionals. However, before 
codes of ethics can become widely accepted and effective, the computing 

community and the general public must discuss and make clear what kinds 

of behavior are inappropriate and why. Physical Controls Some of the 
easiest, most effective, and least expensive controls are physical controls. 

Physical controls include locks on doors, guards at entry points, backup 

copies of important software and data, and physical site planning that 

reduces the risk of natural disasters. Often the simple physical controls are 
overlooked while we seek more sophisticated approaches. Effectiveness of 

Controls Merely having controls does no good unless they are used properly. 

Let us consider several aspects that can enhance the effectiveness of 
controls. Awareness of Problem People using controls must be convinced of 

the need for security. That is, people will willingly cooperate with security 

requirements only if they understand why security is appropriate in a given 
situation. However, many users are unaware of the need for security, 

especially in situations in which a group has recently undertaken a 

computing task that was previously performed with lax or no apparent 
security. Likelihood of Use Of course, no control is effective unless it is used. 

The lock on a computer room door does no good if people block the door 

open. As Sidebar 1-7 tells, some computer systems are seriously 

uncontrolled.  
Principle of Effectiveness:  

Controls must be usedand used properlyto be effective. They must be 

efficient, easy to use, and appropriate. This principle implies that computer 
security controls must be efficient enough, in terms of time, memory space, 

human activity, or other resources used, that using the control does not 

seriously affect the task being protected. Controls should be selective so that 
they do not exclude legitimate accesses. 

 

Overlapping Controls As we have seen with fortress or home security, 
several different controls may apply to address a single vulnerability. For 

example, we may choose to implement security for a microcomputer 

application by using a combination of controls on program access to the 
data, on physical access to the microcomputer and storage media, and even 

by file locking to control access to the processing programs. Periodic Review 
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Few controls are permanently effective. Just when the security specialist 

finds a way to secure assets against certain kinds of attacks, the opposition 
doubles its efforts in an attempt to defeat the security mechanisms. Thus, 

judging the effectiveness of a control is an ongoing task. (Sidebar 1-8 reports 

on periodic reviews of computer security.) Seldom, if ever, are controls 
perfectly effective. Controls fail, controls are incomplete, or people 

circumvent or misuse controls, for example. For that reason, we use 

overlapping controls, sometimes called a layered defense, in the expectation 

that one control will compensate for a failure of another. In some cases, 
controls do nicely complement each other. But two controls are not always 

better than one and, in some cases, two can even be worse than one. This 

brings us to another security principle. Principle of Weakest Link: Security 
can be no stronger than its weakest link. Whether it is the power supply 

that powers the firewall or the operating system under the security 

application or the human who plans, implements, and administers controls, 
a failure of any control can lead to a security failure. 

 

Program Security 
In the first two chapters, we learned about the need for computer security and we studied 
encryption, a fundamental tool in implementing many kinds of security controls. In this 
chapter, we begin to study how to apply security in computing. We start with why we need 
security at the program level and how we can achieve it. 
In one form or another, protecting programs is at the heart of computer security because 
programs constitute so much of a computing system (the operating system, device drivers, 
the network infrastructure, database management systems and other applications, even 
executable commands on web pages). For now, we call all these pieces of code "programs." 
So we need to ask two important questions: 
• How do we keep programs free from flaws? 
• How do we protect computing resources against programs that contain flaws? 
In later chapters, we examine particular types of programs including operating systems, 
database management systems, and network implementations and the specific kinds of 
security issues that are raised by the nature of their design and functionality.  
In this chapter, we address more general themes, most of which carry forward to these 
special-purpose systems. Thus, this chapter not only lays the groundwork for future 
chapters but also is significant on its own. 
This chapter deals with the writing of programs. It defers to a later chapter what may be a 
much larger issue in program security: trust. The trust problem can be framed as follows: 
Presented with a finished program, for example, a commercial software package, how can 
you tell how secure it is or how to use it in its most secure way? In part the answer to these 
questions is independent, third-party evaluations, presented for operating systems (but 
applicable to other programs, as well) in Chapter 5. The reporting and fixing of discovered 
flaws is discussed in Chapter 11, as are liability and software warranties. For now, however, 
the unfortunate state of commercial software development is largely a case of trust your 
source, and buyer beware. 

Secure programs  

Consider what we mean when we say that a program is "secure." We saw in Chapter 1 that 
security implies some degree of trust that the program enforces expected confidentiality, 
integrity, and availability. From the point of view of a program or a programmer, how can 
we look at a software component or code fragment and assess its security? This question is, 
of course, similar to the problem of assessing software quality in general. One way to assess 
security or quality is to ask people to name the characteristics of software that contribute to 
its overall security. However, we are likely to get different answers from different people. 
This difference occurs because the importance of the characteristics depends on who is 
analyzing the software. For example, one person may decide that code is secure because it 
takes too long to break through its security controls. And someone else may decide code is 
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secure if it has run for a period of time with no apparent failures. But a third person may 
decide that any potential fault in meeting security requirements makes code insecure. 
An assessment of security can also be influenced by someone's general perspective on 
software quality. For example, if your manager's idea of quality is conformance to 
specifications, then she might consider the code secure if it meets security requirements, 
whether or not the requirements are complete or correct. This security view played a role 
when a major computer manufacturer delivered all its machines with keyed locks, since a 
keyed lock was written in the requirements. But the machines were not secure, because all 
locks were configured to use the same keya Thus, another view of security is fitness for 
purpose; in this view, the manufacturer clearly had room for improvement. 
In general, practitioners often look at quantity and types of faults for evidence of a product's 
quality (or lack of it). For example, developers track the number of faults found in 
requirements, design, and code inspections and use them as indicators of the likely quality 
of the final product. Sidebar 3-1 explains the importance of separating the faultsthe causes 
of problemsfrom the failures, the effects of the faults. 

Fixing Faults 
One approach to judging quality in security has been fixing faults. You might argue that a 
module in which 100 faults were discovered and fixed is better than another in which only 
20 faults were discovered and fixed, suggesting that more rigorous analysis and testing had 
led to the finding of the larger number of faults. Au contraire, challenges your friend: a piece 
of software with 100 discovered faults is inherently full of problems and could clearly have 
hundreds more waiting to appear. Your friend's opinion is confirmed by the software testing 
literature; software that has many faults early on is likely to have many others still waiting 
to be found. 
Early work in computer security was based on the paradigm of "penetrate and patch," in 
which analysts searched for and repaired faults. Often, a top-quality "tiger team" would be 
convened to test a system's security by attempting to cause it to fail. The test was 
considered to be a "proof" of security; if the system withstood the attacks, it was considered 
secure. Unfortunately, far too often the proof became a counterexample, in which not just 
one but several serious security problems were uncovered. The problem discovery in turn 
led to a rapid effort to "patch" the system to repair or restore the security. (See Schell's 
analysis in [SCH79].) However, the patch efforts were largely useless, making the system 
less secure rather than more secure because they frequently introduced new faults. There 
are at least four reasons why. 

 The pressure to repair a specific problem encouraged a narrow focus on the fault itself 
and not on its context. In particular, the analysts paid attention to the immediate cause of 
the failure and not to the underlying design or requirements faults. 

 The fault often had nonobvious side effects in places other than the immediate area of the 
fault. 

 Fixing one problem often caused a failure somewhere else, or the patch addressed the 
problem in only one place, not in other related places. 

 The fault could not be fixed properly because system functionality or performance would 
suffer as a consequence. 

Unexpected Behavior 
The inadequacies of penetrate-and-patch led researchers to seek a better way to be 
confident that code meets its security requirements. One way to do that is to compare the 
requirements with the behavior. That is, to understand program security, we can examine 
programs to see whether they behave as their designers intended or users expected. We call 
such unexpected behavior a program security flaw; it is inappropriate program behavior 
caused by a program vulnerability. Unfortunately, the terminology in the computer security 
field is not consistent with the IEEE standard described in Sidebar 3-1; the terms 
"vulnerability" and "flaw" do not map directly to the characterization of faults and failures. A 
flaw can be either a fault or failure, and a vulnerability usually describes a class of flaws, 
such as a buffer overflow. In spite of the inconsistency, it is important for us to remember 
that we must view vulnerabilities and flaws from two perspectives, cause and effect, so that 
we see what fault caused the problem and what failure (if any) is visible to the user. For 
example, a Trojan horse may have been injected in a piece of codea flaw exploiting a 
vulnerability but the user may not yet have seen the Trojan horse's malicious behavior. 
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Thus, we must address program security flaws from inside and outside, to find causes not 
only of existing failures but also of incipient ones. Moreover, it is not enough just to identify 
these problems. We must also determine how to prevent harm caused by possible flaws. 
 
Program security flaws can derive from any kind of software fault. That is, they cover 
everything from a misunderstanding of program requirements to a one-character error in 
coding or even typing. The flaws can result from problems in a single code component or 
from the failure of several programs or program pieces to interact compatibly through a 
shared interface. The security flaws can reflect code that was intentionally designed or 
coded to be malicious or code that was simply developed in a sloppy or misguided way. 
Thus, it makes sense to divide program flaws into two separate logical categories: 
inadvertent human errors versus malicious, intentionally induced flaws. 
These categories help us understand some ways to prevent the inadvertent and intentional 
insertion of flaws into future code, but we still have to address their effects, regardless of 
intention. That is, in the words of Sancho Panza in Man of La Mancha, "it doesn't matter 
whether the stone hits the pitcher or the pitcher hits the stone, it's going to be bad for the 
pitcher." An inadvertent error can cause just as much harm to users and their 
organizations as can an intentionally induced flaw. Furthermore, a system attack often 
exploits an unintentional security flaw to perform intentional damage. From reading the 
popular press (see Sidebar 3-2), you might conclude that intentional security incidents 
(called cyber attacks) are the biggest security threat today. In fact, plain, unintentional 
human errors are more numerous and cause much more damage. 
Regrettably, we do not have techniques to eliminate or address all program security flaws. 
As Gasser [GAS88] notes, security is fundamentally hard, security often conflicts with 
usefulness and performance, there is no ""silver bullet" to achieve security effortlessly, and 
false security solutions impede real progress toward more secure programming. There are 
two reasons for this distressing situation. 
1. Program controls apply at the level of the individual program and programmer. When we 
test a system, we try to make sure that the functionality prescribed in the requirements is 
implemented in the code. That is, we take a "should do" checklist and verify that the code 
does what it is supposed to do. However, security is also about preventing certain actions: a 
"shouldn't do" list. A system shouldn't do anything not on its "should do" list. It is almost 
impossible to ensure that a program does precisely what its designer or user intended, and 
nothing more. Regardless of designer or programmer intent, in a large and complex system, 
the pieces that have to fit together properly interact in an unmanageably large number of 
ways. We are forced to examine and test the code for typical or likely cases; we cannot 
exhaustively test every state and data combination to verify a system's behavior. So sheer 
size and complexity preclude total flaw prevention or mediation. Programmers intending to 
implant malicious code can take advantage of this incompleteness and hide some flaws 
successfully, despite our best efforts. 
2. Programming and software engineering techniques change and evolve far more rapidly 
than do computer security techniques. So we often find ourselves trying to secure last 
year's technology while software developers are rapidly adopting today'sand next 
year'stechnology. 
Still, the situation is far from bleak. Computer security has much to offer to program 
security. 
By understanding what can go wrong and how to protect against it, we can devise 
techniques and tools to secure most computer applications. 

Types of Flaws 
To aid our understanding of the problems and their prevention or correction, we can define 
categories that distinguish one kind of problem from another. For example, Landwehr et al. 
[LAN94] present a taxonomy of program flaws, dividing them first into intentional and 
inadvertent flaws. They further divide intentional flaws into malicious and nonmalicious 
ones. 
In the taxonomy, the inadvertent flaws fall into six categories: 

 validation error (incomplete or inconsistent): permission checks 
 domain error: controlled access to data 
 serialization and aliasing: program flow order 
 inadequate identification and authentication: basis for authorization 
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 boundary condition violation: failure on first or last case 
 other exploitable logic errors 

Other authors, such as Tsipenyuk et al. [TSI05], the OWASP project [OWA05], and 
Landwehr [LAN93], have produced similar lists. This list gives us a useful overview of the 
ways in which programs can fail to meet their security requirements. We leave our 
discussion of the pitfalls of identification and authentication for Chapter 4, in which we also 
investigate separation into execution domains. In this chapter, we address the other 
categories, each of which has interesting examples. 
 

Non-malicious program errors-  
Being human, programmers and other developers make many mistakes, most of which are 
unintentional and nonmalicious. Many such errors cause program malfunctions but do not 
lead to more serious security vulnerabilities. However, a few classes of errors have plagued 
programmers and security professionals for decades, and there is no reason to believe they 
will disappear. In this section we consider three classic error types that have enabled many 
recent security breaches. We explain each type, why it is relevant to security, and how it 
can be prevented or mitigated. 

Buffer Overflows 
A buffer overflow is the computing equivalent of trying to pour two liters of water into a one-
liter pitcher: Some water is going to spill out and make a mess. And in computing, what a 
mess these errors have made. a 
Definition 
A buffer (or array or string) is a space in which data can be held. A buffer resides in 
memory. 
Because memory is finite, a buffer's capacity is finite. For this reason, in many 
programming languages the programmer must declare the buffer's maximum size so that 
the compiler can set aside that amount of space. 
Let us look at an example to see how buffer overflows can happen. Suppose a C language 
program contains the declaration: 
char sample[10]; 
The compiler sets aside 10 bytes to store this buffer, one byte for each of the 10 elements of 
the array, sample[0] tHRough sample[9]. Now we execute the statement: 
sample[10] = 'B'; 
The subscript is out of bounds (that is, it does not fall between 0 and 9), so we have a 
problem. The nicest outcome (from a security perspective) is for the compiler to detect the 
problem and mark the error during compilation. However, if the statement were 
sample[i] = 'B'; 
we could not identify the problem until i was set during execution to a too-big subscript. It 
would be useful if, during execution, the system produced an error message warning of a 
subscript out of bounds. Unfortunately, in some languages, buffer sizes do not have to be 
predefined, so there is no way to detect an out-of-bounds error. More importantly, the code 
needed to check each subscript against its potential maximum value takes time and space 
during execution, and the resources are applied to catch a problem that occurs relatively 
infrequently. Even if the compiler were careful in analyzing the buffer declaration and use, 
this same problem can be caused with pointers, for which there is no reasonable way to 
define a proper limit. Thus, some compilers do not generate the code to check for exceeding 
bounds. 
Let us examine this problem more closely. It is important to recognize that the potential 
overflow causes a serious problem only in some instances. The problem's occurrence 
depends on what is adjacent to the array sample. For example, suppose each of the ten 
elements of the array sample is filled with the letter A and the erroneous reference uses the 
letter B, as follows: 
for (i=0; i<=9; i++) 
sample[i] = 'A'; 
sample[10] = 'B' 
 All program and data elements are in memory during execution, sharing space with 
the operating system, other code, and resident routines. So there are four cases to consider 
in deciding where the 'B' goes, as shown in Figure 3-1. If the extra character overflows into 
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the user's data space, it simply overwrites an existing variable value (or it may be written 
into an as-yet unused location), perhaps affecting the program's result, but affecting no 
other program or data. 

 
In the second case, the 'B' goes into the user's program area. If it overlays an already 
executed instruction (which will not be executed again), the user should perceive no effect. 
If it overlays an instruction that is not yet executed, the machine will try to execute an 
instruction with operation code 0x42, the internal code for the character 'B'. If there is no 
instruction with operation code 0x42, the system will halt on an illegal instruction 
exception. 
Otherwise, the machine will use subsequent bytes as if they were the rest of the instruction, 
with success or failure depending on the meaning of the contents. Again, only the user is 
likely to experience an effect. 
 The most interesting cases occur when the system owns the space immediately after the 
array that overflows. Spilling over into system data or code areas produces similar results to 
those for the user's space: computing with a faulty value or trying to execute an improper 
operation.  
Security Implication 
In this section we consider program flaws from unintentional or nonmalicious causes. 
Remember, however, that even if a flaw came from an honest mistake, the flaw can still 
cause serious harm. A malicious attacker can exploit these flaws. 
Let us suppose that a malicious person understands the damage that can be done by a 
buffer overflow; that is, we are dealing with more than simply a normal, errant programmer. 
The malicious programmer looks at the four cases illustrated in Figure 3-1 and thinks 
deviously about the last two: What data values could the attacker insert just after the buffer 
to cause mischief or damage, and what planned instruction codes could the system be 
forced to execute? There are many possible answers, some of which are more malevolent 
than others. 
Here, we present two buffer overflow attacks that are used frequently. (See [ALE96] for more 
details.) 
First, the attacker may replace code in the system space. Remember that every program is 
invoked by the operating system and that the operating system may run with higher 
privileges than those of a regular program. Thus, if the attacker can gain control by 
masquerading as the operating system, the attacker can execute many commands in a 
powerful role. 
Therefore, by replacing a few instructions right after returning from his or her own 
procedure, the attacker regains control from the operating system, possibly with raised 
privileges. If the buffer overflows into system code space, the attacker merely inserts 
overflow data that correspond to the machine code for instructions. 
On the other hand, the attacker may make use of the stack pointer or the return register. 
Subprocedure calls are handled with a stack, a data structure in which the most recent 
item inserted is the next one removed (last arrived, first served). This structure works well 
because procedure calls can be nested, with each return causing control to transfer back to 
the immediately preceding routine at its point of execution. Each time a procedure is called, 
its parameters, the return address (the address immediately after its call), and other local 
values are pushed onto a stack. An old stack pointer is also pushed onto the stack, and a 
stack pointer register is reloaded with the address of these new values. Control is then 
transferred to the subprocedure. 
As the subprocedure executes, it fetches parameters that it finds by using the address 
pointed to by the stack pointer. Typically, the stack pointer is a register in the processor. 
Therefore, by causing an overflow into the stack, the attacker can change either the old 
stack pointer (changing the context for the calling procedure) or the return address (causing 
control to transfer where the attacker wants when the subprocedure returns). Changing the 
context or return address allows the attacker to redirect execution to a block of code the 
attacker wants. 
In both these cases, a little experimentation is needed to determine where the overflow is 
and how to control it. But the work to be done is relatively smallprobably a day or two for a 
competent analyst. These buffer overflows are carefully explained in a paper by Mudge 
[MUD95] of the famed l0pht computer security group. Pincus and Baker [PIN04] reviewed 
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buffer overflows ten years after Mudge and found that, far from being a minor aspect of 
attack, buffer overflows have been a very significant attack vector and have spawned several 
other new attack types. 
An alternative style of buffer overflow occurs when parameter values are passed into a 
routine, especially when the parameters are passed to a web server on the Internet. 
Parameters are passed in the URL line, with a syntax similar to 
http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212 
&parm2=2009Jan17 
In this example, the page userinput receives two parameters, parm1 with value (808)555-1212 

(perhaps a U.S. telephone number) and parm2 with value 2009Jan17 (perhaps a date). The 
web browser on the caller's machine will accept values from a user who probably completes 
fields on a form. The browser encodes those values and transmits them back to the server's 
web site. 
The attacker might question what the server would do with a really long telephone number, 
say, one with 500 or 1000 digits. But, you say, no telephone in the world has such a 
number; 
that is probably exactly what the developer thought, so the developer may have allocated 15 
or 20 bytes for an expected maximum length telephone number. Will the program crash 
with 500 digits? And if it crashes, can it be made to crash in a predictable and usable way? 
(For the answer to this question, see Litchfield's investigation of the Microsoft dialer 
program [LIT99].) Passing a very long string to a web server is a slight variation on the 
classic buffer overflow, but no less effective. 
As noted earlier, buffer overflows have existed almost as long as higher-level programming 
languages with arrays. For a long time they were simply a minor annoyance to 
programmers and users, a cause of errors and sometimes even system crashes. Rather 
recently, attackers have used them as vehicles to cause first a system crash and then a 
controlled failure with a serious security implication. The large number of security 
vulnerabilities based on buffer overflows shows that developers must pay more attention 
now to what had previously been thought to be just a minor annoyance. 

Incomplete Mediation 
Incomplete mediation is another security problem that has been with us for decades. 
Attackers are exploiting it to cause security problems. 
Definition 
Consider the example of the previous section: 
http://www.somesite.com/subpage/userinput.asp?parm1=(808)555-1212 
&parm2=2009Jan17 
The two parameters look like a telephone number and a date. Probably the client's (user's) 
web browser enters those two values in their specified format for easy processing on the 
server's side. What would happen if parm2 were submitted as 1800Jan01? Or 1800Feb30? 
Or 2048Min32? Or 1Aardvark2Many? 
Something would likely fail. As with buffer overflows, one possibility is that the system 
would fail catastrophically, with a routine's failing on a data type error as it tried to handle 
a month named "Min" or even a year (like 1800) that was out of range. Another possibility is 
that the receiving program would continue to execute but would generate a very wrong 
result. (For example, imagine the amount of interest due today on a billing error with a start 
date of 1 Jan 1800.) Then again, the processing server might have a default condition, 
deciding to treat 1Aardvark2Many as 3 July 1947. The possibilities are endless. 
One way to address the potential problems is to try to anticipate them. For instance, the 
programmer in the examples above may have written code to check for correctness on the 
client's side (that is, the user's browser). The client program can search for and screen out 
errors. Or, to prevent the use of nonsense data, the program can restrict choices only to 
valid ones. For example, the program supplying the parameters might have solicited them 
by using a drop-down box or choice list from which only the twelve conventional months 
would have been possible choices. Similarly, the year could have been tested to ensure that 
the value was between 1995 and 2015, and date numbers would have to have been 
appropriate for the months in which they occur (no 30th of February, for example). Using 
these verification techniques, the programmer may have felt well insulated from the 
possible problems a careless or malicious user could cause. 
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However, the program is still vulnerable. By packing the result into the return URL, the 
programmer left these data fields in a place the user can access (and modify). In particular, 
the user could edit the URL line, change any parameter values, and resend the line. On the 
server side, there is no way for the server to tell if the response line came from the client's 
browser or as a result of the user's editing the URL directly. We say in this case that the 
data values are not completely mediated: The sensitive data (namely, the parameter values) 
are in an exposed, uncontrolled condition. 
Security Implication 
Incomplete mediation is easy to exploit, but it has been exercised less often than buffer 
overflows. Nevertheless, unchecked data values represent a serious potential vulnerability. 
To demonstrate this flaw's security implications, we use a real example; only the name of 
the vendor has been changed to protect the guilty. Things, Inc., was a very large, 
international vendor of consumer products, called Objects. The company was ready to sell 
its Objects through a web site, using what appeared to be a standard e-commerce 
application. The management at Things decided to let some of its in-house developers 
produce the web site so that its customers could order Objects directly from the web. 
To accompany the web site, Things developed a complete price list of its Objects, including 
pictures, descriptions, and drop-down menus for size, shape, color, scent, and any other 
properties. For example, a customer on the web could choose to buy 20 of part number 
555A Objects. If the price of one such part were $10, the web server would correctly 
compute the price of the 20 parts to be $200. Then the customer could decide whether to 
have the Objects shipped by boat, by ground transportation, or sent electronically. If the 
customer were to choose boat delivery, the customer's web browser would complete a form 
with parameters like these: 
http://www.things.com/order.asp?custID=101&part=555A&qy=20&price 
=10&ship=boat&shipcost=5&total=205 
So far, so good; everything in the parameter passage looks correct. But this procedure 
leaves the parameter statement open for malicious tampering. Things should not need to 
pass the price of the items back to itself as an input parameter; presumably Things knows 
how much its Objects cost, and they are unlikely to change dramatically since the time the 
price was quoted a few screens earlier. 
A malicious attacker may decide to exploit this peculiarity by supplying instead the 
following URL, where the price has been reduced from $205 to $25: 
http://www.things.com/order.asp?custID=101&part=555A&qy=20&price 
=1&ship=boat&shipcost=5&total=25 
Surprisea It worked. The attacker could have ordered Objects from Things in any quantity 
at any price. And yes, this code was running on the web site for a while before the problem 
was detected. From a security perspective, the most serious concern about this flaw was the 
length of time that it could have run undetected. Had the whole world suddenly made a 
rush to Things's web site and bought Objects at a fraction of their price, Things probably 
would have noticed. But Things is large enough that it would never have detected a few 
customers a day choosing prices that were similar to (but smaller than) the real price, say 
30 percent off. The e-commerce division would have shown a slightly smaller profit than 
other divisions, but the difference probably would not have been enough to raise anyone's 
eyebrows; the vulnerability could have gone unnoticed for years. Fortunately, Things hired 
a consultant to do a routine review of its code, and the consultant found the error quickly. 
This web program design flaw is easy to imagine in other web settings. Those of us 
interested in security must ask ourselves how many similar problems are there in running 
code today? 
And how will those vulnerabilities ever be found? 

Time-of-Check to Time-of-Use Errors 
The third programming flaw we investigate involves synchronization. To improve efficiency, 
modern processors and operating systems usually change the order in which instructions 
and procedures are executed. In particular, instructions that appear to be adjacent may not 
actually be executed immediately after each other, either because of intentionally changed 
order or because of the effects of other processes in concurrent execution. 
Definition 
Access control is a fundamental part of computer security; we want to make sure that only 
those who should access an object are allowed that access. (We explore the access control 
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mechanisms in operating systems in greater detail in Chapter 4.) Every requested access 
must be governed by an access policy stating who is allowed access to what; then the 
request must be mediated by an access-policy-enforcement agent. But an incomplete 
mediation problem occurs when access is not checked universally. The time-of-check to 
time-of-use (TOCTTOU) flaw concerns mediation that is performed with a "bait and switch" 
in the middle. 
It is also known as a serialization or synchronization flaw. 
To understand the nature of this flaw, consider a person's buying a sculpture that costs 
$100. 
The buyer removes five $20 bills from a wallet, carefully counts them in front of the seller, 
and lays them on the table. Then the seller turns around to write a receipt. While the 
seller's back is turned, the buyer takes back one $20 bill. When the seller turns around, the 
buyer hands over the stack of bills, takes the receipt, and leaves with the sculpture. 
Between the time the security was checked (counting the bills) and the access (exchanging 
the sculpture for the bills), a condition changed: What was checked is no longer valid when 
the object (that is, the sculpture) is accessed. 
A similar situation can occur with computing systems. Suppose a request to access a file 

were presented as a data structure, with the 
name of the file and the mode of access presented 
in the structure. An example of such a structure 
is shown in Figure 3-2.  

 

Figure 3-2. Data Structure for File Access. 
The data structure is essentially a "work ticket," requiring a stamp of authorization; once 
authorized, it is put on a queue of things to be done. Normally the access control mediator 
receives the data structure, determines whether the access should be allowed, and either 
rejects the access and stops or allows the access and forwards the data structure to the file 
handler for processing. 
To carry out this authorization sequence, the access control mediator would have to look up 
the file name (and the user identity and any other relevant parameters) in tables. The 
mediator could compare the names in the table to the file name in the data structure to 
determine whether access is appropriate. More likely, the mediator would copy the file name 
into its own local storage area and compare from there. Comparing from the copy leaves the 
data structure in the user's area, under the user's control. 
It is at this point that the incomplete mediation flaw can be exploited. While the mediator is 
checking access rights for the file my_file, the user could change the file name descriptor to 
your_file, the value shown in Figure 3-3. Having read the work ticket once, the mediator 

would not be expected to reread the ticket before approving it; the 
mediator would approve the access and send the now-modified 
descriptor to the file handler. 

Figure 3-3. Modified Data.  

 
The problem is called a time-of-check to time-of-use flaw because it exploits the delay 
between the two times. That is, between the time the access was checked and the time the 
result of the check was used, a change occurred, invalidating the result of the check. 
Security Implication 
The security implication here is pretty clear: Checking one action and performing another is 
an example of ineffective access control. We must be wary whenever a time lag or loss of 
control occurs, making sure that there is no way to corrupt the check's results during that 
interval. 
Fortunately, there are ways to prevent exploitation of the time lag. One way is to ensure 
that critical parameters are not exposed during any loss of control. The access checking 
software must own the request data until the requested action is complete. Another way is 
to ensure serial integrity; that is, to allow no interruption (loss of control) during the 
validation. Or the validation routine can initially copy data from the user's space to the 
routine's areaout of the user's reachand perform validation checks on the copy. Finally, the 
validation routine can seal the request data with a checksum to detect modification. 

Combinations of Nonmalicious Program Flaws 
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These three vulnerabilities are bad enough when each is considered on its own. But 
perhaps the worst aspect of all three flaws is that they can be used together as one step in a 
multistep attack. An attacker may not be content with causing a buffer overflow. Instead 
the attacker may begin a three-pronged attack by using a buffer overflow to disrupt all 
execution of arbitrary code on a machine. At the same time, the attacker may exploit a 
time-of-check to time-of-use flaw to add a new user ID to the system. The attacker then logs 
in as the new user and exploits an incomplete mediation flaw to obtain privileged status, 
and so forth. The clever attacker uses flaws as common building blocks to build a complex 
attack. For this reason, we must know about and protect against even simple flaws. (See 
Sidebar 3-3 for other examples of the effects of unintentional errors.) Unfortunately, these 
kinds of flaws are widespread and dangerous. As we see in the next section, innocuous-
seeming program flaws can be exploited by malicious attackers to plant intentionally 
harmful code. 

Viruses and other malicious code-  
By themselves, programs are seldom security threats. The programs operate on data, taking 
action only when data and state changes trigger it. Much of the work done by a program is 
invisible to users who are not likely to be aware of any malicious activity. For instance, 
when was the last time you saw a bit? Do you know in what form a document file is stored? 
If you know a document resides somewhere on a disk, can you find it? Can you tell if a 
game program does anything in addition to its expected interaction with you? Which files 
are modified by a word processor when you create a document? Which programs execute 
when you start your computer or open a web page? Most users cannot answer these 
questions. 
However, since users usually do not see computer data directly, malicious people can make 
programs serve as vehicles to access and change data and other programs. Let us look at 
the possible effects of malicious code and then examine in detail several kinds of programs 
that can be used for interception or modification of data. 

Why Worry About Malicious Code? 
None of us like the unexpected, especially in our programs. Malicious code behaves in 
unexpected ways, thanks to a malicious programmer's intention. We think of the malicious 
code as lurking inside our system: all or some of a program that we are running or even a 
nasty part of a separate program that somehow attaches itself to another (good) program. 
How can such a situation arise? When you last installed a major software package, such as 
a word processor, a statistical package, or a plug-in from the Internet, you ran one 
command, typically called INSTALL or SETUP. From there, the installation program took 
control, creating some files, writing in other files, deleting data and files, and perhaps 
renaming a few that it would change. A few minutes and a quite a few disk accesses later, 
you had plenty of new code and data, all set up for you with a minimum of human 
intervention. Other than the general descriptions on the box, in documentation files, or on 
web pages, you had absolutely no idea exactly what "gifts" you had received. You hoped all 
you received was good, and it probably was. The same uncertainty exists when you 
unknowingly download an application, such as a Java applet or an ActiveX control, while 
viewing a web site. Thousands or even millions of bytes of programs and data are 
transferred, and hundreds of modifications may be made to your existing files, all occurring 
without your explicit consent or knowledge. 

Malicious Code Can Do Much (Harm) 
Malicious code can do anything any other program can, such as writing a message on a 
computer screen, stopping a running program, generating a sound, or erasing a stored file. 
Or malicious code can do nothing at all right now; it can be planted to lie dormant, 
undetected, until some event triggers the code to act. The trigger can be a time or date, an 
interval (for example, after 30 minutes), an event (for example, when a particular program is 
executed), a condition (for example, when communication occurs on a network interface), a 
count (for example, the fifth time something happens), some combination of these, or a 
random situation. In fact, malicious code can do different things each time, or nothing most 
of the time with something dramatic on occasion. In general, malicious code can act with all 
the predictability of a two-year-old child: We know in general what two-year-olds do, we 
may even know what a specific two-year-old often does in certain situations, but two-year-
olds have an amazing capacity to do the unexpected. 
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Malicious code runs under the user's authority. Thus, malicious code can touch everything 
the user can touch, and in the same ways. Users typically have complete control over their 
own program code and data files; they can read, write, modify, append, and even delete 
them. 
And well they should. But malicious code can do the same, without the user's permission or 
even knowledge. 
Malicious Code Has Been Around a Long Time 
The popular literature and press continue to highlight the effects of malicious code as if it 
were a relatively recent phenomenon. It is not. Cohen [COH84] is sometimes credited with 
the discovery of viruses, but in fact Cohen gave a name to a phenomenon known long 
before. For example, Thompson, in his 1984 Turing Award lecture, "Reflections on Trusting 
Trust" [THO84], described code that can be passed by a compiler. In that lecture, he refers 
to an earlier Air Force document, the Multics security evaluation by Karger and Schell 
[KAR74, KAR02]. In fact, references to virus behavior go back at least to 1970. Ware's 1970 
study (publicly released in 1979 [WAR79]) and Anderson's planning study for the U.S. Air 
Force [AND72] still accurately describe threats, vulnerabilities, and program security flaws, 
especially intentional ones. What is new about malicious code is the number of distinct 
instances and copies that have appeared and the speed with which exploit code appears. 
(See Sidebar 3-4 on attack timing.) 
So malicious code is still around, and its effects are more pervasive. It is important for us to 
learn what it looks like and how it works so that we can take steps to prevent it from doing 
damage or at least mediate its effects. How can malicious code take control of a system? 
How can it lodge in a system? How does malicious code spread? How can it be recognized? 
How can it be detected? How can it be stopped? How can it be prevented? We address these 
questions in the following sections. 

Kinds of Malicious Code 
Malicious code or rogue program is the general name for unanticipated or undesired effects 
in programs or program parts, caused by an agent intent on damage. This definition 
excludes unintentional errors, although they can also have a serious negative effect. This 
definition also excludes coincidence, in which two benign programs combine for a negative 
effect. The agent is the writer of the program or the person who causes its distribution. By 
this definition, most faults found in software inspections, reviews, and testing do not qualify 
as malicious code, because we think of them as unintentional. However, keep in mind as 
you read this chapter that unintentional faults can in fact invoke the same responses as 
intentional malevolence; a benign cause can still lead to a disastrous effect. 
You are likely to have been affected by a virus at one time or another, either because your 
computer was infected by one or because you could not access an infected system while its 
administrators were cleaning up the mess one made. In fact, your virus might actually have 
been a worm: The terminology of malicious code is sometimes used imprecisely. A virus is a 
program that can replicate itself and pass on malicious code to other nonmalicious 
programs by modifying them. The term "virus" was coined because the affected program 
acts like a biological virus: It infects other healthy subjects by attaching itself to the 
program and either destroying it or coexisting with it. Because viruses are insidious, we 
cannot assume that a clean program yesterday is still clean today. Moreover, a good 
program can be modified to include a copy of the virus program, so the infected good 
program itself begins to act as a virus, infecting other programs. The infection usually 
spreads at a geometric rate, eventually overtaking an entire computing system and 
spreading to all other connected systems. 
A virus can be either transient or resident. A transient virus has a life that depends on the 
life of its host; the virus runs when its attached program executes and terminates when its 
attached program ends. (During its execution, the transient virus may spread its infection 
to other programs.) A resident virus locates itself in memory; then it can remain active or be 
activated as a stand-alone program, even after its attached program ends. 
A Trojan horse is malicious code that, in addition to its primary effect, has a second, 
nonobvious malicious effect.[1] As an example of a computer Trojan horse, consider a login 
script that solicits a user's identification and password, passes the identification 
information on to the rest of the system for login processing, but also retains a copy of the 
information for later, malicious use. In this example, the user sees only the login occurring 
as expected, so there is no evident reason to suspect that any other action took place. 
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[1] The name is a reference to the Greek legends of the Trojan w ar. Legend tells how the Greeks tricked the Trojans 

into breaking their defense w all to take a w ooden horse, filled w ith the bravest of Greek soldiers, into their 

citadel. In the night, the soldiers descended and signaled their troops that the w ay in w as now clear, and Troy w 

as captured. 

A logic bomb is a class of malicious code that "detonates" or goes off when a specified 
condition occurs. A time bomb is a logic bomb whose trigger is a time or date. 
other than by the obvious, direct call, perhaps with special privileges. For instance, an 
automated bank teller program might allow anyone entering the number 990099 on the 
keypad to process the log of everyone's transactions at that machine. In this example, the 
trapdoor could be intentional, for maintenance purposes, or it could be an illicit way for the 
implementer to wipe out any record of a crime. 
A worm is a program that spreads copies of itself through a network. Shock and Hupp 
[SHO82] are apparently the first to describe a worm, which, interestingly, was for 
nonmalicious purposes. The primary difference between a worm and a virus is that a worm 
operates through networks, and a virus can spread through any medium (but usually uses 
copied program or data files). Additionally, the worm spreads copies of itself as a stand-
alone program, whereas the virus spreads copies of itself as a program that attaches to or 
embeds in other programs. 
White et al. [WHI89] also define a rabbit as a virus or worm that self-replicates without 
bound, with the intention of exhausting some computing resource. A rabbit might create 
copies of itself and store them on disk in an effort to completely fill the disk, for example.  
These definitions match current careful usage. The distinctions among these terms are 
small, and often the terms are confused, especially in the popular press. The term "virus" is 
often used to refer to any piece of malicious code. Furthermore, two or more forms of 
malicious code can be combined to produce a third kind of problem. For instance, a virus 
can be a time bomb if the viral code that is spreading will trigger an event after a period of 
time has passed. 
The kinds of malicious code are summarized in Table 3-1. 

Table 3-1. Types of Malicious Code. 
Code Type Characteristics 
Virus Attaches itself to program and propagates copies of itself to other programs  
Trojan horse Contains unexpected, additional functionality  
Logic bomb Triggers action when condition occurs  
Time bomb Triggers action when specified time occurs 
Trapdoor Allows unauthorized access to functionality 
Worm Propagates copies of itself through a network 
Rabbit Replicates itself without limit to exhaust resources 
Because "virus" is the popular name given to all forms of malicious code and because fuzzy 
lines exist between different kinds of malicious code, we are not too restrictive in the 
following discussion. We want to look at how malicious code spreads, how it is activated, 
and what effect it can have. A virus is a convenient term for mobile malicious code, so in 
the following sections we use the term "virus" almost exclusively. The points made apply 
also to other forms of malicious code. 

How Viruses Attach 
A printed copy of a virus does nothing and threatens no one. Even executable virus code 
sitting on a disk does nothing. What triggers a virus to start replicating? For a virus to do 
its malicious work and spread itself, it must be activated by being executed. Fortunately for 
virus writers but unfortunately for the rest of us, there are many ways to ensure that 
programs will be executed on a running computer. 
For example, recall the SETUP program that you initiate on your computer. It may call 
dozens or hundreds of other programs, some on the distribution medium, some already 
residing on the computer, some in memory. If any one of these programs contains a virus, 
the virus code could be activated. Let us see how. Suppose the virus code were in a program 
on the distribution medium, such as a CD; when executed, the virus could install itself on a 
permanent storage medium (typically, a hard disk) and also in any and all executing 
programs in memory. Human intervention is necessary to start the process; a human being 
puts the virus on the distribution medium, and perhaps another initiates the execution of 
the program to which the virus is attached. (It is possible for execution to occur without 
human intervention, though, such as when execution is triggered by a date or the passage 
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of a certain amount of time.) After that, no human intervention is needed; the virus can 
spread by itself. 
A more common means of virus activation is as an attachment to an e-mail message. In this 
attack, the virus writer tries to convince the victim (the recipient of the e-mail message) to 
open the attachment. Once the viral attachment is opened, the activated virus can do its 
work. Some modern e-mail handlers, in a drive to "help" the receiver (victim), automatically 
open attachments as soon as the receiver opens the body of the e-mail message. The virus 
can be executable code embedded in an executable attachment, but other types of files are 
equally dangerous. For example, objects such as graphics or photo images can contain code 
to be executed by an editor, so they can be transmission agents for viruses. In general, it is 
safer to force users to open files on their own rather than automatically; it is a bad idea for 
programs to perform potentially security-relevant actions without a user's consent. 
However, ease-of-use often trumps security, so programs such as browsers, e-mail 
handlers, and viewers often "helpfully" open files without asking the user first. 
Appended Viruses 
A program virus attaches itself to a program; then, whenever the program is run, the virus 
is activated. This kind of attachment is usually easy to program. In the simplest case, a 
virus inserts a copy of itself into the executable program file before the first executable 
instruction. Then, all the virus instructions execute first; after the last virus instruction, 
control flows naturally to what used to be the first program instruction. Such a situation is 
shown in Figure 3-4. 
This kind of attachment is simple and usually effective. The virus writer does not need to 
know anything about the program to which the virus will attach, and often the attached 
program simply serves as a carrier for the virus. The virus performs its task and then 
transfers to the original program. Typically, the user is unaware of the effect of the virus if 
the original program still does all that it used to. Most viruses attach in this manner. 
Viruses That Surround a Program 
An alternative to the attachment is a virus that runs the original program but has control 
before and after its execution. For example, a virus writer might want to prevent the virus 
from being detected. If the virus is stored on disk, its presence will be given away by its file 
name, or its size will affect the amount of space used on the disk. The virus writer might 
arrange for the virus to attach itself to the program that constructs the listing of files on the 
disk. If the virus regains control after the listing program has generated the listing but 
before the listing is displayed or printed, the virus could eliminate its entry from the listing 
and falsify space counts so that it appears not to exist. A surrounding virus is shown in 
Figure 3-5. 
Integrated Viruses and Replacements 
A third situation occurs when the virus replaces some of its target, integrating itself into the 
original code of the target. Such a situation is shown in Figure 3-6. Clearly, the virus writer 
has to know the exact structure of the original program to know where to insert which 
pieces of the virus. 
Finally, the virus can replace the entire target, either mimicking the effect of the target or 
ignoring the expected effect of the target and performing only the virus effect. In this case, 
the user is most likely to perceive the loss of the original program. 

Document Viruses 
Currently, the most popular virus type is what we call the document virus, which is 
implemented within a formatted document, such as a written document, a database, a slide 
presentation, a picture, or a spreadsheet. These documents are highly structured files that 
contain both data (words or numbers) and commands (such as formulas, formatting 
controls, links). The commands are part of a rich programming language, including macros, 
variables and procedures, file accesses, and even system calls. The writer of a document 
virus uses any of the features of the programming language to perform malicious actions. 
The ordinary user usually sees only the content of the document (its text or data), so the 
virus writer simply includes the virus in the commands part of the document, as in the 
integrated program virus. 

How Viruses Gain Control 
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The virus (V) has to be invoked instead of the target (T). Essentially, the virus either has to 
seem to be T, saying effectively "I am T" or the virus has to push T out of the way and 
become a substitute for T, saying effectively "Call me instead of T." A more blatant virus can 
simply say "invoke me [you fool]." 
The virus can assume T's name by replacing (or joining to) T's code in a file structure; this 
invocation technique is most appropriate for ordinary programs. The virus can overwrite T 
in storage (simply replacing the copy of T in storage, for example). Alternatively, the virus 
can change the pointers in the file table so that the virus is located instead of T whenever T 
is accessed through the file system. These two cases are shown in Figure 3-7. 

Figure 3-7. Virus Completely Replacing a Program. 
The virus can supplant T by altering the sequence that would have invoked T to now invoke 
the virus V; this invocation can be used to replace parts of the resident operating system by 
modifying pointers to those resident parts, such as the table of handlers for different kinds 
of interrupts. 

Homes for Viruses 
The virus writer may find these qualities appealing in a virus: 

 It is hard to detect. 
 It is not easily destroyed or deactivated. 
 It spreads infection widely. 
 It can reinfect its home program or other programs. 
 It is easy to create. 
 It is machine independent and operating system independent. 

Few viruses meet all these criteria. The virus writer chooses from these objectives when 
deciding what the virus will do and where it will reside. Just a few years ago, the challenge 
for the virus writer was to write code that would be executed repeatedly so that the virus 
could multiply. Now, however, one execution is enough to ensure widespread distribution. 
Many viruses are transmitted by e-mail, using either of two routes. In the first case, some 
virus writers generate a new e-mail message to all addresses in the victim's address book. 
These new messages contain a copy of the virus so that it propagates widely. Often the 
message is a brief, chatty, nonspecific message that would encourage the new recipient to 
open the attachment from a friend (the first recipient). For example, the subject line or 
message body may read "I thought you might enjoy this picture from our vacation." In the 
second case, the virus writer can leave the infected file for the victim to forward 
unknowingly. If the virus's effect is not immediately obvious, the victim may pass the 
infected file unwittingly to other victims. 
Let us look more closely at the issue of viral residence. 
One-Time Execution 
The majority of viruses today execute only once, spreading their infection and causing their 
effect in that one execution. A virus often arrives as an e-mail attachment of a document 
virus. It is executed just by being opened. 
Boot Sector Viruses 
A special case of virus attachment, but formerly a fairly popular one, is the so-called boot 
sector virus. When a computer is started, control begins with firmware that determines 
which hardware components are present, tests them, and transfers control to an operating 
system. 
A given hardware platform can run many different operating systems, so the operating 
system is not coded in firmware but is instead invoked dynamically, perhaps even by a 
user's choice, after the hardware test. 
The operating system is software stored on disk. Code copies the operating system from 
disk to memory and transfers control to it; this copying is called the bootstrap (often boot) 
load because the operating system figuratively pulls itself into memory by its bootstraps. 
The firmware does its control transfer by reading a fixed number of bytes from a fixed 
location on the disk (called the boot sector) to a fixed address in memory and then jumping 
to that address (which will turn out to contain the first instruction of the bootstrap loader). 
The bootstrap loader then reads into memory the rest of the operating system from disk. To 
run a different operating system, the user just inserts a disk with the new operating system 
and a bootstrap loader. When the user reboots from this new disk, the loader there brings 
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in and runs another operating system. This same scheme is used for personal computers, 
workstations, and large mainframes. 
To allow for change, expansion, and uncertainty, hardware designers reserve a large 
amount of space for the bootstrap load. The boot sector on a PC is slightly less than 512 
bytes, but since the loader will be larger than that, the hardware designers support 
"chaining," in which each block of the bootstrap is chained to (contains the disk location of) 
the next block. This chaining allows big bootstraps but also simplifies the installation of a 
virus. The virus writer simply breaks the chain at any point, inserts a pointer to the virus 
code to be executed, and reconnects the chain after the virus has been installed. This 
situation is shown in Figure 3-8. 
The boot sector is an especially appealing place to house a virus. The virus gains control 
very early in the boot process, before most detection tools are active, so that it can avoid, or 
at least complicate, detection. The files in the boot area are crucial parts of the operating 
system. Consequently, to keep users from accidentally modifying or deleting them with 
disastrous results, the operating system makes them "invisible" by not showing them as 
part of a normal listing of stored files, preventing their deletion. Thus, the virus code is not 
readily noticed by users. 
Memory-Resident Viruses 
Some parts of the operating system and most user programs execute, terminate, and 
disappear, with their space in memory being available for anything executed later. For very 
frequently used parts of the operating system and for a few specialized user programs, it 
would take too long to reload the program each time it was needed. Such code remains in 
memory and is called "resident" code. Examples of resident code are the routine that 
interprets keys pressed on the keyboard, the code that handles error conditions that arise 
during a program's execution, or a program that acts like an alarm clock, sounding a signal 
at a time the user determines. Resident routines are sometimes called TSRs or "terminate 
and stay resident" routines. 
Virus writers also like to attach viruses to resident code because the resident code is 
activated many times while the machine is running. Each time the resident code runs, the 
virus does too. Once activated, the virus can look for and infect uninfected carriers. For 
example, after activation, a boot sector virus might attach itself to a piece of resident code. 
Then, each time the virus was activated it might check whether any removable disk in a 
disk drive was infected and, if not, infect it. In this way the virus could spread its infection 
to all removable disks used during the computing session. 
A virus can also modify the operating system's table of programs to run. On a Windows 
machine the registry is the table of all critical system information, including programs to 
run at startup. If the virus gains control once, it can insert a registry entry so that it will be 
reinvoked each time the system restarts. In this way, even if the user notices and deletes 
the executing copy of the virus from memory, the virus will return on the next system 
restart. 
Other Homes for Viruses 
A virus that does not take up residence in one of these cozy establishments has to fend 
more for itself. But that is not to say that the virus will go homeless. One popular home for 
a virus is an application program. Many applications, such as word processors and 
spreadsheets, have a "macro" feature, by which a user can record a series of commands and 
repeat them with one invocation. Such programs also provide a "startup macro" that is 
executed every time the application is executed. A virus writer can create a virus macro that 
adds itself to the startup directives for the application. It also then embeds a copy of itself in 
data files so that the infection spreads to anyone receiving one or more of those files. 
Libraries are also excellent places for malicious code to reside. Because libraries are used 
by many programs, the code in them will have a broad effect. Additionally, libraries are 
often shared among users and transmitted from one user to another, a practice that 
spreads the infection. Finally, executing code in a library can pass on the viral infection to 
other transmission media. Compilers, loaders, linkers, runtime monitors, runtime 
debuggers, and even virus control programs are good candidates for hosting viruses 
because they are widely shared. 

Virus Signatures 



38 
 

A virus cannot be completely invisible. Code must be stored somewhere, and the code must 
be in memory to execute. Moreover, the virus executes in a particular way, using certain 
methods to spread. Each of these characteristics yields a telltale pattern, called a signature, 
creating a program, called a virus scanner, that can detect and, in some cases, remove 
viruses. The scanner searches memory and long-term storage, monitoring execution and 
watching for the telltale signatures of viruses. For example, a scanner looking for signs of 
the Code Red worm can look for a pattern containing the following characters: 
/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
%u9090%u6858%ucbd3 
%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858 
%ucbd3%u7801%u9090 
%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff 
%u0078%u0000%u00=a 
HTTP/1.0 
When the scanner recognizes a known virus's pattern, it can then block the virus, inform 
the user, and deactivate or remove the virus. However, a virus scanner is effective only if it 
has been kept up to date with the latest information on current viruses. Sidebar 3-5 
describes how viruses were the primary security breach among companies surveyed in 
2001. 
Storage Patterns 
Most viruses attach to programs that are stored on media such as disks. The attached virus 
piece is invariant, so the start of the virus code becomes a detectable signature. The 
attached piece is always located at the same position relative to its attached file. For 
example, the virus might always be at the beginning, 400 bytes from the top, or at the 
bottom of the infected file. Most likely, the virus will be at the beginning of the file because 
the virus writer wants to obtain control of execution before the bona fide code of the 
infected program is in charge. In the simplest case, the virus code sits at the top of the 
program, and the entire virus does its malicious duty before the normal code is invoked. In 
other cases, the virus infection consists of only a handful of instructions that point or jump 
to other, more detailed instructions elsewhere. For example, the infected code may consist 
of condition testing and a jump or call to a separate virus module. In either case, the code 
to which control is transferred will also have a recognizable pattern. Both of these 
situations are shown in Figure 3-9. 

Figure 3-9. Recognizable Patterns in Viruses. 
A virus may attach itself to a file, in which case the file's size grows. Or the virus may 
obliterate all or part of the underlying program, in which case the program's size does not 
change but the program's functioning will be impaired. The virus writer has to choose one 
of these detectable effects. 
The virus scanner can use a code or checksum to detect changes to a file. It can also look 
for suspicious patterns, such as a JUMP instruction as the first instruction of a system 
program (in case the virus has positioned itself at the bottom of the file but is to be 
executed first, as in Figure 3-9). 
Execution Patterns 
A virus writer may want a virus to do several things at the same time, namely, spread 
infection, avoid detection, and cause harm. These goals are shown in Table 3-2, along with 
ways each goal can be addressed. Unfortunately, many of these behaviors are perfectly 
normal and might otherwise go undetected. For instance, one goal is modifying the file 
directory; many normal programs create files, delete files, and write to storage media. Thus, 
no key signals point to the presence of a virus. 

Table 3-2. Virus Effects and Causes. 
Virus Effect How It Is Caused 
Attach to executable program 

 Modify file directory 
 Write to executable program file 

Attach to data or control file 
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 Modify directory 
 Rewrite data 
 Append to data 
 Append data to self 

Table 3-2. Virus Effects and Causes. 
Virus Effect How It Is Caused 
Remain in memory 

 Intercept interrupt by modifying interrupt handler address table 
 Load self in nontransient memory area  

Infect disks  
 Intercept interrupt 
 Intercept operating system call (to format disk, for example) 
 Modify system file 
 Modify ordinary executable program 

Conceal self  Intercept system calls that would reveal self and falsify result 
 Classify self as "hidden" file 

Spread infection  Infect boot sector 
 Infect systems program 
 Infect ordinary program 
 Infect data ordinary program reads to control its 

execution 
Prevent deactivation  Activate before deactivating program and block 
deactivation 

 Store copy to reinfect after deactivation 
Most virus writers seek to avoid detection for themselves and their creations. Because a 
disk's boot sector is not visible to normal operations (for example, the contents of the boot 
sector do not show on a directory listing), many virus writers hide their code there. A 
resident virus can monitor disk accesses and fake the result of a disk operation that would 
show the virus hidden in a boot sector by showing the data that should have been in the 
boot sector (which the virus has moved elsewhere). 
There are no limits to the harm a virus can cause. On the modest end, the virus might do 
nothing; some writers create viruses just to show they can do it. Or the virus can be 
relatively benign, displaying a message on the screen, sounding the buzzer, or playing 
music. 
From there, the problems can escalate. One virus can erase files, another an entire disk; 
one virus can prevent a computer from booting, and another can prevent writing to disk. 
The damage is bounded only by the creativity of the virus's author. 
Transmission Patterns 
A virus is effective only if it has some means of transmission from one location to another. 
As we have already seen, viruses can travel during the boot process by attaching to an 
executable file or traveling within data files. The travel itself occurs during execution of an 
already infected program. Since a virus can execute any instructions a program can, virus 
travel is not confined to any single medium or execution pattern. For example, a virus can 
arrive on a disk or from a network connection, travel during its host's execution to a hard 
disk boot sector, reemerge next time the host computer is booted, and remain in memory to 
infect other disks as they are accessed. 
Polymorphic Viruses 
The virus signature may be the most reliable way for a virus scanner to identify a virus. If a 
particular virus always begins with the string 47F0F00E08 (in hexadecimal) and has string 
00113FFF located at word 12, it is unlikely that other programs or data files will have these 
exact characteristics. For longer signatures, the probability of a correct match increases. If 
the virus scanner will always look for those strings, then the clever virus writer can cause 
something other than those strings to be in those positions. Many instructions cause no 
effect, such as adding 0 to a number, comparing a number to itself, or jumping to the next 
instruction. These instructions, sometimes called no-ops, can be sprinkled into a piece of 
code to distort any pattern. For example, the virus could have two alternative but equivalent 
beginning words; after being installed, the virus will choose one of the two words for its 
initial word. Then, a virus scanner would have to look for both patterns. A virus that can 
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change its appearance is called a polymorphic virus. (Poly means "many" and morph means 
"form.") 
A two-form polymorphic virus can be handled easily as two independent viruses. Therefore, 
the virus writer intent on preventing detection of the virus will want either a large or an 
unlimited number of forms so that the number of possible forms is too large for a virus 
scanner to search for. Simply embedding a random number or string at a fixed place in the 
executable version of a virus is not sufficient, because the signature of the virus is just the 
constant code excluding the random part. A polymorphic virus has to randomly reposition 
all parts of itself and randomly change all fixed data. Thus, instead of containing the fixed 
(and therefore searchable) string "HAa INFECTED BY A VIRUS," a polymorphic virus has to 
change even that pattern sometimes. 
Trivially, assume a virus writer has 100 bytes of code and 50 bytes of data. To make two 
virus instances different, the writer might distribute the first version as 100 bytes of code 
followed by all 50 bytes of data. A second version could be 99 bytes of code, a jump 
instruction, 50 bytes of data, and the last byte of code. Other versions are 98 code bytes 
jumping to the last two, 97 and three, and so forth. Just by moving pieces around, the virus 
writer can create enough different appearances to fool simple virus scanners. Once the 
scanner writers became aware of these kinds of tricks, however, they refined their signature 
definitions. 
A simple variety of polymorphic virus uses encryption under various keys to make the 
stored form of the virus different. These are sometimes called encrypting viruses. This type 
of virus must contain three distinct parts: a decryption key, the (encrypted) object code of 
the virus, and the (unencrypted) object code of the decryption routine. For these viruses, 
the decryption routine itself, or a call to a decryption library routine, must be in the clear so 
that becomes the signature. 
To avoid detection, not every copy of a polymorphic virus has to differ from every other 
copy. 
If the virus changes occasionally, not every copy will match a signature of every other copy. 

The Source of Viruses 
Since a virus can be rather small, its code can be "hidden" inside other larger and more 
complicated programs. Two hundred lines of a virus could be separated into one hundred 
packets of two lines of code and a jump each; these one hundred packets could be easily 
hidden inside a compiler, a database manager, a file manager, or some other large utility. 
Virus discovery could be aided by a procedure to determine if two programs are equivalent. 
However, theoretical results in computing are very discouraging when it comes to the 
complexity of the equivalence problem. The general question "Are these two programs 
equivalent?" is undecidable (although that question can be answered for many specific pairs 
of programs). Even ignoring the general undecidability problem, two modules may produce 
subtly different results that mayor may notbe security relevant. One may run faster, or the 
first may use a temporary file for workspace whereas the second performs all its 
computations in memory. These differences could be benign, or they could be a marker of 
an infection. 
Therefore, we are unlikely to develop a screening program that can separate infected 
modules from uninfected ones. 
Although the general is dismaying, the particular is not. If we know that a particular virus 
may infect a computing system, we can check for it and detect it if it is there. Having found 
the virus, however, we are left with the task of cleansing the system of it. Removing the 
virus in a running system requires being able to detect and eliminate its instances faster 
than it can spread. 

Prevention of Virus Infection 
The only way to prevent the infection of a virus is not to receive executable code from an 
infected source. This philosophy used to be easy to follow because it was easy to tell if a file 
was executable or not. For example, on PCs, a .exe extension was a clear sign that the file 
was executable. However, as we have noted, today's files are more complex, and a seemingly 
nonexecutable file may have some executable code buried deep within it. For example, a 
word processor may have commands within the document file; as we noted earlier, these 
commands, called macros, make it easy for the user to do complex or repetitive things. But 
they are really executable code embedded in the context of the document. Similarly, 
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spreadsheets, presentation slides, other office- or business-related files, and even media 
files can contain code or scripts that can be executed in various waysand thereby harbor 
viruses. 
And, as we have seen, the applications that run or use these files may try to be helpful by 
automatically invoking the executable code, whether you want it run or nota Against the 
principles of good security, e-mail handlers can be set to automatically open (without 
performing access control) attachments or embedded code for the recipient, so your e-mail 
message can have animated bears dancing across the top. 
Another approach virus writers have used is a little-known feature in the Microsoft file 
design. 
Although a file with a .doc extension is expected to be a Word document, in fact, the true 
document type is hidden in a field at the start of the file. This convenience ostensibly helps 
a user who inadvertently names a Word document with a .ppt (Power-Point) or any other 
extension. In some cases, the operating system will try to open the associated application 
but, if that fails, the system will switch to the application of the hidden file type. So, the 
virus writer creates an executable file, names it with an inappropriate extension, and sends 
it to the victim, describing it is as a picture or a necessary code add-in or something else 
desirable. 
The unwitting recipient opens the file and, without intending to, executes the malicious 
code. 
More recently, executable code has been hidden in files containing large data sets, such as 
pictures or read-only documents. These bits of viral code are not easily detected by virus 
scanners and certainly not by the human eye. For example, a file containing a photograph 
may be highly granular; if every sixteenth bit is part of a command string that can be 
executed, then the virus is very difficult to detect. 
Because you cannot always know which sources are infected, you should assume that any 
outside source is infected. Fortunately, you know when you are receiving code from an 
outside source; unfortunately, it is not feasible to cut off all contact with the outside world. 
In their interesting paper comparing computer virus transmission with human disease 
transmission, Kephart et al. [KEP93] observe that individuals' efforts to keep their 
computers free from viruses lead to communities that are generally free from viruses 
because members of the community have little (electronic) contact with the outside world. 
In this case, transmission is contained not because of limited contact but because of limited 
contact outside the community. Governments, for military or diplomatic secrets, often run 
disconnected network communities. The trick seems to be in choosing one's community 
prudently. However, as use of the Internet and the World Wide Web increases, such 
separation is almost impossible to maintain. 
Nevertheless, there are several techniques for building a reasonably safe community for 
electronic contact, including the following: 

 Use only commercial software acquired from reliable, well-established vendors. There is 
always a chance that you might receive a virus from a large manufacturer with a name 
everyone would recognize. However, such enterprises have significant reputations that 
could be seriously damaged by even one bad incident, so they go to some degree of trouble 
to keep their products virus-free and to patch any problem-causing code right away. 
Similarly, software distribution companies will be careful about products they handle. 

 Test all new software on an isolated computer. If you must use software from a 
questionable source, test the software first on a computer that is not connected to a 
network and contains no sensitive or important data. Run the software and look for 
unexpected behavior, even simple behavior such as unexplained figures on the screen. Test 
the computer with a copy of an up-to-date virus scanner created before the suspect 
program is run. Only if the program passes these tests should you install it on a less 
isolated machine. 

 Open attachments only when you know them to be safe. What constitutes "safe" is up to 
you, as you have probably already learned in this chapter. Certainly, an attachment from 
an unknown source is of questionable safety. You might also distrust an attachment from a 
known source but with a peculiar message. 

 Make a recoverable system image and store it safely. If your system does become infected, 
this clean version will let you reboot securely because it overwrites the corrupted system 
files with clean copies. For this reason, you must keep the image write-protected during 
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reboot. Prepare this image now, before infection; after infection it is too late. For safety, 
prepare an extra copy of the safe boot image. 

 Make and retain backup copies of executable system files. This way, in the event of a virus 
infection, you can remove infected files and reinstall from the clean backup copies (stored in 
a secure, offline location, of course). Also make and retain backups of important data files 
that might contain infectable code; such files include word-processor documents, 
spreadsheets, slide presentations, pictures, sound files, and databases. Keep these backups 
on inexpensive media, such as CDs or DVDs so that you can keep old backups for a long 
time. In case you find an infection, you want to be able to start from a clean backupthat is, 
one taken before the infection. 

 Use virus detectors (often called virus scanners) regularly and update them daily. Many of 
the available virus detectors can both detect and eliminate infection from viruses. Several 
scanners are better than one because one may detect the viruses that others miss. Because 
scanners search for virus signatures, they are constantly being revised as new viruses are 
discovered. New virus signature files or new versions of scanners are distributed frequently; 
often, you can request automatic downloads from the vendor's web site. Keep your 
detector's signature file up to date.  

Truths and Misconceptions About Viruses 
Because viruses often have a dramatic impact on the computer-using community, they are 
often highlighted in the press, particularly in the business section. However, there is much 
misinformation in circulation about viruses. Let us examine some of the popular claims 
about them. 

 Viruses can infect only Microsoft Windows systems. False. Among students and office 
workers, PCs running Windows are popular computers, and there may be more people 
writing software (and viruses) for them than for any other kind of processor. Thus, the PC is 
most frequently the target when someone decides to write a virus. However, the principles 
of virus attachment and infection apply equally to other processors, including Macintosh 
computers, Unix and Linux workstations, and mainframe computers. Cell phones and PDAs 
are now also virus targets. In fact, no writeable stored-program computer is immune to 
possible virus attack. As we noted in Chapter 1, this situation means that all devices 
containing computer code, including automobiles, airplanes, microwave ovens, radios, 
televisions, voting machines, and radiation therapy machines have the potential for being 
infected by a virus. 

 Viruses can modify ahiddena or aread-onlya files. True. We may try to protect files by 
using two operating system mechanisms. First, we can make a file a hidden file so that a 
user or program listing all files on a storage device will not see the file's name.  Second, we 
can apply a read-only protection to the file so that the user cannot change the file's 
contents. However, each of these protections is applied by software, and virus software can 
override the native software's protection. Moreover, software protection is layered, with the 
operating system providing the most elementary protection. If a secure operating system 
obtains control before a virus contaminator has executed, the operating system can prevent 
contamination as long as it blocks the attacks the virus will make. 

 Viruses can appear only in data files, or only in Word documents, or only in programs. 
False. What are data? What is an executable file? The distinction between these two 
concepts is not always clear, because a data file can control how a program executes and 
even cause a program to execute. Sometimes a data file lists steps to be taken by the 
program that reads the data, and these steps can include executing a program. 
For example, some applications contain a configuration file whose data are exactly such 
steps. Similarly, word-processing document files may contain startup commands to execute 
when the document is opened; these startup commands can contain malicious code. 
Although, strictly speaking, a virus can activate and spread only when a program executes, 
in fact, data files are acted on by programs. Clever virus writers have been able to make 
data control files that cause programs to do many things, including pass along copies of the 
virus to other data files. 

 Viruses spread only on disks or only through e-mail. False. File-sharing is often done as 
one user provides a copy of a file to another user by writing the file on a transportable disk. 
However, any means of electronic file transfer will work. A file can be placed in a network's 
library or posted on a bulletin board. It can be attached to an e-mail message or made 
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available for download from a web site. Any mechanism for sharing filesof programs, data, 
documents, and so forthcan be used to transfer a virus.  

 Viruses cannot remain in memory after a complete power off/power on reboot. Truea but . . 
. If a virus is resident in memory, the virus is lost when the memory loses power. That is, 
computer memory (RAM) is volatile, so all contents are deleted when power is lost.[2] 

However, viruses written to disk certainly can remain through a reboot cycle.  
Thus, you can receive a virus infection, the virus can be written to disk (or to network 
storage), you can turn the machine off and back on, and the virus can be reactivated during 
the reboot. Boot sector viruses gain control when a machine reboots (whether it is a 
hardware or software reboot), so a boot sector virus may remain through a reboot cycle 
because it activates immediately when a reboot has completed.  
[2] Some very low-evel hardw are settings (for example, the size of disk installed) are retained in memory called 

anonvolatile RAM,a but these locations are not directly accessible by programs and are w ritten only by programs 

run from read-only memory (ROM) during hardw are initialization. Thus, they are highly immune to virus attack.  

 Viruses cannot infect hardware. True. Viruses can infect only things they can modify; 
memory, executable files, and data are the primary targets. If hardware contains writeable 
storage (so-called firmware) that can be accessed under program control, that storage is 
subject to virus attack. There have been a few instances of firmware viruses. Because a 
virus can control hardware that is subject to program control, it may seem as if a hardware 
device has been infected by a virus, but it is really the software driving the hardware that 
has been infected. Viruses can also exercise hardware in any way a program can. Thus, for 
example, a virus could cause a disk to loop incessantly, moving to the innermost track then 
the outermost and back again to the innermost. 

 Viruses can be malevolent, benign, or benevolent. True. Not all viruses are bad. For 
example, a virus might locate uninfected programs, compress them so that they occupy less 
memory, and insert a copy of a routine that decompresses the program when its execution 
begins. At the same time, the virus is spreading the compression function to other 
programs. This virus could substantially reduce the amount of storage required for stored 
programs, possibly by up to 50 percent. However, the compression would be done at the 
request of the virus, not at the request, or even knowledge, of the program owner. 
To see how viruses and other types of malicious code operate, we examine four types of 
malicious code that affected many users worldwide: the Brain, the Internet worm, the Code 
Red worm, and web bugs. 

First Example of Malicious Code: The Brain Virus 
One of the earliest viruses is also one of the most intensively studied. The so-called Brain 
virus was given its name because it changes the label of any disk it attacks to the word 
"BRAIN." This particular virus, believed to have originated in Pakistan, attacks PCs running 
an old Microsoft operating system. Numerous variants have been produced; because of the 
number of variants, people believe that the source code of the virus was released to the 
underground virus community. 
What It Does 
The Brain, like all viruses, seeks to pass on its infection. This virus first locates itself in 
upper memory and then executes a system call to reset the upper memory bound below 
itself so that it is not disturbed as it works. It traps interrupt number 19 (disk read) by 
resetting the interrupt address table to point to it and then sets the address for interrupt 
number 6 (unused) to the former address of the interrupt 19. In this way, the virus screens 
disk read calls, handling any that would read the boot sector (passing back the original boot 
contents that were moved to one of the bad sectors); other disk calls go to the normal disk 
read handler, through interrupt 6. 
The Brain virus appears to have no effect other than passing its infection, as if it were an 
experiment or a proof of concept. However, variants of the virus erase disks or destroy the 
file allocation table (the table that shows which files are where on a storage medium). 
How It Spreads 
The Brain virus positions itself in the boot sector and in six other sectors of the disk. One of 
the six sectors will contain the original boot code, moved there from the original boot sector, 
while two others contain the remaining code of the virus. The remaining three sectors 
contain a duplicate of the others. The virus marks these six sectors "faulty" so that the 
operating system will not try to use them. (With low-level calls, you can force the disk drive 
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to read from what the operating system has marked as bad sectors.) The virus allows the 
boot process to continue. 
Once established in memory, the virus intercepts disk read requests for the disk drive 
under attack. With each read, the virus reads the disk boot sector and inspects the fifth 
and sixth bytes for the hexadecimal value 1234 (its signature). If it finds that value, it 
concludes that the disk is infected; if not, it infects the disk as described in the previous 
paragraph. 
What Was Learned 
This virus uses some of the standard tricks of viruses, such as hiding in the boot sector, 
and intercepting and screening interrupts. The virus is almost a prototype for later efforts. 
In fact, many other virus writers seem to have patterned their work on this basic virus. 
Thus, one could say it was a useful learning tool for the virus writer community. Sadly, its 
infection did not raise public consciousness of viruses, other than a certain amount of fear 
and misunderstanding. Subsequent viruses, such as the Lehigh virus that swept through 
the computers of Lehigh University, the nVIR viruses that sprang from prototype code 
posted on bulletin boards, and the Scores virus that was first found at NASA in Washington 
D.C. circulated more widely and with greater effect. Fortunately, most viruses seen to date 
have a modest effect, such as displaying a message or emitting a sound. That is, however, a 
matter of luck, since the writers who could put together the simpler viruses obviously had 
all the talent and knowledge to make much more malevolent viruses. 
There is no general cure for viruses. Virus scanners are effective against today's known 
viruses and general patterns of infection, but they cannot counter tomorrow's variant. The 
only sure prevention is complete isolation from outside contamination, which is not 
feasible; in fact, you may even get a virus from the software applications you buy from 
reputable vendors. 

Example: The Internet Worm 
On the evening of 2 November 1988, a worm was released to the Internet,[3] causing serious 
damage to the network. Not only were many systems infected, but also when word of the 
problem spread, many more uninfected systems severed their network connections to 
prevent themselves from getting infected. Spafford and his team at Purdue University 
[SPA89] and Eichen and Rochlis at M.I.T. [EIC89] studied the worm extensively, and Orman 
[ORM03] did an interesting retrospective analysis 15 years after the incident. 
[3] Note: This incident is normally called a aw orm,a although it shares most of the characteristics of viruses.  

The perpetrator was Robert T. Morris, Jr., a graduate student at Cornell University who 
created and released the worm. He was convicted in 1990 of violating the 1986 Computer 
Fraud and Abuse Act, section 1030 of U.S. Code Title 18. He received a fine of $10,000, a 
three-year suspended jail sentence, and was required to perform 400 hours of community 
service. (See Denning [DEN90b] for a discussion of this punishment.) 
What It Did 
Judging from its code, Morris programmed the Internet worm to accomplish three main 
objectives: 
1. Determine where it could spread to. 
2. Spread its infection. 
3. Remain undiscovered and undiscoverable. 
What Effect It Had 
The worm's primary effect was resource exhaustion. Its source code indicated that the 
worm was supposed to check whether a target host was already infected; if so, the worm 
would negotiate so that either the existing infection or the new infector would terminate. 
However, because of a supposed flaw in the code, many new copies did not terminate. As a 
result, an infected machine soon became burdened with many copies of the worm, all busily 
attempting to spread the infection. Thus, the primary observable effect was serious 
degradation in performance of affected machines. 
A second-order effect was the disconnection of many systems from the Internet. System 
administrators tried to sever their connection with the Internet, either because their 
machines were already infected and the system administrators wanted to keep the worm's 
processes from looking for sites to which to spread or because their machines were not yet 
infected and the staff wanted to avoid having them become so. 
The disconnection led to a third-order effect: isolation and inability to perform necessary 
work. Disconnected systems could not communicate with other systems to carry on the 
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normal research, collaboration, business, or information exchange users expected. System 
administrators on disconnected systems could not use the network to exchange information 
with their counterparts at other installations, so status and containment or recovery 
information was unavailable. 
The worm caused an estimated 6,000 installations to shut down or disconnect from the 
Internet. In total, several thousand systems were disconnected for several days, and several 
hundred of these systems were closed to users for a day or more while they were 
disconnected. Estimates of the cost of the damage range from $100,000 to $97 million. 
How It Worked 
The worm exploited several known flaws and configuration failures of Berkeley version 4 of 
the Unix operating system. It accomplished or had code that appeared to try to 
accomplishits three objectives. 
Determine where to spread. The worm had three techniques for locating potential machines 
to victimize. It first tried to find user accounts to invade on the target machine. In parallel, 
the worm tried to exploit a bug in the finger program and then to use a trapdoor in the 
sendmail mail handler. All three of these security flaws were well known in the general Unix 
community. 
The first security flaw was a joint user and system error, in which the worm tried guessing 
passwords and succeeded when it found one. The Unix password file is stored in encrypted 
form, but the ciphertext in the file is readable by anyone. (This visibility is the system error.) 
The worm encrypted various popular passwords and compared their ciphertext to the 
ciphertext of the stored password file. The worm tried the account name, the owner's name, 
and a short list of 432 common passwords (such as "guest," "password," "help," "coffee," 
"coke," "aaa"). If none of these succeeded, the worm used the dictionary file stored on the 
system for use by application spelling checkers. (Choosing a recognizable password is the 
user error.) When it got a match, the worm could log in to the corresponding account by 
presenting the plaintext password. Then, as a user, the worm could look for other machines 
to which the user could obtain access. (See the article by Robert T. Morris, Sr. and Ken 
Thompson [MOR79] on selection of good passwords, published a decade before the worm, 
and the section in Chapter 4 on passwords people choose.) 
The second flaw concerned fingerd, the program that runs continuously to respond to other 
computers' requests for information about system users. The security flaw involved causing 
the input buffer to overflow, spilling into the return address stack. Thus, when the finger 
call terminated, fingerd executed instructions that had been pushed there as another part 
of the buffer overflow, causing the worm to be connected to a remote shell. 
The third flaw involved a trapdoor in the sendmail program. Ordinarily, this program runs 
in the background, awaiting signals from others wanting to send mail to the system. When 
it receives such a signal, sendmail gets a destination address, which it verifies, and then 
begins a dialog to receive the message. However, when running in debugging mode, the 
worm causes sendmail to receive and execute a command string instead of the destination 
address. 
Spread infection. Having found a suitable target machine, the worm would use one of 
these  three methods to send a bootstrap loader to the target machine. This loader 
consisted of 99 lines of C code to be compiled and executed on the target machine. The 
bootstrap loader would then fetch the rest of the worm from the sending host machine. An 
element of good computer securityor stealthwas built into the exchange between the host 
and the target.  
When the target's bootstrap requested the rest of the worm, the worm supplied a one-time 
password back to the host. Without this password, the host would immediately break the 
connection to the target, presumably in an effort to ensure against "rogue" bootstraps (ones 
that a real administrator might develop to try to obtain a copy of the rest of the worm for 
subsequent analysis).  
Remain undiscovered and undiscoverable. The worm went to considerable lengths to 
prevent its discovery once established on a host. For instance, if a transmission error 
occurred while the rest of the worm was being fetched, the loader zeroed and then deleted 
all code already transferred and then exited. 
As soon as the worm received its full code, it brought the code into memory, encrypted it, 
and deleted the original copies from disk. Thus, no traces were left on disk, and even a 
memory dump would not readily expose the worm's code. The worm periodically changed its 
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name and process identifier so that no single name would run up a large amount of 
computing time. 
What Was Learned 
The Internet worm sent a shock wave through the Internet community, which at that 
timewas largely populated by academics and researchers. The affected sites closed some of 
the loopholes exploited by the worm and generally tightened security. Some users changed 
passwords. Two researchers, Farmer and Spafford [FAR90], developed a program for system 
administrators to check for some of the same flaws the worm exploited. However, security 
analysts checking for site vulnerabilities across the Internet find that many of the same 
security flaws still exist today. A new attack on the Internet would not succeed on the same 
scale as the Internet worm, but it could still cause significant inconvenience to many.  
The Internet worm was benign in that it only spread to other systems but did not destroy 
any part of them. It collected sensitive data, such as account passwords, but it did not 
retain them. While acting as a user, the worm could have deleted or overwritten files, 
distributed them elsewhere, or encrypted them and held them for ransom. The next worm 
may not be so benign. 
The worm's effects stirred several people to action. One positive outcome from this 
experience was development of an infrastructure for reporting and correcting malicious and 
nonmalicious code flaws. The Internet worm occurred at about the same time that Cliff Stoll 
[STO89] reported his problems in tracking an electronic intruder (and his subsequent 
difficulty in finding anyone to deal with the case). The computer community realized it 
needed to organize. The resulting Computer Emergency Response Team (CERT) at Carnegie 
Mellon University was formed; it and similar response centers around the world have done 
an excellent job of collecting and disseminating information on malicious code attacks and 
their countermeasures. System administrators now exchange information on problems and 
solutions. 
Security comes from informed protection and action, not from ignorance and inaction. 

More Malicious Code: Code Red 
Code Red appeared in the middle of 2001, to devastating effect. On July 29, the U.S. 
Federal Bureau of Investigation proclaimed in a news release that "on July 19, the Code 
Red worm infected more than 250,000 systems in just nine hours. . . . This spread has the 
potential to disrupt business and personal use of the Internet for applications such as e-
commerce, e-mail and entertainment" [BER01]. Indeed, "the Code Red worm struck faster 
than any other worm in Internet history," according to a research director for a security 
software and services vendor. The first attack occurred on July 12; overall, 750,000 servers 
were affected, including 400,000 just in the period from August 1 to 10 [HUL01]. Thus, of 
the 6 million web servers running code subject to infection by Code Red, about one in eight 
were infected. Michael Erbschloe, vice president of Computer Economics, Inc., estimates 
that Code Red's damage will exceed $2 billion [ERB01]. 
Code Red was more than a worm; it included several kinds of malicious code, and it 
mutated from one version to another. Let us take a closer look at how Code Red worked. 
What It Did 
There are several versions of Code Red, malicious software that propagates itself on web 
servers running Microsoft's Internet Information Server (IIS) software. Code Red takes two 
steps: infection and propagation. To infect a server, the worm takes advantage of a 
vulnerability in Microsoft's IIS. It overflows the buffer in the dynamic link library idq.dll to 
reside in the server's memory. Then, to propagate, Code Red checks IP addresses on port 80 
of the PC to see if that web server is vulnerable. 
What Effect It Had 
The first version of Code Red was easy to spot because it defaced web sites with the 
following text: 
HELLOa 
Welcome to 
http://www.worm.com a 
Hacked by Chinesea 
The rest of the original Code Red's activities were determined by the date. From day 1 to 19 
of the month, the worm spawned 99 threads that scanned for other vulnerable computers, 
starting at the same IP address. Then, on days 20 to 27, the worm launched a distributed 
denial-of-service attack at the U.S. web site, www.whitehouse.gov. A denial-of-service 



47 
 

attack floods the site with large numbers of messages in an attempt to slow down or stop 
the site because the site is overwhelmed and cannot handle the messages. Finally, from day 
28 to the end of the month, the worm did nothing. 
However, there were several variants. The second variant was discovered near the end of 
July 2001. It did not deface the web site, but its propagation was randomized and optimized 
to infect servers more quickly. A third variant, discovered in early August, seemed to be a 
substantial rewrite of the second. This version injected a Trojan horse in the target and 
modified software to ensure that a remote attacker could execute any command on the 
server. The worm also checked the year and month so that it would automatically stop 
propagating in October 2002. Finally, the worm rebooted the server after 24 or 48 hours, 
wiping itself from memory but leaving the Trojan horse in place. 
How It Worked 
The Code Red worm looked for vulnerable personal computers running Microsoft IIS 
software. 
Exploiting the unchecked buffer overflow, the worm crashed Windows NT-based servers but 
executed code on Windows 2000 systems. The later versions of the worm created a trapdoor 
on an infected server; the system was then open to attack by other programs or malicious 
users. To create the trapdoor, Code Red copied %windir%\cmd.exe to four locations: 
c:\inetpub\scripts\root.ext 
c:\progra~1\common~1\system\MSADC\root.exe 
d:\inetpub\scripts\root.ext 
d:\progra~1\common~1\system\MSADC\root.exe 
Code Red also included its own copy of the file explorer.exe, placing it on the c: and d: 
drives so that Windows would run the malicious copy, not the original copy. This Trojan 
horse first ran the original, untainted version of explorer.exe, but it modified the system 
registry to disable certain kinds of file protection and to ensure that some directories have 
read, write, and execute permission. As a result, the Trojan horse had a virtual path that 
could be followed even when explorer.exe was not running. The Trojan horse continued to 
run in background, resetting the registry every 10 minutes; thus, even if a system 
administrator noticed the changes and undid them, the changes were applied again by the 
malicious code. 
To propagate, the worm created 300 or 600 threads (depending on the variant) and tried for 
24 or 48 hours to spread to other machines. After that, the system was forcibly rebooted, 
flushing the worm in memory but leaving the backdoor and Trojan horse in place. 
To find a target to infect, the worm's threads worked in parallel. Although the early version 
of Code Red targeted www.whitehouse.gov, later versions chose a random IP address close 
to the host computer's own address. To speed its performance, the worm used a 
nonblocking socket so that a slow connection would not slow down the rest of the threads 
as they scanned for a connection. 
What Was Learned 
As of this writing, more than 6 million servers use Microsoft's IIS software. The Code Red 
variant that allowed unlimited root access made Code Red a virulent and dangerous piece of 
malicious code. Microsoft offered a patch to fix the overflow problem and prevent infection 
by Code Red, but many administrators neglected to apply the patch. (See Sidebar 3-6.) 
Some security analysts suggested that Code Red might be "a beta test for information 
warfare," meaning that its powerful combination of attacks could be a prelude to a large-
scale, intentional effort targeted at particular countries or groups [HUL01a]. For this 
reason, users and developers should pay more and careful attention to the security of their 
systems. Forno [FOR01] warns that security threats such as Code Red stem from our 
general willingness to buy and install code that does not meet minimal quality standards 
and from our reluctance to devote resources to the large and continuing stream of patches 
and corrections that flows from the vendors. As we see in Chapter 11, this problem is 
coupled with a lack of legal standing for users who experience seriously faulty code. 

Malicious Code on the Web: Web Bugs 
With the web pervading the lives of average citizens everywhere, malicious code in web 
pages has become a serious problem. But sometimes the malice is not always clear; code 
can be used to good or bad ends, depending on your perspective. In this section, we look at 
a generic type of code, called a web bug, to see how it can affect the code in which it is 
embedded. 
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What They Do 
A web bug, sometimes called a pixel tag, clear gif, one-by-one gif, invisible gif, or beacon gif, 
is a hidden image on any document that can display HTML tags, such as a web page, an 
HTML e-mail message, or even a spreadsheet. Its creator intends the bug to be invisible, 
unseen by users but very useful nevertheless because it can track the activities of a web 
user. 
For example, if you visit the Blue Nile home page, www.bluenile.com, the following web bug 
code is automatically downloaded as a one-by-one pixel image from Avenue A, a marketing 
agency: 
<img height=1 width=1 src="http://switch.avenuea.com/action/ 
bluenile_homepage/v2/a/AD7029944"> 
What Effect They Have 
Suppose you are surfing the web and load the home page for Commercial.com, a commercial 
establishment selling all kinds of houseware. If this site contains a web bug for Market.com, 
a marketing and advertising firm, then the bug places a file called a cookie on your system's 
hard drive. This cookie, usually containing a numeric identifier unique to you, can be used 
to track your surfing habits and build a demographic profile. In turn, that profile can be 
used to direct you to retailers in whom you may be interested. For example, Commercial.com 
may create a link to other sites, display a banner advertisement to attract you to its partner 
sites, or offer you content customized for your needs. 
How They Work 
On the surface, web bugs do not seem to be malicious. They plant numeric data but do not 
track personal information, such as your name and address. However, if you purchase an 
item at Commercial.com, you may be asked to supply such information. Thus, the web 
server can capture things such as 

 your computer's IP address 
 the kind of web browser you use 
 your monitor's resolution 
 other browser settings, such as whether you have enabled Java technology 
 connection time 
 previous cookie values 

and more. 
buying habits are, or what your personal information may be. More maliciously, the web 
bug can be cleverly used to review the web server's log files and to determine your IP 
address opening your system to hacking via the target IP address. 
What Was Learned 
Web bugs raise questions about privacy, and some countries are considering legislation to 
protect specifically from probes by web bugs. In the meantime, the Privacy Foundation has 
made available a tool called Bugnosis to locate web bugs and bring them to a user's 
attention. 
We will study the privacy aspects of web bugs more in Chapter 10. 
In addition, users can invoke commands from their web browsers to block cookies or at 
least make the users aware that a cookie is about to be placed on a system. Each option 
offers some inconvenience. Cookies can be useful in recording information that is used 
repeatedly, such as name and address. Requesting a warning message can mean almost 
continual interruption as web bugs attempt to place cookies on your system. Another 
alternative is to allow cookies but to clean them off your system periodically, either by hand 
or by using a commercial product. 

Targeted malicious code-  
So far, we have looked at anonymous code written to affect users and machines 
indiscriminately. Another class of malicious code is written for a particular system, for a 
particular application, and for a particular purpose. Many of the virus writers' techniques 
apply, but there are also some new ones. Bradbury [BRA06] looks at the change over time 
in objectives and skills of malicious code authors. 

Trapdoors 
A trapdoor is an undocumented entry point to a module. Developers insert trapdoors during 
code development, perhaps to test the module, to provide "hooks" by which to connect 
future modifications or enhancements, or to allow access if the module should fail in the 
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future. In addition to these legitimate uses, trapdoors can allow a programmer access to a 
program once it is placed in production. 
Examples of Trapdoors 
Because computing systems are complex structures, programmers usually develop and test 
systems in a methodical, organized, modular manner, taking advantage of the way the 
system is composed of modules or components. Often, programmers first test each small 
component of the system separate from the other components, in a step called unit testing, 
to ensure that the component works correctly by itself. Then, developers test components 
together during integration testing, to see how they function as they send messages and 
data from one to the other. Rather than paste all the components together in a "big bang" 
approach, the testers group logical clusters of a few components, and each cluster is tested 
in a way that allows testers to control and understand what might make a component or its 
interface fail. 
(For a more detailed look at testing, see Pfleeger and Atlee [PFL06a].) 
To test a component on its own, the developer or tester cannot use the surrounding 
routines that prepare input or work with output. Instead, it is usually necessary to write 
"stubs" and "drivers," simple routines to inject data in and extract results from the 
component being tested. As testing continues, these stubs and drivers are discarded 
because they are replaced by the actual components whose functions they mimic. For 
example, the two modules MODA and MODB in Figure 3-10 are being tested with the driver 
MAIN and the stubs SORT, OUTPUT, and NEWLINE. 
During both unit and integration testing, faults are usually discovered in components. 
Sometimes, when the source of a problem is not obvious, the developers insert debugging 
code in suspicious modules; the debugging code makes visible what is going on as the 
components execute and interact. Thus, the extra code may force components to display 
the intermediate results of a computation, to print the number of each step as it is 
executed, or to perform extra computations to check the validity of previous components. 
To control stubs or invoke debugging code, the programmer embeds special control 
sequences in the component's design, specifically to support testing. For example, a 
component in a text formatting system might be designed to recognize commands such as 
.PAGE, .TITLE, and .SKIP. During testing, the programmer may have invoked the debugging 
code, using a command with a series of parameters of the form var = value. This command 
allows the programmer to modify the values of internal program variables during execution, 
either to test corrections to this component or to supply values passed to components this 
one calls. 
Command insertion is a recognized testing practice. However, if left in place after testing, 
the extra commands can become a problem. They are undocumented control sequences 
that produce side effects and can be used as trapdoors. In fact, the Internet worm spread 
its infection by using just such a debugging trapdoor in an electronic mail program. 
Poor error checking is another source of trapdoors. A good developer will design a system so 
that any data value is checked before it is used; the checking involves making sure the data 
type is correct as well as ensuring that the value is within acceptable bounds. But in some 
poorly designed systems, unacceptable input may not be caught and can be passed on for 
use in unanticipated ways. For example, a component's code may check for one of three 
expected sequences; finding none of the three, it should recognize an error. Suppose the 
developer uses a CASE statement to look for each of the three possibilities. A careless 
programmer may allow a failure simply to fall through the CASE without being flagged as 
an error. The fingerd flaw exploited by the Morris worm occurs exactly that way: A C library 
I/O routine fails to check whether characters are left in the input buffer before returning a 
pointer to a supposed next character. 
Here, it often happens that not all possible binary opcode values have matching machine 
instructions. The undefined opcodes sometimes implement peculiar instructions, either 
because of an intent to test the processor design or because of an oversight by the 
processor designer. Undefined opcodes are the hardware counterpart of poor error checking 
for software. 
As with viruses, trapdoors are not always bad. They can be very useful in finding security 
flaws. Auditors sometimes request trapdoors in production programs to insert fictitious but 
identifiable transactions into the system. Then, the auditors trace the flow of these 
transactions through the system. However, trapdoors must be documented, access to them 
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should be strongly controlled, and they must be designed and used with full understanding 
of the potential consequences. 
Causes of Trapdoors 
Developers usually remove trapdoors during program development, once their intended 
usefulness is spent. However, trapdoors can persist in production programs because the 
developers 

 forget to remove them 
 intentionally leave them in the program for testing 
 intentionally leave them in the program for maintenance of the finished program, or 
 intentionally leave them in the program as a covert means of access to the component 

after it becomes an accepted part of a production system 
The first case is an unintentional security blunder, the next two are serious exposures of 
the system's security, and the fourth is the first step of an outright attack. It is important to 
remember that the fault is not with the trapdoor itself, which can be a useful technique for 
program testing, correction, and maintenance. Rather, the fault is with the system 
development process, which does not ensure that the trapdoor is "closed" when it is no 
longer needed. That is, the trapdoor becomes a vulnerability if no one notices it or acts to 
prevent or control its use in vulnerable situations. 
In general, trapdoors are a vulnerability when they expose the system to modification 
during execution. They can be exploited by the original developers or used by anyone who 
discovers the trapdoor by accident or through exhaustive trials. A system is not secure 
when someone believes that no one else would find the hole. 

Salami Attack 
We noted in Chapter 1 an attack known as a salami attack. This approach gets its name 
from the way odd bits of meat and fat are fused in a sausage or salami. In the same way, a 
salami attack merges bits of seemingly inconsequential data to yield powerful results. For 
example, programs often disregard small amounts of money in their computations, as when 
there are fractional pennies as interest or tax is calculated. Such programs may be subject 
to a salami attack, because the small amounts are shaved from each computation and 
accumulated elsewheresuch as in the programmer's bank accounta The shaved amount is 
so small that an individual case is unlikely to be noticed, and the accumulation can be 
done so that the books still balance overall. However, accumulated amounts can add up to 
a tidy sum, supporting a programmer's early retirement or new car. It is often the resulting 
expenditure, not the shaved amounts, that gets the attention of the authorities. 
Examples of Salami Attacks 
The classic tale of a salami attack involves interest computation. Suppose your bank pays 
6.5 percent interest on your account. The interest is declared on an annual basis but is 
calculated monthly. If, after the first month, your bank balance is $102.87, the bank can 
calculate the interest in the following way. For a month with 31 days, we divide the interest 
rate by 365 to get the daily rate, and then multiply it by 31 to get the interest for the month. 
Thus, the total interest for 31 days is 31/365*0.065*102.87 = $0.5495726. Since banks 
deal only in full cents, a typical practice is to round down if a residue is less than half a 
cent, and round up if a residue is half a cent or more. However, few people check their 
interest computation closely, and fewer still would complain about having the amount 
$0.5495 rounded down to $0.54, instead of up to $0.55. Most programs that perform 
computations on currency recognize that because of rounding, a sum of individual 
computations may be a few cents different from the computation applied to the sum of the 
balances. 
What happens to these fractional cents? The computer security folk legend is told of a 
programmer who collected the fractional cents and credited them to a single account: hersa 
The interest program merely had to balance total interest paid to interest due on the total of 
the balances of the individual accounts. Auditors will probably not notice the activity in one 
specific account. In a situation with many accounts, the roundoff error can be substantial, 
and the programmer's account pockets this roundoff. 
But salami attacks can net more and be far more interesting. For example, instead of 
shaving fractional cents, the programmer may take a few cents from each account, again 
assuming that no individual has the desire or understanding to recompute the amount the 
bank reports. 
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Most people finding a result a few cents different from that of the bank would accept the 
bank's figure, attributing the difference to an error in arithmetic or a misunderstanding of 
the conditions under which interest is credited. Or a program might record a $20 fee for a 
particular service, while the company standard is $15. If unchecked, the extra $5 could be 
credited to an account of the programmer's choice. The amounts shaved are not necessarily 
small: One attacker was able to make withdrawals of $10,000 or more against accounts 
that had shown little recent activity; presumably the attacker hoped the owners were 
ignoring their accounts. 
Why Salami Attacks Persist 
Computer computations are notoriously subject to small errors involving rounding and 
truncation, especially when large numbers are to be combined with small ones. Rather than 
document the exact errors, it is easier for programmers and users to accept a small amount 
of error as natural and unavoidable. To reconcile accounts, the programmer includes an 
error correction in computations. Inadequate auditing of these corrections is one reason 
why the salami attack may be overlooked. 
Usually the source code of a system is too large or complex to be audited for salami attacks, 
unless there is reason to suspect one. Size and time are definitely on the side of the 
malicious programmer. 

Rootkits and the Sony XCP 
A later variation on the virus theme is the rootkit. A rootkit is a piece of malicious code that 
goes to great lengths not to be discovered or, if discovered and removed, to reestablish itself 
whenever possible. The name rootkit refers to the code's attempt to operate as root, the 
superprivileged user of a Unix system. 
A typical rootkit will interfere with the normal interaction between a user and the operating 
system as follows. Whenever the user executes a command that would show the rootkit's 
presence, for example, by listing files or processes in memory, the rootkit intercepts the call 
and filters the result returned to the user so that the rootkit does not appear. For example, 
if a directory contains six files, one of which is the rootkit, the rootkit will pass the directory 
command to the operating system, intercept the result, delete the listing for itself, and 
display to the user only the five other files. The rootkit will also adjust such things as file 
size totals to conceal itself. Notice that the rootkit needs to intercept this data between the 
result and the presentation interface (the program that formats results for the user to see). 
Ah, two can play that game. Suppose you suspect code is interfering with your file display 
program. Then you write a program that displays files, then examines the disk and file 
system directly to enumerate files, and compares these two results. A rootkit revealer is just 
such a program. 
A computer security expert named Mark Russinovich developed a rootkit revealer, which he 
ran on one of his systems. He was surprised to find a rootkit [RUS05]. On further 
investigation he determined the rootkit had been installed when he loaded and played a 
music CD on his computer. Felten and Halderman [FEL06] extensively examined this 
rootkit, named XCP (short for extended copy protection). 
What XCP Does 
The XCP rootkit prevents a user from copying a music CD, while allowing the CD to be 
played as music. To do this, it includes its own special music player that is allowed to play 
the CD. But XCP interferes with any other access to the protected music CD by garbling the 
result any other process would obtain in trying to read from the CD. 
The rootkit has to install itself when the CD is first inserted in the PC's drive. To do this, 
XCP depends on a "helpful" feature of Windows: With "autorun" Windows looks for a file 
with a specific name, and if it finds that, it opens and executes the file without the user's 
involvement. (The file name can be configured in Windows, although it is autorun.exe by 
default.) You can disable the autorun feature; see [FEL06] for details. 
XCP has to hide from the user so that the user cannot just remove it. So the rootkit does as 
we just described: It blocks display of any program whose name begins with $sys$ (which is 
how it is named). Unfortunately for Sony, this feature concealed not just XCP but any 
program beginning with $sys$ from any source, malicious or not. So any virus writer could 
conceal a virus just by naming it $sys$virus-1, for example. 
Sony did two things wrong: First, as we just observed, it distributed code that inadvertently 
opens an unsuspecting user's system to possible infection by other writers of malicious 
code. 
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Second, Sony installs that code without the user's knowledge, much less consent, and it 
employs strategies to prevent the code's removal. 
Patching the Penetration 
The story of XCP became very public in November 2005 when Russinovich described what 
he found and several news services picked up the story. Faced with serious negative 
publicity, Sony decided to release an uninstaller for the XCP rootkit. Remember, however, 
from the start of this chapter why "penetrate and patch" was abandoned as a security 
strategy? The pressure for a quick repair sometimes led to shortsighted solutions that 
addressed the immediate situation and not the underlying cause: Fixing one problem often 
caused a failure somewhere else. 
Sony's uninstaller itself opened serious security holes. It was presented as a web page that 
downloaded and executed the uninstaller. But the programmers did not check what code 
they were executing, so the web page would run any code from any source, not just the 
intended uninstaller. And worse, the downloading code remained even after uninstalling 
XCP, meaning that the vulnerability persisted. (In fact, Sony used two different rootkits 
from two different sources and, remarkably, the uninstallers for both rootkits had this same 
vulnerability.) 
How many computers were infected by this rootkit? Nobody knows for sure. Kaminsky 
[KAM06] found 500,000 references in DNS tables to the site the rootkit contacts, but some 
of those DNS entries could support accesses by hundreds or thousands of computers. How 
many users of computers on which the rootkit was installed are aware of it? Again nobody 
knows, nor does anybody know how many of those installations might not yet have been 
removed. 
Felten and Halderman [FEL06] present an interesting analysis of this situation, examining 
how digital rights management (copy protection for digital media such as music CDs) leads 
to requirements very similar to those for a malicious code developer. Levine et al. [LEV06] 
consider the full potential range of rootkit behavior as a way of determining how to defend 
against them. 
Schneier [SCH06b] considers everyone who, maliciously or not, wants to control a PC: 
Automatic software updates, antivirus tools, spyware, even applications all do many things 
without the user's express permission or even knowledge. They also conspire against the 
user: 
Sony worked with major antivirus vendors so its rootkit would not be detected, because 
keeping the user uninformed was better for all of them. 

Privilege Escalation 
Programs run in a context: Their access rights and privileges are controlled by that context. 
Most programs run in the context of the invoking user. If system access rights are set up 
correctly, you can create, modify, or delete items you own, but critical system objects are 
protected by being outside your context. Malicious code writers want to be able to access 
not just your objects but those outside your context as well. To do this, the malicious code 
has to run with privileges higher than you have. A privilege escalation attack is a means for 
malicious code to be launched by a user with lower privileges but run with higher privileges. 
A Privilege Escalation Example 
In April 2006, Symantec announced a fix to a flaw in their software (bulletin Sym06-007). 
Symantec produces security software, such as virus scanners and blockers, e-mail spam 
filters, and system integrity tools. So that a user's product will always have up-to-date code 
and supporting data (such as virus definition files), Symantec has a Live Update option by 
which the product periodically fetches and installs new versions from a Symantec location. 
A user can also invoke Live Update at any time to get up-to-the-minute updates. The Live 
Update feature has to run with elevated privileges because it will download and install 
programs in the system program directory. The update process actually involves executing 
several programs, which we will call LU1, LU2, Sys3, and Sys4; LU1 and LU2 are 
components of Live Update, and Sys3 and Sys4 are standard components of the operating 
system. These four pieces complete the downloading and installation. 
Operating systems use what is called a search path to find programs to execute. The search 
path is a list of directories or folders in which to look for a program that is called. When a 
program A calls a program B, the operating system looks for B in the first directory specified 
in the search path. If the operating system finds such a program, it executes it; otherwise, it 
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continues looking in the subsequent directories in the search path until it finds B or it fails 
to find B by the end of the list. The operating system uses the first B it finds. The user can 
change the search path so a user's program B would be run instead of another program of 
the same name in another directory. You can always specify a program's location explicitly 
for example, c:\program files\ symantec\LU1to control precisely which version runs. 
In some releases for the Macintosh, Symantec allowed Live Update to find programs from 
the search path instead of by explicit location. Remember that Live Update runs with 
elevated privileges; it passes those elevated privileges along to Sys3 and Sys4. But if the 
user sets a search path starting in the user's space and the user happens to have a 
program named Sys3, the user's version of Sys3 runs with elevated privileges. 
Impact of Privilege Escalation 
A malicious code writer likes a privilege escalation. Creating, installing, or modifying a 
system file is difficult, but it is easier to load a file into the user's space. In this example, the 
malicious code writer only has to create a small shell program, name it Sys3, store it 
anywhere (even in a temporary directory), reset the search path, and invoke a program (Live 
Update). Each of these actions is common for nonmalicious downloaded code. 
The result of running this attack is that the malicious version of Sys3 receives control in 
privileged mode, and from that point it can replace operating system files, download and 
install new code, modify system tables, and inflict practically any other harm. Having run 
once with higher privilege, the malicious code can set a flag to receive elevated privileges in 
the future.  
Interface Illusions 
The name for this attack is borrowed from Elias Levy [LEV04]. An interface illusion is a 
spoofing attack in which all or part of a web page is false. The object of the attacker is to 
convince the user to do something inappropriate, for example, to enter personal banking 
information on a site that is not the bank's, to click yes on a button that actually means 
no,or simply to scroll the screen to activate an event that causes malicious software to be 
installed on the victim's machine. Levy's excellent article gives other excellent examples. 
The problem is that every dot of the screen is addressable. So if a genuine interface can 
paint dot 17 red, so can a malicious interface. Given that, a malicious interface can display 
fake address bars, scroll bars that are not scroll bars, and even a display that looks 
identical to the real thing, because it is identical in all ways the attacker wants it to be. 
Nothing here is new, of course. People diligently save copies of e-mail messages as proof 
that they received such a message when, in fact, a simple text editor will produce any 
authentic-looking message you want. System pranksters like to send facetious messages to 
unsuspecting users, warning that the computer is annoyed. These all derive from the same 
point: There is nothing unique, no trusted path assured to be a private and authentic 
communication channel directly to the user. 

Keystroke Logging 
Remember the movies in which a detective would spy a note pad on a desk, hold it up to the 
light, and read the faint impression of a message that had been written and then torn off 
that pad? There is a computer counterpart of that tactic, too. 
First, recognize that there is not a direct path between a key you press on your keyboard 
and the program (let's say a word processor) that handles that keystroke. When you press 
A, it activates a switch that generates a signal that is received by a device driver, converted 
and analyzed and passed along, until finally your word processor receives the A; there is 
still more conversion, analysis, and transmission until the A appears on your screen. Many 
programs cooperate in this chain. At several points along the way you could change a 
program so that A would appear on the screen when you pressed W if you wanted. 
If all programs work as intended, they receive and send characters efficiently and discard 
each character as soon as it is sent and another arrives. A malicious program called a 
keystroke logger retains a surreptitious copy of all keys pressed. Most keystrokes are 
uninteresting, but we may want to protect the privacy of identification numbers, 
authentication strings, and love notes. 
A keystroke logger can be independent (retaining a log of every key pressed) or it can be tied 
to a certain program, retaining data only when a particular program (such as a banking 
application) runs. 

Man-in-the-Middle Attacks 
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A keystroke logger is a special form of the more general man-in-the-middle attack. There are 
two versions of this attack: we cover the application type here and then expand on the 
concept in Chapter 7 on networks. 
A man-in-the-middle attack is one in which a malicious program interjects itself between 
two other programs, typically between a user's input and an application's result. One 
example of a man-in-the-middle attack could be a program that operated between your 
word processor and the file system, so that each time you thought you were saving your file, 
the middle program prevented that, or scrambled your text or encrypted your file. What 
ransom would you be willing to pay to get back the paper on which you had been working 
for the last week? 

Timing Attacks 
Computers are fast, and they work far faster than humans can follow. But, as we all 
know,the time it takes a computer to perform a task depends on the size of the task: 
Creating 20 database records takes approximately twice as long as creating 10. So, in 
theory at least, if we could measure computer time precisely, and we could control other 
things being done in the computer, we could infer the size of the computer's input. In most 
situations size is relatively uninteresting to the attacker. But in cryptography, even the 
smallest bit of information can be significant. 
Brumley and Boneh [BRU05] investigated a program that does RSA encryption for web 
sites. 
The authors try to derive the key by successive guesses of increasing value as possibilities 
for the key. Although the details of the attack are beyond the scope of this book, the idea is 
to use a trick in the optimization of RSA encryption. Grossly oversimplified, encryption with 
numbers less than the key take successively longer amounts of time as the numbers get 
closer to the key, but then the time to encrypt drops sharply once the key value is passed. 
Brute force guessing is prohibitive in time. But the authors show that you don't have to try 
all values. You infer the key a few bits at a time from the left (most significant bit). So you 
might try 00xxx, 01xxx, 10xxx, and 11xxx, noticing that the time to compute rises from 
00xxx to 01xxx, rises from 01xxx to 10xxx, and falls between 10xxx and 11xxx. This tells 
you the key value is between 10xxx and 11xxx. The attack works with much longer keys (on 
the order of 1000 bits) and the authors use about a million possibilities for the xxx portion. 
Still, this technique allows the authors to infer the key a bit at a time, all based on the 
amount of time the encryption takes. The authors performed their experiments on a 
network, not with precise local timing instruments, and still they were able to deduce keys. 
Cryptography is the primary area in which speed and size are information that should not 
be revealed. But you should  be aware that malicious code can perform similar attacks 
undetected. 

Covert Channels: Programs That Leak Information 
So far, we have looked at malicious code that performs unwelcome actions. Next, we turn to 
programs that communicate information to people who should not receive it. The 
communication travels unnoticed, accompanying other, perfectly proper, communications. 
The general name for these extraordinary paths of communication is covert channels. The 
concept of a covert channel comes from a paper by Lampson [LAM73]; Millen [MIL88] 
presents a good taxonomy of covert channels. 
Suppose a group of students is preparing for an exam for which each question has four 
choices (a, b, c, d); one student in the group, Sophie, understands the material perfectly 
and she agrees to help the others. She says she will reveal the answers to the questions, in 
order, by coughing once for answer "a," sighing for answer "b," and so forth. Sophie uses a 
communications channel that outsiders may not notice; her communications are hidden in 
an open channel. This communication is a human example of a covert channel. 
We begin by describing how a programmer can create covert channels. The attack is more 
complex than one by a lone programmer accessing a data source. A programmer who has 
direct access to data can usually just read the data and write it to another file or print it 
out. If, however, the programmer is one step removed from the datafor example, outside the 
organization owning the datathe programmer must figure how to get at the data. One way is 
to supply a bona fide program with a built-in Trojan horse; once the horse is enabled, it 
finds and transmits the data. However, it would be too bold to generate a report labeled 
"Send this report to Jane Smith in Camden, Maine"; the programmer has to arrange to 
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extract the data more surreptitiously. Covert channels are a means of extracting data 
clandestinely. 
Figure 3-11 shows a "service program" containing a Trojan horse that tries to copy 
information from a legitimate user (who is allowed access to the information) to a "spy" (who 
ought not be allowed to access the information). The user may not know that a Trojan horse 
is running and may not be in collusion to leak information to the spy. 
Covert Channel Overview 
A programmer should not have access to sensitive data that a program processes after the 
program has been put into operation. For example, a programmer for a bank has no need to 
access the names or balances in depositors' accounts. Programmers for a securities firm 
have no need to know what buy and sell orders exist for the clients. During program 
testing, access to the real data may be justifiable, but not after the program has been 
accepted for regular use. 
Still, a programmer might be able to profit from knowledge that a customer is about to sell 
a large amount of a particular stock or that a large new account has just been opened. 
Sometimes a programmer may want to develop a program that secretly communicates some 
of the data on which it operates. In this case, the programmer is the "spy," and the "user" is 
whoever ultimately runs the program written by the programmer. 
How to Create Covert Channels 
A programmer can always find ways to communicate data values covertly. Running a 
program that produces a specific output report or displays a value may be too obvious. For 
example, in some installations, a printed report might occasionally be scanned by security 
staff before it is delivered to its intended recipient. 
If printing the data values themselves is too obvious, the programmer can encode the data 
values in another innocuous report by varying the format of the output, changing the 
lengths of lines, or printing or not printing certain values. For example, changing the word 
"TOTAL" to "TOTALS" in a heading would not be noticed, but this creates a 1-bit covert 
channel. The absence or presence of the S conveys one bit of information. Numeric values 
can be inserted in insignificant positions of output fields, and the number of lines per page 
can be changed. 
Examples of these subtle channels are shown in Figure 3-12. 
Storage Channels 
Some covert channels are called storage channels because they pass information by using 
the presence or absence of objects in storage. 
A simple example of a covert channel is the file lock channel. In multiuser systems, files can 
be "locked" to prevent two people from writing to the same file at the same time (which 
could corrupt the file, if one person writes over some of what the other wrote). The operating 
system or database management system allows only one program to write to a file at a time 
by blocking, delaying, or rejecting write requests from other programs. A covert channel can 
signal one bit of information by whether or not a file is locked. 
Remember that the service program contains a Trojan horse written by the spy but run by 
the unsuspecting user. As shown in Figure 3-13, the service program reads confidential 
data (to which the spy should not have access) and signals the data one bit at a time by 
locking or not locking some file (any file, the contents of which are arbitrary and not even 
modified). The service program and the spy need a common timing source, broken into 
intervals. To signal a 1, the service program locks the file for the interval; for a 0, it does not 
lock. Later in the interval the spy tries to lock the file itself. If the spy program cannot lock 
the file, it knows the service program must have locked the file, and thus the spy program 
concludes the service program is signaling a 1; if the spy program can lock the file, it knows 
the service program is signaling a 0. 
This same approach can be used with disk storage quotas or other resources. With disk 
storage, the service program signals a 1 by creating an enormous file, so large that it 
consumes most of the available disk space. The spy program later tries to create a large file. 
If it succeeds, the spy program infers that the service program did not create a large file, 
and so the service program is signaling a 0; otherwise, the spy program infers a 1. Similarly 
the existence of a file or other resource of a particular name can be used to signal. Notice 
that the spy does not need access to a file itself; the mere existence of the file is adequate to 
signal. The spy can determine the existence of a file it cannot read by trying to create a file 
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of the same name; if the request to create is rejected, the spy determines that the service 
program has such a file. 
To signal more than one bit, the service program and the spy program signal one bit in each 
time interval. Figure 3-14 shows a service program signaling the string 100 by toggling the 
existence of a file. 
bakeries, banks, and other commercial establishments have a machine to distribute 
numbered tickets so that customers can be served in the order in which they arrived. Some 
computing systems provide a similar server of unique identifiers, usually numbers, used to 
name temporary files, to tag and track messages, or to record auditable events. Different 
processes can request the next unique identifier from the server. But two cooperating 
processes can use the server to send a signal: The spy process observes whether the 
numbers it receives are sequential or whether a number is missing. A missing number 
implies that the service program also requested a number, thereby signaling 1. 
In all of these examples, the service program and the spy need access to a shared resource 
(such as a file, or even knowledge of the existence of a file) and a shared sense of time. As 
shown, shared resources are common in multiuser environments, where the resource may 
be as seemingly innocuous as whether a file exists, a device is free, or space remains on 
disk. A source of shared time is also typically available, since many programs need access 
to the current system time to set timers, to record the time at which events occur, or to 
synchronize activities. Karger and Wray [KAR91b] give a real-life example of a covert 
channel in the movement of a disk's arm and then describe ways to limit the potential 
information leakage from this channel. 
Transferring data one bit at a time must seem awfully slow. But computers operate at such 
speeds that even the minuscule rate of 1 bit per millisecond (1/1000 second) would never 
be noticed but could easily be handled by two processes. At that rate of 1000 bits per 
second (which is unrealistically conservative), this entire book could be leaked in about two 
days. 
Increasing the rate by an order of magnitude or two, which is still quite conservative, 
reduces the transfer time to minutes. 
Timing Channels 
Other covert channels, called timing channels, pass information by using the speed at 
which things happen. Actually, timing channels are shared resource channels in which the 
shared resource is time. 
A service program uses a timing channel to communicate by using or not using an assigned 
amount of computing time. In the simple case, a multiprogrammed system with two user 
processes divides time into blocks and allocates blocks of processing alternately to one 
process and the other. A process is offered processing time, but if the process is waiting for 
another event to occur and has no processing to do, it rejects the offer. The service process 
either uses its block (to signal a 1) or rejects its block (to signal a 0). Such a situation is 
shown in Figure 3-15, first with the service process and the spy's process alternating, and 
then with the service process communicating the string 101 to the spy's process. In the 
second part of the example, the service program wants to signal 0 in the third time block. It 
will do this by using just enough time to determine that it wants to send a 0 and then 
pause. 
The spy process then receives control for the remainder of the time block. multiuser 
computing systems typically have more than just two active processes. The only 
complications added by more processes are that the two cooperating processes must adjust 
their timings and deal with the possible interference from others. For example, with the 
unique identifier channel, other processes will also request identifiers. If on average n other 
processes will request m identifiers each, then the service program will request more than 
n*m identifiers for a 1 and no identifiers for a 0. The gap dominates the effect of all other 
processes. Also, the service process and the spy's process can use sophisticated coding 
techniques to compress their communication and detect and correct transmission errors 
caused by the effects of other unrelated processes. 
Identifying Potential Covert Channels 
In this description of covert channels, ordinary things, such as the existence of a file or time 
used for a computation, have been the medium through which a covert channel 
communicates. Covert channels are not easy to find because these media are so numerous 
and frequently used. Two relatively old techniques remain the standards for locating 
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potential covert channels. One works by analyzing the resources of a system, and the other 
works at the source code level. 
Shared Resource Matrix 
Since the basis of a covert channel is a shared resource, the search for potential covert 
channels involves finding all shared resources and determining which processes can write 
to and read from the resources. The technique was introduced by Kemmerer [KEM83]. 
Although laborious, the technique can be automated. 
To use this technique, you construct a matrix of resources (rows) and processes that can 
access them (columns). The matrix entries are R for "can read (or observe) the resource" and 
M for "can set (or modify, create, delete) the resource." For example, the file lock channel 
has the matrix shown in Table 3-3. 

 
  Confidential data       R                R 
 
 
Information Flow Method 
Denning [DEN76a] derived a technique for flow analysis from a program's syntax. 
Conveniently, this analysis can be automated within a compiler so that information flow 
potentials can be detected while a program is under development. 
Using this method, we can recognize nonobvious flows of information between statements 
in a program. For example, we know that the statement B:=A, which assigns the value of A 
to the variable B, obviously supports an information flow from A to B. This type of flow is 
called an "explicit flow." Similarly, the pair of statements B:=A; C:=B indicates an 
information flow from A to C (by way of B). The conditional statement IF D=1 THEN B:=A 
has two flows: from A to B because of the assignment, but also from D to B, because the 
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value of B can change if and only if the value of D is 1. This second flow is called an 
"implicit flow." 
The statement B:=fcn(args) supports an information flow from the function fcn to B. At a 
superficial level, we can say that there is a potential flow from the arguments args to B. 
However, we could more closely analyze the function to determine whether the function's 
value depended on all of its arguments and whether any global values, not part of the 
argument list, affected the function's value. These information flows can be traced from the 
bottom up: At the bottom there must be functions that call no other functions, and we can 
analyze them and then use those results to analyze the functions that call them. By looking 
at the elementary functions first, we could say definitively whether there is a potential 
information flow from each argument to the function's result and whether there are any 
flows from global variables. Table 3-5 lists several examples of syntactic information flows. 

Table 3-5. Syntactic Information Flows. 
Statement Flow 
B:=A from A to B 
IF C=1 THEN B:=A from A to B; from C to B 
FOR K:=1 to N DO stmts END from K to stmts 
WHILE K>0 DO stmts END from K to stmts 
CASE (exp) val1: stmts from exp to stmts 
B:=fcn(args) from fcn to B 
OPEN FILE f none 
READ (f, X) from file f to X 
WRITE (f, X) from X to file f 
Finally, we put all the pieces together to show which outputs are affected by which inputs. 
Although this analysis sounds frightfully complicated, it can be automated during the 
syntax analysis portion of compilation. This analysis can also be performed on the higher-
level design specification. 
Covert Channel Conclusions 
Covert channels represent a real threat to secrecy in information systems. A covert channel 
attack is fairly sophisticated, but the basic concept is not beyond the capabilities of even an 
average programmer. Since the subverted program can be practically any user service, such 
as a printer utility, planting the compromise can be as easy as planting a virus or any other 
kind of Trojan horse. And recent experience has shown how readily viruses can be planted. 
Capacity and speed are not problems; our estimate of 1000 bits per second is unrealistically 
low, but even at that rate much information leaks swiftly. With modern hardware 
architectures, certain covert channels inherent in the hardware design have capacities of 
millions of bits per second. And the attack does not require significant finance. Thus, the 
attack could be very effective in certain situations involving highly sensitive data. 
For these reasons, security researchers have worked diligently to develop techniques for 
closing covert channels. The closure results have been bothersome; in ordinarily open 
environments, there is essentially no control over the subversion of a service program, nor 
is there an effective way of screening such programs for covert channels. And other than in 
a few very high security systems, operating systems cannot control the flow of information 
from a covert channel. The hardware-based channels cannot be closed, given the 
underlying hardware architecture. 
For variety (or sobriety), Kurak and McHugh [KUR92] present a very interesting analysis of 
covert signaling through graphic images.[4] In their work they demonstrate that two different 
images can be combined by some rather simple arithmetic on the bit patterns of digitized 
pictures. The second image in a printed copy is undetectable to the human eye, but it can 
easily be separated and reconstructed by the spy receiving the digital version of the image. 
Byers [BYE04] explores the topic in the context of covert data passing through pictures on 
the Internet. 
[4] This form of data communication is called steganography, w hich means the art of concealing data in clear sight. 

Although covert channel demonstrations are highly speculativereports of actual covert 
channel attacks just do not existthe analysis is sound. The mere possibility of their 
existence calls for more rigorous attention to other aspects of security, such as program 
development analysis, system architecture analysis, and review of output. 
 

Controls against program threats. 
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The picture we have just described is not pretty. There are many ways a program can fail 
and many ways to turn the underlying faults into security failures. It is of course better to 
focus on prevention than cure; how do we use controls during software development the 
specifying, designing, writing, and testing of the programto find and eliminate the sorts of 
exposures we have discussed? The discipline of software engineering addresses this 
question more globally, devising approaches to ensure the quality of software. In this book, 
we provide an overview of several techniques that can prove useful in finding and fixing 
security flaws. 
For more depth, we refer you to texts such as Pfleeger et al. [PFL01] and Pfleeger and Atlee 
[PFL06a]. 
In this section we look at three types of controls: developmental, operating system, and 
administrative. We discuss each in turn. 

Developmental Controls 
Many controls can be applied during software development to ferret out and fix problems. 
So let us begin by looking at the nature of development itself, to see what tasks are involved 
in specifying, designing, building, and testing software. 
The Nature of Software Development 
Software development is often considered a solitary effort; a programmer sits with a 
specification or design and grinds out line after line of code. But in fact, software 
development is a collaborative effort, involving people with different skill sets who combine 
their expertise to produce a working product. Development requires people who can 

 specify the system, by capturing the requirements and building a model of how the 
system should work from the users' point of view 

 design the system, by proposing a solution to the problem described by the requirements 
and building a model of the solution 

 implement the system, by using the design as a blueprint for building a working solution 
 test the system, to ensure that it meets the requirements and implements the solution as 

called for in the design 
 review the system at various stages, to make sure that the end products are consistent 

with the specification and design models 
 document the system, so that users can be trained and supported 
 manage the system, to estimate what resources will be needed for development and to 

track when the system will be done 
 maintain the system, tracking problems found, changes needed, and changes made, and 

evaluating their effects on overall quality and functionality 
One person could do all these things. But more often than not, a team of developers works 
together to perform these tasks. Sometimes a team member does more than one activity; a 
tester can take part in a requirements review, for example, or an implementer can write 
documentation. Each team is different, and team dynamics play a large role in the team's 
success. 
Keep in mind the kinds of sophisticated attacks described in the previous section. Balfanz 
[BAL04] reminds us that we must design systems that are both secure and usable, 
recommending these points: 

 You can't retrofit usable security. 
 Tools aren't solutions. 
 Mind the upper layers. 
 Keep the customers satisfied. 
 Think locally; act locally. 

We can examine product and process to see how both contribute to quality and in 
particular to security as an aspect of quality. Let us begin with the product, to get a sense 
of how we recognize high-quality secure software. 
Modularity, Encapsulation, and Information Hiding 
Code usually has a long shelf-life and is enhanced over time as needs change and faults are 
found and fixed. For this reason, a key principle of software engineering is to create a 
design or code in small, self-contained units, called components or modules; when a system 
is written this way, we say that it is modular. Modularity offers advantages for program 
development in general and security in particular. 
If a component is isolated from the effects of other components, then it is easier to trace a 
problem to the fault that caused it and to limit the damage the fault causes. It is also easier 



60 
 

to maintain the system, since changes to an isolated component do not affect other 
components. And it is easier to see where vulnerabilities may lie if the component is 
isolated. 
We call this isolation encapsulation. 
Information hiding is another characteristic of modular software. When information is 
hidden, each component hides its precise implementation or some other design decision 
from the others. Thus, when a change is needed, the overall design can remain intact while 
only the necessary changes are made to particular components. 
Let us look at these characteristics in more detail. 
Modularity 
Modularization is the process of dividing a task into subtasks. This division is done on a 
logical or functional basis. Each component performs a separate, independent part of the 
task. Modularity is depicted in Figure 3-16. The goal is to have each component meet four 
conditions:  

 single-purpose: performs one function 
 small: consists of an amount of information for which a human can readily grasp both 

structure and content 
 simple: is of a low degree of complexity so that a human can readily understand the 

purpose and structure of the module 
 independent: performs a task isolated from other modules 

Other component characteristics, such as having a single input and single output or using 
a limited set of programming constructs, indicate modularity. From a security standpoint, 
modularity should improve the likelihood that an implementation is correct. 
In particular, smallness is an important quality that can help security analysts understand 
what each component does. That is, in good software, design and program units should be 
only as large as needed to perform their required functions. There are several advantages to 
having small, independent components. 

 Maintenance. If a component implements a single function, it can be replaced easily with 
a revised one if necessary. The new component may be needed because of a change in 
requirements, hardware, or environment. Sometimes the replacement is an enhancement, 
using a smaller, faster, more correct, or otherwise better module. The interfaces between 
this component and the remainder of the design or code are few and well described, so the 
effects of the replacement are evident. 

 Understandability. A system composed of many small components is usually easier to 
comprehend than one large, unstructured block of code. 

 Reuse. Components developed for one purpose can often be reused in other systems. 
Reuse of correct, existing design or code components can significantly reduce the difficulty 
of implementation and testing. 

 Correctness. A failure can be quickly traced to its cause if the components perform only 
one task each. 

 Testing. A single component with well-defined inputs, outputs, and function can be tested 
exhaustively by itself, without concern for its effects on other modules (other than the 
expected function and output, of course). 
Security analysts must be able to understand each component as an independent unit and 
be assured of its limited effect on other components. 
A modular component usually has high cohesion and low coupling. By cohesion, we mean 
that all the elements of a component have a logical and functional reason for being there; 
every aspect of the component is tied to the component's single purpose. A highly cohesive 
component has a high degree of focus on the purpose; a low degree of cohesion means that 
the component's contents are an unrelated jumble of actions, often put together because of 
time-dependencies or convenience. 
Coupling refers to the degree with which a component depends on other components in the 
system. Thus, low or loose coupling is better than high or tight coupling because the loosely 
coupled components are free from unwitting interference from other components. This 
difference in coupling is shown in Figure 3-17. 
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Figure 3-17. Coupling. 
Encapsulation 
Encapsulation hides a component's implementation details, but it does not necessarily 
mean complete isolation. Many components must share information with other 
components, usually with good reason. However, this sharing is carefully documented so 
that a component is affected only in known ways by others in the system. Sharing is 
minimized so that the fewest interfaces possible are used. Limited interfaces reduce the 
number of covert channels that can be constructed. 
An encapsulated component's protective boundary can be translucent or transparent, as 
needed. Berard [BER00] notes that encapsulation is the "technique for packaging the 
information [inside a component] in such a way as to hide what should be hidden and make 
visible what is intended to be visible."  
Information Hiding 
Developers who work where modularization is stressed can be sure that other components 
will have limited effect on the ones they write. Thus, we can think of a component as a kind 
of black box, with certain well-defined inputs and outputs and a well-defined function. 
Other components' designers do not need to know how the module completes its function; it 
is enough to be assured that the component performs its task in some correct manner. 
This concealment is the information hiding, depicted in Figure 3-18. Information hiding is 
desirable because developers cannot easily and maliciously alter the components of others  
if they do not know how the components work. 

 
Figure 3-18. Information Hiding. 
These three characteristics modularity, encapsulation, and information hidingare 
fundamental principles of software engineering. They are also good security practices 
because they lead to modules that can be understood, analyzed, and trusted. 
Mutual Suspicion 
Programs are not always trustworthy. Even with an operating system to enforce access 
limitations, it may be impossible or infeasible to bound the access privileges of an untested 
program effectively. In this case, the user U is legitimately suspicious of a new program P. 
However, program P may be invoked by another program, Q. There is no way for Q to know 
that P is correct or proper, any more than a user knows that of P. 
Therefore, we use the concept of mutual suspicion to describe the relationship between two 
programs. Mutually suspicious programs operate as if other routines in the system were 
malicious or incorrect. A calling program cannot trust its called subprocedures to be 
correct, and a called subprocedure cannot trust its calling program to be correct. Each 
protects its interface data so that the other has only limited access. For example, a 
procedure to sort the entries in a list cannot be trusted not to modify those elements, while 
that procedure cannot trust its caller to provide any list at all or to supply the number of 
elements predicted. 
Confinement 
Confinement is a technique used by an operating system on a suspected program. A 
confined program is strictly limited in what system resources it can access. If a program is 
not trustworthy, the data it can access are strictly limited. Strong confinement would be 
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helpful in limiting the spread of viruses. Since a virus spreads by means of transitivity and 
shared data, all the data and programs within a single compartment of a confined program 
can affect only the data and programs in the same compartment. Therefore, the virus can 
spread only to things in that compartment; it cannot get outside the compartment. 
Genetic Diversity 
At your local electronics shop you can buy a combination printerscannercopierfax machine. 
It comes at a good price (compared to costs of the four separate components) because there 
is considerable overlap in functionality among those four. It is compact, and you need only 
install one thing on your system, not four. But if any part of it fails, you lose a lot of 
capabilities all at once. 
Related to the argument for modularity and information hiding and reuse or 
interchangeability of software components, some people recommend genetic diversity: it is 
risky having many components of a system come from one source, they say. 
Geer at al. [GEE03a] wrote a report examining the monoculture of computing dominated by 
one manufacturer: Microsoft today, IBM yesterday, unknown tomorrow. They look at the 
parallel in agriculture where an entire crop is vulnerable to a single pathogen. Malicious 
code from the Morris worm to the Code Red virus was especially harmful because a 
significant proportion of the world's computers ran versions of the same operating systems 
(Unix for Morris, Windows for Code Red). Geer refined the argument in [GEE03b], which 
was debated by Whitaker [WHI03b] and Aucsmith [AUC03]. 
Tight integration of products is a similar concern. The Windows operating system is tightly 
linked to Internet Explorer, the Office Suite, and the Outlook e-mail handler. A vulnerability 
in one of these can also affect the others. Because of the tight integration, fixing a 
vulnerability in one can have an impact on the others, whereas a vulnerability in another 
vendor's browser, for example, can affect Word only to the extent they communicate 
through a well-defined interface. 
Peer Reviews 
We turn next to the process of developing software. Certain practices and techniques can 
assist us in finding real and potential security flaws (as well as other faults) and fixing them 
before we turn the system over to the users. Pfleeger et al. [PFL01] recommend several key 
techniques for building what they call "solid software": 

 peer reviews 
 hazard analysis 
 testing 
 good design 
 prediction 
 static analysis 
 configuration management 
 analysis of mistakes 

Here, we look at each practice briefly, and we describe its relevance to security controls. We 
begin with peer reviews. 
You have probably been doing some form of review for as many years as you have been 
writing code: desk-checking your work or asking a colleague to look over a routine to ferret 
out any problems. Today, a software review is associated with several formal process steps 
to make it more effective, and we review any artifact of the development process, not just 
code. But the essence of a review remains the same: sharing a product with colleagues able 
to comment about its correctness. There are careful distinctions among three types of peer 
reviews: 

 Review: The artifact is presented informally to a team of reviewers; the goal is consensus 
and buy-in before development proceeds further. 

 Walk-through: The artifact is presented to the team by its creator, who leads and controls 
the discussion. Here, education is the goal, and the focus is on learning about a single 
document. 

 Inspection: This more formal process is a detailed analysis in which the artifact is checked 
against a prepared list of concerns. The creator does not lead the discussion, and the fault 
identification and correction are often controlled by statistical measurements. 
A wise engineer who finds a fault can deal with it in at least three ways: 
1. by learning how, when, and why errors occur 
2. by taking action to prevent mistakes 
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3. by scrutinizing products to find the instances and effects of errors that were missed 
Peer reviews address this problem directly. Unfortunately, many organizations give only lip 
service to peer review, and reviews are still not part of mainstream software engineering 
activities. 
But there are compelling reasons to do reviews. An overwhelming amount of evidence 
suggests that various types of peer review in software engineering can be extraordinarily 
effective. For example, early studies at Hewlett-Packard in the 1980s revealed that those 
developers performing peer review on their projects enjoyed a significant advantage over 
those relying only on traditional dynamic testing techniques, whether black box or white 
box. Figure 3-19 compares the fault discovery rate (that is, faults discovered per hour) 
among white-box testing, black-box testing, inspections, and software execution. It is clear 
that inspections discovered far more faults in the same period of time than other 
alternatives [GRA87]. This result is particularly compelling for large, secure systems, where 
live running for fault discovery may not be an option. 

 Figure 3-19. Fault Discovery Rate 
Reported at Hewlett-Packard. 
Researchers and practitioners have repeatedly shown the effectiveness of reviews. For 
instance, Jones [JON91] summarized the data in his large repository of project information 
to paint a picture of how reviews and inspections find faults relative to other discovery 
activities. Because products vary so wildly by size, Table 3-6 presents the fault discovery 
rates relative to the number of thousands of lines of code in the delivered product. 

Table 3-6. Faults Found During Discovery Activities. 
Discovery Activity   Faults Found (Per Thousand Lines of Code) 
Requirements review    2.5 
Design review     5.0 
Code inspection    10.0 
Integration test    3.0 
Acceptance test    2.0 
The inspection process involves several important steps: planning, individual preparation, a 
logging meeting, rework, and reinspection. Details about how to perform reviews and 
inspections can be found in software engineering books such as [PFL01] and [PFL06a]. 
During the review process, someone should keep careful track of what each reviewer 
discovers and how quickly he or she discovers it. This log suggests not only whether 
particular reviewers need training but also whether certain kinds of faults are harder to find 
than others. 
Additionally, a root cause analysis for each fault found may reveal that the fault could have 
been discovered earlier in the process. For example, a requirements fault that surfaces 
during a code review should probably have been found during a requirements review. If 
there are no requirements reviews, you can start performing them. If there are requirements 
reviews, you can examine why this fault was missed and then improve the requirements 
review process. 
The fault log can also be used to build a checklist of items to be sought in future reviews. 
The review team can use the checklist as a basis for questioning what can go wrong and 
where. 
In particular, the checklist can remind the team of security breaches, such as unchecked 
buffer overflows, that should be caught and fixed before the system is placed in the field. A 
rigorous design or code review can locate trapdoors, Trojan horses, salami attacks, worms, 
viruses, and other program flaws. A crafty programmer can conceal some of these flaws, but 
the chance of discovery rises when competent programmers review the design and code, 
especially when the components are small and encapsulated. Management should use 
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demanding reviews throughout development to ensure the ultimate security of the 
programs. 
Hazard Analysis 
Hazard analysis is a set of systematic techniques intended to expose potentially hazardous 
system states. In particular, it can help us expose security concerns and then identify 
prevention or mitigation strategies to address them. That is, hazard analysis ferrets out 
likely causes of problems so that we can then apply an appropriate technique for preventing 
the problem or softening its likely consequences. Thus, it usually involves developing 
hazard lists, as well as procedures for exploring "what if" scenarios to trigger consideration 
of nonobvious hazards. The sources of problems can be lurking in any artifacts of the 
development or maintenance process, not just in the code, so a hazard analysis must be 
broad in its domain of investigation; in other words, hazard analysis is a system issue, not 
just a code issue. 
Similarly, there are many kinds of problems, ranging from incorrect code to unclear 
consequences of a particular action. A good hazard analysis takes all of them into account. 
Although hazard analysis is generally good practice on any project, it is required in some 
regulated and critical application domains, and it can be invaluable for finding security 
flaws. It is never too early to be thinking about the sources of hazards; the analysis should 
begin when you first start thinking about building a new system or when someone proposes 
a significant upgrade to an existing system. Hazard analysis should continue throughout 
the system life cycle; you must identify potential hazards that can be introduced during 
system design, installation, operation, and maintenance. 
A variety of techniques support the identification and management of potential hazards. 
Among the most effective are hazard and operability studies (HAZOP), failure modes and 
effects analysis (FMEA), and fault tree analysis (FTA). HAZOP is a structured analysis 
technique originally developed for the process control and chemical plant industries. Over 
the last few years it has been adapted to discover potential hazards in safety-critical 
software systems. FMEA is a bottom-up technique applied at the system component level. A 
team identifies each component's possible faults or fault modes; the team then determines 
what could trigger the fault and what systemwide effects each fault might have. By keeping 
system consequences in mind, the team often finds possible system failures that are not 
made visible by other analytical means. FTA complements FMEA. It is a top-down technique 
that begins with a postulated hazardous system malfunction. Then, the FTA team works 
backward to identify the possible precursors to the mishap. By tracing back from a specific 
hazardous malfunction, the team can locate unexpected contributors to mishaps, and can 
then look for opportunities to mitigate the risks. 
Each of these techniques is clearly useful for finding and preventing security breaches. We 
decide which technique is most appropriate by understanding how much we know about 
causes and effects. For example, Table 3-7 suggests that when we know the cause and 
effect of a given problem, we can strengthen the description of how the system should  
behave. This clearer picture will help requirements analysts understand how a potential 
problem is linked to other requirements. It also helps designers understand exactly what 
the system should do and helps testers know how to test to verify that the system is 
behaving properly. If we can describe a known effect with unknown cause, we use deductive 
techniques such as fault tree analysis to help us understand the likely causes of the 
unwelcome behavior. Conversely, we may know the cause of a problem but not understand 
all the effects; here, we use inductive techniques such as failure modes and effects analysis 
to help us trace from cause to all possible effects. For example, suppose we know that a 
subsystem is unprotected and might lead to a security failure, but we do not know how that 
failure will affect the rest of the system. We can use FMEA to generate a list of possible 
effects and then evaluate the tradeoffs between extra protection and possible problems. 
Finally, to find problems about which we may not yet be aware, we can perform an 
exploratory analysis such as a hazard and operability study. 
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Table 3-7. Perspectives for Hazard Analysis (adapted from 
We see in Chapter 8 that hazard analysis is also useful for determining vulnerabilities and 
mapping them to suitable controls. 
Testing 
Testing is a process activity that homes in on product quality: making the product failure 
free or failure tolerant. Each software problem (especially when it relates to security) has 
the potential not only for making software fail but also for adversely affecting a business or 
a life. 
Thomas Young, head of NASA's investigation of the Mars lander failure, noted that "One of 
the things we kept in mind during the course of our review is that in the conduct of space 
missions, you get only one strike, not three. Even if thousands of functions are carried out 
flawlessly, just one mistake can be catastrophic to a mission" [NAS00]. This same sentiment 
is true for security: The failure of one control exposes a vulnerability that is not ameliorated 
by any number of functioning controls. Testers improve software quality by finding as many 
faults as possible and by writing up their findings carefully so that developers can locate 
the causes and repair the problems if possible. 
Do not ignore a point from Thompson [THO03]: Security testing is hard. Side effects, 
dependencies, unpredictable users, and flawed implementation bases (languages, 
compilers, infrastructure) all contribute to this difficulty. But the essential complication 
with security testing is that we cannot look at just the one behavior the program gets right; 
we also have to look for the hundreds of ways the program might go wrong. 
Testing usually involves several stages. First, each program component is tested on its own, 
isolated from the other components in the system. Such testing, known as module testing, 
component testing, or unit testing, verifies that the component functions properly with the 
types of input expected from a study of the component's design. Unit testing is done in a 
controlled environment whenever possible so that the test team can feed a predetermined 
set of data to the component being tested and observe what output actions and data are 
produced. In addition, the test team checks the internal data structures, logic, and 
boundary conditions for the input and output data. 
When collections of components have been subjected to unit testing, the next step is 
ensuring that the interfaces among the components are defined and handled properly. 
Indeed, process of verifying that the system components work together as described in the 
system and program design specifications. 
Once we are sure that information is passed among components in accordance with the 
design, we test the system to ensure that it has the desired functionality. A function test 
evaluates the system to determine whether the functions described by the requirements 
specification are actually performed by the integrated system. The result is a functioning 
system. The function test compares the system being built with the functions described in 
the developers' requirements specification. Then, a performance test compares the system 
with the remainder of these software and hardware requirements. It is during the function 
and performance tests that security requirements are examined, and the testers confirm 
that the system is as secure as it is required to be. 
When the performance test is complete, developers are certain that the system functions 
according to their understanding of the system description. The next step is conferring with 
the customer to make certain that the system works according to customer expectations. 
Developers join the customer to perform an acceptance test, in which the system is checked 
against the customer's requirements description. Upon completion of acceptance testing, 
the accepted system is installed in the environment in which it will be used. A final 
installation test is run to make sure that the system still functions as it should. However, 
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security requirements often state that a system should not do something. As Sidebar 3-7 
demonstrates, it is difficult to demonstrate absence rather than presence. 
The objective of unit and integration testing is to ensure that the code implemented the 
design properly; that is, that the programmers have written code to do what the designers 
intended. System testing has a very different objective: to ensure that the system does what 
the customer wants it to do. Regression testing, an aspect of system testing, is particularly 
important for security purposes. After a change is made to enhance the system or fix a 
problem, regression testing ensures that all remaining functions are still working and that 
performance has not been degraded by the change. 
Each of the types of tests listed here can be performed from two perspectives: black box and 
clear box (sometimes called white box). Black-box testing treats a system or its components 
as black boxes; testers cannot "see inside" the system, so they apply particular inputs and 
verify that they get the expected output. Clear-box testing allows visibility. Here, testers can 
examine the design and code directly, generating test cases based on the code's actual 
construction. Thus, clear-box testing knows that component X uses CASE statements and 
can look for instances in which the input causes control to drop through to an unexpected 
line. Black-box testing must rely more on the required inputs and outputs because the 
actual code is not available for scrutiny. 
The mix of techniques appropriate for testing a given system depends on the system's size, 
application domain, amount of risk, and many other factors. But understanding the 
effectiveness of each technique helps us know what is right for each particular system. For 
example, Olsen [OLS93] describes the development at Contel IPC of a system containing 
184,000 lines of code. He tracked faults discovered during various activities, and found 
differences: 

 17.3 percent of the faults were found during inspections of the system design 
 19.1 percent during component design inspection 
 15.1 percent during code inspection 
 29.4 percent during integration testing 
 16.6 percent during system and regression testing 

Only 0.1 percent of the faults were revealed after the system was placed in the field. Thus, 
Olsen's work shows the importance of using different techniques to uncover different kinds 
of faults during development; it is not enough to rely on a single method for catching all 
problems. 
Who does the testing? From a security standpoint, independent testing is highly desirable; 
it may prevent a developer from attempting to hide something in a routine or keep a 
subsystem from controlling the tests that will be applied to it. Thus, independent testing 
increases the likelihood that a test will expose the effect of a hidden feature. 
One type of testing is unique to computer security: penetration testing. In this form of 
testing, testers specifically try to make software fail. That is, instead of testing to see that 
software does do what it is expected to (as is the goal in the other types of testing we just 
listed), the testers try to see if the software does what it is not supposed to do, which is to 
fail or, more specifically, fail to enforce security. Because penetration testing usually applies 
to full systems, not individual applications, we study penetration testing in Chapter 5. 
Good Design 
We saw earlier in this chapter that modularity, information hiding, and encapsulation are 
characteristics of good design. Several design-related process activities are particularly 
helpful in building secure software: 

 using a philosophy of fault tolerance 
 having a consistent policy for handling failures 
 capturing the design rationale and history 
 using design patterns 

We describe each of these activities in turn. 
Designers should try to anticipate faults and handle them in ways that minimize disruption 
and maximize safety and security. Ideally, we want our system to be fault free. But in 
reality, we must assume that the system will fail, and we make sure that unexpected failure 
does not bring the system down, destroy data, or destroy life. For example, rather than 
waiting for the system to fail (called passive fault detection), we might construct the system 
so that it reacts in an acceptable way to a failure's occurrence. Active fault detection could 
be practiced by, for instance, adopting a philosophy of mutual suspicion. Instead of 
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assuming that data passed from other systems or components are correct, we can always 
check that the data are within bounds and of the right type or format. We can also use 
redundancy, comparing the results of two or more processes to see that they agree, before 
we use their result in a task. 
If correcting a fault is too risky, inconvenient, or expensive, we can choose instead to 
practice fault tolerance: isolating the damage caused by the fault and minimizing disruption 
to users. Although fault tolerance is not always thought of as a security technique, it 
supports the idea, discussed in Chapter 8, that our security policy allows us to choose to 
mitigate the effects of a security problem instead of preventing it. For example, rather than 
install expensive security controls, we may choose to accept the risk that important data 
may be corrupted. If in fact a security fault destroys important data, we may decide to 
isolate the damaged data set and automatically revert to a backup data set so that users 
can continue to perform system functions. 
More generally, we can design or code defensively, just as we drive defensively, by 
constructing a consistent policy for handling failures. Typically, failures include  failing to 
provide a service 

 providing the wrong service or data 
 corrupting data 

We can build into the design a particular way of handling each problem, selecting from one 
of three ways: 
1. Retrying: restoring the system to its previous state and performing the service again, 
using a different strategy 
2. Correcting: restoring the system to its previous state, correcting some system 
characteristic, and performing the service again, using the same strategy 
3. Reporting: restoring the system to its previous state, reporting the problem to an error-
handling component, and not providing the service again 
This consistency of design helps us check for security vulnerabilities; we look for instances 
that are different from the standard approach. 
Design rationales and history tell us the reasons the system is built one way instead of 
another. Such information helps us as the system evolves, so we can integrate the design of 
our security functions without compromising the integrity of the system's overall design. 
Moreover, the design history enables us to look for patterns, noting what designs work best 
in which situations. For example, we can reuse patterns that have been successful in 
preventing buffer overflows, in ensuring data integrity, or in implementing user password 
checks. 
Prediction 
Among the many kinds of prediction we do during software development, we try to predict 
the risks involved in building and using the system. As we see in depth in Chapter 8, we 
must postulate which unwelcome events might occur and then make plans to avoid them or 
at least mitigate their effects. Risk prediction and management are especially important for 
security, where we are always dealing with unwanted events that have negative 
consequences. Our predictions help us decide which controls to use and how many. For 
example, if we think the risk of a particular security breach is small, we may not want to 
invest a large amount of money, time, or effort in installing sophisticated controls. Or we 
may use the likely risk impact to justify using several controls at once, a technique called 
"defense in depth."  
Static Analysis 
Before a system is up and running, we can examine its design and code to locate and repair 
security flaws. We noted earlier that the peer review process involves this kind of scrutiny. 
But static analysis is more than peer review, and it is usually performed before peer review. 
We can use tools and techniques to examine the characteristics of design and code to see if 
the characteristics warn us of possible faults lurking within. For example, a large number of 
levels of nesting may indicate that the design or code is hard to read and understand, 
making it easy for a malicious developer to bury dangerous code deep within the system. To 
this end, we can examine several aspects of the design and code: 

 control flow structure 
 data flow structure 
 data structure 
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The control flow is the sequence in which instructions are executed, including iterations 
and loops. This aspect of design or code can also tell us how often a particular instruction 
or routine is executed. 
Data flow follows the trail of a data item as it is accessed and modified by the system. Many 
times, transactions applied to data are complex, and we use data flow measures to show us 
how and when each data item is written, read, and changed. 
The data structure is the way in which the data are organized, independent of the system 
itself. For instance, if the data are arranged as lists, stacks, or queues, the algorithms for 
manipulating them are likely to be well understood and well defined.  
There are many approaches to static analysis, especially because there are so many ways to 
create and document a design or program. Automated tools are available to generate not 
only numbers (such as depth of nesting or cyclomatic number) but also graphical depictions 
of control flow, data relationships, and the number of paths from one line of code to 
another. 
These aids can help us see how a flaw in one part of a system can affect other parts. 
Configuration Management 
When we develop software, it is important to know who is making which changes to what 
and when: 

 corrective changes: maintaining control of the system's day-to-day functions 
 adaptive changes: maintaining control over system modifications 
 perfective changes: perfecting existing acceptable functions 
 preventive changes: preventing system performance from degrading to unacceptable 

levels 
We want some degree of control over the software changes so that one change does not 
inadvertently undo the effect of a previous change. And we want to control what is often a 
proliferation of different versions and releases. For instance, a product might run on several 
different platforms or in several different environments, necessitating different code to 
support the same functionality. Configuration management is the process by which we 
control changes during development and maintenance, and it offers several advantages in 
security. In particular, configuration management scrutinizes new and changed code to 
ensure, among other things, that security flaws have not been inserted, intentionally or 
accidentally. 
Four activities are involved in configuration management: 
1. configuration identification 
2. configuration control and change management 
3. configuration auditing 
4. status accounting 
Configuration identification sets up baselines to which all other code will be compared after 
changes are made. That is, we build and document an inventory of all components that 
comprise the system. The inventory includes not only the code you and your colleagues may 
have created, but also database management systems, third-party software, libraries, test 
cases, documents, and more. Then, we "freeze" the baseline and carefully control what 
happens to it. When a change is proposed and made, it is described in terms of how the 
baseline changes. 
Configuration control and configuration management ensure we can coordinate separate, 
related versions. For example, there may be closely related versions of a system to execute 
on 16-bit and 32-bit processors. Three ways to control the changes are separate files, 
deltas, and conditional compilation. If we use separate files, we have different files for each 
release or version. For example, we might build an encryption system in two configurations: 
one that uses a short key length, to comply with the law in certain countries, and another 
that uses a long key. Then, version 1 may be composed of components A1 through Ak and 
B1, while version 2 is A1 through Ak and B2, where B1 and B2 do key length. That is, the 
versions are the same except for the separate key processing files. 
Alternatively, we can designate a particular version as the main version of a system and 
then define other versions in terms of what is different. The difference file, called a delta, 
contains editing commands to describe the ways to transform the main version into the 
variation. 
Finally, we can do conditional compilation, whereby a single code component addresses all 
versions, relying on the compiler to determine which statements to apply to which versions. 
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This approach seems appealing for security applications because all the code appears in 
one place. However, if the variations are very complex, the code may be very difficult to read 
and understand. 
Once a configuration management technique is chosen and applied, the system should be 
audited regularly. A configuration audit confirms that the baseline is complete and 
accurate, that changes are recorded, that recorded changes are made, and that the actual 
software (that is, the software as used in the field) is reflected accurately in the documents. 
Audits are usually done by independent parties taking one of two approaches: reviewing 
every entry in the baseline and comparing it with the software in use or sampling from a 
larger set just to confirm compliance. For systems with strict security constraints, the first 
approach is preferable, but the second approach may be more practical. 
Finally, status accounting records information about the components: where they came 
from (for instance, purchased, reused, or written from scratch), the current version, the 
change history, and pending change requests. 
All four sets of activities are performed by a configuration and change control board, or 
CCB. The CCB contains representatives from all organizations with a vested interest in the 
system, perhaps including customers, users, and developers. The board reviews all 
proposed changes and approves changes based on need, design integrity, future plans for 
the software, cost, and more. The developers implementing and testing the change work 
with a program librarian to control and update relevant documents and components; they 
also write detailed documentation about the changes and test results. 
Configuration management offers two advantages to those of us with security concerns: 
protecting against unintentional threats and guarding against malicious ones. Both goals 
are addressed when the configuration management processes protect the integrity of 
programs and documentation. Because changes occur only after explicit approval from a 
configuration management authority, all changes are also carefully evaluated for side 
effects. With configuration management, previous versions of programs are archived, so a 
developer can retract a faulty change when necessary. 
Malicious modification is made quite difficult with a strong review and configuration 
management process in place. In fact, as presented in Sidebar 3-8, poor configuration 
control has resulted in at least one system failure; that sidebar also confirms the principle 
of easiest penetration from Chapter 1. Once a reviewed program is accepted for inclusion in 
a system, the developer cannot sneak in to make small, subtle changes, such as inserting 
trapdoors. The developer has access to the running production program only through the 
CCB, whose members are alert to such security breaches. 
Lessons from Mistakes 
One of the easiest things we can do to enhance security is learn from our mistakes. As we 
design and build systems, we can document our decisionsnot only what we decided to do 
and why, but also what we decided not to do and why. Then, after the system is up and 
running, we can use information about the failures (and how we found and fixed the 
underlying faults) to give us a better understanding of what leads to vulnerabilities and 
their exploitation. 
From this information, we can build checklists and codify guidelines to help ourselves and 
others. That is, we do not have to make the same mistake twice, and we can assist other 
developers in staying away from the mistakes we made. The checklists and guidelines can 
be invaluable, especially during reviews and inspections, in helping reviewers look for 
typical or common mistakes that can lead to security flaws. For instance, a checklist can 
remind a designer or programmer to make sure that the system checks for buffer overflows. 
Similarly, the guidelines can tell a developer when data require password protection or 
some other type of restricted access. 
Proofs of Program Correctness 
A security specialist wants to be certain that a given program computes a particular result, 
computes it correctly, and does nothing beyond what it is supposed to do. Unfortunately, 
results in computer science theory (see [PFL85] for a description) indicate that we cannot 
know with certainty that two programs do exactly the same thing. That is, there can be no 
general decision procedure which, given any two programs, determines if the two are 
equivalent. This difficulty results from the "halting problem," which states that there is no 
general technique to determine whether an arbitrary program will halt when processing an 
arbitrary input. 
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In spite of this disappointing general result, a technique called program verification can 
demonstrate formally the "correctness" of certain specific programs. Program verification 
involves making initial assertions about the inputs and then checking to see if the desired 
output is generated. Each program statement is translated into a logical description about 
its contribution to the logical flow of the program. Finally, the terminal statement of the 
program is associated with the desired output. By applying a logic analyzer, we can prove 
that the initial assumptions, through the implications of the program statements, produce 
the terminal condition. In this way, we can show that a particular program achieves its 
goal.  
presents the case for appropriate use of formal proof techniques. We study an example of 
program verification in Chapter 5. 
Proving program correctness, although desirable and useful, is hindered by several factors. 
(For more details see [PFL94].) 

 Correctness proofs depend on a programmer or logician to translate a program's 
statements into logical implications. Just as programming is prone to errors, so also is this 
translation. 

 Deriving the correctness proof from the initial assertions and the implications of 
statements is difficult, and the logical engine to generate proofs runs slowly. The speed of 
the engine degrades as the size of the program increases, so proofs of correctness are even 
less appropriate for large programs. 

 The current state of program verification is less well developed than code production. 
large production systems. 
Program verification systems are being improved constantly. Larger programs are being 
verified in less time than before. As program verification continues to mature, it may 
become a more important control to ensure the security of programs. 
Programming Practice Conclusions 
None of the development controls described here can guarantee the security or quality of a 
system. As Brooks often points out [BRO87], the software development community seeks, 
but is not likely to find, a "silver bullet": a tool, technique, or method that will dramatically 
improve the quality of software developed. "There is no single development in either 
technology or management technique that by itself promises even one order-of-magnitude 
improvement in productivity, in reliability, in simplicity." He bases this conjecture on the 
fact that software is complex, it must conform to the infinite variety of human 
requirements, and it is abstract or invisible, leading to its being hard to draw or envision. 
While software development technologies design tools, process improvement models, 
development methodologies help the process, software development is inherently 
complicated and, therefore, prone to errors. This uncertainty does not mean that we should 
not seek ways to improve; we should. However, we should be realistic and accept that no 
technique is sure to prevent erroneous software. 
We should incorporate in our development practices those techniques that reduce 
uncertainty and reduce risk. At the same time, we should be skeptical of new technology, 
making sure each one can be shown to be reliable and effective. 
In the early 1970s, Paul Karger and Roger Schell led a team to evaluate the security of the 
Multics system for the U.S. Air Force. They republished their original report [KAR74] thirty 
years later with a thoughtful analysis of how the security of Multics compares to the 
security of current systems [KAR02]. Among their observations were that buffer overflows 
were almost impossible in Multics because of support from the programming language, and 
security was easier to ensure because of the simplicity and structure of the Multics design. 
Karger and Schell argue that we can and have designed and implemented systems with 
both functionality and security. 
Standards of Program Development 
No software development organization worth its salt allows its developers to produce code at 
any time in any manner. The good software development practices described earlier in this 
chapter have all been validated by many years of practice. Although none is Brooks's 
mythical "silver bullet" that guarantees program correctness, quality, or security, they all 
add demonstrably to the strength of programs. Thus, organizations prudently establish 
standards for how programs are developed. Even advocates of agile methods, which give 
developers an unusual degree of flexibility and autonomy, encourage goal-directed behavior 
based on past experience and past success. Standards and guidelines can capture wisdom 
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from previous projects and increase the likelihood that the resulting system will be correct. 
In addition, we want to ensure that the systems we build are reasonably easy to maintain 
and are compatible with the systems with which they interact. 
We can exercise some degree of administrative control over software development by 
considering several kinds of standards or guidelines: 

 standards of design, including using specified design tools, languages, or methodologies, 
using design diversity, and devising strategies for error handling and  fault tolerance 

 standards of documentation, language, and coding style, including layout of code on the 
page, choices of names of variables, and use of recognized program structures 

 standards of programming, including mandatory peer reviews, periodic code audits for 
correctness, and compliance with standards 

 standards of testing, such as using program verification techniques, archiving test results 
for future reference, using independent testers, evaluating test thoroughness, and 
encouraging test diversity 

 standards of configuration management, to control access to and changes of stable or 
completed program units 
Standardization improves the conditions under which all developers work by establishing a 
common framework so that no one developer is indispensable. It also allows carryover from 
one project to another; lessons learned on previous projects become available for use by all 
on the next project. Standards also assist in maintenance, since the maintenance team can 
find required information in a well-organized program. However, we must take care that the 
standards do not unnecessarily constrain the developers. 
Firms concerned about security and committed to following software development 
standards often perform security audits. In a security audit, an independent security 
evaluation team arrives unannounced to check each project's compliance with standards 
and guidelines. The team reviews requirements, designs, documentation, test data and 
plans, and code. Knowing that documents are routinely scrutinized, a developer is unlikely 
to put suspicious code in a component in the first place. 
Process Standards 
You have two friends. Sonya is extremely well organized, she keeps lists of things to do, she 
always knows where to find a tool or who has a particular book, and everything is done 
before it is needed. Dorrie, on the other hand, is a mess. She can never find her algebra 
book, her desk has so many piles of papers you cannot see the top, and she seems to deal 
with everything as a crisis because she tends to ignore things until the last minute. Who 
would you choose to organize and run a major social function, a new product launch, or a 
multiple-author paper? Most people would pick Sonya, concluding that her organization 
skills are crucial. There is no guarantee that Sonya would do a better job than Dorrie, but 
you might assume the chances are better with Sonya. 
We know that software development is difficult in part because it has inherently human 
aspects that are very difficult to judge in advance. Still, we may conclude that software built 
in an orderly manner has a better chance of being good or secure. 
The Software Engineering Institute developed the Capability Maturity Model (CMM) to 
assess organizations, not products (see [HUM88] and [PAU93]). The International Standards 
Organization (ISO) developed process standard ISO 9001 [ISO94], which is somewhat 
similar to the CMM (see [PAU95]). Finally the U.S. National Security Agency (NSA) developed 
the System Security Engineering CMM (SSE CMM, see [NSA95a]). All of these are process 
models, in that they examine how an organization does something, not what it does. Thus, 
they judge consistency, and many people extend consistency to quality. For views on that 
subject, see Bollinger and McGowan [BOL91] and Curtis [CUR87]. El Emam [ELE95] has 
also looked at the reliability of measuring a process. 
Now go back to the original descriptions of Sonya and Dorrie. Who would make the better 
developer? That question is tricky because many of us have friends like Dorrie who are 
fabulous programmers, but we may also know great programmers who resemble Sonya. 
And some successful teams have both. Order, structure, and consistency may lead to good 
software projects, but it is not sure to be the only way to go. 

Program Controls in General 
This section has explored how to control for faults during the program development 
process. 
Some controls apply to how a program is developed, and others establish restrictions on the 
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program's use. The best is a combination, the classic layered defense. 
Is one control essential? Can one control be skipped if another is used? Although these are 
valid questions, the security community does not have answers. Software development is 
both an art and a science. As a creative activity, it is subject not only to the variety of 
human minds, but also to the fallibility of humans. We cannot rigidly control the process 
and get the same results time after time, as we can with a machine. 
But creative humans can learn from their mistakes and shape their creations to account for 
fundamental principles. Just as a great painter will achieve harmony and balance in a 
painting, a good software developer who truly understands security will incorporate security 
into all phases of development. Thus, even if you never become a security professional, this 
exposure to the needs and shortcomings of security will influence many of your future 
actions.  
Unfortunately, many developers do not have the opportunity to become sensitive to security 
issues, which probably accounts for many of the unintentional security faults in today's 
programs. 

 

Unit 2 :  Operating System Security:  

Protected objects and methods of protection 

4.1. Protected Objects and Methods of Protection 
We begin by reviewing the history of protection in operating systems. This background 
helps us understand what kinds of things operating systems can protect and what methods 
are available for protecting them. (Readers who already have a good understanding of 
operating system capabilities may want to jump to Section 4.3.) 

A Bit of History 
Once upon a time, there were no operating systems: Users entered their programs directly 
into the machine in binary by means of switches. In many cases, program entry was done 
by physical manipulation of a toggle switch; in other cases, the entry was performed with a 
more complex electronic method, by means of an input device such as a keyboard. Because 
each user had exclusive use of the computing system, users were required to schedule 
blocks of time for running the machine. These users were responsible for loading their own 
libraries of support routinesassemblers, compilers, shared subprogramsand "cleaning up" 
after use by removing any sensitive code or data. 
The first operating systems were simple utilities, called executives, designed to assist 
individual programmers and to smooth the transition from one user to another. The early 
executives provided linkers and loaders for relocation, easy access to compilers and 
assemblers, and automatic loading of subprograms from libraries. The executives handled 
the tedious aspects of programmer support, focusing on a single programmer during 
execution. 
Operating systems took on a much broader role (and a different name) as the notion of 
multiprogramming was implemented. Realizing that two users could interleave access to the 
resources of a single computing system, researchers developed concepts such as 
scheduling, sharing, and parallel use. Multiprogrammed operating systems, also known as 
monitors, oversaw each program's execution. Monitors took an active role, whereas 
executives were passive. That is, an executive stayed in the background, waiting to be called 
into service by a requesting user. But a monitor actively asserted control of the computing 
system and gave resources to the user only when the request was consistent with general 
good use of the system. Similarly, the executive waited for a request and provided service on 
demand; the monitor maintained control over all resources, permitting or denying all 
computing and loaning resources to users as they needed them. 
Multiprogramming brought another important change to computing. When a single person 
was using a system, the only force to be protected against was the user himself or herself. A 
user making an error may have felt foolish, but one user could not adversely affect the 
computation of any other user. However, multiple users introduced more complexity and 
risk. 
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User A might rightly be angry if User B's programs or data had a negative effect on A's 
program's execution. Thus, protecting one user's programs and data from other users' 
programs became an important issue in multiprogrammed operating systems. 

Protected Objects 
In fact, the rise of multiprogramming meant that several aspects of a computing system 
required protection: 

 memory 
 sharable I/O devices, such as disks 
 serially reusable I/O devices, such as printers and tape drives 
 sharable programs and subprocedures 
 networks 
 sharable data 

As it assumed responsibility for controlled sharing, the operating system had to protect 
these objects. In the following sections, we look at some of the mechanisms with which 
operating systems have enforced these objects' protection. Many operating system 
protection mechanisms have been supported by hardware. But, as noted in Sidebar 4-1, 
that approach is not always possible. 

Security Methods of Operating Systems 
The basis of protection is separation: keeping one user's objects separate from other users. 
Rushby and Randell [RUS83] note that separation in an operating system can occur in 
several ways: 

 physical separation, in which different processes use different physical objects, such as 
separate printers for output requiring different levels of security 

 temporal separation, in which processes having different security requirements are 
executed at different times 

 logical separation, in which users operate under the illusion that no other processes exist, 
as when an operating system constrains a program's accesses so that the program cannot 
access objects outside its permitted domain 

 cryptographic separation, in which processes conceal their data and computations in 
such a way that they are unintelligible to outside processes 
Of course, combinations of two or more of these forms of separation are also possible. The 
categories of separation are listed roughly in increasing order of complexity to implement, 
and, for the first three, in decreasing order of the security provided. However, the first two 
approaches are very stringent and can lead to poor resource utilization. Therefore, we would 
like to shift the burden of protection to the operating system to allow concurrent execution 
of processes having different security needs. 
But separation is only half the answer. We want to separate users and their objects, but we 
also want to be able to provide sharing for some of those objects. For example, two users 
with different security levels may want to invoke the same search algorithm or function call. 
We would like the users to be able to share the algorithms and functions without 
compromising their individual security needs. An operating system can support separation 
and sharing in several ways, offering protection at any of several levels. 

 Do not protect. Operating systems with no protection are appropriate when sensitive 
procedures are being run at separate times. 

 Isolate. When an operating system provides isolation, different processes running 
concurrently are unaware of the presence of each other. Each process has its own address 
space, files, and other objects. The operating system must confine each process somehow 
so that the objects of the other processes are completely concealed. 

 Share all or share nothing. With this form of protection, the owner of an object declares it 
to be public or private. A public object is available to all users, whereas a private object is 
available only to its owner. 

 Share via access limitation. With protection by access limitation, the operating system 
checks the allowability of each user's potential access to an object. That is, access control is 
implemented for a specific user and a specific object. Lists of acceptable actions guide the 
operating system in determining whether a particular user should have access to a 
particular object. In some sense, the operating system acts as a guard between users and 
objects, ensuring that only authorized accesses occur.  
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 Share by capabilities. An extension of limited access sharing, this form of protection 
allows dynamic creation of sharing rights for objects. The degree of sharing can depend on 
the owner or the subject, on the context of the computation, or on the object itself. 

 Limit use of an object. This form of protection limits not just the access to an object but 
the use made of that object after it has been accessed. For example, a user may be allowed 
to view a sensitive document, but not to print a copy of it. More powerfully, a user may be 
allowed access to data in a database to derive statistical summaries (such as average salary 
at a particular grade level), but not to determine specific data values (salaries of 
individuals). 
Again, these modes of sharing are arranged in increasing order of difficulty to implement, 
but also in increasing order of fineness of protection they provide. A given operating system 
may provide different levels of protection for different objects, users, or situations. 
When we think about data, we realize that access can be controlled at various levels: the 
bit, the byte, the element or word, the field, the record, the file, or the volume. Thus, the 
granularity of control concerns us. The larger the level of object controlled, the easier it is to 
implement access control. However, sometimes the operating system must allow access to 
more than the user needs. For example, with large objects, a user needing access only to 
part of an object (such as a single record in a file) must be given access to the entire object 
(the whole file). 
Let us examine in more detail several different kinds of objects and their specific kinds of 
protection. 

Memory address protection 

4.2. Memory and Address Protection 
The most obvious problem of multiprogramming is preventing one program from affecting 
the data and programs in the memory space of other users. Fortunately, protection can be 
built into the hardware mechanisms that control efficient use of memory, so solid protection 
can be provided at essentially no additional cost. 

Fence 
The simplest form of memory protection was introduced in single-user operating systems to 
prevent a faulty user program from destroying part of the resident portion of the operating 
system. As its name implies, a fence is a method to confine users to one side of a boundary. 
In one implementation, the fence was a predefined memory address, enabling the operating 
system to reside on one side and the user to stay on the other. An example of this situation 
is shown in Figure 4-1. Unfortunately, this kind of implementation was very restrictive 
because a predefined amount of space was always reserved for the operating system, 
whether it was needed or not. If less than the predefined space was required, the excess 
space was wasted. 
Conversely, if the operating system needed more space, it could not grow beyond the fence 
boundary. 

Figure 4-1. Fixed Fence. 
Another implementation used a hardware register, often called a fence register, containing 
the address of the end of the operating system. In contrast to a fixed fence, in this scheme 
the location of the fence could be changed. Each time a user program generated an address 
for data modification, the address was automatically compared with the fence address. If 
the address was greater than the fence address (that is, in the user area), the instruction 
was executed; if it was less than the fence address (that is, in the operating system area), 
an error condition was raised. The use of fence registers is shown in Figure 4-2. 

Figure 4-2. Variable Fence Register. 
A fence register protects only in one direction. In other words, an operating system can be 
protected from a single user, but the fence cannot protect one user from another user. 
Similarly, a user cannot identify certain areas of the program as inviolable (such as the code 
of the program itself or a read-only data area). 

Relocation 
If the operating system can be assumed to be of a fixed size, programmers can write their 
code assuming that the program begins at a constant address. This feature of the operating 
system makes it easy to determine the address of any object in the program. However, it 
also makes it essentially impossible to change the starting address if, for example, a new 
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version of the operating system is larger or smaller than the old. If the size of the operating 
system is allowed to change, then programs must be written in a way that does not depend 
on placement at a specific location in memory. 
Relocation is the process of taking a program written as if it began at address 0 and 
changing all addresses to reflect the actual address at which the program is located in 
memory. In many instances, this effort merely entails adding a constant relocation factor to 
each address of the program. That is, the relocation factor is the starting address of the 
memory assigned for the program. 
Conveniently, the fence register can be used in this situation to provide an important extra 
benefit: The fence register can be a hardware relocation device. The contents of the fence 
register are added to each program address. This action both relocates the address and 
guarantees that no one can access a location lower than the fence address. (Addresses are 
treated as unsigned integers, so adding the value in the fence register to any number is 
guaranteed to produce a result at or above the fence address.) Special instructions can be 
added for the few times when a program legitimately intends to access a location of the 
operating system. 

Base/Bounds Registers 
A major advantage of an operating system with fence registers is the ability to relocate; this 
characteristic is especially important in a multiuser environment. With two or more users, 
none can know in advance where a program will be loaded for execution. The relocation 
register solves the problem by providing a base or starting address. All addresses inside a 
program are offsets from that base address. A variable fence register is generally known as 
a base register. 
Fence registers provide a lower bound (a starting address) but not an upper one. An upper 
bound can be useful in knowing how much space is allotted and in checking for overflows 
into "forbidden" areas. To overcome this difficulty, a second register is often added, as 
shown in Figure 4-3. The second register, called a bounds register, is an upper address 
limit, in the same way that a base or fence register is a lower address limit. Each program 
address is forced to be above the base address because the contents of the base register are 
added to the address; each address is also checked to ensure that it is below the bounds 
address. In this way, a program's addresses are neatly confined to the space between the 
base and the bounds registers. 

Figure 4-3. Pair of Base/Bounds Registers. 
This technique protects a program's addresses from modification by another user. When 
execution changes from one user's program to another's, the operating system must change 
the contents of the base and bounds registers to reflect the true address space for that 
user. 
This change is part of the general preparation, called a context switch, that the operating 
system must perform when transferring control from one user to another. With a pair of 
base/bounds registers, a user is perfectly protected from outside users, or, more correctly, 
outside users are protected from errors in any other user's program. Erroneous addresses 
inside a user's address space can still affect that program because the base/bounds 
checking guarantees only that each address is inside the user's address space. For 
example, a user error might occur when a subscript is out of range or an undefined variable 
generates an address reference within the user's space but, unfortunately, inside the 
executable instructions of the user's program. In this manner, a user can accidentally store 
data on top of instructions. Such an error can let a user inadvertently destroy a program, 
but (fortunately) only the user's own program. 
We can solve this overwriting problem by using another pair of base/bounds registers, one 
for the instructions (code) of the program and a second for the data space. Then, only 
instruction fetches (instructions to be executed) are relocated and checked with the first 
register pair, and only data accesses (operands of instructions) are relocated and checked 
with the second register pair. The use of two pairs of base/bounds registers is shown in 
Figure 4-4.  
Although two pairs of registers do not prevent all program errors, they limit the effect of 
data-manipulating instructions to the data space. The pairs of registers offer another more 
important advantage: the ability to split a program into two pieces that can be relocated 
separately. 
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Figure 4-4. Two Pairs of Base/Bounds Registers. 
These two features seem to call for the use of three or more pairs of registers: one for code, 
one for read-only data, and one for modifiable data values. Although in theory this concept 
can be extended, two pairs of registers are the limit for practical computer design. For each 
additional pair of registers (beyond two), something in the machine code of each instruction 
must indicate which relocation pair is to be used to address the instruction's operands. 
That is, with more than two pairs, each instruction specifies one of two or more data 
spaces. But with only two pairs, the decision can be automatic: instructions with one pair, 
data with the other. 

Tagged Architecture 
Another problem with using base/bounds registers for protection or relocation is their 
contiguous nature. Each pair of registers confines accesses to a consecutive range of 
addresses. A compiler or loader can easily rearrange a program so that all code sections are 
adjacent and all data sections are adjacent. 
However, in some cases you may want to protect some data values but not all. For example, 
a personnel record may require protecting the field for salary but not office location and 
phone number. Moreover, a programmer 1may want to ensure the integrity of certain data 
values by allowing them to be written when the program is initialized but prohibiting the 
program from modifying them later. This scheme protects against errors in the 
programmer's own code. A programmer may also want to invoke a shared subprogram from 
a common library. We can address some of these issues by using good design, both in the 
operating system and in the other programs being run. Recall that in Chapter 3 we studied 
good design characteristics such as information hiding and modularity in program design. 
These characteristics dictate that one program module must share with another module 
only the minimum amount of data necessary for both of them to do their work. 
Additional, operating-system-specific design features can help, too. Base/bounds registers 
create an all-or-nothing situation for sharing: Either a program makes all its data available 
to be accessed and modified or it prohibits access to all. Even if there were a third set of 
registers for shared data, all data would need to be located together. A procedure could not 
effectively share data items A, B, and C with one module, A, C, and D with a second, and A, 
B, and D with a third. The only way to accomplish the kind of sharing we want would be to 
move each appropriate set of data values to some contiguous space. However, this solution 
would not be acceptable if the data items were large records, arrays, or structures. 
An alternative is tagged architecture, in which every word of machine memory has one or 
more extra bits to identify the access rights to that word. These access bits can be set only 
by privileged (operating system) instructions. The bits are tested every time an instruction 
accesses that location. 
For example, as shown in Figure 4-5, one memory location may be protected as execute-
only (for example, the object code of instructions), whereas another is protected for fetch-
only (for example, read) data access, and another accessible for modification (for example, 
write). 
In this way, two adjacent locations can have different access rights. Furthermore, with a few 
extra tag bits, different classes of data (numeric, character, address or pointer, and 
undefined) can be separated, and data fields can be protected for privileged (operating 
system) access only. 

Figure 4-5. Example of Tagged Architecture 
This protection technique has been used on a few systems, although the number of tag bits 
has been rather small. The Burroughs B6500-7500 system used three tag bits to separate 
data words (three types), descriptors (pointers), and control words (stack pointers and 
addressing control words). The IBM System/38 used a tag to control both integrity and 
access. 
A variation used one tag that applied to a group of consecutive locations, such as 128 or 
256 bytes. With one tag for a block of addresses, the added cost for implementing tags was 
not as high as with one tag per location. The Intel I960 extended architecture processor 
used a tagged architecture with a bit on each memory word that marked the word as a 
"capability," not as an ordinary location for data or instructions. A capability controlled 
access to a variable-sized memory block or segment. This large number of possible tag 



77 
 

values supported memory segments that ranged in size from 64 to 4 billion bytes, with a 
potential 2256 different protection domains. 
Compatibility of code presented a problem with the acceptance of a tagged architecture. A 
tagged architecture may not be as useful as more modern approaches, as we see shortly. 
Some of the major computer vendors are still working with operating systems that were 
designed and implemented many years ago for architectures of that era. Indeed, most 
manufacturers are locked into a more conventional memory architecture because of the 
wide availability of components and a desire to maintain compatibility among operating 
systems and machine families. A tagged architecture would require fundamental changes to 
substantially all the operating system code, a requirement that can be prohibitively 
expensive. But as the price of memory continues to fall, the implementation of a tagged 
architecture becomes more feasible. 

Segmentation 
We present two more approaches to protection, each of which can be implemented on top of 
a conventional machine structure, suggesting a better chance of acceptance. Although 
these approaches are ancient by computing's standardsthey were designed between 1965 
and 1975they have been implemented on many machines since then. Furthermore, they 
offer important advantages in addressing, with memory protection being a delightful bonus. 
The first of these two approaches, segmentation, involves the simple notion of dividing a 
program into separate pieces. Each piece has a logical unity, exhibiting a relationship 
among all of its code or data values. For example, a segment may be the code of a single 
procedure, the data of an array, or the collection of all local data values used by a particular 
module. Segmentation was developed as a feasible means to produce the effect of the 
equivalent of an unbounded number of base/bounds registers. In other words, 
segmentation allows a program to be divided into many pieces having different access 
rights. Each segment has a unique name. A code or data item within a segment is 
addressed as the pair <name, offset>, where name is the name of the segment containing 
the data item and offset is its location within the segment (that is, its distance from the 
start of the segment). 
Logically, the programmer pictures a program as a long collection of segments. Segments 
can be separately relocated, allowing any segment to be placed in any available memory 
locations. 
The relationship between a logical segment and its true memory position is shown in Figure 
4-6. 

Figure 4-6. Logical and Physical Representation of Segments. 
The operating system must maintain a table of segment names and their true addresses in 
memory. When a program generates an address of the form <name, offset>, the operating 
system looks up name in the segment directory and determines its real beginning memory 
address. To that address the operating system adds offset, giving the true memory address 
of the code or data item. This translation is shown in Figure 4-7. For efficiency there is 
usually one operating system segment address table for each process in execution. Two 
processes that need to share access to a single segment would have the same segment 
name and address in their segment tables. 

Figure 4-7. Translation of Segment Address. 
Thus, a user's program does not know what true memory addresses it uses. It has no way 
and no needto determine the actual address associated with a particular <name, offset>. 
The <name, offset> pair is adequate to access any data or instruction to which a program 
should have access. 
This hiding of addresses has three advantages for the operating system. 

 The operating system can place any segment at any location or move any segment to any 
location, even after the program begins to execute. Because it translates all address 
references by a segment address table, the operating system needs only update the address 
in that one table when a segment is moved. 

 A segment can be removed from main memory (and stored on an auxiliary device) if it is 
not being used currently. 

 Every address reference passes through the operating system, so there is an opportunity 
to check each one for protection. 



78 
 

Because of this last characteristic, a process can access a segment only if that segment 
appears in that process's segment translation table. The operating system controls which 
programs have entries for a particular segment in their segment address tables. This 
control provides strong protection of segments from access by unpermitted processes. For 
example, program A might have access to segments BLUE and GREEN of user X but not to 
other segments of that user or of any other user. In a straightforward way we can allow a 
user to have different protection classes for different segments of a program. For example, 
one segment might be read-only data, a second might be execute-only code, and a third 
might be writeable data. In a situation like this one, segmentation can approximate the goal 
of separate protection of different pieces of a program, as outlined in the previous section on 
tagged architecture. 
Segmentation offers these security benefits: 

 Each address reference is checked for protection. 
 Many different classes of data items can be assigned different levels of protection. 
 Two or more users can share access to a segment, with potentially different access rights. 
 A user cannot generate an address or access to an unpermitted segment. 

One protection difficulty inherent in segmentation concerns segment size. Each segment 
has a particular size. However, a program can generate a reference to a valid segment name, 
but with an offset beyond the end of the segment. For example, reference <A,9999> looks 
perfectly valid, but in reality segment A may be only 200 bytes long. If left unplugged, this 
security hole could allow a program to access any memory address beyond the end of a 
segment just by using large values of offset in an address. 
This problem cannot be stopped during compilation or even when a program is loaded, 
because effective use of segments requires that they be allowed to grow in size during 
execution. For example, a segment might contain a dynamic data structure such as a stack. 
Therefore, secure implementation of segmentation requires checking a generated address to 
verify that it is not beyond the current end of the segment referenced. Although this 
checking results in extra expense (in terms of time and resources), segmentation systems 
must perform this check; the segmentation process must maintain the current segment 
length in the translation table and compare every address generated. 
Thus, we need to balance protection with efficiency, finding ways to keep segmentation as 
efficient as possible. However, efficient implementation of segmentation presents two 
problems: Segment names are inconvenient to encode in instructions, and the operating 
system's lookup of the name in a table can be slow. To overcome these difficulties, segment 
names are often converted to numbers by the compiler when a program is translated; the 
compiler also appends a linkage table matching numbers to true segment names. 
Unfortunately, this scheme presents an implementation difficulty when two procedures 
need to share the same segment because the assigned segment numbers of data accessed 
by that segment must be the same. 

Paging 
One alternative to segmentation is paging. The program is divided into equal-sized pieces 
called pages, and memory is divided into equal-sized units called page frames. (For 
implementation reasons, the page size is usually chosen to be a power of two between 512 
and 4096 bytes.) As with segmentation, each address in a paging scheme is a two-part 
object, this time consisting of <page, offset>. 
Each address is again translated by a process similar to that of segmentation: The 
operating system maintains a table of user page numbers and their true addresses in 
memory. The page portion of every <page, offset> reference is converted to a page frame 
address by a table lookup; the offset portion is added to the page frame address to produce 
the real memory address of the object referred to as <page, offset>. This process is 
illustrated in Figure 4-8. 

Figure 4-8. Page Address Translation. 
Unlike segmentation, all pages in the paging approach are of the same fixed size, so 
fragmentation is not a problem. Each page can fit in any available page in memory, and 
thus there is no problem of addressing beyond the end of a page. The binary form of a 
<page, 
offset> address is designed so that the offset values fill a range of bits in the address. 
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Therefore, an offset beyond the end of a particular page results in a carry into the page 
portion of the address, which changes the address. 
To see how this idea works, consider a page size of 1024 bytes (1024 = 210), where 10 bits 
are allocated for the offset portion of each address. A program cannot generate an offset 
value larger than 1023 in 10 bits. Moving to the next location after <x,1023> causes a carry 
into the page portion, thereby moving translation to the next page. During the translation, 
the paging process checks to verify that a <page, offset>reference does not exceed the 
maximum number of pages the process has defined. 
With a segmentation approach, a programmer must be conscious of segments. However, a 
programmer is oblivious to page boundaries when using a paging-based operating system. 
Moreover, with paging there is no logical unity to a page; a page is simply the next 2n bytes 
of the program. Thus, a change to a program, such as the addition of one instruction, 
pushes all subsequent instructions to lower addresses and moves a few bytes from the end 
of each page to the start of the next. This shift is not something about which the 
programmer need be concerned because the entire mechanism of paging and address 
translation is hidden from the programmer. 
However, when we consider protection, this shift is a serious problem. Because segments 
are logical units, we can associate different segments with individual protection rights, such 
as read-only or execute-only. The shifting can be handled efficiently during address 
translation. 
But with paging there is no necessary unity to the items on a page, so there is no way to 
establish that all values on a page should be protected at the same level, such as read-only 
or execute-only. 

Combined Paging with Segmentation 
We have seen how paging offers implementation efficiency, while segmentation offers logical 
protection characteristics. Since each approach has drawbacks as well as desirable 
features, the two approaches have been combined. 
The IBM 390 family of mainframe systems used a form of paged segmentation. Similarly, 
the Multics operating system (implemented on a GE-645 machine) applied paging on top of 
segmentation. In both cases, the programmer could divide a program into logical segments. 
Each segment was then broken into fixed-size pages. In Multics, the segment name portion 
of an address was an 18-bit number with a 16-bit offset. The addresses were then broken 
into 1024-byte pages. The translation process is shown in Figure 4-9. This approach 
retained the logical unity of a segment and permitted differentiated protection for the 
segments, but it added an additional layer of translation for each address. Additional 
hardware improved the efficiency of the implementation. 

Figure 4-9. Paged Segmentation. 
Control of access to general objects 

4.3. Control of Access to General Objects 
Protecting memory is a specific case of the more general problem of protecting objects. As 
multiprogramming has developed, the numbers and kinds of objects shared have also 
increased. Here are some examples of the kinds of objects for which protection is desirable: 

 memory 
 a file or data set on an auxiliary storage device 
 an executing program in memory 
 a directory of files 
 a hardware device 
 a data structure, such as a stack 
 a table of the operating system 
 instructions, especially privileged instructions 
 passwords and the user authentication mechanism 
 the protection mechanism itself 

The memory protection mechanism can be fairly simple because every memory access is 
guaranteed to go through certain points in the hardware. With more general objects, the 
number of points of access may be larger, a central authority through which all accesses 
pass may be lacking, and the kind of access may not simply be limited to read, write, or 
execute. 
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Furthermore, all accesses to memory occur through a program, so we can refer to the 
program or the programmer as the accessing agent. In this book, we use terms like the user 
or the subject in describing an access to a general object. This user or subject could be a 
person who uses a computing system, a programmer, a program, another object, or 
something else that seeks to use an object. 
There are several complementary goals in protecting objects. 

 Check every access. We may want to revoke a user's privilege to access an object. If we 
have previously authorized the user to access the object, we do not necessarily intend that 
the user should retain indefinite access to the object. In fact, in some situations, we may 
want to prevent further access immediately after we revoke authorization. For this reason, 
every access by a user to an object should be checked. 

 Enforce least privilege. The principle of least privilege states that a subject should have 
access to the smallest number of objects necessary to perform some task. Even if extra 
information would be useless or harmless if the subject were to have access, the subject 
should not have that additional access. For example, a program should not have access to 
the absolute memory address to which a page number reference translates, even though the 
program could not use that address in any effective way. 
Not allowing access to unnecessary objects guards against security weaknesses if a part of 
the protection mechanism should fail. 

 Verify acceptable usage. Ability to access is a yes-or-no decision. But it is equally 
important to check that the activity to be performed on an object is appropriate. For 
example, a data structure such as a stack has certain acceptable operations, including 
push, pop, clear, and so on. We may want not only to control who or what has access to a 
stack but also to be assured that the accesses performed are legitimate stack accesses. 
In the next section we consider protection mechanisms appropriate for general objects of 
unspecified types, such as the kinds of objects listed above. To make the explanations 
easier to understand, we sometimes use an example of a specific object, such as a file. Note, 
however, that a general mechanism can be used to protect any of the types of objects listed. 

Directory 
One simple way to protect an object is to use a mechanism that works like a file directory. 
Imagine we are trying to protect files (the set of objects) from users of a computing system 
(the set of subjects). Every file has a unique owner who possesses "control" access rights 
(including the rights to declare who has what access) and to revoke access to any person at 
any time. Each user has a file directory, which lists all the files to which that user has 
access. 
Clearly, no user can be allowed to write in the file directory because that would be a way to 
forge access to a file. Therefore, the operating system must maintain all file directories, 
under commands from the owners of files. The obvious rights to files are the common read, 
write, and execute familiar on many shared systems. Furthermore, another right, owner, is 
possessed by the owner, permitting that user to grant and revoke access rights. Figure 4-10 
shows an example of a file directory. 

Figure 4-10. Directory Access. 
This approach is easy to implement because it uses one list per user, naming all the objects 
that user is allowed to access. However, several difficulties can arise. First, the list becomes 
too large if many shared objects, such as libraries of subprograms or a common table of 
users, are accessible to all users. The directory of each user must have one entry for each 
such shared object, even if the user has no intention of accessing the object. Deletion must 
be reflected in all directories. (See Sidebar 4-2 for a different issue concerning deletion of 
objects.) 
A second difficulty is revocation of access. If owner A has passed to user B the right to read 
file F, an entry for F is made in the directory for B. This granting of access implies a level of 
trust between A and B. If A later questions that trust, A may want to revoke the access right 
of B. The operating system can respond easily to the single request to delete the right of B to 
access F because that action involves deleting one entry from a specific directory. But if A 
wants to remove the rights of everyone to access F, the operating system must search each 
individual directory for the entry F, an activity that can be time consuming on a large 
system. 
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For example, large timesharing systems or networks of smaller systems can easily have 
5,000 to 10,000 active accounts. Moreover, B may have passed the access right for F to 
another user, so A may not know that F's access exists and should be revoked. This 
problem is particularly serious in a network. 
A third difficulty involves pseudonyms. Owners A and B may have two different files named 
F, and they may both want to allow access by S. Clearly, the directory for S cannot contain 
two entries under the same name for different files. Therefore, S has to be able to uniquely 
identify the F for A (or B). One approach is to include the original owner's designation as if it  
were part of the file name, with a notation such as A:F (or B:F). 
Suppose, however, that S has trouble remembering file contents from the name F. Another 
approach is to allow S to name F with any name unique to the directory of S. Then, F from A 
could be called Q to S. As shown in Figure 4-11, S may have forgotten that Q is F from A, 
and so S requests access again from A for F. But by now A may have more trust in S, so A 
transfers F with greater rights than before. This action opens up the possibility that one 
subject, S, may have two distinct sets of access rights to F, one under the name Q and one 
under the name F. In this way, allowing pseudonyms leads to multiple permissions that are 
not necessarily consistent. Thus, the directory approach is probably too simple for most 
object protection situations. 

Figure 4-11. Alternative Access Paths. 

Access Control List 
An alternative representation is the access control list. There is one such list for each 
object, and the list shows all subjects who should have access to the object and what their 
access is. This approach differs from the directory list because there is one access control 
list per object; a directory is created for each subject. Although this difference seems small, 
there are some significant advantages. 
To see how, consider subjects A and S, both of whom have access to object F. The operating 
system will maintain just one access list for F, showing the access rights for A and S, as 
shown in Figure 4-12. The access control list can include general default entries for any 
users. 
In this way, specific users can have explicit rights, and all other users can have a default 
set of rights. With this organization, a public file or program can be shared by all possible 
users of the system without the need for an entry for the object in the individual directory of 
each user. 

Figure 4-12. Access Control List. 
The Multics operating system used a form of access control list in which each user belonged 
to three protection classes: a user, a group, and a compartment. The user designation 
identified a specific subject, and the group designation brought together subjects who had a 
common interest, such as coworkers on a project. The compartment confined an untrusted 
object; a program executing in one compartment could not access objects in another 
compartment without specific permission. The compartment was also a way to collect 
objects that were related, such as all files for a single project. 
To see how this type of protection might work, suppose every user who initiates access to 
the system identifies a group and a compartment with which to work. If Adams logs in as 
user Adams in group Decl and compartment Art2, only objects having Adams-Decl-Art2 in 
the access control list are accessible in the session. 
By itself, this kind of mechanism would be too restrictive to be usable. Adams cannot create 
general files to be used in any session. Worse yet, shared objects would have not only to list 
Adams as a legitimate subject but also to list Adams under all acceptable groups and all 
acceptable compartments for each group. 
The solution is the use of wild cards, meaning placeholders that designate "any user" (or 
"any group" or "any compartment"). An access control list might specify access by Adams-
Decl-Art1, giving specific rights to Adams if working in group Decl on compartment Art1 . 
The list might also specify Adams-*-Art1, meaning that Adams can access the object from 
any group in compartment Art1. Likewise, a notation of *-Decl-* would mean "any user in 
group Decl in any compartment." Different placements of the wildcard notation * have the 
obvious interpretations. 
The access control list can be maintained in sorted order, with * sorted as coming after all 
specific names. For example, Adams-Decl-* would come after all specific compartment 
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designations for Adams. The search for access permission continues just until the first 
match. 
In the protocol, all explicit designations are checked before wild cards in any position, so a 
specific access right would take precedence over a wildcard right. The last entry on an 
access list could be *-*-*, specifying rights allowable to any user not explicitly on the access 
list. By using this wildcard device, a shared public object can have a very short access list, 
explicitly naming the few subjects that should have access rights different from the default. 

Access Control Matrix 
We can think of the directory as a listing of objects accessible by a single subject, and the 
access list as a table identifying subjects that can access a single object. The data in these 
two representations are equivalent, the distinction being the ease of use in given situations. 
As an alternative, we can use an access control matrix, a table in which each row 
represents a subject, each column represents an object, and each entry is the set of access 
rights for that subject to that object. An example representation of an access control matrix 
is shown in Table 4-1. In general, the access control matrix is sparse (meaning that most 
cells are empty): Most subjects do not have access rights to most objects. The access matrix 
can be represented as a list of triples, having the form <subject, object, rights>. Searching a 
large number of these triples is inefficient enough that this implementation is seldom used. 

Table 4-1. Access Control Matrix. 

 
Capability 
So far, we have examined protection schemes in which the operating system must keep 
track of all the protection objects and rights. But other approaches put some of the burden 
on the user. For example, a user may be required to have a ticket or pass that enables 
access, much like a ticket or identification card that cannot be duplicated. More formally, 
we say that a capability is an unforgeable token that gives the possessor certain rights to an 
object. The Multics [SAL74], CAL [LAM76], and Hydra [WUL74] systems used capabilities for 
access control. In theory, a subject can create new objects and can specify the operations 
allowed on those objects. For example, users can create objects, such as files, data 
segments, or subprocesses, and can also specify the acceptable kinds of operations, such as 
read, write, and execute. But a user can also create completely new objects, such as new 
data structures, and can define types of accesses previously unknown to the system. 
A capability is a ticket giving permission to a subject to have a certain type of access to an 
object. For the capability to offer solid protection, the ticket must be unforgeable. One way 
to make it unforgeable is to not give the ticket directly to the user. Instead, the operating 
system holds all tickets on behalf of the users. The operating system returns to the user a 
pointer to an operating system data structure, which also links to the user. A capability can 
be created only by a specific request from a user to the operating system. Each capability 
also identifies the allowable accesses. 
Alternatively, capabilities can be encrypted under a key available only to the access control 
mechanism. If the encrypted capability contains the identity of its rightful owner, user A 
cannot copy the capability and give it to user B. 
One possible access right to an object is transfer or propagate. A subject having this right 
can pass copies of capabilities to other subjects. In turn, each of these capabilities also has 
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a list of permitted types of accesses, one of which might also be transfer. In this instance, 
process A can pass a copy of a capability to B, who can then pass a copy to C. B can 
prevent further distribution of the capability (and therefore prevent further dissemination of 
the access right) by omitting the transfer right from the rights passed in the capability to C. 
B might still pass certain access rights to C, but not the right to propagate access rights to 
other subjects. 
As a process executes, it operates in a domain or local name space. The domain is the 
collection of objects to which the process has access. A domain for a user at a given time 
might include some programs, files, data segments, and I/O devices such as a printer and a 
terminal. An example of a domain is shown in Figure 4-13. 

Figure 4-13. Process Execution Domain. 
As execution continues, the process may call a subprocedure, passing some of the objects 
to which it has access as arguments to the subprocedure. The domain of the subprocedure 
is not necessarily the same as that of its calling procedure; in fact, a calling procedure may 
pass only some of its objects to the subprocedure, and the subprocedure may have access 
rights to other objects not accessible to the calling procedure. The caller may also pass only 
some of its access rights for the objects it passes to the subprocedure. For example, a 
procedure might pass to a subprocedure the right to read but not modify a particular data 
value. 
Because each capability identifies a single object in a domain, the collection of capabilities 
defines the domain. When a process calls a subprocedure and passes certain objects to the 
subprocedure, the operating system forms a stack of all the capabilities of the current 
procedure. The operating system then creates new capabilities for the subprocedure, as 
shown in Figure 4-14. 

Figure 4-14. Passing Objects to a Subject. 
Operationally, capabilities are a straightforward way to keep track of the access rights of 
subjects to objects during execution. The capabilities are backed up by a more 
comprehensive table, such as an access control matrix or an access control list. Each time 
a process seeks to use a new object, the operating system examines the master list of 
objects and subjects to determine whether the object is accessible. If so, the operating 
system creates a capability for that object. 
Capabilities must be stored in memory inaccessible to normal users. One way of 
accomplishing this is to store capabilities in segments not pointed at by the user's segment 
table or to enclose them in protected memory as from a pair of base/bounds registers. 
Another approach is to use a tagged architecture machine to identify capabilities as 
structures requiring protection. 
During execution, only the capabilities of objects that have been accessed by the current 
process are kept readily available. This restriction improves the speed with which access to 
an object can be checked. This approach is essentially the one used in Multics, as described 
in [FAB74]. 
Capabilities can be revoked. When an issuing subject revokes a capability, no further 
access under the revoked capability should be permitted. A capability table can contain 
pointers to the active capabilities spawned under it so that the operating system can trace 
what access rights should be deleted if a capability is revoked. A similar problem is deleting 
capabilities for users who are no longer active. 

Kerberos 
Fundamental research on capabilities laid the groundwork for subsequent production use 
in systems such as Kerberos [STE88] (studied in greater detail in Chapter 7). Kerberos 
implements both authentication and access authorization by means of capabilities, called 
tickets, secured with symmetric cryptography. Microsoft has based much of its access 
control in NT+ on Kerberos. 
Kerberos requires two systems, called the authentication server (AS) and the ticket-granting 
server (TGS), which are both part of the key distribution center (KDC). A user presents an 
authenticating credential (such as a password) to the authentication server and receives a 
ticket showing that the user has passed authentication. Obviously, the ticket must be 
encrypted to prevent the user from modifying or forging one claiming to be a different user, 
and the ticket must contain some provision to prevent one user from acquiring another 
user's ticket to impersonate that user. 
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Now let us suppose that a user, Joe, wants to access a resource R (for example, a file, 
printer, or network port). Joe sends the TGS his authenticated ticket and a request to use 
R. Assuming Joe is allowed access, the TGS returns to Joe two tickets: One shows Joe that 
his access to R has been authorized, and the second is for Joe to present to R in order to 
access R. 
Kerberos implements single sign-on; that is, a user signs on once and from that point on all 
the user's (allowable) actions are authorized without the user needing to sign on again. So if 
a user wants access to a resource in a different domain, say on a different system or in a 
different environment or even a different company or institution, as long as authorization 
rights have been established between the two domains, the user's access takes place 
without the user's signing on to a different system. 
Kerberos accomplishes its local and remote authentication and authorization with a system 
of shared secret encryption keys. In fact, each user's password is used as an encryption 
key. 
(That trick also means that passwords are never exposed, reducing the risk from 
interception.) We study the exact mechanism of Kerberos in Chapter 7. 

Procedure-Oriented Access Control 
One goal of access control is restricting not just which subjects have access to an object, 
but also what they can do to that object. Read versus write access can be controlled rather 
readily by most operating systems, but more complex control is not so easy to achieve. 
By procedure-oriented protection, we imply the existence of a procedure that controls 
access to objects (for example, by performing its own user authentication to strengthen the 
basic protection provided by the basic operating system). In essence, the procedure forms a 
capsule around the object, permitting only certain specified accesses. 
Procedures can ensure that accesses to an object be made through a trusted interface. For 
example, neither users nor general operating system routines might be allowed direct 
access to the table of valid users. Instead, the only accesses allowed might be through three 
procedures: one to add a user, one to delete a user, and one to check whether a particular 
name corresponds to a valid user. These procedures, especially add and delete, could use 
their own checks to make sure that calls to them are legitimate. 
Procedure-oriented protection implements the principle of information hiding because the 
means of implementing an object are known only to the object's control procedure. Of 
course, this degree of protection carries a penalty of inefficiency. With procedure-oriented 
protection, there can be no simple, fast access, even if the object is frequently used. 
Our survey of access control mechanisms has intentionally progressed from simple to 
complex. Historically, as the mechanisms have provided greater flexibility, they have done 
so with a price of increased overhead. For example, implementing capabilities that must be 
checked on each access is far more difficult than implementing a simple directory structure 
that is checked only on a subject's first access to an object. This complexity is apparent 
both to the user and to the implementer. The user is aware of additional protection 
features, but the naïve user may be frustrated or intimidated at having to select protection 
options with little understanding of their usefulness. The implementation complexity 
becomes apparent in slow response to users. The balance between simplicity and 
functionality is a continuing battle in security. 

Role-Based Access Control 
We have not yet distinguished among kinds of users, but we want some users (such as 
administrators) to have significant privileges, and we want others (such as regular users or 
guests) to have lower privileges. In companies and educational institutions, this can get 
complicated when an ordinary user becomes an administrator or a baker moves to the 
candlestick makers' group. Role-based access control lets us associate privileges with 
groups, such as all administrators can do this or candlestick makers are forbidden to do 
this. 
Administering security is easier if we can control access by job demands, not by person. 
Access control keeps up with a person who changes responsibilities, and the system 
administrator does not have to choose the appropriate access control settings for someone. 
For more details on the nuances of role-based access control, see [FER03]. 

 

File protection mechanism 
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4.4. File Protection Mechanisms 
Until now, we have examined approaches to protecting a general object, no matter the 
object's nature or type. But some protection schemes are particular to the type. To see how 
they work, we focus in this section on file protection. The examples we present are only 
representative; they do not cover all possible means of file protection on the market. 

Basic Forms of Protection 
We noted earlier that all multiuser operating systems must provide some minimal 
protection to keep one user from maliciously or inadvertently accessing or modifying the 
files of another. As the number of users has grown, so also has the complexity of these 
protection schemes.  
AllNone Protection 
In the original IBM OS operating systems, files were by default public. Any user could read, 
modify, or delete a file belonging to any other user. Instead of software- or hardware-based 
protection, the principal protection involved trust combined with ignorance. System 
designers supposed that users could be trusted not to read or modify others' files because 
the users would expect the same respect from others. Ignorance helped this situation, 
because a user could access a file only by name; presumably users knew the names only of 
those files to which they had legitimate access. 
However, it was acknowledged that certain system files were sensitive and that the system 
administrator could protect them with a password. A normal user could exercise this 
feature, but passwords were viewed as most valuable for protecting operating system files. 
Two philosophies guided password use. Sometimes, passwords controlled all accesses (read, 
write, or delete), giving the system administrator complete control over all files. But at other 
times passwords controled only write and delete accesses because only these two actions 
affected other users. In either case, the password mechanism required a system operator's 
intervention each time access to the file began. 
However, this all-or-none protection is unacceptable for several reasons. 

 Lack of trust. The assumption of trustworthy users is not necessarily justified. For 
systems with few users who all know each other, mutual respect might suffice; but in large 
systems where not every user knows every other user, there is no basis for trust. 

 Too coarse. Even if a user identifies a set of trustworthy users, there is no convenient way 
to allow access only to them. 

 Rise of sharing. This protection scheme is more appropriate for a batch environment, in 
which users have little chance to interact with other users and in which users do their 
thinking and exploring when not interacting with the system. However, on shared-use 
systems, users interact with other users and programs representing other classes of users. 

 Complexity. Because (human) operator intervention is required for this file protection, 
operating system performance is degraded. For this reason, this type of file protection is 
discouraged by computing centers for all but the most sensitive data sets. 

 File listings. For accounting purposes and to help users remember for what files they are 
responsible, various system utilities can produce a list of all files. Thus, users are not 
necessarily ignorant of what files reside on the system. Interactive users may try to browse 
through any unprotected files. 
Group Protection 
Because the all-or-nothing approach has so many drawbacks, researchers sought an 
improved way to protect files. They focused on identifying groups of users who had some 
common relationship. In a typical Unix+ implementation, the world is divided into three 
classes: the user, a trusted working group associated with the user, and the rest of the 
users. For simplicity we can call these classes user, group, and world. Windows NT+ uses 
groups such as Administrators, Power Users, Users, and Guests. (NT+ administrators can 
also create other groups.) 
All authorized users are separated into groups. A group may consist of several members 
working on a common project, a department, a class, or a single user. The basis for group 
membership is need to share. The group members have some common interest and 
therefore are assumed to have files to share with the other group members. In this 
approach, no user belongs to more than one group. (Otherwise, a member belonging to 
groups A and B could pass along an A file to another B group member.) 
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When creating a file, a user defines access rights to the file for the user, for other members 
of the same group, and for all other users in general. Typically, the choices for access rights 
are a limited set, such as {update, readexecute, read, writecreatedelete}. For a particular 
file, a user might declare read-only access to the general world, read and update access to 
the group, and all rights to the user. This approach would be suitable for a paper being 
developed by a group, whereby the different members of the group might modify sections 
being written within the group. The paper itself should be available for people outside the 
group to review but not change. 
A key advantage of the group protection approach is its ease of implementation. A user is 
recognized by two identifiers (usually numbers): a user ID and a group ID. These identifiers 
are stored in the file directory entry for each file and are obtained by the operating system 
when a user logs in. Therefore, the operating system can easily check whether a proposed 
access to a file is requested from someone whose group ID matches the group ID for the file 
to be accessed. 
Although this protection scheme overcomes some of the shortcomings of the all-or-nothing 
scheme, it introduces some new difficulties of its own. 

 Group affiliation. A single user cannot belong to two groups. Suppose Tom belongs to one 
group with Ann and to a second group with Bill. If Tom indicates that a file is to be readable 
by the group, to which group(s) does this permission refer? Suppose a file of Ann's is 
readable by the group; does Bill have access to it? These ambiguities are most simply 
resolved by declaring that every user belongs to exactly one group. (This restriction does not 
mean that all users belong to the same group.) 

 Multiple personalities. To overcome the one-person one-group restriction, certain people 
might obtain multiple accounts, permitting them, in effect, to be multiple users. 
This hole in the protection approach leads to new problems because a single person can be 
only one user at a time. To see how problems arise, suppose Tom obtains two accounts, 
thereby becoming Tom1 in a group with Ann and Tom2 in a group with Bill.  Tom1 is not in 
the same group as Tom2, so any files, programs, or aids developed under the Tom1 account 
can be available to Tom2 only if they are available to the entire world. Multiple personalities 
lead to a proliferation of accounts, redundant files, limited protection for files of general 
interest, and inconvenience to users. 

 All groups. To avoid multiple personalities, the system administrator may decide that Tom 
should have access to all his files any time he is active. This solution puts the responsibility 
on Tom to control with whom he shares what things. For example, he may be in Group1 
with Ann and Group2 with Bill. He creates a Group1 file to share with Ann. But if he is 
active in Group2 the next time he is logged in, he still sees the Group1 file and may not 
realize that it is not accessible to Bill, too. 

 Limited sharing. Files can be shared only within groups or with the world. Users want to 
be able to identify sharing partners for a file on a per-file basis; for example, sharing one file 
with ten people and another file with twenty others. 

Individual Permissions 
In spite of their drawbacks, the file protection schemes we have described are relatively 
simple and straightforward. The simplicity of implementing them suggests other easy-to-
manage methods that provide finer degrees of security while associating permission with a 
single file. 
Persistent Permission 
From other contexts you are familiar with persistent permissions. The usual 
implementation of such a scheme uses a name (you claim a dinner reservation under the 
name of Sanders), a token (you show your driver's license or library card), or a secret (you 
say a secret word or give the club handshake). Similarly, in computing you are allowed 
access by being on the access list, presenting a token or ticket, or giving a password. User 
access permissions can be required for any access or only for modifications (write access). 
All these approaches present obvious difficulties in revocation: Taking someone off one list 
is easy, but it is more complicated to find all lists authorizing someone and remove him or 
her. 
Reclaiming a token or password is even more challenging. 
Temporary Acquired Permission 
Unix+ operating systems provide an interesting permission scheme based on a three-level 
usergroupworld hierarchy. The Unix designers added a permission called set userid (suid). 
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If this protection is set for a file to be executed, the protection level is that of the file's 
owner, not the executor. To see how it works, suppose Tom owns a file and allows Ann to 
execute it with suid. When Ann executes the file, she has the protection rights of Tom, not 
of herself. 
This peculiar-sounding permission has a useful application. It permits a user to establish 
data files to which access is allowed only through specified procedures. 
For example, suppose you want to establish a computerized dating service that manipulates 
a database of people available on particular nights. Sue might be interested in a date for 
Saturday, but she might have already refused a request from Jeff, saying she had other 
plans. 
Sue instructs the service not to reveal to Jeff that she is available. To use the service, Sue, 
Jeff, and others must be able to read the file and write to it (at least indirectly) to determine 
who is available or to post their availability. But if Jeff can read the file directly, he would 
find that Sue has lied. Therefore, your dating service must force Sue and Jeff (and all 
others) to access this file only through an access program that would screen the data Jeff 
obtains. But if the file access is limited to read and write by you as its owner, Sue and Jeff 
will never be able to enter data into it. 
The solution is the Unix SUID protection. You create the database file, giving only you 
access permission. You also write the program that is to access the database, and save it 
with the SUID protection. Then, when Jeff executes your program, he temporarily acquires 
your access permission, but only during execution of the program. Jeff never has direct 
access to the file because your program will do the actual file access. When Jeff exits from 
your program, he regains his own access rights and loses yours. Thus, your program can 
access the file, but the program must display to Jeff only the data Jeff is allowed to see. 
This mechanism is convenient for system functions that general users should be able to 
perform only in a prescribed way. For example, only the system should be able to modify 
the file of users' passwords, but individual users should be able to change their own 
passwords any time they wish. With the SUID feature, a password change program can be 
owned by the system, which will therefore have full access to the system password table. 
The program to change passwords also has SUID protection so that when a normal user 
executes it, the program can modify the password file in a carefully constrained way on 
behalf of the user.  
Per-Object and Per-User Protection 
The primary limitation of these protection schemes is the ability to create meaningful 
groups of related users who should have similar access to related objects. The access 
control lists or access control matrices described earlier provide very flexible protection. 
Their disadvantage is for the user who wants to allow access to many users and to many 
different data sets; 
such a user must still specify each data set to be accessed by each user. As a new user is 
added, that user's special access rights must be specified by all appropriate users. 

Authentication:  

Authentication basics-  
An operating system bases much of its protection on knowing who a user of the system is. 
In real-life situations, people commonly ask for identification from people they do not know: 
A bank employee may ask for a driver's license before cashing a check, library employees 
may require some identification before charging out books, and immigration officials ask for 
passports as proof of identity. In-person identification is usually easier than remote 
identification. For instance, some universities do not report grades over the telephone 
because the office workers do not necessarily know the students calling. However, a 
professor who recognizes the voice of a certain student can release that student's grades. 
Over time, organizations and systems have developed means of authentication, using 
documents, voice recognition, fingerprint and retina matching, and other trusted means of 
identification. 
In computing, the choices are more limited and the possibilities less secure. Anyone can 
attempt to log in to a computing system. Unlike the professor who recognizes a student's 
voice, the computer cannot recognize electrical signals from one person as being any 
different from those of anyone else. Thus, most computing authentication systems must be 
based on some knowledge shared only by the computing system and the user. 
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Authentication mechanisms use any of three qualities to confirm a user's identity. 
1. Something the user knowsa Passwords, PIN numbers, passphrases, a secret handshake, 
and mother's maiden name are examples of what a user may know. 
2. Something the user hasa Identity badges, physical keys, a driver's license, or a uniform 
are common examples of things people have that make them recognizable. 
3. Something the user isa These authenticators, called biometrics, are based on a physical 
characteristic of the user, such as a fingerprint, the pattern of a person's voice, or a face 
(picture). These authentication methods are old (we recognize friends in person by their 
faces or on a telephone by their voices) but are just starting to be used in computer 
authentications. See Sidebar 4-3 for a glimpse at some of the promising approaches. 
Two or more forms can be combined for more solid authentication; for example, a bank card 
and a PIN combine something the user has with something the user knows. 

 

Password 

Passwords as Authenticators 
The most common authentication mechanism for user to operating system is a password, a 
"word" known to computer and user. Although password protection seems to offer a 
relatively secure system, human practice sometimes degrades its quality. In this section we 
consider passwords, criteria for selecting them, and ways of using them for authentication. 
We conclude by noting other authentication techniques and by studying problems in the 
authentication process, notably Trojan horses masquerading as the computer 
authentication process. 
Use of Passwords 
Passwords are mutually agreed-upon code words, assumed to be known only to the user 
and the system. In some cases a user chooses passwords; in other cases the system assigns 
them. The length and format of the password also vary from one system to another. 
Even though they are widely used, passwords suffer from some difficulties of use: 

 Loss. Depending on how the passwords are implemented, it is possible that no one will be 
able to replace a lost or forgotten password. The operators or system administrators can 
certainly intervene and unprotect or assign a particular password, but often they cannot 
determine what password a user has chosen; if the user loses the password, a new one 
must be assigned. 

 Use. Supplying a password for each access to a file can be inconvenient and time 
consuming. 

 Disclosure. If a password is disclosed to an unauthorized individual, the file becomes 
immediately accessible. If the user then changes the password to reprotect the file, all the 
other legitimate users must be informed of the new password because their old password 
will fail. 

 Revocation. To revoke one user's access right to a file, someone must change the 
password, thereby causing the same problems as disclosure. 
The use of passwords is fairly straightforward. A user enters some piece of identification, 
such as a name or an assigned user ID; this identification can be available to the public or 
easy to guess because it does not provide the real security of the system. The system then 
requests a password from the user. If the password matches that on file for the user, the 
user is authenticated and allowed access to the system. If the password match fails, the 
system requests the password again, in case the user mistyped. 

Additional Authentication Information 
In addition to the name and password, we can use other information available to 
authenticate users. Suppose Adams works in the accounting department during the shift 
between 8:00 a.m. 
and 5:00 p.m., Monday through Friday. Any legitimate access attempt by Adams should be 
made during those times, through a workstation in the accounting department offices. By 
limiting Adams to logging in under those conditions, the system protects against two 
problems: 

 Someone from outside might try to impersonate Adams. This attempt would be thwarted 
by either the time of access or the port through which the access was attempted. 

 Adams might attempt to access the system from home or on a weekend, planning to use 
resources not allowed or to do something that would be too risky with other people around. 
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Limiting users to certain workstations or certain times of access can cause complications 
(as when a user legitimately needs to work overtime, a person has to access the system 
while out of town on a business trip, or a particular workstation fails). However, some 
companies use these authentication techniques because the added security they provide 
outweighs inconveniences. 
Using additional authentication information is called multifactor authentication. Two forms 
of authentication (which is, not surprisingly, known as two-factor authentication) are better 
than one, assuming of course that the two forms are strong. But as the number of forms 
increases, so also does the inconvenience. (For example, think about passing through a 
security checkpoint at an airport.) Each authentication factor requires the system and its 
administrators to manage more security information. 

Attacks on Passwords 
How secure are passwords themselves? Passwords are somewhat limited as protection 
devices because of the relatively small number of bits of information they contain. Here are 
some ways you might be able to determine a user's password, in decreasing order of 
difficulty. 

 Try all possible passwords. 
 Try frequently used passwords. 
 Try passwords likely for the user. 
 Search for the system list of passwords. 
 Ask the user. 

Loose-Lipped Systems 
So far the process seems secure, but in fact it has some vulnerabilities. To see why, 
consider the actions of a would-be intruder. Authentication is based on knowing the <name, 
password > pair A complete outsider is presumed to know nothing of the system. Suppose 
the intruder attempts to access a system in the following manner. (In the following 
examples, the system messages are in uppercase, and the user's responses are in 
lowercase.) 
WELCOME TO THE XYZ COMPUTING SYSTEMS 
ENTER USER NAME: adams 
INVALID USER NAMEUNKNOWN USER 
ENTER USER NAME: 
We assumed that the intruder knew nothing of the system, but without having to do much, 
the intruder found out that adams is not the name of an authorized user. The intruder 
could try other common names, first names, and likely generic names such as system or 
operator to build a list of authorized users. 
An alternative arrangement of the login sequence is shown below. 
WELCOME TO THE XYZ COMPUTING SYSTEMS 
ENTER USER NAME: adams 
ENTER PASSWORD: john 
INVALID ACCESS 
ENTER USER NAME: 
This system notifies a user of a failure only after accepting both the user name and the 
password. The failure message should not indicate whether it is the user name or password 
that is unacceptable. In this way, the intruder does not know which failed. 
These examples also gave a clue as to which computing system is being accessed. The true 
outsider has no right to know that, and legitimate insiders already know what system they 
have accessed. In the example below, the user is given no information until the system is 
assured of the identity of the user. 
ENTER USER NAME: adams 
ENTER PASSWORD: john 
INVALID ACCESS 
ENTER USER NAME: adams 
ENTER PASSWORD: johnq 
WELCOME TO THE XYZ COMPUTING SYSTEMS 
Exhaustive Attack 
In an exhaustive or brute force attack, the attacker tries all possible passwords, usually in 
some automated fashion. Of course, the number of possible passwords depends on the 
implementation of the particular computing system. For example, if passwords are words 
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consisting of the 26 characters AZ and can be of any length from 1 to 8 characters, there 
are 261 passwords of 1 character, 262 passwords of 2 characters, and 268 passwords of 8 
characters. Therefore, the system as a whole has 261 + 262 + ... + 268 = 269 - 1 5 * 1012 
or five million million possible passwords. That number seems intractable enough. If we 
were to use a computer to create and try each password at a rate of checking one password 
per millisecond, it would take on the order of 150 years to test all passwords. But if we can 
speed up the search to one password per microsecond, the work factor drops to about two 
months. 
This amount of time is reasonable if the reward is large. For instance, an intruder may try 
to break the password on a file of credit card numbers or bank account information. 
But the break-in time can be made more tractable in a number of ways. Searching for a 
single particular password does not necessarily require all passwords to be tried; an 
intruder needs to try only until the correct password is identified. If the set of all possible 
passwords were evenly distributed, an intruder would likely need to try only half of the 
password space: the expected number of searches to find any particular password. 
However, an intruder can also use to advantage the fact that passwords are not evenly 
distributed. Because a password has to be remembered, people tend to pick simple 
passwords. This feature reduces the size of the password space. 
Probable Passwords 
Think of a word. 
Is the word you thought of long? Is it uncommon? Is it hard to spell or to pronounce? The 
answer to all three of these questions is probably no. Penetrators searching for passwords 
realize these very human characteristics and use them to their advantage. Therefore, 
penetrators try techniques that are likely to lead to rapid success. If people prefer short 
passwords to long ones, the penetrator will plan to try all passwords but to try them in 
order by length. There are only 261 + 262 + 263=18,278 
passwords of length 3 or less. At the assumed rate of one password per millisecond, all of 
these passwords can be checked in 18.278 seconds, hardly a challenge with a computer. 
Even expanding the tries to 4 or 5 characters raises the count only to 475 seconds (about 8 
minutes) or 12,356 seconds (about 3.5 hours), respectively. 
This analysis assumes that people choose passwords such as vxlag and msms as often as 
they pick enter and beer. However, people tend to choose names or words they can 
remember. Many computing systems have spelling checkers that can be used to check for 
spelling errors and typographic mistakes in documents. These spelling checkers sometimes 
carry online dictionaries of the most common English words. One contains a dictionary of 
80,000 words. Trying all of these words as passwords takes only 80 seconds. 
Passwords Likely for a User 
If Sandy is selecting a password, she is probably not choosing a word completely at random. 
Most likely Sandy's password is something meaningful to her. People typically choose 
personal passwords, such as the name of a spouse, a child, a brother or sister, a pet, a 
street name, or something memorable or familiar. If we restrict our password attempts to 
just names of people (first names), streets, projects, and so forth, we generate a list of only a 
few hundred possibilities at most. Trying this number of passwords takes under a seconda 
Even a person working by hand could try ten likely candidates in a minute or two. 
Thus, what seemed formidable in theory is in fact quite vulnerable in practice, and the 
likelihood of successful penetration is frightening. Morris and Thompson [MOR79] 
confirmed our fears in their report on the results of having gathered passwords from many 
users, shown in Table 4-2. Figure 4-15 (based on data from that study) shows the 
characteristics of the 3,289 passwords gathered. The results from that study are 
distressing, and the situation today is likely to be the same. Of those passwords, 86 percent 
could be uncovered in about one week's worth of 24-hour-a-day testing, using the very 
generous estimate of 1 millisecond per password check. 

Table 4-2. Distribution of Actual Passwords. 
15  0.5%  were a single(a) ASCII character 
72  2%  were two ASCII characters 
464  14%  were three ASCII characters 
477  14%  were four alphabetic letters 
706  21%  were five alphabetic letters, all the same case 
605  18%  were six lowercase alphabetic letters 
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492  15%  were words in dictionaries or lists of names 
2831  86%  total of all above categories 

Figure 4-15. Users' Password Choices. 
Lest you dismiss these results as dated (they were reported in 1979), Klein repeated the 
experiment in 1990 [KLE90] and Spafford in 1992 [SPA92]. Each collected approximately 
15,000 passwords. Klein reported that 2.7 percent of the passwords were guessed in only 
15 minutes of machine time and 21 percent were guessed within a weeka Spafford found 
the average password length was 6.8 characters, and 28.9 percent consisted of only 
lowercase alphabetic characters. Notice that both these studies were done after the Internet 
worm (described in Chapter 3) succeeded, in part by breaking weak passwords.  
Even in 2002, the British online bank Egg found users still choosing weak passwords 
[BUX02]. 
A full 50 percent of passwords for their online banking service were family members' names: 
23 percent children's names, 19 percent a spouse or partner, and 9 percent their own. Alas, 
pets came in at only 8 percent, while celebrities and football (soccer) stars tied at 9 percent 
each. 
And in 1998, Knight and Hartley [KNI98] reported that approximately 35 percent of 
passwords are deduced from syllables and initials of the account owner's name. 
Two friends we know have told us their passwords as we helped them administer their 
systems, and their passwords would both have been among the first we would have 
guessed. 
But, you say, these are amateurs unaware of the security risk of a weak password. At a 
recent meeting, a security expert related this experience: He thought he had chosen a solid 
password, so he invited a class of students to ask him a few questions and offer some 
guesses as to his password. He was amazed that they asked only a few questions before 
they had deduced the password. And this was a security expert. 
Several news articles have claimed that the four most common passwords are "God," "sex," 
"love,"and "money" (the order among those is unspecified). The perhaps apocryphal list of 
common passwords at geodsoft.com/howto/password/common.htm appears at several 
other places on the Internet. Or see the default password list at 
www.phenoelit.de/dpl/dpl.html. 
Whether these are really passwords we do not know. Still, it warrants a look because 
similar lists are bound to be built into some hackers' tools. 
Several network sites post dictionaries of phrases, science fiction characters, places, 
mythological names, Chinese words, Yiddish words, and other specialized lists. All these 
lists are posted to help site administrators identify users who have chosen weak passwords, 
but the same dictionaries can also be used by attackers of sites that do not have such 
attentive administrators. The COPS [FAR90], Crack [MUF92], and SATAN [FAR95] utilities 
allow an administrator to scan a system for weak passwords. But these same utilities, or 
other homemade ones, allow attackers to do the same. Now Internet sites offer so-called 
password recovery software as freeware or shareware for under $20. (These are password-
cracking programs.) 
People think they can be clever by picking a simple password and replacing certain 
characters, such as 0 (zero) for letter O, 1 (one) for letter I or L, 3 (three) for letter E or @ (at) 
for letter A. But users aren't the only people who could think up these substitutions. Knight 
and Hartley [KNI98] list, in order, 12 steps an attacker might try in order to determine a 
password. These steps are in increasing degree of difficulty (number of guesses), so they 
indicate the amount of work to which the attacker must go to derive a password. Here are 
their password guessing steps: 
•. no password 
•. the same as the user ID 
•. is, or is derived from, the user's name 
•. common word list (for example, "password," "secret," "private") plus common names and 
patterns (for example, "asdfg," "aaaaaa") 
•. short college dictionary 
•. complete English word list 
•. common non-English language dictionaries 
•. short college dictionary with capitalizations (PaSsWorD) and substitutions (0 for O, and 
so forth)  



92 
 

•. complete English with capitalizations and substitutions 
•. common non-English dictionaries with capitalization and substitutions 
•. brute force, lowercase alphabetic characters 
•. brute force, full character set 
Although the last step will always succeed, the steps immediately preceding it are so time 
consuming that they will deter all but the dedicated attacker for whom time is not a limiting 
factor. 
Plaintext System Password List 
To validate passwords, the system must have a way of comparing entries with actual 
passwords. Rather than trying to guess a user's password, an attacker may instead target 
the system password file. Why guess when with one table you can determine all passwords 
with total accuracy? 
On some systems, the password list is a file, organized essentially as a two-column table of 
user IDs and corresponding passwords. This information is certainly too obvious to leave 
out in the open. Various security approaches are used to conceal this table from those who 
should not see it. 
You might protect the table with strong access controls, limiting access to the operating 
system. But even this tightening of control is looser than it should be, because not every 
operating system module needs or deserves access to this table. For example, the operating 
system scheduler, accounting routines, or storage manager have no need to know the 
table's contents. Unfortunately, in some systems, there are n+1 known users: n regular 
users and the operating system. The operating system is not partitioned, so all its modules 
have access to all privileged information. This monolithic view of the operating system 
implies that a user who exploits a flaw in one section of the operating system has access to 
all the system's deepest secrets. A better approach is to limit table access to the modules 
that need access: the user authentication module and the parts associated with installing 
new users, for example. 
If the table is stored in plain sight, an intruder can simply dump memory at a convenient 
time to access it. Careful timing may enable a user to dump the contents of all of memory 
and, by exhaustive search, find values that look like the password table. 
System backups can also be used to obtain the password table. To be able to recover from 
system errors, system administrators periodically back up the file space onto some auxiliary 
medium for safe storage. In the unlikely event of a problem, the file system can be reloaded 
from a backup, with a loss only of changes made since the last backup. Backups often 
contain only file contents, with no protection mechanism to control file access. (Physical 
security and access controls to the backups themselves are depended on to provide security 
for the contents of backup media.) If a regular user can access the backups, even ones from 
several weeks, months, or years ago, the password tables stored in them may contain 
entries that are still valid. 
Finally, the password file is a copy of a file stored on disk. Anyone with access to the disk or 
anyone who can overcome file access restrictions can obtain the password file. 
Encrypted Password File 
There is an easy way to foil an intruder seeking passwords in plain sight: encrypt them. 
Frequently, the password list is hidden from view with conventional encryption or one-way 
ciphers. 
With conventional encryption, either the entire password table is encrypted or just the 
password column. When a user's password is received, the stored password is decrypted, 
and  the two are compared. 
Even with encryption, there is still a slight exposure because for an instant the user's 
password is available in plaintext in main memory. That is, the password is available to 
anyone who could obtain access to all of memory. 
A safer approach uses one-way encryption, defined in Chapter 2. The password table's 
entries are encrypted by a one-way encryption and then stored. When the user enters a 
password, it is also encrypted and then compared with the table. If the two values are 
equal, the authentication succeeds. Of course, the encryption has to be such that it is 
unlikely that two passwords would encrypt to the same ciphertext, but this characteristic is 
true for most secure encryption algorithms. 
With one-way encryption, the password file can be stored in plain view. For example, the 
password table for the Unix operating system can be read by any user unless special access 
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controls have been installed. Because the contents are encrypted, backup copies of the 
password table are no longer a problem. 
There is always the possibility that two people might choose the same password, thus 
creating two identical entries in the password file. Even though the entries are encrypted, 
each user will know the plaintext equivalent. For instance, if Bill and Kathy both choose 
their passwords on April 1, they might choose APRILFOOL as a password. Bill might read 
the password file and notice that the encrypted version of his password is the same as 
Kathy's. 
Unix+ circumvents this vulnerability by using a password extension, called the salt. The 
salt is a 12-bit number formed from the system time and the process identifier. Thus, the 
salt is likely to be unique for each user, and it can be stored in plaintext in the password 
file. The salt is concatenated to Bill's password (pw) when he chooses it; E(pw+saltB) is 
stored for Bill, and his salt value is also stored. When Kathy chooses her password, the salt 
is different because the time or the process number is different. Call this new one saltK. For 
her, E(pw+saltK) and saltK are stored. When either person tries to log in, the system fetches 
the appropriate salt from the password table and combines that with the password before 
performing the encryption. The encrypted versions of (pw+salt) are very different for these 
two users. When Bill looks down the password list, the encrypted version of his password 
will not look at all like Kathy's. Storing the password file in a disguised form relieves much 
of the pressure to secure it. Better still is to limit access to processes that legitimately need 
access. In this way, the password file is protected to a level commensurate with the 
protection provided by the password itself. 
Someone who has broken the controls of the file system has access to data, not just 
passwords, and that is a serious threat. But if an attacker successfully penetrates the outer 
security layer, the attacker still must get past the encryption of the password file to access 
the useful information in it. 
Indiscreet Users 
Guessing passwords and breaking encryption can be tedious or daunting. But there is a 
simple way to obtain a password: Get it directly from the usera People often tape a 
password to the side of a terminal or write it on a card just inside the top desk drawer. 
Users are afraid they will forget their passwords, or they cannot be bothered trying to 
remember them. It is particularly tempting to write the passwords down when users have 
several accounts. 
Users sharing work or data may also be tempted to share passwords. If someone needs a 
file, it is easier to say "my password is x; get the file yourself" than to arrange to share the 
file. 
This situation is a result of user laziness, but it may be brought about or exacerbated by a 
system that makes sharing inconvenient. 
In an admittedly unscientific poll done by Verisign [TEC05], two-thirds of people 
approached on the street volunteered to disclose their password for a coupon good for a cup 
of coffee, and 79 percent admitted they used the same password for more than one system 
or web site.  

Password Selection Criteria 
At the RSA Security Conference in 2006, Bill Gates, head of Microsoft, described his vision 
of a world in which passwords would be obsolete, having gone the way of the dinosaur. In 
their place sophisticated multifactor authentication technologies would offer far greater 
security than passwords ever could. But that is Bill Gates' view of the future; despite 
decades of articles about their weakness, passwords are with us still and will be for some 
time. 
So what can we conclude about passwords? They should be hard to guess and difficult to 
determine exhaustively. But the degree of difficulty should be appropriate to the security 
needs of the situation. To these ends, we present several guidelines for password selection: 

 Use characters other than just AZ. If passwords are chosen from the letters AZ, there are 
only 26 possibilities for each character. Adding digits expands the number of possibilities to 
36. Using both uppercase and lowercase letters plus digits expands the number of possible 
characters to 62. Although this change seems small, the effect is large when someone is 
testing a full space of all possible combinations of characters. It takes about 100 hours to 
test all 6-letter words chosen from letters of one case only, but it takes about 2 years to test 
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all 6-symbol passwords from upper- and lowercase letters and digits. Although 100 hours is 
reasonable, 2 years is oppressive enough to make this attack far less attractive. 

 Choose long passwords. The combinatorial explosion of passwords begins at length 4 or 
5. Choosing longer passwords makes it less likely that a password will be uncovered. 
Remember that a brute force penetration can stop as soon as the password is found. Some 
penetrators will try the easy casesknown words and short passwordsand move on to 
another target if those attacks fail. 

 Avoid actual names or words. Theoretically, there are 266 or about 300 million 6-letter 
"words", but there are only about 150,000 words in a good collegiate dictionary, ignoring 
length. By picking one of the 99.95 percent nonwords, you force the attacker to use a longer 
brute force search instead of the abbreviated dictionary search. 

 Choose an unlikely password. Password choice is a double bind. To remember 
thepassword easily, you want one that has special meaning to you. However, you don't want 
someone else to be able to guess this special meaning. One easy-to-remember password is 
2Brn2B. That unlikely looking jumble is a simple transformation of "to be or not to be." The 
first letters of words from a song, a few letters from different words of a private phrase, or a 
memorable basketball score are examples of reasonable passwords. But don't be too 
obvious. Password-cracking tools also test replacements of 0 (zero) for o or O (letter "oh") 
and 1 (one) for l (letter "ell") or $ for S (letter "ess"). 
So I10veu is already in the search file. 

 Change the password regularly. Even if there is no reason to suspect that the password 
has been compromised, change is advised. A penetrator may break a password system by 
obtaining an old list or working exhaustively on an encrypted list. 

 Don't write it down. (Note: This time-honored advice is relevant only if physical security is 
a serious risk. People who have accounts on many different machines and servers, not to 
mention bank and charge card PINs, may have trouble remembering all the access codes. 
Setting all codes the same or using insecure but easy-to-remember passwords may be more 
risky than writing passwords on a reasonably well protected list.) 

 Don't tell anyone else. The easiest attack is social engineering, in which the 
attackercontacts the system's administrator or a user to elicit the password in some way. 
For example, the attacker may phone a user, claim to be "system administration," and ask 
the user to verify the user's password. Under no circumstances should you ever give out 
your private password; legitimate administrators can circumvent your password if need be, 
and others are merely trying to deceive you.  
To help users select good passwords, some systems provide meaningless but pronounceable 
passwords. For example, the VAX VMS system randomly generates five passwords from 
which the user chooses one. They are pronounceable, so that the user should be able to 
repeat and memorize them. However, the user may misremember a password because of 
having interchanged syllables or letters of a meaningless string. (The sound "bliptab" is no 
more easily misremembered than "blaptib" or "blabtip.") 
Yan et al. [YAN04] did experiments to determine whether users could remember passwords 
or passphrases better. First, they found that users are poor at remembering random 
passwords. 
And instructions to users about the importance of selecting good passwords had little effect. 
But when they asked users to select their own password based on some mnemonic phrase 
they chose themselves, the users selected passwords that were harder to guess than regular 
(not based on a phrase) passwords. 
Other systems encourage users to change their passwords regularly. The regularity of 
password change is usually a system parameter, which can be changed for the 
characteristics of a given installation. Suppose the frequency is set at 30 days. Some 
systems begin to warn the user after 25 days that the password is about to expire. Others 
wait until 30 days and inform the user that the password has expired. Some systems nag 
without end, whereas other systems cut off a user's access if a password has expired. Still 
others force the user immediately into the password change utility on the first login after 30 
days. 
Grampp and Morris [GRA84a] argue that this reminder process is not necessarily good. 
Choosing passwords is not difficult, but under pressure a user may adopt any password, 
just to satisfy the system's demand for a new one. Furthermore, if this is the only time a 
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password can be changed, a bad password choice cannot be changed until the next 
scheduled time. 
Sometimes when systems force users to change passwords periodically, users with favorite 
passwords will alternate between two passwords each time a change is required. To prevent 
password reuse, Microsoft Windows 2000 systems refuse to accept any of the k most 
recently used passwords. One user of such a system went through 24 password changes 
each month, just to cycle back to the favorite password. 
One-Time Passwords 
A one-time password is one that changes every time it is used. Instead of assigning a static 
phrase to a user, the system assigns a static mathematical function. The system provides 
an argument to the function, and the user computes and returns the function value. Such 
systems are also called challengeresponse systems because the system presents a challenge 
to the user and judges the authenticity of the user by the user's response. Here are some 
simple examples of one-time password functions; these functions are overly simplified to 
make the explanation easier. Very complex functions can be used in place of these simple 
ones for host authentication in a network. 

 f(x) = x + 1. With this function, the system prompts with a value for x, and the user enters 
the value x + 1. The kinds of mathematical functions used are limited only by the ability of 
the user to compute the response quickly and easily. Other similar possibilities are f(x) = 
3x2 - 9x + 2, f(x) = px, where px is the xth prime number, or f(x) = d * h, where d is the date 
and h is the hour of the current time. (Alas, many users cannot perform simple arithmetic 
in their heads.) 

 f(x) = r(x). For this function, the receiver uses the argument as the seed for a random 
number generator (available to both the receiver and host). The user replies with the value 
of the first random number generated. A variant of this scheme uses x as a number of 
random numbers to generate. The receiver generates x random numbers and sends the xth 
of these to the host. 

 f(a1a2a3a4a5a6) = a3a1a1a4. With this function, the system provides a character string, 
which the user must transform in some predetermined manner. Again, many different 
character operations can be used.  

 f(E(x)) = E(D(E(x)) + 1). In this function, the computer sends an encrypted value, E(x). The 
user must decrypt the value, perform some mathematical function, and encrypt the result 
to return it to the system. Clearly, for human use, the encryption function must be 
something that can be done easily by hand, unlike the strong encryption algorithms in 
Chapter 2. For machine-to-machine authentication, however, an encryption algorithm such 
as DES or AES is appropriate. 
One-time passwords are very important for authentication because (as becomes clear in 
Chapter 7) an intercepted password is useless because it cannot be reused. However, 
theirusefulness is limited by the complexity of algorithms people can be expected to 
remember. A password-generating device can implement more complex functions. Several 
models are readily available at reasonable prices. They are very effective at countering the 
threat of transmitting passwords in plaintext across a network. (See Sidebar 4-4 for another 
dilemma in remote authentication.) 

The Authentication Process 
Authentication usually operates as described previously. However, users occasionally 
mistype their passwords. A user who receives a message of INCORRECT LOGIN will 
carefully retype the login and gain access to the system. Even a user who is a terrible typist 
should be able to log in successfully in a few tries. 
Some authentication procedures are intentionally slow. A legitimate user will not complain 
if the login process takes 5 or 10 seconds. To a penetrator who is trying an exhaustive 
search or a dictionary search, however, 5 or 10 seconds per trial makes this class of attack 
generally infeasible. 
Someone whose login attempts continually fail may not be an authorized user. Systems 
commonly disconnect a user after a small number of failed logins, forcing the user to 
reestablish a connection with the system. (This action will slow down a penetrator who is 
trying to penetrate the system by telephone. After a small number of failures, the penetrator 
must reconnect, which takes a few seconds.)  
In more secure installations, stopping penetrators is more important than tolerating users' 
mistakes. For example, some system administrators assume that all legitimate users can 
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type their passwords correctly within three tries. After three successive password failures, 
the account for that user is disabled and only the security administrator can reenable it. 
This action identifies accounts that may be the target of attacks by penetrators. 
Fixing Flaws in the Authentication Process 
Password authentication assumes that anyone who knows a password is the user to whom 
the password belongs. As we have seen, passwords can be guessed, deduced, or inferred. 
Some people give out their passwords for the asking. Other passwords have been obtained 
just by someone watching a user typing in the password. The password can be considered 
as a preliminary or first-level piece of evidence, but skeptics will want more convincing 
proof. 
There are several ways to provide a second level of protection, including another round of 
passwords or a challengeresponse interchange. 

Challenge-response 
ChallengeResponse Systems 
As we have just seen, the login is usually time invariant. Except when passwords are 
changed, each login looks like every other. A more sophisticated login requires a user ID 
and password, 
followed by a challengeresponse interchange. In such an interchange, the system prompts 
the user for a reply that will be different each time the user logs in. For example, the system 
might display a four-digit number, and the user would have to correctly enter a function 
such as the sum or product of the digits. Each user is assigned a different challenge 
function to compute. Because there are many possible challenge functions, a penetrator 
who captures the user ID and password cannot necessarily infer the proper function. 
A physical device similar to a calculator can be used to implement a more complicated 
response function. The user enters the challenge number, and the device computes and 
displays the response for the user to type in order to log in. (For more examples, see 
Chapter 7's discussion of network authentication.) 
Impersonation of Login 
In the systems we have described, the proof is one-sided. The system demands certain 
identification of the user, but the user is supposed to trust the system. However, a 
programmer can easily write a program that displays the standard prompts for user ID and 
password, captures the pair entered, stores the pair in a file, displays SYSTEM ERROR; 
DISCONNECTED, and exits. This attack is a type of Trojan horse. The perpetrator sets it 
up, leaves the terminal unattended, and waits for an innocent victim to attempt a login. The 
naïve victim may not even suspect that a security breach has occurred. 
To foil this type of attack, the user should be sure the path to the system is reinitialized 
each time the system is used. On some systems, turning the terminal off and on again or 
pressing the BREAK key generates a clear signal to the computer to halt any running 
process for the terminal. (Microsoft chose <CTRLALTDELETE> as the path to the secure 
authorization mechanism for this reason.) Not every computer recognizes power-off or 
BREAK as an interruption of the current process, though. And computing systems are often 
accessed through networks, so physical reinitialization is impossible. 
Alternatively, the user can be suspicious of the computing system, just as the system is 
suspicious of the user. The user will not enter confidential data (such as a password) until 
convinced that the computing system is legitimate. Of course, the computer acknowledges 
the user only after passing the authentication process. A computing system can display 
some information known only by the user and the system. For example, the system might 
read the user's name and reply "YOUR LAST LOGIN WAS 10 APRIL AT 09:47." The user can 
verify that the date and time are correct before entering a secret password. If higher security 
is desired, the system can send an encrypted timestamp. The user decrypts this and 
discovers that the  time is current. The user then replies with an encrypted timestamp and 
password, to convince the system that a malicious intruder has not intercepted a password 
from some prior login. 

Biometrics. 

Biometrics: Authentication Not Using Passwords 
Some sophisticated authentication devices are now available. These devices include 
handprint detectors, voice recognizers, and identifiers of patterns in the retina. 
Authentication with such devices uses unforgeable physical characteristics to authenticate 
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users. The cost continues to fall as these devices are adopted by major markets; the devices 
are useful in very high security situations. In this section we consider a few of the 
approaches available. 
Biometrics are biological authenticators, based on some physical characteristic of the 
human body. The list of biometric authentication technologies is still growing. Now there 
are devices to recognize the following biometrics: fingerprints, hand geometry (shape and 
size of fingers), retina and iris (parts of the eye), voice, handwriting, blood vessels in the 
finger, and face. 
Authentication with biometrics has advantages over passwords because a biometric cannot 
be lost, stolen, forgotten, lent, or forged and is always available, always at hand, so to 
speak. 
Identification versus Authentication 
Two concepts are easily confused: identification and authentication. Biometrics are very 
reliable for authentication but much less reliable for authentication. The reason is 
mathematical. All biometric readers operate in two phases: First, a user registers with the 
reader, during which time a characteristic of the user (for example, the geometry of the 
hand) 
is captured and reduced to a template or pattern. During registration, the user may be 
asked to present the hand several times so that the registration software can adjust for 
variations, such as how the hand is positioned. Second, the user later seeks authentication 
from the system, during which time the system remeasures the hand and compares the 
new measurements with the stored template. If the new measurement is close enough to 
the template, the system accepts the authentication; otherwise, the system rejects it. Every 
template is thus a pattern of some number of measurements. 
Unless every template is unique, that is, no two people have the same measured hand 
geometry, the system cannot uniquely identify subjects. However, as long as it is unlikely 
that an imposter will have the same biometric template as the real user, the system can 
authenticate. The difference is between a system that looks at a hand geometry and says 
"this is Captain Hook" (identification) versus a man who says "I, Captain Hook, present my 
hand to prove who I am" and the system confirms "this hand matches Captain Hook's 
template" (authentication). Biometric authentication is feasible today; biometric 
identification is largely still a research topic. 
Problems with Biometrics 
There are several problems with biometrics: 

 Biometrics are relatively new, and some people find their use intrusive. Hand geometry 
and face recognition (which can be done from a camera across the room) are scarcely 
invasive, but people have real concerns about peering into a laser beam or sticking a finger 
into a slot. (See [SCH06a] for some examples of people resisting biometrics.) 

 Biometric recognition devices are costly, although as the devices become more popular, 
their costs go down. Still, outfitting every user's workstation with a reader can be expensive 
for a large company with many employees. 

 All biometric readers use sampling and establish a threshold for when a match is close 
enough to accept. The device has to sample the biometric, measure often hundreds of key 
points, and compare that set of measurements with a template. There is normal variability 
if, for example, your face is tilted, you press one side of a finger more than another, or your 
voice is affected by an infection. Variation reduces accuracy.  

 Biometrics can become a single point of failure. Consider a retail application in which a 
biometric recognition is linked to a payment scheme: As one user puts it, "If my credit card 
fails to register, I can always pull out a second card, but if my fingerprint is not recognized, 
I have only that one finger." Forgetting a password is a user's fault; failing biometric 
authentication is not. 

 Although equipment is improving, there are still false readings. We label a "false positive" 
or "false accept" a reading that is accepted when it should be rejected (that is, the 
authenticator does not match) and a "false negative" or "false reject" one that rejects when it 
should accept. Often, reducing a false positive rate increases false negatives, and vice versa. 
The consequences for a false negative are usually less than for a false positive, so an 
acceptable system may have a false positive rate of 0.001 percent but a false negative rate 
of 1 percent. 
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 The speed at which a recognition must be done limits accuracy. We might ideally like to 
take several readings and merge the results or evaluate the closest fit. But authentication is 
done to allow a user to do something: Authentication is not the end goal but a gate keeping 
the user from the goal. The user understandably wants to get past the gate and becomes 
frustrated and irritated if authentication takes too long. 

 Although we like to think of biometrics as unique parts of an individual, forgeries are 
possible. The most famous example was an artificial fingerprint produced by researchers in 
Japan [MAT02]. Although difficult and uncommon, forgery will be an issue whenever the 
reward for a false positive is high enough. Sometimes overlooked in the authentication 
discussion is that credibility is a two-sided issue: 
The system needs assurance that the user is authentic, but the user needs that same 
assurance about the system. This second issue has led to a new class of computer fraud 
called phishing, in which an unsuspecting user submits sensitive information to a 
malicious system impersonating a trustworthy one. Common targets of phishing attacks are 
banks and other financial institutions because fraudsters use the sensitive data they obtain 
from customers to take customers' money from the real institutions. We consider phishing 
in more detail in Chapter 7. 
Authentication is essential for an operating system because accurate user identification is 
the key to individual access rights. Most operating systems and computing system 
administrators have applied reasonable but stringent security measures to lock out illegal 
users before they can access system resources. But, as reported in Sidebar 4-5, sometimes 
an inappropriate mechanism is forced into use as an authentication device. 
Unit 3 :    

Database Security:  
Protecting data is at the heart of many secure systems, and many users (people, 

programs, or systems) rely on a database management system (DBMS) to manage the 
protection. For this reason, we devote this chapter to the security of database management 
systems, as an example of how application security can be designed and implemented for a 
specific task. 

There is substantial current interest in DBMS security because databases are newer 
than programming and operating systems. Databases are essential to many business and 
government organizations, holding data that reflect the organization's core competencies. 
Often, when business processes are reengineered to make them more effective and more in 
tune with new or revised goals, one of the first systems to receive careful scrutiny is the set 
of databases supporting the business processes. Thus, databases are more than software-
related repositories. Their organization and contents are considered valuable corporate 
assets that must be carefully protected. 

However, the protection provided by database management systems has had mixed 
results. Over time, we have improved our understanding of database security problems, and 
several good controls have been developed. But, as you will see, there are still more security 
concerns for which there are no available controls. 

We begin this chapter with a brief summary of database terminology. Then we 
consider the security requirements for database management systems. Two major security 
Problems integrity and secrecy are explained in a database context. We continue the 
chapter by studying two major (but related) database security problems, the inference 
problem and the multilevel problem. Both problems are complex, and there are no 
immediate solutions. 

However, by understanding the problems, we become more sensitive to ways of 
reducing potential threats to the data. Finally, we conclude the chapter by looking at data 
mining, a technology for deriving patterns from one or more databases. Data mining 
involves many of the security issues we raise in this chapter. 
Security requirements 

The basic security requirements of database systems are not unlike those of other 
computing systems we have studied. The basic problems access control, exclusion of 
spurious data, authentication of users, and reliability have appeared in many contexts so 
far in this book. Following is a list of requirements for database security. 
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 Physical database integrity. The data of a database are immune to physical problems, 
such as power failures, and someone can reconstruct the database if it is destroyed through 
a catastrophe. 

 Logical database integrity. The structure of the database is preserved. With logical 
integrity of a database, a modification to the value of one field does not affect other fields, 
for example. 

 Element integrity. The data contained in each element are accurate. 
 Auditability. It is possible to track who or what has accessed (or modified) the elements in 

the database. 
 Access control. A user is allowed to access only authorized data, and different users can 

be restricted to different modes of access (such as read or write). 
 User authentication. Every user is positively identified, both for the audit trail and for 

permission to access certain data. 
 Availability. Users can access the database in general and all the data for which they are 

authorized. 
We briefly examine each of these requirements. 

Integrity of the Database 
If a database is to serve as a central repository of data, users must be able to trust 

the accuracy of the data values. This condition implies that the database administrator 
must be assured that updates are performed only by authorized individuals. It also implies 
that the data must be protected from corruption, either by an outside illegal program action 
or by an outside force such as fire or a power failure. Two situations can affect the integrity 
of a database: when the whole database is damaged (as happens, for example, if its storage 
medium is damaged) or when individual data items are unreadable. 

Integrity of the database as a whole is the responsibility of the DBMS, the operating 
system, and the (human) computing system manager. From the perspective of the operating 
system and the computing system manager, databases and DBMSs are files and programs, 
respectively. Therefore, one way of protecting the database as a whole is to regularly back 
up all files on the system. These periodic backups can be adequate controls against 
catastrophic failure. 

Sometimes it is important to be able to reconstruct the database at the point of a 
failure. For instance, when the power fails suddenly, a bank's clients may be in the middle 
of making transactions or students may be in the midst of registering online for their 
classes. In these cases, we want to be able to restore the systems to a stable point without 
forcing users to redo their recently completed transactions. To handle these situations, the 
DBMS must maintain a log of transactions. For example, suppose the banking system is 
designed so that a message is generated in a log (electronic or paper or both) each time a 
transaction is processed. In the event of a system failure, the system can obtain accurate 
account balances by reverting to a backup copy of the database and reprocessing all later 
transactions from the log. 

Element Integrity 
The integrity of database elements is their correctness or accuracy. Ultimately, 

authorized users are responsible for entering correct data into databases. However, users 
and programs make mistakes collecting data, computing results, and entering values. 
Therefore, DBMSs sometimes take special action to help catch errors as they are made and 
to correct errors after they are inserted. 

This corrective action can be taken in three ways. First, the DBMS can apply field 
checks, activities that test for appropriate values in a position. A field might be required to 
be numeric, an uppercase letter, or one of a set of acceptable characters. The check ensures 
that a value falls within specified bounds or is not greater than the sum of the values in two 
other fields. These checks prevent simple errors as the data are entered. (Sidebar 6-1 
demonstrates the importance of element integrity.) 

A second integrity action is provided by access control. To see why, consider life 
without databases. Data files may contain data from several sources, and redundant data 
may be stored in several different places. For example, a student's home address may be 
stored in many different campus files: at class registration, for dining hall privileges, at the 
bookstore, and in the financial aid office. Indeed, the student may not even be aware that 
each separate office has the address on file. If the student moves from one residence to 
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another, each of the separate files requires correction. Without a database, there are several 
risks to the data's integrity. First, at a given time, there could be some data files with the 
old address (they have not yet been updated) and some simultaneously with the new 
address (they have already been updated). Second, there is always the possibility that the 
data fields were changed incorrectly, again leading to files with incorrect information. Third, 
there may be files of which the student is unaware, so he or she does not know to notify the 
file owner about updating the address information. These problems are solved by 
databases. They enable collection and control of this data at one central source, ensuring 
the student and users of having the correct address. 

However, the centralization is easier said than done. Who owns this shared central 
file? Who has authorization to update which elements? What if two people apply conflicting 
modifications? What if modifications are applied out of sequence? How are duplicate 
records detected? What action is taken when duplicates are found? These are policy 
questions that must be resolved by the database administrator. Sidebar 6-2 describes how 
these issues are addressed for managing the configuration of programs; similar formal 
processes are needed for managing changes in databases. 

The third means of providing database integrity is maintaining a change log for the 
database. A change log lists every change made to the database; it contains both original 
and modified values. Using this log, a database administrator can undo any changes that 
were made in error. For example, a library fine might erroneously be posted against Charles 
W. Robertson, instead of Charles M. Robertson, flagging Charles W. Robertson as ineligible 
to participate in varsity athletics. Upon discovering this error, the database administrator 
obtains Charles W.'s original eligibility value from the log and corrects the database. 

Auditability 
For some applications it may be desirable to generate an audit record of all access 

(read or write) to a database. Such a record can help to maintain the database's integrity, or 
at least to discover after the fact who had affected which values and when. A second 
advantage, as we see later, is that users can access protected data incrementally; that is, no 
single access reveals protected data, but a set of sequential accesses viewed together reveals 
the data, much like discovering the clues in a detective novel. In this case, an audit trail 
can identify which clues a user has already been given, as a guide to whether to tell the 
user more. 

As we noted in Chapters 4 and 5, granularity becomes an impediment in auditing. 
Audited events in operating systems are actions like open file or call procedure; they are 
seldom as specific as write record 3 or execute instruction I. To be useful for maintaining 
integrity, database audit trails should include accesses at the record, field, and even 
element levels. 

This detail is prohibitive for most database applications. Furthermore, it is possible 
for a record to be accessed but not reported to a user, as when the user performs a select 
operation. (Accessing a record or an element without transferring to the user the data 
received is called the pass-through problem.) Also, you can determine the values of some 
elements without accessing them directly. (For example, you can ask for the average salary 
in a group of employees when you know the number of employees in the group is only one.) 
Thus, a log of all records accessed directly may both overstate and understate what a user 
actually knows. 

Access Control 
Databases are often separated logically by user access privileges. For example, all 

users can be granted access to general data, but only the personnel department can obtain 
salary data and only the marketing department can obtain sales data. Databases are very 
useful because they centralize the storage and maintenance of data. Limited access is both 
a responsibility and a benefit of this centralization. 

The database administrator specifies who should be allowed access to which data, at 
the view, relation, field, record, or even element level. The DBMS must enforce this policy, 
granting access to all specified data or no access where prohibited. Furthermore, the 
number of modes of access can be many. A user or program may have the right to read, 
change, delete, or append to a value, add or delete entire fields or records, or reorganize the 
entire database. 
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Superficially, access control for a database seems like access control for operating 
systems or any other component of a computing system. However, the database problem is 
more complicated, as we see throughout this chapter. Operating system objects, such as 
files, are unrelated items, whereas records, fields, and elements are related. Although a 
user cannot determine the contents of one file by reading others, a user might be able to 
determine one data element just by reading others. The problem of obtaining data values 
from others is called inference, and we consider it in depth later in this chapter. 

It is important to notice that you can access data by inference without needing 
direct access to the secure object itself. Restricting inference may mean prohibiting certain 
paths to prevent possible inferences. However, restricting access to control inference also 
limits queries from users who do not intend unauthorized access to values. Moreover, 
attempts to check requested accesses for possible unacceptable inferences may actually 
degrade the DBMS's performance. 

Finally, size or granularity is different between operating system objects and 
database objects. An access control list of several hundred files is much easier to implement 
than an access control list for a database with several hundred files of perhaps a hundred 
fields each. 

Size affects the efficiency of processing. 

User Authentication 
The DBMS can require rigorous user authentication. For example, a DBMS might 

insist that a user pass both specific password and time-of-day checks. This authentication 
supplements the authentication performed by the operating system. Typically, the DBMS 
runs as an application program on top of the operating system. This system design means 
that there is no trusted path from the DBMS to the operating system, so the DBMS must be 
suspicious of any data it receives, including user authentication. Thus, the DBMS is forced 
to do its own authentication. 

Availability 
A DBMS has aspects of both a program and a system. It is a program that uses 

other hardware and software resources, yet to many users it is the only application run. 
Users often take the DBMS for granted, employing it as an essential tool with which to 
perform particular tasks. But when the system is not available busy serving other users or 
down to be repaired or upgraded the users are very aware of a DBMS's unavailability. For 
example, two users may request the same record, and the DBMS must arbitrate; one user is 
bound to be denied access for a while. Or the DBMS may withhold unprotected data to 
avoid revealing protected data, leaving the requesting user unhappy. We examine these 
problems in more detail later in this chapter. Problems like these result in high availability 
requirements for a DBMS. 

Integrity/Confidentiality/Availability 
The three aspects of computer security integrity, confidentiality, and availability 

clearly relate to database management systems. As we have described, integrity applies to 
the individual elements of a database as well as to the database as a whole. Thus, integrity 
is a major concern in the design of database management systems. We look more closely at 
integrity issues in the next section. 

Confidentiality is a key issue with databases because of the inference problem, 
whereby a user can access sensitive data indirectly. Inference and access control are 
covered later in this chapter. 

Finally, availability is important because of the shared access motivation underlying 
database development. However, availability conflicts with confidentiality. The last sections 
of the chapter address availability in an environment in which confidentiality is also 
important. 

Reliability and integrity 
Databases amalgamate data from many sources, and users expect a DBMS to 

provide access to the data in a reliable way. When software engineers say that software has 
reliability, they mean that the software runs for very long periods of time without failing. 
Users certainly expect a DBMS to be reliable, since the data usually are key to business or 
organizational needs. Moreover, users entrust their data to a DBMS and rightly expect it to 
protect the data from loss or damage. Concerns for reliability and integrity are general 
security issues, but they are more apparent with databases. 
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A DBMS guards against loss or damage in several ways that we study them in this 
section. However, the controls we consider are not absolute: No control can prevent an 
authorized user from inadvertently entering an acceptable but incorrect value. 
Database concerns about reliability and integrity can be viewed from three dimensions: 

 Database integrity: concern that the database as a whole is protected against damage, as 
from the failure of a disk drive or the corruption of the master database index. These 
concerns are addressed by operating system integrity controls and recovery procedures. 

 Element integrity: concern that the value of a specific data element is written or changed 
only by authorized users. Proper access controls protect a database from corruption by 
unauthorized users. 

 Element accuracy: concern that only correct values are written into the elements of a 
database. Checks on the values of elements can help prevent insertion of improper values. 
Also, constraint conditions can detect incorrect values. 

Protection Features from the Operating System 
In Chapter 4 we discussed the protection an operating system provides for its users. 

A responsible system administrator backs up the files of a database periodically along with 
other user files. The files are protected during normal execution against outside access by 
the operating system's standard access control facilities. Finally, the operating system 
performs certain integrity checks for all data as a part of normal read and write operations 
for I/O devices. These controls provide basic security for databases, but the database 
manager must enhance them. 

Two-Phase Update 
A serious problem for a database manager is the failure of the computing system in 

the middle of modifying data. If the data item to be modified was a long field, half of the field 
might show the new value, while the other half would contain the old. Even if errors of this 
type were spotted easily (which they are not), a more subtle problem occurs when several 
fields are updated and no single field appears to be in obvious error. The solution to this 
problem, proposed first by Lampson and Sturgis [LAM76] and adopted by most DBMSs, 
uses a two-phase update. 
Update Technique 

During the first phase, called the intent phase, the DBMS gathers the resources it 
needs to perform the update. It may gather data, create dummy records, open files, lock out 
other users, and calculate final answers; in short, it does everything to prepare for the 
update, but it makes no changes to the database. The first phase is repeatable an unlimited 
number of times because it takes no permanent action. If the system fails during execution 
of the first phase, no harm is done because all these steps can be restarted and repeated 
after the system resumes processing. 

The last event of the first phase, called committing, involves the writing of a commit 
flag to the database. The commit flag means that the DBMS has passed the point of no 
return: 

After committing, the DBMS begins making permanent changes. The second phase 
makes the permanent changes. During the second phase, no actions from before the 
commit can be repeated, but the update activities of phase two can also be repeated as 
often as needed. If the system fails during the second phase, the database may contain 
incomplete data, but the system can repair these data by performing all activities of the 
second phase. After the second phase has been completed, the database is again complete. 
Two-Phase Update Example 

Suppose a database contains an inventory of a company's office supplies. The 
company's central stockroom stores paper, pens, paper clips, and the like, and the different 
departments requisition items as they need them. The company buys in bulk to obtain the 
best prices. Each department has a budget for office supplies, so there is a charging 
mechanism by which the cost of supplies is recovered from the department. Also, the 
central stockroom monitors quantities of supplies on hand so as to order new supplies 
when the stock becomes low. 

Suppose the process begins with a requisition from the accounting department for 
50 boxes of paper clips. Assume that there are 107 boxes in stock and a new order is placed 
if the quantity in stock ever falls below 100. Here are the steps followed after the stockroom 
receives the requisition. 
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1. The stockroom checks the database to determine that 50 boxes of paper clips are on 
hand. If not, the requisition is rejected and the transaction is finished. 
2. If enough paper clips are in stock, the stockroom deducts 50 from the inventory figure in 
the database (107 - 50 = 57). 
3. The stockroom charges accounting's supplies budget (also in the database) for 50 boxes 
of paper clips. 
4. The stockroom checks its remaining quantity on hand (57) to determine whether the 
remaining quantity is below the reorder point. Because it is, a notice to order more paper 
clips is generated, and the item is flagged as "on order" in the database. 
5. A delivery order is prepared, enabling 50 boxes of paper clips to be sent to accounting.  

All five of these steps must be completed in the order listed for the database to be 
accurate and for the transaction to be processed correctly. Suppose a failure occurs while 
these steps are being processed. If the failure occurs before step 1 is complete, there is no 
harm because the entire transaction can be restarted. 

However, during steps 2, 3, and 4, changes are made to elements in the database. If 
a failure occurs then, the values in the database are inconsistent. Worse, the transaction 
cannot be reprocessed because a requisition would be deducted twice, or a department 
would be charged twice, or two delivery orders would be prepared. 

When a two-phase commit is used, shadow values are maintained for key data 
points. A shadow data value is computed and stored locally during the intent phase, and it 
is copied to the actual database during the commit phase. The operations on the database 
would be performed as follows for a two-phase commit. 
Intent: 
1. Check the value of COMMIT-FLAG in the database. If it is set, this phase cannot be 
performed. Halt or loop, checking COMMIT-FLAG until it is not set. 
2. Compare number of boxes of paper clips on hand to number requisitioned; if more are 
requisitioned than are on hand, halt. 
3. Compute TCLIPS = ONHAND - REQUISITION. 
4. Obtain BUDGET, the current supplies budget remaining for accounting department. 
Compute TBUDGET = BUDGET - COST, where COST is the cost of 50 boxes of clips. 
5. Check whether TCLIPS is below reorder point; if so, set TREORDER = TRUE; else set 
TREORDER = FALSE. 
Commit: 
1. Set COMMIT-FLAG in database. 
2. Copy TCLIPS to CLIPS in database. 
3. Copy TBUDGET to BUDGET in database. 
4. Copy TREORDER to REORDER in database. 
5. Prepare notice to deliver paper clips to accounting department. Indicate transaction 
completed in log. 
6. Unset COMMIT-FLAG. 

With this example, each step of the intent phase depends only on unmodified values 
from the database and the previous results of the intent phase. Each variable beginning 
with T is a shadow variable used only in this transaction. The steps of the intent phase can 
be repeated an unlimited number of times without affecting the integrity of the database. 

Once the DBMS begins the commit phase, it writes a commit flag. When this flag is 
set, the DBMS will not perform any steps of the intent phase. Intent steps cannot be 
performed after committing because database values are modified in the commit phase. 
Notice, however, that the steps of the commit phase can be repeated an unlimited number 
of times, again with no negative effect on the correctness of the values in the database. 

The one remaining flaw in this logic occurs if the system fails after writing the 
"transaction complete" message in the log but before clearing the commit flag in the 
database. It is a simple matter to work backward through the transaction log to find 
completed transactions for which the commit flag is still set and to clear those flags. 

Redundancy/Internal Consistency 
Many DBMSs maintain additional information to detect internal inconsistencies in 

data. The additional information ranges from a few check bits to duplicate or shadow fields, 
depending on the importance of the data. 
Error Detection and Correction Codes 
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One form of redundancy is error detection and correction codes, such as parity bits, 
Hamming codes, and cyclic redundancy checks. These codes can be applied to single fields, 
records, or the entire database. Each time a data item is placed in the database, the 
appropriate check codes are computed and stored; each time a data item is retrieved, a 
similar check code is computed and compared to the stored value. If the values are 
unequal, they signify to the DBMS that an error has occurred in the database. Some of 
these codes point out the place of the error; others show precisely what the correct value 
should be. The more information provided, the more space required to store the codes. 
Shadow Fields 

Entire attributes or entire records can be duplicated in a database. If the data are 
irreproducible, this second copy can provide an immediate replacement if an error is 
detected. 

Obviously, redundant fields require substantial storage space. 

Recovery 
In addition to these error correction processes, a DBMS can maintain a log of user 

accesses, particularly changes. In the event of a failure, the database is reloaded from a 
backup copy and all later changes are then applied from the audit log. 

Concurrency/Consistency 
Database systems are often multiuser systems. Accesses by two users sharing the 

same database must be constrained so that neither interferes with the other. Simple locking 
is done by the DBMS. If two users attempt to read the same data item, there is no conflict 
because both obtain the same value. 

If both users try to modify the same data items, we often assume that there is no 
conflict because each knows what to write; the value to be written does not depend on the 
previous value of the data item. However, this supposition is not quite accurate. 

To see how concurrent modification can get us into trouble, suppose that the 
database consists of seat reservations for a particular airline flight. Agent A, booking a seat 
for passenger Mock, submits a query to find which seats are still available. The agent knows 
that Mock prefers a right aisle seat, and the agent finds that seats 5D, 11D, and 14D are 
open. At the same time, Agent B is trying to book seats for a family of three traveling 
together. In response to a query, the database indicates that 8ABC and 11DEF are the two 
remaining groups of three adjacent unassigned seats. Agent A submits the update 
command  
SELECT (SEAT-NO = '11D') 
ASSIGN 'MOCK,E' TO PASSENGER-NAME 
while Agent B submits the update sequence 
SELECT (SEAT-NO = '11D') 
ASSIGN 'EHLERS,P' TO PASSENGER-NAME 
as well as commands for seats 11E and 11F. Then two passengers have been booked into 
the same seat (which would be uncomfortable, to say the least). 

Both agents have acted properly: Each sought a list of empty seats, chose one seat 
from the list, and updated the database to show to whom the seat was assigned. The 
difficulty in this situation is the time delay between reading a value from the database and 
writing a modification of that value. During the delay time, another user has accessed the 
same data. 

To resolve this problem, a DBMS treats the entire query update cycle as a single 
atomic operation. The command from the agent must now resemble "read the current value 
of seat PASSENGER-NAME for seat 11D; if it is 'UNASSIGNED', modify it to 'MOCK,E' (or 
'EHLERS,P')." 
The read modify cycle must be completed as an uninterrupted item without allowing any 
other users access to the PASSENGER-NAME field for seat 11D. The second agent's request 
to book would not be considered until after the first agent's had been completed; at that 
time, the value of PASSENGERNAME would no longer be 'UNASSIGNED'. 

A final problem in concurrent access is readwrite. Suppose one user is updating a 
value when a second user wishes to read it. If the read is done while the write is in 
progress, the reader may receive data that are only partially updated. Consequently, the 
DBMS locks any read requests until a write has been completed. 

Monitors 
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The monitor is the unit of a DBMS responsible for the structural integrity of the 
database. A monitor can check values being entered to ensure their consistency with the 
rest of the database or with characteristics of the particular field. For example, a monitor 
might reject alphabetic characters for a numeric field. We discuss several forms of monitors. 
Range Comparisons 

A range comparison monitor tests each new value to ensure that the value is within 
an acceptable range. If the data value is outside the range, it is rejected and not entered 
into the database. For example, the range of dates might be 131, "/," 112, "/," 19002099. 
An even more sophisticated range check might limit the day portion to 130 for months with 
30 days, or it might take into account leap year for February. 

Range comparisons are also convenient for numeric quantities. For example, a 
salary field might be limited to $200,000, or the size of a house might be constrained to be 
between 500 and 5,000 square feet. Range constraints can also apply to other data having a 
predictable form. 

Range comparisons can be used to ensure the internal consistency of a database. 
When used in this manner, comparisons are made between two database elements. For 
example, a grade level from K8 would be acceptable if the record described a student at an 
elementary school, whereas only 912 would be acceptable for a record of a student in high 
school. Similarly, a person could be assigned a job qualification score of 75100 only if the 
person had completed college or had had at least ten years of work experience. Filters or 
patterns are more general types of data form checks. These can be used to verify that an 
automobile plate is two letters followed by four digits, or the sum of all digits of a credit card 
number is a multiple of 9. 

Checks of these types can control the data allowed in the database. They can also be 
used to test existing values for reasonableness. If you suspect that the data in a database 
have been corrupted, a range check of all records could identify those having suspicious 
values. 
State Constraints 

State constraints describe the condition of the entire database. At no time should 
the database values violate these constraints. Phrased differently, if these constraints are 
not met, some value of the database is in error. 

In the section on two-phase updates, we saw how to use a commit flag, which is set 
at the start of the commit phase and cleared at the completion of the commit phase. The 
commit flag can be considered a state constraint because it is used at the end of every 
transaction for which the commit flag is not set. Earlier in this chapter, we described a 
process to reset the commit flags in the event of a failure after a commit phase. In this way, 
the status of the commit flag is an integrity constraint on the database. 

For another example of a state constraint, consider a database of employees' 
classifications. At any time, at most one employee is classified as "president." Furthermore, 
each employee has an employee number different from that of every other employee. If a 
mechanical or software failure causes portions of the database file to be duplicated, one of 
these uniqueness constraints might be violated. By testing the state of the database, the 
DBMS could identify records with duplicate employee numbers or two records classified as 
"president." 
Transition Constraints 

State constraints describe the state of a correct database. Transition constraints 
describe conditions necessary before changes can be applied to a database. For example, 
before a new employee can be added to the database, there must be a position number in 
the database with status "vacant." (That is, an empty slot must exist.) Furthermore, after 
the employee is added, exactly one slot must be changed from "vacant" to the number of the 
new employee. 

Simple range checks and filters can be implemented within most database 
management systems. However, the more sophisticated state and transition constraints can 
require special procedures for testing. Such user-written procedures are invoked by the 
DBMS each time an action must be checked. 
Sensitive data 
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Some databases contain what is called 
sensitive data. As a working definition, let us say 
that sensitive data are data that should not be 
made public. Determining which data items and 
fields are sensitive depends both on the individual 
database and the underlying meaning of the data. 
Obviously, some databases, such as a public 
library catalog, contain no sensitive data; other 
databases, such as defense-related ones, are 
totally sensitive. These two cases nothing sensitive 
and everything sensitive are the easiest to handle 
because they can be covered by access controls to 
the database as a whole. Someone either is or is 
not an authorized user. 

These controls are provided by the 
operating system. The more difficult problem, 
which is also the more interesting one, is the case 
in which some but not all of the elements in the 
database are sensitive. There may be varying 
degrees of sensitivity. For example, a university 
database might contain student data consisting of 
name, financial aid, dorm, drug use, sex, parking fines, and race. An example of this 
database is shown in Table 6-6. Name and dorm are probably the least sensitive; financial 
aid, parking fines, and drug use the most; sex and race somewhere in between. That is, 
many people may have legitimate access to name, some to sex and race, and relatively few 
to financial aid, parking fines, or drug use. Indeed, knowledge of the existence of some 
fields, such as drug use, may itself be sensitive. Thus, security concerns not only the data 
elements but also their context and meaning. 

Furthermore, we must take into account different degrees of sensitivity. For 
instance, although they are all highly sensitive, the financial aid, parking fines, and drug-
use fields may not have the same kinds of access restrictions. Our security requirements 
may demand that a few people be authorized to see each field, but no one be authorized to 
see all three. The challenge of the access control problem is to limit users' access so that 
they can obtain only the data to which they have legitimate access. Alternatively, the access 
control problem forces us to ensure that sensitive data are not to be released to 
unauthorized people. 
Several factors can make data sensitive. 

 Inherently sensitive. The value itself may be so revealing that it is sensitive. Examples are 
the locations of defensive missiles or the median income of barbers in a town with only one 
barber. 

 From a sensitive source. The source of the data may indicate a need for confidentiality. An 
example is information from an informer whose identity would be compromised if the 
information were disclosed. 

 Declared sensitive. The database administrator or the owner of the data may have 
declared the data to be sensitive. Examples are classified military data or the name of the 
anonymous donor of a piece of art. 

 Part of a sensitive attribute or a sensitive record. In a database, an entire attribute or 
record may be classified as sensitive. Examples are the salary attribute of a personnel 
database or a record describing a secret space mission. 

 Sensitive in relation to previously disclosed information. Some data become sensitive in the 
presence of other data. For example, the longitude coordinate of a secret gold mine reveals 
little, but the longitude coordinate in conjunction with the latitude coordinate pinpoints the 
mine. 

All of these factors must be considered to determine the sensitivity of the data. 

Access Decisions 
Remember that a database administrator is a person who decides what data should 

be in the database and who should have access to it. The database administrator considers 
the need for different users to know certain information and decides who should have what 
access. 
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Decisions of the database administrator are based on an access policy.  The 
database manager or DBMS is a program that operates on the database and auxiliary 
control information to implement the decisions of the access policy. We say that the 
database manager decides to permit user x to access data y. Clearly, a program or machine 
cannot decide anything; it is more precise to say that the program performs the instructions 
by which x accesses y as a way of implementing the policy established by the database 
administrator. (Now you see why we use the simpler wording.) To keep explanations 
concise, we occasionally describe programs as if they can carry out human thought 
processes. 

The DBMS may consider several factors when deciding whether to permit an access. 
These factors include availability of the data, acceptability of the access, and authenticity of 
the user. We expand on these three factors below. 
Availability of Data 

One or more required elements may be inaccessible. For example, if a user is 
updating several fields, other users' accesses to those fields must be blocked temporarily. 
This blocking ensures that users do not receive inaccurate information, such as a new 
street address with an old city and state, or a new code component with old documentation. 
Blocking is usually temporary. When performing an update, a user may have to block 
access to several fields or several records to ensure the consistency of data for others. 

Notice, however, that if the updating user aborts the transaction while the update is 
in progress, the other users may be permanently blocked from accessing the record. This 
indefinite postponement is also a security problem, resulting in denial of service. 
Acceptability of Access 

One or more values of the record may be sensitive and not accessible by the general 
user. A DBMS should not release sensitive data to unauthorized individuals. Deciding what 
is sensitive, however, is not as simple as it sounds, because the fields may not be directly 
requested. A user may have asked for certain records that contain sensitive data, but the 
user's purpose may have been only to project the values from particular fields that are not 
sensitive. For example, a user of the database shown in Table 6-6 may request the NAME 
and DORM of any student for whom FINES is not 0. The exact value of the sensitive field 
FINES is not disclosed, although "not 0" is a partial disclosure. Even when a sensitive value 
is not explicitly given, the database manager may deny access on the grounds that it reveals 
information the user is not authorized to have. 

Alternatively, the user may want to derive a nonsensitive statistic from the sensitive 
data; for example, if the average financial aid value does not reveal any individual's 
financial aid value, the database management system can safely return the average. 
However, the average of one data value discloses that value. 
Assurance of Authenticity 

Certain characteristics of the user external to the database may also be considered 
when permitting access. For example, to enhance security, the database administrator may 
permit someone to access the database only at certain times, such as during working 
hours. Previous user requests may also be taken into account; repeated requests for the 
same data or requests that exhaust a certain category of information may be used to find 
out all elements in a set when a direct query is not allowed. As we shall see, sensitive data 
can sometimes be revealed by combined results from several less sensitive queries. 

Types of Disclosures 
Data can be sensitive, but so can their characteristics. In this section, we see that 

even descriptive information about data (such as their existence or whether they have an 
element that is zero) is a form of disclosure. 
Exact Data 

The most serious disclosure is the exact value of a sensitive data item itself. The user 
may know that sensitive data are being requested, or the user may request general data 
without knowing that some of it is sensitive. A faulty database manager may even deliver 
sensitive data by accident, without the user's having requested it. In all of these cases the 
result is the same: The security of the sensitive data has been breached. 
Bounds 

Another exposure is disclosing bounds on a sensitive value; that is, indicating that a 
sensitive value, y, is between two values, L and H. Sometimes, by using a narrowing 
technique not unlike the binary search, the user may first determine that L y H and then 
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see whether L y H/2, and so forth, thereby permitting the user to determine y to any 
desired precision. 

In another case, merely revealing that a value such as the athletic scholarship 
budget or the number of CIA agents exceeds a certain amount may be a serious breach of 
security. 

Sometimes, however, bounds are a useful way to present sensitive data. It is 
common to release upper and lower bounds for data without identifying the specific 
records. For example, a company may announce that its salaries for programmers range 
from $50,000 to $82,000. If you are a programmer earning $79,700, you can presume that 
you are fairly well off, so you have the information you want; however, the announcement 
does not disclose who are the highest- and lowest-paid programmers. 
Negative Result 

Sometimes we can word a query to determine a negative result. That is, we can learn 
that z is not the value of y. For example, knowing that 0 is not the total number of felony 
convictions for a person reveals that the person was convicted of a felony. The distinction 
between 1 and 2 or 46 and 47 felonies is not as sensitive as the distinction between 0 and 
1. 

Therefore, disclosing that a value is not 0 can be a significant disclosure. Similarly, 
if a student does not appear on the honors list, you can infer that the person's grade point 
average is below 3.50. This information is not too revealing, however, because the range of 
grade point averages from 0.0 to 3.49 is rather wide. 
Existence 

In some cases, the existence of data is itself a sensitive piece of data, regardless of 
the actual value. For example, an employer may not want employees to know that their use 
of long distance telephone lines is being monitored. In this case, discovering a LONG 
DISTANCE field in a personnel file would reveal sensitive data. 
Probable Value 

Finally, it may be possible to determine the probability that a certain element has a 
certain value. To see how, suppose you want to find out whether the president of the United 
States is registered in the Tory party. Knowing that the president is in the database, you 
submit two queries to the database: 

How many people have 1600 Pennsylvania Avenue as their official residence? 
(Response: 4) How many people have 1600 Pennsylvania Avenue as their official residence 
and have YES as the value of TORY? (Response: 1) From these queries you conclude there 
is a 25 percent likelihood that the president is a registered Tory. 
Summary of Partial Disclosure 
We have seen several examples of how a security problem can result if characteristics of 
sensitive data are revealed. Notice that some of the techniques we presented used 
information about the data, rather than direct access to the data, to infer sensitive results. 
A successful security strategy must protect from both direct and indirect disclosure. 

Security versus Precision 
Our examples have illustrated 

how difficult it is to determine which 
data are sensitive and how to protect 
them. The situation is complicated by a 
desire to share nonsensitive data. For 
reasons of confidentiality we want to 
disclose only those data that are not 
sensitive. Such an outlook encourages a 
conservative philosophy in determining 
what data to disclose: less is better than 
more. 

On the other hand, consider the 
users of the data. The conservative 
philosophy suggests rejecting any query 
that mentions a sensitive field. We may 
thereby reject many reasonable and 
nondisclosing queries. For example, a 
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researcher may want a list of grades for all students 
using drugs, or a statistician may request lists of salaries for all men and for all women. 
These queries probably do not compromise the identity of any individual. We want to 
disclose as much data as possible so that users of the database have access to the data 
they need. This goal, called precision, aims to protect all sensitive data while revealing as 
much nonsensitive data as possible. 

We can depict the relationship between security and precision with concentric 
circles. As Figure 6-3 shows, the sensitive data in the central circle should be carefully 
concealed. The outside band represents data we willingly disclose in response to queries. 
But we know that the user may put together pieces of disclosed data and infer other, more 
deeply hidden, data. 

The figure shows us that beneath the outer layer may be yet more nonsensitive data 
that the user cannot infer. 

The ideal combination of security and precision allows us to maintain perfect 
confidentiality with maximum precision; in other words, we disclose all and only the 
nonsensitive data. But achieving this goal is not as easy as it might seem, as we show in the 
next section. Sidebar 6-3 gives an example of using imprecise techniques to improve 
accuracy. In the next section, we consider ways in which sensitive data can be obtained 
from queries that appear harmless. 

Inference 
Inference is a way to infer or derive sensitive data from nonsensitive data. The 

inference problem is a subtle vulnerability in database security. The database in Table 6-7 
can help illustrate the inference problem. Recall that AID is the amount of financial aid a 
student is receiving. FINES is the amount of parking fines still owed. 

DRUGS is the result of a drug-use survey: 0 means never used and 3 means 
frequent user. Obviously this information should be kept confidential. We assume that AID, 
FINES, and DRUGS are sensitive fields, although 
only when the values are related to a specific 
individual. In this section, we look at ways to 
determine sensitive data values from the 
database. 

Direct Attack 
In a direct attack, a user tries to 

determine values of sensitive fields by seeking 
them directly with queries that yield few records. 
The most successful technique is to form a query 
so specific that it matches exactly one data item. 
In Table 6-7, a sensitive query might be List 
NAME where SEX=M DRUGS=1 

This query discloses that for record 
ADAMS, DRUGS=1. However, it is an obvious 
attack because it selects people for whom 
DRUGS=1, and the DBMS might reject the query 
because it selects records for a specific value of 
the sensitive attribute DRUGS. 

A less obvious query is 
List NAME where (SEX=M && DRUGS=1)|| 
(SEX!= M && SEX!= F)|| (DORM=AYRES) 

On the surface, this query looks as if it should conceal drug usage by selecting other 
non-drug-related records as well. However, this query still retrieves only one record, 
revealing a name that corresponds to the sensitive DRUG value. The DBMS needs to know 
that SEX has only two possible values so that the second clause will select no records. Even 
if that were possible, the DBMS would also need to know that no records exist with 
DORM=AYRES, even though AYRES might in fact be an acceptable value for DORM. 

Organizations that publish personal statistical data, such as the U.S. Census 
Bureau, do not reveal results when a small number of people make up a large proportion of 
a category. The rule of "n items over k percent" means that data should be withheld if n 
items represent over k percent of the result reported. In the previous case, the one person 
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selected represents 100 percent of the data reported, so there would be no ambiguity about 
which person matches the query. 

Indirect Attack 
Another procedure, used by the U.S. Census Bureau and other organizations that 

gather sensitive data, is to release only statistics. The organizations suppress individual 
names, addresses, or other characteristics by which a single individual can be recognized. 
Only neutral statistics, such as sum, count, and mean, are released. 

The indirect attack seeks to infer a final result based on one or more intermediate 
statistical results. But this approach requires work outside the database itself. In 
particular, a statistical attack seeks to use some apparently anonymous statistical measure 
to infer individual data. In the following sections, we present several examples of indirect 
attacks on databases that report statistics. 
Sum 

An attack by sum tries to infer 
a value from a reported sum. For 
example, with the sample database in 
Table 6-7, it might seem safe to report 
student aid total by sex and dorm. 
Such a report is shown in Table 6-8. 
This seemingly innocent report 
reveals that no female living in Grey is 
receiving financial aid. Thus, we can 
infer that any female living in Grey (such as Liu) is 
certainly not receiving financial aid. This approach often allows us to determine a negative 
result. 
Count 

The count can be combined with the sum to produce some even more revealing 
results. Often these two statistics are released for a database to allow users to determine 
average values. (Conversely, if count and mean are released, sum can be deduced.) 

Table 6-9 shows the count of 
records for students by dorm and sex. 
This table is innocuous by itself. 
Combined with the sum table, however, 
this table demonstrates that the two 
males in Holmes and West are receiving 
financial aid in the amount of $5000 
and $4000,  respectively. We can obtain 
the names by selecting the subschema 
of NAME, DORM, which is not sensitive because it delivers only low-security data on the 
entire database. 
Mean 

The arithmetic mean (average) allows exact disclosure if the attacker can manipulate 
the subject population. As a trivial 
example, consider salary. Given the 
number of employees, the mean salary 
for a company and the mean salary of 
all employees except the president, it is 
easy to compute the president's salary. 
Median 

By a slightly more complicated 
process, we can determine an individual 
value from medians. The attack requires 
finding selections having one point of 
intersection that happens to be exactly 
in the middle, as shown in Figure 6-4. 

For example, in our sample 
database, there are five males and three 
persons whose drug use value is 2. 
Arranged in order of aid, these lists are 
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shown in Table 6-10. Notice that Majors is the only name common to both lists, and 
conveniently that name is in the middle of each list. 

Someone working at the Health Clinic might be able to find out that Majors is a 
white male whose drug-use score is 2. That information identifies Majors as the intersection 
of these two lists and pinpoints Majors' financial aid as $2000. In this example, the queries  
q = median(AID where SEX = M) 
p = median(AID where DRUGS = 2) 
reveal the exact financial aid amount for Majors. 
Tracker Attacks 

As already explained, database management systems may conceal data when a 
small number of entries make up a large proportion of the data revealed. A tracker attack 
can fool the database manager into locating the desired data by using additional queries 
that produce small results. The tracker adds additional records to be retrieved for two 
different queries; the two sets of records cancel each other out, leaving only the statistic or 
data desired. The approach is to use intelligent padding of two queries. In other words, 
instead of trying to identify a unique value, we request n - 1 other values (where there are n 
values in the database). Given n and n - 1, we can easily compute the desired single 
element. 

For instance, suppose we wish to know how many female Caucasians live in Holmes 
Hall. A query posed might be 

To see how, use basic algebra to note that q1 - q2 = c3 + c5, and q3 - q4 = c3 - c5. Then,  
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subtracting these two equations, we obtain c5 = ((q1 - q2) - (q3 - q4))/2. Once we know c5, we 
can derive the others. 

The result of the query is a set of records. Using logic and set algebra in a manner 
similar to our numerical example, we can carefully determine the actual values for each of 
the si. 
Controls for Statistical Inference Attacks 

Denning and Schlörer [DEN83a] present a very good survey of techniques for 
maintaining security in databases. The controls for all statistical attacks are similar. 
Essentially, there are two ways to protect against inference attacks: Either controls are 
applied to the queries or controls are applied to individual items within the database. As we 
have seen, it is difficult to determine whether a given query discloses sensitive data. Thus, 
query controls are effective primarily against direct attacks. 

Suppression and concealing are two controls applied to data items. With 
suppression, sensitive data values are not provided; the query is rejected without response. 
With concealing, the answer provided is close to but not exactly the actual value. 

These two controls reflect the contrast between security and precision. With 
suppression, any results provided are correct, yet many responses must be withheld to 
maintain security. 

With concealing, more results can be 
provided, but the precision of the results is lower. 
The choice between suppression and concealing 
depends on the context of the database. 

Examples of suppression and concealing 
follow. 
Limited Response Suppression 

The n-item k-percent rule eliminates certain 
low-frequency elements from being displayed. It is 
not sufficient to delete them, however, if their 
values can also be inferred. To see why, consider Table 6-11, which shows counts of 
students by dorm and sex. 

The data in this table 
suggest that the cells with counts 
of 1 should be suppressed; their 
counts are too revealing. But it 
does no good to suppress the 
MaleHolmes cell when the value 
1 can be determined by 
subtracting FemaleHolmes (2) 
from the total (3) to determine 1, as 
shown in Table 6-12. 

 
When one cell is suppressed in a table with totals for rows and columns, it is 

necessary to suppress at least one additional cell on the row and one on the column to 
provide some confusion. Using this logic, all cells (except totals) would have to be 
suppressed in this small sample table. When totals are not provided, single cells in a row or 
column can be suppressed. 
Combined Results 

Another control combines rows or columns to protect sensitive values. For example, 
Table 6-13 shows several sensitive results that identify single individuals. (Even though 
these counts may not seem sensitive, they can be used to infer sensitive data such as 
NAME; therefore, we consider them to be sensitive.) 
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These counts, combined with other 
results such as sum, permit us to infer 
individual drug-use values for the three 
males, as well as to infer that no female 
was rated 3 for drug use. To suppress such 
sensitive information, it is possible to 
combine the attribute values for 0 and 1, 
and also for 2 and 3, producing the less 
sensitive results shown in Table 6-14. In this 
instance, it is impossible to 
identify any single value. 

 
Another way of 

combining results is to 
present values in ranges. 
For example, instead of 
releasing exact financial aid 
figures, results can be 
released for the ranges $01999, 
$20003999, and $4000 and above. Even if only one record is represented by a single result, 
the exact value of that record is not known. Similarly, the highest and lowest financial aid 
values are concealed. 

Yet another method of combining is by rounding. This technique is actually a fairly 
well-known example of combining by range. If numbers are rounded to the nearest multiple 
of 10, the effective ranges are 05, 615, 1625, and so on. Actual values are rounded up or 
down to the nearest multiple of some base. 
Random Sample 

With random sample control, a result is not derived from the whole database; 
instead the result is computed on a random sample of the database. The sample chosen is 
large enough to be valid. Because the sample is not the whole database, a query against 
this sample will not necessarily match the result for the whole database. Thus, a result of 5 
percent for a particular query means that 5 percent of the records chosen for the sample for 
this query had the desired property. You would expect that approximately 5 percent of the 
entire database will have the property in question, but the actual percentage may be quite 
different. 

So that averaging attacks from repeated, equivalent queries are prevented, the same 
sample set should be chosen for equivalent queries. In this way, all equivalent queries will 
produce the same result, although that result will be only an approximation for the entire 
database. 
Random Data Perturbation 

It is sometimes useful to perturb the values of the database by a small error. For 
each xi that is the true value of data item i in the database, we can generate a small random 
error term εi and add it to xi for statistical results. The ε values are both positive and 
negative, so that some reported values will be slightly higher than their true values and 
other reported values will be lower. Statistical measures such as sum and mean will be 
close but not necessarily exact. Data perturbation is easier to use than random sample 
selection because it is easier to store all the ε values in order to produce the same result for 
equivalent queries. 
Query Analysis 

A more complex form of security uses query analysis. Here, a query and its 
implications are analyzed to determine whether a result should be provided. As noted 
earlier, query analysis can be quite difficult. One approach involves maintaining a query 
history for each user and judging a query in the context of what inferences are possible 
given previous results. 
Conclusion on the Inference Problem 

There are no perfect solutions to the inference problem. The approaches to 
controlling it follow the three paths listed below. The first two methods can be used either to 
limit queries accepted or to limit data provided in response to a query. The last method 
applies only to data released. 
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 Suppress obviously sensitive information. This action can be taken fairly easily. The 
tendency is to err on the side of suppression, thereby restricting the usefulness of the 
database. 

 Track what the user knows. Although possibly leading to the greatest safe disclosure, this 
approach is extremely costly. Information must be maintained on all users, even though 
most are not trying to obtain sensitive data. Moreover, this approach seldom takes into 
account what any two people may know together and cannot address what a single user 
can accomplish by using multiple IDs. 

 Disguise the data. Random perturbation and rounding can inhibit statistical attacks that 
depend on exact values for logical and algebraic manipulation. The users of the database 
receive slightly incorrect or possibly inconsistent results. 

It is unlikely that research will reveal a simple, easy-to-apply measure that 
determines exactly which data can be revealed without compromising sensitive data. 

Nevertheless, an effective control for the inference problem is just knowing that it 
exists. As with other problems in security, recognition of the problem leads to 
understanding of the purposes of controlling the problem and to sensitivity to the potential 
difficulties caused by the problem. However, just knowing of possible database attacks does 
not necessarily mean people will protect against those attacks, as explained in Sidebar 6-4. 
It is also noteworthy that much of the research on database inference was done in the early 
1980s, but this proposal appeared almost two decades later. 

Aggregation 
Related to the inference problem is aggregation, which means building sensitive 

results from less sensitive inputs. We saw earlier that knowing either the latitude or 
longitude of a gold mine does you no good. But if you know both latitude and longitude, you 
can pinpoint the mine. For a more realistic example, consider how police use aggregation 
frequently in solving crimes: They determine who had a motive for committing the crime, 
when the crime was committed, who had alibis covering that time, who had the skills, and 
so forth. Typically, you think of police investigation as starting with the entire population 
and narrowing the analysis to a single person. But if the police officers work in parallel, one 
may have a list of possible suspects, another may have a list with possible motive, and 
another may have a list of capable persons. When the intersection of these lists is a single 
person, the police have their prime suspect. 

Addressing the aggregation problem is difficult because it requires the database 
management system to track which results each user had already received and conceal any 
result that would let the user derive a more sensitive result. Aggregation is especially 
difficult to counter because it can take place outside the system. For example, suppose the 
security policy is that anyone can have either the latitude or longitude of the mine, but not 
both. Nothing prevents you from getting one, your friend from getting the other, and the two 
of you talking to each other. 

Recent interest in data mining has raised concern again about aggregation. Data 
mining is the process of sifting through multiple databases and correlating multiple data 
elements to find useful information. Marketing companies use data mining extensively to 
find consumers likely to buy a product. As Sidebar 6-5 points out, it is not only marketers 
who are interested in aggregation through data mining. 

Aggregation was of interest to database security researchers at the same time as was 
inference. As we have seen, some approaches to inference have proven useful and are 
currently being used. But there have been few proposals for countering aggregation. 

Multilevel database 
So far, we have considered data in only two categories: either sensitive or 

nonsensitive. We have alluded to some data items being more sensitive than others, but we 
have allowed only yes-or-no access. Our presentation may have implied that sensitivity was 
a function of the attribute, the column in which the data appeared, although nothing we 
have done depended on this interpretation of sensitivity. Such a model appears in Table 6-
15, where two columns are identified (by shading) as sensitive. In fact, though, sensitivity is 
determined not just by attribute but also in ways that we investigate in the next section. 
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The Case for 
Differentiated 

Security 
Consider a database 

containing data on U.S. 
government expenditures. 
Some of the expenditures are 
for paper clips, which is not 
sensitive information. Some 
salary expenditures are 
subject to privacy 
requirements. Individual 
salaries are sensitive, but the 
aggregate (for example, the 
total Agriculture Department payroll, which is a matter of public record) is not sensitive. 
Expenses of certain military operations are more sensitive; for example, the total amount 
the United States spends for ballistic missiles, which is not public. There are even 
operations known only to a few people, and so the amount spent on these operations, or 
even the fact that anything was spent on such an operation, is highly sensitive. 

Table 6-15 lists employee information. It may in fact be the case that Davis is a 
temporary employee hired for a special project, and her whole record has a different 
sensitivity from the others. Perhaps the phone shown for Garland is her private line, not 
available to the public. 

We can refine the sensitivity of the data by depicting it as shown in Table 6-16. 
From this description, three characteristics of 
database security emerge. 

 The security of a single element may be 
different from the security of other elements of 
the same record or from other values of the same 
attribute. That is, the security of one element 
may differ from that of other elements of the 
same row or column. This situation implies that 
security should be implemented for each 
individual element. 

 Two levelssensitive and nonsensitiveare 
inadequate to represent some security situations. 
Several grades of security may be needed. These 
grades may represent ranges of allowable 
knowledge, which may overlap. Typically, the security grades form a lattice. 

 The security of an aggregate a sum, a count, or a group of values in a database may differ 
from the security of the individual elements. The security of the aggregate may be higher or 
lower than that of the individual elements. 

These three principles lead to a model of security not unlike the military model of 
security encountered in Chapter 5, in which the sensitivity of an object is defined as one of 
n levels and is further separated into compartments by category. 

Granularity 
Recall that the military classification model applied originally to paper documents 

and was adapted to computers. It is fairly easy to classify and track a single sheet of paper 
or, for that matter, a paper file, a computer file, or a single program or process. It is entirely 
different to classify individual data items. 

For obvious reasons, an entire sheet of paper is classified at one level, even though 
certain words, such as and, the, or of, would be innocuous in any context, and other words, 
such as code words like Manhattan project, might be sensitive in any context. But defining 
the sensitivity of each value in a database is similar to applying a sensitivity level to each 
individual word of a document. 

And the problem is still more complicated. The word Manhattan by itself is not 
sensitive, nor is project. However, the combination of these words produces the sensitive 
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codeword Manhattan project. A similar situation occurs in databases. Therefore, not only 
can every element of a database have a distinct sensitivity, every combination of elements 
can also have a distinct sensitivity. Furthermore, the combination can be more or less 
sensitive than any of its elements. 

So what would we need in order to associate a sensitivity level with each value of a 
database? First, we need an access control policy to dictate which users may have access to 
what data. Typically, to implement this policy each data item is marked to show its access 
limitations. Second, we need a means to guarantee that the value has not been changed by 
an unauthorized person. These two requirements address both confidentiality and integrity. 

Security Issues 
In Chapter 1, we introduced three general security concerns: integrity, 

confidentiality, and availability. In this section, we extend the first two of these concepts to 
include their special roles for multilevel databases. 
Integrity 

Even in a single-level database in which all elements have the same degree of 
sensitivity, integrity is a tricky problem. In the case of multilevel databases, integrity 
becomes both more important and more difficult to achieve. Because of the *-property for 
access control, a process that reads high-level data is not allowed to write a file at a lower 
level. Applied to databases, however, this principle says that a high-level user should not be 
able to write a lower-level data element. 

The problem with this interpretation arises when the DBMS must be able to read all 
records in the database and write new records for any of the following purposes: to do 
backups, to scan the database to answer queries, to reorganize the database according to a 
user's processing needs, or to update all records of the database. 

When people encounter this problem, they handle it by using trust and common 
sense. People who have access to sensitive information are careful not to convey it to 
uncleared individuals. 

In a computing system, there are two choices: Either the process cleared at a high 
level cannot write to a lower level or the process must be a "trusted process," the computer 
equivalent of a person with a security clearance. 
Confidentiality 

Users trust that a database will provide correct information, meaning that the data 
are consistent and accurate. As indicated earlier, some means of protecting confidentiality 
may result in small changes to the data. Although these perturbations should not affect 
statistical analyses, they may produce two different answers representing the same 
underlying data value in response to two differently formed queries. In the multilevel case, 
two different users operating at two different levels of security might get two different 
answers to the same query. To preserve confidentiality, precision is sacrificed. 

Enforcing confidentiality also leads to unknowing redundancy. Suppose a personnel 
specialist works at one level of access permission. The specialist knows that Bob Hill works 
for the company. However, Bob's record does not appear on the retirement payment roster. 
The specialist assumes this omission is an error and creates a record for Bob. 

The reason that no record for Bob appears 
is that Bob is a secret agent, and his employment 
with the company is not supposed to be public 
knowledge. A record on Bob actually is in the file 
but, because of his special position, his record is 
not accessible to the personnel specialist. The 
DBMS cannot reject the record from the personnel 
specialist because doing so would reveal that there 
already is such a record at a sensitivity too high for the specialist to 
see. The creation of the new record means that there are now two records for Bob Hill: one 
sensitive and one not, as shown in Table 6-17. This situation is called polyinstantiation, 
meaning that one record can appear (be instantiated) many times, with a different level of 
confidentiality each time.  

This problem is exacerbated because Bob Hill is a common enough name that there 
might be two different people in the database with that name. Thus, merely scanning the 
database (from a high-sensitivity level) for duplicate names is not a satisfactory way to find 
records entered unknowingly by people with only low clearances. 



117 
 

We might also find other reasons, unrelated to sensitivity level, that result in 
polyinstantiation. For example, Mark Thyme worked for Acme Corporation for 30 years and 
retired. He is now drawing a pension from Acme, so he appears as a retiree in one personnel 
record. But Mark tires of being home and is rehired as a part-time contractor; this new 
work generates a second personnel record for Mark. Each is a legitimate employment 
record. In our zeal to reduce polyinstantiation, we must be careful not to eliminate 
legitimate records such as these. 

Proposals for multilevel security. 
As you can already tell, implementing multilevel security for databases is difficult, 

probably more so than in operating systems, because of the small granularity of the items 
being controlled. In the remainder of this section, we study approaches to multilevel 
security for databases. 

Separation 
As we have already seen, separation is necessary to limit access. In this section, we 

study mechanisms to implement separation in databases. Then, we see how these 
mechanisms can help to implement multilevel security for databases. 
Partitioning 

The obvious control for multilevel databases is partitioning. The database is divided 
into separate databases, each at its own level of sensitivity. This approach is similar to 
maintaining separate files in separate file cabinets. 

This control destroys a basic advantage of databases: elimination of redundancy and 
improved accuracy through having only one field to update. Furthermore, it does not 
address the problem of a high-level user who needs access to some low-level data combined 
with high-level data. 

Nevertheless, because of the difficulty of establishing, maintaining, and using 
multilevel databases, many users with data of mixed sensitivities handle their data by using 
separate, isolated databases. 
Encryption 

If sensitive data are 
encrypted, a user who accidentally 
receives them cannot interpret the 
data. Thus, each level of sensitive 
data can be stored in a table 
encrypted under a key unique to the 
level of sensitivity. But encryption 
has certain disadvantages. 

First, a user can mount a 
chosen plaintext attack. Suppose 
party affiliation of REP or DEM is 
stored in encrypted form in each 
record. A user who achieves access 
to these encrypted fields can easily 
decrypt them by creating a new 
record with party=DEM and 
comparing the resulting encrypted 
version to that element in all other 
records. Worse, if authentication 
data are encrypted, the malicious 
user can substitute the encrypted 
form of his or her own data for that 
of any other user. Not only does this 
provide access for the malicious 
user, but it also excludes the 
legitimate user whose authentication 
data have been changed to that of 
the malicious user. These 
possibilities are shown in Figures 6-5 and 6-6. 

Figure 6-5. Cryptographic Separation: Different Encryption Keys. 
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Using a different encryption key for each record overcomes these defects. Each 
record's fields can be encrypted with a different key, or all fields of a record can be 
cryptographically linked, as with cipher block chaining. 

The disadvantage, then, is that each field must be decrypted when users perform 
standard database operations such as "select all records with SALARY > 10,000." 
Decrypting the SALARY field, even on rejected records, increases the time to process a 
query. (Consider the query that selects just one record but that must decrypt and compare 
one field of each record to find the one that satisfies the query.) Thus, encryption is not 
often used to implement separation in databases. 
Integrity Lock 

The integrity lock was first proposed at the U.S. Air Force Summer Study on Data 
Base Security [AFS83]. The lock is a way to provide both integrity and limited access for a 
database. The operation was nicknamed "spray paint" because each element is figuratively 
painted with a color that denotes its sensitivity. The coloring is maintained with the 
element, not in a master database table. 

A model of the basic integrity lock is shown in Figure 6-7. As illustrated, each 
apparent data item consists of three pieces: the actual data item itself, a sensitivity label, 
and a checksum. 

The sensitivity label defines the sensitivity 
of the data, and the checksum is computed across 
both data and sensitivity label to prevent 
unauthorized modification of the data item or its 
label. The actual data item is stored in plaintext, 
for efficiency because the DBMS may need to 
examine many fields when selecting records to 
match a query. 
The sensitivity label should be 

 unforgeable, so that a malicious subject cannot 
create a new sensitivity level for an element 

 unique, so that a malicious subject cannot copy a sensitivity level from another 
element 

 concealed, so that a malicious subject cannot even determine the sensitivity level of 
an arbitrary element 

The third piece of the integrity lock for a field is an error-detecting code, called a 
cryptographic checksum. To guarantee that a data value or its sensitivity classification has 
not been changed, this checksum must be unique for a given element, and must contain 
both the element's data value and something to tie that value to a particular position in the 
database. As shown in Figure 6-8, an 
appropriate cryptographic checksum includes 
something unique to the record (the record 
number), something unique to this data field 
within the record (the field attribute name), the 
value of this element, and the sensitivity 
classification of the element. These four 
components guard against anyone's changing, 
copying, or moving the data. The checksum can be computed with a strong encryption 
algorithm or hash function. 
Sensitivity Lock 

The sensitivity lock shown in Figure 6-9 was designed by Graubert and Kramer 
[GRA84b] to meet these principles. A sensitivity lock is a combination of a unique identifier 
(such as the record number) and the sensitivity level. Because the identifier is unique, each 
lock relates to one particular record. Many different elements will have the same sensitivity 
level. A malicious subject should not be able to identify two elements having identical 
sensitivity levels or identical data values just by looking at the sensitivity level portion of the 
lock. Because of the encryption, the lock's contents, especially the sensitivity level, are 
concealed from plain view. 

Thus, the lock is associated with one specific record, and it protects the secrecy of 
the sensitivity level of that record.  

Designs of Multilevel Secure Databases 



119 
 

This section covers different designs for multilevel secure databases. These designs 
show the tradeoffs among efficiency, flexibility, simplicity, and trustworthiness. 
Integrity Lock 

The integrity lock DBMS was 
invented as a short-term solution to the 
security problem for multilevel databases. 
The intention was to be able to use any 
(untrusted) database manager with a 
trusted procedure that handles access 
control. The sensitive data were 
obliterated or concealed with encryption 
that protected both a data item and its 
sensitivity. In this way, only the access 
procedure would need to be trusted 
because only it would be able to achieve 
or grant access to sensitive data.  

Figure 6-10. Trusted Database Manager.  
The structure of such a system is shown in Figure 6-10.element must be expanded 

to contain the sensitivity label. Because there are several pieces in the label and one label 
for every element, the space required is significant. 

Problematic, too, is the processing time efficiency of an integrity lock. The sensitivity 
label must be decoded every time a data element is passed to the user to verify that the 
user's access is allowable. Also, each time a value is written or modified, the label must be 
recomputed. Thus, substantial processing time is consumed. If the database file can be 
sufficiently protected, the data values of the individual elements can be left in plaintext. 
That approach benefits select and project queries across sensitive fields because an element 
need not be decrypted just to determine whether it should be selected. 

A final difficulty with this approach is that the untrusted database manager sees all 
data, so it is subject to Trojan horse attacks by which data can be leaked through covert 
channels. 

Trusted Front End 
The model of a trusted front-end 

process is shown in Figure 6-11. A trusted 
front end is also known as a guard and 
operates much like the reference monitor of 
Chapter 5. This approach, originated by Hinke 
and Schaefer [HIN75], recognizes that many 
DBMSs have been built and put into use 
without consideration of multilevel security. 
Staff members are already trained in using 
these DBMSs, and they may in fact use them 
frequently. The front-end concept takes 
advantage of existing tools and expertise, 
enhancing the security of these existing systems 
with minimal change to the system. The interaction between a user, a trusted front end, 
and a DBMS involves the following steps. 

Figure 6-11. Trusted Front End. 
1. A user identifies himself or herself to the front end; the front end authenticates the 
user's identity. 
2. The user issues a query to the front end. 
3. The front end verifies the user's authorization to data. 
4. The front end issues a query to the database manager. 
5. The database manager performs I/O access, interacting with low-level access control to 
achieve access to actual data. 
6. The database manager returns the result of the query to the trusted front end. 
7. The front end analyzes the sensitivity levels of the data items in the result and selects 
those items consistent with the user's security level. 
8. The front end transmits selected data to the untrusted front end for formatting. 



120 
 

9. The untrusted front end transmits formatted data to the user. 
The trusted front end serves as a one-way filter, screening out results the user 

should not be able to access. But the scheme is inefficient because potentially much data is 
retrieved and then discarded as inappropriate for the user. 
Commutative Filters 

The notion of a commutative filter was proposed by Denning [DEN85] as a 
simplification of the trusted interface to the DBMS. Essentially, the filter screens the user's 
request, reformatting it if necessary, so that only data of an appropriate sensitivity level are 
returned to the user. 

A commutative filter is a process that forms an interface between the user and a 
DBMS. 

However, unlike the trusted front end, the filter tries to capitalize on the efficiency of 
most DBMSs. The filter reformats the query so that the database manager does as much of 
the work as possible, screening out many unacceptable records. The filter then provides a 
second screening to select only data to which the user has access. 

Filters can be used for security at the record, attribute, or element level. 
 When used at the record level, the filter requests desired data plus cryptographic 

checksum information; it then verifies the accuracy and accessibility of data to be passed to 
the user. 

 At the attribute level, the filter checks whether all attributes in the user's query are 
accessible to the user and, if so, passes the query to the database manager. On return, it 
deletes all fields to which the user has no access rights. 

 At the element level, the system requests desired data plus cryptographic checksum 
information. When these are returned, it checks the classification level of every element of 
every record retrieved against the user's level. 

Suppose a group of physicists in Washington works on very sensitive projects, so the 
current user should not be allowed to access the physicists' names in the database. This 
restriction presents a problem with this query: 

The filter works by restricting the query to the DBMS and then restricting the 
results before they are returned to the user. In this instance, the filter would request NAME, 
NAME-SECRECY-LEVEL, OCCUP, OCCUP-SECRECY-LEVEL, CITY, and CITY-SECRECY-
LEVEL values and would then filter and return to the user only those fields and items that 
are of a secrecy level acceptable for the user. Although even this simple query becomes 
complicated because of the added terms, these terms are all added by the front-end filter, 

invisible to the user. 
An example of this query filtering in operation is shown in Figure 6-12. The 

advantage of the commutative filter is that it allows query selection, some optimization, and 
some subquery handling to be done by the DBMS. This delegation of duties keeps the size 
of the security filter small, reduces redundancy between it and the DBMS, and improves the 
overall efficiency of the system. 
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Figure 6-12. Commutative Filters. 

 
Distributed 

Databases The distributed or 
federated database is a 
fourth design for a secure 
multilevel database. 

In this case, a 
trusted front end controls 
access to two unmodified 
commercial DBMSs: one 
for all low-sensitivity data 
and one for all high-
sensitivity data. 

The front end takes a user's query and formulates single-level queries to the 
databases as appropriate. For a user cleared for high-sensitivity data, the front end submits 
queries to both the high- and low-sensitivity databases. But if the user is not cleared for 
high-sensitivity data, the front end submits a query to only the low-sensitivity database. If 
the result is obtained from either back-end database alone, the front end passes the result 
back to the user. If the result comes from both databases, the front end has to combine the 
results appropriately. For example, if the query is a join query having some high-sensitivity 
terms and some low, the front end has to perform the equivalent of a database join itself. 

The distributed database design is not popular because the front end, which must 
be trusted is complex, Potentially including most of the functionality of a full DBMS itself. 
In addition, the design does not scale well to many degrees of sensitivity; each sensitivity 
level of data must be maintained in its own separate database. 
Window/View 

Traditionally, one of the advantages of using a DBMS for multiple users of different 
interests (but not necessarily different sensitivity levels) is the ability to create a different 
view for each user. That is, each user is restricted to a picture of the data reflecting only 
what the user needs to see. For example, 
the registrar may see only the class 
assignments and grades of each student at 
a university, not needing to see 
extracurricular activities or medical 
records. The university health clinic, on 
the other hand, needs medical records and 
drug-use information but not scores on 
standardized academic tests. 

The notion of a window or a view 
can also be an organizing principle for 
multilevel database access. A window is a 
subset of a database, containing exactly 
the information that a user is entitled to 
access. Denning [DEN87a] surveys the 
development of views for multilevel 
database security. 

A view can represent a single user's 
subset database so that all of a user's 
queries access only that database. This 
subset guarantees that the user does not 
access values outside the permitted ones, 
because nonpermitted values are not even 
in the user's database. The view is 
specified as a set of relations in the 
database, so the data in the view subset 
change as data change in the database. 

For example, a travel agent might 
have access to part of an airline's flight information database. Records for cargo flights 
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would be excluded, as would the pilot's name and the serial number of the plane for every 
flight. Suppose the database contained an attribute TYPE whose value was either CARGO or 
PASS (for passenger). Other attributes might be flight number, origin, destination, 
departure time, arrival time, capacity, pilot, and tail number. 

Now suppose the airline created some passenger flights with lower fares that could 
be booked only directly through the airline. The airline might assign their flight numbers a 
more sensitive rating to make these flights unavailable to travel agents. The whole 
database, and the agent's view, might have the logical structure shown in Table 6-18. 
The travel agent's view of the database is expressed as 
view AGENT-INFO 
FLTNO:=MASTER.FLTNO 
ORIG:=MASTER.ORIG 
DEST:=MASTER.DEST 
DEP:=MASTER.DEP 
ARR:=MASTER.ARR 
CAP:=MASTER.CAP 
where MASTER.TYPE='PASS' 
class AGENT 
auth retrieve 

Because the access class of this view is AGENT, more sensitive flight numbers 
(flights booked only through the airline) do not appear in this view. Alternatively, we could 
have eliminated the entire records for those flights by restricting the record selection with a 
where clause. A view may involve computation or complex selection criteria to specify 
subset data. 

The data presented to a user is obtained by filtering of the contents of the original 
database. Attributes, records, and elements are stripped away so that the user sees only 
acceptable items. Any attribute (column) is withheld unless the user is authorized to access 
at least one element. Any record (row) is withheld unless the user is authorized to access at 
least one element. Then, for all elements that still remain, if the user is not authorized to 
access the element, it is replaced by UNDEFINED. This last step does not compromise any 
data because the user knows the existence of the attribute (there is at least one element 
that the user can access) and the user knows the existence of the record (again, at least one 
accessible element exists in the record). 

In addition to elements, a view includes relations on attributes. Furthermore, a user 
can create new relations from new and existing attributes and elements. These new 
relations are accessible to other users, subject to the standard access rights. A user can 
operate on the subset database defined in a view only as allowed by the operations 
authorized in the view. 

As an example, a user might 
be allowed to retrieve records 
specified in one view or to retrieve and 
update records as specified in another 
view. For instance, the airline in our 
example may restrict travel agents to 
retrieving data. 

The Sea Views project 
described in [DEN87a, LUN90a] is the 
basis for a system that integrates a 
trusted operating system to form a 
trusted database manager. The 
layered implementation as described 
is shown in Figure 6-13. The lowest layer, the reference monitor, performs file interaction, 
enforcing the BellLa Padula access controls, and does user authentication. Part of its 
function is to filter data passed to higher levels. The second level performs basic indexing 
and computation functions of the database. The third level translates views into the base 
relations of the database. These three layers make up the trusted computing base (TCB) of 
the system. The remaining layers implement normal DBMS functions and the user 
interface. 

Figure 6-13. Secure Database Decomposition. 
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This layered approach makes views both a logical division of a database and a 
functional one. The approach is an important step toward the design and implementation of 
a trustable database management system. 

Practical Issues 
The multilevel security problem for databases has been studied since the 1970s. 

Several promising research results have been identified, as we have seen in this chapter. 
However, as with trusted operating systems, the consumer demand has not been sufficient 
to support many products. Civilian users have not liked the inflexibility of the military 
multilevel security model, and there have been too few military users. Consequently, 
multilevel secure databases are primarily of research and historical interest. 

The general concepts of multilevel databases are important. We do need to be able to 
separate data according to their degree of sensitivity. Similarly, we need ways of combining 
data of different sensitivities into one database (or at least into one virtual database or 
federation of databases). And these needs will only increase over time as larger databases 
contain more sensitive information, especially for privacy concerns. 

In the next section we study data mining, a technique of growing significance, but 
one for which we need to be able to address degrees of sensitivity of the data. 

Unit 4 : Security in Networks:  
Networkstheir design, development, and usages are critical to our style of 

computing. We interact with networks daily, when we perform banking transactions, make 
telephone calls, or ride trains and planes. The utility companies use networks to track 
electricity or water usage and bill for it. When we pay for groceries or gasoline, networks 
enable our credit or debit card transactions and billing. Life without networks would be 
considerably less convenient, and many activities would be impossible. Not surprisingly, 
then, computing networks are attackers' targets of choice. Because of their actual and 
potential impact, network attacks attract the attention of journalists, managers, auditors, 
and the general public. For example, when you read the daily newspapers, you are likely to 
find a story about a network-based attack at least every month. The coverage itself evokes a 
sense of evil, using terms such as hijacking, distributed denial of service, and our familiar 
friends viruses, worms, and Trojan horses. 

Because any large-scale attack is likely to put thousands of computing systems at 
risk, with potential losses well into the millions of dollars, network attacks make good copy. 
The media coverage is more than hype; network attacks are critical problems. Fortunately, 
your bank, your utility company, and even your Internet service provider take network 
security very seriously. Because they do, they are vigilant about applying the most current 
and most effective controls to their systems. Of equal importance, these organizations 
continually assess their risks and learn about the latest attack types and defense 
mechanisms so that they can maintain the protection of their networks. 

In this chapter we describe what makes a network similar to and different from an 
application program or an operating system, which you have studied in earlier chapters. In 
investigating networks, you will learn how the concepts of confidentiality, integrity, and 
availability apply in networked settings. At the same time, you will see that the basic 
notions of identification and authentication, access control, accountability, and assurance 
are the basis for network security, just as they have been in other settings. 

Networking is growing and changing perhaps even faster than other computing 
disciplines Consequently, this chapter is unlikely to present you with the most current 
technology, the latest attack, or the newest defense mechanism; you can read about those 
in daily newspapers and at web sites. But the novelty and change build on what we know 
today: the fundamental concepts, threats, and controls for networks. By developing an 
understanding of the basics, you can absorb the most current news quickly and easily. 
More importantly, your understanding can assist you in building, protecting, and using 
networks. 

 
Threats in networks 

Up to now, we have reviewed network concepts with very little discussion of their 
security implications. But our earlier discussion of threats and vulnerabilities, as well as 
outside articles and your own experiences, probably have you thinking about the many 
possible attacks against networks. This section describes some of the threats you have 
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already hypothesized and perhaps presents you with some new ones. But the general thrust 
is the same: threats aimed to compromise confidentiality, integrity, or availability, applied 
against data, software, and hardware by nature, accidents, nonmalicious humans, and 
malicious attackers. 

What Makes a Network Vulnerable? 
An isolated home user or a stand-alone office with a few employees is an unlikely 

target for many attacks. But add a network to the mix and the risk rises sharply. Consider 
how a network differs from a stand-alone environment: 

 Anonymity. An attacker can mount an attack from thousands of miles away and never 
come into direct contact with the system, its administrators, or users. The potential 
attacker is thus safe behind an electronic shield. The attack can be passed through many 
other hosts in an effort to disguise the attack's origin. And computer-to-computer 
authentication is not the same for computers as it is for humans; as illustrated by Sidebar 
7-2, secure distributed authentication requires thought and attention to detail. 

 Many points of attackboth targets and origins. A simple computing system is a self-
contained unit. Access controls on one machine preserve the confidentiality of data on that 
processor. However, when a file is stored in a network host remote from the user, the data 
or the file itself may pass through many hosts to get to the user.  
One host's administrator may enforce rigorous security policies, but that administrator has 
no control over other hosts in the network. Thus, the user must depend on the access 
control mechanisms in each of these systems. An attack can come from any host to any 
host, so that a large network offers many points of vulnerability. 

 Sharing. Because networks enable resource and workload sharing, more users have the 
potential to access networked systems than on single computers. Perhaps worse, access is 
afforded to more systems, so that access controls for single systems may be inadequate in 
networks. 

 Complexity of system. In Chapter 4 we saw that an operating system is a complicated 
piece of software. Reliable security is difficult, if not impossible, on a large operating 
system, especially one not designed specifically for security. A network combines two or 
more possibly dissimilar operating systems. Therefore, a network operating/control system 
is likely to be more complex than an operating system for a single computing system. 
Furthermore, the ordinary desktop computer today has greater computing power than did 
many office computers in the last two decades. The attacker can use this power to 
advantage by causing the victim's computer to perform part of the attack's computation. 
And because an average computer is so powerful, most users do not know what their 
computers are really doing at any moment: What processes are active in the background 
while you are playing Invaders from Mars? This complexity diminishes confidence in the 
network's security. 

 Unknown perimeter. A network's expandability also implies uncertainty about the network 
boundary. One host may be a node on two different networks, so resources on one network 
are accessible to the users of the other 
network as well. Although wide accessibility 
is an advantage, this unknown or 
uncontrolled group of possibly malicious 
users is a security disadvantage. A similar 
problem occurs when new hosts can be 
added to the network. Every network node 
must be able to react to the possible 
presence of new, untrustable hosts. Figure 
7-11 points out the problems in defining 
the boundaries of a network. Notice, for 
example, that a user on a host in network 
D may be unaware of the potential 
connections from users of networks A and 
B. And the host in the middle of networks A 
and B in fact belongs to A, B, C, and E. If 
there are different security rules for these 
networks, to what rules is that host 
subject? 
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Figure 7-11. Unclear Network Boundaries. 
 Unknown path. Figure 7-12 illustrates that there may be many paths from one host to 

another. Suppose that a user on host A1 wants to send a message to a user on host B3. 
That message might be routed through hosts C or D before arriving at host B3. 
Host C may provide acceptable security, but not D. Network users seldom have control 
over the routing of their messages. 
Thus, a network differs significantly 
from a stand-alone, local environment. 
Network characteristics significantly 
increase the security risk. 

Who Attacks Networks? 
Who are the attackers? We 

cannot list their names, just as we 
cannot know who are all the criminals 
in our city, country, or the world. Even 
if we knew who they were, we do not 
know if we could stop their behavior. 
(See Sidebar 7-3 for a first, tenuous 
link between psychological traits and hacking.) To have some idea of who the attackers 
might be, we return to concepts introduced in Chapter 1, where we described the three 
necessary components of an attack: method, opportunity, and motive. 
In the next sections we explore method: tools and techniques the attackers use. Here we 
consider first the motives of attackers. Focusing on motive may give us some idea of who 
might attack a networked host or user. Four important motives are challenge or power, 
fame, money, and ideology.  
Challenge 

Why do people do dangerous or daunting things, like climb mountains or swim the 
English Channel or engage in extreme sports? Because of the challenge. The situation is no 
different for someone skilled in writing or using programs. The single most significant 
motivation for a network attacker is the intellectual challenge. He or she is intrigued with 
knowing the answers to Can I defeat this network? What would happen if I tried this 
approach or that technique? 

Some attackers enjoy the intellectual stimulation of defeating the supposedly 
undefeatable. 

For example, Robert Morris, who perpetrated the Internet worm in 1988 (described 
in Chapter 3), attacked supposedly as an experiment to see if he could exploit a particular 
vulnerability. 

Other attackers, such as the Cult of the Dead Cow, seek to demonstrate weaknesses 
in security defenses so that others will pay attention to strengthening security. Still other 
attackers are unnamed, unknown individuals working persistently just to see how far they 
can go in performing unwelcome activities. 
However, as you will soon see, only a few 
attackers find previously unknown flaws. 
The vast majority of attackers repeat well-
known and even well-documented attacks, 
sometimes only to see if they work against 
different hosts. In these cases, intellectual 
stimulation is certainly not the driving 
force, when the attacker is merely pressing 
[run] to activate an attack discovered, 
designed, and implemented by someone 
else. 
Fame 

The challenge of accomplishment is 
enough for some attackers. But other 
attackers seek recognition for their 
activities. That is, part of the challenge is 
doing the deed; another part is taking 



126 
 

credit for it. In many cases, we do not know who the attackers really are, but they leave 
behind a "calling card" with a name or moniker: Mafiaboy, Kevin Mitnick, Fluffy Bunny, and 
members of the Chaos Computer Club, for example. The actors often retain some 
anonymity by using pseudonyms, but they achieve fame nevertheless. They may not be able 
to brag too openly, but they enjoy the personal thrill of seeing their attacks written up in 
the news media. 
Money and Espionage 

As in other settings, financial reward motivates attackers, too. Some attackers 
perform industrial espionage, seeking information on a company's products, clients, or 
long-range plans. We know industrial espionage has a role when we read about laptops and 
sensitive papers having been lifted from hotel rooms when other more valuable items were 
left behind. 

Some countries are notorious for using espionage to aid their state-run industries. 
Sometimes industrial espionage is responsible for seemingly strange corporate behavior. For 
example, in July 2002, newspapers reported that a Yale University security audit had 
revealed that admissions officers from rival Princeton University broke into Yale's online 
admissions notification system. The Princeton snoops admitted looking at the confidential 
decisions about eleven students who had applied to both schools but who had not yet been 
told of their decisions by Yale. In another case, a startup company was about to activate its 
first application on the web. Two days before the application's unveiling, the head offices 
were burglarized. The only item stolen was the one computer containing the application's 
network design. Corporate officials had to make a difficult choice: Go online knowing that a 
competitor might then take advantage of knowing the internal architecture or delay the 
product's rollout until the network design was changed. They chose the latter. Similarly, the 
chief of security for a major manufacturing company has reported privately to us of 
evidence that one of the company's competitors had stolen information. But he could take 
no action because he could not determine which of three competitors was the actual culprit. 
Industrial espionage is illegal, but it occurs, in part because of the high potential gain. Its 
existence and consequences can be embarrassing for the target companies. Thus, many 
incidents go unreported, and there are few reliable statistics on how much industrial 
espionage and "dirty tricks" go on. Yearly since 1997, the Computer Security Institute and 
the U.S. Federal Bureau of Investigation have surveyed security professionals from 
companies, government agencies, universities, and organizations, asking them to report 
perceptions of computer incidents. About 500 responses are received for each survey. Theft 
of intellectual property amounted to a total loss of $31 million, with an average loss per 
incident of $350 thousand, making this the category of third-highest loss. That amount was 
more than double the amount reported in the 2004 survey. (These survey results are 
anecdotal, so it is hard to draw many conclusions. For full details on the survey see 
[CSI05].) Industrial espionage, leading to loss of intellectual property, is clearly a problem. 
Organized Crime 

With the growth in commercial value of the Internet, participation by organized 
crime has also increased. In October 2004, police arrested members of a 28-person gang of 
Internet criminals, called the Shadow crew, who operated out of six foreign countries and 
eight states in the United States. Six leaders of that group pled guilty to charges, closing an 
illicit business that trafficked in at least 1.5 million stolen credit and bank card numbers 
and resulted in losses in excess of $4 million. In July 2003, Alexey Ivanov was convicted as 
the supervisor of a wide-ranging, organized criminal enterprise that engaged in 
sophisticated manipulation of computer data, financial information, and credit card 
numbers. Ivanov and group were responsible for an aggregate loss of approximately $25 
million. And in January 2006, Jeanson James Ancheta pled guilty to having infected 
400,000 computers with malicious code and renting their use to others to use to launch 
attacks on others. In June 2005, the FBI and law enforcement from 10 other countries 
conducted over 90 searches worldwide as part of "Operation Site Down," designed to disrupt 
and dismantle many of the leading criminal organizations that illegally distribute and trade 
in copyrighted software, movies, music, and games on the Internet [DOJ06]. Brazilian police 
arrested 85 people in 2005 for Internet fraud. 

Although money is common to these crimes, the more interesting fact is that they 
often involve collaborators from several countries. These more sophisticated attacks require 
more than one person working out of a bedroom, and so organization and individual 
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responsibilities follow. With potential revenue in the millions of dollars and operations 
involving hundreds of thousands of credit card numbers and other pieces of identity, 
existing organized crime units are sure to take notice. As Williams [WIL01] says, "[T]here is 
growing evidence that organized crime groups are exploiting the new opportunities offered 
by the Internet." 
Ideology 

In the last few years, we are starting to find cases in which attacks are perpetrated 
to advance ideological ends. For example, many security analysts believe that the Code Red 
worm of 2001 was launched by a group motivated by the tension in U.S.China relations. 
Denning [DEN99a] has distinguished between two types of related behaviors, hactivism and 
cyberterrorism. Hactivism involves "operations that use hacking techniques against a 
target's [network] with the intent of disrupting normal operations but not causing serious 
damage." In some cases, the hacking is seen as giving voice to a constituency that might 
otherwise not be heard by the company or government organization. For example, Denning 
describes activities such as virtual sit-ins, in which an interest group floods an 
organization's web site with traffic to demonstrate support of a particular position. 
Cyberterrorism is more dangerous than hactivism: "politically motivated hacking operations 
intended to cause grave harm such as loss of life or severe economic damage." 

Security and terrorism experts are seeing increasing use of the Internet as an attack 
vector, as a communications medium among attackers, and as a point of attack. Cullison 
[CUL04] presents a very interesting insight (which we overview in Sidebar 1-6, p. 24) into of 
the use of technology by al Qaeda. 

Reconnaissance 
Now that we have listed many motives for attacking, we turn to how attackers 

perpetrate their attacks. Attackers do not ordinarily sit down at a terminal and launch an 
attack. A clever attacker investigates and plans before acting. Just as you might invest time 
in learning about a jewelry store before entering to steal from it, a network attacker learns a 
lot about a potential target before beginning the attack. We study the precursors to an 
attack so that if we can recognize characteristic behavior, we may be able to block the 
attack before it is launched. 

Because most vulnerable networks are connected to the Internet, the attacker 
begins preparation by finding out as much as possible about the target. An example of 
information gathering is given in [HOB97]. (Not all information gathered is accurate, 
however; see Sidebar 7-4 for a look at reconnaissance combined with deception.) 
Port Scan 

An easy way to gather network information is to use a port scan, a program that, for 
a particular IP address, reports which ports respond to messages and which of several 
known vulnerabilities seem to be present. Farmer and Venema [FAR93] are among the first 
to describe the technique. 

A port scan is much like a routine physical examination from a doctor, particularly 
the initial questions used to determine a medical history. The questions and answers by 
themselves may not seem significant, but they point to areas that suggest further 
investigation. 

Port scanning tells an attacker three things: which standard ports or services are 
running and responding on the target system, what operating system is installed on the 
target system, and what applications and versions of applications are present. This 
information is readily available for the asking from a networked system; it can be obtained 
quietly, anonymously, without identification or authentication, drawing little or no attention 
to the scan. 

Port scanning tools are readily available, and not just to the underground 
community. The nmap scanner by Fyodor at www.insecure.org/nmap is a useful tool that 
anyone can download. Given an address, nmap will report all open ports, the service they 
support, and the owner (user ID) of the daemon providing the service. (The owner is 
significant because it implies what privileges would descend upon someone who 
compromised that service.) Another readily available scanner is netcat, written by Hobbit, at 
www.l0pht.com/users/l0pht. (That URL is "letter ell," "digit zero," p-h-t.) Commercial 
products are a little more costly, but not prohibitive. Well-known commercial scanners are 
Nessus (Nessus Corp. [AND03]), CyberCop Scanner (Network Associates), Secure Scanner 
(Cisco), and Internet Scanner (Internet Security Systems). 
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Social Engineering 
The port scan gives an external picture of a networkwhere are the doors and 

windows, of what are they constructed, to what kinds of rooms do they open? The attacker 
also wants to know what is inside the building. What better way to find out than to ask? 
Suppose, while sitting at your workstation, you receive a phone call. "Hello, this is John 
Davis from IT support. We need to test some connections on the internal network. Could 
you please run the command ipconfig/all on your workstation and read to me the addresses 
it displays?"  

The request sounds innocuous. But unless you know John Davis and his job 
responsibilities well, the caller could be an attacker gathering information on the inside 
architecture. 

Social engineering involves using social skills and personal interaction to get 
someone to reveal security-relevant information and perhaps even to do something that 
permits an attack. The point of social engineering is to persuade the victim to be helpful. 
The attacker often impersonates someone inside the organization who is in a bind: "My 
laptop has just been stolen and I need to change the password I had stored on it," or "I have 
to get out a very important report quickly and I can't get access to the following thing." This 
attack works especially well if the attacker impersonates someone in a high position, such 
as the division vice president or the head of IT security. (Their names can sometimes be 
found on a public web site, in a network registration with the Internet registry, or in 
publicity and articles.) The attack is often directed at someone low enough to be intimidated 
or impressed by the high-level person. A direct phone call and expressions of great urgency 
can override any natural instinct to check out the story. 

Because the victim has helped the attacker (and the attacker has profusely thanked 
the victim), the victim will think nothing is wrong and not report the incident. Thus, the 
damage may not be known for some time. 

An attacker has little to lose in trying a social engineering attack. At worst it will 
raise awareness of a possible target. But if the social engineering is directed against 
someone who is not skeptical, especially someone not involved in security management, it 
may well succeed. We as humans like to help others when asked politely. 
Intelligence 

From a port scan the attacker knows what is open. From social engineering, the 
attacker knows certain internal details. But a more detailed floor plan would be nice. 
Intelligence is the general term for collecting information. In security it often refers to 
gathering discrete bits of information from various sources and then putting them together 
like the pieces of a puzzle. 

One commonly used intelligence technique is called "dumpster diving." It involves 
looking through items that have been discarded in rubbish bins or recycling boxes. It is 
amazing what we throw away without thinking about it. Mixed with the remains from lunch 
might be network diagrams, printouts of security device configurations, system designs and 
source code, telephone and employee lists, and more. Even outdated printouts may be 
useful. Seldom will the configuration of a security device change completely. More often only 
one rule is added or deleted or modified, so an attacker has a high probability of a 
successful attack based on the old information. 

Gathering intelligence may also involve eavesdropping. Trained spies may follow 
employees to lunch and listen in from nearby tables as coworkers discuss security matters. 
Or spies may befriend key personnel in order to co-opt, coerce, or trick them into passing 
on useful information. 

Most intelligence techniques require little training and minimal investment of time. 
If an attacker has targeted a particular organization, spending a little time to collect 
background information yields a big payoff. 
Operating System and Application Fingerprinting 

The port scan supplies the attacker with very specific information. For instance, an 
attacker can use a port scan to find out that port 80 is open and supports HTTP, the 
protocol for transmitting web pages. But the attacker is likely to have many related 
questions, such as which commercial server application is running, what version, and what 
the underlying operating system and version are. Once armed with this additional 
information, the attacker can consult a list of specific software's known vulnerabilities to 
determine which particular weaknesses to try to exploit. 
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How can the attacker answer these questions? The network protocols are standard 
and vendor independent. Still, each vendor's code is implemented independently, so there 
may be minor variations in interpretation and behavior. The variations do not make the 
software noncompliant with the standard, but they are different enough to make each 
version distinctive. For example, each version may have different sequence numbers, TCP 
flags, and new options. To see why, consider that sender and receiver must coordinate with 
sequence numbers to implement the connection of a TCP session. Some implementations 
respond with a given sequence number, others respond with the number one greater, and 
others respond with an unrelated number. Likewise, certain flags in one version are 
undefined or incompatible with others. How a system responds to a prompt (for instance, by 
acknowledging it, requesting retransmission, or ignoring it) can also reveal the system and 
version. Finally, new features offer a strong clue: A new version will implement a new 
feature but an old version will reject the request. All these peculiarities, sometimes called 
the operating system or application fingerprint, can mark the manufacturer and version. 
For example, in addition to performing its port scan, a scanner such as nmap will respond 
with a guess at the target operating system. For more information about how this is done, 
see the paper at www.insecure.org/nmap/nmap-fingerprinting-article.html. 

Sometimes the application identifies itself. Usually a client-server interaction is 
handled completely within the application according to protocol rules: "Please send me this 
page; OK but run this support code; thanks, I just did." But the application cannot respond 
to a message that does not follow the expected form. For instance, the attacker might use a 
Telnet application to send meaningless messages to another application. Ports such as 80 
(HTTP), 25 (SMTP), 110 (POP), and 21 (FTP) may respond with something like Server: 
Netscape-Commerce/1.12 
Your browser sent a non-HTTP compliant message. Or Microsoft ESMTP MAIL Service, 
Version: 5.0.2195.3779 
This reply tells the attacker which application and version are running. 
Bulletin Boards and Chats 

The Internet is probably the greatest tool for sharing knowledge since the invention 
of the printing press. It is probably also the most dangerous tool for sharing knowledge. 
Numerous underground bulletin boards and chat rooms support exchange of information. 
Attackers can post their latest exploits and techniques, read what others have done, and 
search for additional information on systems, applications, or sites. Remember that, as with 
everything on the Internet, anyone can post anything, so there is no guarantee that the 
information is reliable or accurate. And you never know who is reading from the Internet. 
(See Sidebar 7-4 on law enforcement officials' "going underground" to catch malicious 
hackers.) 
Availability of Documentation 

The vendors themselves sometimes distribute information that is useful to an 
attacker. For example, Microsoft produces a resource kit by which application vendors can 
investigate a Microsoft product in order to develop compatible, complementary applications. 
This toolkit also gives attackers tools to use in investigating a product that can 
subsequently be the target of an attack. 
Reconnaissance: Concluding Remarks 

A good thief, that is, a successful one, spends time understanding the context of the 
target. To prepare for perpetrating a bank theft, the thief might monitor the bank, seeing 
how many guards there are, when they take breaks, when cash shipments arrive, and so 
forth. 

Remember that time is usually on the side of the attacker. In the same way that a 
bank might notice someone loitering around the entrance, a computing site might notice 
exceptional numbers of probes in a short time. But the clever thief or attacker will collect a 
little information, go dormant for a while, and resurface to collect more. So many people 
walk past banks and peer in the windows, or scan and probe web hosts that individual 
peeks over time are hard to correlate. 

The best defense against reconnaissance is silence. Give out as little information 
about your site as possible, whether by humans or machines. 

Threats in Transit: Eavesdropping and Wiretapping 
By now, you can see that an attacker can gather a significant amount of information 

about a victim before beginning the actual attack. Once the planning is done, the attacker 
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is ready to proceed. In this section we turn to the kinds of attacks that can occur. Recall 
from Chapter 1 that an attacker has many ways by which to harm in a computing 
environment: loss of confidentiality, integrity, or availability to data, hardware or software, 
processes, or other assets. Because a network involves data in transit, we look first at the 
harm that can occur between a sender and a receiver. Sidebar 7-5 describes the ease of 
interception. 

The easiest way to attack is simply to listen in. An attacker can pick off the content 
of a communication passing in the clear. The term eavesdrop implies overhearing without 
expending any extra effort. For example, we might say that an attacker (or a system 
administrator) is eavesdropping by monitoring all traffic passing through a node. The 
administrator might have a legitimate purpose, such as watching for inappropriate use of  
resources (for instance, visiting non-work-related web sites from a company network) or 
communication with inappropriate parties (for instance, passing files to an enemy from a 
military computer). 

A more hostile term is wiretap, which means intercepting communications through 
some effort. Passive wiretapping is just "listening," much like eavesdropping. But active 
wiretapping means injecting something into the communication. For example, Marvin could 
replace Manny's communications with his own or create communications purported to be 
from Manny. Originally derived from listening in on telegraph and telephone 
communications, the term wiretapping usually conjures up a physical act by which a device 
extracts information as it flows over a wire. But in fact no actual contact is necessary. A 
wiretap can be done covertly so that neither the sender nor the receiver of a communication 
knows that the contents have been intercepted. 

Wiretapping works differently depending on the communication medium used. Let 
us look more carefully at each possible choice. 
Cable 

At the most local level, all signals in an Ethernet or other LAN are available on the 
cable for anyone to intercept. Each LAN connector (such as a computer board) has a unique 
address; each board and its drivers are programmed to label all packets from its host with 
its unique address (as a sender's "return address") and to take from the net only those 
packets addressed to its host. 

But removing only those packets addressed to a given host is mostly a matter of 
politeness; there is little to stop a program from examining each packet as it goes by. A 
device called a packet sniffer can retrieve all packets on the LAN. Alternatively, one of the 
interface cards can be reprogrammed to have the supposedly unique address of another 
existing card on the LAN so that two different cards will both fetch packets for one address. 
(To avoid detection, the rogue card will have to put back on the net copies of the packets it 
has intercepted.) 

Fortunately (for now), LANs are usually used only in environments that are fairly 
friendly, so these kinds of attacks occur infrequently. 

Clever attackers can take advantage of a wire's properties and read packets without 
any physical manipulation. Ordinary wire (and many other electronic components) emit 
radiation. By a process called inductance an intruder can tap a wire and read radiated 
signals without making physical contact with the cable. A cable's signals travel only short 
distances, and they can be blocked by other conductive materials. The equipment needed to 
pick up signals is inexpensive and easy to obtain, so inductance threats are a serious 
concern for cable-based networks. For the attack to work, the intruder must be fairly close 
to the cable; this form of attack is thus limited to situations with reasonable physical 
access.  

If the attacker is not close enough to take advantage of inductance, then more 
hostile measures may be warranted. The easiest form of intercepting a cable is by direct 
cut. If a cable is severed, all service on it stops. As part of the repair, an attacker can easily 
splice in a secondary cable that then receives a copy of all signals along the primary cable. 
There are ways to be a little less obvious but accomplish the same goal. For example, the 
attacker might carefully expose some of the outer conductor, connect to it, then carefully 
expose some of the inner conductor and connect to it. Both of these operations alter the 
resistance, called the impedance, of the cable. In the first case, the repair itself alters the 
impedance, and the impedance change can be explained (or concealed) as part of the repair. 
In the second case, a little social engineering can explain the change. ("Hello, this is Matt, a 
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technician with Bignetworks. We are changing some equipment on our end, and so you 
might notice a change in impedance.") 

Signals on a network are multiplexed, meaning that more than one signal is 
transmitted at a given time. For example, two analog (sound) signals can be combined, like 
two tones in a musical chord, and two digital signals can be combined by interleaving, like 
playing cards being shuffled. A LAN carries distinct packets, but data on a WAN may be 
heavily multiplexed as it leaves its sending host. Thus, a wiretapper on a WAN needs to be 
able not only to intercept the desired communication but also to extract it from the others 
with which it is multiplexed. 

While this can be done, the effort involved means it will be used sparingly. 
Microwave Microwave signals are not carried along a wire; they are broadcast through the 
air, making them more accessible to outsiders. Typically, a transmitter's signal is focused 
on its corresponding receiver. The signal path is fairly wide, to be sure of hitting the 
receiver, as shown in Figure 7-13. From a security standpoint, the wide swath is an 
invitation to mischief. 

Not only can 
someone intercept a 
microwave transmission by 
interfering with the line of 
sight between sender and 
receiver, someone can also 
pick up an entire 
transmission from an 
antenna located close to 
but slightly off the direct focus point. 

Figure 7-13. Path of Microwave Signals. 
 

A microwave signal is usually not shielded or isolated to prevent interception. 
Microwave is, therefore, a very insecure medium. However, because of the large volume of 
traffic carried by microwave links, it is unlikelybut not impossiblethat someone will be able 
to separate an individual transmission from all the others interleaved with it. A privately 
owned microwave link, carrying only communications for one organization, is not so well 
protected by volume. 
Satellite Communication 

Satellite communication has a similar problem of being dispersed over an area 
greater than the intended point of reception. Different satellites have different 
characteristics, but some signals can be intercepted in an area several hundred miles wide 
and a thousand miles long. 

Therefore, the potential for interception is even greater than with microwave signals. 
However, because satellite communications are generally heavily multiplexed, the risk is 
small that any one communication will be intercepted. 
Optical Fiber 

Optical fiber offers two significant security advantages over other transmission 
media. First, the entire optical network must be tuned carefully each time a new connection 
is made.  

Therefore, no one can tap an optical system without detection. Clipping just one 
fiber in a bundle will destroy the balance in the network. 

Second, optical fiber carries light energy, not electricity. Light does not emanate a 
magnetic field as electricity does. Therefore, an inductive tap is impossible on an optical 
fiber cable. 

Just using fiber, however, does not guarantee security, any more than does using 
encryption. The repeaters, splices, and taps along a cable are places at which data may be 
available more easily than in the fiber cable itself. The connections from computing 
equipment to the fiber may also be points for penetration. By itself, fiber is much more 
secure than cable, but it has vulnerabilities too. 
Wireless 

Wireless networking is becoming very popular, with good reason. With wireless (also 
known as WiFi), people are not tied to a wired connection; they are free to roam throughout 
an office, house, or building while maintaining a connection. Universities, offices, and even 



132 
 

home users like being able to connect to a network without the cost, difficulty, and 
inconvenience of running wires. The difficulties of wireless arise in the ability of intruders to 
intercept and spoof a connection. 

As we noted earlier, wireless communications travel by radio. In the United States, 
wireless computer connections share the same frequencies as garage door openers, local 
radios (typically used as baby monitors), some cordless telephones, and other very short 
distance applications. Although the frequency band is crowded, few applications are 
expected to be on the band from any single user, so contention or interference is not an 
issue. 

But the major threat is not interference; it is interception. A wireless signal is strong 
for approximately 100 to 200 feet. To appreciate those figures, picture an ordinary ten-story 
office building, ten offices "wide" by five offices "deep," similar to many buildings in office 
parks or on university campuses. Assume you set up a wireless base station (receiver) in 
the corner of the top floor. That station could receive signals transmitted from the opposite 
corner of the ground floor. If a similar building were adjacent, the signal could also be 
received throughout that building, too. (See Sidebar 7-5 on how easy it is to make a 
connection.) Few people would care to listen to someone else's baby monitor, but many 
people could and do take advantage of a passive or active wiretap of a network connection. 
A strong signal can be picked up easily. And with an inexpensive, tuned antenna, a wireless 
signal can be picked up several miles away. In other words, someone who wanted to pick up 
your particular signal could do so from several streets away. Parked in a truck or van, the 
interceptor could monitor your communications for quite some time without arousing 
suspicion. 
Interception 

Interception of wireless traffic is always a threat, through either passive or active 
wiretapping. Sidebar 7-6 illustrates how software faults may make interception easier than 
you might think. You may react to that threat by assuming that encryption will address it. 
Unfortunately, encryption is not always used for wireless communication, and the 
encryption built into some wireless devices is not as strong as it should be to deter a 
dedicated attacker. 
Theft of Service 

Wireless also admits a second problem: the possibility of rogue use of a network 
connection. Many hosts run the Dynamic Host Configuration Protocol (DHCP), by which a 
client negotiates a one-time IP address and connectivity with a host. This protocol is useful 
in office or campus  settings, where not all users (clients) are active at any time. A small 
number of IP addresses can be shared among users. Essentially the addresses are available 
in a pool. A new client requests a connection and an IP address through DHCP, and the 
server assigns one from the pool. 

This scheme admits a big problem with authentication. Unless the host 
authenticates users before assigning a connection, any requesting client is assigned an IP 
address and network access. (Typically, this assignment occurs before the user on the client 
workstation actually identifies and authenticates to a server, so there may not be an 
authenticatable identity that the DHCP server can demand.) The situation is so serious that 
in some metropolitan areas a map is available, showing many networks accepting wireless 
connections. 

A user wanting free Internet access can often get it simply by finding a wireless LAN 
offering DHCP service. But is it legal? In separate cases Benjamin Smith III in Florida in 
July 2005 and Dennis Kauchak in Illinois in March 2006 were convicted of remotely 
accessing a computer wirelessly without the owner's permission. Kauchak was sentenced to 
a $250 fine. So, even though you are able to connect, it may not be legal to do so. 

On the other hand, some cities or organizations make wireless access freely 
available as a community service. Free wireless cities include Albuquerque and Honolulu in 
the United States, Oulu in Finland, and the central districts of cities such as Hamburg, 
Germany, and Adelaide, Australia. The cities hope that providing free access will spur IT 
growth and attract tourists and business travelers. 

Summary of Wiretapping 
There are many points at which network traffic is available to an interceptor. Figure 

7-14 illustrates how communications are exposed from their origin to their destination. 
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Figure 7-14. Wiretap Vulnerabilities. 
From a security 

standpoint, you should assume 
that all communication links 
between network nodes can be 
broken. For this reason, 
commercial network users employ 
encryption to protect the 
confidentiality of their 
communications, as we 
demonstrate later in this chapter. 
Local network communications 
can be encrypted, although for 
performance reasons it may be 
preferable to protect local 
connections with strong physical 
and administrative security 
instead. 

Protocol Flaws 
Internet protocols are publicly posted for scrutiny by the entire Internet community. 

Each accepted protocol is known by its Request for Comment (RFC) number. Many 
problems with protocols have been identified by sharp reviewers and corrected before the 
protocol was established as a standard. 

But protocol definitions are made and reviewed by fallible humans. Likewise, 
protocols are implemented by fallible humans. For example, TCP connections are 
established through sequence numbers. The client (initiator) sends a sequence number to 
open a connection, the server responds with that number and a sequence number of its 
own, and the client responds with the server's sequence number. Suppose (as pointed out 
by Morris [MOR85]) someone can guess a client's next sequence number. That person could 
impersonate the client in an interchange. Sequence numbers are incremented regularly, so 
it can be easy to predict the next number. (Similar protocol problems are summarized in 
[BEL89].) 

Impersonation 
In many instances, there is an easier way than wiretapping for obtaining information 

on a network: Impersonate another person or process. Why risk tapping a line, or why 
bother extracting one communication out of many, if you can obtain the same data directly? 
Impersonation is a more significant threat in a wide area network than in a local one. Local 
individuals often have better ways to obtain access as another user; they can, for example, 
simply sit at an unattended workstation. Still, impersonation attacks should not be ignored 
even on local area networks, because local area networks are sometimes attached to wider 
area networks without anyone's first thinking through the security implications. 
In an impersonation, an attacker has several choices: 

 Guess the identity and authentication details of the target. 
 Pick up the identity and authentication details of the target from a previous 

communication or from wiretapping. 
 Circumvent or disable the authentication mechanism at the target computer. 
 Use a target that will not be authenticated. 
 Use a target whose authentication data are known. 

Let us look at each choice. 
Authentication Foiled by Guessing 
Chapter 4 reported the results of several studies showing that many users choose easy-to-
guess passwords. In Chapter 3, we saw that the Internet worm of 1988 capitalized on 
exactly that flaw. Morris's worm tried to impersonate each user on a target machine by 
trying, in order, a handful of variations of the user name, a list of about 250 common 
passwords and, finally, the words in a dictionary. Sadly, many users' accounts are still open 
to these easy attacks. 

A second source of password guesses is default passwords. Many systems are 
initially configured with default accounts having GUEST or ADMIN as login IDs; 
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accompanying these IDs are well-known passwords such as "guest" or "null" or "password" 
to enable the administrator to set up the system. Administrators often forget to delete or 
disable these accounts, or at least to change the passwords. 

In a trustworthy environment, such as an office LAN, a password may simply be a 
signal that the user does not want others to use the workstation or account. Sometimes the 
password-protected workstation contains sensitive data, such as employee salaries or 
information about new products. Users may think that the password is enough to keep out 
a curious colleague; they see no reason to protect against concerted attacks. However, if 
that trustworthy environment is connected to an untrustworthy wider-area network, all 
users with simple passwords become easy targets. Indeed, some systems are not originally 
connected to a wider network, so their users begin in a less exposed situation that clearly 
changes when the connection occurs. 

Dead accounts offer a final source of guessable passwords. To see how, suppose 
Professor Romine, a faculty member, takes leave for a year to teach at another university. 
The existing account may reasonably be kept on hold, awaiting the professor's return. But 
an attacker, reading a university newspaper online, finds out that the user is away. Now the 
attacker uses social engineering on the system administration ("Hello, this is Professor 
Romine calling from my temporary office at State University. I haven't used my account for 
quite a while, but now I need something from it urgently. I have forgotten the password. 
Can you please reset it to ICECREAM? No? Well, send me a new password by email to my 
account r1@stateuniv.edu.") 

Alternatively, the attacker can try several passwords until the password guessing 
limit is exceeded. The system then locks the account administratively, and the attacker 
uses a social engineering attack. In all these ways the attacker may succeed in resetting or 
discovering a password. 
Authentication Thwarted by Eavesdropping or Wiretapping 

Because of the rise in distributed and client-server computing, some users have 
access privileges on several connected machines. To protect against arbitrary outsiders 
using these accesses, authentication is required between hosts. This access can involve the 
user directly, or it can be done automatically on behalf of the user through a host-to-host 
authentication protocol. In either case, the account and authentication details of the 
subject are passed to the destination host. When these details are passed on the network, 
they are exposed to anyone observing the communication on the network. These same 
authentication details can be reused by an impersonator until they are changed. 

Because transmitting a password in the clear is a significant vulnerability, protocols 
have been developed so that the password itself never leaves a user's workstation. But, as 
we have seen in several other places, the details are important. 

Microsoft LAN Manager was an early method for implementing networks. It had a 
password exchange mechanism in which the password itself was never transmitted in the 
clear; instead only a cryptographic hash of it was transmitted. A password could consist of 
up to 14 characters. It could include upper- and lowercase letters, digits, and special 
characters, for 67 possibilities in any one position, and 6714 possibilities for a whole 14-
character password quite a respectable work factor. However, those 14 characters were not 
diffused across the entire hash; they were sent in separate substrings, representing 
characters 17 and 814. A 7-character or shorter password had all nulls in the second 
substring and was instantly recognizable. An 8-character password had 1 character and 6 
nulls in the second substring, so 67 guesses would find the one character. Even in the best 
case, a 14-character password, the work factor fell from 6714 to 677 + 677 = 2 * 677. These 
work factors differ by a factor of approximately 10 billion. (See [MUD97] for details.) LAN 
Manager authentication was preserved in many later systems (including Windows NT) as an 
option to support backward compatibility with systems such as Windows 95/98. This 
lesson is a good example of why security and cryptography are very precise and must be 
monitored by experts from concept through design and implementation. 
Authentication Foiled by Avoidance 

Obviously, authentication is effective only when it works. A weak or flawed 
authentication allows access to any system or person who can circumvent the 
authentication. 

In a classic operating system flaw, the buffer for typed characters in a password was 
of fixed size, counting all characters typed, including backspaces for correction. If a user 
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typed more characters than the buffer would hold, the overflow caused the operating 
system to bypass password comparison and act as if a correct authentication had been 
supplied. These flaws or weaknesses can be exploited by anyone seeking access. 

Many network hosts, especially those that connect to wide area networks, run 
variants  of Unix System V or BSD Unix. In a local environment, many users are not aware 
of which networked operating system is in use; still fewer would know of, be capable of, or 
be interested in exploiting flaws. However, some hackers regularly scan wide area networks 
for hosts running weak or flawed operating systems. Thus, connection to a wide area 
network, especially the Internet, exposes these flaws to a wide audience intent on exploiting 
them. 
Nonexistent Authentication 

If two computers are used by the same users to store data and run processes and if 
each has authenticated its users on first access, you might assume that computer-to-
computer or local user-to-remote process authentication is unnecessary. These two 
computers and their users are a trustworthy environment in which the added complexity of 
repeated authentication seems excessive. 

However, this assumption is not valid. To see why, consider the Unix operating 
system. In Unix, the file .rhosts lists trusted hosts and .rlogin lists trusted users who are 
allowed access without authentication. The files are intended to support computer-to-
computer connection by users who have already been authenticated at their primary hosts. 
These "trusted hosts" can also be exploited by outsiders who obtain access to one system 
through an authentication weakness (such as a guessed password) and then transfer to 
another system that accepts the authenticity of a user who comes from a system on its 
trusted list.  

An attacker may also realize that a system has some identities requiring no 
authentication. Some systems have "guest" or "anonymous" accounts to allow outsiders to 
access things the systems want to release to anyone. For example, a bank might post a 
current listing of foreign currency rates, a library with an online catalog might make that 
catalog available for anyone to search, or a company might allow access to some of its 
reports. A user can log in as "guest" and retrieve publicly available items. Typically, no 
password is required, or the user is shown a message requesting that the user type 
"GUEST" (or your name, which really means any string that looks like a name) when asked 
for a password. Each of these accounts allows access to unauthenticated users. 
Well-Known Authentication 

Authentication data should be unique and difficult to guess. But unfortunately, the 
convenience of one well-known authentication scheme sometimes usurps the protection. 
For example, one computer manufacturer planned to use the same password to allow its 
remote maintenance personnel to access any of its computers belonging to any of its 
customers throughout the world. Fortunately, security experts pointed out the potential 
danger before that idea was put in place. 

The system network management protocol (SNMP) is widely used for remote 
management of network devices, such as routers and switches, that support no ordinary 
users. SNMP uses a "community string," essentially a password for the community of 
devices that can interact with one another. But network devices are designed especially for 
quick installation with minimal configuration, and many network administrators do not 
change the default community string installed on a router or switch. This laxity makes 
these devices on the network perimeter open to many SNMP attacks. 

Some vendors still ship computers with one system administration account 
installed, having a default password. Or the systems come with a demonstration or test 
account, with no required password. Some administrators fail to change the passwords or 
delete these accounts. 
Trusted Authentication 

Finally, authentication can become a problem when identification is delegated to 
other trusted sources. For instance, a file may indicate who can be trusted on a particular 
host. Or the authentication mechanism for one system can "vouch for" a user. We noted 
earlier how the Unix .rhosts, .rlogin, and /etc/hosts/equiv files indicate hosts or users that 
are trusted on other hosts. While these features are useful to users who have accounts on 
multiple machines or for network management, maintenance, and operation, they must be 
used very carefully. 
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Each of them represents a potential hole through which a remote useror a remote 
attacker can achieve access. 
Spoofing 

Guessing or otherwise obtaining the network authentication credentials of an entity 
(a user, an account, a process, a node, a device) permits an attacker to create a full 
communication under the entity's identity. Impersonation falsely represents a valid entity in 
a communication. 

Closely related is spoofing, when an attacker falsely carries on one end of a 
networked interchange. Examples of spoofing are masquerading, session hijacking, and 
man-in-the-middle attacks. 
Masquerade 

In a masquerade one host pretends to be another. A common example is URL 
confusion. Domain names can easily be confused, or someone can easily mistype certain 
names. Thus xyz.com, xyz.org, and xyz.net might be three different organizations, or one 
bona fide organization (for example, xyz.com) and two masquerade attempts from someone 
who registered the similar domain names. Names with or without hyphens (coca-cola.com 
versus cocacola.com) and easily mistyped names (l0pht.com versus lopht.com, or 
citibank.com versus citybank.com) are candidates for masquerading. 

From the attacker's point of view, the fun in masquerading comes before the mask is 
removed. For example, suppose you want to attack a real bank, First Blue Bank of Chicago. 
The actual bank has the domain name BlueBank.com, so you register the domain name 
Blue-Bank.com. Next, you put up a web page at Blue-Bank.com, perhaps using the real 
Blue Bank logo that you downloaded to make your site look as much as possible like that of 
the Chicago bank. Finally, you ask people to log in with their name, account number, and 
password or PIN. (This redirection can occur in many ways. For example, you can pay for a 
banner ad that links to your site instead of the real bank's, or you can send e-mail to 
Chicago residents and invite them to visit your site.) After collecting personal data from 
several bank users, you can drop the connection, pass the connection on to the real Blue 
Bank, or continue to collect more information. You may even be able to transfer this 
connection smoothly to an authenticated access to the real Blue Bank so that the user 
never realizes the deviation. (First Blue Bank would probably win a suit to take ownership 
of the Blue-Bank.com domain.) 

A variation of this attack is called phishing. You send an e-mail message, perhaps 
with the real logo of Blue Bank, and an enticement to click on a link, supposedly to take the 
victim to the Blue Bank web site. The enticement might be that your victim's account has 
been suspended or that you offer your victim some money for answering a survey (and need 
the account number and PIN to be able to credit the money), or some other legitimate-
sounding explanation. The link might be to your domain Blue-Bank.com, the link might say 
click here to access your account (where the click here link connects to your fraudulent site), 
or you might use some other trick with the URL to fool your victim, like 
www.redirect.com/bluebank.com. 

In another version of a masquerade, the attacker exploits a flaw in the victim's web 
server and is able to overwrite the victim's web pages. Although there is some public 
humiliation at having one's site replaced, perhaps with obscenities or strong messages 
opposing the nature of the site (for example, a plea for vegetarianism on a slaughterhouse 
web site), most people would not be fooled by a site displaying a message absolutely 
contrary to its aims. However, a clever attacker can be more subtle. Instead of 
differentiating from the real site, the attacker can try to build a false site that resembles the 
real one, perhaps to obtain sensitive information (names, authentication numbers, credit 
card numbers) or to induce the user to enter into a real transaction. For example, if one 
bookseller's site, call it Books-R-Us, were overtaken subtly by another, called Books Depot, 
the orders may actually be processed, filled, and billed to the naïve users by Books Depot. 
Test your ability to distinguish phishing sites from real ones at 
http://survey.mailfrontier.com/survey/quiztest.html. 

Phishing is becoming a serious problem, according to a trends report from the Anti-
Phishing Working Group [APW05]. This group received over 12,000 complaints each month 
from March 2005 to March 2006, with the number peaking above 18,000 for March 2006. 
Session Hijacking Session hijacking is intercepting and carrying on a session begun by 
another entity. Suppose two entities have entered into a session but then a third entity 
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intercepts the traffic and carries on the session in the name of the other. Our example of 
Books-R-Us could be an instance of this technique. If Books Depot used a wiretap to 
intercept packets between you and Books-R-Us, Books Depot could simply monitor the 
information flow, letting Books-R-Us do the hard part of displaying titles for sale and 
convincing the user to buy. Then, when the user has completed the order, Books Depot 
intercepts the "I'm ready to check out" packet, and finishes the order with the user, 
obtaining shipping address, credit card details, and so forth. 

To Books-R-Us, the transaction would look like any other incomplete transaction: 
The user was browsing but for some reason decided to go elsewhere before purchasing. We 
would say that Books Depot had hijacked the session. 

A different type of example involves an interactive session, for example, using Telnet. 
If a system administrator logs in remotely to a privileged account, a session hijack utility 
could intrude in the communication and pass commands as if they came from the 
administrator. 
Man-in-the-Middle Attack 

Our hijacking example requires a third party involved in a session between two 
entities. A man-in-the-middle attack is a similar form of attack, in which one entity intrudes 
between two others. We studied one form of this attack in Chapter 3. The difference 
between man-in-the-middle and hijacking is that a man-in-the-middle usually participates 
from the start of the session, whereas a session hijacking occurs after a session has been 
established. 

The difference is largely semantic and not too significant. Man-in-the-middle attacks 
are frequently described in protocols. To see how an attack works, suppose you want to 
exchange encrypted information with your friend. You contact the key server and ask for a 
secret key with which to communicate with your friend. The key server responds by sending 
a key to you and your friend. One man-in-the-middle attack assumes someone can see and 
enter into all parts of this protocol. A malicious middleman intercepts the response key and 
can then eavesdrop on, or even decrypt, modify, and re-encrypt any subsequent 
communications between you and your friend. This attack is depicted in Figure 7-15. 

Figure 7-15. Key Interception by a Man-in-the-Middle Attack. 

 
This attack would be changed with public keys, 

because the man-in-the-middle would not have the 
private key to be able to decrypt messages encrypted 
under your friend's public key. The man-in-the-middle 
attack now becomes more of the three-way interchange 
its name implies. The man-in-the-middle intercepts 
your request to the key server and instead asks for 
your friend's public key. The man-in-the-middle passes 
to you his own public key, not your friend's. You 
encrypt using the public key you received (from the 
man-in-the-middle); the man-in-the-middle intercepts 
and decrypts, reads, and reencrypts, using your 
friend's public key; and your friend receives. In this 
way, the man-in-the-middle reads the messages and neither you nor your friend is aware of 
the interception. A slight variation of this attack works for secret key distribution under a 
public key. 

Message Confidentiality Threats 
An attacker can easily violate message confidentiality (and perhaps integrity) 

because of the public nature of networks. Eavesdropping and impersonation attacks can 
lead to a confidentiality or integrity failure. Here we consider several other vulnerabilities 
that can affect confidentiality. 
Misdelivery 

Sometimes messages are misdelivered because of some flaw in the network 
hardware or software. Most frequently, messages are lost entirely, which is an integrity or 
availability issue. Occasionally, however, a destination address is modified or some handler 
malfunctions, causing a message to be delivered to someone other than the intended 
recipient. All of these "random" events are quite uncommon. 
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More frequent than network flaws are human errors. It is far too easy to mistype an 
address such as 100064,30652 as 10064,30652 or 100065,30642, or to type "idw" or "iw" 
instead of "diw" for David Ian Walker, who is called Ian by his friends. There is simply no 
justification for a computer network administrator to identify people by meaningless long 
numbers or cryptic initials when "iwalker" would be far less prone to human error. 
Exposure  

To protect the confidentiality of a message, we must track it all the way from its 
creation to its disposal. Along the way, the content of a message may be exposed in 
temporary buffers; at switches, routers, gateways, and intermediate hosts throughout the 
network; and in the workspaces of processes that build, format, and present the message. 
In earlier chapters, we considered confidentiality exposures in programs and operating 
systems. All of these exposures apply to networked environments as well. Furthermore, a 
malicious attacker can use any of these exposures as part of a general or focused attack on 
message confidentiality. 

Passive wiretapping is one source of message exposure. So also is subversion of the 
structure by which a communication is routed to its destination. Finally, intercepting the 
message at its source, destination, or at any intermediate node can lead to its exposure. 
Traffic Flow Analysis 

Sometimes not only is the message itself sensitive but the fact that a message exists 
is also sensitive. For example, if the enemy during wartime sees a large amount of network 
traffic between headquarters and a particular unit, the enemy may be able to infer that 
significant action is being planned involving that unit. In a commercial setting, messages 
sent from the president of one company to the president of a competitor could lead to 
speculation about a takeover or conspiracy to fix prices. Or communications from the prime 
minister of one country to another with whom diplomatic relations were suspended could 
lead to inferences about a rapprochement between the countries. In these cases, we need to 
protect both the content of messages and the header information that identifies sender and 
receiver. 

Message Integrity Threats 
In many cases, the integrity or correctness of a communication is at least as 

important as its confidentiality. In fact for some situations, such as passing authentication 
data, the integrity of the communication is paramount. In other cases, the need for integrity 
is less obvious. Next we consider threats based on failures of integrity in communication. 
Falsification of Messages 

Increasingly, people depend on electronic messages to justify and direct actions. For 
example, if you receive a message from a good friend asking you to meet at the pub for a 
drink next Tuesday evening, you will probably be there at the appointed time. Likewise, you 
will comply with a message from your supervisor telling you to stop work on project A and 
devote your energy instead to project B. As long as it is reasonable, we tend to act on an 
electronic message just as we would on a signed letter, a telephone call, or a face-to-face 
communication. 

However, an attacker can take advantage of our trust in messages to mislead us. In 
particular, an attacker may 

 change some or all of the content of a message 
 replace a message entirely, including the date, time, and sender/receiver identification 
 reuse (replay) an old message 
 combine pieces of different messages into one 
 change the apparent source of a message 
 redirect a message 
 destroy or delete a message 

These attacks can be perpetrated in the ways we have already examined, including 
 active wiretap 
 Trojan horse 
 impersonation 
 preempted host 
 preempted workstation 

Noise 
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Signals sent over communications media are subject to interference from other 
traffic on the same media, as well as from natural sources, such as lightning, electric 
motors, and animals. 

Such unintentional interference is called noise. These forms of noise are inevitable, 
and they can threaten the integrity of data in a message. 

Fortunately, communications protocols have been intentionally designed to 
overcome the negative effects of noise. For example, the TCP/IP protocol suite ensures 
detection of almost all transmission errors. Processes in the communications stack detect 
errors and arrange for retransmission, all invisible to the higher-level applications. Thus, 
noise is scarcely a consideration for users in security-critical applications. 

Format Failures 
Network communications work because of well-designed protocols that define how 

two computers communicate with a minimum of human intervention. The format of a 
message, size of a data unit, sequence of interactions, even the meaning of a single bit is 
precisely described in a standard. The whole network works only because everyone obeys 
these rules. 

Almost everyone, that is. Attackers purposely break the rules to see what will 
happen. Or the attacker may seek to exploit an undefined condition in the standard. 
Software may detect the violation of structure and raise an error indicator. Sometimes, 
however, the malformation causes a software failure, which can lead to a security 
compromise, just what the attacker wants. In this section we look at several kinds of 
malformation. 
Malformed Packets 

Packets and other data items have specific formats, depending on their use. Field 
sizes, bits to signal continuations, and other flags have defined meanings and will be 
processed appropriately by network service applications called protocol handlers. These 
services do not necessarily check for errors, however. What happens if a packet indicates a 
data field is 40 characters long and the actual field length is 30 or 50? Or what if a packet 
reports its content is continued in the next packet and there is no next packet? Or suppose 
for a 2-bit flag only values 00, 01, and 10 are defined; what does the handler do if it 
receives the value 11? 

For example, in 2003 Microsoft distributed a patch for its RPC (Remote Procedure 
Call) service. If a malicious user initiated an RPC session and then sent an incorrectly 
formatted packet, the entire RPC service failed, as well as some other Microsoft services. 

Attackers try all sorts of malformations of packets. Of course, many times the 
protocol handler detects the malformation and raises an error condition, and other times 
the failure affects only the user (the attacker). But when the error causes the protocol 
handler to fail, the result can be denial of service, complete failure of the system, or some 
other serious result. 
Protocol Failures and Implementation Flaws 

Each protocol is a specification of a service to be provided; the service is then 
implemented in software, which, as discussed in Chapter 3, may be flawed. Network 
protocol software is basic to the operating system, so flaws in that software can cause 
widespread harm because of the privileges with which the software runs and the impact of 
the software on many users at once. Certain network protocol implementations have been 
the source of many security flaws; especially troublesome have been SNMP (network 
management), DNS (addressing service), and e-mail services such as SMTP and S/MIME. 
Although different vendors have implemented the code for these services themselves, they 
often are based on a common (flawed) prototype. For example, the CERT advisory for SNMP 
flaws (Vulnerability Note 107186) lists approximately 200 different implementations to 
which the advisory applies. 

Or the protocol itself may be incomplete. If the protocol does not specify what action 
to take in a particular situation, vendors may produce different results. So an interaction 
on Windows, for example, might succeed while the same interaction on a Unix system 
would fail. 

The protocol may have an unknown security flaw. In a classic example, Bellovin 
[BEL89] points out a weakness in the way packet sequence numbers are assignedan 
attacker could intrude into a communication in such a way that the intrusion is accepted 
as the real communication and the real sender is rejected. 
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Attackers can exploit all of these kinds of errors. 

Web Site Vulnerabilities 
A web site is especially vulnerable because it is almost completely exposed to the 

user. If you use an application program, you do not usually get to view the program's code. 
With a web site, the attacker can download the site's code for offline study over time. With a 
program, you have little ability to control in what order you access parts of the program, 
but a web attacker gets to control in what order pages are accessed, perhaps even accessing  
without first having run pages 1 through 4. The attacker can also choose what data to 
supply and can run experiments with different data values to see how the site will react. In 
short, the attacker has some advantages that can be challenging to control. 

The list of web site vulnerabilities is too long to explore completely here. Hoglund 
and McGraw [HOG04], Andrews and Whitaker [AND06], and Howard et al. [HOW05] offer 
excellent analyses of how to find and fix flaws in web software. Be sure to review the code 
development issues in Chapter 3, because many code techniques there (such as buffer 
overflows and insufficient parameter checking) are applicable here. 
Web Site Defacement 

One of the most widely known attacks is the web site defacement attack. Because of 
the large number of sites that have been defaced and the visibility of the result, the attacks 
are often reported in the popular press. 

A defacement is common not only because of its visibility but also because of the 
ease with which one can be done. Web sites are designed so that their code is downloaded, 
enabling an attacker to obtain the full hypertext document and all programs directed to the 
client in the loading process. An attacker can even view programmers' comments left in as 
they built or maintained the code. The download process essentially gives the attacker the 
blueprints to the web site. 

The ease and appeal of a defacement are enhanced by the seeming plethora of 
vulnerabilities that web sites offer an attacker. For example, between December 1999 and 
June 2001 (the first 18 months after its release), Microsoft provided 17 security patches for 
its web server software, Internet Information Server (IIS) version 4.0. And version 4.0 was 
an upgrade for three previous versions, so theoretically Microsoft had a great deal of time 
earlier to work out its security flaws. 
Buffer Overflows 

Buffer overflow is alive and well on web pages, too. It works exactly the same as 
described in Chapter 3: The attacker simply feeds a program far more data than it expects 
to receive. A buffer size is exceeded, and the excess data spill over into adjoining code and 
data locations. 

Perhaps the best-known web server buffer overflow is the file name problem known 
as iishack. This attack is so well known that is has been written into a procedure (see 
http://www.technotronic.com). To execute the procedure, an attacker supplies as 
parameters the site to be attacked and the URL of a program the attacker wants that server 
to execute. 

Other web servers are vulnerable to extremely long parameter fields, such as 
passwords of length 10,000 or a long URL padded with space or null characters. 
Dot-Dot-Slash Web server code should always run in a constrained environment. Ideally, 
the web server should never have editors, xterm and Telnet programs, or even most system 
utilities loaded. By constraining the environment in this way, even if an attacker escapes 
from the web server application, no other executable programs will help the attacker use 
the web server's computer and operating system to extend the attack. The code and data for 
web applications can be transferred manually to a web server or pushed as a raw image. 

But many web applications programmers are naïve. They expect to need to edit a 
web application in place, so they install editors and system utilities on the server to give 
them a complete environment in which to program. 

A second, less desirable, condition for preventing an attack is to create a fence 
confining the web server application. With such a fence, the server application cannot 
escape from its area and access other potentially dangerous system areas (such as editors 
and utilities). The server begins in a particular directory subtree, and everything the server 
needs is in that same subtree. 

Enter the dot-dot. In both Unix and Windows, '..' is the directory indicator for 
"predecessor." And '../..' is the grandparent of the current location. So someone who can 
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enter file names can travel back up the directory tree one .. at a time. Cerberus Information 
Security analysts found just that vulnerability in the webhits.dll extension for the Microsoft 
Index Server. For example, passing the following URL causes the server to return the 
requested file, autoexec.nt, enabling an attacker to modify or delete it. 
http://yoursite.com/webhits.htw?CiWebHits&File= 
../../../../../winnt/system32/autoexec.nt 
Application Code Errors 

A user's browser carries on an intricate, undocumented protocol interchange with 
applications on the web server. To make its job easier, the web server passes context strings 
to the user, making the user's browser reply with full context. A problem arises when the 
user can modify that context. 

To see why, consider our fictitious shopping site called CDs-R-Us, selling compact 
discs. At any given time, a server at that site may have a thousand or more transactions in 
various states of completion. The site displays a page of goods to order, the user selects one, 
the site displays more items, the user selects another, the site displays more items, the user 
selects two more, and so on until the user is finished selecting. Many people go on to 
complete the order by specifying payment and shipping information. But other people use 
web sites like this one as an online catalog or guide, with no real intention of ordering. For 
instance, they can use this site to find out the price of the latest CD from Cherish the 
Ladies; they can use an online book service to determine how many books by Iris Murdoch 
are in print. And even if the user is a bona fide customer, sometimes web connections fail, 
leaving the transaction incomplete. For these reasons, the web server often keeps track of 
the status of an incomplete order in parameter fields appended to the URL. These fields 
travel from the server to the browser and back to the server with each user selection or page 
request. 

Assume you have selected one CD and are looking at a second web page. The web 
server has passed you a URL similar to http://www.CDs-r-
us.com/buy.asp?i1=459012&p1=1599 This URL means you have chosen CD number 
459012, and its price is $15.99. You now select a second and the URL becomes 
http://www.CDs-r-us.com/ 
buy.asp?i1=459012&p1=1599&i2=365217&p2=1499 

But if you are a clever attacker, you realize that you can edit the URL in the address 
window of your browser. Consequently, you change each of 1599 and 1499 to 199. And 
when the server totals up your order, lo and behold, your two CDs cost only $1.99 each. 

This failure is an example of the time-of-check to time-of-use flaw that we discussed 
in Chapter 3. The server sets (checks) the price of the item when you first display the price, 
but then it loses control of the checked data item and never checks it again. This situation 
arises frequently in server application code because application programmers are generally 
not aware of security (they haven't read Chapter 3a) and typically do not anticipate 
malicious behavior. 
Server-Side Include 

A potentially more serious problem is called a server-side include. The problem 
takes advantage of the fact that web pages can be organized to invoke a particular function 
automatically. For example, many pages use web commands to send an e-mail message in 
the "contact us" part of the displayed page. The commands, such as e-mail, if, goto, and 
include, are placed in a field that is interpreted in HTML. 

One of the server-side include commands is exec, to execute an arbitrary file on the 
server. For instance, the server-side include command 
<a#exec cmd="/usr/bin/telnet &"> 
opens a Telnet session from the server running in the name of (that is, with the privileges 
of) the server. An attacker may find it interesting to execute commands such as chmod 
(change access rights to an object), sh (establish a command shell), or cat (copy to a file). 

For more web application vulnerabilities see [HOG04, AND06, and HOW05]. 

Denial of Service 
So far, we have discussed attacks that lead to failures of confidentiality or integrity 

problems we have also seen in the contexts of operating systems, databases, and 
applications. 

http://www.cds-r-us.com/buy.asp?i1=459012&p1=1599
http://www.cds-r-us.com/buy.asp?i1=459012&p1=1599
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Availability attacks, sometimes called denial-of-service or DOS attacks, are much 
more significant in networks than in other contexts. There are many accidental and 
malicious threats to availability or continued service. 
Transmission Failure 

Communications fail for many reasons. For instance, a line is cut. Or network noise 
makes a packet unrecognizable or undeliverable. A machine along the transmission path 
fails for hardware or software reasons. A device is removed from service for repair or testing. 
A device is saturated and rejects incoming data until it can clear its overload. Many of these 
problems are temporary or automatically fixed (circumvented) in major networks, including 
the Internet. 

However, some failures cannot be easily repaired. A break in the single 
communications line to your computer (for example, from the network to your network 
interface card or the telephone line to your modem) can be fixed only by establishment of an 
alternative link or repair of the damaged one. The network administrator will say "service to 
the rest of the network was unaffected," but that is of little consolation to you. 

From a malicious standpoint, you can see that anyone who can sever, interrupt, or 
overload capacity to you can deny you service. The physical threats are pretty obvious. We 
consider instead several electronic attacks that can cause a denial of service. 
Connection Flooding 

The most primitive denial-of-service attack is flooding a connection. If an attacker 
sends you as much data as your communications system can handle, you are prevented 
from receiving any other data. Even if an occasional packet reaches you from someone else, 
communication to you will be seriously degraded. 

More sophisticated attacks use elements of Internet protocols. In addition to TCP 
and UDP, there is a third class of protocols, called ICMP or Internet Control Message 
Protocols. 

Normally used for system diagnostics, these protocols do not have associated user 
applications. ICMP protocols include  

 ping, which requests a destination to return a reply, intended to show that the 
destination system is reachable and functioning 

 echo, which requests a destination to return the data sent to it, intended to show that the 
connection link is reliable (ping is actually a version of echo) 

 destination unreachable, which indicates that a destination address cannot be accessed 
 source quench, which means that the destination is becoming saturated and the source 

should suspend sending packets for a while 
These protocols have important uses for network management. But they can also be 

used to attack a system. The protocols are handled within the network stack, so the attacks 
may be difficult to detect or block on the receiving host. We examine how these protocols 
can be used to attack a victim. 
Echo-Chargen 

This attack works between two hosts. Chargen is a protocol that generates a stream 
of packets; it is used to test the network's capacity. The attacker sets up a chargen process 
on host A that generates its packets as echo packets with a destination of host B. Then, 
host A produces a stream of packets to which host B replies by echoing them back to host 
A. This series puts the network infrastructures of A and B into an endless loop. If the 
attacker makes B both the source and destination address of the first packet, B hangs in a 
loop, constantly creating and replying to its own messages. 
Ping of Death 

A ping of death is a simple attack. Since ping requires the recipient to respond to the 
ping request, all the attacker needs to do is send a flood of pings to the intended victim. The 
attack is limited by the smallest bandwidth on the attack route. If the attacker is on a 10-
megabyte (MB) connection and the path to the victim is 100 MB or more, the attacker 
cannot mathematically flood the victim alone. But the attack succeeds if the numbers are 
reversed: The attacker on a 100-MB connection can easily flood a 10-MB victim. The ping 
packets will saturate the victim's bandwidth. 
Smurf 

The smurf attack is a variation of a ping attack. It uses the same vehicle, a ping 
packet, with two extra twists. First, the attacker chooses a network of unwitting victims. 
The attacker spoofs the source address in the ping packet so that it appears to come from 
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the victim. Then, the attacker sends this request to the network in broadcast mode by 
setting the last byte of the address to all 1s; broadcast mode packets are distributed to all 
hosts on the network. The attack is shown in Figure 7-16. 

Figure 7-16. Smurf Attack. 
 
Syn Flood 

Another popular denial-of-
service attack is the syn flood. This 
attack uses the TCP protocol suite, 
making the session-oriented nature of 
these protocols work against the victim. 
For a protocol such as Telnet, the 
protocol peers establish a virtual 
connection, called a session, to synchronize the back-and-forth, command-response nature 
of the Telnet terminal emulation. A session is established with a three-way TCP handshake. 
Each TCP packet has flag bits, two of which are denoted SYN and ACK. To initiate a TCP 
connection, the originator sends a packet with the SYN bit on. If the recipient is ready to 
establish a connection, it replies with a packet with both the SYN and ACK bits on. The first 
party then completes the exchange to demonstrate a clear and complete communication 
channel by sending a packet with the ACK bit on, as shown in Figure 7-17. 

Figure 7-17. Three-
Way Connection 

Handshake 

 
Occasionally 

packets get lost or 
damaged in 
transmission. The 
destination maintains a queue 
called the SYN_RECV connections, tracking those items for which a SYNACK has been sent 
but no corresponding ACK has yet been received. Normally, these connections are 
completed in a short time. If the SYNACK (2) or the ACK (3) packet is lost, eventually the 
destination host will time out the incomplete connection and discard it from its waiting 
queue. 

The attacker can deny service to the target by sending many SYN requests and never 
responding with ACKs, thereby filling the victim's SYN_RECV queue. Typically, the 
SYN_RECV queue is quite small, such as 10 or 20 entries. Because of potential routing 
delays in the Internet, typical holding times for the SYN_RECV queue can be minutes. So 
the attacker need only send a new SYN request every few seconds and it will fill the queue. 

Attackers using this approach usually do one more thing: They spoof the 
nonexistent return address in the initial SYN packet. Why? For two reasons. First, the 
attacker does not want to disclose the real source address in case someone should inspect 
the packets in the SYN_RECV queue to try to identify the attacker. Second, the attacker 
wants to make the SYN packets indistinguishable from legitimate SYN packets to establish 
real connections. Choosing a different (spoofed) source address for each one makes them 
unique. A SYNACK packet to a nonexistent address results in an ICMP Destination 
Unreachable response, but this is not the ACK for which the TCP connection is waiting. 
(Remember that TCP and ICMP are different protocol suites, so an ICMP reply does not 
necessarily get back to the sender's TCP handler.) 
Teardrop 

The teardrop attack misuses a feature designed to improve network communication. 
A network IP datagram is a variable-length object. To support different applications and 
conditions, the datagram protocol permits a single data unit to be fragmented, that is, 
broken into pieces and transmitted separately. Each fragment indicates its length and 
relative position within the data unit. The receiving end is responsible for reassembling the 
fragments into a single data unit. 

In the teardrop attack, the attacker sends a series of datagrams that cannot fit 
together properly. One datagram might say it is position 0 for length 60 bytes, another 
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position 30 for 90 bytes, and another position 41 for 173 bytes. These three pieces overlap, 
so they cannot be reassembled properly. In an extreme case, the operating system locks up 
with these partial data units it cannot reassemble, thus leading to denial of service. 

For more on these and other denial of service threats, see [CER99 and MAR05]. 
Traffic Redirection 

As we saw earlier, at the network layer, a router is a device that forwards traffic on 
its way through intermediate networks between a source host's network and a destination's 
network. So if an attacker can corrupt the routing, traffic can disappear. Routers use 
complex algorithms to decide how to route traffic. No matter the algorithm, they essentially 
seek the best path (where "best" is measured in some combination of distance, time, cost, 
quality, and the like). Routers are aware only of the routers with which they share a direct 
network connection, and they use gateway protocols to share information about their 
capabilities. Each router advises its neighbors about how well it can reach other network 
addresses. This characteristic allows an attacker to disrupt the network. 

To see how, keep in mind that, in spite of its sophistication, a router is simply a 
computer with two or more network interfaces. Suppose a router advertises to its neighbors 
that it has the best path to every other address in the whole network. Soon all routers will 
direct all traffic to that one router. The one router may become flooded, or it may simply 
drop much of its traffic. 

In either case, a lot of traffic never makes it to the intended destination. 
DNS Attacks 

Our final denial-of-service attack is actually a class of attacks based on the concept 
of domain name server. A domain name server (DNS) is a table that converts domain names 
like ATT.COM into network addresses like 211.217.74.130; this process is called resolving 
the domain name. A domain name server queries other name servers to resolve domain 
names it does not know. For efficiency, it caches the answers it receives so it can resolve 
that name more rapidly in the future. A pointer to a DNS server can be retained for weeks 
or months. 

In the most common implementations of Unix, name servers run software called 
Berkeley Internet Name Domain or BIND or named (a shorthand for "name daemon"). There 
have been numerous flaws in BIND, including the now-familiar buffer overflow. 

By overtaking a name server or causing it to cache spurious entries (called DNS 
cache poisoning), an attacker can redirect the routing of any traffic, with an obvious 
implication for denial of service. 

In October 2002, a massive flood of traffic inundated the top-level domain DNS 
servers, the servers that form the foundation of the Internet addressing structure. Roughly 
half the traffic came from just 200 addresses. Although some people think the problem was 
a set of misconfigured firewalls, nobody knows for sure what caused the attack. 

An attack in March 2005 used a flaw in a Symantec firewall to allow a change in the 
DNS records used on Windows machines. The objective of this attack was not denial of 
service, however. In this attack, the poisoned DNS cache redirected users to advertising 
sites that received money from clients each time a user visited the site. Nevertheless, the 
attack also prevented users from accessing the legitimate sites. 

Distributed Denial of Service 
The denial-of-service attacks we have listed are powerful by themselves, and Sidebar 

7-7 shows us that many are launched. But an attacker can construct a two-stage attack 
that multiplies the effect many times. This multiplicative effect gives power to distributed 
denial of service. 

To perpetrate a distributed denial-of-service (or DDoS) attack, an attacker does two 
things, as illustrated in Figure 7-18. In the first stage, the attacker uses any convenient 
attack (such as exploiting a buffer overflow or tricking the victim to open and install 
unknown code from an e-mail attachment) to plant a Trojan horse on a target machine. 
That Trojan horse does not necessarily cause any harm to the target machine, so it may not 
be noticed. 

The Trojan horse file may be named for a popular editor or utility, bound to a 
standard operating system service, or entered into the list of processes (daemons) activated 
at startup. No matter how it is situated within the system, it will probably not attract any 
attention. 
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Figure 7-18. Distributed Denial-of-Service Attack. 

 
The attacker repeats this process 

with many targets. Each of these target 
systems then becomes what is known as a 
zombie. The target systems carry out their 
normal work, unaware of the resident 
zombie. 

At some point the attacker chooses a 
victim and sends a signal to all the zombies 
to launch the attack. Then, instead of the 
victim's trying to defend against one denial-
of-service attack from one malicious host, 
the victim must try to counter n attacks from the n zombies all 
acting at once. Not all of the zombies need to use the same attack; for instance, some could 
use smurf attacks and others, could use syn floods to address different potential 
weaknesses. 

In addition to their tremendous multiplying effect, distributed denial-of-service 
attacks are a serious problem because they are easily launched from scripts. Given a 
collection of denial-of-service attacks and a Trojan horse propagation method, one can 
easily write a procedure to plant a Trojan horse that can launch any or all of the denial-of-
service attacks. 

DDoS attack tools first appeared in mid-1999. Some of the original DDoS tools 
include Tribal Flood Network (TFN), Trin00, and TFN2K (Tribal Flood Network, year 2000 
edition). As new vulnerabilities are discovered that allow Trojan horses to be planted and as 
new denial-of-service attacks are found, new combination tools appear. For more details on 
this topic, see [HAN00a]. 

According to the U.S. Computer Emergency Response Team (CERT) [HOU01a], 
scanning to find a vulnerable host (potential zombie) is now being included in combination 
tools; a single tool now identifies its zombie, installs the Trojan horse, and activates the 
zombie to wait for an attack signal. Recent target (zombie) selection has been largely 
random, meaning that attackers do not seem to care which zombies they infect. This 
revelation is actually bad news, because it means that no organization or accessible host is 
safe from attack. Perhaps because they are so numerous and because their users are 
assumed to be less knowledgeable about computer management and protection, Windows-
based machines are becoming more popular targets for attack than other systems. Most 
frightening is the CERT finding that the time is shrinking between discovery of a 
vulnerability and its widespread exploitation. 

Threats in Active or Mobile Code 
Active code or mobile code is a general name for code that is pushed to the client for 

execution. Why should the web server waste its precious cycles and bandwidth doing simple 
work that the client's workstation can do? For example, suppose you want your web site to 
have bears dancing across the top of the page. To download the dancing bears, you could 
download a new image for each movement the bears take: one bit forward, two bits forward, 
and so forth. However, this approach uses far too much server time and bandwidth to 
compute the positions and download new images. A more efficient use of (server) resources 
is to download a program that runs on the client's machine and implements the movement 
of the bears. 

Since you have been studying security and are aware of vulnerabilities, you probably 
are saying to yourself, "You mean a site I don't control, which could easily be hacked by 
teenagers, is going to push code to my machine that will execute without my knowledge, 
permission, or oversight?" Welcome to the world of (potentially malicious) mobile code. In 
fact, there are many different kinds of active code, and in this section we look at the related 
potential vulnerabilities. 
Cookies 

Strictly speaking, cookies are not active code. They are data files that can be stored 
and fetched by a remote server. However, cookies can be used to cause unexpected data 
transfer from a client to a server, so they have a role in a loss of confidentiality. 
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A cookie is a data object that can be held in memory (a per-session cookie) or stored 
on disk for future access (a persistent cookie). Cookies can store anything about a client 
that the browser can determine: keystrokes the user types, the machine name, connection 
details (such as IP address), date and type, and so forth. On command a browser will send 
to a server the cookies saved for it. Per-session cookies are deleted when the browser is 
closed, but persistent cookies are retained until a set expiration date, which can be years in 
the future. 

Cookies provide context to a server. Using cookies, certain web pages can greet you 
with "Welcome back, James Bond" or reflect your preferences, as in "Shall I ship this order 
to you at 135 Elm Street?" But as these two examples demonstrate, anyone possessing 
someone's cookie becomes that person in some contexts. Thus, anyone intercepting or 
retrieving a cookie can impersonate the cookie's owner. 

What information about you does a cookie contain? Even though it is your 
information, most of the time you cannot tell what is in a cookie, because the cookie's 
contents are encrypted under a key from the server. So a cookie is something that takes up 
space on your disk, holding information about you that you cannot see, forwarded to 
servers you do not know whenever the server wants it, without informing you. The 
philosophy behind cookies seems to be "Trust us, it's good for you." 
Scripts 

Clients can invoke services by executing scripts on servers. Typically, a web browser 
displays a page. As the user interacts with the web site via the browser, the browser 
organizes user inputs into parameters to a defined script; it then sends the script and 
parameters to a server to be executed. But all communication is done through HTML. The 
server cannot distinguish between commands generated from a user at a browser 
completing a web page and a user's handcrafting a set of orders. The malicious user can 
monitor the communication between a browser and a server to see how changing a web 
page entry affects what the browser sends and then how the server reacts. With this 
knowledge, the malicious user can manipulate the server's actions. 

To see how easily this manipulation is done, remember that programmers do not 
often anticipate malicious behavior; instead, programmers assume that users will be benign 
and will use a program in the way it was intended to be used. For this reason, programmers 
neglect to filter script parameters to ensure that they are reasonable for the operation and 
safe to execute. Some scripts allow arbitrary files to be included or arbitrary commands to 
be executed. An attacker can see the files or commands in a string and experiment with 
changing them. 

A well-known attack against web servers is the escape-character attack. A common 
scripting language for web servers, CGI (Common Gateway Interface), defines a machine-
independent way to encode communicated data. The coding convention uses %nn to 
represent ASCII special characters. However, special characters may be interpreted by CGI 
script interpreters. So, for example, %0A (end-of-line) instructs the interpreter to accept the 
following characters as a new command. The following command requests a copy of the 
server's password file: 
http://www.test.com/cgi-bin/query?%0a/bin/cat%20/etc/passwd 

CGI scripts can also initiate actions directly on the server. For example, an attacker 
can observe a CGI script that includes a string of this form: 
<a-#action arg1=value arg2=value -> 
and submit a subsequent command where the string is replaced by 
<a--#exec cmd="rm *" -> 
to cause a command shell to execute a command to remove all files in the shell's current 
directory. 

Microsoft uses active server pages (ASP) as its scripting capability. Such pages 
instruct the browser on how to display files, maintain context, and interact with the server. 
These pages can also be viewed at the browser end, so any programming weaknesses in the 
ASP code are available for inspection and attack. 

The server should never trust anything received from a client, because the remote 
user can send the server a string crafted by hand, instead of one generated by a benign 
procedure the server sent the client. As with so many cases of remote access, these 
examples demonstrate that if you allow someone else to run a program on your machine, 
you can no longer be confident that your machine is secure. 
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Active Code 
Displaying web pages started simply with a few steps: generate text, insert images, 

and register mouse clicks to fetch new pages. Soon, people wanted more elaborate action at 
their web sites: toddlers dancing atop the page, a three-dimensional rotating cube, images 
flashing on and off, colors changing, totals appearing. Some of these tricks, especially those 
involving movement, take significant computing power; they require a lot of time and 
communication to download from a server. But typically, the client has a capable and 
underutilized processor, so the timing issues are irrelevant. 

To take advantage of the processor's power, the server may download code to be 
executed on the client. This executable code is called active code. The two main kinds of 
active code are Java code and ActiveX controls. 
Java Code 

Sun Microsystems [GOS96] designed and promoted the Java technology as a truly 
machine-independent programming language. A Java program consists of Java byte-code 
executed on a Java virtual machine (JVM) program. The bytecode programs are machine 
independent, and only the JVM interpreter needs to be implemented on each class of 
machine to achieve program portability. The JVM interpreter contains a built-in security 
manager that enforces a security policy. A Java program runs in a Java "sandbox," a 
constrained resource domain from which the program cannot escape. The Java 
programming language is strongly typed, meaning that the content of a data item must be 
of the appropriate type for which it is to be used (for example, a text string cannot be used 
as a numeric). 

The original, Java 1.1 specification was very solid, very restrictive, and hence very 
unpopular. In it, a program could not write permanently to disk, nor could it invoke 
arbitrary procedures that had not been included in the sandbox by the security manager's 
policy. Thus, the sandbox was a collection of resources the user was willing to sacrifice to 
the uncertainties of Java code. Although very strong, the Java 1.1 definition proved 
unworkable. As a result, the original restrictions on the sandbox were relaxed, to the 
detriment of security. Koved et al. [KOV98] describe how the Java security model evolved. 

The Java 1.2 specification opened the sandbox to more resources, particularly to 
stored disk files and executable procedures. (See, for example, [GON96, GON97].) Although 
it is still difficult to break its constraints, the Java sandbox contains many new toys, 
enabling more interesting computation but opening the door to exploitation of more serious 
vulnerabilities.(For more information, see [DEA96] and review the work of the Princeton 
University Secure Internet Programming group, 
http://www.cs.princeton.edu/sip/history/index.php3.) 

Does this mean that the Java system's designers made bad decisions? No. As we 
have seen many times before, a product's security flaw is not necessarily a design flaw. 
Sometimes the designers choose to trade some security for increased functionality or ease 
of use. In other cases, the design is fine, but implementers fail to uphold the high security 
standards set out by designers. The latter is certainly true for Java technology. Problems 
have occurred with implementations of Java virtual machines for different platforms and in 
different components. 

For example, a version of Netscape browser failed to implement type checking on all 
data types, as is required in the Java specifications. A similar vulnerability affected 
Microsoft Internet Explorer. Although these vulnerabilities have been patched, other 
problems could occur with subsequent releases. 

A hostile applet is downloadable Java code that can cause harm on the client's 
system. Because an applet is not screened for safety when it is downloaded and because it 
typically runs with the privileges of its invoking user, a hostile applet can cause serious 
damage. Dean et al. [DEA96] list necessary conditions for secure execution of applets: 

 The system must control applets' access to sensitive system resources, such as the file 
system, the processor, the network, the user's display, and internal state variables. 

 The language must protect memory by preventing forged memory pointers and array 
(buffer) overflows. 

 The system must prevent object reuse by clearing memory contents for new objects; the 
system should perform garbage collection to reclaim memory that is no longer in use. 

 The system must control interapplet communication as well as applets' effects on the 
environment outside the Java system through system calls. 
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ActiveX Controls 
Microsoft's answer to Java technology is the ActiveX series. Using ActiveX controls, 

objects of arbitrary type can be downloaded to a client. If the client has a viewer or handler 
for the object's type, that viewer is invoked to present the object. For example, downloading 
a Microsoft Word .doc file would invoke Microsoft Word on a system on which it is installed. 
Files for which the client has no handler cause other code to be downloaded. Thus, in 
theory, an attacker could invent a type, called .bomb, and cause any unsuspecting user 
who downloaded a web page with a .bomb file also to download code that would execute 
.bombs. 

To prevent arbitrary downloads, Microsoft uses an authentication scheme under 
which downloaded code is cryptographically signed and the signature is verified before 
execution. But the authentication verifies only the source of the code, not its correctness or 
safety. Code from Microsoft (or Netscape or any other manufacturer) is not inherently safe, 
and code from an unknown source may be more or less safe than that from a known 
source. Proof of origin shows where it came from, not how good or safe it is. And some 
vulnerabilities allow ActiveX to bypass the authentication. 

Auto Exec by Type Data files are processed by programs. For some products, the file 
type is implied by the file extension, such as .doc for a Word document, .pdf (Portable 
Document Format) for an Adobe Acrobat file, or .exe for an executable file. On many 
systems, when a file arrives with one of these extensions, the operating system 
automatically invokes the appropriate processor to handle it. 

By itself, a Word document is unintelligible as an executable file. To prevent 
someone from running a file temp.doc by typing that name as a command, Microsoft 
embeds within a file what type it really is. Double-clicking the file in a Windows Explorer 
window brings up the appropriate program to handle that file. 

But, as we noted in Chapter 3, this scheme presents an opportunity to an attacker. 
A malicious agent might send you a file named innocuous.doc, which you would expect to 
be a Word document. Because of the .doc extension, Word would try to open it. Suppose 
that file is renamed "innocuous" (without a .doc). If the embedded file type is .doc, then 
double-clicking innocuous also brings the file up in Word. The file might contain malicious 
macros or invoke the opening of another, more dangerous file. 

Generally, we recognize that executable files can be dangerous, text files are likely to 
be safe, and files with some active content, such as .doc files, fall in between. If a file has no 
apparent file type and will be opened by its built-in file handler, we are treading on 
dangerous ground. An attacker can disguise a malicious active file under a nonobvious file 
type. 
Bots 

Bots, hackerese for robots, are pieces of malicious code under remote control. These 
code objects are Trojan horses that are distributed to large numbers of victims' machines. 
Because they may not interfere with or harm a user's computer (other than consuming 
computing and network resources), they are often undetected. 

Bots coordinate with each other and with their master through ordinary network 
channels, such as Internet Relay Chat (IRC) channels or peer-to-peer networking (which 
has been used for sharing music over the Internet). Structured as a loosely coordinated 
web, a network of bots, called a botnet, is not subject to failure of any one bot or group of 
bots, and with multiple channels for communication and coordination, they are highly 
resilient. 

Botnets are used for distributed denial-of-service attacks, launching attacks from 
many sites in parallel against a victim. They are also used for spam and other bulk email 
attacks, in which an extremely large volume of e-mail from any one point might be blocked 
by the sending service provider. 

Complex Attacks 
As if these vulnerabilities were not enough, two other phenomena multiply the risk. 

Scripts let people perform attacks even if the attackers do not understand what the attack 
is or how it is performed. Building blocks let people combine components of an attack, 
almost like building a house from prefabricated parts. 
Script Kiddies 

Attacks can be scripted. A simple smurf denial-of-service attack is not hard to 
implement. But an underground establishment has written scripts for many of the popular 
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attacks. With a script, attackers need not understand the nature of the attack or even the 
concept of a network. The attackers merely download the attack script (no more difficult 
than downloading a newspaper story from a list of headlines) and execute it. The script 
takes care of selecting an appropriate (that is, vulnerable) victim and launching the attack. 
The hacker community is active in creating scripts for known vulnerabilities. For example, 
within three weeks of a CERT advisory for a serious SNMP vulnerability in February 2002 
[CER02], scripts had appeared. These scripts probed for the vulnerability's existence in 
specific brands and models of network devices; then they executed attacks when a 
vulnerable host was found. 

People who download and run attack scripts are called script kiddies. As the rather 
derogatory name implies, script kiddies are not well respected in the attacker community 
because the damage they do requires almost no creativity or innovation. Nevertheless, 
script kiddies can cause serious damage, sometimes without even knowing what they do. 
Building Blocks 

This chapter's attack types do not form an exhaustive list, but they represent the 
kinds of vulnerabilities being exploited, their sources, and their severity. A good attacker 
knows these vulnerabilities and many more. 

An attacker simply out to cause minor damage to a randomly selected site could use 
any of the techniques we have described, perhaps under script control. A dedicated attacker 
who targets one location can put together several pieces of an attack to compound the 
damage. 

Often, the attacks are done in series so that each part builds on the information 
gleaned from previous attacks. For example, a wiretapping attack may yield reconnaissance 
information with which to form an ActiveX attack that transfers a Trojan horse that 
monitors for sensitive data in transmission. Putting the attack pieces together like building 
blocks expands the number of targets and increases the degree of damage. 

Summary of Network Vulnerabilities 
A network has many different vulnerabilities, but all derive from an underlying 

model of computer, communications, and information systems security. Threats are raised 
against the key aspects of security: confidentiality, integrity, and availability, as shown in 
Table 7-4. 

Table 7-4. Network Vulnerabilities. 
Target Vulnerability 
Precursors to attack 

 Port scan 
 Social engineering 
 Reconnaissance 
 OS and application fingerprinting 

Authentication failures 
 Impersonation 
 Guessing 
 Eavesdropping 
 Spoofing 
 Session hijacking 
 Man-in-the-middle attack 

Programming flaws 
 Buffer overflow 
 Addressing errors 
 Parameter modification, time-of-check to time-of-use errors 
 Server-side include 
 Cookie 
 Malicious active code: Java, ActiveX 
 Malicious code: virus, worm, Trojan horse 
 Malicious typed code 

Confidentiality 
 Protocol flaw 
 Eavesdropping 
 Passive wiretap 
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 Misdelivery 

 

Table 7-4. Network Vulnerabilities. 
Target Vulnerability 

 Exposure within the network 
 Traffic flow analysis 
 Cookie 

Integrity 
 Protocol flaw 
 Active wiretap 
 Impersonation 
 Falsification of message 
 Noise 
 Web site defacement 
 DNS attack 

Availability 
 Protocol flaw 
 Transmission or component failure 
 Connection flooding, e.g., echo-chargen, ping of death,smurf, syn flood 
 DNS attack 
 Traffic redirection 
 Distributed denial of service 

Network security control 
The list of security attacks is long, and the news media carry frequent accounts of 

serious security incidents. From these, you may be ready to conclude that network security 
is hopeless. Fortunately, that is not the case. Previous chapters have presented several 
strategies for addressing security concerns, such as encryption for confidentiality and 
integrity, reference monitors for access control, and overlapping controls for defense in 
depth. 

These strategies are also useful in protecting networks. This section presents many 
excellent defenses available to the network security engineer. Subsequent sections provide 
detailed explanations for three particularly important controlsfirewalls, intrusion detection 
systems, and encrypted e-mail. 

Security Threat Analysis 
Recall the three steps of a security threat analysis in other situations. First, we 

scrutinize all the parts of a system so that we know what each part does and how it 
interacts with other parts. Next, we consider possible damage to confidentiality, integrity, 
and availability. Finally, we hypothesize the kinds of attacks that could cause this damage. 
We can take the same steps with a network. We begin by looking at the individual parts of a 
network:  

 local nodes connected via 
 local communications links to a 
 local area network, which also has 
 local data storage, 
 local processes, and 
 local devices. 

The local network is also connected to a 
 network gateway which gives access via 
 network communications links to 
 network control resources, 
 network routers, and 
 network resources, such as databases. 

These functional needs are typical for network users. But now we look again at these 
parts, this time conjuring up the negative effects threat agents can cause. We posit a 
malicious agent call him Hector who wants to attack networked communications between 
two users, Andy and Bo. What might Hector do? 
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 Read communications. The messages sent and received are exposed inside Andy's 
machine, at all places through the network, and inside Bo's machine. Thus, a 
confidentiality attack can be mounted from practically any place in the network. 

 Modify communications from Andy to Bo. Again, the messages are exposed at all places 
through the network. 

 Forge communications allegedly from Andy to Bo. This action is even easier than 
modifying a communication because a forgery can be inserted at any place in the network. 
It need not originate with the ostensible sender, and it does not require that a 
communication be caught in transit. Since Andy does not deliver his communications 
personally and since Bo might even never have met Andy, Bo has little basis for judging 
whether a communication purportedly sent by Andy is authentic. 

 Inhibit communications from Andy to Bo. Here again, Hector can achieve this result by 
invading Andy's machine, Bo's machine, routers between them, or communications links. 
He can also disrupt communications in general by flooding the network or disrupting any 
unique path on the network. 

 Inhibit all communications passing through a point. If the point resides on a unique path 
to or from a node, all traffic to or from that node is blocked. If the path is not unique, 
blocking it shifts traffic to other nodes, perhaps overburdening them. 

 Read data at some machine C between Andy and Bo. Hector can impersonate Andy (who 
is authorized to access data at C). Bo might question a message that seems out of character 
for Andy, but machine C will nevertheless apply the access controls for Andy. Alternatively, 
Hector can invade (run a program on) machine C to override access controls. Finally, he can 
search the network for machines that have weak or improperly administered access 
controls. 

 Modify or destroy data at C. Here again, Hector can impersonate Andy and do anything 
Andy could do. Similarly, Hector can try to circumvent controls. 
We summarize these threats with a list: 

 intercepting data in traffic 
 accessing programs or data at remote hosts 
 modifying programs or data at remote hosts 
 modifying data in transit 
 inserting communications 
 impersonating a user 
 inserting a repeat of a previous communication 
 blocking selected traffic 
 blocking all traffic 
 running a program at a remote host 

Why are all these attacks possible? Size, anonymity, ignorance, misunderstanding, 
complexity, dedication, and programming all contribute. But we have help at hand; we look 
next at specific threats and their countermeasures. Later in this chapter we investigate how 
these countermeasures fit together into specific tools. 

Design and Implementation 
Throughout this book we have discussed good principles of system analysis, design, 

implementation, and maintenance. Chapter 3, in particular, presented techniques that have 
been developed by the software engineering community to improve requirements, design, 
and code quality. Concepts from the work of the early trusted operating systems projects 
(presented in Chapter 5) have natural implications for networks as well. And assurance, 
also discussed in Chapter 5, relates to networked systems. In general, the Open Web 
Applications project [OWA02, OWA05] has documented many of the techniques people can 
use to develop secure web applications. Thus, having addressed secure programming from 
several perspectives already, we do not belabor the points now. 

Architecture 
As with so many of the areas we have studied, planning can be the strongest 

control. In particular, when we build or modify computer-based systems, we can give some 
thought to their overall architecture and plan to "build in" security as one of the key 
constructs. Similarly, the architecture or design of a network can have a significant effect 
on its security. 
Segmentation 
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Just as segmentation was a powerful security control in operating systems, it can 
limit the potential for harm in a network in two important ways: Segmentation reduces the 
number of threats, and it limits the amount of damage a single vulnerability can allow. 

Assume your network implements electronic commerce for users of the Internet. The 
fundamental parts of your network may be  

 a web server, to handle users' HTTP sessions 
 application code, to present your goods and services for purchase 
 a database of goods, and perhaps an accompanying inventory to the count of stock on 

hand and being requested from suppliers 
 a database of orders taken If all these activities were to run on one machine, your 

network would be in trouble: Any compromise or failure of that machine would destroy your 
entire commerce capability. 

A more secure design uses multiple segments, as shown in Figure 7-19. Suppose 
one piece of hardware is to be a web server box exposed to access by the general public. To 
reduce the risk of attack from outside the system, that box should not also have other, 
more sensitive, functions on it, such as user authentication or access to a sensitive data 
repository. Separate segments and servers corresponding to the principles of least privilege 
and encapsulation reduce the potential harm should any subsystem be compromised. 

Figure 7-19. Segmented Architecture. 

 
Separate access is another way to 

segment the network. For example, suppose a 
network is being used for three purposes: using 
the "live" production system, testing the next 
production version, and developing subsequent 
systems. If the network is well segmented, 
external users should be able to access only the 
live system, testers should access only the test 
system, and developers should access only the 
development system. Segmentation permits these 
three populations to coexist without risking that, for instance, a developer will inadvertently 
change the production system. 
Redundancy 

Another key architectural control is redundancy: allowing a function to be performed 
on more than one node, to avoid "putting all the eggs in one basket." For example, the 
design of Figure 7-19 has only one web server; lose it and all connectivity is lost. A better 
design would have two servers, using what is called failover mode. In failover mode the 
servers communicate with each other periodically, each determining if the other is still 
active. If one fails, the other takes over processing for both of them. Although performance 
is cut approximately in half when a failure occurs, at least some processing is being done. 
Single Points of Failure  

Ideally, the architecture should make the network immune to failure. In fact, the 
architecture should at least make sure that the system tolerates failure in an acceptable 
way (such as slowing down but not stopping processing, or recovering and restarting 
incomplete transactions). One way to evaluate the network architecture's tolerance of 
failure is to look for single points of failure. That is, we should ask if there is a single point 
in the network that, if it were to fail, could deny access to all or a significant part of the 
network. So, for example, a single database in one location is vulnerable to all the failures 
that could affect that location. Good network design eliminates single points of failure. 
Distributing the database placing copies of it on different network segments, perhaps even 
in different physical locations can reduce the risk of serious harm from a failure at any one 
point. There is often substantial overhead in implementing such a design; for example, the 
independent databases must be synchronized. But usually we can deal with the failure-
tolerant features more easily than with the harm caused by a failed single link. 

Architecture plays a role in implementing many other controls. We point out 
architectural features as we introduce other controls throughout the remainder of this 
chapter. 
Mobile Agents 
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Mobile code and hostile agents are potential methods of attack, as described earlier 
in this chapter. However, they can also be forces for good. Good agents might look for 
unsecured wireless access, software vulnerabilities, or embedded malicious code. Schneider 
and Zhou [SCH05] investigate distributed trust, through a corps of communicating, state-
sharing agents. The idea is straightforward: Just as with soldiers, you know some agents 
will be stopped and others will be subverted by the enemy, but some agents will remain 
intact. The corps can recover from Byzantine failures [LAM82]. Schneider and Zhou propose 
a design in which no one agent is critical to the overall success but the overall group can be 
trusted. 

Encryption 
Encryption is probably the most important and versatile tool for a network security 

expert. We have seen in earlier chapters that encryption is powerful for providing privacy, 
authenticity, integrity, and limited access to data. Because networks often involve even 
greater risks, they often secure data with encryption, perhaps in combination with other 
controls. 

Before we begin to study the use of encryption to counter network security threats, 
let us consider these points. First, remember that encryption is not a panacea or silver 
bullet. A flawed system design with encryption is still a flawed system design. Second, 
notice that encryption protects only what is encrypted (which should be obvious but isn't). 
Data are exposed between a user's fingertips and the encryption process before they are 
transmitted, and they are exposed again once they have been decrypted on the remote end. 
The best encryption cannot protect against a malicious Trojan horse that intercepts data 
before the point of encryption. Finally, encryption is no more secure than its key 
management. If an attacker can guess or deduce a weak encryption key, the game is over. 
People who do not understand encryption sometimes mistake it for fairy dust to sprinkle on 
a system for magic protection. This book would not be needed if such fairy dust existed. 

In network applications, encryption can be applied either between two hosts (called 
link encryption) or between two applications (called end-to-end encryption). We consider 
each below. With either form of encryption, key distribution is always a problem. 
Encryption keys must be delivered to the sender and receiver in a secure manner. In this 
section, we also investigate techniques for safe key distribution in networks. Finally, we 
study a cryptographic facility for a network computing environment. 
Link Encryption 

In link encryption, data are encrypted just before the system places them on the 
physical communications link. In this case, encryption occurs at layer 1 or 2 in the OSI 
model. (A similar situation occurs with TCP/IP protocols.) Similarly, decryption occurs just 
as the communication arrives at and enters the receiving computer. A model of link 
encryption is shown in Figure 7-20. 

Figure 7-20. Link Encryption. 

 
Encryption protects the message in transit 

between two computers, but the message is in 
plaintext inside the hosts. (A message in plaintext 
is said to be "in the clear.") Notice that because 
the encryption is added at the bottom protocol 
layer, the message is exposed in all other layers of 
the sender and receiver. If we have good physical security, we may not be too concerned 
about this exposure; the exposure occurs on the sender's or receiver's host or workstation, 
protected by alarms or locked doors, for example. Nevertheless, you should notice that the 
message is exposed in two layers of all intermediate hosts through which the message may 
pass. This exposure occurs because routing and addressing are not read at the bottom 
layer, but only at higher layers. The message is in the clear in the intermediate hosts, and 
one of these hosts may not be especially trustworthy. 

Link encryption is invisible to the user. The encryption becomes a transmission 
service performed by a low-level network protocol layer, just like message routing or 
transmission error detection. Figure 7-21 shows a typical link encrypted message, with the 
shaded fields encrypted. Because some of the data link header and trailer is applied before 
the block is encrypted, part of each of those blocks is shaded. As the message M is handled 



154 
 

at each layer, header and control information is added on the sending side and removed on 
the receiving side. Hardware encryption devices operate quickly and reliably; in this case, 
link encryption is invisible to the operating system as well as to the operator. 

Figure 7-21. Message Under Link Encryption. 
 

Link encryption is especially appropriate when 
the transmission line is the point of greatest 
vulnerability. If all hosts on a network are reasonably 
secure but the communications medium is shared with 
other users or is not secure, link encryption is an easy 
control to use. 
End-to-End Encryption 

As its name implies, end-to-end encryption provides security from one end of a 
transmission to the other. The encryption can be applied by a hardware device between the 
user and the host. Alternatively, the encryption can be done by software running on the 
host computer. In either case, the encryption is performed at the highest levels (layer 7, 
application, or perhaps at layer 6, presentation) of the OSI model. A model of end-to-end 
encryption is shown in Figure 7-22. 

Figure 7-22. End-to-End Encryption. 

 
Since the encryption precedes all the 

routing and transmission processing of the layer, 
the message is transmitted in encrypted form 
throughout the network. The encryption 
addresses potential flaws in lower layers in the 
transfer model. If a lower layer should fail to 
preserve security and reveal data it has received, the data's confidentiality is not 
endangered. Figure 7-23 shows a typical message with end-to-end encryption, again with 
the encrypted field shaded. 

Figure 7-23. End-to-End Encrypted Message. 
 

When end-to-end encryption is used, messages 
sent through several hosts are protected. The data 
content of the message is still encrypted, as shown in 
Figure 7-24, and the message is encrypted (protected 
against disclosure) while in transit. Therefore, even 
though a message must pass through potentially 
insecure nodes (such as C through G) on the path between A and B, the message is 
protected against disclosure while in transit. 

Figure 7-24. Encrypted Message Passing 

Through a Host.  
Comparison of Encryption Methods Simply 

encrypting a message is not absolute assurance that it 
will not be revealed during or after transmission. In 
many instances, however, the strength of encryption is 
adequate protection, considering the likelihood of the 
interceptor's breaking the encryption and the timeliness 
of the message. As with many aspects of security, we must balance the strength of 
protection with the likelihood of attack. (You will learn more about managing these risks in 
Chapter 8.) 

With link encryption, encryption is invoked for all transmissions along a particular 
link. Typically, a given host has only one link into a network, meaning that all network 
traffic initiated on that host will be encrypted by that host. But this encryption scheme 
implies that every other host receiving these communications must also have a 
cryptographic facility to decrypt the messages. Furthermore, all hosts must share keys. A 
message may pass through one or more intermediate hosts on the way to its final 
destination. If the message is encrypted along some links of a network but not others, then 
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part of the advantage of encryption is lost. Therefore, link encryption is usually performed 
on all links of a network if it is performed at all. 

By contrast, end-to-end encryption is applied to "logical links," which are channels 
between two processes, at a level well above the physical path. Since the intermediate hosts 
along a transmission path do not need to encrypt or decrypt a message, they have no need 
for cryptographic facilities. Thus, encryption is used only for those messages and 
applications for which it is needed. Furthermore, the encryption can be done with software, 
so we can apply it selectively, one application at a time or even to one message within a 
given application. 

The selective advantage of end-to-end encryption is also a disadvantage regarding 
encryption keys. Under end-to-end encryption, there is a virtual cryptographic channel 
between each pair of users. To provide proper security, each pair of users should share a 
unique cryptographic key. The number of keys required is thus equal to the number of 
pairs of users, which is n * (n - 1)/2 for n users. This number increases rapidly as the 
number of users increases. However, this count assumes that single key encryption is used. 
With a public key system, only one pair of keys is needed per recipient. 

As shown in Table 7-5, link encryption is faster, easier for the user, and uses fewer 
keys. End-to-end encryption is more flexible, can be used selectively, is done at the user 
level, and can be integrated with the application. Neither form is right for all situations. 

Table 7-5. Comparison of Link and End-to-End Encryption. 
Link Encryption     End-to-End Encryption 
Security within hosts    Data exposed in sending host  
Data encrypted in sending host  Data exposed in intermediate nodes  
Data encrypted in intermediate nodes Role of user 
Applied by sending host    Applied by sending process 
Invisible to user     User applies encryption 
Host maintains encryption    User must find algorithm 
One facility for all users    User selects encryption 
Typically done in hardware    Either software or hardware implementation 
All or no data encrypted    User chooses to encrypt or not,  
for each data item    Implementation concerns 

Table 7-5. Comparison of Link and End-to-End Encryption. 
Link Encryption     End-to-End Encryption 
Requires one key per host pair   Requires one key per user pair 
Provides node authentication   Provides user authentication 

In some cases, both forms of encryption can be applied. A user who does not trust 
the quality of the link encryption provided by a system can apply end-to-end encryption as 
well. A system administrator who is concerned about the security of an end-to-end 
encryption scheme applied by an application program can also install a link encryption 
device. If both encryptions are relatively fast, this duplication of security has little negative 
effect. 
Virtual Private Networks 

Link encryption can be used to give a network's users the sense that they are on a 
private network, even when it is part of a public network. For this reason, the approach is 
called a virtual private network (or VPN). 

Typically, physical security and administrative security are strong enough to protect 
transmission inside the perimeter of a network. Thus, the greatest exposure for a user is 
between the user's workstation or client and the perimeter of the host network or server. 

A firewall is an access control device that sits between two networks or two network 
segments. It filters all traffic between the protected or "inside" network and a less 
trustworthy or "outside" network or segment. (We examine firewalls in detail later in this 
chapter.) 

Many firewalls can be used to implement a VPN. When a user first establishes a 
communication with the firewall, the user can request a VPN session with the firewall. The 
user's client and the firewall negotiate a session encryption key, and the firewall and the 
client subsequently use that key to encrypt all traffic between the two. In this way, the 
larger network is restricted only to those given special access by the VPN. In other words, it 
feels to the user that the network is private, even though it is not. With the VPN, we say 
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that the communication passes through an encrypted tunnel or tunnel. Establishment of a 
VPN is shown in Figure 7-25. 

Figure 7-25. Establishing a Virtual 

Private Network.  
Virtual private networks are created when 

the firewall interacts with an authentication 
service inside the perimeter. The firewall may 
pass user authentication data to the 
authentication server and, upon confirmation of 
the authenticated identity, the firewall provides the user with appropriate security 
privileges. For example, a known trusted person, such as an employee or a system 
administrator, may be allowed to access resources not available to general users. The 
firewall implements this access control on the basis of the VPN. A VPN with privileged 
access is shown in Figure 7-26. In that figure, the firewall passes to the internal server the 
(privileged) identity of User 2. 

Figure 7-26. VPN to Allow Privileged Access  
PKI and Certificates 

A public key infrastructure, or PKI, is 
a process created to enable users to 
implement public key cryptography, usually 
in a large (and frequently, distributed) 
setting. PKI offers each user a set of services, 
related to identification and access control, 
as follows: 
•. Create certificates associating a user's 
identity with a (public) cryptographic key  
•. Give out certificates from its database 
•. Sign certificates, adding its credibility to the authenticity of the certificate 
•. Confirm (or deny) that a certificate is valid 
•. Invalidate certificates for users who no longer are allowed access or whose private 
key has been exposed 

PKI is often considered to be a standard, but in fact it is a set of policies, products, 
and procedures that leave some room for interpretation. (Housley and Polk [HOU01b] 
describe both the technical parts and the procedural issues in developing a PKI.) The 
policies define the rules under which the cryptographic systems should operate. In 
particular, the policies specify how to handle keys and valuable information and how to 
match level of control to level of risk. 

The procedures dictate how the keys should be generated, managed, and used. 
Finally, the products actually implement the policies, and they generate, store, and manage 
the keys. 

PKI sets up entities, called certificate authorities, that implement the PKI policy on 
certificates. The general idea is that a certificate authority is trusted, so users can delegate 
the construction, issuance, acceptance, and revocation of certificates to the authority, 
much as one would use a trusted bouncer to allow only some people to enter a restricted 
nightclub. 
The specific actions of a certificate authority include the following: 

 managing public key certificates for their whole life cycle 
 issuing certificates by binding a user's or system's identity to a public key with a digital 

signature 
 scheduling expiration dates for certificates 
 ensuring that certificates are revoked when necessary by publishing certificate revocation 

lists 
The functions of a certificate authority can be done in-house or by a commercial service or a 
trusted third party. 

PKI also involves a registration authority that acts as an interface between a user 
and a certificate authority. The registration authority captures and authenticates the 
identity of a user and then submits a certificate request to the appropriate certificate 
authority. In this sense, the registration authority is much like the U.S. Postal Service; the 
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postal service acts as an agent of the U.S. State Department to enable U.S. citizens to 
obtain passports (official U.S. authentication) by providing the appropriate forms, verifying 
identity, and requesting the actual passport (akin to a certificate) from the appropriate 
passport-issuing office (the certificate authority). As with passports, the quality of 
registration authority determines the level of trust that can be placed in the certificates that 
are issued. PKI fits most naturally in a hierarchically organized, centrally controlled 
organization, such as a government agency. 

PKI efforts are under way in many countries to enable companies and government 
agencies to implement PKI and interoperate. For example, a Federal PKI Initiative in the 
United States will eventually allow any U.S. government agency to send secure 
communication to any other U.S. government agency, when appropriate. The initiative also 
specifies how commercial PKI-enabled tools should operate, so agencies can buy ready-
made PKI products rather than build their own. The European Union has a similar initiative 
(see www.europepki.org for more information.) Sidebar 7-8 describes the commercial use of 
PKI in a major U.K. bank. Major PKI solutions vendors include Baltimore Technologies, 
Northern Telecom/Entrust, and Identrus. 

Expand the notion of certificate to a broader characterization of credentials. For 
instance, a credit card company may be more interested in verifying your financial status 
than your identity; a PKI scheme may involve a certificate that is based on binding the 
financial status with a key. The Simple Distributed Security Infrastructure (SDSI) takes this 
approach, including identity certificates, group membership certificates, and name-binding 
certificates. 

As of this writing, there are drafts of two related standards: ANSI standard X9.45 
and the Simple Public Key Infrastructure (SPKI); the latter has only a set of requirements 
and a certificate format. 

PKI is close to but not yet a mature process. Many issues must be resolved, 
especially since PKI has yet to be implemented commercially on a large scale. Table 7-6 lists 
several issues to be addressed as we learn more about PKI. However, some things have 
become clear. First, the certificate authority should be approved and verified by an 
independent body. The certificate authority's private key should be stored in a tamper-
resistant security module. 

Then, access to the certificate and registration authorities should be tightly 
controlled, by means of strong user authentication such as smart cards. 

Table 7-6. Issues Relating to PKI. 
Issue Questions 
Flexibility  
How do we implement interoperability and stay consistent with 
other PKI implementations? 

 Open, standard interfaces? 
 Compatible security policies? 

How do we register certificates? 
 Face-to-face, e-mail, web, network? 
 Single or batch (e.g., national identity cards, bank cards)? 

Ease of use How do we train people to implement, use, maintain PKI? 
How do we configure and integrate PKI? 
How do we incorporate new users? 
How do we do backup and disaster recovery? 
Support for security policy 
How does PKI implement an organization's security policy? 
Who has which responsibilities? 
Scalability How do we add more users? 
Add more applications? 
Add more certificate authorities? 
Add more registration authorities? 

Table 7-6. Issues Relating to PKI. 
Issue Questions 
How do we expand certificate types? 
How do we expand registration mechanisms? 
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The security involved in protecting the certificates involves administrative 
procedures. For example, more than one operator should be required to authorize 
certification requests. 

Controls should be put in place to detect hackers and prevent them from issuing 
bogus certificate requests. These controls might include digital signatures and strong 
encryption. 

Finally, a secure audit trail is necessary for reconstructing certificate information 
should the system fail and for recovering if a hacking attack does indeed corrupt the 
authentication process. 
SSH Encryption 

SSH (secure shell) is a pair of protocols (versions 1 and 2), originally defined for Unix 
but also available under Windows 2000, that provides an authenticated and encrypted path 
to the shell or operating system command interpreter. Both SSH versions replace Unix 
utilities such as Telnet, rlogin, and rsh for remote access. SSH protects against spoofing 
attacks and modification of data in communication. 

The SSH protocol involves negotiation between local and remote sites for encryption 
algorithm (for example, DES, IDEA, AES) and authentication (including public key and 
Kerberos). 
SSL Encryption 

The SSL (Secure Sockets Layer) protocol was originally designed by Netscape to 
protect communication between a web browser and server. It is also known now as TLS, for 
transport layer security. SSL interfaces between applications (such as browsers) and the 
TCP/IP protocols to provide server authentication, optional client authentication, and an 
encrypted communications channel between client and server. Client and server negotiate a 
mutually supported suite of encryption for session encryption and hashing; possibilities 
include triple DES and SHA1, or RC4 with a 128-bit key and MD5. 

To use SSL, the client requests an SSL session. The server responds with its public 
key certificate so that the client can determine the authenticity of the server. The client 
returns part of a symmetric session key encrypted under the server's public key. Both the 
server and client compute the session key, and then they switch to encrypted 
communication, using the shared session key. 

The protocol is simple but effective, and it is the most widely used secure 
communication protocol on the Internet. However, remember that SSL protects only from 
the client's browser to the server's decryption point (which is often only to the server's 
firewall or, slightly stronger, to the computer that runs the web application). Data are 
exposed from the user's keyboard to the browser and throughout the recipient's company. 
Blue Gem Security has developed a product called LocalSSL that encrypts data after it has 
been typed until the operating system delivers it to the client's browser, thus thwarting any 
keylogging Trojan horse that has become implanted in the user's computer to reveal 
everything the user types. 
IPSec 

As noted previously, the address space for the Internet is running out. As domain 
names and equipment proliferate, the original, 30-year-old, 32-bit address structure of the 
Internet is filling up. A new structure, called IPv6 (version 6 of the IP protocol suite), solves 
the addressing problem. This restructuring also offered an excellent opportunity for the 
Internet  
Engineering Task Force (IETF) to address serious security requirements. 

As a part of the IPv6 suite, the IETF adopted IPSec, or the IP Security Protocol Suite. 
Designed to address fundamental shortcomings such as being subject to spoofing, 
eavesdropping, and session hijacking, the IPSec protocol defines a standard means for 
handling encrypted data. IPSec is implemented at the IP layer, so it affects all layers above 
it, in particular TCP and UDP. Therefore, IPSec requires no change to the existing large 
number of TCP and UDP protocols. 

IPSec is somewhat similar to SSL, in that it supports authentication and 
confidentiality in a way that does not necessitate significant change either above it (in 
applications) or below it (in the TCP protocols). Like SSL, it was designed to be independent 
of specific cryptographic protocols and to allow the two communicating parties to agree on a 
mutually supported set of protocols. 
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The basis of IPSec is what is called a security association, which is essentially the 
set of security parameters for a secured communication channel. It is roughly comparable 
to an SSL session. A security association includes 

 encryption algorithm and mode (for example, DES in block-chaining mode) 
 encryption key 
 encryption parameters, such as the initialization vector 
 authentication protocol and key 
 lifespan of the association, to permit long-running sessions to select a new cryptographic 

key as often as needed 
 address of the opposite end of association 
 sensitivity level of protected data (usable for classified data) 

A host, such as a network server or a firewall, might have several security 
associations in effect for concurrent communications with different remote hosts. A security 
association is selected by a security parameter index (SPI), a data element that is essentially 
a pointer into a table of security associations. 

The fundamental data structures of IPSec are the AH (authentication header) and 
the ESP (encapsulated security payload). The ESP replaces (includes) the conventional TCP 
header and data portion of a packet, as shown in Figure 7-27. The physical header and 
trailer depend on the data link and physical layer communications medium, such as 
Ethernet. 

Figure 7-27. Packets: (a) 

Conventional Packet; (b) 

IPSec Packet. 
 

The ESP contains both 
an authenticated portion and 
an encrypted portion, as shown 
in Figure 7-28. The sequence 
number is incremented by one for each packet transmitted to the same address using the 
same SPI, to preclude packet replay attacks. The payload data is the actual data of the 
packet. Because some encryption or other security mechanisms require blocks of certain 
sizes, the padding factor and padding length fields contain padding and the amount of 
padding to bring the payload data to an appropriate length. The next header indicates the 
type of payload data. The authentication field is 
used for authentication of the entire object. 

Figure 7-28. Encapsulated Security 

Packet.  
As with most cryptographic applications, 

the critical element is key management. IPSec 
addresses this need with ISAKMP or Internet 
Security Association Key Management Protocol. 
Like SSL, ISAKMP requires that a distinct key be 
generated for each security association. The 
ISAKMP protocol is simple, flexible, and scalable. 
In IPSec, ISAKMP is implemented through IKE or 
ISAKMP key exchange. IKE provides a way to agree 
on and manage protocols, algorithms, and keys. For key exchange between unrelated 
parties IKE uses the Diffie Hellman scheme (also described in Chapter 2). In Diffie Hellman, 
each of the two parties, X and Y, chooses a large prime and sends a number g raised to the 
power of the prime to the other. That is, X sends gx and Y sends gy. They both raise what 
they receive to the power they kept: Y raises gx to (gx)y and X raises gy to (gy)x, which are both 
the same;voilà, they share a secret (gx)y = (gy)x. (The computation is slightly more 
complicated, being done in a finite field mod(n), so an attacker cannot factor the secret 
easily.) With their shared secret, the two parties now exchange identities and certificates to 
authenticate those identities. Finally, they derive a shared cryptographic key and enter a 
security association. 

The key exchange is very efficient: The exchange can be accomplished in two 
messages, with an optional two more messages for authentication. Because this is a public 
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key method, only two keys are needed for each pair of communicating parties. IKE has sub 
modes for authentication (initiation) and for establishing new keys in an existing security 
association. 

IPSec can establish cryptographic sessions with many purposes, including VPNs, 
applications, and lower-level network management (such as routing). The protocols of IPSec 
have been published and extensively scrutinized. Work on the protocols began in 1992. 
They were first published in 1995, and they were finalized in 1998 (RFCs 24012409) 
[KEN98]. 
Signed Code 

As we have seen, someone can place malicious active code on a web site to be 
downloaded by unsuspecting users. Running with the privilege of whoever downloads it, 
such active code can do serious damage, from deleting files to sending e-mail messages to 
fetching Trojan horses to performing subtle and hard-to-detect mischief. Today's trend is to 
allow applications and updates to be downloaded from central sites, so the risk of 
downloading something malicious is growing. 

A partial not complete approach to reducing this risk is to use signed code. A 
trustworthy third party appends a digital signature to a piece of code, supposedly connoting 
more trustworthy code. A signature structure in a PKI helps to validate the signature. 

Who might the trustworthy party be? A well-known manufacturer would be 
recognizable as a code signer. But what of the small and virtually unknown manufacturer of 
a device driver or a code add-in? If the code vendor is unknown, it does not help that the 
vendor signs its own code; miscreants can post their own signed code, too. 

In March 2001, Verisign announced it had erroneously issued two code-signing 
certificates under the name of Microsoft Corp. to someone who purported to bebut was nota 
Microsoft employee. These certificates were in circulation for almost two months before the 
error was detected. Even after Verisign detected the error and canceled the certificates, 
someone would know the certificates had been revoked only by checking Verisign's list. 
Most people would not question a code download signed by Microsoft. 
Encrypted E-mail 

An electronic mail message is much like the back of a post card. The mail carrier 
(and everyone in the postal system through whose hands the card passes) can read not just 
the address but also everything in the message field. To protect the privacy of the message 
and routing information, we can use encryption to protect the confidentiality of the message 
and perhaps its integrity. 

As we have seen in several other applications, the encryption is the easy part; key 
management is the more difficult issue. The two dominant approaches to key management 
are the use of a hierarchical, certificate-based PKI solution for key exchange and the use of 
a flat, individual-to-individual exchange method. The hierarchical method is called S/MIME 
and is employed by many commercial mail-handling programs, such as Microsoft Exchange 
or Eudora. 

The individual method is called PGP and is a commercial add-on. We look more 
carefully at encrypted e-mail in a later section of this chapter. 

Content Integrity 
Content integrity comes as a bonus with cryptography. No one can change 

encrypted data in a meaningful way without breaking the encryption. This does not say, 
however, that encrypted data cannot be modified. Changing even one bit of an encrypted 
data stream affects the result after decryption, often in a way that seriously alters the 
resulting plaintext. 
We need to consider three potential threats: 

 malicious modification that changes content in a meaningful way 
 malicious or nonmalicious modification that changes content in a way that is not 

necessarily meaningful 
 nonmalicious modification that changes content in a way that will not be detected 

Encryption addresses the first of these threats very effectively. To address the others, we 
can use other controls. 
Error Correcting Codes 

We can use error detection and error correction codes to guard against modification 
in a transmission. The codes work as their names imply: Error detection codes detect when 
an error has occurred, and error correction codes can actually correct errors without 
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requiring retransmission of the original message. The error code is transmitted along with 
the original data, so the recipient can recompute the error code and check whether the 
received result matches the expected value. 

The simplest error detection code is a parity check. An extra bit is added to an 
existing group of data bits depending on their sum or an exclusive OR. The two kinds of 
parity are called even and odd. With even parity the extra bit is 0 if the sum of the data bits 
is even and 1 if the sum is odd; that is, the parity bit is set so that the sum of all data bits 
plus the parity bit is even. Odd parity is the same except the sum is odd. For example, the 
data stream 01101101 would have an even parity bit of 1 (and an odd parity bit of 0) 
because 0+1+1+0+1+1+0+1 = 5 + 1 = 6 (or 5 + 0 = 5 for odd parity). A parity bit can reveal 
the modification of a single bit. However, parity does not detect two-bit errorscases in which 
two bits in a group are changed. That is, the use of a parity bit relies on the assumption 
that single-bit errors will occur infrequently, so it is very unlikely that two bits would be 
changed. 

Parity signals only that a bit has been changed; it does not identify which bit has 
been changed. There are other kinds of error detection codes, such as hash codes and 
Huffman codes. Some of the more complex codes can detect multiple-bit errors (two or more 
bits changed in a data group) and may be able to pinpoint which bits have been changed. 

Parity and simple error detection and correction codes are used to detect 
nonmalicious changes in situations in which there may be faulty transmission equipment, 
communications noise and interference, or other sources of spurious changes to data. 
Cryptographic Checksum 

Malicious modification must be handled in a way that prevents the attacker from 
modifying the error detection mechanism as well as the data bits themselves. One way to do 
this is to use a technique that shrinks and transforms the data, according to the value of 
the data bits. 

To see how such an approach might work, consider an error detection code as a 
many-to-one transformation. That is, any error detection code reduces a block of data to a 
smaller digest whose value depends on each bit in the block. The proportion of reduction 
(that is, the ratio of original size of the block to transformed size) relates to the code's 
effectiveness in detecting errors. If a code reduces an 8-bit data block to a 1-bit result, then 
half of the 28 input values map to 0 and half to 1, assuming a uniform distribution of 
outputs. In other words, there are 28/2 = 27 = 128 different bit patterns that all produce the 
same 1-bit result. 

The fewer inputs that map to a particular output, the fewer ways the attacker can 
change an input value without affecting its output. Thus, a 1-bit result is too weak for 
many applications. If the output is three bits instead of one, then each output result comes 
from 28 /23 or 25 = 32 inputs. The smaller number of inputs to a given output is important 
for blocking malicious modification. 

A cryptographic checksum (sometimes called a message digest) is a cryptographic 
function that produces a checksum. The cryptography prevents the attacker from changing 
the data block (the plaintext) and also changing the checksum value (the ciphertext) to 
match. Two major uses of cryptographic checksums are code tamper protection and 
message integrity protection in transit. For code protection, a system administrator 
computes the checksum of each program file on a system and then later computes new 
checksums and compares the values. Because executable code usually does not change, 
the administrator can detect unanticipated changes from, for example, malicious code 
attacks. Similarly, a checksum on data in communication identifies data that have been 
changed in transmission, maliciously or accidentally. 

Strong Authentication 
As we have seen in earlier chapters, operating systems and database management 

systems enforce a security policy that specifies whowhich individuals, groups, subjectscan 
access which resources and objects. Central to that policy is authentication: knowing and 
being assured of the accuracy of identities. 

Networked environments need authentication, too. In the network case, however, 
authentication may be more difficult to achieve securely because of the possibility of 
eavesdropping and wiretapping, which are less common in nonnetworked environments. 
Also, both ends of a communication may need to be authenticated to each other: Before you 
send your password across a network, you want to know that you are really communicating 



162 
 

with the remote host you expect. Lampson [LAM00] presents the problem of authentication 
in autonomous, distributed systems; the real problem, he points out, is how to develop 
trust of network entities with which you have no basis for a relationship. Let us look more 
closely at authentication methods appropriate for use in networks. 
One-Time Password 

The wiretap threat implies that a password could be intercepted from a user who 
enters a password across an unsecured network. A one-time password can guard against 
wiretapping and spoofing of a remote host. 

As the name implies, a one-time password is good for one use only. To see how it 
works, consider the easiest case, in which the user and host both have access to identical 
lists of passwords, like the one-time pad for cryptography from Chapter 2. The user would 
enter the first password for the first login, the next one for the next login, and so forth. As 
long as the password lists remained secret and as long as no one could guess one password 
from another, a password obtained through wiretapping would be useless. However, as with 
the one-time cryptographic pads, humans have trouble maintaining these password lists. 

To address this problem, we can use a password token, a device that generates a 
password that is unpredictable but that can be validated on the receiving end. The simplest 
form of password token is a synchronous one, such as the SecurID device from RSA 
Security, Inc. 

This device displays a random number, generating a new number every minute. 
Each user is issued a different device (that generates a different random number sequence). 
The user reads the number from the device's display and types it in as a one-time 
password. The computer on the receiving end executes the algorithm to generate the 
password appropriate for the current minute; if the user's password matches the one 
computed remotely, the user is authenticated. Because the devices may get out of 
alignment if one clock runs slightly faster than the other, these devices use fairly natural 
rules to account for minor drift. 

What are the advantages and disadvantages of this approach? First, it is easy to 
use. It largely counters the possibility of a wiretapper reusing a password. With a strong 
password-generating algorithm, it is immune to spoofing. However, the system fails if the 
user loses the generating device or, worse, if the device falls into an attacker's hands. 
Because a new password is generated only once a minute, there is a small (one-minute) 
window of vulnerability during which an eavesdropper can reuse an intercepted password. 
Challenge Response Systems 

To counter the loss and reuse problems, a more sophisticated one-time password 
scheme uses challenge and response, as we first studied in Chapter 4. A challenge and 
response device looks like a simple pocket calculator. The user first authenticates to the 
device, usually by means of a PIN. The remote system sends a random number, called the 
"challenge," which the user enters into the device. The device responds to that number with 
another number, which the user then transmits to the system. 

The system prompts the user with a new challenge for each use. Thus, this device 
eliminates the small window of vulnerability in which a user could reuse a time-sensitive 
authenticator. A generator that falls into the wrong hands is useless without the PIN. 
However, the user must always have the response generator to log in, and a broken device 
denies service to the user. 

Finally, these devices do not address the possibility of a rogue remote host. Digital 
Distributed Authentication In the 1980s, Digital Equipment Corporation recognized the 
problem of needing to authenticate nonhuman entities in a computing system. For example, 
a process might retrieve a user query, which it then reformats, perhaps limits, and submits 
to a database manager. Both the database manager and the query processor want to be 
sure that a particular communication channel is authentic between the two. Neither of 
these servers is running under the direct control or supervision of a human (although each 
process was, of course, somehow initiated by a human). Human forms of access control are 
thus inappropriate. 

Digital [GAS89, GAS90] created a simple architecture for this requirement, effective 
against the following threats: 

 impersonation of a server by a rogue process, for either of the two servers involved in the 
authentication 

 interception or modification of data exchanged between servers 
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 replay of a previous authentication 
The architecture assumes that each server has its own private key and that the 

corresponding public key is available to or held by every other process that might need to 
establish an authenticated channel. To begin an authenticated communication between 
server A and server B, A sends a request to B, encrypted under B's public key. B decrypts 
the request and replies with a message encrypted under A's public key. To avoid replay, A 
and B can append a random number to the message to be encrypted. 

A and B can establish a private channel by one of them choosing an encryption key 
(for a secret key algorithm) and sending it to the other in the authenticating message. Once 
the authentication is complete, all communication under that secret key can be assumed to 
be as secure as was the original dual public key exchange. To protect the privacy of the 
channel, Gasser recommends a separate cryptographic processor, such as a smart card, so 
that private keys are never exposed outside the processor. 

Two implementation difficulties remain to be solved: (a) How can a potentially large 
number of public keys be distributed and (b) how can the public keys be distributed in a 
way that ensures the secure binding of a process with the key? Digital recognized that a key 
server (perhaps with multiple replications) was necessary to distribute keys. The second 
difficulty is addressed with certificates and a certification hierarchy, as described in 
Chapter 2. 

Both of these design decisions are to a certain degree implied by the nature of the 
rest of the protocol. A different approach was taken by Kerberos, as we see in the following 
sections. 
Kerberos 

As we introduced in Chapter 4, Kerberos is a system that supports authentication in 
distributed systems. Originally designed to work with secret key encryption, Kerberos, in its 
latest version, uses public key technology to support key exchange. The Kerberos system 
was designed at Massachusetts Institute of Technology [STE88, KOH93]. 

Kerberos is used for authentication between intelligent processes, such as client-to-
server tasks, or a user's workstation to other hosts. Kerberos is based on the idea that a 
central server provides authenticated tokens, called tickets, to requesting applications. A 
ticket is an unforgeable, nonreplayable, authenticated object. That is, it is an encrypted 
data structure naming a user and a service that user is allowed to obtain. It also contains a 
time value and some control information. 

The first step in using Kerberos is to establish a session with the Kerberos server, as 
shown in Figure 7-29. A user's workstation sends the user's identity to the Kerberos server 
when a user logs in. The Kerberos server verifies that the user is authorized. The Kerberos 
server sends two messages: 
1. to the user's workstation, a session key SG for use in communication with the ticket-
granting server (G) and a ticket TG for the ticket-granting server; SG is encrypted under the 
user's password: E(SG + TG, pw)[4] 

[4] In Kerberos version 5, only SG is encrypted; in Kerberos version 4, both the session key and the ticket were 

encrypted when returned to the user. 

2. to the ticket-granting server, a copy of the session key SG and the identity of the user 
(encrypted under a key shared between the Kerberos server and the ticket-granting server) 

Figure 7-29. Initiating a Kerberos Session. 
 

If the workstation can decrypt E(SG + 
TG, pw) by using pw, the password typed by 
the user, then the user has succeeded in an 
authentication with the workstation. 
 Notice that passwords are stored at the 
Kerberos server, not at the workstation, and 
that the user's password did not have to be 
passed across the network, even in encrypted form. 
Holding passwords centrally but not passing them across the network is a security 
advantage. 

Next, the user will want to exercise some other services of the distributed system, 
such as accessing a file. Using the key SG provided by the Kerberos server, the user U 
requests a ticket to access file F from the ticket-granting server. As shown in Figure 7-30, 
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after the ticket-granting server verifies U's access permission, it returns a ticket and a 
session key. The ticket contains U's authenticated identity (in the ticket U obtained from 
the Kerberos server), an identification of F (the file to be accessed), the access rights (for 
example, to read), a session key SF for the file server to use while communicating this file to 
U, and an expiration date for the ticket. The ticket is encrypted under a key shared 
exclusively between the ticket-granting server and the file server. This ticket cannot be read, 
modified, or forged by the user U (or anyone else). The ticket-granting server must, 
therefore, also provide U with a copy of SF, the session key for the file server. Requests for 
access to other services and servers are handled similarly. 

Figure 7-30. Obtaining a Ticket to Access a File. 

 
Kerberos was carefully designed to 

withstand attacks in distributed environments: 
 No passwords communicated on the network. As 

already described, a user's password is stored only 
at the Kerberos server. The user's password is not 
sent from the user's workstation when the user 
initiates a session. (Obviously, a user's initial 
password must be sent outside the network, such as in a letter.) 

 Cryptographic protection against spoofing. Each access request is mediated by the ticket-
granting server, which knows the identity of the requester, based on the authentication 
performed initially by the Kerberos server and on the fact that the user was able to present 
a request encrypted under a key that had been encrypted under the user's password. 

 Limited period of validity. Each ticket is issued for a limited time period; the ticket 
contains a timestamp with which a receiving server will determine the ticket's validity. 

In this way, certain long-term attacks, such as brute force cryptanalysis, will usually 
be neutralized because the attacker will not have time to complete the attack. 

 Timestamps to prevent replay attacks. Kerberos requires reliable access to a universal 
clock. Each user's request to a server is stamped with the time of the request. A server 
receiving a request compares this time to the current time and fulfills the request only if the 
time is reasonably close to the current time. This time-checking prevents most replay 
attacks, since the attacker's presentation of the ticket will be delayed too long. 

 Mutual authentication. The user of a service can be assured of any server's authenticity by 
requesting an authenticating response from the server. The user sends a ticket to a server 
and then sends the server a request encrypted under the session key for that server's 
service; the ticket and the session key were provided by the ticket-granting server. The 
server can decrypt the ticket only if it has the unique key it shares with the ticket-granting 
server. Inside the ticket is the session key, which is the only means the server has of 
decrypting the user's request. If the server can return to the user a message encrypted 
under this same session key but containing 1 + the user's timestamp, the server must be 
authentic. Because of this mutual authentication, a server can provide a unique channel to 
a user and the user may not need to encrypt communications on that channel to ensure 
continuous authenticity. 
Avoiding encryption saves time in the communication. 
Kerberos is not a perfect answer to security problems in distributed systems. 

 Kerberos requires continuous availability of a trusted ticket-granting server. Because the 
ticket-granting server is the basis of access control and authentication, constant access to 
that server is crucial. Both reliability (hardware or software failure) and performance 
(capacity and speed) problems must be addressed. 

 Authenticity of servers requires a trusted relationship between the ticket-granting server 
and every server. The ticket-granting server must share a unique encryption key with each 
"trustworthy" server. The ticket-granting server (or that server's human administrator) must 
be convinced of the authenticity of that server. In a local environment, this degree of trust is 
warranted. In a widely distributed environment, an administrator at one site can seldom 
justify trust in the authenticity of servers at other sites. 

 Kerberos requires timely transactions. To prevent replay attacks, Kerberos limits the 
validity of a ticket. A replay attack could succeed during the period of validity, however. And 
setting the period fairly is hard: Too long increases the exposure to replay attacks, while too 
short requires prompt user actions and risks providing the user with a ticket that will not 
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be honored when presented to a server. Similarly, subverting a server's clock allows reuse of 
an expired ticket. 

 A subverted workstation can save and later replay user passwords. This vulnerability 
exists in any system in which passwords, encryption keys, or other constant, sensitive 
information is entered in the clear on a workstation that might be subverted. 

 Password guessing works. A user's initial ticket is returned under the user's password. 
An attacker can submit an initial authentication request to the Kerberos server and then try 
to decrypt the response by guessing at the password. 

 Kerberos does not scale well. The architectural model of Kerberos, shown in Figure 7-31, 
assumes one Kerberos server and one ticket-granting server, plus a collection of other 
servers, each of which shares a unique key with the ticket-granting server. 

Adding a second ticket-granting server, for example, to enhance performance or 
reliability, would require duplicate keys or a second set for all servers. Duplication 
increases the risk of exposure and complicates key updates, and second keys more than 
double the work for each server to act on a ticket. 

 Kerberos is a complete solution. All applications must use Kerberos authentication and 
access control. Currently, few applications use Kerberos authentication, and so integration 
of Kerberos into an existing environment requires modification of existing applications, 
which is not feasible. 

Figure 7-31. Access to Services and 

Servers in Kerberos. 

Access Controls 
Authentication deals with the who of 

security policy enforcement; access controls 
enforce the what and how. 

ACLs on Routers Routers perform the 
major task of directing network traffic either to 
subnetworks they control or to other routers for 
subsequent delivery to other subnetworks. 
Routers convert external IP addresses into 
internal MAC addresses of hosts on a local 
subnetwork. 

Suppose a host is being spammed (flooded) with packets from a malicious rogue 
host. Routers can be configured with access control lists to deny access to particular hosts 
from particular hosts. So, a router could delete all packets with a source address of the 
rogue host and a destination address of the target host. 

This approach has three problems, however. First, routers in large networks perform 
a lot of work: They have to handle every packet coming into and going out of the network. 
Adding ACLs to the router requires the router to compare every packet against the ACLs. 
One ACL adds work, degrading the router's performance; as more ACLs are added, the 
router's performance may become unacceptable. The second problem is also an efficiency 
issue: 

Because of the volume of work they perform, routers are designed to perform only 
essential services. Logging of activity is usually not done on a router because of the volume 
of traffic and the performance penalty logging would entail. With ACLs, it would be useful to 
know how many packets were being deleted, to know if a particular ACL could be removed 
(thereby improving performance). But without logging it is impossible to know whether an 
ACL is being used. These two problems together imply that ACLs on routers are most 
effective against specific known threats but that they should not be used indiscriminately. 

The final limitation on placing ACLs on routers concerns the nature of the threat. A 
router inspects only source and destination addresses. An attacker usually does not reveal 
an actual source address. To reveal the real source address would be equivalent to a bank 
robber's leaving his home address and a description of where he plans to store the stolen 
money. 

Because someone can easily forge any source address on a UDP datagram, many 
attacks use UDP protocols with false source addresses so that the attack cannot be blocked 
easily by a router with an ACL. Router ACLs are useful only if the attacker sends many 
datagrams with the same forged source address. 
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In principle, a router is an excellent point of access control because it handles every 
packet coming into and going out of a subnetwork. In specific situations, primarily for 
internal subnetworks, ACLs can be used effectively to restrict certain traffic flows, for 
example, to ensure that only certain hosts (addresses) have access to an internal network 
management subnetwork. But for large-scale, general traffic screening, routers are less 
useful than firewalls. 
Firewalls 

A firewall does the screening that is less appropriate for a router to do. A router's 
primary function is addressing, whereas a firewall's primary function is filtering. Firewalls 
can also do auditing. Even more important, firewalls can examine an entire packet's 
contents, including the data portion, whereas a router is concerned only with source and 
destination MAC and IP addresses. Because they are an extremely important network 
security control, we study firewalls in an entire section later in this chapter. 

Wireless Security 
Because wireless computing is so exposed, it requires measures to protect 

communications between a computer (called the client) and a wireless base station or 
access point. 

Remembering that all these communications are on predefined radio frequencies, 
you can expect an eavesdropping attacker to try to intercept and impersonate. Pieces to 
protect are finding the access point, authenticating the remote computer to the access 
point, and vice versa, and protecting the communication stream. 
SSID 

As described earlier in this chapter, the Service Set Identifier or SSID is the 
identification of an access point; it is a string of up to 32 characters. Obviously the SSIDs 
need to be unique in a given area to distinguish one wireless network from another. The 
factory-installed default for early versions of wireless access points was not unique, such as 
"wireless," "tsunami" or "Linksys" (a brand name); now most factory defaults are a serial 
number unique to the device. 

A client and an access point engage in a handshake to locate each other: Essentially 
the client says, "I am looking to connect to access point S" and the access point says, "I am 
access point S; connect to me." The order of these two steps is important. In what is called 
"open mode," an access point can continually broadcast its appeal, indicating that it is open 
for the next step in establishing a connection. Open mode is a poor security practice 
because it advertises the name of an access point to which an attacker might attach. 
"Closed" or "stealth mode" reverses the order of the protocol: The client must send a signal 
seeking an access point with a particular SSID before the access point responds to that one 
query with an invitation to connect. 

But closed mode does not prevent knowledge of the SSID. The initial exchange 
"looking for S," 

"I am S" occurs in the clear and is available to anyone who uses a sniffer to intercept 
wireless communications in range. Thus, anyone who sniffs the SSID can save the SSID 
(which is seldom changed in practice) to use later. 
WEP 

The second step in securing a wireless communication involves use of encryption. 
The original 802.11 wireless standard relied upon a cryptographic protocol called wired 
equivalent privacy or WEP. WEP was meant to provide users privacy equivalent to that of a 
dedicated wire, that is, immunity to most eavesdropping and impersonation attacks. WEP 
uses an encryption key shared between the client and the access point. To authenticate a 
user, the access point sends a random number to the client, which the client encrypts 
using the shared key and returns to the access point. From that point on, the client and 
access point are authenticated and can communicate using their shared encryption key. 
Several problems exist with this seemingly simple approach. 

First, the WEP standard uses either a 64- or 128-bit encryption key. The user enters 
the key in any convenient form, usually in hexadecimal or as an alphanumeric string that is 
converted to a number. Entering 64 or 128 bits in hex requires choosing and then typing 16 
or 32 symbols correctly for the client and access point. Not surprisingly, hex strings like 
C0DE C0DE… (that is a zero between C and D) are common. Passphrases are vulnerable to 
a dictionary attack. 
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Even if the key is strong, it really has an effective length of only 40 or 104 bits 
because of the way it is used in the algorithm. A brute force attack against a 40-bit key 
succeeds quickly. Even for the 104-bit version, flaws in the RC4 algorithm and its use (see 
[BOR01, FLU01, and ARB02]) defeat WEP security. Several tools, starting with WEPCrack 
and AirSnort, allow an attacker to crack a WEP encryption, usually in a few minutes. At a 
2005 conference, the FBI demonstrated the ease with which a WEP-secured wireless 
session can be broken. 

For these reasons, in 2001 the IEEE began design of a new authentication and 
encryption scheme for wireless. Unfortunately, some wireless devices still on the market 
allow only the false security of WEP. 
WPA and WPA2 

The alternative to WEP is WiFi Protected Access or WPA, approved in 2003. The 
IEEE standard 802.11i is now known as WPA2, approved in 2004, and is an extension of 
WPA. How does WPA improve upon WEP? 

First, WEP uses an encryption key that is unchanged until the user enters a new 
key at the client and access point. Cryptologists hate unchanging encryption keys because 
a fixed key gives the attacker a large amount of ciphertext to try to analyze and plenty of 
time in which to analyze it. WPA has a key change approach, called Temporal Key Integrity 
Program (TKIP), by which the encryption key is changed automatically on each packet. 

Second, WEP uses the encryption key as an authenticator, albeit insecurely. WPA 
employs the extensible authentication protocol (EAP) by which authentication can be done 
by password, token, certificate, or other mechanism. For small network (home) users, this 
probably still means a shared secret, which is not ideal. Users are prone to selecting weak 
keys, such as short numbers or pass phrases subject to a dictionary attack. 

The encryption algorithm for WEP is RC4, which has cryptographic flaws both in key 
length and design [ARB02]. In WEP the initialization vector for RC4 is only 24 bits, a size so 
small that collisions commonly occur; furthermore, there is no check against initialization 
vector reuse. 

WPA2 adds AES as a possible encryption algorithm (although RC4 is also still 
supported for compatibility reasons). 

WEP includes a 32-bit integrity check separate from the data portion. But because 
the WEP encryption is subject to cryptanalytic attack [FLU01], the integrity check was also 
subject, so an attacker could modify content and the corresponding check without having 
to know the associated encryption key [BOR01]. WPA includes a 64-bit integrity check that 
is encrypted. 

The setup protocol for WPA and WPA2 is much more robust than that for WEP. 
Setup for WPA involves three protocol steps: authentication, a four-way handshake (to 
ensure that the client can generate cryptographic keys and to generate and install keys for 
both encryption and integrity on both ends), and an optional group key handshake (for 
multicast communication.) A good overview of the WPA protocols is in [LEH05]. 

WPA and WPA2 address the security deficiencies known in WEP. Arazi et al. [ARA05] 
make a strong case for public key cryptography in wireless sensor networks, and a similar 
argument can be made for other wireless applications (although the heavier computation 
demands of public key encryption is a limiting factor on wireless devices with limited 
processor capabilities.) 

Alarms and Alerts 
The logical view of network protection looks like Figure 7-32, in which both a router 

and a firewall provide layers of protection for the internal network. Now let us add one more 
layer to this defense. 

Figure 7-32. 

Layered 

Network 
Protection. 

 
Monitor 

what occurs 
within the 
network. If an 
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attacker passes through the router and passes through the firewall, an intrusion detection 
system offers the opportunity to detect the attack at the beginning, in progress, or after it 
has occurred. Intrusion detection systems activate an alarm, which can take defensive 
action. We study intrusion detection systems in more detail later in this chapter. 

Honeypots 
How do you catch a mouse? You set a trap with bait (food the mouse finds 

attractive) and catch the mouse after it is lured into the trap. You can catch a computer 
attacker the same way. 

In a very interesting book, Cliff Stoll [STO89] details the story of attracting and 
monitoring the actions of an attacker. Cheswick [CHE90, CHE02] and Bellovin [BEL92c] tell 
a similar story. 

These two cases describe the use of a honeypot: a computer system open to 
attackers. 
You put up a honeypot for several reasons: 

 to watch what attackers do, in order to learn about new attacks (so that you can 
strengthen your defenses against these new attacks) 

 to lure an attacker to a place in which you may be able to learn enough to identify and 
stop the attacker 

 to provide an attractive but diversionary playground, hoping that the attacker will leave 
your real system alone 

A honeypot has no special features. It is just a computer system or a network 
segment loaded with servers and devices and data. It may be protected with a firewall, 
although you want the attackers to have some access. There may be some monitoring 
capability, done carefully so that the monitoring is not evident to the attacker. 

The two difficult features of a honeypot are putting up a believable, attractive false 
environment and confining and monitoring the attacker surreptitiously. Spitzner [SPI02, 
SPI03a] has done extensive work developing and analyzing honeypots. He thinks like the 
attacker, figuring what the attacker will want to see in an invaded computer, but as 
McCarty [MCC03] points out, it is always a race between attacker and defender. Spitzner 
also tries to move much of his data off the target platform so that the attacker will not be 
aware of the analysis and certainly not be able to modify or erase the data gathered. Raynal 
[RAY04a. RAY04b] discusses how to analyze the data collected. 

Traffic Flow Security 
So far, we have looked at controls that cover the most common network threats: 

cryptography for eavesdropping, authentication methods for impersonation, intrusion 
detection systems for attacks in progress, architecture for structural flaws. Earlier in this 
chapter, we listed threats, including a threat of traffic flow inference. If the attacker can 
detect an exceptional volume of traffic between two points, the attacker may infer the 
location of an event about to occur. 

The countermeasure to traffic flow threats is to disguise the traffic flow. One way to 
disguise traffic flow, albeit costly and perhaps crude, is to ensure a steady volume of traffic 
between two points. If traffic between A and B is encrypted so that the attacker can detect 
only the number of packets flowing, A and B can agree to pass recognizable (to them) but 
meaningless encrypted traffic. When A has much to communicate to B, there will be few 
meaningless packets; when communication is light, A will pad the traffic stream with many 
spurious packets. 

A more sophisticated approach to traffic flow security is called onion routing 
[SYV97]. Consider a message that is covered in multiple layers, like the layers of an onion. 
A wants to send a message to B but doesn't want anyone in or 
intercepting traffic on the network to know A is communicating 
with B. So A takes the message to B, wraps it in a package for D 
to send to B. Then, A wraps that package in another package for 
C to send to D. Finally, A sends this package to C. This process 
is shown in Figure 7-33. The internal wrappings are all 
encrypted under a key appropriate for the intermediate 
recipient. 

Figure 7-33. Onion Routing.  
Receiving the package, C knows it came from A, although C does 
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not know if A is the originator or an intermediate point. C then unwraps the outer layer and 
sees it should be sent to D. At this point, C cannot know if D is the final recipient or merely 
an intermediary. C sends the message to D, who unwraps the next layer. D knows neither 
where the package originally came from nor where its final destination is. D forwards the 
package to B, its ultimate recipient. 

With this scheme, any intermediate recipientsthose other than the original sender 
and ultimate receiverknow neither where the package originated nor where it will end up. 
This scheme provides confidentiality of content, source, destination, and routing. 

Controls Review 
At the end of our earlier discussion on threats in networks, we listed in Table 7-4 

many of the vulnerabilities present in networks. Now that we have surveyed the controls 
available for networks, we repeat that table as Table 7-7, adding a column to show the 
controls that can protect against each vulnerability. (Note: This table is not exhaustive; 
other controls can be used against some of the vulnerabilities.) 

Table 7-7. Network Vulnerabilities and Controls. 
Target Vulnerability Control 
Precursors to attack 

 Port scan  Firewall 
 Intrusion detection system 
 Running as few services as possible 
 Services that reply withonly what is necessary 
 Social engineering  
 Education, user awareness 
 Policies and procedures 
 Systems in which two people must agree to perform certain 

security-critical functions 
 Reconnaissance  
 Firewall 
 "Hardened" (self-defensive) operating system and applications 
 Intrusion detection system 
 OS and application 

fingerprinting 
 Firewall 
 "Hardened" (self-defensive) applications 
 Programs that reply with only what is necessary 
 Intrusion detection system 

Authentication failures 
 Impersonation  
 Strong, one-time authentication 

Table 7-7. Network Vulnerabilities and Controls. 
Target Vulnerability Control 

 Guessing  
 Strong, one-time authentication 
 Education, user awareness 
 Eavesdropping  
 Strong, one-time authentication 
 Encrypted authentication channel 
 Spoofing  
 Strong, one-time authentication 
 Session hijacking  
 Strong, one-time authentication 
 Encrypted authentication channel 
 Virtual private network 
 Man-in-the-middle attack  
 Strong, one-time authentication 
 Virtual private network 
 Protocol analysis 

Programming flaws 
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 Buffer overflow  
 Programming controls 
 Intrusion detection system 
 Controlled execution environment 
 Personal firewall 
 Addressing errors  
 Programming controls 
 Intrusion detection system 
 Controlled execution environment 
 Personal firewall 
 Two-way authentication 

Table 7-7. Network Vulnerabilities and Controls. 
Target Vulnerability Control 

 Parameter modification, time-of-check to time-of-use errors 
 Programming controls 
 Intrusion detection system 
 Controlled execution environment 
 Intrusion detection system 
 Personal firewall 
 Server-side include  
 Programming controls 
 Personal firewall 
 Controlled execution environment 
 Intrusion detection system 
 Cookie  
 Firewall 
 Intrusion detection system 
 Controlled execution environment 
 Personal firewall 
 Malicious active code: Java, ActiveX 
 Intrusion detection system 
 Programming controls 
 Signed code 
 Malicious code: virus, worm, Trojan horse 
 Intrusion detection system 
 Signed code 
 Controlled execution environment 
 Intrusion detection system 
 Malicious typed code  
 Signed code 
 Intrusion detection system 
 Controlled execution environment 

Confidentiality  
 Protocol flaw  
 Programming controls 
 Controlled execution 

Table 7-7. Network Vulnerabilities and Controls. 
Target Vulnerability Control environment 

 Eavesdropping  
 Encryption 
 Passive wiretap  
 Encryption 
 Misdelivery  
 Encryption 
 Exposure within the network 
 End-to-end encryption 
 Traffic flow analysis  
 Encryption 
 Traffic padding 
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 Onion routing 
 Cookie  
 Firewall 
 Intrusion detection system 
 Controlled execution environment 

Integrity  
 Protocol flaw  
 Firewall 
 Controlled execution environment 
 Intrusion detection system 
 Protocol analysis 
 Audit 
 Active wiretap  
 Encryption 
 Error detection code 
 Audit 
 Impersonation  
 Firewall 
 Strong, one-time authentication 
 Encryption 
 Error detection code 
 Audit 

Table 7-7. Network Vulnerabilities and Controls. 
Target Vulnerability Control 

 Falsification of message  
 Firewall 
 Encryption 
 Strong authentication 
 Error detection code 
 Audit 
 Noise  
 Error detection code 
 Web site defacement  
 Error detection code 
 Intrusion detection system 
 Controlled execution environment 
 Hardened host 
 Honeypot 
 Audit 
 DNS attack  
 Firewall 
 Intrusion detection system 
 Strong authentication for DNS changes 
 Audit 

Availability  
 Protocol flaw  
 Firewall 
 Redundant architecture 
 Transmission or component failure 
 Architecture 
 Connection flooding, e.g., echo-chargen, ping of death, smurf, syn flood 
 Firewall 
 Intrusion detection system 
 ACL on border router 
 Honeypot 
 DNS attack  
 Firewall 
 Intrusion detection system 

Table 7-7. Network Vulnerabilities and Controls. 
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Target Vulnerability Control 
 ACL on border router 
 Honeypot 
 Traffic redirection  
 Encryption 
 Audit 
 Distributed denial of service  
 Firewall 
 Intrusion detection system 
 ACL on border router 
 Honeypot 

As Table 7-7 shows, network security designers have many successful tools at their 
disposal. Some of these, such as encryption, access control and authentication, and 
programming controls, are familiar from previous chapters in this book. 

But three are specific to networked settings, and we explore them now in greater 
depth: firewalls, intrusion detection systems, and encrypted e-mail. Firewalls control traffic 
flow into and out of protected network segments. Intrusion detection systems monitor traffic 
within a network to spot potential attacks under way or about to occur. And encrypted 
email uses encryption to enhance the confidentiality or authenticity of e-mail messages. 

Firewalls 
A firewall is a device that filters all traffic between a protected or "inside" network 

and a less trustworthy or "outside" network. Usually a firewall runs on a dedicated device; 
because it is a single point through which traffic is channeled, performance is important, 
which means nonfirewall functions should not be done on the same machine. Because a 
firewall is executable code, an attacker could compromise that code and execute from the 
firewall's device. Thus, the fewer pieces of code on the device, the fewer tools the attacker 
would have by compromising the firewall. Firewall code usually runs on a proprietary or 
carefully minimized operating system. 

The purpose of a firewall is to keep "bad" things outside a protected environment. To 
accomplish that, firewalls implement a security policy that is specifically designed to 
address what bad things might happen. For example, the policy might be to prevent any 
access from outside (while still allowing traffic to pass from the inside to the outside). 
Alternatively, the policy might permit accesses only from certain places, from certain users, 
or for certain activities. Part of the challenge of protecting a network with a firewall is 
determining which security policy meets the needs of the installation. 

People in the firewall community (users, developers, and security experts) disagree 
about how a firewall should work. In particular, the community is divided about a firewall's 
default behavior. We can describe the two schools of thought as "that which is not expressly 
forbidden is permitted" (default permit) and "that which is not expressly permitted is 
forbidden" (default deny). Users, always interested in new features, prefer the former. 
Security experts, relying on several decades of experience, strongly counsel the latter. An 
administrator implementing or configuring a firewall must choose one of the two 
approaches, although the administrator can often broaden the policy by setting the 
firewall's parameters.  

Design of Firewalls 
Remember from Chapter 5 that a reference monitor must be 

 always invoked 
 tamperproof 
 small and simple enough for rigorous analysis 

A firewall is a special form of reference monitor. By carefully positioning a firewall 
within a network, we can ensure that all network accesses that we want to control must 
pass through it. This restriction meets the "always invoked" condition. A firewall is typically 
well isolated, making it highly immune to modification. Usually a firewall is implemented on 
a separate computer, with direct connections only to the outside and inside networks. This 
isolation is expected to meet the "tamperproof" requirement. And firewall designers strongly 
recommend keeping the functionality of the firewall simple. 

Types of Firewalls 
Firewalls have a wide range of capabilities. Types of firewalls include  
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 packet filtering gateways or screening routers 
 stateful inspection firewalls 
 application proxies 
 guards 
 personal firewalls 

Each type does different things; no one is necessarily "right" and the others "wrong." 
In this section, we examine each type to see what it is, how it works, and what its strengths 
and weaknesses are. In general, screening routers tend to implement rather simplistic 
security policies, whereas guards and proxy gateways have a richer set of choices for 
security policy. 

Simplicity in a security policy is not a bad thing; the important question to ask when 
choosing a type of firewall is what threats an installation needs to counter. 

Because a firewall is a type of host, it often is as programmable as a good-quality 
workstation. While a screening router can be fairly primitive, the tendency is to host even 
routers on complete computers with operating systems because editors and other 
programming tools assist in configuring and maintaining the router. However, firewall 
developers are minimalists: They try to eliminate from the firewall all that is not strictly 
necessary for the firewall's functionality. There is a good reason for this minimal constraint: 
to give as little assistance as possible to a successful attacker. Thus, firewalls tend not to 
have user accounts so that, for example, they have no password file to conceal. Indeed, the 
most desirable firewall is one that runs contentedly in a back room; except for periodic 
scanning of its audit logs, there is seldom reason to touch it. 
Packet Filtering Gateway 

A packet filtering gateway or screening router is the simplest, and in some 
situations, the most effective type of firewall. A packet filtering gateway controls access to 
packets on the basis of packet address (source or destination) or specific transport protocol 
type (such as HTTP web traffic). As described earlier in this chapter, putting ACLs on 
routers may severely impede their performance. But a separate firewall behind (on the local 
side) of the router can screen traffic before it gets to the protected network. Figure 7-34 
shows a packet filter that blocks access from (or to) addresses in one network; the filter 
allows HTTP traffic but blocks traffic using the Telnet protocol. 

Figure 7-34. Packet Filter Blocking 

Addresses and Protocols. 

 
For example, suppose an international 

company has three LANs at three locations 
throughout the world, as shown in Figure 7-
35. In this example, the router has two sides: 
inside and outside. We say that the local LAN 
is on the inside of the router, and the two connections to distant LANs through wide area 
networks are on the outside. The company might want communication only among the 
three LANs of the corporate network. It could use a screening router on the LAN at 
100.24.4.0 to allow in only communications destined to the host at 100.24.4.0 and to allow 
out only communications addressed either to address 144.27.5.3 or 192.19.33.0. 

Figure 7-35. Three Connected LANs.  
Packet filters do not "see inside" a packet; 

they block or accept packets solely on the basis of 
the IP addresses and ports. Thus, any details in the 
packet's data field (for example, allowing certain 
Telnet commands while blocking other services) is 
beyond the capability of a packet filter. 

Packet filters can perform the very important 
service of ensuring the validity of inside addresses. 
Inside hosts typically trust other inside hosts for all 
the reasons described as characteristics of LANs. But the only way an inside host can 
distinguish another inside host is by the address shown in the source field of a message. 
Source addresses in packets can be forged, so an inside application might think it was 
communicating with another host on the inside instead of an outside forger. A packet filter 
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sits between the inside network and the outside net, so it can know if a packet from the 
outside is forging an inside address, as shown in Figure 7-36. A screening packet filter 
might be configured to block all packets from the outside that claimed their source address 
was an inside address. In this example, the packet filter blocks all packets claiming to come 
from any address of the form 100.50.25.x (but, of course, it permits in any packets with 
destination 100.50.25.x). 

Figure 7-36. Filter Screening 
Outside Addresses. 
 

The primary disadvantage of 
packet filtering routers is a combination 
of simplicity and complexity. The 
router's inspection is simplistic; to 
perform sophisticated filtering, the filtering 
rules set needs to be very detailed. A detailed rules set will be complex and therefore prone 
to error. For example, blocking all port 23 traffic (Telnet) is simple and straightforward. But 
if some Telnet traffic is to be allowed, each IP address from which it is allowed must be 
specified in the rules; in this way, the rule set can become very long. 
Stateful Inspection Firewall 

Filtering firewalls work on packets one at a time, accepting or rejecting each packet 
and moving on to the next. They have no concept of "state" or "context" from one packet to 
the next. A stateful inspection firewall maintains state information from one packet to 
another in the input stream. 

One classic approach used by attackers is to break an attack into multiple packets 
by forcing some packets to have very short lengths so that a firewall cannot detect the 
signature of an attack split across two or more packets. (Remember that with the TCP 
protocols, packets can arrive in any order, and the protocol suite is responsible for 
reassembling the packet stream in proper order before passing it along to the application.) A 
stateful inspection firewall would track the sequence of packets and conditions from one 
packet to another to thwart such an attack. 
Application Proxy 

Packet filters look only at the headers of packets, not at the data inside the packets. 
Therefore, a packet filter would pass anything to port 25, assuming its screening rules allow 
inbound connections to that port. But applications are complex and sometimes contain 
errors. 

Worse, applications (such as the e-mail delivery agent) often act on behalf of all 
users, so they require privileges of all users (for example, to store incoming mail messages 
so that inside users can read them). A flawed application, running with all users' privileges, 
can cause much damage. 

An application proxy gateway, also called a bastion host, is a firewall that simulates 
the (proper) effects of an application so that the application receives only requests to act 
properly. A proxy gateway is a two-headed device: It looks to the inside as if it is the outside 
(destination) connection, while to the outside it responds just as the insider would. 

An application proxy runs pseudo applications. For instance, when electronic mail is 
transferred to a location, a sending process at one site and a receiving process at the 
destination communicate by a protocol that establishes the legitimacy of a mail transfer and 
then actually transfers the mail message. The protocol between sender and destination is 
carefully defined. 

A proxy gateway essentially intrudes in the middle of this protocol exchange, 
seeming like a destination in communication with the sender that is outside the firewall, 
and seeming like the sender in communication with the real destination on the inside. The 
proxy in the middle has the opportunity to screen the mail transfer, ensuring that only 
acceptable e-mail protocol commands are sent to the destination. 

As an example of application proxying, consider the FTP (file transfer) protocol. 
Specific protocol commands fetch (get) files from a remote location, store (put) files onto a 
remote host, list files (ls) in a directory on a remote host, and position the process (cd) at a 
particular point in a directory tree on a remote host. Some administrators might want to 
permit gets but block puts, and to list only certain files or prohibit changing out of a 
particular directory (so that an outsider could retrieve only files from a prespecified 
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directory). The proxy would simulate both sides of this protocol exchange. For example, the 
proxy might accept get commands, reject put commands, and filter the local response to a 
request to list files. 

To understand the real purpose of a proxy gateway, let us consider several 
examples. 

 A company wants to set up an online price list so that outsiders can see the products and 
prices offered. It wants to be sure that (a) no outsider can change the prices or product list 
and (b) outsiders can access only the price list, not any of the more sensitive files stored 
inside. 

 A school wants to allow its students to retrieve any information from World Wide Web 
resources on the Internet. To help provide efficient service, the school wants to know what 
sites have been visited and what files from those sites have been fetched; particularly 
popular files will be cached locally. 

 A government agency wants to respond to queries through a database management 
system. However, because of inference attacks against databases, the agency wants to 
restrict queries that return the mean of a set of fewer than five values. 

 A company with multiple offices wants to encrypt the data portion of all e-mail to 
addresses at its other offices. (A corresponding proxy at the remote end will remove the 
encryption.) 

 A company wants to allow dial-in access by its employees, without exposing its company 
resources to login attacks from remote nonemployees. 
Each of these requirements can be met with a proxy. In the first case, the proxy would 
monitor the file transfer protocol data to ensure that only the price list file was accessed, 
and that file could only be read, not modified. The school's requirement could be met by a 
logging procedure as part of the web browser. The agency's need could be satisfied by a 
special-purpose proxy that interacted with the database management system, performing 
queries but also obtaining the number of values from which the response was computed 
and adding a random minor error term to results from small sample sizes. The requirement 
for limited login could be handled by a specially written proxy that required strong user 
authentication (such as a challengeresponse system), which many operating systems do not 
require. These functions are shown in Figure 7-37. 

Figure 7-37. Actions of Firewall Proxies. 
 

The proxies on the firewall can be tailored 
to specific requirements, such as logging details 
about accesses. They can even present a 
common user interface to what may be 
dissimilar internal functions. Suppose the 
internal network has a mixture of operating 
system types, none of which support strong 
authentication through a challenge response 
token. The proxy can demand strong 
authentication (name, password, and challenge 
response), validate the challenge response itself, and then pass on only simple name and 
password authentication details in the form required by a specific internal host's operating 
system. 

The distinction between a proxy and a screening router is that the proxy interprets 
the protocol stream to an application, to control actions through the firewall on the basis of 
things visible within the protocol, not just on external header data. 
Guard A guard is a sophisticated firewall. Like a proxy firewall, it receives protocol data 
units, interprets them, and passes through the same or different protocol data units that 
achieve either the same result or a modified result. The guard decides what services to 
perform on the user's behalf in accordance with its available knowledge, such as whatever it 
can reliably know of the (outside) user's identity, previous interactions, and so forth. The 
degree of control a guard can provide is limited only by what is computable. But guards and 
proxy firewalls are similar enough that the distinction between them is sometimes fuzzy. 
That is, we can add functionality to a proxy firewall until it starts to look a lot like a guard. 
Guard activities can be quite sophisticated, as illustrated in the following examples: 
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 A university wants to allow its students to use e-mail up to a limit of so many messages 
or so many characters of e-mail in the last so many days. Although this result could be 
achieved by modifying e-mail handlers, it is more easily done by monitoring the common 
point through which all e-mail flows, the mail transfer protocol.  

 A school wants its students to be able to access the World Wide Web but, because of the 
slow speed of its connection to the web, it will allow only so many characters per 
downloaded image (that is, allowing text mode and simple graphics, but disallowing 
complex graphics, animation, music, or the like). 

 A library wants to make available certain documents but, to support fair use of 
copyrighted matter, it will allow a user to retrieve only the first so many characters of a 
document. After that amount, the library will require the user to pay a fee that will be 
forwarded to the author. 

 A company wants to allow its employees to fetch files via ftp. However, to prevent 
introduction of viruses, it will first pass all incoming files through a virus scanner. Even 
though many of these files will be nonexecutable text or graphics, the company 
administrator thinks that the expense of scanning them (which should pass) will be 
negligible. 

Each of these scenarios can be implemented as a modified proxy. Because the proxy 
decision is based on some quality of the communication data, we call the proxy a guard. 
Since the security policy implemented by the guard is somewhat more complex than the 
action of a proxy, the guard's code is also more complex and therefore more exposed to 
error. Simpler firewalls have fewer possible ways to fail or be subverted. 

Personal Firewalls 
Firewalls typically protect a (sub)network of multiple hosts. University students and 

employees in offices are behind a real firewall. Increasingly, home users, individual workers, 
and small businesses use cable modems or DSL connections with unlimited, always-on 
access. These people need a firewall, but a separate firewall computer to protect a single 
workstation can seem too complex and expensive. These people need a firewall's capabilities 
at a lower price. 

A personal firewall is an application program that runs on a workstation to block 
unwanted traffic, usually from the network. A personal firewall can complement the work of 
a conventional firewall by screening the kind of data a single host will accept, or it can  
compensate for the lack of a regular firewall, as in a private DSL or cable modem 
connection. 

Just as a network firewall screens incoming and outgoing traffic for that network, a 
personal firewall screens traffic on a single workstation. A workstation could be vulnerable 
to malicious code or malicious active agents (ActiveX controls or Java applets), leakage of 
personal data stored on the workstation, and vulnerability scans to identify potential 
weaknesses. 

Commercial implementations of personal firewalls include Norton Personal Firewall 
from Symantec, McAfee Personal Firewall, and Zone Alarm from Zone Labs (now owned by 
CheckPoint). 

The personal firewall is configured to enforce some policy. For example, the user 
may decide that certain sites, such as computers on the company network, are highly 
trustworthy, but most other sites are not. The user defines a policy permitting download of 
code, unrestricted data sharing, and management access from the corporate segment, but 
not from other sites. 

Personal firewalls can also generate logs of accesses, which can be useful to examine 
in case something harmful does slip through the firewall. 

Combining a virus scanner with a personal firewall is both effective and efficient. 
Typically, users forget to run virus scanners daily, but they do remember to run them 
occasionally, such as sometime during the week. However, leaving the virus scanner 
execution to the user's memory means that the scanner detects a problem only after the 
factsuch as when a virus has been downloaded in an e-mail attachment. With the 
combination of a virus scanner and a personal firewall, the firewall directs all incoming e-
mail to the virus scanner, which examines every attachment the moment it reaches the 
target host and before it is opened. 

A personal firewall runs on the very computer it is trying to protect. Thus, a clever 
attacker is likely to attempt an undetected attack that would disable or reconfigure the 
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firewall for the future. Still, especially for cable modem, DSL, and other "always on" 
connections, the static workstation is a visible and vulnerable target for an ever-present 
attack community. A personal firewall can provide reasonable protection to clients that are 
not behind a network firewall. 

Comparison of Firewall Types 
We can summarize the differences among the several types of firewalls we have 

studied  in depth. The comparisons are shown in Table 7-8. 

Table 7-8. 

Comparison of 
Firewall Types. 

Example 
Firewall 

Configurations 
Let us look at 

several examples to 
understand how to 
use firewalls. We 
present situations 
designed to show 
how a firewall 
complements a 
sensible security 
policy and 
architecture. 

The simplest 
use of a firewall is 
shown in Figure 7-
38. This environment 
has a screening 
router positioned 
between the internal 
LAN and the outside network connection. In many cases, this installation is adequate when 
we need only screen the address of a router. 

Figure 7-38. Firewall with Screening Router. 
 

However, to use a proxy machine, this organization is not ideal. Similarly, 
configuring a router for a complex set of approved or rejected addresses is difficult. If the 
firewall router is successfully attacked, then all traffic on the LAN to which the firewall is 
connected is visible. 

To reduce this exposure, a proxy firewall is often installed on its own LAN, as shown 
in Figure 7-39. In this way the 
only traffic visible on that LAN is 
the traffic going into and out of 
the firewall. 

Figure 7-39. Firewall on 
Separate LAN. 
 
For even more protection, we 
can add a screening router to 
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this configuration, as shown in Figure 7-40. Here, the screening router ensures address 
correctness to the proxy firewall (so that the proxy firewall cannot be fooled by an outside 
attacker forging an address from an inside host); the proxy firewall filters traffic according 
to its proxy rules. Also, if the screening router is subverted, only the traffic to the proxy 
firewall is visible not any of the sensitive information on the internal protected LAN. 

Figure 7-40. Firewall 
with Proxy and 

Screening Router. 
 

Although these 
examples are 
simplifications, they show 
the kinds of configurations 
firewalls protect. Next, we 
review the kinds of attacks against which firewalls can and cannot protect. 
What Firewalls Canand CannotBlock As we have seen, firewalls are not complete solutions 
to all computer security problems. A firewall protects only the perimeter of its environment 
against attacks from outsiders who want to execute code or access data on the machines in 
the protected environment. Keep in mind these points about firewalls. 

 Firewalls can protect an environment only if the firewalls control the entire perimeter. 
That is, firewalls are effective only if no unmediated connections breach the perimeter. If 
even one inside host connects to an outside address, by a modem for example, the entire 
inside net is vulnerable through the modem and its host. 

 Firewalls do not protect data outside the perimeter; data that have properly passed 
(outbound) through the firewall are just as exposed as if there were no firewall. 

 Firewalls are the most visible part of an installation to the outside, so they are the most 
attractive target for attack. For this reason, several different layers of protection, called 
defense in depth, are better than relying on the strength of just a single firewall. 

 Firewalls must be correctly configured, that configuration must be updated as the 
internal and external environment changes, and firewall activity reports must be reviewed 
periodically for evidence of attempted or successful intrusion. 

 Firewalls are targets for penetrators. While a firewall is designed to withstand attack, it is 
not impenetrable. Designers intentionally keep a firewall small and simple so that even if a 
penetrator breaks it, the firewall does not have further tools, such as compilers, linkers, 
loaders, and the like, to continue an attack. 

 Firewalls exercise only minor control over the content admitted to the inside, meaning 
that inaccurate data or malicious code must be controlled by other means inside the 
perimeter. 

Firewalls are important tools in protecting an environment connected to a network. 
However, the environment must be viewed as a whole, all possible exposures must be 
considered, and the firewall must fit into a larger, comprehensive security strategy. 
Firewalls alone cannot secure an environment. 

Intrusion detection systems 
After the perimeter controls, firewall, and authentication and access controls block 

certain actions, some users are admitted to use a computing system. Most of these controls 
are preventive: They block known bad things from happening. Many studies (for example, 
see [DUR99]) have shown that most computer security incidents are caused by insiders, 
people who would not be blocked by a firewall. And insiders require access with significant 
privileges to do their daily jobs. The vast majority of harm from insiders is not malicious; it 
is honest people making honest mistakes. Then, too, there are the potential malicious 
outsiders who have somehow passed the screens of firewalls and access controls. 
Prevention, although necessary, is not a complete computer security control; detection 
during an incident copes with harm that cannot be prevented in advance. Halme and Bauer 
[HAL95] survey the range of controls to address intrusions. 

Intrusion detection systems complement these preventive controls as the next line of 
defense. An intrusion detection system (IDS) is a device, typically another separate 
computer, that monitors activity to identify malicious or suspicious events. Kemmerer and 
Vigna [KEM02] survey the history of IDSs. An IDS is a sensor, like a smoke detector, that 
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raises an alarm if specific things occur. A model of an IDS is shown in Figure 7-41. The 
components in the figure are the four basic elements of an intrusion detection system, 
based on the Common Intrusion Detection Framework of [STA96]. An IDS receives raw 
inputs from sensors. It saves those inputs, analyzes them, and takes some controlling 
action. 

Figure 7-41. Common Components of an 
Intrusion Detection Framework.  
IDSs perform a variety of functions: 

 monitoring users and system activity 
 auditing system configuration for vulnerabilities and 

misconfigurations 
 assessing the integrity of critical system and data files 
 recognizing known attack patterns in system activity 
 identifying abnormal activity through statistical 

analysis 
 managing audit trails and highlighting user violation of policy or normal activity 
 correcting system configuration errors 
 installing and operating traps to record information about intruders 

No one IDS performs all of these functions. Let us look more closely at the kinds of 
IDSs and their use in providing security. 

Types of IDSs 
The two general types of intrusion detection systems are signature based and 

heuristic Signature-based intrusion detection systems perform simple pattern-matching 
and report situations that match a pattern corresponding to a known attack type. Heuristic 
intrusion detection systems, also known as anomaly based, build a model of acceptable 
behavior and flag exceptions to that model; for the future, the administrator can mark a 
flagged behavior as acceptable so that the heuristic IDS will now treat that previously 
unclassified behavior as acceptable. 

Intrusion detection devices can be network based or host based. A network-based 
IDS is a stand-alone device attached to the network to monitor traffic throughout that 
network; a host-based IDS runs on a single workstation or client or host, to protect that one 
host. 

Early intrusion detection systems (for example, [DEN87b, LUN90a, FOX90, LIE89]) 
worked after the fact, by reviewing logs of system activity to spot potential misuses that had 
occurred. The administrator could review the results of the IDS to find and fix weaknesses 
in the system. Now, however, intrusion detection systems operate in real time (or near real 
time), watching activity and raising alarms in time for the administrator to take protective 
action. 
Signature-Based Intrusion Detection 

A simple signature for a known attack type might describe a series of TCP SYN 
packets sent to many different ports in succession and at times close to one another, as 
would be the case for a port scan. An intrusion detection system would probably find 
nothing unusual in the first SYN, say, to port 80, and then another (from the same source 
address) to port 25. But as more and more ports receive SYN packets, especially ports that 
are not open, this pattern reflects a possible port scan. Similarly, some implementations of 
the protocol stack fail if they receive an ICMP packet with a data length of 65535 bytes, so 
such a packet would be a pattern for which to watch. 

The problem with signature-based detection is the signatures themselves. An 
attacker will try to modify a basic attack in such a way that it will not match the known 
signature of that attack. For example, the attacker may convert lowercase to uppercase 
letters or convert a symbol such as "blank space" to its character code equivalent %20. The 
IDS must necessarily work from a canonical form of the data stream in order to recognize 
that %20 matches a pattern with a blank space. The attacker may insert malformed packets 
that the IDS will see, to intentionally cause a pattern mismatch; the protocol handler stack 
will discard the packets because of the malformation. Each of these variations could be 
detected by an IDS, but more signatures require additional work for the IDS, which reduces 
performance. 
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Of course, signature-based IDSs cannot detect a new attack for which a signature is 
not yet installed in the database. Every attack type starts as a new pattern at some time, 
and the IDS is helpless to warn of its existence. 

Signature-based intrusion detection systems tend to use statistical analysis. This 
approach uses statistical tools both to obtain sample measurements of key indicators (such 
as amount of external activity, number of active processes, number of transactions) and to 
determine whether the collected measurements fit the predetermined attack signatures. 

Ideally, signatures should match every instance of an attack, match subtle 
variations of the attack, but not match traffic that is not part of an attack. However, this 
goal is grand but unreachable. 
Heuristic Intrusion Detection 

Because signatures are limited to specific, known attack patterns, another form of 
intrusion detection becomes useful. Instead of looking for matches, heuristic intrusion 
detection looks for behavior that is out of the ordinary. The original work in this area (for 
example, [TEN90]) focused on the individual, trying to find characteristics of that person 
that might be helpful in understanding normal and abnormal behavior. For example, one 
user might always start the day by reading e-mail, write many documents using a word 
processor, and occasionally back up files. These actions would be normal. This user does 
not seem to use many administrator utilities. If that person tried to access sensitive system 
management utilities, this new behavior might be a clue that someone else was acting 
under the user's identity. 

If we think of a compromised system in use, it starts clean, with no intrusion, and it 
ends dirty, fully compromised. There may be no point in the trace of use in which the 
system changed from clean to dirty; it was more likely that little dirty events occurred, 
occasionally at first and then increasing as the system became more deeply compromised. 
Any one of those events might be acceptable by itself, but the accumulation of them and the 
order and speed at which they occurred could have been signals that something 
unacceptable was happening. The inference engine of an intrusion detection system 
performs continuous analysis of the system, raising an alert when the system's dirtiness 
exceeds a threshold. 

Inference engines work in two ways. Some, called state-based intrusion detection 
systems, see the system going through changes of overall state or configuration. They try to 
detect when the system has veered into unsafe modes. Others try to map current activity 
onto a model of unacceptable activity and raise an alarm when the activity resembles the 
model. 

These are called model-based intrusion detection systems. This approach has been 
extended to networks in [MUK94]. Later work (for example, [FOR96, LIN99]) sought to build 
a dynamic model of behavior, to accommodate variation and evolution in a person's actions 
over time. The technique compares real activity with a known representation of normality. 

Alternatively, intrusion detection can work from a model of known bad activity. For 
example, except for a few utilities (login, change password, create user), any other attempt 
to access a password file is suspect. This form of intrusion detection is known as misuse 
intrusion detection. In this work, the real activity is compared against a known suspicious 
area. 

All heuristic intrusion detection activity is classified in one of three categories: 
good/benign, suspicious, or unknown. Over time, specific kinds of actions can move from 
one of these categories to another, corresponding to the IDS's learning whether certain 
actions are acceptable or not. 

As with pattern-matching, heuristic intrusion detection is limited by the amount of 
information the system has seen (to classify actions into the right category) and how well 
the current actions fit into one of these categories. 
Stealth Mode 

An IDS is a network device (or, in the case of a host-based IDS, a program running 
on a network device). Any network device is potentially vulnerable to network attacks. How 
useful would an IDS be if it itself were deluged with a denial-of-service attack? If an 
attacker succeeded in logging in to a system within the protected network, wouldn't trying 
to disable the IDS be the next step? 

To counter those problems, most IDSs run in stealth mode, whereby an IDS has two 
network interfaces: one for the network (or network segment) being monitored and the other 
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to generate alerts and perhaps other administrative needs. The IDS uses the monitored 
interface as input only; it never sends packets out through that interface. Often, the 
interface is configured so that the device has no published address through the monitored 
interface; that is, a router cannot route anything to that address directly, because the 
router does not know such a device exists. It is the perfect passive wiretap. If the IDS needs 
to generate an alert, it uses only the alarm interface on a completely separate control 
network. Such an architecture is shown in Figure 7-42. 

Figure 7-42. Stealth Mode IDS Connected 

to Two Networks. 

 
Other IDS Types 

Some security engineers consider other 
devices to be IDSs as well. For instance, to detect 
unacceptable code modification, programs can 
compare the active version of a software code with 
a saved version of a digest of that code. The tripwire 
program [KIM98] is the most well known software 
(or static data) comparison program. You run 
tripwire on a new system, and it generates a hash value for each file; then you save these 
hash values in a secure place (offline, so that no intruder can modify them while modifying 
a system file). If you later suspect your system may have been compromised, you rerun 
tripwire, providing it the saved hash values. It recomputes the hash values and reports any 
mismatches, which would indicate files that were changed. 

System vulnerability scanners, such as ISS Scanner or Nessus, can be run against a 
network. They check for known vulnerabilities and report flaws found. As we have seen, a 
honeypot is a faux environment intended to lure an attacker. It can be considered an IDS, 
in the sense that the honeypot may record an intruder's actions and even attempt to trace 
who the attacker is from actions, packet data, or connections. 

Goals for Intrusion Detection Systems 
The two styles of intrusion detection pattern matching and heuristic represent 

different approaches, each of which has advantages and disadvantages. Actual IDS 
products often blend the two approaches. 

Ideally, an IDS should be fast, simple, and accurate, while at the same time being 
complete. It should detect all attacks with little performance penalty. An IDS could use 
some or all of the following design approaches: 

 Filter on packet headers 
 Filter on packet content 
 Maintain connection state 
 Use complex, multipacket signatures 
 Use minimal number of signatures with maximum effect 
 Filter in real time, online 
 Hide its presence 
 Use optimal sliding time window size to match signatures 

Responding to Alarms 
Whatever the type, an intrusion detection system raises an alarm when it finds a 

match. The alarm can range from something modest, such as writing a note in an audit log, 
to something significant, such as paging the system security administrator. Particular 
implementations allow the user to determine what action the system should take on what 
events. 

What are possible responses? The range is unlimited and can be anything the 
administrator can imagine (and program). In general, responses fall into three major 
categories (any or all of which can be used in a single response): 

 Monitor, collect data, perhaps increase amount of data collected 
 Protect, act to reduce exposure 
 Call a human 

Monitoring is appropriate for an attack of modest (initial) impact. Perhaps the real 
goal is to watch the intruder, to see what resources are being accessed or what attempted 
attacks are tried. Another monitoring possibility is to record all traffic from a given source 
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for future analysis. This approach should be invisible to the attacker. Protecting can mean 
increasing access controls and even making a resource unavailable (for example, shutting 
off a network connection or making a file unavailable). The system can even sever the 
network connection the attacker is using. In contrast to monitoring, protecting may be very 
visible to the attacker. Finally, calling a human allows individual discrimination. The IDS 
can take an initial defensive action immediately while also generating an alert to a human 
who may take seconds, minutes, or longer to respond. 
False Results 

Intrusion detection systems are not perfect, and mistakes are their biggest problem. 
Although an IDS might detect an intruder correctly most of the time, it may stumble in two 
different ways: by raising an alarm for something that is not really an attack (called a false 
positive, or type I error in the statistical community) or not raising an alarm for a real 
attack (a false negative, or type II error). Too many false positives means the administrator 
will be less confident of the IDS's warnings, perhaps leading to a real alarm's being ignored. 
But false negatives mean that real attacks are passing the IDS without action. We say that 
the degree of false positives and false negatives represents the sensitivity of the system. 
Most IDS implementations allow the administrator to tune the system's sensitivity, to strike 
an acceptable balance between false positives and negatives. 

IDS Strengths and Limitations 
Intrusion detection systems are evolving products. Research began in the mid-1980s 

and products had appeared by the mid-1990s. However, this area continues to change as 
new research influences the design of products. 

On the upside, IDSs detect an ever-growing number of serious problems. And as we 
learn more about problems, we can add their signatures to the IDS model. Thus, over time, 
IDSs continue to improve. At the same time, they are becoming cheaper and easier to 
administer. 

On the downside, avoiding an IDS is a first priority for successful attackers. An IDS 
that is not well defended is useless. Fortunately, stealth mode IDSs are difficult even to find 
on an internal network, let alone to compromise. 

IDSs look for known weaknesses, whether through patterns of known attacks or 
models of normal behavior. Similar IDSs may have identical vulnerabilities, and their 
selection criteria may miss similar attacks. Knowing how to evade a particular model of IDS 
is an important piece of intelligence passed within the attacker community. Of course, once 
manufacturers become aware of a shortcoming in their products, they try to fix it. 
Fortunately, commercial IDSs are pretty good at identifying attacks. 

Another IDS limitation is its sensitivity, which is difficult to measure and adjust. 
IDSs will never be perfect, so finding the proper balance is critical. 

A final limitation is not of IDSs per se, but is one of use. An IDS does not run itself; 
someone has to monitor its track record and respond to its alarms. An administrator is 
foolish to buy and install an IDS and then ignore it. 

In general, IDSs are excellent additions to a network's security. Firewalls block 
traffic to particular ports or addresses; they also constrain certain protocols to limit their 
impact. But by definition, firewalls have to allow some traffic to enter a protected area. 
Watching what that traffic actually does inside the protected area is an IDS's job, which it 
does quite well. 

Secure e-mail 
The final control we consider in depth is secure e-mail. Think about how much you 

use e-mail and how much you rely on the accuracy of its contents. How would you react if 
you received a message from your instructor saying that because you had done so well in 
your course so far, you were excused from doing any further work in it? What if that 
message were a joke from a classmate? We rely on e-mail's confidentiality and integrity for 
sensitive and important communications, even though ordinary e-mail has almost no 
confidentiality or integrity. In this section we investigate how to add confidentiality and 
integrity protection to ordinary e-mail. 

Security for E-mail 
E-mail is vital for today's commerce, as well a convenient medium for 

communications among ordinary users. But, as we noted earlier, e-mail is very public, 
exposed at every point from the sender's workstation to the recipient's screen. Just as you 
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would not put sensitive or private thoughts on a postcard, you must also acknowledge that 
e-mail messages are exposed and available for others to read. 

Sometimes we would like e-mail to be more secure. To define and implement a more 
secure form, we begin by examining the exposures of ordinary e-mail. 
Threats to E-mail 
Consider threats to electronic mail: 

 message interception (confidentiality) 
 message interception (blocked delivery) 
 message interception and subsequent replay 
 message content modification 
 message origin modification 
 message content forgery by outsider 
 message origin forgery by outsider 
 message content forgery by recipient 
 message origin forgery by recipient 
 denial of message transmission 

Confidentiality and content forgery are often handled by encryption. Encryption can 
also help in a defense against replay, although we would also have to use a protocol in 
which each message contains something unique that is encrypted. Symmetric encryption 
cannot protect against forgery by a recipient, since both sender and recipient share a 
common key; however, public key schemes can let a recipient decrypt but not encrypt. 
Because of lack of control over the middle points of a network, senders or receivers 
generally cannot protect against blocked delivery. 

Requirements and Solutions 
If we were to make a list of the requirements for secure e-mail, our wish list would 

include the following protections. 
 message confidentiality (the message is not exposed en route to the receiver) 
 message integrity (what the receiver sees is what was sent) 
 sender authenticity (the receiver is confident who the sender was) 
 nonrepudiation (the sender cannot deny having sent the message) 

Not all these qualities are needed for every message, but an ideal secure e-mail 
package would allow these capabilities to be invoked selectively. 

Designs 
The standard for encrypted e-mail was developed by the Internet Society, through its 

architecture board (IAB) and research (IRTF) and engineering (IETF) task forces. The 
encrypted e-mail protocols are documented as an Internet standard in documents 1421, 
1422, 1423, and 1424 [LIN93, KEN93, BAL93, KAL93a]. This standard is actually the third 
refinement of the original specification. 

One of the design goals for encrypted e-mail was allowing security-enhanced 
messages to travel as ordinary messages through the existing Internet e-mail system. This 
requirement ensures that the large existing e-mail network would not require change to 
accommodate security. Thus, all protection occurs within the body of a message. 
Confidentiality 

Because the protection has several aspects, we begin our description of them by 
looking first at how to provide confidentiality enhancements. The sender chooses a (random) 
symmetric algorithm encryption key. Then, the sender encrypts a copy of the entire 
message to be transmitted, including FROM:, TO:, SUBJECT:, and DATE: headers. Next, 
the sender prepends plaintext headers. For key management, the sender encrypts the 
message key under the recipient's public key, and attaches that to the message as well. The 
process of creating an encrypted e-mail message is shown in Figure 7-43. 

Figure 7-43. Overview of Encrypted E-mail 
Processing. 

 
Encryption can potentially yield any string 

as output. Many e-mail handlers expect that 
message traffic will not contain characters other 
than the normal printable characters. 
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Network e-mail handlers use unprintable characters as control signals in the traffic 
stream.  To avoid problems in transmission, encrypted e-mail converts the entire ciphertext 
message to printable characters. An example of an encrypted e-mail message is shown in 
Figure 7-44. 
Notice the three portions: an external (plaintext) header, a section by which the message 
encryption key can be transferred, and the encrypted message itself. (The encryption is 
shown with shading.) 

Figure 7-44. Encrypted E-mailSecured 

Message. 

 
The encrypted e-mail standard works most 

easily as just described, using both symmetric 
and asymmetric encryption. The standard is also 
defined for symmetric encryption only: To use 
symmetric encryption, the sender and receiver 
must have previously established a shared secret 
encryption key. The processing type ("Proc-Type") 
field tells what privacy enhancement services have been applied. In the data exchange key 
field ("DEK-Info"), the kind of key exchange (symmetric or asymmetric) is shown. The key 
exchange ("Key-Info") field contains the message encryption key, encrypted under this 
shared encryption key. The field also identifies the originator (sender) so that the receiver 
can determine which shared symmetric key was used. If the key exchange technique were 
to use asymmetric encryption, the key exchange field would contain the message encryption 
field, encrypted under the recipient's public key. Also included could be the sender's 
certificate (used for determining authenticity and for generating replies). 

The encrypted e-mail standard supports multiple encryption algorithms, using 
popular algorithms such as DES, triple DES, and AES for message confidentiality, and RSA 
and DiffieHellman for key exchange. 
Other Security Features 

In addition to confidentiality, we may want various forms of integrity for secure e-
mail. Encrypted e-mail messages always carry a digital signature, so the authenticity and 
nonrepudiability of the sender is assured. The integrity is also assured because of a hash 
function (called a message integrity check, or MIC) in the digital signature. Optionally, 
encrypted e-mail messages can be encrypted for confidentiality. 

Notice in Figure 7-44 that the header inside the message (in the encrypted portion) 
differs from that outside. A sender's identity or the actual subject of a message can be 
concealed within the encrypted portion. 

The encrypted e-mail processing can integrate with ordinary e-mail packages, so a 
person can send both enhanced and nonenhanced messages, as shown in Figure 7-45. If 
the sender decides to add enhancements, an extra bit of encrypted e-mail processing is 
invoked on the sender's end; the receiver must also remove the enhancements. But without 
enhancements, messages flow through the mail handlers as usual. 

Figure 7-45. Encrypted E-mail Processing 
in Message Transmission. 

 
S/MIME (discussed later in this section) 

can accommodate the exchange of other than just 
text messages: support for voice, graphics, video, 
and other kinds of complex message parts. 
Encryption for Secure E-mail 

The major problem with encrypted e-mail 
is key management. The certificate scheme 
described in Chapter 2 is excellent for exchanging 
keys and for associating an identity with a public encryption key. The difficulty with 
certificates is building the hierarchy. Many organizations have hierarchical structures. The 
encrypted e-mail dilemma is moving beyond the single organization to an 
interorganizational hierarchy. Precisely because of the problem of imposing a hierarchy on a 
nonhierarchical world, PGP was developed as a simpler form of encrypted e-mail. 
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Encrypted e-mail provides strong end-to-end security for electronic mail. Triple DES, 
AES, and RSA cryptography are quite strong, especially if RSA is used with a long bit key 
(1024 bits or more). The vulnerabilities remaining with encrypted e-mail come from the 
points not covered: the endpoints. An attacker with access could subvert a sender's or 
receiver's machine, modifying the code that does the privacy enhancements or arranging to 
leak a cryptographic key. 

Example Secure E-mail Systems 
Encrypted e-mail programs are available from many sources. Several universities 

(including Cambridge University in England and The University of Michigan in the United 
States) and companies (BBN, RSA-DSI, and Trusted Information Systems) have developed 
either prototype or commercial versions of encrypted e-mail. 
PGP 

PGP stands for Pretty Good Privacy. It was invented by Phil Zimmerman in 1991. 
Originally a free package, it became a commercial product after being bought by Network 
Associates in 1996. A freeware version is still available. PGP is widely available, both in 
commercial versions and freeware, and it is heavily used by individuals exchanging private 
e-mail.  

PGP addresses the key distribution problem with what is called a "ring of trust" or a 
user's " keyring." One user directly gives a public key to another, or the second user fetches 
the first's public key from a server. Some people include their PGP public keys at the 
bottom of e-mail messages. And one person can give a second person's key to a third (and a 
fourth, and so on). Thus, the key association problem becomes one of caveat emptor: "Let 
the buyer beware." If I am reasonably confident that an e-mail message really comes from 
you and has not been tampered with, I will use your attached public key. If I trust you, I 
may also trust the keys you give me for other people. The model breaks down intellectually 
when you give me all the keys you received from people, who in turn gave you all the keys 
they got from still other people, who gave them all their keys, and so forth. 

You sign each key you give me. The keys you give me may also have been signed by 
other people. I decide to trust the veracity of a key-and-identity combination, based on who 
signed the key. 

PGP does not mandate a policy for establishing trust. Rather, each user is free to 
decide how much to trust each key received. 

The PGP processing performs some or all of the following actions, depending on 
whether confidentiality, integrity, authenticity, or some combination of these is selected: 

 Create a random session key for a symmetric algorithm. 
 Encrypt the message, using the session key (for message confidentiality). 
 Encrypt the session key under the recipient's public key. 
 Generate a message digest or hash of the message; sign the hash by encrypting it with 

the sender's private key (for message integrity and authenticity). 
 Attach the encrypted session key to the encrypted message and digest. 
 Transmit the message to the recipient. 

The recipient reverses these steps to retrieve and validate the message content. 
S/MIME 

An Internet standard governs how e-mail is sent and received. The general MIME 
specification defines the format and handling of e-mail attachments. S/MIME (Secure 
Multipurpose Internet Mail Extensions) is the Internet standard for secure e-mail 
attachments. 

S/MIME is very much like PGP and its predecessors, PEM (Privacy-Enhanced Mail) 
and RIPEM. The Internet standards documents defining S/MIME (version 3) are described 
in [HOU99] and [RAM99]. S/MIME has been adopted in commercial e-mail packages, such 
as Eudora and Microsoft Outlook. 

The principal difference between S/MIME and PGP is the method of key exchange. 
Basic PGP depends on each user's exchanging keys with all potential recipients and 
establishing a ring of trusted recipients; it also requires establishing a degree of trust in the 
authenticity of the keys for those recipients. S/MIME uses hierarchically validated 
certificates, usually represented in X.509 format, for key exchange. Thus, with S/MIME, the 
sender and recipient do not need to have exchanged keys in advance as long as they have a 
common certifier they both trust. 
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S/MIME works with a variety of cryptographic algorithms, such as DES, AES, and 
RC2 for symmetric encryption. S/MIME performs security transformations very similar to 
those for PGP. PGP was originally designed for plaintext messages, but S/MIME handles 
(secures) all sorts of attachments, such as data files (for example, spreadsheets, graphics, 
presentations, movies, and sound). 

Because it is integrated into many commercial e-mail packages, S/MIME is likely to 
dominate the secure e-mail market. 
Networks and cryptography 

Example protocols:  

PEM 
Privacy-Enhanced Mail 

Privacy-Enhanced Mail (PEM) is a de facto file format for storing and sending 
cryptographic keys, certificates, and other data, based on a set of 1993 IETF standards defining 
"privacy-enhanced mail." While the original standards were never broadly adopted and were 
supplanted by PGP andS/MIME, the textual encoding they defined became very popular. The PEM 
format was eventually formalized by the IETF in RFC 7468.  

Many cryptography standards use ASN.1 to define their data structures, and Distinguished 
Encoding Rules (DER) to serialize those structures.[2] Because DER produces binary output, it can be 
challenging to transmit the resulting files through systems, like electronic mail, that only support 
ASCII. 

The PEM format solves this problem by encoding the binary data using base64. PEM also 
defines a one-line header, consisting of "-----BEGIN ", a label, and "-----", and a one-line footer, 
consisting of "-----END ", a label, and "-----". The label determines the type of message encoded. 
Common labels include "CERTIFICATE", "CERTIFICATE REQUEST", "PRIVATE KEY" and "X509 CRL". 
PEM data is commonly stored in files with a ".pem" suffix, a ".cer" or ".crt" suffix (for certificates), or a 
".key" suffix (for public or private keys).[3] The label inside a PEM file represents the type of the data 
more accurately than the file suffix, since many different types of data can be saved in a ".pem" file. 
A PEM file may contain multiple instances. For instance, an operating system might provide a file 
containing a list of trustedCA certificates, or a web server might be configured with a "chain" file 
containing an end-entity certificate plus a list of intermediate certificates. 

-----BEGIN PRIVATE KEY----- 

MIIJRAIBADANBgkqhkiG9w0BAQEFAASCCS4wggkqAgEAAoICAQD2GlhF9HuoPwiF 

S8lh0lHCwVGlVq0Jqtmp7ieyVOZ0mbU6T2KCDwkL3mWWSiVZc+cjh3EOsXtyzuiq 

C1nsynrlSQuU3/pTkKVRWJCL51KXe7Rf+NPjSzqDdyowwQubWH42MMYbdLvjKRp9 

Yje8yjHDE6N1OSJyp5TCN+74qLT/xqJOLsBQBEJoQESVUM5xIuEJk8epHwNaP4kP 

SiYan5lTqXl0pOwNwyxG/kfRUdhdLI6VhaVzOqG3BT/HBYmu1Tk5CanqLeK8g5yw 

pVfhKc/HIlbjTDjBXWfqUqTOOJaLkJxpJgcHS2FvtVzuc2VIbJoaOZqs10SIoqCZ 

HuNVMvsFIeM2T2VB+XozoQrboP057wnUr5cvglpFZo7bWvDcbwZs8wXG9u0k1xxo 

kolCtIM/FKwdZqgWBfKvmrQFZR5jUos0yaRVilTKMGKRCZvB2B242Z/JjhWabwjO 

DyytbCADVUwyc4u7ZpJySDmAw9WiLmcGc2Z4E8qEeS/ejiVvBc5hE06CgaENdkTl 

TpKunhZc0nfdOJvAxENfwT+D+SNN3oh6m8/thNWFsj6pd4uIc77s6WI9pfmxC8MC 

G4NqJp2L0TDxN4e7iDCnQuWIWVMTSNGlIKRqsSnTXvdPbLsqD3+CcRkTe7oKu1Mv 

jhVUqo1GQpLivx6GmCGDPOfjud4/qwIDAQABAoICAGBYtgBFE3gtnS9aGS/zv9CI 

EGezRDEJswck1mOpe0NgvaNjWsRiEH+WBJ1Oz8pyZqXxK2C+OP8cY9fWc9ERAAXt 

j9wrx3uZoC71hjlPSXVGl7oO1x0f4XuAVoMZwGqDvX2HoLc0/y2SdO1rWzjMy6h8 

cry8rnDGjKVwclzk519PK1GCWgW5dSoNJwxxwzBloEY4lazvGEfnocfblolLvCIV 

shfpTQSiSR5OBF29NgBcJkIBPWGcLZ1SL8LBt0I79ZgP4XZtmluFBv3c7UeYL+Dc 

37lCqOGCqOECk8SsQLvI1IMRwSSo7S9niEdN4/PzmGz16kkKSalYSZlIj2VWfRCj 

wS6xWD4Sfez9Fx/s8tfPEv15KXtoIDKn20h/m7szlfSNYTi15ZdKPPW9SHKCol6C 

1kDgHg31eQtf3Nn6ukrBeHsyZr1FdkYwBSkRy+VIl6Kj5FJXUR1hWEvaLi1tplGP 

I6NwSA6ArouaAGTVyS3VpHZw8hyGpBiJ4ZYIMcISyXyMNEM3kNcvbKnb+bME88/6 

p/od4gb5kCUWEui34Nh7VtxY1n4g8HYJXWC07W0Xxz1/bvfAH7trPLHEyaoZ8kjz 

Lj4TZLwx7BplUMaOsXEFFb+lgzwhZL0Nd9F4zPT3WeGUTYJMukRMGumS86qDbLof 

7W08V+3MxKtfXgcIgKD5AoIBAQD/RoIchybjiTggPCZgCkRSx/HmjvtRZukwF9vk 

LSjuhaIDxY/x+eyLstubjn3Wkhjx/DcTxV+efs/QeOneerj0n6ft8H0yQcgfTvmP 

y6Kucx5lvSy4JH3ftKGuUu9X2erxKYaYIPWPMiPqQojECB1B1Bjsp8Xx0E4WioNK 

WYWkQmrVvaxUuYa1JV3cdREcrbgObj84qbz15NprfOqLUJMBQ2qqvkiJ3yAiW72i 

Nl1N6vf/TUGRCu8eCyMepDoLZI6apG0szqnAGPXW1v5m6/GxKFbuZCgR+73Dypsx 

qbmQ7F4r2QKrZuPnsae68l8MmfawbEYb+yObuzSaJuHGc7JvAoIBAQD2zSvoKiHi 

G1VVPkoXcZwe1rBn6zFZ+SZFtiTNR486xE0PvaJ/tCiPsqDO4xBZG+RwkOldAPbi 

https://en.wikipedia.org/wiki/De_facto
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://en.wikipedia.org/wiki/S/MIME
https://tools.ietf.org/html/rfc7468
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
https://en.wikipedia.org/wiki/X.690#DER_encoding
https://en.wikipedia.org/wiki/X.690#DER_encoding
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail#cite_note-2
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Base64encoded
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail#cite_note-3
https://en.wikipedia.org/wiki/CA_certificate
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oNsFgbOw+3mjQ2r8HGpgeuZ3GIy9e48olGP1b+fcvf0JFLkAHZr1iOeJDR+ewddT 

MzQmY3V1RWf13DvZDl0dT8Kaddz1UDlv9YN1iwPva7Rew4BLmIqmpcSo+m7qgG3f 

wmHKvV+ABuj/8GyCMogUkc+ZAw8XfnnzRGdQHDJhRJIvaS0b6IxVun3m4mRbJ93r 

poB8o15mL2DTjOGlN1qIQym6shuLZR2OV1hz1e0NEFwxsw4EbzR8cVCVBNhtKrBg 

bBfHDJNKvDSFAoIBAQCSmuXCiIP3DSlkqebIJV1TxWzRorAG8fleG3W3t4/YXHrN 

e7rNl2EYYeHplo4CmukkoFrpSeM+XUnwSmDV2tk59C83YXQlVs4d3PdKdAK7+XUt 

rNVv89UuksiAGzVF2OsrEVQxLkyYro0dzpRJMPfMhIjD8R6nX6BZJbd9DajIyzQc 

CNBd4CbTBeC/6aOoOsSH1R0N572T4pjmPlldJSsoAJXT9XAnbjNASDvCW0J+q0E+ 

KBpNuF/Xe0HyKRME0/1qJqBkqVOn9S3K8rIsXbjyq14xjufMXC2Bsmwqu3TNHFKB 

ECKOWYrt14Oiw+t+izW34JbrHvI2T+9H0Ki9lliVAoIBAQDjwAZqoqbN/ydKGMdK 

xx6pHrl/zHyoaNE2t5VSklzMgGYUxoz0iA5+PPtEsClf8etnLXMMzl0GWiaD+GMY 

SZjAXvCVYquQCRowgUkvepxreDSeQ/yVqgWdoa/vOWLMfuAbiy7I1FyefLv9SP8V 

j00Wh3v7G9Q1vmr5GxcikjvO46PCjty8zomOgZ8dI9GfY44N2b0NTiMWwEx6STOd 

88KEnRulMnh9cuk+bKI6rg5fvZoRRVQAisTUV5y3CmymmAijTfwKWsniMq6TVjdA 

2SvjTTjVvDUhVclmbgIZKuCRgG0xyBKPYa+SdYfT88NdqzwPqH8IjsJg2J9Aoowy 

BWf5AoIBAQD8zybogaMZBBAHbnEObVzHfJS6+g3nqNEL/pKePc7oh2e7wLIOe9zq 

3E7DYKJOnC4CulqxK6r7cE2H8dEbdbyMc2u9CqsM4kpLL7aaLWjG3H+MADbgDnWN 

lE+wjylfewl+y99tElBHxtsfWXf4AdM9eofirjY5nlDCuym44XG1T/MnJETKyobC 

vUmP0OzwCADl/pzVNkbeUyNZVTd9Y34f0FyxWelM5y/MSKCmLBBmS6FXB58nrlQY 

psGUNwWXrARgiInCeQkvN3toQrXOyQ5Df3MwrTAUIy0Nec7MrUEcdjrE0Mks3HhH 

hMnpHOOGnVBZdVNxlZ9utshYrhRTfEnn 

-----END PRIVATE KEY----- 

Privacy-enhanced mail 
The PEM format was first developed in the privacy-enhanced mail series of RFCs: RFC 1421, 

RFC 1422, RFC 1423, and RFC 1424. These standards assumed prior deployment of a 
hierarchical public key infrastructure (PKI) with a single root. Such a PKI was never deployed, due to 
operational cost and legal liability concerns. These standards were eventually obsoleted 
by PGP and S/MIME, competing e-mail encryption standards. The initiative to develop Privacy 
Enhanced Mail began in 1985 on behalf of the PSRG (Privacy and Security Research Group) also 
known as the Internet Research Task Force. 
  

SSL  
SSL Encryption 

The SSL (Secure Sockets Layer) protocol was originally designed by Netscape to 
protect communication between a web browser and server. It is also known now as TLS, for 
transport layer security. SSL interfaces between applications (such as browsers) and the 
TCP/IP protocols to provide server authentication, optional client authentication, and an 
encrypted communications channel between client and server. Client and server negotiate a 
mutually supported suite of encryption for session encryption and hashing; possibilities 
include triple DES and SHA1, or RC4 with a 128-bit key and MD5. 

To use SSL, the client requests an SSL session. The server responds with its public 
key certificate so that the client can determine the authenticity of the server. The client 
returns part of a symmetric session key encrypted under the server's public key. Both the 
server and client compute the session key, and then they switch to encrypted 
communication, using the shared session key. 

The protocol is simple but effective, and it is the most widely used secure 
communication protocol on the Internet. However, remember that SSL protects only from 
the client's browser to the server's decryption point (which is often only to the server's 
firewall or, slightly stronger, to the computer that runs the web application). Data are 
exposed from the user's keyboard to the browser and throughout the recipient's company. 
Blue Gem Security has developed a product called LocalSSL that encrypts data after it has 
been typed until the operating system delivers it to the client's browser, thus thwarting any 
keylogging Trojan horse that has become implanted in the user's computer to reveal 
everything the user types. 

Ipsec. 
As noted previously, the address space for the Internet is running out. As domain 

names and equipment proliferate, the original, 30-year-old, 32-bit address structure of the 

https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://en.wikipedia.org/wiki/S/MIME
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Internet is filling up. A new structure, called IPv6 (version 6 of the IP protocol suite), solves 
the addressing problem. This restructuring also offered an excellent opportunity for the 
Internet  
Engineering Task Force (IETF) to address serious security requirements. 

As a part of the IPv6 suite, the IETF adopted IPSec, or the IP Security Protocol Suite. 
Designed to address fundamental shortcomings such as being subject to spoofing, 
eavesdropping, and session hijacking, the IPSec protocol defines a standard means for 
handling encrypted data. IPSec is implemented at the IP layer, so it affects all layers above 
it, in particular TCP and UDP. Therefore, IPSec requires no change to the existing large 
number of TCP and UDP protocols. 

IPSec is somewhat similar to SSL, in that it supports authentication and 
confidentiality in a way that does not necessitate significant change either above it (in 
applications) or below it (in the TCP protocols). Like SSL, it was designed to be independent 
of specific cryptographic protocols and to allow the two communicating parties to agree on a 
mutually supported set of protocols. 

The basis of IPSec is what is called a security association, which is essentially the 
set of security parameters for a secured communication channel. It is roughly comparable 
to an SSL session. A security association includes 

 encryption algorithm and mode (for example, DES in block-chaining mode) 
 encryption key 
 encryption parameters, such as the initialization vector 
 authentication protocol and key 
 lifespan of the association, to permit long-running sessions to select a new cryptographic 

key as often as needed 
 address of the opposite end of association 
 sensitivity level of protected data (usable for classified data) 

A host, such as a network server or a firewall, might have several security 
associations in effect for concurrent communications with different remote hosts. A security 
association is selected by a security parameter index (SPI), a data element that is essentially 
a pointer into a table of security associations. 

The fundamental data structures of IPSec are the AH (authentication header) and 
the ESP (encapsulated security payload). The ESP replaces (includes) the conventional TCP 
header and data portion of a packet, as shown in Figure 7-27. The physical header and 
trailer depend on the data link and physical layer communications medium, such as 
Ethernet. 

Figure 7-27. Packets: (a) 

Conventional Packet; (b) 
IPSec Packet. 
 

The ESP contains both 
an authenticated portion and 
an encrypted portion, as shown 
in Figure 7-28. The sequence 
number is incremented by one for each packet transmitted to the same address using the 
same SPI, to preclude packet replay attacks. The payload data is the actual data of the 
packet. Because some encryption or other security mechanisms require blocks of certain 
sizes, the padding factor and padding length fields contain padding and the amount of 
padding to bring the payload data to an appropriate length. The next header indicates the 
type of payload data. The authentication field is 
used for authentication of the entire object. 

Figure 7-28. Encapsulated Security 

Packet.  
As with most cryptographic applications, 

the critical element is key management. IPSec 
addresses this need with ISAKMP or Internet 
Security Association Key Management Protocol. 
Like SSL, ISAKMP requires that a distinct key be 
generated for each security association. The 
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ISAKMP protocol is simple, flexible, and scalable. In IPSec, ISAKMP is implemented through 
IKE or ISAKMP key exchange. IKE provides a way to agree on and manage protocols, 
algorithms, and keys. For key exchange between unrelated parties IKE uses the Diffie 
Hellman scheme (also described in Chapter 2). In Diffie Hellman, each of the two parties, X 
and Y, chooses a large prime and sends a number g raised to the power of the prime to the 
other. That is, X sends gx and Y sends gy. They both raise what they receive to the power 
they kept: Y raises gx to (gx)y and X raises gy to (gy)x, which are both the same;voilà, they 
share a secret (gx)y = (gy)x. (The computation is slightly more complicated, being done in a 
finite field mod(n), so an attacker cannot factor the secret easily.) With their shared secret, 
the two parties now exchange identities and certificates to authenticate those identities. 
Finally, they derive a shared cryptographic key and enter a security association. 

The key exchange is very efficient: The exchange can be accomplished in two 
messages, with an optional two more messages for authentication. Because this is a public 
key method, only two keys are needed for each pair of communicating parties. IKE has sub 
modes for authentication (initiation) and for establishing new keys in an existing security 
association. 

IPSec can establish cryptographic sessions with many purposes, including VPNs, 
applications, and lower-level network management (such as routing). The protocols of IPSec 
have been published and extensively scrutinized. Work on the protocols began in 1992. 
They were first published in 1995, and they were finalized in 1998 (RFCs 24012409) 
[KEN98]. 

Unit 5 :    

Administrating Security: 
In reading this book you may have concluded by now that security is achieved 

through technology. You may think that the important activities in security are picking the 
right IDS, configuring your firewall properly, encrypting your wireless link, and deciding 
whether fingerprint readers are better than retina scanners. These are important matters. 
But not all of security is addressed by technology. Focusing on the firewall alone is like 
choosing a car by the shape of the headlight. Before you get to the headlights, there are 
some more fundamental questions to answer, such as how you intend to use the car, how 
much you can afford, and whether you have other transportation choices. 

Security is a combination of technical, administrative, and physical controls, as we 
first pointed out in Chapter 1. So far, we have considered technical controls almost 
exclusively. 

But stop and think for a moment: What good is a firewall if there is no power to run 
it? How effective is a public key infrastructure if someone can walk off with the certificate 
server? And why have elaborate access control mechanisms if your employee mails a 
sensitive document to a competitor? The administrative and physical controls may be less 
glamorous than the technical ones, but they are surely as important. 

In this chapter we complete our study of security controls by considering 
administrative and physical aspects. We look at four related areas: 

 Planning. What advance preparation and study lets us know that our implementation 
meets our security needs for today and tomorrow? 

 Risk analysis. How do we weigh the benefits of controls against their costs, and how do 
we justify any controls? 

 Policy. How do we establish a framework to see that our computer security needs 
continue to be met? 

 Physical control. What aspects of the computing environment have an impact on security? 
These four areas are just as important to achieving security as are the latest firewall or 
coding practice.  
Security planning 

Years ago, when most computing was done on mainframe computers, data 
processing centers were responsible for protection. Responsibility for security rested neither 
with the programmers nor the users but instead with the computing centers themselves. 
These centers developed expertise in security, and they implemented many protection 
activities in the background, without users having to be conscious of protection needs and 
practices. 
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Since the early 1980s, the introduction of personal computers and the general 
ubiquity of computing have changed the way many of us work and interact with computers. 
In particular, a significant amount of the responsibility for security has shifted to the user 
and away from the computing center. But many users are unaware of (or choose to ignore) 
this responsibility, so they do not deal with the risks posed or do not implement simple 
measures to prevent or mitigate problems. 

Unfortunately, there are many common examples of this neglect. Moreover, it is 
exacerbated by the seemingly hidden nature of important data: Things we would protect if 
they were on paper are ignored when they are stored electronically. For example, a person 
who carefully locks up paper copies of company confidential records overnight may leave 
running a personal computer or terminal on an assistant's or manager's desk. In this 
situation, a curious or malicious person walking past can retrieve confidential memoranda 
and data. Similarly, the data on laptops and workstations are often more easily available 
than on older, more isolated systems. For instance, the large and cumbersome disk packs 
and tapes from a few years ago have been replaced by media such as diskettes, zip disks, 
and CDs, which hold a similar volume of data but fit easily in a pocket or briefcase. 
Moreover, we all recognize that a box of CDs or diskettes may contain many times more 
data than a printed report. But since the report is an apparent, visible exposure and the CD 
or diskette is not, we leave the computer media in plain view, easy to borrow or steal. 

In all cases, whether the user initiates some computing action or simply interacts 
with an active application, every application has confidentiality, integrity, and availability 
requirements that relate to the data, programs, and computing machinery. In these 
situations, users suffer from lack of sensitivity: They often do not appreciate the security 
risks associated with using computers. 

For these reasons, every organization using computers to create and store valuable 
assets should perform thorough and effective security planning. A security plan is a 
document that describes how an organization will address its security needs. The plan is 
subject to periodic review and revision as the organization's security needs change. 

A good security plan is an official record of current security practices, plus a 
blueprint for orderly change to improve those practices. By following the plan, developers 
and users can measure the effect of proposed changes, leading eventually to further 
improvements. The impact of the security plan is important, too. A carefully written plan, 
supported by management, notifies employees that security is important to management 
(and therefore to everyone). Thus, the security plan has to have the appropriate content and 
produce the desired effects. 

In this section we study how to define and implement a security plan. We focus on 
three aspects of writing a security plan: what it should contain, who writes it, and how to 
obtain support for it. Then, we address two specific cases of security plans: business 
continuity plans, to ensure that an organization continues to function in spite of a 
computer security incident, and incident response plans, to organize activity to deal with 
the crisis of an incident. 

Contents of a Security Plan 
A security plan identifies and organizes the security activities for a computing 

system. The plan is both a description of the current situation and a plan for improvement. 
Every security plan must address seven issues. 
1. policy, indicating the goals of a computer security effort and the willingness of the people 
involved to work to achieve those goals 
2. current state, describing the status of security at the time of the plan 
3. requirements, recommending ways to meet the security goals 
4. recommended controls, mapping controls to the vulnerabilities identified in the policy and 
requirements 
5. accountability, describing who is responsible for each security activity  
6. timetable, identifying when different security functions are to be done 
7. continuing attention, specifying a structure for periodically updating the security plan 

There are many approaches to creating and updating a security plan. Some 
organizations have a formal, defined security planning process, much as they might have a 
defined and accepted development or maintenance process. Others look to security 
professionals for guidance on how to perform security planning. For example, Sidebar 8-1 
describes a security planning methodology suggested by the U.S. Software Engineering 
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Institute and made available on its web site. But every security plan contains the same 
basic material, no matter the format. The following sections expand on the seven parts of a 
security plan. 
1. Policy 

A security plan must state the organization's policy on security. A security policy is 
a high-level statement of purpose and intent. Initially, you might think that all policies 
would be the same: to prevent security breaches. But in fact the policy is one of the most 
difficult sections to write well. As we discuss later in this chapter, there are tradeoffs among 
the strength of the security, the cost, the inconvenience to users, and more. 

For example, we must decide whether to implement very stringent and possibly 
unpopular controls that prevent all security problems or simply mitigate the effects of 
security breaches once they happen. For this reason, the policy statement must answer 
three essential questions: 
• Who should be allowed access? 
• To what system and organizational resources should access be allowed? 
• What types of access should each user be allowed for each resource? 
The policy statement should specify the following: 

 The organization's goals on security. For example, should the system protect data from 
leakage to outsiders, protect against loss of data due to physical disaster, protect the data's 
integrity, or protect against loss of business when computing resources fail? 
What is the higher priority: serving customers or securing data? 

 Where the responsibility for security lies. For example, should the responsibility rest with 
a small computer security group, with each employee, or with relevant managers? 

 The organization's commitment to security. For example, who provides security support 
for staff, and where does security fit into the organization's structure? 
2. Current Security Status 

To be able to plan for security, an organization must understand the vulnerabilities 
to which it may be exposed. The organization can determine the vulnerabilities by 
performing a risk analysis: a careful investigation of the system, its environment, and the 
things that might go wrong. The risk analysis forms the basis for describing the current 
status of security. The status can be expressed as a listing of organizational assets, the 
security threats to the assets, and the controls in place to protect the assets. We look at 
risk analysis in more detail later in this chapter. 

The status portion of the plan also defines the limits of responsibility for security. It 
describes not only which assets are to be protected but also who is responsible for 
protecting them. 

The plan may note that some groups may be excluded from responsibility; for 
example, joint ventures with other organizations may designate one organization to provide 
security for all member organizations. The plan also defines the boundaries of 
responsibility, especially when networks are involved. For instance, the plan should clarify 
who provides the security for a network router or for a leased line to a remote site. 

Even though the security plan should be thorough, there will necessarily be 
vulnerabilities that are not considered. These vulnerabilities are not always the result of 
ignorance or naïveté; rather, they can arise from the addition of new equipment or data as 
the system evolves. 

They can also result from new situations, such as when a system is used in ways 
not anticipated by its designers. The security plan should detail the process to be followed 
when someone identifies a new vulnerability. In particular, instructions should explain how 
to integrate controls for that vulnerability into the existing security procedures. 
3. Requirements 

The heart of the security plan is its set of security requirements: functional or 
performance demands placed on a system to ensure a desired level of security. The 
requirements are usually derived from organizational needs. Sometimes these needs include 
the need to conform to specific security requirements imposed from outside, such as by a 
government agency or a commercial standard. 

Pfleeger [PFL91] points out that we must distinguish the requirements from 
constraints and controls. A constraint is an aspect of the security policy that constrains, 
circumscribes, or directs the implementation of the requirements. As we learned in Chapter 
1, a control is an action, device, procedure, or technique that removes or reduces a 
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vulnerability. To see the difference between requirements, constraints, and controls, 
consider the six "requirements" of the U.S. Department of Defense's TCSEC, introduced in 
Chapter 5. These six items are listed in Table 8-1. 

Table 8-1. The Six aRequirementsa of the TCSEC. 
1. Security policy   -There must be an explicit and well-defined security policy  

 enforced by the system. 
2. Identification   -Every subject must be uniquely and convincingly identified. 

 Identification is necessary so that subject/object access can  
 Be checked. 

3. Marking    -Every object must be associated with a label that indicates its  
 Security level. The association must be done so that the label  
 is available for comparison each time an access to the object  
 is requested.  

4. Accountability   -The system must maintain complete, secure records of  
 actions that affect security. Such actions include introducing  
 new users to the system, assigning or changing the security  
 level of a subject or an object, and denying access attempts. 

5. Assurance    -The computing system must contain mechanisms that  
 enforce security, and it must be possible to evaluate the  
 effectiveness of these mechanisms. 

6. Continuous protection -The mechanisms that implement security must be protected  
 Against unauthorized change. 

Given our definitions of requirement, constraint, and control, it is easy to see that 
the first "requirement" of the TCSEC is really a constraint: the security policy. The second 
and third "requirements" describe mechanisms for enforcing security, not descriptions of 
required behaviors. That is, the second and third "requirements" describe explicit 
implementations, not a general characteristic or property that the system must have. 
However, the fourth, fifth, and sixth TCSEC "requirements" are indeed true requirements. 
They state that the system must have certain characteristics, but they do not enforce a 
particular implementation. 

These distinctions are important because the requirements explain what should be 
accomplished, not how. That is, the requirements should always leave the implementation 
details to the designers, whenever possible. For example, rather than writing a requirement 
that certain data records should require passwords for access (an implementation decision), 
a security planner should state only that access to the data records should be restricted 
(and note to whom the access should be restricted). This more flexible requirement allows 
the designers to decide among several other access controls (such as access control lists) 
and to balance the security requirements with other system requirements, such as 
performance and reliability. Figure 8-1 illustrates how the different aspects of system 
analysis support the security planning process. 

Figure 8-1. Inputs to the Security Plan. 

 
As with the general software development 

process, the security planning process must allow 
customers or users to specify desired functions, 
independent of the implementation. The requirements 
should address all aspects of security: confidentiality, 
integrity, and availability. 

They should also be reviewed to make sure that they are of appropriate quality. In 
particular, 
we should make sure that the requirements have these characteristics: 

 Correctness: Are the requirements understandable? Are they stated without error? 
 Consistency: Are there any conflicting or ambiguous requirements? 
 Completeness: Are all possible situations addressed by the requirements? 
 Realism: Is it possible to implement what the requirements mandate? 
 Need: Are the requirements unnecessarily restrictive? 
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 Verifiability: Can tests be written to demonstrate conclusively and objectively that the 
requirements have been met? Can the system or its functionality be measured in some way 
that will assess the degree to which the requirements are met? 

 Traceability: Can each requirement be traced to the functions and data related to it so 
that changes in a requirement can lead to easy reevaluation? 

The requirements may then be constrained by budget, schedule, performance, 
policies, governmental regulations, and more. Given the requirements and constraints, the 
developers then choose appropriate controls. 
4. Recommended Controls 

The security requirements lay out the system's needs in terms of what should be 
protected. The security plan must also recommend what controls should be incorporated 
into the system to meet those requirements. Throughout this book you have seen many 
examples of controls, so we need not review them here. As we see later in this chapter, we 
can use risk analysis to create a map from vulnerabilities to controls. The mapping tells us 
how the system will meet the security requirements. That is, the recommended controls 
address implementation issues: 
how the system will be designed and developed to meet stated security requirements. 
5. Responsibility for Implementation 

A section of the security plan should identify which people are responsible for 
implementing the security requirements. This documentation assists those who must 
coordinate their individual responsibilities with those of other developers. At the same time, 
the plan makes explicit who is accountable should some requirement not be met or some 
vulnerability not be addressed. That is, the plan notes who is responsible for implementing 
controls when a new vulnerability is discovered or a new kind of asset is introduced. (But 
see Sidebar 8-2 on who is responsible.) 

People building, using, and maintaining the system play many roles. Each role can 
take some responsibility for one or more aspects of security. Consider, for example, the 
groups listed here. 

 Personal computer users may be responsible for the security of their own machines. 
Alternatively, the security plan may designate one person or group to be coordinator of 
personal computer security. 

 Project leaders may be responsible for the security of data and computations. 
 Managers may be responsible for seeing that the people they supervise implement 

security measures. 
 Database administrators may be responsible for the access to and integrity of data in 

their databases. 
 Information officers may be responsible for overseeing the creation and use of data; these 

officers may also be responsible for retention and proper disposal of data. 
 Personnel staff members may be responsible for security involving employees, for 

example, screening potential employees for trustworthiness and arranging security training 
programs. 
6. Timetable 

A comprehensive security plan cannot be executed instantly. The security plan 
includes a timetable that shows how and when the elements of the plan will be performed. 
These dates also give milestones so that management can track the progress of 
implementation. 

If the implementation is to be a phased development (that is, the system will be 
implemented partially at first, and then changed functionality or performance will be added 
in later releases), the plan should also describe how the security requirements will be 
implemented over time. Even when overall development is not phased, it may be desirable 
to implement the security aspects of the system over time. For example, if the controls are 
expensive or complicated, they may be acquired and implemented gradually. Similarly, 
procedural controls may require staff training to ensure that everyone understands and 
accepts the reason for the control. 

The plan should specify the order in which the controls are to be implemented so 
that the most serious exposures are covered as soon as possible. A timetable also gives 
milestones by which to judge the progress of the security program. 

Furthermore, the plan must be extensible. Conditions will change: New equipment 
will be acquired, new degrees and modes of connectivity will be requested, and new threats 
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will be identified. The plan must include a procedure for change and growth, so that the 
security aspects of changes are considered as a part of preparing for the change, not for 
adding security after the change has been made. The plan should also contain a schedule 
for periodic review. Even though there may have been no obvious, major growth, most 
organizations experience modest change every day. At some point the cumulative impact of 
the change is enough to require the plan to be modified. 
7. Continuing Attention 

Good intentions are not enough when it comes to security. We must not only take 
care in defining requirements and controls, but we must also find ways for evaluating a 
system's security to be sure that the system is as secure as we intend it to be. Thus, the 
security plan must call for reviewing the security situation periodically. As users, data, and 
equipment change, new exposures may develop. In addition, the current means of control 
may become obsolete or ineffective (such as when faster processor times enable attackers to 
break an encryption algorithm). The inventory of objects and the list of controls should 
periodically be scrutinized and updated, and risk analysis performed anew. The security 
plan should set times for these periodic reviews, based either on calendar time (such as, 
review the plan every nine months) or on the nature of system changes (such as, review the 
plan after every major system release). 

Security Planning Team Members 
Who performs the security analysis, recommends a security program, and writes the 

security plan? As with any such comprehensive task, these activities are likely to be 
performed by a committee that represents all the interests involved. The size of the 
committee depends on the size and complexity of the computing organization and the 
degree of its commitment to security. Organizational behavior studies suggest that the 
optimum size for a working committee is between five and nine members. Sometimes a 
larger committee may serve as an oversight body to review and comment on the products of 
a smaller working committee. 

Alternatively, a large committee might designate subcommittees to address various 
sections of the plan. 

The membership of a computer security planning team must somehow relate to the 
different aspects of computer security described in this book. Security in operating systems 
and networks requires the cooperation of the systems administration staff. Program 
security measures can be understood and recommended by applications programmers. 
Physical security controls are implemented by those responsible for general physical 
security, both against human attacks and natural disasters. Finally, because controls affect 
system users, the plan should incorporate users' views, especially with regard to usability 
and the general desirability of controls. 

Thus, no matter how it is organized, a security planning team should represent each 
of the following groups. 

 computer hardware group 
 system administrators 
 systems programmers 
 applications programmers 
 data entry personnel 
 physical security personnel 
 representative users 

In some cases, a group can be adequately represented by someone who is consulted 
at appropriate times, rather than a committee member from each possible constituency 
being enlisted. 

Assuring Commitment to a Security Plan 
After the plan is written, it must be accepted and its recommendations carried out. 

Acceptance by the organization is key; a plan that has no organizational commitment is 
simply a plan that collects dust on the shelf. Commitment to the plan means that security 
functions will be implemented and security activities carried out. Three groups of people 
must contribute to making the plan a success. 

 The planning team must be sensitive to the needs of each group affected by the plan. 
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 Those affected by the security recommendations must understand what the plan means 
for the way they will use the system and perform their business activities. In particular, 
they must see how what they do can affect other users and other systems. 

 Management must be committed to using and enforcing the security aspects of the 
system. 

Education and publicity can help people understand and accept a security plan. 
Acceptance  involves not only the letter but also the spirit of the security controls. Recall 
from Chapter 4 the employee who went through 24 password changes at a time to get back 
to a favorite password, in a system that prevented use of any of the 23 most recently used 
passwords. 

Clearly, the employee either did not understand or did not agree with the reason for 
restrictions on passwords. If people understand the need for recommended controls and 
accept them as sensible, they will use the controls properly and effectively. If people think 
the controls are bothersome, capricious, or counterproductive, they will work to avoid or 
subvert them. 

Management commitment is obtained through understanding. But this 
understanding is not just a function of what makes sense technologically; it also involves 
knowing the cause and the potential effects of lack of security. Managers must also weigh 
tradeoffs in terms of convenience and cost. The plan must present a picture of how cost 
effective the controls are, especially when compared to potential losses if security is 
breached without the controls. 

Thus, proper presentation of the plan is essential, in terms that relate to 
management as well as technical concerns. 

Remember that some managers are not computing specialists. Instead, the system 
supports a manager who is an expert in some other business function, such as banking, 
medical technology, or sports. In such cases, the security plan must present security risks 
in language that the managers understand. It is important to avoid technical jargon and to 
educate the readers about the nature of the perceived security risks in the context of the 
business the system supports. Sometimes outside experts can bridge the gap between the 
managers' business and security. 

Management is often reticent to allocate funds for controls until the value of those 
controls is explained. As we note in the next section, the results of a risk analysis can help 
communicate the financial tradeoffs and benefits of implementing controls. By describing 
vulnerabilities in financial terms and in the context of ordinary business activities (such as 
leaking data to a competitor or an outsider), security planners can help managers 
understand the need for controls. 

The plans we have just discussed are part of normal business. They address how a 
business handles computer security needs. Similar plans might address how to increase 
sales or improve product quality, so these planning activities should be a natural part of 
management. 

Next we turn to two particular kinds of business plans that address specific security 
problems: coping with and controlling activity during security incidents. 

Business Continuity Plans 
Small companies working on a low profit margin can literally be put out of business 

by a computer incident. Large, financially sound businesses can weather a modest incident 
that interrupts their use of computers for a while, although it is painful to them. 

But even rich companies do not want to spend money unnecessarily. The analysis is 
sometimes as simple as no computers means no customers means no sales means no profit. 
Government agencies, educational institutions, and nonprofit organizations also have 
limited budgets, which they want to use to further their needs. They may not have a direct 
profit motive, but being able to meet the needs of their customersthe public, students, and 
constituents partially determines how well they will fare in the future. All kinds of 
organizations must plan for ways to cope with emergency situations. 

A business continuity plan[1] documents how a business will continue to function 
during a computer security incident. An ordinary security plan covers computer security 
during normal times and deals with protecting against a wide range of vulnerabilities from 
the usual sources. 

A business continuity plan deals with situations having two characteristics: 
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[1] The standard terminology is a business continuity plan, an even though such a plan is needed by and applies to 

an university's abusiness  of educating students or a government's business of serving the public.  

 catastrophic situations, in which all or a major part of a computing capability is suddenly 
unavailable 

 long duration, in which the outage is expected to last for so long that business will suffer 
There are many situations in which a business continuity plan would be helpful. 

Here are some examples that typify what you might find in reading your daily newspaper: 
 A fire destroys a company's entire network. 
 A seemingly permanent failure of a critical software component renders the computing 

system unusable. 
 A business must deal with the abrupt failure of its supplier of electricity, 

telecommunications, network access, or other critical service. 
 A flood prevents the essential network support staff from getting to the operations center. 

As you can see, these examples are likely to recur, and each disables a vital function  
You may also have noticed how often "the computer" is blamed for an inability to provide a 
service or product. For instance, the clerk in a shop is unable to use the cash register 
because "the computer is down." You may have a CD in your hand, plus exactly the cash to 
pay for it. But the clerk will not take your money and send you on your way. Often, 
computer service is restored shortly. But sometimes it is not. Once we were delayed for over 
an hour in an airport because of an electrical storm that caused a power failure and 
disabled the airlines' computers. Although our tickets showed clearly our reservations on a 
particular flight, the airline agents refused to let anyone board because they could not 
assign seats. As the computer remained down, the agents were frantic[2] because the 
technology was delaying the flight and, more importantly, disrupting hundreds of 
connections.  
[2] The obvious, at least to us, idea of telling passengers to asit in any seata seemed to be against airline policy.  

The key to coping with such disasters is advance planning and preparation, 
identifying activities that will keep a business viable when the computing technology is 
disabled. The steps in business continuity planning are these: 

 Assess the business impact of a crisis. 
 Develop a strategy to control impact. 
 Develop and implement a plan for the strategy 

Assess Business Impact 
To assess the impact of a failure on your business, you begin by asking two key 

questions: 
• What are the essential assets? What are the things that will prevent the business from 
doing business? Answers are typically of the form "the network," "the customer reservations 
database," or "the system controlling traffic lights." 
• What could disrupt use of these assets? The vulnerability is more important than the 
threat agent. For example, whether destroyed by a fire or zapped in an electrical storm, the 
network is nevertheless down. Answers might be "failure," "corrupted," or "loss of power." 

You probably will find only a handful of key assets when doing this analysis. Do not 
overlook people and the things they need for support, such as documentation and 
communications equipment. Another way to think about your assets is to ask yourself, 
"What is the minimum set of things or activities needed to keep business operational, at 
least to some degree?" If a manual system would compensate for a failed computer system, 
albeit inefficiently, you may want to consider building such a manual system as a potential 
critical asset. Think of the airline unable to assign seats from a chart of the cabin. 

Later in this chapter we study risk analysis, a comprehensive examination of assets, 
vulnerabilities, and controls. For business continuity planning we do not need a full risk 
analysis. Instead, we focus on only those things that are critical to continued operation. We 
also look at larger classes of objects, such as "the network," whose loss or compromise can 
have catastrophic effect. 
Develop Strategy 

The continuity strategy investigates how the key assets can be safeguarded. In some 
cases, a backup copy of data or redundant hardware or an alternative manual process is 
good enough. Sometimes, the most reasonable answer is reduced capacity. For example, a 
planner might conclude that if the call center in London fails, the business can divert all 
calls to Tokyo. It is possible, though, that the staff in Tokyo cannot handle the full load of 
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the London traffic; this situation may result in irritated or even lost customers, but at least 
some business can be transacted. 

Ideally, you would like to continue business with no loss. But with catastrophic 
failures, usually only a portion of the business function can be preserved. In this case, you 
must develop a strategy appropriate for your business and customers. For instance, you 
can decide whether it is better to preserve half of function A and half of B, or most of A and 
none of B. You also must consider the time frame in which business is done. Some 
catastrophes last longer than others. For example, rebuilding after a fire is a long process 
and implies a long time in disaster mode. Your strategy may have several steps, each 
dependent on how long the business is disabled. Thus, you may take one action in response 
to a one-hour outage, and another if the outage might last a day or longer. 

Because you are planning in advance, you have the luxury of being able to think 
about possible circumstances and evaluate alternatives. For instance, you may realize that 
if the Tokyo site takes on work for the disabled London site, there will be a significant 
difference in time zones. It may be better to divert morning calls to Tokyo and afternoon 
ones to Dallas, to avoid asking Tokyo workers to work extra hours. 

The result of a strategy analysis is a selection of the best actions, organized by 
circumstances. The strategy can then be used as the basis for your business continuity 
plan. 
Develop Plan 

The business continuity plan specifies several important things: 
 who is in charge when an incident occurs 
 what to do 
 who does it 

The plan justifies making advance arrangements, such as acquiring redundant 
equipment, arranging for data backups, and stockpiling supplies, before the catastrophe. 
The plan also justifies advance training so that people know how they should react. In a 
catastrophe there will be confusion; you do not want to add confused people to the already 
severe problem. 

The person in charge declares the state of emergency and instructs people to follow 
the procedures documented in the plan. The person in charge also declares when the 
emergency is over and conditions can revert to normal. 

Thus, the business continuity planning addresses how to maintain some degree of 
critical business activity in spite of a catastrophe. Its focus is on keeping the business 
viable. It is based on the asset survey, which focuses on only a few critical assets and 
serious vulnerabilities that could threaten operation for a long or undetermined period of 
time. 

The focus of the business continuity plan is to keep the business going while 
someone else addresses the crisis. That is, the business continuity plan does not include 
calling the fire department or evacuating the building, important though those steps are. 
The focus of a business continuity plan is the business and how to keep it functioning to 
the degree possible in the situation. Handling the emergency is someone else's problem. 
Now we turn to a different plan that deals specifically with computer crises. 

Incident Response Plans 
An incident response plan tells the staff how to deal with a security incident. In 

contrast to the business continuity plan, the goal of incident response is handling the 
current security incident, without regard for the business issues. The security incident may 
at the same time be a business catastrophe, as addressed by the business continuity plan. 
But as a specific security event, it might be less than catastrophic (that is, it may not 
interrupt business severely) but could be a serious breach of security, such as a hacker 
attack or a case of internal fraud. An incident could be a single event, a series of events, or 
an ongoing problem. 
An incident response plan should 

 define what constitutes an incident 
 identify who is responsible for taking charge of the situation 
 describe the plan of action 

The plan usually has three phases: advance planning, triage, and running the 
incident. A fourth phase, review, is useful after the situation abates so that this incident 
can lead to improvement for future incidents. 
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Advance Planning 
As with all planning functions, advance planning works best because people can 

think logically, unhurried, and without pressure. What constitutes an incident may be 
vague. We cannot know the details of an incident in advance. Typical characteristics 
include harm or risk of harm to computer systems, data, or processing; initial uncertainty 
as to the extent of damage; and similar uncertainty as to the source or method of the 
incident. For example, you can see that the file is missing or the home page has been 
defaced, but you do not know how or by whom or what other damage there may be. 

In organizations that have not done incident planning, chaos may develop at this 
point. Someone calls the network manager. Someone sends e-mail to the help desk. 
Someone calls the FBI, the CERT, the newspapers, or the fire department. People start to 
investigate on their own, without coordinating with the relevant staff in other departments, 
agencies, or businesses. And there is a lot of conversation, rumor, and misinformation: 
more heat than light. 

With an incident response plan in place, everybody is trained in advance to call the 
designated leader. There is an established list of people to call, in order, in case the first 
person is unavailable. The leader decides what to do next, and he or she begins by 
determining if this is a real incident or a false alarm. Indeed, natural events sometimes look 
like incidents, and the facts of the situation should be established first. If the leader decides 
this may be a real incident, he or she invokes the response team. 
Response Team 

The response team is the set of people charged with responding to the incident. The 
response team may include 

 director: person in charge of the incident, who decides what actions to take and when to 
terminate the response. The director is typically a management employee. 

 lead technician: person who directs and coordinates the response. The lead technician 
decides where to focus attention, analyzes situation data, documents the incident and how 
it was handled, and calls for other technical people to assist with the analysis. 

 advisor(s): legal, human resources, or public relations staff members as appropriate. In a 
small incident a single person can handle more than one of these roles. Nevertheless, it is 
important that a single person be in charge, a single person who directs the response work, 
a single point of contact for "insiders" (employees, users), and a single point of contact for 
"the public." 

To develop policy and identify a response team, you need to consider certain 
matters. 

 Legal issues: An incident has legal ramifications. In some countries, computer intrusions 
are illegal, so law enforcement officials must be involved in the investigation. In other 
places, you have discretion in deciding whether to ask law enforcement to participate. 

In addition to criminal action, you may be able to bring a civil case. Both kinds of 
legal action have serious implications for the response. For example, evidence must be 
gathered and maintained in specific ways in order to be usable in court. Similarly, laws may 
limit what you can do against the alleged attacker: Cutting off a connection is probably 
acceptable, but launching a retaliatory denial-of-service attack may not be.  

 Preserving evidence: The most common reaction in an incident is to assume the cause 
was internal or accidental. For instance, you may surmise that the hardware has failed or 
that the software isn't working correctly. The staff may be directed to change the 
configuration, reload the software, reboot the system, or similarly attempt to resolve the 
problem by adjusting the software. Unfortunately, each of these acts can irreparably distort 
or destroy evidence. When dealing with a possible incident, do as little as possible before 
"dusting for fingerprints." 

 Records: It may be difficult to remember what you have already done: Have you already 
reloaded a particular file? What steps got you to the prompt asking for the new DNS server's 
address? If you call in an outside forensic investigator or the police, you will need to tell 
exactly what you have already done. 

 Public relations: In handling an incident your organization should speak with one voice.  
You risk sending confusing messages if too many people speak. It is especially 

important that only one person speak publicly if legal action may be taken. An unguarded 
comment may tip off the attacker or have a negative effect on the case. 

You can simply say that an incident occurred, tell briefly and generally what it was, 
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and state that the incident is now under control and normal operation is resuming. 
After the Incident Is Resolved 

Eventually, the incident response team closes the case. At this point it will hold a 
review after the incident to consider two things: 

 Is any security control action to be taken? Did an intruder compromise a system because 
security patches were not up-to-date; if so, should there be a procedure to ensure that 
patches are applied when they become available? Was access obtained because of a poorly 
chosen password; if so, should there be a campaign to educate users on how to strong 
passwords? If there were control failures, what should be done to prevent similar attacks in 
the future? 

 Did the incident response plan work? Did everyone know whom to notify? Did the team 
have needed resources? Was the response fast enough? What should be done differently 
next time? 

The incident response plan ensures that incidents are handled promptly, efficiently, 
and with minimal harm. 

Risk analysis 
Good, effective security planning includes a careful risk analysis. A risk is a 

potential problem that the system or its users may experience. We distinguish a risk from 
other project events by looking for three things, as suggested by Rook [ROO93]: 
1. A loss associated with an event. The event must generate a negative effect: compromised 
security, lost time, diminished quality, lost money, lost control, lost understanding, and so 
on. This loss is called the risk impact. 
2. The likelihood that the event will occur. The probability of occurrence associated with each 
risk is measured from 0 (impossible) to 1 (certain). When the risk probability is 1, we say we 
have a problem. 
3. The degree to which we can change the outcome. We must determine what, if anything, 
we can do to avoid the impact or at least reduce its effects. Risk control involves a set of 
actions to reduce or eliminate the risk. Many of the security controls we describe in this 
book are examples of risk control. 

We usually want to weigh the pros and cons of different actions we can take to 
address each risk. To that end, we can quantify the effects of a risk by multiplying the risk 
impact by the risk probability, yielding the risk exposure. For example, if the likelihood of 
virus attack is 0.3 and the cost to clean up the affected files is $10,000, then the risk 
exposure is $3,000. So we can use a calculation like this one to decide that a virus checker 
is worth an investment of $100, since it will prevent a much larger potential loss. Clearly, 
risk probabilities can change over time, so it is important to track them and plan for events 
accordingly. 

Risk is inevitable in life: Crossing the street is risky but that does not keep us from 
doing it. We can identify, limit, avoid, or transfer risk but we can seldom eliminate it. In 
general, we have three strategies for dealing with risk: 
1. avoiding the risk, by changing requirements for security or other system characteristics 
2. transferring the risk, by allocating the risk to other systems, people, organizations, or 
assets; or by buying insurance to cover any financial loss should the risk become a reality 
3. assuming the risk, by accepting it, controlling it with available resources, and preparing 
to deal with the loss if it occurs 

Thus, costs are associated not only with the risk's potential impact but also with 
reducing it. Risk leverage is the difference in risk exposure divided by the cost of reducing 
the risk. In other words, risk leverage is  If the leverage value of a proposed action is not 
high enough, then we look 
for alternative but less costly 
actions or more effective 
reduction techniques. 

Risk analysis is the process of examining a system and its operational context to 
determine possible exposures and the potential harm they can cause. Thus, the first step in 
a risk analysis is to identify and list all exposures in the computing system of interest. 
Then, for each exposure, we identify possible controls and their costs. The last step is a cost 
benefit analysis: Does it cost less to implement a control or to accept the expected cost of 
the loss? 
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In the remainder of this section, we describe risk analysis, present examples of risk 
analysis methods, and discuss some of the drawbacks to performing risk analysis. 

The Nature of Risk 
In our everyday lives, we take risks. In crossing the road, eating oysters, or playing 

the lottery, we take the chance that our actions may result in some negative result such as 
being injured, getting sick, or losing money. Consciously or unconsciously, we weigh the 
benefits of taking the action with the possible losses that might result. Just because there 
is a risk to a certain act we do not necessarily avoid it; we may look both ways before 
crossing the street, but we do cross it. In building and using computing systems, we must 
take a more organized and careful approach to assessing our risks. Many of the systems we 
build and use can have a dramatic impact on life and health if they fail. For this reason, 
risk analysis is an essential part of security planning. 

We cannot guarantee that our systems will be risk free; that is why our security 
plans must address actions needed should an unexpected risk become a problem. And 
some risks are simply part of doing business; for example, as we have seen, we must plan 
for disaster recovery, even though we take many steps to avoid disasters in the first place. 

When we acknowledge that a significant problem cannot be prevented, we can use 
controls to reduce the seriousness of a threat. For example, you can back up files on your 
computer as a defense against the possible failure of a file storage device. But as our 
computing systems become more complex and more distributed, complete risk analysis 
becomes more difficult and time consuming and more essential. 

Steps of a Risk Analysis 
Risk analysis is performed in many different contexts; for example, environmental 

and health risks are analyzed for activities such as building dams, disposing of nuclear 
waste, or changing a manufacturing process. Risk analysis for security is adapted from 
more general management practices, placing special emphasis on the kinds of problems 
likely to arise from security issues. By following well-defined steps, we can analyze the 
security risks in a computing system. 
The basic steps of risk analysis are listed below. 
1. Identify assets. 
2. Determine vulnerabilities. 
3. Estimate likelihood of exploitation. 
4. Compute expected annual loss. 
5. Survey applicable controls and their costs. 
6. Project annual savings of control. 

Sidebar 8-3 illustrates how different organizations take slightly different approaches, 
but the basic activities are still the same. These steps are described in detail in the following 
sections. 
Step 1: Identify Assets 

Before we can identify vulnerabilities, we must first decide what we need to protect. 
Thus, the first step of a risk analysis is to identify the assets of the computing system. The 
assets can be considered in categories, as listed below. The first three categories are the 
assets identified in Chapter 1 and described throughout this book. The remaining items are 
not strictly a part of a computing system but are important to its proper functioning. 

 hardware: processors, boards, keyboards, monitors, terminals, microcomputers, 
workstations, tape drives, printers, disks, disk drives, cables, connections, communications 
controllers, and communications media  

 software: source programs, object programs, purchased programs, in-house programs, 
utility programs, operating systems, systems programs (such as compilers), and 
maintenance diagnostic programs 

 data: data used during execution, stored data on various media, printed data, archival 
data, update logs, and audit records 

 people: skills needed to run the computing system or specific programs 
 documentation: on programs, hardware, systems, administrative procedures, and the 

entire system 
 supplies: paper, forms, laser cartridges, magnetic media, and printer fluid  

It is essential to tailor this list to your own situation. No two organizations will have 
the same assets to protect, and something that is valuable in one organization may not be 
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as valuable to another. For example, if a project has one key designer, then that designer is 
an essential asset; on the other hand, if a similar project has ten designers, any of whom 
could do the project's design, then each designer is not as essential because there are nine 
easily available replacements. Thus, you must add to the list of assets the other people, 
processes, and things that must be protected.  

For example, RAND Corporation's Vulnerability Assessment and Mitigation (VAM) 
methodology [ANT02] includes additional assets, such as  

 the enabling infrastructure 
 the building or vehicle in which the system will reside 
 the power, water, air, and other environmental conditions necessary for proper 

functioning 
 human and social assets, such as policies, procedures, and training 

The VAM methodology is a process supported by a tool to help people identify assets, 
vulnerabilities, and countermeasures. We use other aspects of VAM as an example 
technique in later risk analysis steps. 

In a sense, the list of assets is an inventory of the system, including intangibles and 
human resource items. For security purposes, this inventory is more comprehensive than 
the traditional inventory of hardware and software often performed for configuration 
management or accounting purposes. The point is to identify all assets necessary for the 
system to be usable. 
Step 2: Determine Vulnerabilities 

The next step in risk analysis is to determine the vulnerabilities of these assets. This 
step requires imagination; we want to predict what damage might occur to the assets and 
from what sources. We can enhance our imaginative skills by developing a clear idea of the 
nature of vulnerabilities. This nature derives from the need to ensure the three basic goals 
of computer security: confidentiality, integrity, and availability. Thus, a vulnerability is any 
situation that could cause loss of confidentiality, integrity, and availability. We want to use 
an organized approach to considering situations that could cause these losses for a 
particular object. 

Software engineering offers us several techniques for investigating possible 
problems. Hazard analysis, described in Sidebar 8-4, explores failures that may occur and 
faults that may cause them. These techniques have been used successfully in analyzing 
safety-critical systems. 

However, additional techniques are tailored specifically to security concerns; we 
address those techniques in this and following sections. 

To organize the way we consider threats and assets, we can use a matrix such as 
the one shown in Table 8-2. One vulnerability can affect more than one asset or cause more 
than one type of loss. The table is a guide to stimulate thinking, but its format is not rigid. 

Table 8-2. Assets and Security Properties. 
Asset Confidentiality Integrity Availability 
Hardware 
Software 
Data 
People 
Documentation 
Supplies 
In thinking about the contents of each matrix entry, we can ask the following questions. 
• What are the effects of unintentional errors? Consider typing the wrong command, 
entering the wrong data, using the wrong data item, discarding the wrong listing, and 
disposing of output insecurely. 
• What are the effects of willfully malicious insiders? Consider disgruntled employees, 
bribery, and curious browsers. 
• What are the effects of outsiders? Consider network access, dial-in access, hackers, 
people walking through the building, and people sifting through the trash. 
• What are the effects of natural and physical disasters? Consider fires, storms, floods, 
power outages, and component failures. 



202 
 

Table 8-3 is a version of 
the previous table with 
some of the entries filled 
in. It shows that certain 
general problems can 
affect the assets of a 
computing system. In a 
given installation, it is 
necessary to determine 
what can happen to 
specific hardware, 
software, data items, and 
other assets. 

Table 8-3. Assets and 

Attacks. 
 

Some organizations use other approaches to determining vulnerabilities and 
assessing their 
importance. For example, Sidebar 8-5 describes the U.S. Navy's approach to vulnerability 
evaluation. 

Alas, there is no simple checklist or easy procedure to list all vulnerabilities. But 
from the earlier chapters of this book you have seen many examples of vulnerabilities to 
assets, and your mind has been trained to think of harm that can occur. Tools can help us 
conceive of vulnerabilities by providing a structured way to think. For example, RAND's 
VAM methodology suggests that assets have certain properties that make them vulnerable. 
The properties exist in three categories: aspects of the design or architecture, aspects of 
behavior, and general attributes. Table 8-4 lists these properties in more detail. Notice that 
the properties apply to 
many kinds of systems and at various places within a given system. 

Table 8-4. 
Attributes 

Contributing to 

Vulnerabilities. 
 

These attributes 
can be used to build a 
matrix, each of whose 
entries may suggest 
one or more 
vulnerabilities. An 
example of such a 
matrix is shown in 
Figure 8-2. Using that 
matrix for example, the 
design attribute limits, 
finiteness applied to a 
cyber object, a software program could lead you to suspect buffer overflow vulnerabilities, or 
uniqueness for a hardware object could signal a single point of failure. To use this 
methodology you would work through the matrix, thinking of each contributing attribute on 
each asset class to derive the set of vulnerabilities. 

Figure 8-2. Vulnerabilities Suggested by Attributes and Objects. (From 

[ANT02], copyright © RAND 2002, reprinted by permission.) 
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Table 8-5. Ratings of Likelihood. 
Frequency     Rating 
More than once a day   10 
Once a day     9 
Once every three days   8 
Once a week     7 
Once in two weeks    6 
Once a month    5 
Once every four months   4 
Once a year     3 
Once every three years   2 

Less than once in three years  1 

Antón et al. [ANT02] point out that it is not 
enough to fill in the matrix cells. We must also 
consider combinations of situations that might 
enable certain vulnerabilities. For example, as Figure 
8-3 shows, at least six attributes can allow a 
successful attack by Trojan horse. The homogeneity 
of the design or architecture may encourage an 
attacker to place a Trojan horse in a well-understood 
location. The horse may be loaded by a gullible user 
who downloads a seemingly benign file. To do this, 
the attacker must have some control over users and 
their machines; in general, this is a manifestation of 
the accessibility of systems, especially on the 
Internet, and the lack of user awareness when a 
remote site sends data to an unsuspecting system. 

Figure 8-3. Vulnerabilities Enabling a 
Trojan Horse Attack. (From 

[ANT02], copyright © RAND 2002, reprinted 

by permission.) 
 

Step 3: Estimate Likelihood of 
Exploitation  

The third step in conducting a risk 
analysis is determining how often each 
exposure is likely to be exploited. 
Likelihood of occurrence relates to the 
stringency of the existing controls and the 
likelihood that someone or something will 
evade the existing controls. Sidebar 8-6 
describes several approaches to computing 
the probability that an event will occur: 
classical, frequency, and subjective. Each 
approach has its advantages and 
disadvantages, and we must choose the approach that best suits the situation (and its 
available information). 

In security, it is often not possible to directly evaluate an event's probability by using 
classical techniques. However, we can try to apply frequency probability by using observed 
data for a specific system. Local failure rates are fairly easy to record, and we can identify 
which failures resulted in security breaches or created new vulnerabilities. In particular, 
operating systems can track data on hardware failures, failed login attempts, numbers of 
accesses, and changes in the sizes of data files. 

Another alternative is to estimate the number of occurrences in a given time period. 
We can ask an analyst familiar with the system to approximate the number of times a 
described event occurred in the last year, for example. Although the count is not exact 
(because the analyst is unlikely to have 
complete information), the analyst's 
knowledge of the system and its usage 
may yield reasonable estimates. 

Of course, the two methods 
described depend on the fact that a 
system is already built and has been in 
use for some period of time. In many 
cases, and especially for proposed 
systems, the usage data are not available. 
In this case, we may ask an analyst to 
estimate likelihood by reviewing a table 
based on a similar system; this approach 
is incorporated in several formal security 
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risk processes. For example, the analyst may be asked to choose one of the ratings shown 
in Table 8-5. Completing this analysis depends on the rater's professional expertise. 

The table provides the rater with a framework within which to consider each 
likelihood. Differences between close ratings are not very significant. A rater should be able 
to distinguish between something that happens once a year and once a month. 

The Delphi approach is a subjective probability technique originally devised by 
RAND [HAL67] to deal with public policy decisions. It assumes that experts can make 
informed estimates based on their experience; the method brings a group of experts to 
consensus. The first step in using Delphi is to provide each of several experts with 
information describing the situation surrounding the event under consideration. For 
example, the experts may be told about the software and hardware architecture, conditions 
of use, and expertise of users. Then, each expert individually estimates the likelihood of the 
event. The estimates are collected, reproduced, and distributed to all experts. The individual 
estimates are listed anonymously, and the experts are usually given some statistical 
information, such as mean or median. The experts are then asked whether they wish to 
modify their individual estimates in light of values their colleagues have supplied. If the 
revised values are reasonably consistent, the process ends with the group's reaching 
consensus. If the values are inconsistent, additional rounds of revision may occur until 
consensus is reached. 
Step 4: Compute Expected Loss 

By this time, we have gained an understanding of the assets we value, their possible 
vulnerabilities, and the likelihood that the vulnerabilities will be exploited. Next, we must 
determine the likely loss if the exploitation does indeed occur. As with likelihood of 
occurrence, this value is difficult to determine. Some costs, such as the cost to replace a 
hardware item, are easy to obtain. The cost to replace a piece of software can be 
approximated reasonably well from the initial cost to buy it (or specify, design, and write it). 
However, we must take care to include hidden costs in our calculations. For instance, there 
is a cost to others of not having a piece of hardware or software. Similarly, there are costs in 
restoring a system to its previous state, reinstalling software, or deriving a piece of 
information. These costs are substantially harder to measure. 

In addition, there may be hidden costs that involve legal fees if certain events take 
place. For example, some data require protection for legal reasons. Personal data, such as 
police records, tax information, census data, and medical information, are so sensitive that 
there are criminal penalties for releasing the data to unauthorized people. Other data are 
company confidential; their release may give competitors an edge on new products or on 
likely changes to the stock price. Some financial data, especially when they reflect an 
adverse event, could seriously affect public confidence in a bank, an insurance company, or 
a stock brokerage. It is difficult to determine the cost of releasing these data. 

If a computing system, a piece of software, or a key person is unavailable, causing 
aparticular computing task to be delayed, there may be serious consequences. If a program 
that prints paychecks is delayed, employees' confidence in the company may be shaken, or 
some employees may face penalties from not being able to pay their own bills. If customers 
cannot make transactions because the computer is down, they may choose to take their 
business to a competitor. For some time-critical services involving human lives, such as a 
hospital's life-support systems or a space station's guidance systems, the costs of failure 
are infinitely high. 

Thus, we must analyze the ramifications of a computer security failure. The 
following questions can prompt us to think about issues of explicit and hidden cost related 
to security. 

The answers may not produce precise cost figures, but they will help identify the 
sources  of various types of costs. 
• What are the legal obligations for preserving the confidentiality or integrity of a given data 
item? 
• What business requirements and agreements cover the situation? Does the organization 
have to pay a penalty if it cannot provide a service? 
• Could release of a data item cause harm to a person or organization? Would there be the 
possibility of legal action if harm were done? 
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• Could unauthorized access to a data item cause the loss of future business opportunity? 
Might it give a competitor an unfair advantage? What would be the estimated loss in 
revenue? 
• What is the psychological effect of lack of computer service? Embarrassment? Loss of 
credibility? Loss of business? How many customers would be affected? What is their value 
as customers? 
• What is the value of access to data or programs? Could this computation be deferred? 
Could this computation be performed elsewhere? How much would it cost to have a third 
party do the computing elsewhere? 
• What is the value to someone else of having access to data or programs? How much would 
a competitor be willing to pay for access? 
• What other problems would arise from loss of data? Could the data be replaced or 
reconstructed? With what amount of work? 

These are not easy costs to evaluate. Nevertheless, they are needed to develop a 
thorough understanding of the risks. Furthermore, the vulnerabilities in computer security 
are often considerably higher than managers expect. Realistic estimates of potential harm 
can raise concern and suggest places in which attention to security is especially needed. 
Step 5: Survey and Select New Controls 

By this point in our risk analysis, we understand the system's vulnerabilities and 
the likelihood of exploitation. We turn next to an analysis of the controls to see which ones 
address the risks we have identified. We want to match each vulnerability with at least one 
appropriate security technique, as shown in Figure 8-4. Once we do that, we can use our 
expected loss estimates to help us decide which controls, alone or in concert, are the most 
cost effective for a given situation. Notice that vulnerabilities E and F are countered by 
primary techniques 2 and 4, respectively. The secondary control techniques 2 and 3 for 
vulnerability F are good defense in depth. The 
fact that there is no secondary control for 
vulnerability E is a minor concern. But 
vulnerability T is a serious caution, because it 
has no control whatsoever. 

Figure 8-4. Mapping Control 

Techniques to Vulnerabilities. (Adapted 

from [ANT02], copyright © RAND 2002, 

reprinted by 

permission.) 
 

For example, 
consider the risk of losing 
data. This loss could be 
addressed by several of the 
controls we have discussed 
in previous chapters: 
periodic backups, 
redundant data storage, 
access controls to prevent 
unauthorized deletion, 
physical security to keep 
someone from stealing a 
disk, or program 
development standards to 
limit the effect of programs 
on the data. 
We must determine the 
effectiveness of each control 
in a given situation; for 
instance, using 
physical security in a building already equipped with guards and limited access may be 
more effective than sophisticated software-based controls. 
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What Criteria Are 
Used for Selecting 
Controls? 
We can also think of 
controls at a different level. 
Table 8-6 lists a selection of 
strategies presented in the 
VAM methodology; we can 
use the list to mitigate the 
effects of a vulnerability. 
This method reflects a 
systems approach and also 
the military defense 
environment for which VAM 
was developed. 

Table 8-6. Categories 
of Mitigation Techniques. 

Table 8-6. Categories of Mitigation Techniques.  

 
From [ANT02], copyright © RAND 2002, reprinted by permission. VAM characterizes 

controls in terms of four high-level aspects: resilience and robustness; intelligence, 
surveillance, reconnaissance (ISR), and self-awareness; counterintelligence, denial of ISR, 
and target acquisition; and deterrence and punishment. Notice that many of these controls 
are technical but embrace the entire system architecture. For example, heterogeneity is a 
control that can be implemented only when the system is designed so that it is composed of 
dissimilar pieces, such as operating systems of different brands. Similarly, redundancy and 
decentralization are architectural elements, too. Some people think of controls as specific 
pieces of hardware and software, such as firewalls and virus checkers. But in fact, this 
broader list takes a software engineering approach to security: Make the system sturdy 
from the beginning, rather than trying only to patch holes with security-specific, self-
contained subsystems. 

The VAM methodology takes this table one step further, using it to compare 
vulnerabilities to possible controls. The matrix shown in Figure 8-5 lists attributes leading 
to vulnerabilities (as seen in Table 8-4) along the left side, and the controls of Table 8-6 
along the top. Thus, each cell of the matrix corresponds to whether a particular control 
addresses a given vulnerability. 

Figure 8-5. Matrix of Vulnerabilities and Controls. (From [ANT02], 

copyright © RAND 2002, reprinted by 
permission.) 

 
How Do Controls Affect What They 

Control? Controls have positive and negative 
effects: Encryption, for example, protects 
confidentiality, but it also takes time and 
introduces key management issues. Thus, 
when selecting controls, you have to consider 
the full impact. 

The creators of VAM recognized that sometimes attributes enhance security and 
other times detract from it. For example, heterogeneity may be useful as a control in 
preventing the proliferation of the same kind of logic error throughout a system. But 
heterogeneity can also make the system's design harder to understand and, therefore, 
harder to maintain; the result can be a fragile design that is easy for an attacker to cause to 
fail. For this reason, VAM has included a rating scheme to reflect the relationship depicted 
by each cell of the matrix. A cell relating a vulnerability to a security technique contains a 
number from 2 to 2, according to this scheme: 

 2 means that the control mitigates the vulnerability significantly and should be a prime 
candidate for addressing it. 
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 1 means that the control mitigates the vulnerability somewhat, but not as well as one 
labeled 2, so it should be a secondary candidate for addressing it. 

 0 means that the vulnerability may have beneficial side effects that enhance some aspect 
of security. (Example: homogeneity can facilitate both static and dynamic resource 
allocation. It can also facilitate rapid recovery and reconstitution.) 

 -1 means that the control worsens the vulnerability somewhat or incurs new 
vulnerabilities. 

 -2 means that the control worsens the vulnerability significantly or incurs new 
vulnerabilities. 

The VAM rating scheme is depicted in Figure 8-6; the full explanation of each row 
name, column name and rating can be found in [ANT02]. The matrix is used to support 
decisions about controls in the following way. We begin with the rows of the matrix, each of 
which corresponds to a vulnerability. We follow the row across to look for instances in 
which a cell is labeled with a 2 (or a 1, if there are no 2s). Then we follow the column up to 
its heading, to see which security techniques (the column labels) are strong controls for this 
vulnerability. For example, the matrix indicates that heterogeneity, redundancy, and 
decentralization are good controls for design sensitivity or fragility. Next, we notice that both 
heterogeneity and decentralization are also labeled with a -1 in that cell, indicating that by 
using them, we may enable other vulnerabilities. For instance, heterogeneity can enable 
several systems to complement each other but can make the overall system harder to 
maintain. Similarly, decentralization makes it more difficult for an attacker to exploit 
fragilities, but at the same time it can make the system more fragile due to a need for 
coordination. In this way, we can look at the implications of using each control to address 
known vulnerabilities.  

Figure 8-6. Valuation of Security 

Techniques. (From [ANT02], copyright 
© RAND 2002, reprinted by permission.) 

 
Which Controls Are Best? 

By now, we have noted a large number of 
primary and secondary controls to use against 
our identified vulnerabilities. We need a way to 
determine the most appropriate controls for a 
given situation. VAM offers us a refinement 

process based on three roles: operational, design, 
and policy. That is, if we are interested in security 
from the perspective of someone who will 
be using or managing the system, we take the 
operational perspective. If instead we view 
security from an implementation point of view, we 
take the developer's role. And if we view 
the system in the larger context of how it provides 
information processing to relevant organizations, 
we adopt the policy point of view. VAM provides 
tables, such as the one shown in Figure 8-7, to 
identify the relevance of each control to each 
perspective. 

Figure 8-7. Relevance of Certain Security 

Techniques to Roles and Attack 
Components. (From [ANT02], copyright © 

RAND 2002, reprinted by permission.) 

 
In this matrix, the rows represent security 

controls, and the columns serve two functions. The 
first three columns represent the three perspectives 
for evaluating the relevance of the control: 
operational, developer, and policy. The second five 
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columns note at what stage of an attack the control is most useful: allowing an attacker to 
have knowledge about the system, enabling access to the system, providing a target for 
attack, enabling non retribution, and assessing the extent to which an attack has been 
successful. In this matrix, the 1s and 2s labeling the cells have a different meaning from the 
previous matrix. Here, a 1 indicates that the control is weakly relevant to the perspective or 
attack stage, and a 2 indicates that it is strongly relevant. 

Finally, VAM presents a matrix to illustrate the relationships among the attack 
stages and the vulnerable objects in a system. For example, an attacker can gain knowledge 
about a system not only by obtaining source code and doing reverse engineering but also by 
using organizational charts and social engineering. 

The VAM approach is comprehensive and effective, supported by a software tool to 
walk an analyst through the stages of identifying vulnerabilities, selecting controls, and 
refining choices. [ANT02] contains tables and charts that explain the rating system and the 
relationships among tables; we have presented some of those tables and charts, courtesy of 
Antón et al., because they offer good examples that introduce you to the details of selecting 
controls. Sometimes, however, you can do a much less rigorous analysis by simply listing 
the possible controls, assessing the strengths and weaknesses of each, and choosing the 
one(s) that seem to be most appropriate. 
Step 6: Project Savings 

By this point in our risk analysis, we have identified controls that address each 
vulnerability in our list. The next step is to determine whether the costs outweigh the 
benefits of preventing or mitigating the risks. Recall that we multiply the risk probability by 
the risk impact to determine the risk exposure. The risk impact is the loss that we might 
experience if the risk were to turn into a real problem. There are techniques to help us 
determine the risk exposure. 

The effective cost of a given control is the actual cost of the control (such as 
purchase price, installation costs, and training costs) minus any expected loss from using 
the control (such as administrative or maintenance costs). Thus, the true cost of a control 
may be positive if the control is expensive to administer or introduces new risk in another 
area of the system. Or the cost can even be negative if the reduction in risk is greater than 
the cost of the control. 

For example, suppose a department has determined that some users have gained 
unauthorized access to the computing system. It is feared that the intruders might 
intercept or even modify sensitive data on the system. One approach to addressing this 
problem is to install a more secure data access control program. Even though the cost of 
the access control software is high ($25,000), its cost is easily justified when compared to 
its value, as shown in Table 8-7. Because the entire cost of the package is charged in the 
first year, even greater benefits are expected for subsequent years. 

Table 8-7. Justification of Access Control Software. 
Item Amount Risks:  
disclosure of company confidential data, computation based on incorrect data  
Cost to reconstruct correct d ata :   $1,000,000  
@ 10% likelihood per year        $100,000 
Effectiveness of access control software: 60% -        60,000 
Cost of access control software         +25,000 
Expected annual costs due to loss and controls (100,000 60,000 + 25,000) $65,000 
Savings (100,000 65,000)          $35,000 

Another company uses a common carrier to link to a network for certain computing 
applications. The company has identified the risks of unauthorized access to data and 
computing facilities through the network. These risks can be eliminated by replacement of 
remote network access with the requirement to access the system only from a machine 
operated on the company premises. The machine is not owned; a new one would have to be 
acquired. The economics of this example are not promising, as shown in Table 8-8. 

Table 8-8. Cost/Benefit Analysis for Replacing Network Access. 
Item Amount 
Risk: unauthorized access and use 
Access to unauthorized data and programs   $100,000 @  
2% likelihood per year     $2,000 
Unauthorized use of computing facilities   $10,000 @  
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40% likelihood per year        4,000 
Expected annual loss (2,000 + 4,000)      6,000 
Effectiveness of network control: 100% -     6,000 
Control cost: 
Hardware (50,000 amortized over 5 years) +           10,000 
Software (20,000 amortized over 5 years) +              4,000 
Support personnel (each year) +    40,000 
Annual cost        54,000 
Expected annual loss (6,000 6,000 + 54,000)       $54,000 
Savings (6,000 54,000) -                                 $48,000 

To supplement this tabular analysis, we can use a graphical depiction to contrast 
the economics involved in choosing among several strategies. For example, suppose we are 
considering the use of regression testing after making an upgrade to fix a security flaw. 
Regression testing means applying tests to verify that all remaining functions are unaffected 
by the change. It can be an expensive process, especially for large systems that implement 
many functions. (This example is taken from Pfleeger and Atlee [PFL06a].) 

To help us make our decision, we draw a diagram such as that in Figure 8-8. We 
want to compare the risk impact of doing regression testing with not doing it. Thus, the 
upper part of the diagram shows the risks in doing regression testing, and the lower part 
the risks of not doing regression testing. In each of the two cases, one of three things can 
happen: We find a critical fault, there is a critical fault but we miss finding it, or there are 
no critical faults to be found. For each possibility, we first calculate the probability of an 
unwanted outcome, P(UO). 

Then, we associate a loss with that unwanted outcome, L(UO). Thus, in our 
example, if we do regression testing and miss a critical fault lurking in the system (a 
probability of 0.05), the loss could be $30 million. Multiplying the two, we find the risk 
exposure for that strategy to be $1.5 million. As you can see from the calculations in the 
figure, it is far safer to do the regression testing 
than to skip it. 

Figure 8-8. Risk Calculation for 

Regression Testing. 

 
As shown in these examples, risk analysis 

can be used to evaluate the true costs of 
proposed controls. In this way, risk analysis can 
be used as a planning tool. The effectiveness of 
different controls can be compared on paper 
before actual investments are made. Risk 
analysis can thus be used repeatedly, to select an 
optimum set of controls. 

Arguments For and Against Risk Analysis 
Risk analysis is a well-known planning tool, used often by auditors, accountants, 

and managers. In many situations, such as obtaining approval for new drugs, new power 
plants, and new medical devices, a risk analysis is required by law in many countries. 
There are many good reasons to perform a risk analysis in preparation for creating a 
security plan. 

 Improve awareness. Discussing issues of security can raise the general level of interest 
and concern among developers and users. Especially when the user population has little 
expertise in computing, the risk analysis can educate users about the role security plays in 
protecting functions and data that are essential to user operations and products. 

 Relate security mission to management objectives. Security is often perceived as a 
financial drain for no gain. Management does not always see that security helps balance 
harm and control costs. 

 Identify assets, vulnerabilities, and controls. Some organizations are unaware of their 
computing assets, their value to the organization, and the vulnerabilities associated with 
those assets. A systematic analysis produces a comprehensive list of assets, valuations, and 
risks. 
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 Improve basis for decisions. A security manager can present an argument such as "I think 
we need a firewall here" or "I think we should use token-based authentication instead of 
passwords." Risk analysis augments the manager's judgment as a basis for the decision. 

 Justify expenditures for security. Some security mechanisms appear to be very expensive 
and without obvious benefit. A risk analysis can help identify instances where it is worth 
the expense to implement a major security mechanism. Justification is often derived from 
examining the much larger risks of not spending for security. 

However, despite the advantages of risk analysis, there are several arguments 
against using it to support decision making. 

 False sense of precision and confidence. The heart of risk analysis is the use of empirical 
data to generate estimates of risk impact, risk probability, and risk exposure. 
The danger is that these numbers will give us a false sense of precision, thereby giving rise 
to an undeserved confidence in the numbers. However, in many cases the numbers 
themselves are much less important than their relative sizes. Whether an expected loss is 
$100,000 or $150,000 is relatively unimportant. It is much more significant that the 
expected loss is far above the $10,000 or $20,000 budget allocated for implementing a 
particular control. Moreover, anytime a risk analysis generates a large potential loss, the 
system deserves further scrutiny to see if the root cause of the risk can be addressed. 

 Hard to perform. Enumerating assets, vulnerabilities, and controls requires creative 
thinking. Assessing loss frequencies and impact can be difficult and subjective. A large risk 
analysis will have many things to consider. Risk analysis can be restricted to certain assets 
or vulnerabilities, however. 

 Immutability. It is typical on many software projects to view processes like risk analysis as 
an irritating fact of lifea step to be taken in a hurry so that the developers can get on with 
the more interesting jobs related to designing, building, and testing the system. For this 
reason, risk analyses, like contingency plans and five-year plans, have a tendency to be 
filed and promptly forgotten. But if an organization takes security seriously, it will view the 
risk analysis as a living document, updating it at least annually or in conjunction with 
major system upgrades. 

 Lack of accuracy. Risk analysis is not always accurate, for many reasons. First, we may 
not be able to calculate the risk probability with any accuracy, especially when we have no 
past history of similar situations. Second, even if we know the likelihood, we cannot always 
estimate the risk impact very well. The risk management literature is replete with papers 
about describing the scenario, showing that presenting the same situation in two different 
ways to two equivalent groups of people can yield two radically different estimates of 
impact. And third, we may not be able to anticipate all the possible risks. For example, 
bridge builders did not know about the risks introduced by torque from high winds until 
the Tacoma Narrows Bridge twisted in the wind and collapsed. After studying the colossal 
failure of this bridge and discovering the cause, engineers made mandatory the inclusion of 
torque in their simulation parameters. Similarly, we may not know enough about software, 
security, or the context in which the system is to be used, so there may be gaps in our risk 
analysis that cause it to be inaccurate. 

This lack of accuracy is often cited as a deficiency of risk analysis. But this lack is a 
red herring. Risk analysis is useful as a planning tool, to compare and contrast options. We 
may not be able to predict events accurately, but we can use risk analysis to weigh the 
tradeoffs between one action and another. When risk analysis is used in security planning, 
it highlights which security expenditures are likely to be most cost effective. This 
investigative basis is important for choosing among controls when money available for 
security is limited. And our risk analysis should improve as we build more systems, 
evaluate their security, and have a larger experience base from which to draw our 
estimates. 

A risk analysis has many advantages as part of security plan or as a tool for less 
formal security decision making. It ranges from very subjective and imprecise to highly 
quantitative. 

It is useful for generating and documenting thoughts about likely threats and 
possible countermeasures. Finally, it supports rational decision making about security 
controls. 

Next we turn to another aspect of security planningdeveloping security policies. 

Organizational security policies 
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A key element of any organization's security planning is an effective security policy. 
A security policy must answer three questions:   who can access  

which resources in  
what manner? 

A security policy is a high-level management document to inform all users of the 
goals of and constraints on using a system. A policy document is written in broad enough 
terms that it does not change frequently. The information security policy is the foundation 
upon which all protection efforts are built. It should be a visible representation of priorities 
of the entire organization, definitively stating underlying assumptions that drive security 
activities. The policy should articulate senior management's decisions regarding security as 
well as asserting management's commitment to security. To be effective, the policy must be 
understood by everyone as the product of a directive from an authoritative and influential 
person at the top of the organization. 

People sometimes issue other documents, called procedures or guidelines, to define 
how the policy translates into specific actions and controls. In this section, we examine how 
to write a useful and effective security policy. 

Purpose 
Security policies are used for several purposes, including the following: 

 recognizing sensitive information assets 
 clarifying security responsibilities 
 promoting awareness for existing employees 
 guiding new employees 

Audience 
A security policy addresses several different audiences with different expectations. 

That is  each group users, owners, and beneficiaries uses the security policy in important 
but different ways. 
Users 

Users legitimately expect a certain degree of confidentiality, integrity, and 
continuous availability in the computing resources provided to them. Although the degree 
varies with the situation, a security policy should reaffirm a commitment to this 
requirement for service. 

Users also need to know and appreciate what is considered acceptable use of their 
computers, data, and programs. For users, a security policy should define acceptable use. 
Owners 

Each piece of computing equipment is owned by someone, and the owner may not 
be a system user. An owner provides the equipment to users for a purpose, such as to 
further education, support commerce, or enhance productivity. A security policy should 
also reflect the expectations and needs of owners. 
Beneficiaries 

A business has paying customers or clients; they are beneficiaries of the products 
and services offered by that business. At the same time, the general public may benefit in 
several ways: as a source of employment or by provision of infrastructure. For example, you 
may not be a client of BellSouth, but when you place a telephone call from London to 
Atlanta, you benefit from BellSouth's telecommunications infrastructure. In the same way, 
the government has customers: the citizens of its country, and "guests" who have visas 
enabling entry for various purposes and times. A university's customers include its 
students and faculty; other beneficiaries include the immediate community (which can take 
advantage of lectures and concerts on campus) and often the world population (enriched by 
the results of research and service). 

To varying degrees, these beneficiaries depend, directly or indirectly, on the 
existence of or access to computers, their data and programs, and their computational 
power. For this set of beneficiaries, continuity and integrity of computing are very 
important. In addition, beneficiaries value confidentiality and correctness of the data 
involved. Thus, the interests of beneficiaries of a system must be reflected in the system's 
security policy. 
Balance Among All Parties 

A security policy must relate to the needs of users, owners, and beneficiaries. 
Unfortunately, the needs of these groups may conflict. A beneficiary might require 
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immediate access to data, but owners or users might not want to bear the expense or 
inconvenience of providing access at all hours. Continuous availability may be a goal for 
users, but that goal is inconsistent with a need to perform preventive or emergency 
maintenance. Thus, the security policy must balance the priorities of all affected 
communities. 

Contents 
A security policy must identify its audiences: the beneficiaries, users, and owners. 

The policy should describe the nature of each audience and their security goals. Several 
other sections are required, including the purpose of the computing system, the resources 
needing protection, and the nature of the protection to be supplied. We discuss each one in 
turn. 
Purpose 

The policy should state the purpose of the organization's security functions, 
reflecting the requirements of beneficiaries, users, and owners. For example, the policy may 
state that the system will "protect customers' confidentiality or preserve a trust 
relationship," "ensure continual usability," or "maintain profitability." There are typically 
three to five goals, such as:  

 Promote efficient business operation. 
 Facilitate sharing of information throughout the organization. 
 Safeguard business and personal information. 
 Ensure that accurate information is available to support business processes. 
 Ensure a safe and productive place to work. 
 Comply with applicable laws and regulations. 

The security goals should be related to the overall goal or nature of the organization. 
It is important that the system's purpose be stated clearly and completely because 
subsequent sections of the policy will relate back to these goals, making the policy a goal-
driven product. 
Protected Resources 

A risk analysis will have identified the assets that are to be protected. These assets 
should be listed in the policy, in the sense that the policy lays out which items it addresses. 
For example, will the policy apply to all computers or only to those on the network? Will it 
apply to all data  or only to client or management data? Will security be provided to all 
programs or only the ones that interact with customers? If the degree of protection varies 
from one service, product, or data type to another, the policy should state the differences. 
For example, data that uniquely identify clients may be protected more carefully than the 
names of cities in which clients reside. 
Nature of the Protection 

The asset list tells us what should be protected. The policy should also indicate who 
should have access to the protected items. It may also indicate how that access will be 
ensured and how unauthorized people will be denied access. All the mechanisms described 
in this book are at your disposal in deciding which controls should protect which objects. In 
particular, the security policy should state what degree of protection should be provided to 
which kinds of resources. 

Characteristics of a Good Security Policy 
If a security policy is written poorly, it cannot guide the developers and users in 

providing appropriate security mechanisms to protect important assets. Certain 
characteristics make a security policy a good one. 
Coverage 

A security policy must be comprehensive: It must either apply to or explicitly 
exclude all possible situations. Furthermore, a security policy may not be updated as each 
new situation arises, so it must be general enough to apply naturally to new cases that 
occur as the system is used in unusual or unexpected ways. 

Durability 
A security policy must grow and adapt well. In large measure, it will survive the 

system's growth and expansion without change. If written in a flexible way, the existing 
policy will be applicable to new situations. However, there are times when the policy must 
change (such as when government regulations mandate new security constraints), so the 
policy must be changeable when it needs to be. 
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An important key to durability is keeping the policy free from ties to specific data or 
protection mechanisms that almost certainly will change. For example, an initial version of 
a security policy might require a ten-character password for anyone needing access to data 
on the Sun workstation in room 110. But when that workstation is replaced or moved, the 
policy's guidance becomes useless. It is preferable to describe assets needing protection in 
terms of their function and characteristics, rather than in terms of specific implementation. 
For example, the policy on Sun workstations could be reworded to mandate strong 
authentication for access to sensitive student grades or customers' proprietary data. Better 
still, we can separate the elements of the policy, having one policy statement for student 
grades and another for customers' proprietary data. Similarly, we may want to define one 
policy that applies to preserving the confidentiality of relationships, and another protecting 
the use of the system through strong authentication. 
Realism 

The policy must be realistic. That is, it must be possible to implement the stated 
security requirements with existing technology. Moreover, the implementation must be 
beneficial in terms of time, cost, and convenience; the policy should not recommend a 
control that works but prevents the system or its users from performing their activities and 
functions. Sidebar 8-7 points out that sometimes the policy writers are seduced by what is 
fashionable in security at the time of writing. It is important to make economically 
worthwhile investments in security, just as for any other careful business investment. 
Usefulness 

An obscure or incomplete security policy will not be implemented properly, if at all. 
The policy must be written in language that can be read, understood, and followed by 
anyone who must implement it or is affected by it. For this reason, the policy should be 
succinct, clear, and direct. 

Examples 
To understand the nature of security policies, we study a few examples to illustrate 

some of the points just presented. 
Data Sensitivity Policy 

Our first example is from an organization that decided to classify all its data 
resources into four levels, based on how severe might be the effect if a resource were 
damaged. These levels are listed in Table 8-9. Then, the required protection was based on 
the resource's level. Finally, the 
organization analyzed its threats, their 
possible severities, and 
countermeasures, and their 
effectiveness, within each of the four 
levels. 

 
Although the phrases 

describing the degree of damage are 
open to interpretation, the intent of 
these levels is clear: All information 
assets are to be classified as sensitive, 
personal, confidential, or open, and 
protection requirements for these four 
types are detailed in the remainder of the organization's policy document. 
Government Agency IT Security Policy 

The U.S. Department of Energy (DOE), like many government units, has established 
its own security policy. The following excerpt is from the policy on protecting classified 
material, although the form is appropriate for many unclassified uses as well. 

It is the policy of DOE that classified information and classified ADP [automatic data 
processing] systems shall be protected from unauthorized access (including the 
enforcement of need-to-know protections), alteration, disclosure, destruction, penetration, 
denial of service, subversion of security measures, or improper use as a result of espionage, 
criminal, fraudulent, negligent, abusive, or other improper actions. The DOE shall use all 
reasonable measures to protect ADP systems that process, store, transfer, or provide access 
to classified information, to include but not limited to the following: physical security, 



214 
 

personnel security, telecommunications security, administrative security, and hardware 
and software security measures. This order establishes this policy and defines 
responsibilities for the development, implementation, and periodic evaluation of the DOE 
program. 

The policy then continues for several more pages to list specific responsibilities for 
specific people. 

The cited paragraph is comprehensive, covering practically every possible source 
(espionage, crime, fraud, etc.) of practically every possible harm (unauthorized access, 
alteration, destruction, etc.), and practically every possible kind of control (physical, 
personnel, etc.). 

The generality of the header paragraph is complemented by subsequent paragraphs 
giving specific responsibilities: 

 "Each data owner shall determine and declare the required protection level of information 
. . ." 

 "Each security officer shall . . . perform a risk assessment to identify and document 
specific . . . assets, . . . threats, . . . and vulnerability . . ." 

 "Each manager shall...establish procedures to ensure that systems are continuously 
monitored...to detect security infractions . . ." and so on. 
Internet Security Policy 

The Internet does not have a governing security policy per se, because it is a 
federation of users. Nevertheless, the Internet Society drafted a security policy for its 
members [PET91]. 

The policy contains the following interesting portions. 
 Users are individually responsible for understanding and respecting the security policies 

of the systems (computers and networks) they are using. Users are individually accountable 
for their own behavior. 

 Users have a responsibility to employ available security mechanisms and procedures for 
protecting their own data. They also have a responsibility for assisting in the protection of 
the systems they use. 

 Computer and network service providers are responsible for maintaining the security of 
the systems they operate. They are further responsible for notifying users of their security 
policies and any changes to these policies. 

 Vendors and system developers are responsible for providing systems which are sound 
and which embody adequate security controls. 

 Users, service providers, and hardware and software vendors are responsible for 
cooperating to provide security. 

 Technical improvements in Internet security protocols should be sought on a continuing 
basis. At the same time, personnel developing new protocols, hardware or software for the 
Internet are expected to include security considerations as part of the design and 
development process. 
These statements clearly state to whom they apply and for what each party is responsible. 

Policy Issue Example: Government E-mail 
Organizations develop computer security policies along the lines just described. 

Generally the policies lead to the familiar assets, vulnerabilities, and controls. But 
sometimes you have to start with existing policies which may be formal documents or 
informal understandings and consider how they apply in new situations. Is this action 
consistent with the goals of the policy and therefore acceptable? Applying policies can be 
like being a judge. As security professionals, we often focus on security policy without 
remembering the context in which we are making policy decisions. In this section, we look 
at a real-life issue to see how security policy fits into the broader scope of issues the 
security must address. 

The U.S. government has proposed using network technologies to enhance its ability 
to interact with American citizens. Some people think that by employing functions such as 
electronic mail and World Wide Web access, the government could make more information 
available to citizens more quickly and at the same time be more responsive to citizens' 
needs. 

It is also hoped that costs would be reduced, a winning proposition for government 
and taxpayers alike. This proposal has clear security implications. Indeed, having read this 
far in this book, you can probably list dozens of security issues that must be addressed to 
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make this proposal work. The technology to design, build, and support this type of function 
exists, and the requirements, design, and implementation can easily be done from a 
technological point of view. But what about the other issues involved in building such a 
system? Neu et al. [NEU98] point out that the technology must be viewed in the larger 
institutional, organizational, and administrative contexts. 

Much of what the government wants to do is already done. Many federal agencies 
have web sites providing large amounts of information to citizens, such as regulations, 
reports, and forms. This type of information is equally accessible to anyone who needs it. 
But other information exchange is more personalized: submitting completed tax forms, 
filing required paperwork for licenses and benefits, and asking specific questions about an 
individual's records, for example. Clearly the last type suggests stringent requirements 
relating to confidentiality, authentication, and integrity. 

Neu et al. mention several security policy issues that must be addressed before such 
a system could be implemented. These include the following: 

 How do the commercial firms' security policies meet the government's security needs? 
 To enable secure communication, the government will likely want to use public key 

encryption. As we noted in Chapter 2, a certificate authority associates a public key with a 
particular user, establishing the user's identity. But for the government communication 
system, we must also know who has authority to access information and services and to 
initiate transactions. The processes required to perform identification are likely to be 
different from those performing authorization. In particular, identification may require 
direct interaction with a user, whereas authorization may require links among large 
databases. 

 A citizen may have more than one identity. For example, Jane Doe may be the same 
person as Mrs. Nathaniel Simmons, who is also the same person as the Trustee for the 
Estate of Mr. Robert Jones. In turn, each of these identities may have multiple authorities. 
How will the identification authorities interact with the authorization ones to enable these 
situations? 

 Sometimes the authorization does not need to be tied to a specific identity. For example, a 
government agency may need to know only that an individual is capable of paying for a 
service, much as a credit card company provides a credit rating. How will the authorization 
be able to release the minimum amount of information possible about an individual? 

 How will certificate authorities have a high degree of confidence in their identification of 
individuals? 

 How will certificate authorities deal with the need to view certain documents, such as 
birth certificates and passports, in person? This condition may mean that certificate 
authorities may be required to have local offices around the country. 

 Should there be a single certificate authority or many? A single provider can minimize 
the need for multiple keys and might save money by streamlining operations. But a single 
provider can also monitor all of a citizen's transactions, inviting abuse. 

These issues are not trivial. Their solutions, not at all obvious, build on the concepts 
presented in this book. But they do so in a way that is not just technological. We can easily 
build a PKI to provide certificates to anyone we want. But how do we connect two 
certificates, connoting that the digital identities actually belong to the same person? In the 
real world you can be anonymous by purchasing something with cash; how can you be 
anonymous digitally? 

But in addition to the security issues, there are also broader issues of management, 
responsibility, and law. Neu et al. note that, even when the technical issues are resolved, we 
have still to answer these questions: 
• What happens if a certificate authority makes a mistake, either by identifying or 
authorizing the wrong person or by assigning keys to an impostor? What are the legal and 
financial implications of such an error? What if the error is made even though the certificate 
authority followed government guidelines? 
• How will citizens create, record, and protect their keys? If smart cards are used to store 
keys, does that card become a national identity card? 
• What legal protections are available to electronic transactions? For example, in the United 
States today, it is illegal to intercept someone's surface mail, but it is not illegal to intercept 
someone's electronic mail. 
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• How do we prove that official electronic communications, such as a summons or 
subpoena, have been read? Will a citizen be responsible for regularly checking e-mail for 
official documents? 
• If law enforcement officials need to access encrypted electronic communications, how will 
they be able to perform the decryption? Will there be a method by which they can obtain the 
key? Does this require the citizen to participate? 
• What levels of protection are required for electronic documents? For instance, should 
medical records have the same level of protection as tax returns or driving violations? How 
do these levels apply across the different states that have very different laws? How does the 
protection address international law? 
• How will every citizen be provided with an electronic mail address? What happens when 
an e-mail address changes? What security standards will apply to e-mail boxes and service 
providers? 
• How will the government ensure equal access to electronic government services? Should 
the government provide help and training to first-time users? 
• How will electronic communication be phased in to the current mix of paper and 
telephone communication? 

These questions are not challenges to the technical side of computer security. But 
they are very much a part of the administrative side. It is not sufficient to know all the 
latest encryption algorithms; you also have to know how the use of computer security 
mechanisms fits into the broader context of how they are used and what they support. This 
example is included to introduce you to the procedural, administrative, policy, and privacy 
issues that a computer security administrator must consider. These questions highlight the 
degree to which security planning and policy must fit in with the larger policy issues that 
we, as individuals, organizations, and societies, must address. For this reason, in the next 
chapter we turn to the legal and ethical considerations of computer security. 

But before we move to those concerns, we must cover one more topic involved in 
administering security: physical security. Protecting computing systems from physical harm 
is no less important than protecting data from modification in transit through a network. In 
the next section we briefly survey physical security vulnerabilities and controls. 

Physical security 
Much of this book has focused on technical issues in security and their technical 

solutions  firewalls, encryption techniques, and more. But many threats to security involve 
human or natural disasters, events that should also be addressed in the security plan. For 
this reason, in this section we consider how to cope with the nontechnical things that can 
go wrong.  

There are two pieces to the process of dealing with nontechnical problems: 
preventing things that can be prevented and recovering from the things that cannot be 
prevented. Physical security is the term used to describe protection needed outside the 
computer system. 

Typical physical security controls include guards, locks, and fences to deter direct 
attacks.  In addition, there are other kinds of protection against less direct disasters, such 
as floods and power outages; these, too, are part of physical security. As we will see, many 
physical security measures can be provided simply by good common sense, a characteristic 
that Mark Twain noted "is a most uncommon virtue." 

Natural Disasters 
Computers are subject to the same natural disasters that can occur to homes, 

stores, and automobiles. They can be flooded, burned, melted, hit by falling objects, and 
destroyed by earthquakes, storms, and tornadoes. Additionally, computers are sensitive to 
their operating environment, so excessive heat or inadequate power is also a threat. It is 
impossible to prevent natural disasters, but through careful planning it is possible to 
reduce the damage they inflict. Some measures can be taken to reduce their impact. 
Because many of these perils cannot be prevented or predicted, controls focus on limiting 
possible damage and recovering quickly from a disaster. Issues to be considered include the 
need for offsite backups, the cost of replacing equipment, the speed with which equipment 
can be replaced, the need for available computing power, and the cost or difficulty of 
replacing data and programs. 
Flood 
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Water from a natural flood comes from ground level, rising gradually, and bringing 
with it mud and debris. Often, there is time for an orderly shutdown of the computing 
system; at worst, the organization loses some of the processing in progress. At other times, 
such as when a dam breaks, a water pipe bursts, or the roof collapses in a storm, a sudden 
flood can overwhelm the system and its users before anything can be saved. Water can 
come from above, below, or the side. The machinery may be destroyed or damaged by mud 
and water, but most computing systems are insured and replaceable by the manufacturer. 
Managers of unique or irreplaceable equipment who recognize the added risk sometimes 
purchase or lease duplicate redundant hardware systems to ensure against disruption of 
service. 

Even when the hardware can be replaced, we must be concerned about the stored 
data and programs. The system administrator may choose to label storage media in a way 
that makes it easy to identify the most important data. For example, green, yellow, and red 
labels may show which disks are the most sensitive, so that all red disks are moved from 
the data center during a storm. Similarly, large plastic bags and waterproof tape can be 
kept near important equipment and media; they are used to protect the hardware and 
storage media in case of a burst pipe or other sudden flood. 

The real issue is protecting data and preserving the ability to compute. The only way 
to ensure the safety of data is to store backup copies in one or more safe locations. 
Fire  

Fire is more serious than water; often there is not as much time to react, and 
human lives are  more likely to be in immediate danger. To ensure that system personnel 
can react quickly, every user and manager should have a plan for shutting down the system 
in an orderly manner. Such a process takes only a few minutes but can make recovery 
much easier. This plan should include individual responsibilities for all people: some to halt 
the system, others to protect crucial media, others to close doors on media cabinets. 
Provision should be made for secondary responsibilities, so that onsite staff can perform 
duties for those who are not in the office. 

Water is traditionally used to put out fires, but it is not a good idea for use in 
computer rooms. In fact, more destruction can be the result of sprinklers than of the fires 
themselves. A fire sensor usually activates many sprinklers, dousing an entire room, even 
when the fire is merely some ignited paper in a wastebasket and of no threat to the 
computing system. Many computing centers use carbon dioxide extinguishers or an 
automatic system that sprays a gas such as Halon to smother a fire but leave no residue. 
Unfortunately, these gas systems work by displacing the oxygen in the room, choking the 
fire but leaving humans unable to breathe. 

Consequently, when these protection devices are activated, humans must leave, 
disabling efforts to protect media. The best defense for situations like these is careful 
placement of the computing facility. A windowless location with fire-resistant access doors 
and nonflammable full-height walls can prevent some fires from spreading from adjacent 
areas to the computing room. With a fire and smoke-resistant facility, personnel merely 
shut down the system and leave, perhaps carrying out the most important media. 

Fire prevention is quite effective, especially because most computer goods are not 
especially flammable. Advance planning, reinforced with simulation drills, can help make 
good use of the small amount of time available before evacuation is necessary. 
Other Natural Disasters 

Computers are subject to storms, earthquakes, volcanoes, and similar events. 
Although not natural disasters, building collapse, explosion, and damage from falling 
objects can be considered in the same category. These kinds of catastrophes are difficult to 
predict or estimate. 

But we know these catastrophes will occur. Security managers cope with them in 
several ways: 

 developing contingency plans so that people know how to react in emergencies and 
business can continue 

 insuring physical assets computers, buildings, devices, supplies against harm  
 preserving sensitive data by maintaining copies in physically separated locations 

Power Loss 
Computers need their foodelectricityand they require a constant, pure supply of it. 

With a direct power loss, all computation ceases immediately. Because of possible damage 
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to media by sudden loss of power, many disk drives monitor the power level and quickly 
retract the recording head if power fails. For certain time-critical applications, loss of service 
from the system is intolerable; in these cases, alternative complete power supplies must be 
instantly available. 
Uninterruptible Power Supply 

One protection against power loss is an uninterruptible power supply. This device 
stores energy during normal operation so that it can return the backup energy if power 
fails. One form of uninterruptible power supply uses batteries that are continually charged 
when the power is on but which then provide power when electricity fails. However, size, 
heat, flammability, and low output can be problems with batteries. 

Some uninterruptible power supplies use massive wheels that are kept in 
continuous motion when electricity is available. When the power fails, the inertia in the 
wheels operates generators to produce more power. Size and limited duration of energy 
output are problems with this variety of power supply. Both forms of power supplies are 
intended to provide power for a limited time, just long enough to allow the current state of 
the computation to be saved so that no computation is lost. 

Surge Suppressor 
Another problem with power is its "cleanness." Although most people are unaware of 

it, a variation of 10 percent from the stated voltage of a line is considered acceptable, and 
some power lines vary even more. A particular power line may always be 10 percent high or 
low. 

In many places, lights dim momentarily when a large appliance, such as an air 
conditioner, begins operation. When a large motor starts, it draws an exceptionally large 
amount of current, which reduces the flow to other devices on the line. When a motor stops, 
the sudden termination of draw can send a temporary surge along the line. Similarly, 
lightning strikes may send a momentary large pulse. Thus, instead of being constant, the 
power delivered along any electric line shows many brief fluctuations, called drops, spikes, 
and surges. A drop is a momentary reduction in voltage, and a spike or surge is a rise. For 
computing equipment, a drop is less serious than a surge. Most electrical equipment is 
tolerant of rather large fluctuations of current. 

These variations can be destructive to sensitive electronic equipment, however. 
Simple devices called "surge suppressors" filter spikes from an electric line, blocking 
fluctuations that would affect computers. These devices cost from $20 to $100; they should 
be installed on every computer, printer, or other connected component. More sensitive 
models are typically used on larger systems. 

As mentioned previously, a lightning strike can send a surge through a power line. 
To increase protection, personal computer users usually unplug their machines when they 
are not in use, as well as during electrical storms. Another possible source of destruction is 
lightning striking a telephone line. Because the power surge can travel along the phone line 
and into the computer or peripherals, the phone line should be disconnected from the 
modem during storms. These simple measures may save much work as well as valuable 
equipment. 

Human Vandals 
Because computers and their media are sensitive to a variety of disruptions, a 

vandal can destroy hardware, software, and data. Human attackers may be disgruntled 
employees, bored operators, saboteurs, people seeking excitement, or unwitting bumblers. If 
physical access is easy to obtain, crude attacks using axes or bricks can be very effective. 
One man recently shot a computer that he claimed had been in the shop for repairs many 
times without success. 

Physical attacks by unskilled vandals are often easy to prevent; a guard can stop 
someone approaching a computer installation with a threatening or dangerous object. When 
physical access is difficult, more subtle attacks can be tried, resulting in quite serious 
damage. People with only some sophisticated knowledge of a system can short-circuit a 
computer with a car key or disable a disk drive with a paper clip. These items are not likely 
to attract attention until the attack is completed. 
Unauthorized Access and Use 

Films and newspaper reports exaggerate the ease of gaining access to a computing 
system. Still, as distributed computing systems become more prevalent, protecting the 
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system from outside access becomes more difficult and more important. Interception is a 
form of unauthorized access; the attacker intercepts data and either breaks confidentiality 
or prevents the data from being read or used by others. In this context, interception is a 
passive attack. But we must also be concerned about active interception, in the sense that 
the attacker can change or insert data before allowing it to continue to its destination. 
Theft 

It is hard to steal a large mainframe computer. Not only is carrying it away difficult, 
but finding a willing buyer and arranging installation and maintenance also require special 
assistance. 

However, printed reports, tapes, or disks can be carried easily. If done well, the loss 
may not be detected for some time. Personal computers, laptops, and personal digital 
assistants (PDAs, such as Palms or Blackberries) are designed to be small and portable. 
Diskettes and tape backup cartridges are easily carried in a shirt pocket or briefcase. 
Computers and media that are easy to carry are also easy to conceal. 

We can take one of three approaches to preventing theft: preventing access, 
preventing portability, or detecting exit. 
Preventing Access 

The surest way to prevent theft is to keep the thief away from the equipment. 
However, thieves can be either insiders or outsiders. Therefore, access control devices are 
needed both to prevent access by unauthorized individuals and to record access by those 
authorized. A record of accesses can help identify who committed a theft. 

The oldest access control is a guard, not in the database management system sense 
we discussed in Chapter 6 but rather in the sense of a human being stationed at the door to 
control access to a room or to equipment. Guards offer traditional protection; their role is 
well understood, and the protection they offer is adequate in many situations. However, 
guards must be on duty continuously in order to be effective; providing breaks implies at 
least four guards for a 24-hour operation, with extras for vacation and illness. A guard 
must personally recognize someone or recognize an access token, such as a badge. People 
can lose or forget badges; terminated employees and forged badges are also problems. 
Unless the guard makes a record of everyone who has entered a facility, there is no way to 
know who (employee or visitor) has had access in case a problem is discovered. 

The second oldest access control is a lock. This device is even easier, cheaper, and 
simpler to manage than a guard. However, it too provides no record of who has had access, 
and difficulties arise when keys are lost or duplicated. At computer facilities, it is 
inconvenient to fumble for a key when your hands are filled with tapes or disks, which 
might be ruined if dropped. There is also the possibility of piggybacking: a person walks 
through the door that someone else has just unlocked. Still, guards and locks provide 
simple, effective security for access to facilities such as computer rooms. 

More exotic access control devices employ cards with radio transmitters, magnetic 
stripe cards (similar to 24-hour bank cards), and smart cards with chips containing 
electronic circuitry that makes them difficult to duplicate. Because each of these devices 
interfaces with a computer, it is easy for the computer to capture identity information, 
generating a list of who entered and left the facility, when, and by which routes. Some of 
these devices operate by proximity, so that a person can carry the device in a pocket or 
clipped to a collar; the person obtains easy access even when hands are full. Because these 
devices are computer controlled, it is easy to invalidate an access authority when someone 
quits or reports the access token lost or stolen. 

The nature of the application or service determines how strict the access control 
needs to be. Working in concert with computer-based authentication techniques, the access 
controls can be part of defense in depth using multiple mechanisms to provide security. 
Preventing Portability 

Portability is a mixed blessing. We can now carry around in our pockets devices that 
provide as much computing power as mainframes did twenty years ago. Portability is in fact 
a necessity in devices such as PDAs and mobile phones. And we do not want to 
permanently affix our personal computers to our desks, in case they need to be removed for 
repair or replacement. Thus, we need to find ways to enable portability without promoting 
theft. 

One antitheft device is a pad connected to cable, similar to those used to secure 
bicycles. The pad is glued to the desktop with extremely strong adhesive. The cables loop 
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around the equipment and are locked in place. Releasing the lock permits the equipment to 
be moved. An alternative is to couple the base of the equipment to a secure pad, in much 
the same way that televisions are locked in place in hotel rooms. Yet a third possibility is a 
large, lockable cabinet in which the personal computer and its peripherals are kept when 
they are not in use. 

Some people argue that cables, pads, and cabinets are unsightly and, worse, they 
make the equipment inconvenient to use. Another alternative is to use movement-activated 
alarm devices when the equipment is not in use. Small alarms are available that can be 
locked to a laptop or PDA. When movement is detected, a loud, annoying whine or whistle 
warns that the equipment has been disturbed. 

Such an alarm is especially useful when laptops must be left in meeting or 
presentation rooms overnight or during a break. Used in concert with guards, the alarms 
can offer reasonable protection at reasonable cost. 
Detecting Theft 

For some devices, protection is more important than detection. We want to keep 
someone from stealing certain systems or information at all costs. But for other devices, it 
may be enough to detect that an attempt has been made to access or steal hardware or 
software.  

For example, chaining down a disk makes it unusable. Instead, we try to detect 
when someone tries to leave a protected area with the disk or other protected object. In 
these cases, the protection mechanism should be small and unobtrusive. 

One such mechanism is similar to the protection used by many libraries, 
bookstores, or department stores. Each sensitive object is marked with a special label. 
Although the label looks like a normal pressure-sensitive one, its presence can be detected 
by a machine at the exit door if the label has not been disabled by an authorized party, 
such as a librarian or salesclerk. Similar security code tags are available for vehicles, 
people, machinery, and documents. 

Some tags are enabled by radio transmitters. When the detector sounds an alarm, 
someone must apprehend the person trying to leave with the marked object. 

Interception of Sensitive Information 
When disposing of a draft copy of a confidential report containing its sales strategies 

for the next five years, a company wants to be especially sure that the report is not 
reconstructable by one of its competitors. When the report exists only as hard copy, 
destroying the report is straightforward, usually accomplished by shredding or burning. But 
when the report exists digitally, destruction is more problematic. There may be many copies 
of the report in digital and paper form and in many locations (including on the computer 
and on storage media). 

There may also be copies in backups and archived in e-mail files. In this section, we 
look at several ways to dispose of sensitive information. 
Shredding 

Shredders have existed for a long time, as devices used by banks, government 
agencies, and others organizations to dispose of large amounts of confidential data. 
Although most of the shredded data is on paper, shredders can also be used for destroying 
printer ribbons and some types of disks and tapes. Shredders work by converting their 
input to thin strips or pulp, with enough volume to make it infeasible for most people to try 
to reconstruct the original from its many pieces. When data are extremely sensitive, some 
organizations burn the shredded output for added protection. 
Overwriting Magnetic Data 

Magnetic media present a special problem for those trying to protect the contents. 
When data are stored on magnetic disks, the ERASE or DELETE functions often simply 
change a directory pointer to free up space on the disk. As a result, the sensitive data are 
still recorded on the medium, and they can be recovered by analysis of the directory. A 
more secure way to destroy data on magnetic devices is to overwrite the data several times, 
using a different pattern each time. This process removes enough magnetic residue to 
prevent most people from reconstructing the original file. However, "cleaning" a disk in this 
fashion takes time. 

Moreover, a person using highly specialized equipment might be able to identify 
each separate message, much like the process of peeling off layers of wallpaper to reveal the 
wall beneath. 
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Degaussing 
Degaussers destroy magnetic fields. Passing a disk or other magnetic medium 

through a degausser generates a magnetic flux so forceful that all magnetic charges are 
instantly realigned, thereby fusing all the separate layers. A degausser is a fast way to 
cleanse a magnetic medium, although there is still question as to whether it is adequate for 
use in the most sensitive of applications. (Media that have had the same pattern for a long 
time, such as a disk saved for archival purposes, may retain traces of the original pattern 
even after it has been overwritten many times or degaussed.) For most users, a degausser is 
a fast way to neutralize a disk or tape, permitting it to be reused by others. 
Protecting Against Emanation: Tempest 

Computer screens emit signals that can be detected from a distance. In fact, any 
components, including printers, disk drives, and processors, can emit information. Tempest 
is a U.S. government program under which computer equipment is certified as emission-
free (that is, no detectable emissions). There are two approaches for preparing a device for 
Tempest certification: enclosing the device and modifying the emanations. 

The obvious solution to preventing emanations is to trap the signals before they can 
be picked up. Enclosing a device in a conductive case, such as copper, diffuses all the 
waves by conducting them throughout the case. Copper is a good conductor, and the waves 
travel much better through copper than through the air outside the case, so the emissions 
are rendered harmless. 

This solution works very well with cable, which is then enclosed in a solid, 
emanation-proof shield. Typically, the shielded cable is left exposed so that it is easy to 
inspect visually for any signs of tapping or other tampering. The shielding must be 
complete. That is, it does little good to shield a length of cable but not also shield the 
junction box at which that cable is connected to a component. The line to the component 
and the component itself must be shielded, too. 

The shield must enclose the device completely. If top, bottom, and three sides are 
shielded, emanations are prevented only in those directions. However, a solid copper shield 
is useless in front of a computer screen. Covering the screen with a fine copper mesh in an 
intricate pattern carries the emanation safely away. This approach solves the emanation 
problem while still maintaining the screen's usability. 

Entire computer rooms or even whole buildings can be shielded in copper so that 
large computers inside do not leak sensitive emanations. Although it seems appealing to 
shield the room or building instead of each component, the scheme has significant 
drawbacks. A shielded room is inconvenient because it is impossible to expand the room 
easily as needs change. The shielding must be done carefully, because any puncture is a 
possible point of emanation. 

Furthermore, continuous metal pathways, such as water pipes or heating ducts, act 
as antennas to convey the emanations away from their source. 

Emanations can also be designed in such a way that they cannot be retrieved. This 
process is similar to generating noise in an attempt to jam or block a radio signal. With this 
approach, the emanations of a piece of equipment must be modified by addition of spurious 
signals. 

Additional processors are added to Tempest equipment specifically to generate 
signals that fool an interceptor. The exact Tempest modification methods are classified. As 
might be expected, Tempest-enclosed components are larger and heavier than their 
unprotected counterparts. Tempest testing is a rigorous program of the U.S. Department of 
Defense. Once a product has been approved, even a minor design modification, such as 
changing from one manufacturer's power supply to an equivalent one from another 
manufacturer, invalidates the Tempest approval. Therefore, these components are costly, 
ranging in price from 10 percent to 300 percent more than similar non-Tempest products. 
They are most appropriate in situations in which the data to be confined are of great value, 
such as top-level government information. Other groups with less dramatic needs can use 
other less rigorous shielding. 

Contingency Planning 
The key to successful recovery is adequate preparation. Seldom does a crisis destroy 

irreplaceable equipment; most computing systems personal computers to mainframes are 
standard, off-the-shelf systems that can be easily replaced. Data and locally developed 
programs are more vulnerable because they cannot be quickly substituted from another 
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source. Let us look more closely at what to do after a crisis occurs. 
Backup 

In many computing systems, some data items change frequently, whereas others 
seldom change. For example, a database of bank account balances changes daily, but a file 
of depositors' names and addresses changes much less often. Also the number of changes 
in a given period of time is different for these two files. These variations in number and 
extent of change relate to the amount of data necessary to reconstruct these files in the 
event of a loss. 

A backup is a copy of all or a part of a file to assist in reestablishing a lost file. In 
professional computing systems, periodic backups are usually performed automatically, 
often at night when system usage is low. Everything on the system is copied, including 
system files, user files, scratch files, and directories, so that the system can be regenerated 
after a crisis. This type of backup is called a complete backup. Complete backups are done 
at regular intervals, usually weekly or daily, depending on the criticality of the information 
or service provided by the system. 

Major installations may perform revolving backups, in which the last several 
backups are kept. Each time a backup is done, the oldest backup is replaced with the 
newest one. There are two reasons to perform revolving backups: to avoid problems with 
corrupted media (so that all is not lost if one of the disks is bad) and to allow users or 
developers to retrieve old versions of a file. Another form of backup is a selective backup, in 
which only files that have been changed (or created) since the last backup are saved. In this 
case, fewer files must be saved, so the backup can be done more quickly. A selective backup 
combined with an earlier complete backup gives the effect of a complete backup in the time 
needed for only a selective backup. The selective backup is subject to the configuration 
management techniques described in Chapter 3. 

For each type of backup, we need the means to move from the backup forward to the 
point of failure. That is, we need a way to restore the system in the event of failure. In 
critical transaction systems, we address this need by keeping a complete record of changes 
since the last backup. Sometimes, the system state is captured by a combination of 
computer- and paper-based recording media. For example, if a system handles bank teller 
operations, the individual tellers duplicate their processing on paper records the deposit 
and withdrawal slips that accompany your bank transactions; if the system fails, the staff 
restores the latest backup version and reapplies all changes from the collected paper copies. 
Or the banking system creates a paper journal, which is a log of transactions printed just 
as each transaction completes. 

Personal computer users often do not appreciate the need for regular backups. Even 
minor crises, such as a failed piece of hardware, can seriously affect personal computer 
users. With a backup, users can simply change to a similar machine and continue work. 
Offsite Backup 

A backup copy is useless if it is destroyed in the crisis, too. Many major computing 
installations rent warehouse space some distance from the computing system, far enough 
away that a crisis is not likely to affect the offsite location at the same time. As a backup is 
completed, it is transported to the backup site. Keeping a backup version separate from the 
actual system reduces the risk of its loss. Similarly, the paper trail is also stored somewhere 
other than at the main computing facility. 

Personal computer users concerned with integrity can take home a copy of 
important disks as protection or send a copy to a friend in another city. If both secrecy and 
integrity are important, a bank vault, or even a secure storage place in another part of the 
same building can be used. The worst place to store a backup copy is where it usually is 
stored: right next to the machine. 
Networked Storage 

With today's extensive use of networking, using the network to implement backups 
is a good idea. Storage providers sell space in which you can store data; think of these 
services as big network-attached disk drives. You rent space just as you would consume 
electricity: You pay for what you use. The storage provider needs to provide only enough 
total space to cover everyone's needs, and it is easy to monitor usage patterns and increase 
capacity as combined needs rise. 

Networked storage is perfect for backups of critical data because you can choose a 
storage provider whose physical storage is not close to your processing. In this way, 
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physical harm to your system will not affect your backup. You do not need to manage tapes 
or other media and physically transport them offsite. 
Cold Site 

Depending on the nature of the computation, it may be important to be able to 
recover from a crisis and resume computation quickly. A bank, for example, might be able 
to tolerate a four-hour loss of computing facilities during a fire, but it could not tolerate a 
ten-month period to rebuild a destroyed facility, acquire new equipment, and resume 
operation. 

Most computer manufacturers have several spare machines of most models that can 
be delivered to any location within 24 hours in the event of a real crisis. Sometimes the 
machine will come straight from assembly; other times the system will have been in use at a 
local office. Machinery is seldom the hard part of the problem. Rather, the hard part is 
deciding where to put the equipment in order to begin a temporary operation. 

A cold site or shell is a facility with power and cooling available, in which a 
computing system can be installed to begin immediate operation. Some companies maintain 
their own cold sites, and other cold sites can be leased from disaster recovery companies. 
These sites usually come with cabling, fire prevention equipment, separate office space, 
telephone access, and other features. Typically, a computing center can have equipment 
installed and resume operation from a cold site within a week of a disaster. 
Hot Site 

If the application is more critical or if the equipment needs are more specialized, a 
hot site may be more appropriate. A hot site is a computer facility with an installed and 
ready-to-run computing system. The system has peripherals, telecommunications lines, 
power supply, and even personnel ready to operate on short notice. Some companies 
maintain their own; other companies subscribe to a service that has available one or more 
locations with installed and running computers. To activate a hot site, it is necessary only 
to load software and data from offsite backup copies. 

Numerous services offer hot sites equipped with every popular brand and model of 
system. They provide diagnostic and system technicians, connected communications lines, 
and an operations staff. The hot site staff also assists with relocation by arranging 
transportation and housing, obtaining needed blank forms, and acquiring office space. 

Because these hot sites serve as backups for many customers, most of whom will 
not need the service, the annual cost to any one customer is fairly low. The cost structure is 
like insurance: The likelihood of an auto accident is low, so the premium is reasonable, 
even for a policy that covers the complete replacement cost of an expensive car. Notice, 
however, that the first step in being able to use a service of this type is a complete and 
timely backup. 

Physical Security Recap 
By no means have we covered all of physical security in this brief introduction. 

Professionals become experts at individual aspects, such as fire control or power provision. 
However, this section should have made you aware of the major issues in physical security. 
We have to protect the facility against many sorts of disasters, from weather to chemical 
spills and vehicle crashes to explosions. It is impossible to predict what will occur or when. 
The physical security manager has to consider all assets and a wide range of harm. 

Malicious humans seeking physical access are a different category of threat agent. 
With them, you can consider motive or objective: is it theft of equipment, disruption of 
processing, interception of data, or access to service? Fences, guards, solid walls, and locks 
will deter or prevent most human attacks. But you always need to ask where weaknesses 
remain; a solid wall has a weakness in every door and window. 

The primary physical controls are strength and duplication. Strength means 
overlapping controls implementing a defense-in-depth approach so that if one control fails, 
the next one will protect. People who built ancient castles practiced this philosophy with 
moats, walls, drawbridges, and arrow slits. Duplication means eliminating single points of 
failure. Redundant copies of data protect against harm to one copy from any cause. Spare 
hardware components protect against failures. 
Privacy  

Computers did not invent or even cause privacy issues; we had those long before 
computers and probably even before written language. But computers' high-speed 
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processing and data storage and transmission capabilities made possible data collection 
and correlation that affect privacy. Because privacy is part of confidentiality, it is an aspect 
of computer security. 

Privacy is a human right, although people can legitimately disagree over when or to 
what extent privacy is deserved; this disagreement may have cultural, historical, or 
personal roots. 

Laws and ethics, which we study in Chapter 11, can set the baseline for and enforce 
expectations of privacy. But inherently, the right to privacy depends on the situation and 
the affected parties. And just as confidentiality, integrity, and availability can conflict, so too 
can privacy and other aspects of security. We won't take a position on when a right to 
privacy should be enforceable because that is outside the scope of this book. You might 
characterize the presentation of this chapter as "assuming a particular right to privacy 
exists, what are its implications in computing and information technology?" We as citizens 
help decide the contours of privacy rights; we as computer security experts implement those 
decisions in computer systems. 

Privacy is also a broad topic, affected by computing but not just a security topic. We 
don't want to try to survey all possible privacy issues in this chapter, just those inextricably 
linked to computer security. 

In this chapter we look at the meaning of information privacy. We examine 
identification and authentication, two familiar aspects of computing that have significant 
privacy implications. 

We study how privacy relates to the Internet, specifically in e-mail and web access. 
Finally, we investigate some emerging computer-based technologies for which privacy is 
important. 

10.1. Privacy Concepts 
In this section we examine privacy, first from its general or common usage and then 

as it applies in technological situations. 

Aspects of Information Privacy 
Information privacy has three aspects: sensitive data, affected parties, and 

controlled disclosure. In fact, these aspects are similar to the three elements of access 
control from Chapter 5: subject, object, and access rights. 
We examine these three in turn. 
Controlled Disclosure 

What is privacy? A good working definition is that privacy is the right to control who 
knows certain aspects about you, your communications, and your activities. In other words, 
you voluntarily choose who can know things about you and what those things are. People 
ask you for your telephone number: your auto mechanic, a clerk in a store, your tax 
authority, a new business contact, or a cute person in a bar. You consider why the person 
wants the number and decide whether to give it out. But the key point is you decide. So 
privacy is something over which you have considerable influence. 

You do not have complete control, however. Once you give your number to someone 
else, your control is diminished because it depends in part on what someone else does. As 
soon as you give out your number, you transfer authority and control to someone else. You 
may say "don't give my number to anyone else," "use discretion," or "I am sensitive about 
my privacy," but you do not control the other person. You have to trust the other person to 
comply with your wishes, whether you state them explicitly or not. This problem is similar 
to the propagation problem of computer security: Anyone who has access to an object can 
copy, transfer, or propagate that object or its content to others without restriction. 
Sensitive Data 

Someone asks you for your shoe size; you might answer, "I'm a very private person 
and cannot imagine why you would want to know such an intimate detail" or you could say 
"10C"; some people find that data more sensitive than others. We know things people 
usually consider sensitive, such as financial status, certain health data, unsavory events in 
their past, and the like, so if you learn something you consider sensitive about someone, 
you will keep it quiet. But most of us are not too sensitive about our shoe size, so we don't 
normally protect that if we learn it about someone else. Of course, if a friend told me not to 
pass that along, I wouldn't. It is not up to me to question why someone else considers 
something private. 
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Here are examples (in no particular order) of data many people consider private. 
 identity, the ownership of private data and the ability to control its disclosure 
 finances, credit, bank details 
 legal matters 
 medical conditions, drug use, DNA, genetic predisposition to illnesses 
 voting, opinions, membership in advocacy organizations 
 preferences: religion, sexuality 
 biometrics, physical characteristics, polygraph results, fingerprints 
 diaries, poems, correspondence, recorded thoughts 
 privileged communications with professionals such as lawyers, accountants, doctors, 

counselors, and clergy 
 performance: school records, employment ratings 
 activities: reading habits, web browsing, music, art, videos 
 air travel data, general travel data, a person's location (present and past) 
 communications: mail, e-mail, telephone calls, spam 
 history: "youthful indiscretions," past events 
 illegal activities, criminal records 

Privacy is also affected by who you are. When you are in a room of people you don't 
know, perhaps at a reception, someone may come up to you and say "So you are the man 
who baked that beautiful cake over there; I really appreciate your skills as a pastry chef." It 
feels kind of nice to get that kind of recognition. Conversely, a friend was frequently on local 
television; she far preferred having dinner at home instead of going to a restaurant because 
she had grown tired of people rushing up to her saying "you're [Olga], I see you all the time 
on TV." Public personalities cherish the aspects of privacy they retain. World champion 
athletes cannot avoid having their results made public, whereas you might not want 
everyone to know how poorly you finished in the last event. Culture also influences what 
people consider sensitive. 

In general, a person's privacy expectations depend on context: who is affected and 
what the prevailing norm of privacy is. 
Affected Subject 

This brings us to another point about privacy: Individuals, groups, companies, 
organizations, and governments all have data they consider sensitive. So far we have 
described privacy from the standpoint of a person. Companies may have data they consider 
private or sensitive: product plans, key customers, profit margins, and newly discovered 
technologies. For organizations such as companies, privacy usually relates to gaining and 
maintaining an edge over the competition. Other organizations, for example, schools, 
hospitals, or charities, may need to protect personal data on their students, patients, or 
donors, or they may want to control negative news, and so forth. Governments consider 
military and diplomatic matters sensitive, but they also recognize a responsibility to keep 
confidential data they collect from citizens, such as tax information. We may use terms like 
subject or owner to cover privacy issues affecting people, groups, and the like. 

Privacy is an aspect of confidentiality. As we have learned throughout this book, the 
three security goals of confidentiality, integrity, and availability conflict, and confidentiality 
frequently conflicts with availability. If you choose not to have your telephone number 
published in a directory, that also means some people will not be able to reach you by 
telephone. 
Summary 

To summarize, here are some points about privacy: 
 Privacy is controlled disclosure: The subject chooses what personal data to give out and 

to whom. 
 After disclosing something, a subject relinquishes much control to the receiver.  
 What data are sensitive is at the discretion of the subject; people consider different things 

sensitive. Why a person considers something sensitive is less important than that it is. 
 Individuals, informal groups, and formal organizations all have things they consider 

private. 
 Privacy has a cost; choosing not to give out certain data may limit other benefits.  

In the next section we consider some examples of data that some people consider 
private. 

Computer-Related Privacy Problems 



226 
 

You may notice that many of the kinds of sensitive data and many of the points 
about privacy have nothing to do with computers. You are exactly right: These sensitivities 
and issues predate computers. Computers and networks have only affected the feasibility of 
some unwanted disclosures. Public records offices have long been open for people to study 
the data held there, but the storage capacity and speed of computers have given us the 
ability to a mass, search, and correlate. Search engines have given us the ability to find one 
data item out of billions, the equivalent of finding one sheet of paper out of a warehouse full 
of boxes of papers. Furthermore, the openness of networks and the portability of technology 
(such as laptops, PDAs, cell phones, and memory devices) have greatly increased the risk of 
disclosures affecting privacy. 

Rezgui et al. [REZ03] list eight dimensions of privacy (specifically as it relates to the 
web, although the definitions carry over naturally to other types of computing). 

 Information collection: Data are collected only with knowledge and explicit consent. 
 Information usage: Data are used only for certain specified purposes. 
 Information retention: Data are retained for only a set period of time. 
 Information disclosure: Data are disclosed to only an authorized set of people. 
 Information security: Appropriate mechanisms are used to ensure the protection of the 

data. 
 Access control: All modes of access to all forms of collected data are controlled. 
 Monitoring: Logs are maintained showing all accesses to data. 
 Policy changes: Less restrictive policies are never applied after-the-fact to already 

obtained data. 
Here are the privacy issues that have come about through use of computers. 
Data Collection 

As we have previously said, advances in computer storage make it possible to hold 
and manipulate huge numbers of records. Disks on ordinary consumer PCs are measured 
in gigabytes (109 bytes), and commercial storage capacities often measure in terabytes (1012 

bytes). In 2006, EMC Corporation announced a storage product whose capacity exceeds one 
peta byte (1015 bytes). (For perspective on these numbers, scientists estimate the capacity of 
the human brain to be between one terabyte and one petabyte.) Indiana University plans to 
acquire a supercomputer with one petabyte of storage, and the San Diego Supercomputer 
Center has online storage of one petabyte and offline archives of seven petabytes. Estimates 
of Google's stored data are also in the petabyte range. We have both devices to store 
massive amounts of data and the data to fill those devices. Whereas physical space limited 
storing (and locating) massive amounts of printed data, electronic data take relatively little 
space. 

We never throw away data; we just move it to slower secondary media or buy more 
storage. 
No Informed Consent 

Where do all these bytes come from? Although some are from public and commercial 
sources (newspapers, web pages, digital audio, and video recordings) and others are from 
intentional data transfers (tax returns, a statement to the police after an accident, readers' 
survey forms, school papers), still others are collected without announcement. Telephone 
companies record the date, time, duration, source, and destination of each telephone call. 
ISPs track sites visited. Some sites keep the IP address of each visitor to the site (although 
an IP address is usually not unique to a specific individual). The user is not necessarily 
aware of this third category of data collection and thus cannot be said to have given 
informed consent. 
Loss of Control 

We realize that others may keep data we give them. When you order merchandise 
online, you know you have just released your name, probably some address and payment 
data, and the items you purchased. Or when you use a customer appreciation card at a 
store, you know the store can associate your identity with the things you buy. Having 
acquired your data, a merchant can redistribute it to anyone. The fact that you booked one 
brand of hotel room through a travel agent could be sold to other hotels. If you frequently 
telephone someone in one city and have taken several plane trips to that city, local stores, 
restaurants, or tourist attractions in that city might want your name. You have little control 
over dissemination (or redissemination) of your data. 
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We do not always appreciate the ramifications of lost control. Suppose in a moment 
of anger you dash off a strong note to someone. Although 100 years ago you would have 
written the note on paper and 50 years ago you would have voiced the comment by 
telephone, now you post the message to a blog. Next suppose you have a change of heart 
and you want to retract your angry note. Let us consider how you would deal with these 
three forms of the communication. For the written note, you write a letter of apology, your 
recipient tears up your first note, and no trace remains. In the second case you telephone to 
apologize and all that remains is a memory. As for the blog, you delete your posting. 
However, several other people might have seen your original posting and copied it to blogs 
or other web sites that you do not control. Search engines might have found the original or 
copies. And other people might have picked up your words and circulated them in e-mail. 
Thus, with letters and phone calls, we can usually obliterate something we want to retract. 
But once something is out of your control on the web, it may never be deleted. 

This example concerned something you wrote. A similar situation concerns 
something written about you. Someone else has posted something on the web that is 
personal about you and you want it removed. Even if the poster agrees, you may not be able 
to remove all its traces. 

Finally, some people are finding they reveal more than they should on sites like 
myspace.com. 

Prospective employees are being turned down for jobs because of things they have 
written. 

The web is a great historical archive, but because of archives, caches, and mirror 
sites, things posted on the web may never go away. 

A second issue of loss of control concerns data exposure. Suppose a company holds 
data about you and that company's records are exposed in a computer attack. The company 
may not be responsible for preventing harm to you, compensating you if you are harmed, or 
even informing you of the event. 
Ownership of the Data 

In the cases just described, customer details are being marketed. Information about 
you is being sold and you have no control; nor do you get to share in the profit. Even before 
computers customer data were valuable. Mailing lists and customer lists were company 
assets that were safeguarded against access by the competition. Sometimes companies 
rented their mailing lists when there was not a conflict with a competitor. But in those 
cases, the subject of the data, the name on the list, did not own the right to be on the list or 
not. With computers the volume and sources of data have increased significantly, but the 
subject still has no rights. 

These issues loss of control, no informed consent, no ownership of datahave 
significant privacy implications. The way we address these kinds of issues is with policies, 
written statements of practice that inform all affected parties of their rights. In the next 
section we investigate privacy policies for computing. 

10.2. Privacy Principles and Policies 
In the United States, interest in privacy and computer databases dates back at least 

to the early 1970s. (It is worth noting that the U.S. Watergate burglary occurred in 1972. 
Shortly after, reports surfaced that Nixon maintained an enemies list and had used IRS 
records as a means of combating adversaries. Thus people in the United States were 
sensitive about privacy at that time. Public concern for privacy has varied over the years.) In 
the early 1970s, a committee developed privacy principles that have affected U.S. laws and 
regulations and that also set the path for privacy legislation in other countries. We study 
the recommendations of that committee in the next section. 

Fair Information Policies 
In 1973 Willis Ware of the RAND Corporation chaired a committee to advise the 

Secretary of the U.S. Department of Human Services on privacy issues. The report 
(summarized in [WAR73a]) proposes a set of principles of fair information practice. 

 Collection limitation. Data should be obtained lawfully and fairly. 
 Data quality. Data should be relevant to their purposes, accurate, complete, and 

up-to-date. 
 Purpose specification. The purposes for which data will be used should be identified and 

the data destroyed if no longer necessary to serve that purpose. 
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 Use limitation. Use for purposes other than those specified is authorized only with 
consent of the data subject or by authority of law. 

 Security safeguards. Procedures to guard against loss, corruption, destruction, or misuse 
of data should be established. 

 Openness. It should be possible to acquire information about the collection, storage, and 
use of personal data systems. 

 Individual participation. The data subject normally has a right to access and to challenge 
data relating to her. 

 Accountability. A data controller should be designated and accountable for complying 
with the measures to give effect to the principles. 
These principles describe the rights of individuals, not requirements on collectors; that is, 
the principles do not require protection of the data collected. 

Ware [WAR73b] raises the problem of linking data in multiple files and of overusing 
keys, such as social security numbers, that were never intended to be used to link records. 
And although he saw that society was moving toward a universal identity number, he feared 
that movement would be without plan (and hence without control). He was right, even 
though he could not have foreseen the amount of data exchanged 30 years later. 

Turn and Ware [TUR75] consider protecting the data themselves, recognizing that 
collections of data will be attractive targets for unauthorized access attacks. They suggest 
four ways to protect stored data: 

 Reduce exposure by limiting the amount of data maintained, asking for only what is 
necessary and using random samples instead of complete surveys. 

 Reduce data sensitivity by interchanging data items or adding subtle errors to the data 
(and warning recipients that the data have been altered). 

 Anonymize the data by removing or modifying identifying data items. 
 Encrypt the data. 

You will see these four approaches mentioned again because they are the standard 
techniques available for protecting the privacy of data. 

U.S. Privacy Laws 
Ware and his committee expected these principles to apply to all collections of 

personal data on individuals. Unfortunately, that is not the way the legislation developed. 
The Ware committee report led to the 1974 Privacy Act (5 USC 552a), which embodies most 
of these principles, although that law applies only to data maintained by the U.S. 
government. 

The Privacy Act is a broad law, covering all data collected by the government. It is 
the strongest U.S. privacy law because of its breadth: It applies to all personal data held 
anywhere in the government. 

The United States subsequently passed laws protecting data collected and held by 
other organizations, but these laws apply piecemeal, by individual data type. Consumer 
credit is addressed in the Fair Credit Reporting Act, healthcare information in the Health 
Insurance Portability and Accountability Act (HIPAA), financial service organizations in the 
Gramm Leach Bliley Act (GLBA), children's web access in the Children's Online Privacy 
Protection Act (COPPA), and student records in the Federal Educational Rights and Privacy 
Act. Not surprisingly these separate laws are inconsistent in protecting privacy. 

Laws and regulations do help in some aspects of privacy protection. Antón et al. 
investigated the impact of the HIPAA law by analyzing companies' posted privacy policies 
before and after the privacy provisions of the law became effective [ANT06]. They found the 
following in policies posted after HIPAA: 

 Statements on data transfer (to other organizations) were more explicit than before 
HIPAA. 

 Consumers still had little control over the disclosure or dissemination of their data. 
 Statements were longer and more complex, making them harder for consumers to 

understand. 
 Even within the same industry branch (such as drug companies), statements varied 

substantially, making it hard for consumers to compare policies. 
 Statements were unique to specific web pages, meaning they covered more precisely the 

content and function of a particular page. 
A problem with many laws is that the target areas of the laws still overlap: Which 

law (if any) would require privacy protection of a university student's health center bills paid 
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by credit card? The laws have different protection and handling requirements, so it is 
important to determine which law applies to a single piece of data. Also, gaps between laws 
are not covered. As new technologies (such as computers, the Internet, or cell phones) are 
developed, either existing privacy laws have to be reinterpreted by the courts to apply to the 
new technologies or new laws have to be passed, which takes time. 

Sometimes the privacy provisions of a law are a second purpose, somewhat 
disguised by the first purpose of the law. As an example, the primary purpose of HIPAA was 
to ensure that people who left or were terminated from one job had health insurance to 
cover them until they got another job; the privacy aspects were far less prominent as the 
law was being developed. 

Controls on U.S. Government Web Sites 
Because privacy is ambiguous, privacy policies are an important way to both define 

the concept in a particular setting and specify what should or will be done about it. The 
Federal Trade Commission (FTC) has jurisdiction over web sites, including those of the 
federal government, that solicit potentially private data. In 2000 [FTC00], the FTC set 
requirements for privacy policy for government web sites. Because government web sites are 
covered by the Privacy Act, it was easy for the FTC to require privacy protection. The FTC 
determined that in order to obey the Privacy Act, government web sites would have to 
address five privacy factors. 

 Notice. Data collectors must disclose their information practices before collecting personal 
information from consumers. 

 Choice. Consumers must be given a choice as to whether and how personal information 
collected from them may be used. 

 Access. Consumers should be able to view and contest the accuracy and completeness 
of data collected about them. 

 Security. Data collectors must take reasonable steps to ensure that information collected 
from consumers is accurate and secure from unauthorized use. 

 Enforcement. A reliable mechanism must be in place to impose sanctions for 
noncompliance with these fair information practices. 

In 2002, the U.S. Congress enacted the e-Government Act of 2002 requiring that 
federal government agencies post privacy policies on their web sites. Those policies must 
disclose  

 the information that is to be collected 
 the reason the information is being collected 
 the intended use by the agency of the information 
 the entities with whom the information will be shared 
 the notice or opportunities for consent that would be provided to individuals regarding 

what information is collected and how that information is shared 
 the way in which the information will be secured 
 the rights of the individual under the Privacy Act and other laws relevant to the 

protection of the privacy of an individual 
These two acts apply only to web sites; data collected by other means (for example, 

by filing forms) are handled differently, usually on a case-by-case or agency-by-agency 
basis. The requirements reflected in the e-Government Act focus on the type of data (data 
supplied to the government through a web site) and not on the general notion of privacy. 

Controls on Commercial Web Sites 
The e-Government Act places strong controls on government data collection through 

web sites. As we described, privacy outside the government is protected by law in some 
areas, such as credit, banking, education, and healthcare. But there is no counterpart to 
the e-Government Act for private companies. 
No Deceptive Practices 

The Federal Trade Commission has the authority to prosecute companies that 
engage in deceptive trade or unfair business practices. If a company advertises in a false or 
misleading way, the FTC can sue. The FTC has used that approach on web privacy: If a 
company advertises a false privacy protection that is, if the company says it will protect 
privacy in some way but does not do so the FTC considers that false advertising and can 
take legal action. 
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Because of the FTC, privacy notices at the bottom of web sites do have meaning. 
This practice leads to a bizarre situation, however. A company is allowed to collect personal 
information and pass it in any form to anyone, as long as the company's privacy policy said 
it would do so, or at least the policy did not say it would not do so. Vowing to maintain 
privacy and intentionally not doing so is an illegal deceptive practice. Stating an intention to 
share data with marketing firms or "other third parties" makes such sharing acceptable, 
even though the third parties could be anyone. 
Examples of Deceptive Practices 

The FTC settled a prosecution in 2005 against Cart Manager International, a firm 
that runs familiar web shopping cart software to collect items of an order, obtain the 
purchaser's name  and address, and determine shipping and payment details. This software 
runs as an application under other well-known retail merchants' web sites to handle order 
processing. Some of these other retailers had privacy statements on their web sites saying, 
in effect, that they would not sell or distribute customers' data, but Cart Manager did sell 
the data it collected. The FTC held that the relationship to Cart Manager was invisible to 
users, and so the policy from the online merchants applied also to Cart Manager. 

In another case, Antón [ANT04] analyzed the privacy policy posted on the web site of 
Jet Blue airlines and found it misleading. Jet Blue stated that it would not disclose 
passenger data to third parties. It then released passenger data, "in response to a special 
request from the Department of Defense" to Torch Concepts, which in turn passed it to the 
Defense Department to use to test passenger screening algorithms for airline security. The 
data in question involved credit card information: Clearly the only reason for Jet Blue to 
have collected those data from passengers was to process charges for airline tickets. The 
analysis by Antón is interesting for two reasons:  

First, Jet Blue violated its own policy. 
Second, the Department of Defense may have circumvented the e-Government Act 

by acquiring from a private company data it would not have been able to collect as a 
government entity. The purpose for which the data were originally collected was ordinary 
business and accounting activities of Jet Blue. Using those same records to screen for 
terrorists was outside the scope of the original data collection. 

Commercial sites have no standard of content comparable to the FTC 
recommendation from the e-Government Act. Some companies display solid and detailed 
privacy statements that they must obey. On the other hand, you may find no statement at 
all, which gives the company the greatest flexibility because it is impossible to lie when 
saying nothing. Cranor [CRA03] makes some recommendations for useful web privacy 
policies.  

Non-U.S. Privacy Principles 
In 1981, the Council of Europe (an international body of 46 European countries, 

founded in 1949) adopted Convention 108 for the protection of individuals with regard to 
the automatic processing of personal data, and in 1995, the European Union (E.U.) adopted 
Directive 95/46/EC on the processing of personal data. Directive 95/46/EC, often called 
the European Privacy Directive, requires that rights of privacy of individuals be maintained 
and that data about them be 

 processed fairly and lawfully 
 collected for specified, explicit and legitimate purposes and not further processed in a 

way incompatible with those purposes (unless appropriate safeguards protect privacy) 
 adequate, relevant, and not excessive in relation to the purposes for which they are 

collected and/or further processed 
 accurate and, where necessary, kept up to date; every reasonable step must be taken to 

ensure that inaccurate or incomplete data having regard for the purposes for which they 
were collected or for which they are further processed, are erased or rectified 

 kept in a form that permits identification of data subjects for no longer than is necessary 
for the purposes for which the data were collected or for which they are further processed 

In addition, individuals have the right to access data collected about them, to correct 
inaccurate or incomplete data, and to have those corrections sent to those who have 
received the data. The report adds three more principles to the Fair Information Policies. 

 Special protection for sensitive data. There should be greater restrictions on data 
collection and processing that involves "sensitive data." Under the E.U. data protection 
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directive, information is sensitive if it involves "racial or ethnic origin, political opinions, 
religious beliefs, philosophical or ethical persuasion . . . [or] health or sexual life." 

 Data transfer. This principle explicitly restricts authorized users of personal information 
from transferring that information to third parties without the permission of the data 
subject. 

 Independent oversight. Entities that process personal data should not only be 
accountable but should also be subject to independent oversight. In the case of the 
government, this requires oversight by an office or department that is separate and 
independent from the unit engaged in the data processing. Under the data protection 
directive, the independent overseer must have the authority to audit data processing 
systems, investigate complaints brought by individuals, and enforce sanctions for 
noncompliance. 
(This is a very brief summary of the much longer law. See the original Directive for more 
detail.) These requirements apply to governments, businesses, and other organizations that 
collect personal data. Since the 1995 directive, the European Union has extended coverage 
to telecommunications systems and made other changes to adapt to advances in 
technology. 

In addition to European countries and the United States, other countries, such as 
Japan, Australia, and Canada, have passed laws protecting the privacy of personal data 
about individuals. 

Different laws in different jurisdictions will inevitably clash. Relations between the 
European Union and the United States have been strained over privacy because the E.U. 
law forbids sharing data with companies or governments in countries whose privacy laws 
are not as strong as those of the E.U. (The United States and the European Union have 
agreed to a set of "safe harbor" principles that let U.S. companies trade with European 
countries in spite of not meeting all European privacy laws.) In Sidebar 10-1 you can see 
how these different laws can affect commerce and, ultimately, diplomatic relations. 

Anonymity, Multiple Identities 
One way to preserve privacy is to guard our identity. Not every context requires us to 

reveal our identity, so some people wear a form of electronic mask. 
Anonymity 

A person may want to do some things anonymously. For example, a rock star buying 
a beach house might want to avoid unwanted attention from neighbors, or someone posting 
to a dating list might want to view replies before making a date. 

Mulligan [MUL99] lists several reasons people prefer anonymous activity on the web. 
Some people like the anonymity of the web because it reduces fears of discrimination. 
Fairness in housing, employment, and association are easier to ensure when the basis for 
potential discrimination is hidden. Also, people researching what they consider a private 
matter, such as a health issue or sexual orientation, are more likely to seek first 
information from what they consider an anonymous source, turning to a human when they 
have found out more about their situation. 

Anonymity creates problems, too. How does an anonymous person pay for 
something? A trusted third party (for example, a real estate agent or a lawyer) can complete 
the sale and preserve anonymity. But then you need a third party and the third party 
knows who you are. 

Chaum [CHA81, CHA82, CHA85] studied this problem and devised a set of protocols 
by which such payments could occur without revealing the buyer to the seller. 
Multiple IdentitiesLinked or Not 

Most people already have multiple identities. To your bank you might be the holder 
of account 123456, to your motor vehicles bureau you might be the holder of driver's 
license number 234567, and to your credit card company you might be the holder of card 
345678. For their purposes, these numbers are your identity; the fact that each may (or 
may not) be held in your name is irrelevant. The name does become important if it is used 
as a way to link these records. How many people share your name? Can (or should) it serve 
as a key value to link these separate databases? We ignore the complication of misspellings 
and multiple valid forms (with and without middle initials, with full middle name, with one 
of two middle names if you have them, and so forth). 

Suppose you changed your name legally but never changed the name on your credit 
card; then your name could not be used as a key on which to link. Another possible link 
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field is address. However, trying to use an address on which to link presents another risk: 
Perhaps a criminal lived in your house before you bought it. You should not have to defend 
your reputation because of a previous occupant. Now we need to match on date, too, so we 
connect only people who actually lived in a house at the same time. Then we need to 
address the problem of group houses or roommates of convenience, and so forth. As 
computer scientists, we know we can program all these possibilities, but that requires 
careful and time-consuming consideration of the potential problems before designing the 
solution. We can also see the potential for misuse and inaccuracy. 

Linking identities correctly to create dossiers and break anonymity creates privacy 
risks, but linking them incorrectly creates much more serious risks for the use of the data 
and the privacy of affected people. If we think carefully we can determine many of the ways 
such a system would fail, but that approach is potentially expensive and time consuming. 
The temptation to act quickly but inaccurately will also affect privacy. 
Pseudonymity 

Sometimes, full anonymity is not wanted. A person may want to order flower bulbs 
but not be placed on a dozen mailing lists for gardening supplies. But the person does want 
to be able to place similar orders again, asking for the same color tulips as before. This 
situation calls for pseudonyms, unique identifiers that can be used to link records in a 
server's database but that cannot be used to trace back to a real identity. 

Multiple identities can also be convenient, for example, having a professional e-mail 
account and a social one. Similarly, disposable identities (that you use for a while and then 
stop using) can be convenient. When you sign up for something and you know your e-mail 
address will be sold many times, you might get a new e-mail address to use until the spam 
and other unsolicited e-mail are oppressive, and then you discard the address. These uses 
are called pseudonymity. Seigneur and Jensen [SEI03] discuss the use of e-mail aliases to 
maintain privacy. These ways protect our privacy because we do not have to divulge what 
we consider sensitive data. But they also show we need a form of privacy protection that is 
unavailable. 

The Swiss bank account was a classic example of a pseudonym. Each customer had 
only a number to access the account. Presumably anyone with that number could perform 
any transaction on the account. (Obviously there were additional protections against 
guessing.) 

While such accounts were in use (their use was discontinued in the early 1990s 
because of their having been used to hold ill-gotten Nazi gains from World War II), Swiss 
banks had an outstanding reputation for maintaining the anonymity of the depositors. 

Some people register pseudonyms with e-mail providers so that they have 
anonymous drop boxes for e-mail. Others use pseudonyms in chat rooms or with online 
dating services. We consider pseudonyms later in this chapter when we study privacy for e-
mail.  

Government and Privacy 
The government gathers and stores data on citizens, residents, and visitors. 

Government facilitates and regulates commerce and other kinds of personal activities such 
as healthcare, employment, education, and banking. In those roles the government is both 
an enabler or regulator of privacy and a user of private data. Government use of private 
data should be controlled. In this section we consider some of the implications of 
government access to private data. 
Authentication 

Government plays a complex role in personal authentication. Many government 
agencies (such as the motor vehicles bureau) use identifiers to perform their work. 
Authentication documents (such as passports and insurance cards) often come from the 
government. The government may also regulate the businesses that use identification and 
authentication keys. And sometimes the government obtains data based on those keys from 
others (for example, the U.S. government planned to buy credit reports from private 
companies to help with screening  airline passenger lists for terrorists). In these multiple 
roles, the government may misuse data and violate privacy rights. 
Data Access Risks 

Recognizing that there were risks in government access to personal data, the 
Secretary of Defense appointed a committee to investigate private data collection. The 
Technology and Privacy Advisory Committee, chaired by Newton Minow, former chair of the 
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Federal Communications Commission, produced its report in 2004 [TAP04]. Although their 
charge had been to review privacy and data collection within the Department of Defense, 
they found it impossible to separate the DoD from the rest of government, so they made 
recommendations for both the Department of Defense and the federal government as a 
whole. 

They recognized risks when the government started to acquire data from other 
parties:  

 data errors: ranging from transcription errors to incorrect analysis 
 inaccurate linking: two or more correct data items but incorrectly linked on a presumed 

common element 
 difference of form and content: precision, accuracy, format, and semantic errors 
 purposely wrong: collected from a source that intentionally gives incorrect data, such as a 

forged identity card or a false address given to mislead 
 false positive: an incorrect or out-of-date conclusion that the government does not have 

data to verify or reject, for example, delinquency in paying state taxes 
 mission creep: data acquired for one purpose leading to a broader use because the data 

will support that mission 
 poorly protected: data of questionable integrity because of the way it has been managed 

and handled 
These risks apply to all branches of government, and most of them apply to private 

collection and use of data. 
Steps to Protect Against Privacy Loss 

The committee recommended several steps the government can take to help 
safeguard private data. 

 Data minimization. Obtain the least data necessary for the task. For example, if the goal is 
to study the spread of a disease, only the condition, date, and vague location (city or 
county) may suffice; the name or contact information of the patient may be unnecessary. 

 Data anonymization. Where possible, replace identifying information with untraceable 
codes (such as a record number); but make sure those codes cannot be linked to another 
database that reveals sensitive data. 

 Audit trail. Record who has accessed data and when, both to help identify responsible 
parties in the event of a breach and to document the extent of damage. 

 Security and controlled access. Adequately protect and control access to sensitive data. 
 Training. Ensure people accessing data understand what to protect and how to do so. 
 Quality. Take into account the purpose for which data were collected, how they were 

stored, their age, and similar factors to determine the usefulness of the data. 
 Restricted usage. Different from controlling access, review all proposed uses of the data to 

determine if those uses are consistent with the purpose for which the data were collected 
and the manner in which they were handled (validated, stored, controlled). 

 Data left in place. If possible, leave data in place with the original owner. This step helps 
guard against possible misuses of the data from expanded mission just because the data 
are available. 

 Policy. Establish a clear policy for data privacy. Do not encourage violation of privacy 
policies. 
These steps would help significantly to ensure protection of privacy. 

Identity Theft 
As the name implies, identity theft is taking another person's identity. Use of 

another person's credit card is fraud; taking out a new credit card in that person's name is 
identity theft. Identity theft has risen as a problem from a relatively rare issue in the 1970s. 
In 2005, the U.S. Federal Trade Commission received over 250,000 complaints of identity 
theft [FTC06]. 

Most cases of identity theft become apparent in a month or two when fraudulent 
bills start coming in. By that time the thief has made a profit and has dropped this identity, 
moving on to a new victim. 

Having relatively few unique keys facilitates identity theft: A thief who gets one key 
can use that to get a second, and those two to get a third. Each key gives access to more 
data and  resources. Few companies or agencies are set up to ask truly discriminating 
authentication questions (such as the grocery store at which you frequently shop or the city 
to which you recently bought an airplane ticket or third digit on line four of your last tax 
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return). Because there are few authentication keys, we are often asked to give the same key 
(such as mother's maiden name) out to many people, some of whom might be part-time 
accomplices in identity theft. 

10.3. Authentication and Privacy 
In Chapter 4 we studied authentication, which we described as a means of proving 

or verifying a previously given identity. We also discussed various authentication 
technologies, which are subject to false accept (false positive) and false reject (false negative) 
limitations. A social problem occurs when we confuse authentication with identification. 
We know that passwords are a poor discriminator. You would not expect all users of a 
system to have chosen different passwords. All we need is for the IDpassword pair to be 
unique. On the other end of the spectrum, fingerprints and the blood vessel pattern in the 
retina of the eye are unique: given a fingerprint or retina pattern we expect to get but one 
identity that corresponds or to find no match in the database. That assumes we work with a 
good image. If the fingerprint is blurred or incomplete (not a complete contact or on a partly 
unsuitable surface), we might get several possible matches. If the possible matches are A, 
B, and C and the question is whether the print belongs to B, it is probably acceptable to 
allow the access on the grounds that the identity was among a small set of probable 
matches. Other authenticators are less sophisticated still. Hand geometry or the 
appearance of a face does not discriminate so well. Face recognition, in particular, is highly 
dependent on the quality of the facial image: Evaluating a photograph of one person staring 
directly into a camera is very different from trying to work with one face in the picture of a 
crowd. 

Two different purposes are at work here, although the two are sometimes confused. 
For authentication we have an identity and some authentication data, and we ask if the 
authentication data match the pattern for the given identity. For identification, we have only 
the authentication data and we ask which identity corresponds to the authenticator. The 
second is a much harder question to answer than the first. For the first, we can say the 
pattern matches some percentage of the characteristics of our stored template, and based 
on the percentage, we declare a match or no match. For the second question, we do not 
know if the subject is even in the database. So even if we find several potential matches at 
various percentages, we do not know if there might be an even better match with a template 
not in our database. 

What Authentication Means 
We use the term authentication to mean three different things [KEN03]: We 

authenticate an individual, identity, or attribute. An individual is a unique person. 
Authenticating an individual is what we do when we allow a person to enter a controlled 
room: We want only that human being to be allowed to enter. An identity is a character 
string or similar descriptor, but it does not necessarily correspond to a single person, nor 
does each person have only one name. We authenticate an identity when we acknowledge 
that whoever (or whatever) is trying to log in as admin has presented an authenticator valid 
for that account. Similarly, authenticating an identity in a chat room as SuzyQ does not say 
anything about the person using that identifier: 

It might be a 16-year-old girl or a pair of middle-aged male police detectives, who at 
other times use the identity Frere Jacques. 

Finally, we authenticate an attribute if we verify that a person has that attribute. An 
attribute is a characteristic. Here's an example of authenticating an attribute. Some places 
require one to be 21 or older in order to drink alcohol. A club's doorkeeper verifies a 
person's age and stamps the person's hand to show that the patron is over 21. Note that to 
decide, the doorkeeper may have looked at an identity card listing the person's birth date, 
so the doorkeeper knew the person's exact age to be 24 years, 6 months, 3 days, or the 
doorkeeper might be authorized to look at someone's face and decide if the person looks so 
far beyond 21 that there is no need to verify. The stamp authenticator signifies only that the 
person possesses the attribute of being 21 or over. 

In computing applications we frequently authenticate individuals, identities, and 
attributes. Privacy issues arise when we confuse these different authentications and what 
they mean.  

For example, the U.S. social security number was never intended to be an identifier, 
but now it often serves as an identifier, an authenticator, a database key, or all of these. 
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When one data value serves two or more uses, a person acquiring it for one purpose can 
use it for another. Relating an identity to a person is tricky. In Chapter 7 we tell the story of 
rootkits, malicious software by which an unauthorized person can acquire supervisory 
control of a computer. Suppose the police arrest Ionut for chewing gum in public and seize 
his computer. By examining the computer the police find evidence connecting that 
computer to an espionage case. The police show incriminating e-mail messages from Ionut 
on Ionut's computer and charge him. In his defense, Ionut points to a rootkit on his 
computer. He acknowledges that his computer may have been used in the espionage, but 
he denies that he was personally involved. The police have, he says, drawn an unjustifiable 
connection between Ionut's identity in the e-mail and Ionut the person. The rootkit is a 
plausible explanation for how some other person acted under the identity of Ionut. This 
example shows why we must carefully distinguish individual, identity, and attribute 
authentication. 

We examine the privacy implications of authentication in the next section. 
Individual Authentication 

There are relatively few ways of identifying an individual. When we are born, for 
most of us our birth is registered at a government records office, and we (probably our 
parents) receive a birth certificate. A few years later our parents enroll us in school, and 
they have to present the birth certificate, which then may lead to receiving a school identity 
card. We submit the birth certificate and a photo to get a passport or a national identity 
card. We receive many other authentication numbers and cards throughout life. 

The whole process starts with a birth certificate issued to (the parents of) a baby, 
whose physical description (height, weight, even hair color) will change significantly in just 
months. 

Birth certificates may contain the baby's fingerprints, but matching a poorly taken 
fingerprint of a newborn baby to that of an adult is challenging at best. (For additional 
identity authentication problems, see Sidebar 10-2.) 

Fortunately, in most settings it is acceptable to settle for weak authentication for 
individuals: 

A friend who has known you since childhood, a schoolteacher, neighbors, and 
coworkers can support a claim of identity. 
Identity Authentication 

We all use many different identities. When you buy something with a credit card, 
you do so under the identity of the credit card holder. In some places you can pay road tolls 
with a radio frequency device in your car, so the sensor authenticates you as the holder of a 
particular toll device. You may have a meal plan that you can access by means of a card, so 
the cashier authenticates you as the owner of that card. You check into a hotel and get a 
magnetic stripe card instead of a key, and the door to your room authenticates you as a 
valid resident for the next three nights. If you think about your day, you will probably find 
10 to 20 different ways some identity of you has been authenticated. 

From a privacy standpoint, there may or may not be ways to connect all these 
different identities. A credit card links to the name and address of the card payer, who may 
be you, your spouse, or anyone else willing to pay your expenses. Your auto toll device links 
to the name and perhaps address of whoever is paying the tolls: you, the car's owner, or an 
employer. When you make a telephone call, there is an authentication to the account holder 
of the telephone, and so forth. 

Sometimes we do not want an action associated with an identity. For example, an 
anonymous tip or "whistle-blower's" telephone line is a means of providing anonymous tips 
of illegal or inappropriate activity. If you know your boss is cheating the company, 
confronting your boss might not be a good career-enhancing move. You probably don't even 
want there to be a record that would allow your boss to determine who reported the fraud. 
So you report it anonymously. You might take the precaution of calling from a public phone 
so there would be no way to trace the person who called. In that case, you are purposely 
taking steps so that no common identifier could link you to the report. 

Because of the accumulation of data, however, linking may be possible. As you leave 
your office to go to a public phone, there is a record of the badge you swiped at the door. A 
surveillance camera shows you standing at the public phone. The record of the coffee shop 
has a timestamp showing when you bought your coffee (using your customer loyalty card) 
before returning to your office. The time of these details matches the time of the anonymous 
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tip by telephone. In the abstract these data items do not stand out from millions of others. 
But someone probing a few minutes around the time of the tip can construct those links. In 
this example, linking would be done by hand. Ever-improving technology permits more 
parallels like these to be drawn by computers from seemingly unrelated and uninteresting 
datapoints. 

Therefore, to preserve our privacy we may thwart attempts to link records. A friend 
gives a fictitious name when signing up for customer loyalty cards at stores. Another friend 
makes dinner reservations under a pseudonym. In one store they always ask for my 
telephone number when I buy something, even if I pay cash. Records clerks do not make 
the rules, so it is futile asking them why they need my number. If all they want is a 
number, I gladly give them one; it just doesn't happen to correspond to me. 
Anonymized Records 

Part of privacy is linkages: Some person is named Erin, some person has the 
medical condition diabetes; neither of those facts is sensitive. The linkage that Erin has 
diabetes becomes sensitive. 

Medical researchers want to study populations to determine incidence of diseases, 
common factors, trends, and patterns. To preserve privacy, researchers often deal with 
anonymized records, records from which identifying information has been removed. If those 
records can be reconnected to the identifying information, privacy suffers. If, for example, 
names have been removed from records but telephone numbers remain, a researcher can 
use a different database of telephone numbers to determine the patient, or at least the 
name assigned to the telephone. Removing enough information to prevent identification is 
difficult and can also limit the research possibilities. 

As described in Chapter 6, Ross Anderson was asked to study a major database 
being prepared for citizens of Iceland. The database would have brought together several 
healthcare databases for the benefit of researchers and healthcare professionals. 
Anderson's analysis was that even though the records had been anonymized, it was still 
possible to relate specific records to individual people [AND98a, JON00]. Even though there 
were significant privacy difficulties, Iceland went ahead with plans to build the combined 
database. 

In one of the most stunning analyses on deriving identities, Sweeney [SWE01] 
reports that 87 percent of the population of the United States is likely to be identified by the 
combination of 5-digit zip code, gender, and date of birth. That statistic is amazing when 
you consider that close to 10,000 U.S. residents must share any birthday or that the 
average population in any 5-digit zip code area is 30,000. Sweeney backs up her statistical 
analysis with a real-life study. In 1997 she analyzed the voter rolls of Cambridge, 
Massachusetts, a city of about 50,000 people, one of whom was the then current governor. 
She took him as an example and found that only six people had his birth date, only three of 
those were men, and he was the only one of those three living in his 5-digit zip code. As a 
public figure, he had published his date of birth in his campaign literature, but birth dates 
are sometimes available from public records. Similar work on deriving identities from 
anonymized records [SWE04, MAL02] showed how likely one is to deduce an identity from 
other easily obtained data.  

Sweeney's work demonstrates compellingly how difficult it is to anonymize data 
effectively. Many medical records are coded with at least gender and date of birth, and those 
records are often thought to be releasable for anonymous research purposes. Furthermore, 
medical researchers may want a zip code to relate medical conditions to geography and 
demography. 

Few people would think that adding zip codes would lead to such high rates of 
breach of privacy. 

Conclusions 
As we have just seen, identification and authentication are two different activities 

that are easy to confuse. Part of the confusion arises because people do not clearly 
distinguish the underlying concepts. The confusion is also the result of using one data item 
for more than one purpose. 

Authentication depends on something that confirms a property. In life few sound 
authenticators exist, so we tend to overuse those we do have: an identification number, 
birth date, or family name. But, as we described, those authenticators are also used as 
database keys, with negative consequences to privacy. 



237 
 

Table 10-1. Example for 

Data Perturbation. 
Name    ID 
Erin    1 
Aarti    2 
Geoff   3 
ID   Condition 
1  diabetes 
2   none 
3   measles 

We have also studied cases in which we do not want to be identified. Anonymity and 
pseudonymity are useful in certain contexts. But data collection and correlation, on a scale 
made possible only with computers, can defeat anonymity and pseudonymity. 

As we computer professionals introduce new computer capabilities, we need to 
encourage a public debate on the related privacy issues. 

In the next section we study data mining, a data retrieval process involving the 
linking of databases. 

10.4. Data Mining 
In Chapter 6 we described the process and some of the security and privacy issues 

of data mining. Here we consider how to maintain privacy in the context of data mining. 
Private sector data mining is a lucrative and rapidly growing industry. The more data 
collected, the more opportunities for learning from various aggregations. Determining 
trends, market preferences, and characteristics may be good because they lead to an 
efficient and effective market. But people become sensitive if the private information 
becomes known without permission. 

Government Data Mining 
Especially troubling to some people is the prospect of government data mining. We 

believe we can stop excesses and intrusive behavior of private companies by the courts, 
unwanted publicity, or other forms of pressure. It is much more difficult to stop the 
government. In many examples governments or rulers have taken retribution against 
citizens deemed to be enemies, and some of those examples come from presumably 
responsible democracies. Much government data collection and analysis occurs without 
publicity; some programs are just not announced and others are intentionally kept secret. 
Thus, citizens have a fear of what unchecked government can do. Citizens' fears are 
increased because data mining is not perfect or exact, and as many people know, correcting 
erroneous data held by the government is next to impossible. 

Privacy-Preserving Data Mining 
Because data mining does threaten privacy, researchers have looked into ways to 

protect privacy during data mining operations. A naïve and ineffective approach is trying to 
remove all identifying information from databases being mined. Sometimes, however, the 
identifying information is precisely the goal of data mining. More importantly, as the 
preceding example from Sweeney showed, identification may be possible even when the 
overt identifying information is removed from a database. 

Data mining has two approaches correlation and aggregation. We examine 
techniques to preserve privacy with each of those approaches. 
Privacy for Correlation 

Correlation involves joining databases on common fields. As in a previous example, 
the facts that someone is named Erin and someone has diabetes have privacy significance 
only if the link between Erin and diabetes exists. Privacy preservation for correlation 
attempts to control that linkage. 

Vaidya and Clifton [VAI04] discuss data perturbation as a way to prevent privacy-
endangering correlation. As a simplistic example, assume two databases contain only three 
records, as shown in Table 10-1. The ID field linking these databases makes it easy to see 
that Erin has diabetes. 

One form of data perturbation involves 
swapping data fields to prevent linking of records. 
Swapping the values Erin and Geoff (but not the ID 
values) breaks the linkage of Erin to diabetes. Other 
properties of the databases are preserved: Three 
patients have actual names and three conditions 
accurately describe the patients. Swapping all data 
values can prevent useful analysis, but limited 
swapping balances privacy and accuracy. With our 
example of swapping just Erin and Geoff, you still 
know that one of the participants has diabetes, but 
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you cannot know if Geoff (who now has ID=1) has been swapped or not. Because you 
cannot know if a value has been swapped, you cannot assume any such correlation you 
derive is true. 

Our example of three data points is, of course, too small for a realistic data mining 
application, but we constructed it just to show how value swapping would be done. 
Consider a more realistic example on larger databases. Instead of names we might have 
addresses, and the purpose of the data mining would be to determine if there is a 
correlation between a neighborhood and an illness, such as measles. Swapping all 
addresses would defeat the ability to draw any correct conclusions regarding neighborhood. 
Swapping a small but significant number of addresses would introduce uncertainty to 
preserve privacy. Some measles patients might be swapped out of the high-incidence 
neighborhoods, but other measles patients would also be swapped in. If the neighborhood 
has a higher incidence than the general population, random swapping would cause more 
losses than gains, thereby reducing the strength of the correlation. After value swapping an 
already weak correlation might become so weak as to be statistically insignificant. But a 
previously strong correlation would still be significant, just not as strong. 

Thus value-swapping is a technique that can help to achieve some degrees of privacy 
and accuracy under data mining. 
Privacy for Aggregation 

Aggregation need not directly threaten privacy. As demonstrated in Chapter 6, an 
aggregate (such as sum, median, or count) often depends on so many data items that the 
sensitivity of any single contributing item is hidden. Government statistics show this well: 
Census data, labor statistics, and school results show trends and patterns for groups (such 
as a neighborhood or school district) but do not violate the privacy of any single person. 
As we explained in Chapter 6, inference and aggregation attacks work better nearer the 
ends of the distribution. If there are very few or very many points in a database subset, a 
small number of equations may disclose private data. The mean of one data value is that 
value exactly. With three data values, the means of each pair yield three equations in three 
unknowns, which you know can be solved easily with linear algebra. A similar approach 
works for very large subsets, such as (n-3) values. Mid-sized subsets preserve privacy quite 
well. So privacy is maintained with the rule of n items, over k percent, as described in 
Chapter 6. 

Data perturbation works for aggregation, as well. With perturbation you add a small 
positive or negative error term to each data value. Agrawal and Srikant [AGR00] show that 
given the distribution of data after perturbation and given the distribution of added errors, 
it is possible to determine the distribution (not the values) of the underlying data. The 
underlying distribution is often what researchers want. This result demonstrates that data 
perturbation can help protect privacy without sacrificing the accuracy of results. 

Vaidya and Clifton [VAI04) also describe a method by which databases can be 
partitioned to preserve privacy. Our trivial example in Table 10-1 could be an example of a 
database that was partitioned vertically to separate the sensitive association of name and 
condition. 
Summary of Data Mining and Privacy 

As we have described in this section, data mining and privacy are not mutually 
exclusive: We can derive results from data mining without sacrificing privacy. True, some 
accuracy is lost with perturbation. A counterargument is that the weakening of confidence 
in conclusions mostseriously affects weak results; strong conclusions become only 
marginally less strong. 

Additional research will likely produce additional techniques for preserving privacy 
during data mining operations. We can derive results without sacrificing privacy, but 
privacy will not exist automatically. The techniques described here must be applied by 
people who understand and respect privacy implications. Left unchecked, data mining has 
the potential to undermine privacy. Security professionals need to continue to press for 
privacy in data mining applications. 

10.5. Privacy on the Web 
The Internet is perhaps the greatest threat to privacy. As Chapter 7 says, an 

advantage of the Internet, which is also a disadvantage, is anonymity. A user can visit web 
sites, send messages, and interact with applications without revealing an identity. At least 
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that is what we would like to think. Unfortunately, because of things like cookies, ad-ware, 
spybots, and malicious code, the anonymity is superficial and largely one-sided. 
Sophisticated web applications can know a lot about a user, but the user knows relatively 
little about the application. 

The topic is clearly of great interest: a recent Google search returned 7 billion hits 
for the phrase "web privacy." In this section we investigate some of the ways a user's privacy 
is lost on the Internet.  

Understanding the Online Environment 
The Internet is like a nightmare of a big, unregulated bazaar. Every word you speak 

can be heard by many others. And the merchants' tents are not what they seem: the spice 
merchant  actually runs a gambling den, and the kind woman selling scarves is really three 
pirate brothers and a tiger. You reach into your pocket for money only to find that your 
wallet has been emptied. Then the police tell you that they would love to help but, sadly, no 
laws apply. 

Caveat emptor in excelsis. We have previously described the anonymity of the web. It 
is difficult for two unrelated parties to authenticate each other. Internet authentication 
most often confirms the user's identity, not the server's, so the user is unsure that the web 
site is legitimate. This uncertainty makes it difficult to give informed consent to release of 
private data: How can consent be informed if you don't know to whom you are giving 
consent? 

Payments on the Web 
Customers of online merchants have to be able to pay for purchases. Basically, there 

are two approaches: the customer presents a credit card to the merchant or the customer 
arranges payment through an online payment system such as PayPal. 
Credit Card Payments 

With a credit card, the user enters the credit card number, a special number printed 
on the card (presumably to demonstrate that the user actually possesses the card), the 
expiration date of the card (to ensure that the card is currently active), and the billing 
address of the credit card (presumably to protect against theft of credit card). These 
protections are all on the side of the merchant: They demonstrate that the merchant made a 
best effort to determine that the credit card use was legitimate. There is no protection to the 
customer that the merchant will secure these data. Once the customer has given this 
information to one merchant, that same information is all that would be required for 
another merchant to accept a sale charged to the same card. 

Furthermore, these pieces of information provide numerous static keys by which to 
correlate databases. As we have seen, names can be difficult to work with because of the 
risk of misspelling, variation in presentation, truncation, and the like. Credit card numbers 
make excellent keys because they can be presented in only one way and there is even a 
trivial check digit to ensure that the card number is a valid sequence. 

Because of problems with stolen credit card numbers, there has been some 
consideration of disposable credit cards: cards you could use for one transaction or for a 
fixed short period of time. That way, if a card number is stolen or intercepted, it could not 
be reused. Furthermore, having multiple card numbers limits the ability to use a credit card 
number as a key to compromise privacy. 
Payment Schemes 

The other way to make web payments is with an online payment scheme, such as 
PayPal (which is now a subsidiary of the eBay auction site). You pay PayPal a sum of money 
and you receive an account number and a PIN. You can then log in to the PayPal central 
site, give an e-mail address and amount to be paid, and PayPal transfers that amount. 
Because it is not regulated under the same banking laws as credit cards, PayPal offers less 
consumer protection than does a credit card. However, the privacy advantage is that the 
user's credit card or financial details are known only to PayPal, thus reducing the risk of 
their being stolen. Similar schemes use cell phones. 

Site and Portal Registrations 
Registering to use a site is now common. Often the registration is free; you just 

choose a user ID and password. Newspapers and web portals (such as Yahoo or MSN) are 
especially fond of this technique. The explanation they give sounds soothing: They will 
enhance your browsing experience (whatever that means) and be able to offer content to 
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people throughout the world. In reality, the sites want to obtain customer demographics 
that they can then sell to marketers or show to advertisers to warrant their advertising. 
People have trouble remembering numerous IDs so they tend to default to simple ones, 
often variations on their names. And because people have trouble remembering IDs, the 
sites are making it easier: Many now ask you to use your e-mail address as your ID. The 
problem with using the same ID at many sites is that it now becomes a database key on 
which previously separate databases from different sites can be merged. Even worse, 
because the ID or e-mail address is often closely related to the individual's real name, this 
link also connects a person's identity with the other collected data. So now, a data 
aggregator can infer that V. Putin browsed the New York Times looking for articles on vodka 
and longevity and then bought 200 shares of stock in a Russian distillery. 

You can, of course, try to remember many different IDs. Or you can choose a 
disposable persona, register for a free e-mail account under a name like xxxyyy, and never 
use the account for anything except these mandatory free registrations. And it often seems 
that when there is a need, there arises a service. See www.bugmenot.com for a service that 
will supply a random anonymous ID and password for sites that require a registration. 

Whose Page Is This? 
The reason for registrations has little to do with the newspaper or the portal; it has 

to do with advertisers, the people who pay so the web content can be provided. The web 
offers much more detailed tracking possibilities than other media. If you see a billboard for 
a candy bar in the morning and that same advertisement remains in your mind until lunch 
time and you buy that same candy bar at lunch, the advertiser is very happy: The 
advertising money has paid off. But the advertiser has no way to know whether you saw an 
ad (and if so which one). 

There are some coarse measures: After an ad campaign if sales go up, the campaign 
probably had some effect. But advertisers would really like a closer cause-and-effect 
relationship. Then the web arrived. 
Third-Party Ads 

You log in to Yahoo Sports and you might see advertisements for mortgages, 
banking, auto loans, maybe some sports magazines or a cable television offer, and a fast 
food chain. You click one of the links and you either go directly to a "buy here now" form or 
you get to print a special coupon worth something on your purchase in person. Web 
advertising is much more connected to the purchaser: You see the ad, you click on it, and 
they know the ad did its job by attracting your attention. (With a highway billboard they 
never know if you watch it or traffic.) When you click through and buy, the ad has really 
paid off. When you click through and print a coupon that you later present, a tracking 
number on the coupon lets them connect to advertising on a particular web site. From the 
advertiser's point of view, the immediate feedback is great. 

But each of these activities can be tracked and connected. Is it anyone's business 
that you like basketball and are looking into a second mortgage? Remember that from your 
having logged in to the portal site, they already have an identity that may link to your 
actual name. 
Contests and Offers 

We cannot resist anything free. We will sign up for a chance to win a large prize, 
even if we have only a minuscule chance of succeeding. Advertisers know that. So contests 
and special offers are a good chance to get people to divulge private details. Another thing 
advertisers know is that people are enthusiastic at the moment but enthusiasm and 
attention wane quickly. 

A typical promotion offers you a free month of a service. You just sign up, give a 
credit card number, which won't be charged until next month, and you get a month's use of 
the service for free. As soon as you sign up, the credit card number and your name become 
keys by which to link other data. You came via a web access, so there may be a link history 
from the forwarding site. 

Precautions for Web Surfing 
In this section we discuss cookies and web bugs, two technologies that are 

frequently used to monitor a user's activities without the user's knowledge. 
Cookies 
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Cookies are files of data set by a web site. They are really a cheap way to transfer a 
storage need from a web site to a user. A portal such as Yahoo allows a user to customize 
the look of the web page. Sadie wants the news headlines, the weather, and her e-mail, with 
a bright background; Norman wants stock market results, news about current movies 
playing in his area, and interesting things that happened on this day in history, displayed 
on a gentle pastel background. Yahoo could keep all this preference information in its 
database so that it could easily customize pages it sends to these two users. But Netscape 
realized that the burden could be shifted to the user. The web protocol is basically stateless, 
meaning that the browser displays whatever it is given, regardless of anything that has 
happened previously. 

A cookie is a text file stored on the user's computer and passed by the user's 
browser to the web site when the user goes to that site. Thus, preferences for Sadie or 
Norman are stored on their own computers and passed back to Yahoo to help Yahoo form 
and deliver a web page according to Sadie's or Norman's preferences. A cookie contains six 
fields: name, value, expiration date, path on the server to which it is to be delivered, domain 
of the server to which it is to be delivered, and whether a secure connection (SSL) is 
required in order for the cookie to be delivered. A site can set as many cookies as it wants 
and can store any value (up to 4,096 bytes) it wants. Some sites use cookies to avoid a 
customer's having to log in on each visit to a site; these cookies contain the user's ID and 
password. A cookie could contain a credit card number, the customer name and shipping 
address, the date of the last visit to the site, the number of items purchased or the dollar 
volume of purchases. Obviously for sensitive information, such as credit card number or 
even name and address, the site should encrypt or otherwise protect the data in the cookie. 
It is up to the site what kind of protection it wants to apply to its cookies. The user never 
knows if or how data are protected. 

The path and domain fields protect against one site's being able to access another's 
cookies. Almost. As we show in the next section, one company can cooperate with another 
to share the data in its cookies. 
Third-Party Cookies 

When you visit a site, its server asks your browser to save a cookie. When you visit 
that site again your browser passes that cookie back. The general flow is from a server to 
your browser and later back to the place from which the cookie came. A web page can also 
contain cookies for another organization. Because these cookies are for organizations other 
than the web page's owner, they are called third-party cookies. 

DoubleClick has built a network of over 1,500 web sites delivering content: news, 
sports, food, finance, travel, and so forth. These companies agree to share data with 
DoubleClick. 

Web servers contain pages with invisible ads from DoubleClick, so whenever that 
page is loaded, DoubleClick is invoked, receives the full invoking URL (which may also 
indicate other ads to be loaded), and is allowed to read and set cookies for itself. So, in 
essence, DoubleClick knows where you have been, where you are going, and what other ads 
are placed. But because it gets to read and write its cookies, it can record all this 
information for future use. 
Here are some examples of things a third-party cookie can do. 

 Count the number of times this browser has viewed a particular web page. 
 Track the pages a visitor views, within a site or across different sites. 
 Count the number of times a particular ad has appeared. 
 Match visits to a site with displays of an ad for that site. 
 Match a purchase to an ad a person viewed before making the purchase. 
 Record and report search strings from a search engine. 

Of course, all these counting and matching activities produce statistics that the 
cookie's site can also send back to the central site any time the bug is activated. And these 
collected data are also available to send to any other partners of the cookie. 

Let us assume you are going to a personal investing page which, being financed by 
ads, contains spaces for ads from four stockbrokers. Let us also assume eight possible 
brokers could fill these four ad slots. When the page is loaded, DoubleClick retrieves its 
cookie, sees that you have been to that page before, and also sees that you clicked on 
broker B5 sometime in the past; then DoubleClick will probably engineer it so that B5 is 
one of the four brokers displayed to you this time. Also assume DoubleClick sees that you 
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have previously looked at ads for very expensive cars and jewelry. Then full-priced brokers, 
not discount brokerages, are likely to be chosen for the other three slots. DoubleClick says 
that part of its service is to present ads that are the most likely to be of interest to the 
customer, which is in everybody's best interest. 

But this strategy also lets DoubleClick build a rich dossier of your web surfing 
habits. If you visit online gambling sites and then visit a money-lending site, DoubleClick 
knows. If you purchase herbal remedies for high blood pressure and then visit a health 
insurance site, DoubleClick knows. DoubleClick knows what personal information you have 
previously supplied on web forms, such as political affiliation, sexual matters, religion, 
financial or medical status, or identity information. Even without your supplying private 
data, merely opening a web page for one political party could put you on that party's 
solicitation list and the other parties' enemies lists. All this activity goes under the general 
name of online profiling. Each of these pieces of data is available to the individual firm 
presenting the web page; DoubleClick collects and redistributes these separate data items 
as a package. 

Presumably all browsing is anonymous. But as we have shown previously, login IDs, 
e-mail addresses, and retained shipping or billing details can all lead to matching a person 
with this dossier, so it is no longer an unnamed string of cookies. In 1999, DoubleClick 
bought Abacus, another company maintaining a marketing database. Abacus collects 
personal shopping data from catalog merchants, so with that acquisition, DoubleClick 
gained a way to link personal names and addresses that had previously been only patterns 
of a machine, not a person. 

Cookies associate with a machine, not a user. (For older versions of Windows this is 
true; for Unix and Windows NT, 2000, and XP, cookies are separated by login ID.) If all 
members of a family share one machine or if a guest borrows the machine, the apparent 
connections will be specious. The second problem of the logic concerns the correctness of 
conclusions drawn: 

Because the cookies associate actions on a browser, their results are incomplete if a 
person uses two or more browsers or accounts or machines. As in many other aspects of 
privacy, when the user does not know what data have been collected, the user cannot know 
the data's validity. 
Web Bugs: Is There an Exterminator? 

The preceding discussion of DoubleClick had a passing reference to an invisible 
image. Such an image is called a clear GIF, 1 x 1 GIF, or web bug. It is an image file 1 pixel 
by 1 pixel, so it is far too small to detect by normal sight. To the web browser, an image is 
an image, regardless of size; the browser will ask for a file from the given address. 

The distinction between a cookie and a bug is enormous. A cookie is a tracking 
device, transferred between the user's machine and the server. A web bug is an invisible 
image that invites or invokes a process. That process can come from any location. A typical 
advertising web page might have 20 web bugs, inviting 20 other sites to drop images, code, 
or other bugs onto the user's machine. All this occurs without the user's direct knowledge 
or certainly control. 

Unfortunately, extermination is not so simple as prohibiting images smaller than the 
eye can see, because many web pages use such images innocently to help align content. Or 
some specialized visual applications may actually use collections of minute images for a 
valid purpose. The answer is not to restrict the image but to restrict the collection and 
dissemination of data. 

Spyware 
Cookies are tracking objects, little notes that show where a person has been or what 

a person has done. The only information they can gather is what you give them by entering 
data or selecting an object on a web page. As we see in the next section, spyware is far more 
powerfuland potentially dangerous. 

Cookies are passive files and, as we have seen, the data they can capture is limited. 
They cannot, for example, read a computer's registry, peruse an e-mail outbox, or capture 
the file directory structure. Spyware is active code that can do all these things that cookies 
cannot, generally anything a program can do because that is what they are: programs. 

Spyware is code designed to spy on a user, collecting data (including anything the 
user types). In this section we describe different types of spyware. 
Keystroke Loggers and Spyware 
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We have previously referred to keystroke loggers, programs that reside in a 
computer and record every key pressed. Sophisticated loggers discriminate, recording only 
web sites visited or, even more serious, only the keystrokes entered at a particular web site 
(for example, the login ID and password to a banking site.) 

A keystroke logger is the computer equivalent of a telephone wiretap. It is a program 
that records every key typed. As you can well imagine, keystroke loggers can seriously 
compromise privacy by obtaining passwords, bank account numbers, contact names, and 
web search arguments. 

Spyware is the more general term that includes keystroke loggers and also programs 
that surreptitiously record user activity and system data, although not necessarily at the 
level of each individual keystroke. A form of spyware, known as adware (to be described 
shortly) records these data and transmits them to an analysis center to present ads that 
will be interesting to the user. The objectives of general spyware can extend to identity theft 
and other criminal activity. 

In addition to the privacy impact, keystroke loggers and spyware sometimes 
adversely affect a computing system. Not always written or tested carefully, spyware can 
interfere with other legitimate programs. Also, machines infected with spyware often have 
several different pieces of spyware, which can conflict with each other, causing a serious 
impact on performance. 

Another common characteristic of many kinds of spyware is the difficulty of 
removing it. For one spyware product, Altnet, removal involves at least twelve steps, 
including locating files in numerous system folders [CDT03]. 
Hijackers 

Another category of spyware is software that hijacks a program installed for a 
different purpose. For example, file-sharing software is typically used to share copies of 
music or movie files. Services such as KaZaa and Morpheus allow users to offer part of their 
stored files to other users. According to the Center for Democracy in Technology [CDT03], 
when a user installed KaZaa, a second program, Altnet, was also installed. The 
documentation for Altnet said it would make available unused computing power on the 
user's machine to unspecified business partners. The license for Altnet grants Altnet the 
right to access and use unused computing power and storage. An ABC News program in 
2006 [ABC06] reports on taxpayers whose tax returns were found on the Internet after the 
taxpayers used a file-sharing program. 

The privacy issue for a service such as Altnet is that even if a user authorizes use of 
spare computing power or sharing of files or other resources, there may be no control over 
access to other sensitive data on the user's computer. 
Adware 

Adware displays selected ads in pop-up windows or in the main browser window. 
The ads are selected according to the user's characteristics, which the browser or an added 
program gathers by monitoring the user's computing use and reporting the information to a 
home base. 

Adware is usually installed as part of another piece of software without notice. 
Buried in the lengthy user's license of the other software is reference to "software x and its 
extension," so the user arguably gives permission for the installation of the adware. File-
sharing software is acommon target of adware, but so too are download managers that 
retrieve large files in several streams at once for faster downloads. And products purporting 
to be security tools, such as antivirus agents, have been known to harbor adware. 

Writers of adware software are paid to get their clients' ads in front of users, which 
they do with pop-up windows, ads that cover a legitimate ad, or ads that occupy the entire 
screen surface. More subtly, adware can reorder search engine results so that clients' 
products get higher placement or replace others' products entirely. 

180Solutions is a company that generates pop-up ads in response to sites visited. It 
distributes software to be installed on a user's computer to generate the pop-ups and collect 
data to inform 180Solutions of which ads to display. The user may inadvertently install the 
software as part of another package; in fact, 180Solutions pays a network of 1,000 third 
parties for each installation of its software on a user's computer. Some of those third parties 
may have acted aggressively and installed the software by exploiting a vulnerability on the 
user's computer [SAN05]. A similar product is Gator or Claria or GAIN from the Gator 
Corporation. Gator claims its software is installed on some 35 million computers. The 
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software is designed to pop up advertising at times when the user might be receptive, for 
example, popping up a car rental ad right after the user closed an online travel web site 
page. 

There is little analysis of what these applications collect. Rumors have it that they 
search for name, address, and other personal identification information. The software 
privacy notice from Gain's web site lists many kinds of information it may collect: 
Gain Privacy Statement 
1. WHAT INFORMATION DOES GAIN COLLECT? 

GAIN Is Designed to Collect and Use Only Anonymous Information. GAIN collects 
and stores on its servers anonymous information about your web surfing and computer 
use. This includes information on how you use the web (including the URL addresses of the 
web pages you view and how long you view them), non-personally identifiable information 
you provide on web pages and forms (including the Internet searches you conduct), your 
response to online ads, what software is on the computer (but no information about the 
usage or data files associated with the software), system settings, and information about 
how you use GAIN-Supported Software. For more information about the data we 
collect, click: www.gainpublishing.com/rdr/73/datause.html. 

"What software is on the computer" and "system settings" seem to cover a wide 
range of possibilities. 
Drive-By Installation 

Few users will voluntarily install malicious code on their machines. Authors of 
spyware have overcome suspicions to get the user to install their software. We have already 
discussed dual-purpose software and software installed as part of another installation. 

A drive-by installation is a means of tricking a user into installing software. We are 
familiar with the pop-up installation box for a new piece of software, saying "your browser is 
about to install x from y. Do you accept this installation? Yes / No." In the drive-by 
installation, a front piece of the software has already been downloaded as part of the web 
page. The front piece may paste a different image over the installation box, it may intercept 
the results from the yes / no boxes and convert them to yes, or it may paste a small image 
over the installation box obliterating "x from y" and replace it with "an important security 
update from your browsermanufacturer." The point is to perform the installation by 
concealing from the user the real code being installed. 

Shopping on the Internet 
The web offers the best prices because many merchants compete for your business, 

right? Not necessarily so. And spyware is partly to blame. 
Consider two cases: You own a store selling hardware. One of your customers, Viva, 

is extremely faithful: She has come to you for years; she wouldn't think of going anywhere 
else. Viva is also quite well off; she regularly buys expensive items and tends to buy quickly. 
Joan is a new customer. You know she has been to other hardware stores but so far she 
hasn't bought much from you. Joan is struggling with a large family, large mortgage, and 
small savings. Both come in on the same day to buy a hammer, which you normally sell for 
$20. What price do you offer each? Many people say you should give Viva a good price 
because of her loyalty. Others say her loyalty gives you room to make some profit. And she 
can certainly afford it. As for Joan, is she likely to become a steady customer? If she has 
been to other places, does she shop by price for everything? If you win her with good prices, 
might you convince her to stay? Or come back another time? Hardware stores do not go 
through this analysis: a $20 hammer is priced at $20 today, tomorrow, and next week, for 
everyone, unless it's on sale. 

Not true online. Remember, online you do not see the price on the shelf; you see 
only the price quoted to you on the page showing the hammer. Unless someone sitting at a 
nearby computer is looking at the same hammers, you wouldn't know if someone else got a 
price offer other than $20. 

According to a study done by Turow et al. [TUR05] of the Annenberg Public Policy 
Center of the University of Pennsylvania School of Communications, price discrimination 
occurs and is likely to expand as merchants gather more information about us. The most 
widely cited example is Amazon.com, which priced a DVD at 30 percent, 35 percent, and 40 
percent off list price concurrently to different customers. One customer reported deleting 
his Amazon.com tracking cookie and having the price on the web site drop from $26.00 to 
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$22.00 because the web site thought he was a new customer instead of a returning 
customer. Apparently customer loyalty is worth less than finding a new target. 

The Turow study involved an interview of 1,500 U.S. adults on web pricing and 
buying issues. 
Among the significant findings were these: 

 53 percent correctly thought most online merchants did not give them the right to correct 
incorrect information obtained about them. 

 50 percent correctly thought most online merchants did not give them the chance to 
erase information collected about them. 

 38 percent correctly thought it was legal for an online merchant to charge different people 
different prices at the same time of day. 

 36 percent correctly thought it was legal for a supermarket to sell buying habit data. 
 32 percent correctly thought a price-shopping travel service such as Orbitz or Expedia 

did not have to present the lowest price found as one of the choices for a trip. 
 29 percent correctly thought a video store was not forbidden to sell information on what 

videos a customer has rented. 
A fair market occurs when seller and buyer have complete knowledge: If both can 

see and agree with the basis for a decision, each knows the other party is playing fairly. The 
Internet has few rules, however. Loss of Internet privacy causes the balance of knowledge 
power to shift strongly to the merchant's side. 

10.6. E-Mail Security 
E-mail is exposed as it travels through the web. Furthermore, the privacy of an e-

mail message can be compromised on the sender's or receiver's side, without warning. 
Consider the differences between e-mail and regular letters. Regular mail is handled by a 
postal system that by law is forbidden to look inside letters. A letter is sealed inside an 
opaque envelope, making it almost impossible for an outsider to see the contents. The 
physical envelope is tamper-evident, meaning it shows if someone opens it. A sender can 
drop a letter in any mailbox, making the sending of a letter anonymous. For these reasons, 
we have a high expectation of privacy with regular mail. (At certain times in history, for 
example during a war or under an autocratic ruler, mail was inspected regularly. In those 
cases, citizens knew their mail was not private.) 
In this section we look at the reality of privacy for e-mail. 

Where Does E-Mail Go, and Who Can Access It? 
We cover e-mail and privacy-enhanced e-mail in Chapter 7. In this section we look 

only at the mechanics of transmitting e-mail with attention to privacy impacts. E-mail is 
conceptually a point-to-point communication. If Janet sends e-mail to Scott, Janet's 
computer establishes a virtual connection with Scott, the computers synchronize, and the 
message is transferred by SMTP (simple mail transfer protocol). However, Scott may not be 
online at the moment Janet wants to send her message, so the message to Scott is stored 
for him on a server (called a POP or post office protocol server). The next time Scott is 
online, he downloads that message from the server. In the point-to-point communication, 
Janet's message is private; in the server version, it is potentially exposed while sitting on 
the server. 

Janet may be part of a large organization (such as a company or university), so she 
may not have a direct outbound connection herself; instead, her mail is routed through a 
server, too, where the message's privacy is in jeopardy. A further complication is aliases and 
forwarding agents that add more midpoints to this description. Also, Internet routing can 
make many hops out of a conceptual point-to-point model. 

What started as a simple case can easily have at least five parties: (a) Janet and her 
computer, (b) Janet's organization's SMTP server, (c) Janet's organization's ISP, (d) Scott's 
POP server, and (e) Scott and his computer. For now, we are most interested in the three 
middle parties: (b), (c), and (d). Any of them can log the fact that it was sent or can even 
keep a copy of the message. 

Interception of E-mail 
E-mail is subject to the same interception risks as other web traffic: While in transit 

on the Internet, e-mail is open for any interceptor to read. In Chapter 7 we described 
techniques for encrypting e-mail. In particular, S/MIME and PGP are two widely used e-
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mail protection programs. S/MIME and PGP are available for popular mail handlers such as 
Outlook, Outlook Express, Eudora, Apple Mail, Netscape Communicator, and others. These 
products protect e-mail from the client's workstation through mail agents, across the 
Internet, and to the recipient's workstation. That protection is considered end-to-end, 
meaning from the sender to the recipient. Encrypted e-mail protection is subject to the 
strength of the encryption and the security of the encryption protocol. 

A virtual private network, also described in Chapter 7, can protect data on the 
connection between a client's workstation and some edge point, usually a router or firewall, 
at the organization to which the client belongs. For a corporate or government employee or 
a university student, communication is protected just up to the edge of the corporate, 
government, or university network. Thus, with a virtual private network, e-mail is protected 
only from the sender to the sender's office, not even up to the sender's mail agent, and 
certainly not to the recipient. 

Some organizations routinely copy all e-mail sent from their computers. Purposes for 
these copies include using the e-mail as evidence in legal affairs and monitoring the e-mail 
for inappropriate content. 

Monitoring E-Mail 
Companies and government agencies can legitimately monitor their employees' e-

mail use. Schools and libraries can monitor the computer use of patrons. Network 
administrators and ISPs can monitor traffic for normal business purposes, such as to 
measure traffic patterns or to detect spam. Organizations must advise users of this 
monitoring, but the notice can be a small notice in a personnel handbook or in the fine 
print of a service contract. Organizations can use the monitoring data for any legal purpose, 
for example, to investigate leaks, to manage resources, or to track user behavior. 

Network users should have no expectation of privacy in their e-mail or general 
computer use. 

Anonymous E-mail and Remailers 
We have described anonymity in other settings; there are reasons for anonymous e-

mail, as well. 
As with telephone calls, employees sending tips or complaining to management may 

want to do so anonymously. For example, consumers may want to contact commercial 
Establishments to register a complaint, inquire about products, or request information 
without getting on a mailing list or becoming a target for spam. Or people beginning a 
personal relationship may want to pass along some information without giving away their 
identities. 

These are some of the reasons people want to be able to send anonymous e-mail. 
Free e-mail addresses are readily available from Yahoo, Microsoft Hotmail, and many other 
places. People can treat these addresses as disposable: Obtain one, use it for a while, and 
discard it (by ceasing to use it). 
Simple Remailers 

Another solution is a remailer. A remailer is a trusted third party to whom you send 
an e-mail message and indicate to whom you want it sent. The remailer strips off the 
sender's name and address, assigns an anonymous pseudonym as the sender, and 
forwards the message to the designated recipient. The third party keeps a record of the 
correspondence between pseudonyms and real names and addresses. If the recipient 
replies, the remailer removes the recipient's name and address, applies a different 
anonymous pseudonym, and forwards the message to the original sender. Such a remailer 
knows both sender and receiver, so it provides pseudonymity, not anonymity. 
Mixmaster Remailers 

A more complicated design is needed to overcome the problem that the remailer 
knows who are the real sender and receiver. This approach is similar to the concept of 
onion routing described in Chapter 7. The basic tool is a set of cooperating hosts that agree 
to forward mail. Each host publishes its own public encryption key. 

The sender creates a message and selects several of the cooperating hosts. The 
sender designates the ultimate recipient (call it node n) and places a destination note with 
the content. The sender then chooses one of the cooperating hosts (call it node n-1), 
encrypts the package with the public key of node (n-1) and places a destination note 
showing node (n) with the encrypted package. The sender chooses another node (n-2), 



247 
 

encrypts, and adds a destination note for (n-1). The sender thus builds a multilayered 
package, with the message inside; each layer adds another layer of encryption and another 
destination. 

Each remailer node knows only from where it received the package and to whom to 
send it next. Only the first remailer knows the true recipient, and only the last remailer 
knows the final recipient. Therefore, no remailer can compromise the relationship between 
sender and receiver. 

Although this strategy is sound, the overhead involved indicates that this approach 
should be used only when anonymity is very important. 

Spoofing and Spamming 
E-mail has very little authenticity protection. Nothing in the SMTP protocol checks 

to verify that the listed sender (the From: address) is accurate or even legitimate. Spoofing 
the source address of an e-mail message is not difficult. This limitation facilitates the 
sending of spam because it is impossible to trace the real sender of a spam message. 
Sometimes the apparent sender will be someone who knows the recipient or someone on a 
common mailing list with the recipient. Spoofing such an apparent sender is intended to 
lend credibility to the spam message. 

Phishing is a form of spam in which the sender attempts to convince the sender to 
reveal personal data, such as banking details. The sender enhances the credibility of a 
phishing message by spoofing a convincing source address, or using a deceptive domain 
name These kinds of e-mail messages entice gullible users to reveal sensitive personal data. 
Because of limited regulation of the Internet, very little can be done to control these threats. 
User awareness is the best defense. 

Summary 
E-mail is exposed from sender to receiver, and there are numerous points for 

interception. Unless the e-mail is encrypted, there is little to prevent its access along the 
way. For businesses, governments, schools, and other organizations, network 
administrators and managers may read any e-mail messages sent. 

10.7. Impacts on Emerging Technologies 
In this section we look at the privacy implications of three emerging technologies. 

Nothing inherent in the technologies affects privacy, but the applications for the 
technologies have risk. The first is a broadcast technology that can be used for tracking 
objects or people. 

Second is a group of technologies to facilitate elections. The final technology is a new 
method for voice-grade telephone calls. 

RFID 
Radio frequency identification or RFID is a technology that uses small, low-power 

wireless radio transmitters called RFID tags. The devices can be as small as a grain of sand 
and they cost just pennies apiece. Tags are tuned to a particular frequency and each has a 
unique ID number. When a tag receives its signal, it sends its ID number signal in 
response. Many tags have no power supply of their own and receive their power to send a 
signal from the very act of receiving a signal. Thus, these devices are passive until they 
receive a signal from an interrogating reader. 

The distance at which they can receive and broadcast a receivable signal varies from 
roughly five centimeters at the least powerful end to several meters at the most powerful 
end. Some transmitters have their own power supply (battery) and can transmit over an 
even greater distance. Probably as receivers get better, the reception distance will increase. 
Current uses of RFID tags include 

 toll plaza payments 
 transit system fare cards 
 stock or inventory labels 
 passports and identity cards 

Two applications of RFID tags are of special interest from a privacy standpoint, as 
we show in the next sections. 
Consumer Products 

Assume you have bought a new shirt. If the manufacturer has embedded an RFID 
tag in the shirt, the tag will assist the merchant in processing your sale, just as barcodes do 
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today. But barcodes on merchandise identify only a manufacturer's product, such as an L.L 
Bean green plaid flannel shirt, size M. The RFID tag can identify not only the product but 
also the batch and shipment; that is, the tag's value designates a specific shirt. The unique 
ID in the shirt helps the merchant keep track of stock, knowing that this shirt was from a 
shipment that has been on the sales display for 90 days. The tag also lets the manufacturer 
determine precisely when and where it was produced, which could be important if you 
returned the shirt because of a defect. 

As you walk down the street, your shirt will respond to any receiver within range 
that broadcasts its signal. With low-power tags using today's technology, you would have to 
pass quite close to the receiver for it to obtain your signal, a few centimeters at most. Some 
scientists think this reception will be extended in the future, and others think the 
technology exists today for high-power readers to pick up the signal a meter away. If the 
distance is a few centimeters, you would almost have to brush up against the receiver in 
order for it to track the tag in your shirt; at a meter, someone could have a reader at the 
edge of the sidewalk as you walk past. 

Your shirt, shoes, pen, wallet, credit card, mobile phone, media player, and candy 
bar wrapper might each have an RFID tag. Any one of these would allow surreptitious 
tracking; the others provide redundancy. Tracking scenarios once found only in science 
fiction are now close to reality. 

One privacy interest is the accumulation of readings as you go about your business. 
If a city were fitted with readers on every street corner, it would be possible to assemble a 
complete profile of your meanderings; timestamps would show when you stopped for a 
while between two receivers. Thus, it is imaginable and probably feasible to develop a 
system that could track all your movements. 

The other privacy concern is what these tags say about you: One tag from an 
employee ID might reveal for whom you work, another from a medicine bottle might disclose 
a medical condition, and still another from an expensive key fob might suggest your 
finances. Currently you can conceal objects like your employee ID in your pocket; with 
RFID technology you may have to be more careful to block invisible radio signals. RFID 
Tags for Individuals  

Tagging a shirt is a matter of chance. If you buy the right kind of shirt you will have 
a tag that lets you be monitored. But if you buy an untagged shirt, or find and cut out the 
tag, or disable the tag, or decide not to wear a shirt, you cannot be tracked. 

Some people choose to be identifiable, regardless of what they wear. Some people 
with an unusual medical condition have already had an RFID tag permanently implanted in 
their arm. 

This way, even if a patient is brought unconscious to a hospital, the doctors can 
scan for a tag, receive the person's unique number, and look up the person's medical record 
by that number. A similar approach is being used to permit animals to cross quarantine 
borders or to uniquely identify animals such as valuable racehorses. 

In these examples, individuals voluntarily allow the tags to be implanted. But 
remember that once the tags are implanted, they will respond to any appropriate receiver, 
so our example of walking down the street still holds. 

RFID advocates hasten to point out that the technology does not currently permit 
reading the simplest tags at a distance and that receivers are so expensive that it would be 
prohibitive to build a network capable of tracking someone's every movement. As we point 
out in cryptography and reiterate in software, you should not base your security just on 
what is technically possible or economiclly feasible today. 
Security and Privacy Issues 

We have already described two of RFID's major privacy issues: the ability to track 
individuals wherever they go and the ability to discern sensitive data about people. The 
related issue is one of correctness. The reading sensor may malfunction or the software 
processing IDs may fail; both cases lead to mistaken identity. How do you challenge that 
you were not someplace when the receiver shows you were? Another possible failure is 
forgery of an RFID tag. Here again the sensor would pick up a reading of a tag associated 
with you. The only way you could prove you were not near the sensor is to have an alibi, 
supporting where you actually were. 

Juels [JUE05] presents several privacy-restoring approaches to RFID use. Among 
the ideas he proposes are blasting (disabling a tag), blocking (shielding a tag to block its 



249 
 

access by a reader), reprogramming (so a tag emits a different number), and encrypting (so 
the output is selectively available). 

RFID technology is still very young, but its use is growing rapidly. As with similarly 
sensitive technologies, protecting privacy will be easier before the uses proliferate. 

Electronic Voting 
Voting is another area in which privacy is important. We want votes to be private, 

but at the same time we want a way to demonstrate that all collected votes are authentic. 
With careful control of paper ballots, we can largely satisfy both those requirements, but 
the efficiency of such systems is poor. We would like to use computerized voting systems to 
improve efficiency without sacrificing privacy or accuracy. In this section we consider the 
privacy aspects of computerized voting. 
Computer Voting 

Citizens want to vote anonymously. Although anonymity is easy to achieve with 
paper ballots (ignoring the possibility of fingerprint tracing or secretly marked ballots) and 
fairly easy to achieve with machines (assuming usage protocols preclude associating the 
order in which people voted with a voting log from the machine), it is more difficult with 
computers. 

Properties essential to a fair election were enumerated by Shamos [SHA93]. 
 Each voter's choices must be kept secret. 
 Each voter may vote only once and only for allowed offices. 
 The voting system must be tamperproof, and the election officials must be prevented 

from allowing it to be tampered with. 
 All votes must be reported accurately. 
 The voting system must be available for use throughout the election period. 
 An audit trail must be kept to detect irregularities in voting, but without disclosing how 

any individual voted. 
These conditions are challenging in ordinary paper- and machine-based elections; 

they are even harder to meet in computer-based elections. Privacy of a vote is essential; in 
some repressive countries, voting for the wrong candidate can be fatal. But public 
confidence in the validity of the outcome is critical, so there is a similarly strong need to be 
able to validate the accuracy of the collection and reporting of votes. These two 
requirements are close to contradictory. 

DeMillo and Merritt [DEM83] devised protocols for computerized voting. Hoffman 
[HOF00] studied the use of computers at polling places to implement casting of votes. Rubin 
[RUB00] concludes: "Given the current state of insecurity of hosts and the vulnerability of 
the Internet to manipulation and denial-of-service attacks, there is no way that a public 
election of any significance involving remote electronic voting could be carried out securely." 
But Tony Blair, British prime minister, announced in July 2002 that in the British 2006 
general election, citizens would vote in any of four ways: online (by Internet) from a work or 
home location, by mail, by touch-tone telephone, or at polling places through online 
terminals. All the counts of the elections would be done electronically. In 2002, Brazil used 
a computer network to automate voting in its national election (in which voting was 
mandatory). 
Privacy and the Process 

Counting ballots is only one step in the election process; building and maintaining 
the list of eligible voters, recording who has voted (and keeping one person from voting 
twice), supporting absentee ballots, assisting voters at the wrong polling place, and 
transmitting election results to election headquarters are other important steps. Each of 
these has obvious privacy implications. For example, in some political cultures, it may be 
desirable to maintain privacy of who has voted (to prevent retaliation against people who did 
not vote for a powerful candidate). Similarly, as we know from other security studies, it is 
important to protect the privacy of votes in transmission to election headquarters. 

The Computer Science and Telecommunications Board of the National Academy of 
Science [NRC05] studied electronic voting. Its purpose was to raise questions to ensure they 
are considered in the debate about electronic voting. The privacy questions they asked 
concerned individual privacy in voter registration, the privacy of individual voters, and 
public confidence in the process. 

Rubin [RUB02], Schneier [SCH04b], and Bennet [BEN04], among others, have 
studied electronic voting. Rubin raises the question of Internet voting, which has an 



250 
 

obvious benefit of easy access for a segment of the population (and a corresponding 
weakness of more difficult access for people who do not have Internet access or who are not 
comfortable with computing technology). But given the very weak privacy protections we 
have already seen for the Internet, the privacy aspects of such a proposal require a careful 
look. 

VoIP and Skype 
Privacy aspects of traditional telephony were fairly well understood: Telephone 

companies were regulated monopolies that needed to preserve the confidentiality of their 
clients' communications. Exceptions occur under statutorially defined circumstances for 
law enforcement purposes and in emergencies. Furthermore, the technology was relatively 
resistant to eavesdropping, with the greatest exposure at the endpoints. 

Cellular telephony and Internet-based phone service have significantly changed that 
situation. Voice over IP (VoIP) is a protocol for transmission of voice-grade telephone traffic 
over the Internet. The major VoIP carrier is Skype. (VoIP rhymes with "boy" plus P, and 
Skype rhymes with "hype.") You use a telephone handset or microphone and speaker 
connected to your computer. To call from London to Rio, for example, you would invoke the 
VoIP application, giving it the telephone number in Rio. A local office in Rio would call the 
number in Rio and patch that call to its Internet servers. (The process is even easier if both 
endpoints use VoIP.) 

The advantage of VoIP is cost: For people who already have a fixed-price broadband 
Internet connection, adding VoIP need only cover the costs of the local connection on the 
remote end and a fee for software. But as we have seen in other Internet applications, 
privacy is sacrificed. Even if the voice traffic is solidly encrypted, the source and destination 
of the phone call will be somewhat exposed through packet headers. 

Conclusions on Emerging Technologies 
Each of these areas is a technology in its very early stages. The promise for each is 

great. Privacy issues will not be considered unless they are raised forcefully. Our experience 
with security has shown that if we consider security early in a system's life, wider options 
are available for security. The other thing experience has repeatedly shown is that adding 
security to a nearly complete system is between very difficult and impossible. For both 
reasons, privacy and security analysis should occur along with the technology and 
application development. 

For all three technologies, however, there seems to be financial pressure to create 
devices and deal with use issues later. This is exactly the wrong way to go about designing 
any system. Unfortunately, people seem to be starting with the technology and working 
backward to systems that would use that technology. The approach should be the other 
way around: 

Specify the necessary requirements, including privacy considerations, and develop a 
system to implement those requirements reliably. 

Legal and Ethical Issues in Computer Security  
In this chapter we study human controls applicable to computer security: the legal 

system and ethics. The legal system has adapted quite well to computer technology by 
reusing some old forms of legal protection (copyrights and patents) and creating laws where 
no adequate ones existed (malicious access). Still, the courts are not a perfect form of 
protection for computer resources, for two reasons. First, the courts tend to be reactive 
instead of proactive. That is, we have to wait for a transgression to occur and then 
adjudicate it, rather than try to prevent it in the first place. Second, fixing a problem 
through the courts can be time consuming (sometimes taking years) and expensive; the 
latter characteristic prevents all but the wealthy from addressing most security issues. 

On the other hand, ethics has not had to change, because ethics is more situational 
and personal than the law. For example, the privacy of personal information is becoming an 
important part of computer security. And although technically this issue is just an aspect of 
confidentiality, practically it has a long history in both law and ethics. The purpose of this 
chapter is to round out our study of protection for computing systems by understanding the 
context in which security is assessed and applied. 

Not always are conflicts resolved pleasantly. Some people will think that they have 
been treated unfairly, and some people do indeed act unfairly. In some countries, a citizen 
reacts to a wrongful act by going to court. The courts are seen as the ultimate arbiters and 
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enforcers of fairness. But, as most lawyers will tell you, the courts' definition of fair may not 
coincide with yours. Even if you could be sure the courts would side with you, a legal battle 
can be emotionally draining. Our purpose in this section is not only to understand how the 
legal system helps protect computer security but also to know how and when to use the 
legal system wisely. 

Law and computer security are related in several ways. First, international, national, 
state, and city laws can affect privacy and secrecy. These statutes often apply to the rights 
of individuals to keep personal matters private. Second, laws regulate the use, development, 
and ownership of data and programs. Patents, copyrights, and trade secrets are legal 
devices to protect the rights of developers and owners of programs and data. Similarly, one 
aspect of computer security is controlling access to programs and data; that access control 
is supported by these mechanisms of the law. Third, laws affect actions that can be taken to 
protect the secrecy, integrity, and availability of computer information and service. These 
basic concerns in computer security are both strengthened and constrained by applicable 
laws. Thus, legal means interact with other controls to establish computer security. 

However, the law does not always provide an adequate control. When computer 
systems are concerned, the law is slowly evolving because the issues are similar to but not 
the same as those for property rights. Computers are new, compared to houses, land, 
horses, or money. 

As a consequence, the place of computer systems in law is not yet firmly 
established. As statutes are written and cases decided, the roles of computers and the 
people, data, and processes involved are becoming more defined in the law. However, laws 
do not yet address all improper acts committed with computers. Finally, some judges, 
lawyers, and police officers do not understand computing, so they cannot determine how 
computing relates to other, more established, parts of the law. 

The laws dealing with computer security affect programmers, designers, users, and 
maintainers of computing systems and computerized data banks. These laws protect, but 
they also regulate the behavior of people who use computers. Furthermore, computer 
professionals are among the best-qualified advocates for changing old laws and creating 
new ones regarding computers. Before recommending change, however, professionals must 
understand the current state of computers and the law. Therefore, we have three 
motivations for studying the legal section of this chapter: 

 to know what protection the law provides for computers and data 
 to appreciate laws that protect the rights of others with respect to computers, programs, 

and data 
 to understand existing laws as a basis for recommending new laws to protect computers, 

data, and people 
The next few sections address the following aspects of protection of the security of 
computers. 

 Protecting computing systems against criminals. Computer criminals violate the principles 
of confidentiality, integrity, and availability for computer systems. Preventing the violation is 
better than prosecuting it after the fact. However, if other controls fail, legal action may be 
necessary. In this section we study several representative laws to determine what acts are 
punishable under the law. 

 Protecting code and data. Copyrights, patents, and trade secrets are all forms of legal 
protection that can be applied to programs and, sometimes, data. However, we must 
understand the fundamental differences between the kind of protection these three provide 
and the methods of obtaining that protection. 

 Protecting programmers' and employers' rights. The law protects both programmers and 
people who employ programmers. Generally, programmers have only limited legal rights to 
access programs they have written while employed. This section contains a survey of the 
rights of employees and employers regarding programs written for pay. 

 Protecting users of programs. When you buy a program, you expect it to work properly. If 
it doesn't, you want the legal system to protect your rights as a consumer. 

This section surveys the legal recourse you have to address faulty programs. 
Computer law is complex and emerging rather rapidly as it tries to keep up with the rapid 
technological advances in and enabled by computing. We present the fundamentals in this 
book not in their full detail as you would expect by someone with a law degree, but as a 
situational analysis to heighten the awareness of those who are not lawyers but who must 
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deal with the law's implications. You should consult a lawyer who understands and 
specializes in computer law in order to apply the material of this section to any specific 
case. And, as most lawyers will advise, ensuring legal protection by doing things correctly 
from the beginning is far easier and  cheaper than hiring a lawyer to sort out a web of 
conflict after things have gone wrong. 

Protecting programs and data-  
Suppose Martha wrote a computer program to play a video game. She invited some 

friends over to play the game and gave them copies so that they could play at home. Steve 
took a copy and rewrote parts of Martha's program to improve the quality of the screen 
display. After Steve shared the changes with her, Martha incorporated them into her 
program. Now Martha's friends have convinced her that the program is good enough to sell, 
so she wants to advertise and offer the game for sale by mail. She wants to know what legal 
protection she can apply to protect her software. 

Copyrights, patents, and trade secrets are legal devices that can protect computers, 
programs, and data. However, in some cases, precise steps must be taken to protect the 
work before anyone else is allowed access to it. In this section, we explain how each of these 
forms of protection was originally designed to be used and how each is currently used in 
computing. We focus primarily on U.S. law, to provide examples of intent and consequence. 
Readers from other countries or doing business in other countries should consult lawyers 
in those countries to determine the specific differences and similarities. 

Copyrights 
In the United States, the basis of copyright protection is presented in the U.S. 

Constitution. The body of legislation supporting constitutional provisions contains laws that 
elaborate on or expand the constitutional protections. Relevant statutes include the U.S. 
copyright law of 1978, which was updated in 1998 as the Digital Millennium Copyright Act 
(DMCA) specifically to deal with computers and other electronic media such as digital video 
and music. The 1998 changes brought U.S. copyright law into general conformance with 
the World Intellectual Property Organization treaty of 1996, an international copyright 
standard to which 95 countries adhere. 

Copyrights are designed to protect the expression of ideas. Thus, a copyright applies 
to a creative work, such as a story, photograph, song, or pencil sketch. The right to copy an 
expression of an idea is protected by a copyright. Ideas themselves, the law alleges, are free; 
anyone with a bright mind can think up anything anyone else can, at least in theory. The 
intention of a copyright is to allow regular and free exchange of ideas. 

The author of a book translates ideas into words on paper. The paper embodies the 
expression of those ideas and is the author's livelihood. That is, an author hopes to earn a 
living by presenting ideas in such an appealing manner that others will pay to read them. 
(The same protection applies to pieces of music, plays, films, and works of art, each of 
which is a personal expression of ideas.) The law protects an individual's right to earn a 
living, while recognizing that exchanging ideas supports the intellectual growth of society. 
The copyright says that a particular way of expressing an idea belongs to the author. For 
example, in music, there may be two or three copyrights related to a single creation: A 
composer can copyright a song, an arranger can copyright an arrangement of that song, 
and an artist can copyright a specific performance of that arrangement of that song. The 
price you pay for a ticket to a concert includes compensation for all three creative 
expressions. 

Copyright gives the author the exclusive right to make copies of the expression and 
sell them to the public. That is, only the author (or booksellers or others working as the 
author's agents) can sell copies of the author's book. 
Definition of Intellectual Property 

The U.S. copyright law (§102) states that a copyright can be registered for "original 
works of authorship fixed in any tangible medium of expression,...from which they can be 
perceived, reproduced, or otherwise communicated, either directly or with the aid of a 
machine or device." Again, the copyright does not cover the idea being expressed. "In no 
case does copyright protection for an original work of authorship extend to any idea." The 
copyright must apply to an original work, and it must be in some tangible medium of 
expression. 

Only the originator of the expression is entitled to copyright; if an expression has no 
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determinable originator, copyright cannot be granted. Certain works are considered to be in 
the public domain, owned by the public, by no one in particular. Works of the U.S. 
government and many other governments are considered to be in the public domain and 
therefore not subject to copyright. Works generally known, such as the phrase "top o' the 
mornin' to ye," or the song "Happy Birthday to You," or a recipe for tuna noodle casserole, 
are also so widely known that it would be very difficult for someone to trace originality and 
claim a copyright. Finally, copyright lasts for only a limited period of time, so certain very 
old works, such as the plays of Shakespeare, are in the public domain, their possibility of 
copyright having expired. 

The copyrighted expression must also be in some tangible medium. A story or art 
work must be written, printed, painted, recorded (on a physical medium such as a plastic 
record), stored on a magnetic medium (such as a disk or tape), or fixed in some other way. 
Furthermore, the purpose of the copyright is to promote distribution of the work; therefore, 
the work must be distributed, even if a fee is charged for a copy. 
Originality of Work 

The work being copyrighted must be original to the author. As noted previously, 
some expressions in the public domain are not subject to copyright. A work can be 
copyrighted even if it contains some public domain material, as long as there is some 
originality, too. The author does not even have to identify what is public and what is 
original.  

For example, a music historian could copyright a collection of folksongs even if some 
are in the public domain. To be subject to copyright, something in or about the collection 
has to be original. The historian might argue that collecting the songs, selecting which ones 
to include, and putting them in order was the original part. In this case, the copyright law 
would not protect the folksongs (which would be in the public domain) but would instead 
protect that specific selection and organization. Someone selling a sheet of paper on which 
just one of the songs was written would likely not be found to have infringed on the 
copyright of the historian. Dictionaries can be copyrighted in this way, too; the authors do 
not claim to own the words, just their expression as a particular dictionary. 
Fair Use of Material 

The copyright law indicates that the copyrighted object is subject to fair use. A 
purchaser has the right to use the product in the manner for which it was intended and in 
a way that does not interfere with the author's rights. Specifically, the law allows "fair use of 
a copyrighted work, including such use by reproduction in copies… for purposes such as 
criticism, comment, news reporting, teaching (including multiple copies for classroom use), 
scholarship or research." The purpose and effect of the use on the potential market for or 
value of the work affect the decision of what constitutes fair use. For example, fair use 
allows making a backup copy of copyrighted software you acquired legally: Your backup 
copy protects your use against system failures but it doesn't affect the author because you 
have no need for nor do you want use of two copies at once. The copyright law usually 
upholds the author's right to a fair return for the work, while encouraging others to use the 
underlying ideas. Unfair use of a copyrighted item is called piracy. 

The invention of the photocopier made it more difficult to enforce fair use. You can 
argue it is fair use to make a copy of the Tuscany section of a travel book to carry with you 
and throw away during your holiday so you don't have to carry the whole book with you. 
Today many commercial copy shops will copy a portion sometimes an entire chapter of a 
book or a single article out of a journal but refuse to copy an entire volume, citing fair use. 
With photocopiers, the quality of the copy degrades with each copy, as you know if you have 
ever tried to read a copy of a copy of a copy of a paper. 

The copyright law also has the concept of a first sale: after having bought a 
copyrighted object, the new owner can give away or resell the object. That is, the copyright 
owner is entitled to control the first sale of the object. This concept works fine for books: An 
author is compensated when a bookstore sells a book, but the author earns no additional 
revenue if the book is later resold at a secondhand store. 
Requirements for Registering a Copyright 

The copyright is easy to obtain, and mistakes in securing a copyright can be 
corrected. The first step of registration is notice. Any potential user must be made aware 
that the work is copyrighted. Each copy must be marked with the copyright symbol ©, the 
word Copyright, the year, and the author's name. (At one time, these items were followed by 
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All rights reserved to preserve the copyright in certain South American countries. Adding 
the phrase now is unnecessary but harmless.) 

The order of the elements can be changed, and either © or Copyright can be omitted 
(but not both). Each copy distributed must be so marked, although the law will forgive 
failure to mark copies if a reasonable attempt is made to recall and mark any ones 
distributed without a mark. 

The copyright must also be officially filed. In the United States a form is completed 
and submitted to the Copyright Office, along with a nominal fee and a copy of the work. 
Actually, the Copyright Office requires only the first 25 and the last 25 pages of the work, to 
help it justify a claim in the event of a court case. The filing must be done within three 
months after the first distribution of the work. The law allows filing up to five years late, but 
no infringements before the time of filing can be prosecuted. 

A U.S. copyright now lasts for 70 years beyond the death of the last surviving author 
or, if the item was copyrighted by a company or organization, for 95 years after the date of 
publication. The international standard is 50 years after the death of the last author or 50 
years from publication. 
Copyright Infringement 

The holder of the copyright must go to court to prove that someone has infringed on 
the copyright. The infringement must be substantial, and it must be copying, not 
independent work. In theory, two people might write identically the same song 
independently, neither knowing the other. These two people would both be entitled to 
copyright protection for their work. Neither would have infringed on the other, and both 
would have the right to distribute their work for a fee. Again, copyright is most easily 
understood for written works of fiction because it is extremely unlikely that two people 
would express an idea with the same or similar wording. 

The independence of nonfiction works is not nearly so clear. Consider, for example, 
an arithmetic book. Long division can be explained in only so many ways, so two 
independent books could use similar wording for that explanation. The number of possible 
alternative examples is limited, so that two authors might independently choose to write the 
same simple example. However, it is far less likely that two textbook authors would have 
the same pattern of presentation and the same examples from beginning to end. 
Copyrights for Computer Software 

The original copyright law envisioned protection for things such as books, songs, 
and photographs. People can rather easily detect when these items are copied. The 
separation between public domain and creativity is fairly clear. And the distinction between 
an idea (feeling, emotion) and its expression is pretty obvious. Works of nonfiction 
understandably have less leeway for independent expression. Because of programming 
language constraints and speed and size efficiency, computer programs have less leeway 
still.  

Can a computer program be copyrighted? Yes. The 1976 copyright law was amended 
in 1980 to include an explicit definition of computer software. However, copyright protection 
may not be an especially desirable form of protection for computer works. To see why, 
consider the algorithm used in a given program. The algorithm is the idea, and the 
statements of the programming language are the expression of the idea. Therefore, 
protection is allowed for the program statements themselves, but not for the algorithmic 
concept: copying the code intact is prohibited, but reimplementing the algorithm is 
permitted. Remember that one purpose of copyright is to promote the dissemination of 
ideas The algorithm, which is the idea embodied in the computer program, is to be shared. 
A second problem with copyright protection for computer works is the requirement that the 
work be published. A program may be published by distribution of copies of its object code, 
for example, on a disk. However, if the source code is not distributed, it has not been 
published. 

An alleged infringer cannot have violated a copyright on source code if the source 
code was never published. 
Copyrights for Digital Objects 

The Digital Millennium Copyright Act (DMCA) of 1998 clarified some issues of digital 
objects (such as music files, graphics images, data in a database, and also computer 
programs), but it left others unclear. 

Among the provisions of the DMCA are these: 
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 Digital objects can be subject to copyright. 
 It is a crime to circumvent or disable antipiracy functionality built into an object. 
 It is a crime to manufacture, sell, or distribute devices that disable antipiracy 

functionality or that copy digital objects. 
 However, these devices can be used (and manufactured, sold, or distributed) for research 

and educational purposes. 
 It is acceptable to make a backup copy of a digital object as a protection against 

hardware or software failure or to store copies in an archive. 
 Libraries can make up to three copies of a digital object for lending to other libraries. 

So, a user can make reasonable copies of an object in the normal course of its use 
and as a protection against system failures. If a system is regularly backed up and so a 
digital object (such as a software program) is copied onto many backups, that is not a 
violation of copyright. 

The uncertainty comes in deciding what is considered to be a device to counter 
piracy. A disassembler or decompiler could support piracy or could be used to study and 
enhance a program. Someone who decompiles an executable program, studies it to infer its 
method, and then modifies, compiles, and sells the result is misusing the decompiler. But 
the distinction is hard to enforce, in part because the usage depends on intent and context. 
It is as if there were a law saying it is legal to sell a knife to cut vegetables but not to harm 
people. Knives do not know their uses; the users determine intent and context. 

Consider a music CD that you buy for the obvious reason: to listen to again and 
again. You want to listen to the music on your MP3 player, a reasonable fair use. But the 
CD is copy protected, so you cannot download the music to your computer to transfer it to 
your MP3 player. You have been prohibited from reasonable fair use. Furthermore, if you 
try to do anything to circumvent the antipiracy protection, you violate the antipiracy 
provision, nor can you buy a tool or program that would let you download your own music 
to your own MP3 player, because such a tool would violate that provision. 

Reaction to the Digital Millennium Copyright Act has not been uniformly favorable. 
(See, for example, [MAN98, EFF06].) Some say it limits computer security research. Worse, 
others point out it can be used to prevent exactly the free interchange of ideas that 
copyright was intended to promote. In 2001 a Princeton University professor, Edward 
Felten, and students presented a paper on cryptanalysis of the digital watermarking 
techniques used to protect digital music files from being copied. They had been pressured 
not to present in the preceding April by music industry groups who threatened legal action 
under the DMCA. 

Digital objects are more problematic than paper ones because they can be copied 
exactly. Unlike fifth-generation photocopies, each digital copy of a digital object can be 
identical to the original. 

Copyright protects the right of a creator to profit from a copy of an object, even if no 
money changes hands. The Napster situation (see Sidebar 11-1) is an interesting case, 
closely related to computer data. It clearly distinguishes between an object and a copy of 
that object. 

An emerging principle is that software, like music, is acquired in a style more like 
rental than purchase. You purchase not a piece of software, but the right to use it. 
Clarifying this position, the U.S. No Electronic Theft (NET) Act of 1997 makes it a criminal 
offense to reproduce or distribute copyrighted works, such as software or digital recordings, 
even without charge. 

The area of copyright protection applied to computer works continues to evolve and 
is subject to much interpretation by the courts. Therefore, it is not certain what aspects of a 
computer work are subject to copyright. Courts have ruled that a computer menu design 
can be copyrighted but that "look and feel" (such as the Microsoft Windows user interface) 
cannot. 
But is not the menu design part of the look and feel? 

Although copyright protection can be applied to computer works, the copyright 
concept was conceived before the electronic age, and thus the protection may be less than 
what we desire. Copyrights do not address all the critical computing system elements that 
require protection. For example, a programmer might want to protect an algorithm, not the 
way that algorithm was expressed in a particular programming language. Unfortunately, it 
may be difficult to obtain copyright protection for an algorithm, at least as copyright law is 
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currently interpreted. Because the copyright laws are evolving, we must also take care when 
copyrights are used as excuses, as we see in Sidebar 11-2. 

Patents 
Patents are unlike copyrights in that they protect inventions, tangible objects, or 

ways to make them, not works of the mind. The distinction between patents and copyrights 
is that patents were intended to apply to the results of science, technology, and engineering, 
whereas copyrights were meant to cover works in the arts, literature, and written 
scholarship. 

A patent can protect a "new and useful process, machine, manufacture, or 
composition of matter." The U.S. law excludes "newly discovered laws of nature… [and] 
mental processes." 

Thus "2+2=4" is not a proper subject for a patent because it is a law of nature. 
Similarly, that expression is in the public domain and would thus be unsuitable for a 
copyright. Finally, you can argue that mathematics is purely mental, just ideas. Nobody has 
ever seen or touched a two two horses, yes, but not just a two. A patent is designed to 
protect the device or process for carrying out an idea, not the idea itself. 
Requirement of Novelty 

If two composers happen to compose the same song independently at different 
times, copyright law would allow both of them to have copyright. If two inventors devise the 
same invention, the patent goes to the person who invented it first, regardless of who first 
filed the patent. A patent can be valid only for something that is truly novel or unique, so 
there can be only one patent for a given invention. 

An object patented must also be nonobvious. If an invention would be obvious to a 
person ordinarily skilled in the field, it cannot be patented. The law states that a patent 
cannot be obtained "if the differences between the subject matter sought to be patented and 
the prior art are such that the subject matter as a whole would have been obvious at the 
time the invention was made to a person having ordinary skill in the art to which said 
subject matter pertains." For example, a piece of cardboard to be used as a bookmark 
would not be a likely candidate for a patent because the idea of a piece of cardboard would 
be obvious to almost any reader. 
Procedure for Registering a Patent 

One registers a copyright by filing a brief form, marking a copyright notice on the 
creative work, and distributing the work. The whole process takes less than an hour. To 
obtain a patent, an inventor must convince the U.S. Patent and Trademark Office that the 
invention deserves a patent. For a fee, a patent attorney will research the patents already 
issued for similar inventions. This search accomplishes two things. First, it determines that 
the invention to be patented has not already been patented (and, presumably, has not been 
previously invented). Second, the search can help identify similar things that have been 
patented. These similarities can be useful when describing the unique features of the 
invention that make it worthy of patent protection. The Patent Office compares an 
application to those of all other similar patented inventions and decides whether the 
application covers something truly novel and nonobvious. If the office decides the invention 
is novel, a patent is granted. 

Typically, an inventor writes a patent application listing many claims of originality, 
from very general to very specific. The Patent Office may disallow some of the more general 
claims while upholding some of the more specific ones. The patent is valid for all the upheld 
claims. The patent applicant reveals what is novel about the invention in sufficient detail to 
allow the Patent Office and the courts to judge novelty; that degree of detail may also tell 
the world how the invention works, thereby opening the possibility of infringement. 

The patent owner uses the patented invention by producing products or by licensing 
others to produce them. Patented objects are sometimes marked with a patent number to 
warn others that the technology is patented. The patent holder hopes this warning will 
prevent others from infringing. 
Patent Infringement 

A patent holder must oppose all infringement. With a copyright, the holder can 
choose which cases to prosecute, ignoring small infringements and waiting for serious 
infractions where the infringement is great enough to ensure success in court or to justify 
the cost of the court case. However, failing to sue a patent infringement even a small one or 
one the patent holder does not know aboutcan mean losing the patent rights entirely. But, 



257 
 

unlike copyright infringement, a patent holder does not have to prove that the infringer 
copied the invention; a patent infringement occurs even if someone independently invents 
the same thing, without knowledge of the patented invention. 

Every infringement must be prosecuted. Prosecution is expensive and time 
consuming, but even worse, suing for patent infringement could cause the patent holder to 
lose the patent. 

Someone charged with infringement can argue all of the following points as a 
defense against the charge of infringement. 

 This isn't infringement. The alleged infringer will claim that the two inventions are 
sufficiently different that no infringement occurred. 

 The patent is invalid. If a prior infringement was not opposed, the patent rights may no 
longer be valid. 

 The invention is not novel. In this case, the supposed infringer will try to persuade the 
judge that the Patent Office acted incorrectly in granting a patent and that the invention is 
nothing worthy of patent. 

 The infringer invented the object first. If so, the accused infringer, and not the original 
patent holder, is entitled to the patent. 

The first defense does not damage a patent, although it can limit the novelty of the 
invention. However, the other three defenses can destroy patent rights. Worse, all four 
defenses can be used every time a patent holder sues someone for infringement. Finally, 
obtaining and defending a patent can incur substantial legal fees. Patent protection is most 
appropriate for large companies with substantial research and development (and legal) 
staffs. 
Applicability of Patents to Computer Objects 

The Patent Office has not encouraged patents of computer software. For a long time, 
computer programs were seen as the representation of an algorithm, and an algorithm was 
a fact of nature, which is not subject to patent. An early software patent case, Gottschalk v. 
Benson, involved a request to patent a process for converting decimal numbers into binary. 
The Supreme Court rejected the claim, saying it seemed to attempt to patent an abstract 
idea, in short, an algorithm. But the underlying algorithm is precisely what most software 
developers would like to protect. 

In 1981, two cases (Diamond v. Bradley and Diamond v. Diehr) won patents for a 
process that used computer software, a well-known algorithm, temperature sensors, and a 
computer to calculate the time to cure rubber seals. The court upheld the right to a patent 
because the claim was not for the software or the algorithm alone, but for the process that 
happened to use the software as one of its steps. An unfortunate inference is that using the 
software without using the other patented steps of the process would not be infringement. 
Since 1981 the patent law has expanded to include computer software, recognizing that 
algorithms, like processes and formulas, are inventions. The Patent Office has issued 
thousands of software patents since these cases. But because of the time and expense 
involved in obtaining and maintaining a patent, this form of protection may be 
unacceptable for a small-scale software writer. 

Trade Secrets 
A trade secret is unlike a patent or copyright in that it must be kept a secret. The 

information has value only as a secret, and an infringer is one who divulges the secret. 
Once divulged, the information usually cannot be made secret again. 
Characteristics of Trade Secrets 

A trade secret is information that gives one company a competitive edge over others. 
For example, the formula for a soft drink is a trade secret, as is a mailing list of customers 
or information about a product due to be announced in a few months. 

The distinguishing characteristic of a trade secret is that it must always be kept 
secret. Employees and outsiders who have access to the secret must be required not to 
divulge the secret. The owner must take precautions to protect the secret, such as storing it 
in a safe, encrypting it in a computer file, or making employees sign a statement that they 
will not disclose the secret. 

If someone obtains a trade secret improperly and profits from it, the owner can 
recover profits, damages, lost revenues, and legal costs. The court will do whatever it can to 
return the holder to the same competitive position it had while the information was secret 
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and may award damages to compensate for lost sales. However, trade secret protection 
evaporates incase of independent discovery. If someone else happens to discover the secret 
independently, there is no infringement and trade secret rights are gone. 
Reverse Engineering 

Another way trade secret protection can vanish is by reverse engineering. Suppose a 
secret is the way to pack tissues in a cardboard box to make one pop up as another is 
pulled out. 

Anyone can cut open the box and study the process. Therefore, the trade secret is 
easily discovered. In reverse engineering, one studies a finished object to determine how it 
is manufactured or how it works. 

Through reverse engineering someone might discover how a telephone is built; the 
design of the telephone is obvious from the components and how they are connected. 
Therefore, a patent is the appropriate way to protect an invention such as a telephone. 
However, something like a soft drink is not just the combination of its ingredients. Making a 
soft drink may involve time, temperature, presence of oxygen or other gases, and similar 
factors that could not be learned from a straight chemical decomposition of the product. 
The recipe of a soft drink is a closely guarded trade secret. Trade secret protection works 
best when the secret is not apparent in the product. 
Applicability to Computer Objects 

Trade secret protection applies very well to computer software. The underlying 
algorithm of a computer program is novel, but its novelty depends on nobody else's knowing 
it. Trade secret protection allows distribution of the result of a secret (the executable 
program) while still keeping the program design hidden. Trade secret protection does not 
cover copying a product (specifically a computer program), so it cannot protect against a 
pirate who sells copies of someone else's program without permission. However, trade secret 
protection makes it illegal to steal a secret algorithm and use it in another product. 

The difficulty with computer programs is that reverse engineering works. Decompiler 
and disassembler programs can produce a source version of an executable program. Of 
course, this source does not contain the descriptive variable names or the comments to 
explain the code, but it is an accurate version that someone else can study, reuse, or 
extend. 
Difficulty of Enforcement 

Trade secret protection is of no help when someone infers a program's design by 
studying its output or, worse yet, decoding the object code. Both of these are legitimate 
(that is, legal) activities, and both cause trade secret protection to disappear. 

The confidentiality of a trade secret must be ensured with adequate safeguards. If 
source code is distributed loosely or if the owner fails to impress on people (such as 
employees) the importance of keeping the secret, any prosecution of infringement will be 
weakened. 

Employment contracts typically include a clause stating that the employee will not 
divulge any trade secrets received from the company, even after leaving a job. Additional 
protection, such as marking copies of sensitive documents or controlling access to 
computer files of secret information, may be necessary to impress people with the 
importance of secrecy. 

Protection for Computer Objects 
The previous sections have described three forms of protection: the copyright, 

patent, and trade secret laws. Each of these provides a different form of protection to 
sensitive things. In this section we consider different kinds of computer objects and 
describe which forms of protection are 
most appropriate for each kind. Table 
11-1 shows how these three forms of 
protection compare in several significant 
ways. 
 
Computer artifacts are new and 
constantly changing, and they are not 
yet fully appreciated 
by the legal system based on centuries of 
precedent. Perhaps in a few years the 
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issue of what protection is most 
appropriate for a given computer object 
will be more clear-cut. 

Possibly a new form of protection 
or a new use of an old form will apply specifically to computer objects. For example, the 
European Union has already enacted model legislation for copyright protection of computer 
software. However, one of its goals was to promote software that builds on what others have 
done. Thus, the E.U. specifically exempted a product's interface specification from copyright 
and permitted others to derive the interface to allow development of new products that 
could connect via that interface. 

Until the law provides protection that truly fits computer goods, here are some 
guidelines for using the law to protect computer objects. 
Protecting Hardware 

Hardware, such as chips, disk drives, or floppy disk media, can be patented. The 
medium itself can be patented, and someone who invents a new process for manufacturing 
it can obtain a second patent. 
Protecting Firmware 

The situation is a little less clear with regard to microcode. Certainly, the physical 
devices on which microcode is stored can be patented. Also, a special-purpose chip that can 
do only one specific task (such as a floating-point arithmetic accelerator) can probably be 
patented. 

However, the data (instructions, algorithms, microcode, programs) contained in the 
devices are probably not patentable. 

Can they be copyrighted? Are these the expression of an idea in a form that 
promotes dissemination of the idea? Probably not. And assuming that these devices were 
copyrighted, what would be the definition of a copy that infringed on the copyright? Worse, 
would the manufacturer really want to register a copy of the internal algorithm with the 
Copyright 

Office? Copyright protection is probably inappropriate for computer firmware. Trade 
secret protection seems appropriate for the code embedded in a chip. Given enough time, 
we can reverse-engineer and infer the code from the behavior of the chip. The behavior of 
the chip does not reveal what algorithm is used to produce that behavior. The original 
algorithm may have better (or worse) performance (speed, size, fault tolerance) that would 
not be obvious from reverse engineering. 

For example, Apple Computer is enforcing its right to copyright protection for an 
operating system embedded in firmware. The courts have affirmed that computer software 
is an appropriate subject for copyright protection and that protection should be no less 
valid when the software is in a chip rather than in a conventional program. 
Protecting Object Code Software 

Object code is usually copied so that it can be distributed for profit. The code is a 
work of creativity, and most people agree that object code distribution is an acceptable 
medium of publication. Thus, copyright protection seems appropriate. 

A copyright application is usually accompanied by a copy of the object being 
protected. With a book or piece of music (printed or recorded), it is easy to provide a copy. 
The Copyright Office has not yet decided what is an appropriate medium in which to accept 
object code. A binary listing of the object code will be taken, but the Copyright Office does 
so without acknowledging the listing to be acceptable or sufficient. The Office will accept a 
source code listing. Some people argue that a source code listing is not equivalent to an 
object code listing, in the same way that a French translation of a novel is different from its 
original language version. It is not clear in the courts that registering a source code version 
provides copyright protection to object code. However, someone should not be able to take 
the object code of a system, rearrange the order of the individual routines, and say that the 
result is a new system. Without the original source listings, it would be very difficult to 
compare two binary files and determine that one was the functional equivalent of the other 
simply through rearrangement. 

Several court cases will be needed to establish acceptable ways of filing object code 
for copyright protection. Furthermore, these cases will have to develop legal precedents to 
define the equivalence of two pieces of computer code. 
Protecting Source Code Software 
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Software developers selling to the mass market are reticent to distribute their source 
code. The code can be treated as a trade secret, although some lawyers also encourage that 
it be copyrighted. (These two forms of protection are possibly mutually exclusive, although 
registering a copyright will not hurt.) 

Recall that the Copyright Office requires registering at least the first 25 and the last 
25 pages of a written document. These pages are filed with the Library of Congress, where 
they are available for public inspection. This registration is intended to assist the courts in 
determining which work was registered for copyright protection. However, because they are 
available for anybody to see, they are not secret, and copyright registration can expose the 
secrecy of an ingenious algorithm. A copyright protects the right to distribute copies of the 
expression of an idea, not the idea itself. Therefore, a copyright does not prevent someone 
from reimplementing an algorithm, expressed through a copyrighted computer program. 

As just described, source code may be the most appropriate form in which to 
register a copyright for a program distributed in object form. It is difficult to register source 
code with the Copyright Office while still ensuring its secrecy. A long computer program can 
be rearranged so that the first and last 25 pages do not divulge much of the secret part of a 
source program. Embedding small errors or identifiable peculiarities in the source (or 
object) code of a program may be more useful in determining copyright infringement. Again, 
several court cases must be decided in order to establish procedures for protection of 
computer programs in either source or object form. 
Protecting Documentation 

If we think of documentation as a written work of nonfiction (or, perhaps, fiction), 
copyright protection is effective and appropriate for it. Notice that the documentation is 
distinct from the program. A program and its documentation must be copyrighted 
separately. Furthermore, copyright protection of the documentation may win a judgment 
against someone who illegally copies both a program and its documentation. 

In cases where a written law is unclear or is not obviously applicable to a situation, 
the results of court cases serve to clarify or even extend the words of the law. As more 
unfair acts involving computer works are perpetrated, lawyers will argue for expanded 
interpretations of the law. Thus, the meaning and use of the law will continue to evolve 
through judges' rulings. In a sense, computer technology has advanced much faster than 
the law has been able to. 
Protecting Web Content 

Content on the web is media, much the same as a book or photograph, so the most 
appropriate protection for it is copyright. This copyright would also protect software you 
write to animate or otherwise affect the display of your web page. And, in theory, if your web 
page contains malicious code, your copyright covers that, too. As we discussed earlier, a 
copyrighted work does not have to be exclusively new; it can be a mixture of new work to 
which you claim copyright and old things to which you do not. You may purchase or use 
with permission a piece of web art, a widget (such as an applet that shows a spinning 
globe), or some music. Copyright protects your original works. 
Protecting Domain Names and URLs 

Domain names, URLs, company names, product names, and commercial symbols 
are protected by a trademark, which gives exclusive rights of use to the owner of such 
identifying marks. 

Information and law 
Source code, object code, and even the "look and feel" of a computer screen are 

recognizable, if not tangible, objects. The law deals reasonably well, although somewhat 
belatedly, with these things. But computing is in transition to a new class of object, with 
new legal protection requirements. Electronic commerce, electronic publishing, electronic 
voting, electronic banking these are the new challenges to the legal system. In this section 
we consider some of these new security requirements. 

Information as an Object 
The shopkeeper used to stock "things" in the store, such as buttons, automobiles, 

and pounds of sugar. The buyers were customers. When a thing was sold to a customer, the 
shopkeeper's stock of that thing was reduced by one, and the customer paid for and left 
with a thing. Sometimes the customer could resell the thing to someone else, for more or 
less than the customer originally paid. 



261 
 

Other kinds of shops provided services that could be identified as things, for 
example, a haircut, root canal, or defense for a trial. Some services had a set price (for 
example, a haircut), although one provider might charge more for that service than another. 
A "shopkeeper" (hair stylist, dentist, lawyer) essentially sold time. For instance, the price of 
a haircut generally related to the cost of the stylist's time, and lawyers and accountants 
charged by the hour for services in which there was no obvious standard item. The value of 
a service in a free economy was somehow related to its desirability to the buyer and the 
seller. 

For example, the dentist was willing to sell a certain amount of time, reserving the 
rest of the day for other activities. Like a shopkeeper, once a service provider sold some time 
or service, it could not be sold again to someone else. 

But today we must consider a third category for sale: information. No one would 
argue against the proposition that information is valuable. Students are tempted to pay 
others for answers during examinations, and businesses pay for credit reports, client lists, 
and marketing advice. 

But information does not fit the familiar commercial paradigms with which we have 
dealt for many years. Let us examine why information is different from other commercial 
things.  
Information Is Not Depletable 

Unlike tangible things and services, information can be sold again and again without 
depleting stock or diminishing quality. For example, a credit bureau can sell the same 
credit report on an individual to an unlimited number of requesting clients. Each client 
pays for the information in the report. The report may be delivered on some tangible 
medium, such as paper, but it is the information, not the medium, that has the value. 

This characteristic separates information from other tangible works, such as books, 
CDs, or art prints. Each tangible work is a single copy, which can be individually numbered 
or accounted for. A bookshop can always order more copies of a book if the stock becomes 
depleted, but it can sell only as many copies as it has. 
Information Can Be Replicated 

The value of information is what the buyer will pay the seller. But after having 
bought the information, the buyer can then become a seller and can potentially deprive the 
original seller of further sales. Because information is not depletable, the buyer can enjoy or 
use the information and can also sell it many times over, perhaps even making a profit. 
Information Has a Minimal Marginal Cost 

The marginal cost of an item is the cost to produce another one after having 
produced some already. If a newspaper sold only one copy on a particular day, that one 
issue would be prohibitively expensive because it would have to cover the day's cost (salary 
and benefits) of all the writers, editors, and production staff, as well as a share of the cost of 
all equipment for its production. These are fixed costs needed to produce a first copy. With 
this model, the cost of the second and subsequent copies is minuscule, representing 
basically just the cost of paper and ink to print them. Fortunately, newspapers have very 
large press runs and daily sales, so the fixed costs are spread evenly across a large number 
of copies printed. More importantly, publishers have a reasonable idea of how many copies 
will sell, so they adjust their budgets to make a profit at the expected sales volume, and 
extra sales simply increase the profit. Also, newspapers budget by the month or quarter or 
year so that the price of a single issue does not fluctuate based on the number of copies 
sold of yesterday's edition. 

In theory, a purchaser of a copy of a newspaper could print and sell other copies of 
that copy, although doing so would violate copyright law. Few purchasers do that, for four 
reasons. 

 The newspaper is covered by copyright law. 
 The cost of reproduction is too high for the average person to make a profit. 
 It is not fair to reproduce the newspaper that way. 
 There is usually some quality degradation in making the copy. 

Unless the copy is truly equivalent to the original, many people would prefer to buy 
an authentic issue from the news agent, with clear type, quality photos, actual color, and so 
forth. The cost of information similarly depends on fixed costs plus costs to reproduce. 
Typically, the fixed costs are large whereas the cost to reproduce is extremely small, even 
less than for a newspaper because there is no cost for the raw materials of paper and ink. 
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However, unlike a newspaper, information is far more feasible for a buyer to resell. A copy 
of digital information can be perfect, indistinguishable from the original, the same being 
true for copies of copies of copies of copies. 
The Value of Information Is Often Time Dependent 

If you knew for certain what the trading price of a share of Microsoft stock would be 
next week, that information would be extremely valuable because you could make an 
enormous profit on the stock market. Of course, that price cannot be known today. But 
suppose you knew that Microsoft was certain to announce something next week that would 
cause the price to rise or fall. That information would be almost as valuable as knowing the 
exact price, and it could be known in advance. However, knowing yesterday's price for 
Microsoft stock or knowing that yesterday Microsoft announced something that caused the 
stock price to plummet is almost worthless because it is printed in every major financial 
newspaper. Thus, the value of information may depend on when you know it. 
Information Is Often Transferred Intangibly 

A newspaper is a printed artifact. The news agent hands it to a customer, who walks 
away with it. Both the seller and the buyer realize and acknowledge that something has 
been acquired. Furthermore, it is evident if the newspaper is seriously damaged; if a serious 
production flaw appears in the middle, the defect is easy to point out. 

But times are changing. Increasingly, information is being delivered as bits across a 
network instead of being printed on paper. If the bits are visibly flawed (that is, if an error 
detecting code indicates a transmission error), demonstrating that flaw is easy. However, if 
the copy of the information is accurate but the underlying information is incorrect, useless, 
or not as expected, it is difficult to justify a claim that the information is flawed. 

Legal Issues Relating to Information 
These characteristics of information significantly affect its legal treatment. If we 

want to understand how information relates to copyright, patent, and trademark laws, we 
must understand these attributes. We can note first that information has some, limited 
legal basis for the protection. For example, information can be related to trade secrets, in 
that information is the stock in trade of the information seller. While the seller has the 
information, trade secret protection applies naturally to the seller's legitimate ability to 
profit from information. Thus, the courts recognize that information has value. 

However, as shown earlier, a trade secret has value only as long as it remains a 
secret. For instance, the Coca-Cola Company cannot expect to retain trade secret protection 
for its formula after it sells that formula. Also, the trade secret is not secure if someone else 
can derive or infer it. 

Other forms of protection are offered by copyrights and patents. As we have seen 
earlier, neither of these applies perfectly to computer hardware or software, and they apply 
even less well to information. The pace of change in the legal system is slow, helping to 
ensure that the changes that do occur are fair and well considered. The deliberate pace of 
change in the legal system is about to be hit by the supersonic rate of change in the 
information technology industry. Laws do not, and cannot, control all cyber threats. Let us 
look at several examples of situations in which information needs are about to place 
significant demands on the legal system. 
Information Commerce 

Information is unlike most other goods traded, even though it has value and is the 
basis of some forms of commerce. The market for information is still young, and so far the 
legal community has experienced few problems. Nevertheless, several key issues must be 
resolved. 

For example, we have seen that software piracy involves copying information without 
offering adequate payment to those who deserve to be paid. Several approaches have been 
tried to ensure that the software developer or publisher receives just compensation for use 
of the software: copy protection, freeware, and controlled distribution. More recently, 
software is being delivered as mobile code or applets, supplied electronically as needed. The 
applet approach gives the author and distributor more control. Each applet can potentially 
be tracked and charged for, and each applet can destroy itself after use so that nothing 
remains to be passed for free to someone else. But this scheme requires a great deal of 
accounting and tracking, increasing the costs of what might otherwise be reasonably priced. 
Thus, none of the current approaches seem ideal, so a legal remedy will often be needed 
instead of, or in addition to, the technological ones. 



263 
 

Electronic Publishing 
Many newspapers and magazines post a version of their content on the Internet, as 

do wire services and television news organizations. For example, the British Broadcasting 
Company (BBC) and the Reuters news services have a significant web presence. We should 
expect that some news and information will eventually be published and distributed 
exclusively on the Internet. Indeed, encyclopedias such as the Britannica and Expedia are 
mainly web-based services now, rather than being delivered as the large number of book 
volumes they used to occupy. Here again the publisher has a problem ensuring that it 
receives fair compensation for the work. Cryptography-based technical solutions are under 
development to address this problem. However, these technical solutions must be 
supported by a legal structure to enforce their use. 
Protecting Data in a Database 

Databases are a particular form of software that has posed significant problems for 
legal interpretation. The courts have had difficulty deciding which protection laws apply to 
databases. How does one determine that a set of data came from a particular database (so 
that the database owner can claim some compensation)? Who even owns the data in a 
database if it is public data, such as names and addresses? 
Electronic Commerce 

Laws related to trade in goods have evolved literally over centuries. Adequate legal 
protections exist to cover defective goods, fraudulent payment, and failure to deliver when 
the goods are tangible and are bought through traditional outlets such as stores and 
catalogs. 

However, the situation becomes less clear when the goods are traded electronically. 
If you order goods electronically, digital signatures and other cryptographic protocols can 
provide a technical protection for your "money." However, suppose the information you 
order is not suitable for use or never arrives or arrives damaged or arrives too late to use. 
How do you prove conditions of the delivery? For catalog sales, you often have receipts or 
some paper form of acknowledgment of time, date, and location. 

But for digital sales, such verification may not exist or can be easily modified. These 
legal issues must be resolved as we move into an age of electronic commerce. 

Protecting Information 
Clearly, current laws are inadequate for protecting the information itself and for 

protecting electronically based forms of commerce. So how is information to be protected 
legally? As described, copyrights, patents, and trade secrets cover some, but not all, issues 
related to information. Nevertheless, the legal system does not allow free traffic in 
information; some mechanisms can be useful. 
Criminal and Civil Law 

Statutes are laws that state explicitly that certain actions are illegal. A statute is the 
result of a legislative process by which a governing body declares that the new law will be in 
force after a designated time. For example, the parliament may discuss issues related to 
taxing Internet transactions and pass a law about when relevant taxes must be paid. Often, 
a violation of a statute will result in a criminal trial, in which the government argues for 
punishment because an illegal act has harmed the desired nature of society. For example, 
the government will prosecute a murder case because murder violates a law passed by the 
government. In the United States, criminal transgressions are severe, and the law requires 
that the judge or jury find the accused guilty beyond reasonable doubt. For this reason, the 
evidence must be strong and compelling. The goal of a criminal case is to punish the 
criminal, usually by depriving him or her of rights in some way (such as putting the 
criminal in prison or assessing a fine). 

Civil law is a different type of law, not requiring such a high standard of proof of 
guilt. In a civil case, an individual, organization, company, or group claims it has been 
harmed. The goal of a civil case is restitution: to make the victim "whole" again by repairing 
the harm. For example, suppose Fred kills John. Because Fred has broken a law against 
murder, the government will prosecute Fred in criminal court for having broken the law and 
upsetting the order of society. Abigail, the surviving wife, might be a witness at the criminal 
trial, hoping to see Fred put in prison. But she may also sue him in civil court for wrongful 
death, seeking payment to support her surviving children. 
Tort Law 
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Special legal language describes the wrongs treated in a civil case. The language 
reflects whether a case is based on breaking a law or on violating precedents of behavior 
that have evolved over time. In other words, sometimes judges may make determinations 
based on what is reasonable and what has come before, rather than on what is written in 
legislation. A tort is harm not occurring from violation of a statute or from breach of a 
contract but instead from being counter to the accumulated body of precedents. Thus, 
statute law is written by legislators and is interpreted by the courts; tort law is unwritten 
but evolves through court decisions that become precedents for cases that follow. The basic 
test of a tort is what a reasonable person would do. Fraud is a common example of tort law 
in which, basically, one person lies to another, causing harm. 

Computer information is perfectly suited to tort law. The court merely has to decide 
what is reasonable behavior, not whether a statute covers the activity. For example, taking 
information from someone without permission and selling it to someone else as your own is 
fraud. The owner of the information can sue you, even though there may be no statute 
saying that information theft is illegal. That owner has been harmed by being deprived of 
the revenue you received from selling the information. 

Because tort law is written only as a series of court decisions that evolve constantly, 
prosecution of a tort case can be difficult. If you are involved in a case based on tort law, 
you and your lawyer are likely to try two approaches: First, you might argue that your case 
is a clear violation of the norms of society, that it is not what a fair, prudent person would 
do. 

This approach could establish a new tort. Second, you might argue that your case is 
similar to one or more precedents, perhaps drawing a parallel between a computer program 
and a work of art. The judge or jury would have to decide whether the comparison was apt. 
In both of these ways, law can evolve to cover new objects. 
Contract Law 

A third form of protection for computer objects is contracts. A contract is an 
agreement between two parties. A contract must involve three things: 

 an offer 
 an acceptance 
 a consideration 

One party offers something: "I will write this computer program for you for this 
amount of money." The second party can accept the offer, reject it, make a counter offer, or 
simply ignore it. In reaching agreement with a contract, only an acceptance is interesting; 
the rest is just the history of how agreement was reached. A contract must include 
consideration of money or other valuables. 

The basic idea is that two parties exchange things of value, such as time traded for 
money or technical knowledge for marketing skills. For example, "I'll wash your car if you 
feed me dinner" or "Let's trade these two CDs" are offers that define the consideration. It 
helps for a contract to be in writing, but it does not need to be. A written contract can 
involve hundreds of pages of terms and conditions qualifying the offer and the 
consideration. 

One final aspect of a contract is its freedom: the two parties have to enter into the 
contract voluntarily. If I say "sign this contract or I'll break your arm," the contract is not 
valid, even if leaving your arm intact is a really desirable consideration to you. A contract 
signed under duress or with fraudulent action is not binding. A contract does not have to be 
fair, in the sense of equivalent consideration for both parties, as long as both parties freely 
accept the conditions. 

Information is often exchanged under contract. Contracts are ideal for protecting the 
transfer of information because they can specify any conditions. "You have the right to use 
but not modify this information," "you have the right to use but not resell this information," 
or "you have the right to view this information yourself but not allow others to view it" are 
three potential contract conditions that could protect the commercial interests of an owner 
of information. 

Computer contracts typically involve the development and use of software and 
computerized data. As we note shortly, there are rules about who has the right to contract 
for software employers or employees and what are reasonable expectations of software's 
quality. 
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If the terms of the contract are fulfilled and the exchange of consideration occurs, 
everyone is happy. Usually. Difficulties arise when one side thinks the terms have been 
fulfilled and the other side disagrees. 

As with tort law, the most common legal remedy in contract law is money. You 
agreed to sell me a solid gold necklace and I find it is made of brass. I sue you. Assuming 
the court agreed with me, it might compel you to deliver a gold necklace to me, but more 
frequently the court will decide I am entitled to a certain sum of money. In the necklace 
case, I might argue first to get back the money I originally paid you, and then argue for 
incidental damages from, for example, the doctor I had to see when your brass necklace 
turned my skin green, or the embarrassment I felt when a friend pointed to my necklace 
and shouted "Look at the cheap brass necklacea" I might also argue for punitive damages to 
punish you and keep you from doing such a disreputable thing again. The court will decide 
which of my claims are valid and what a reasonable amount of compensation is. 

Summary of Protection for Computer Artifacts 
This section has presented the highlights of law as it applies to computer hardware, 

software, and data. Clearly these few pages only skim the surface; the law has countless 
subtleties. 

Still, by now you should have a general idea of the types of protection available for 
what things and how to use them. The differences between criminal and civil law are 
summarized in Table 11-2. 

Table 11-2. Criminal vs. Civil Law. 
Criminal Law    Civil Law 
Defined by  

 Statutes     Contracts 
 Common law Cases brought by  
 Government    Government 
 Individuals and companies Wronged party  
 Society     Individuals and companies 

Remedy  
 Jail, fine     Damages, typically monetary 

Contracts help fill the voids among criminal, civil, and tort law. That is, in the 
absence of relevant statutes, we first see common tort law develop. But people then 
enhance these laws by writing contracts with the specific protections they want. 

Enforcement of civil law torts or contracts can be expensive because it requires one 
party to sue the other. The legal system is informally weighted by money. It is attractive to 
sue a wealthy party who could pay a hefty judgment. And a big company that can afford 
dozens of top-quality lawyers will more likely prevail in a suit than an average individual. 

Rights of employees and employers 
Employers hire employees to generate ideas and make products. The protection 

offered by copyrights, patents, and trade secrets appeals to employers because it applies to 
the ideas and products. However, the issue of who owns the ideas and products is complex. 
Ownership is a computer security concern because it relates to the rights of an employer to 
protect the secrecy and integrity of works produced by the employees. In this section we 
study the respective rights of employers and employees to their computer products. 

Ownership of Products 
Suppose Edye works for a computer software company. As part of her job, she 

develops a program to manage windows for a computer screen display. The program 
belongs to her company because it paid Edye to write the program: she wrote it as a part of 
a work assignment. Thus, Edye cannot market this program herself. She could not sell it 
even if she worked for a non-software-related company but developed the software as part 
of her job. 

Most employees understand this aspect of their responsibilities to their employer. 
Instead, suppose Edye develops this program in the evenings at home; it is not a part of her 
job. Then she tries to market the product herself. If Edye works as a programmer, her 
employer will probably say that Edye profited from training and experience gained on the 
job; at the very least, Edye probably conceived or thought about the project while at work. 
Therefore, the employer has an interest in (that is, owns at least part of) the rights to her 
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program. However, the situation changes if Edye's primary job does not involve 
programming. 

If Edye is a television newscaster, her employer may have contributed nothing that 
relates to her computer product. If her job does not involve programming, she may be free 
to market any computer product she makes. And if Edye's spare-time program is an 
application that tracks genealogy, her employer would probably not want rights to her 
program, since it is far from its area of business. (If you are in such a situation yourself, 
you should check with your employer to be sure.) 

Finally, suppose Edye is not an employee of a company. Rather, she is a consultant 
who is self-employed and, for a fee, writes customized programs for her clients. Consider 
her legal position in this situation. She may want to use the basic program design, 
generalize it somewhat, and market it to others. Edye argues that she thought up, wrote, 
and tested the program; therefore, it is her work, and she owns it. Her client argues that it 
paid Edye to develop the program, and it owns the program, just as it would own a 
bookcase she might be paid to build for the station. 

Clearly, these situations differ, and interpreting the laws of ownership is difficult. 
Let us consider each type of protection in turn. 

Ownership of a Patent 
The person who owns a work under patent or copyright law is the inventor; in the 

examples described earlier, the owner is the programmer or the employer. Under patent 
law, it is important to know who files the patent application. If an employee lets an 
employer patent an invention, the employer is deemed to own the patent and therefore the 
rights to the invention. 

The employer also has the right to patent if the employee's job functions included 
inventing the product. For instance, in a large company a scientist may be hired to do 
research and development, and the results of this inventive work become the property of the 
employer. 

Even if an employee patents something, the employer can argue for a right to use 
the invention if the employer contributed some resources (such as computer time or access 
to a library or database) in developing the invention. 
Ownership of a Copyright 

Owning a copyright is similar to owning a patent. The author (programmer) is the 
presumed owner of the work, and the owner has all rights to an object. However, a special 
situation known as work for hire applies to many copyrights for developing software or other 
products. 
Work for Hire 

In a work for hire situation, the employer, not the employee, is considered the author 
of a work. Work for hire is not easy to identify and depends in part on the laws of the state 
in which the employment occurs. The relationship between an employee and employer is 
considered a work for hire if some or all of the following conditions are true. (The more of 
these conditions that are true, the more a situation resembles work for hire.) 

 The employer has a supervisory relationship, overseeing the manner in which the creative 
work is done. 

 The employer has the right to fire the employee. 
 The employer arranges for the work to be done before the work was created (as opposed 

to the sale of an existing work). 
 A written contract between the employer and employee states that the employer has hired 

the employee to do certain work. 
In the situation in which Edye develops a program on her job, her employer will 

certainly claim a work for hire relationship. Then, the employer owns all copyright rights 
and should be identified in place of the author on the copyright notice. 
Licenses 

An alternative to a work for hire arrangement is licensed software. In this situation, 
the programmer develops and retains full ownership of the software. In return for a fee, the 
programmer grants to a company a license to use the program. The license can be granted 
for a definite or unlimited period of time, for one copy or for an unlimited number, to use at 
one location or many, to use on one machine or all, at specified or unlimited times. This 
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arrangement is highly advantageous to the programmer, just as a work for hire 
arrangement is highly advantageous to the employer. The choice between work for hire and 
license is largely what the two parties will agree to. 
Trade Secret Protection 

A trade secret is different from either a patent or a copyright in that there is no 
registered inventor or author; there is no registration office for trade secrets. In the event a 
trade secret is revealed, the owner can prosecute the revealer for damages suffered. But 
first, ownership must be established because only the owner can be harmed. 

A company owns the trade secrets of its business-confidential data. As soon as a 
secret is developed, the company becomes the owner. For example, as soon as sales figures 
are accumulated, a company has trade secret right to them, even if the figures are not yet 
compiled, totaled, summarized, printed, or distributed. As with copyrights, an employer 
may argue about having contributed to the development of trade secrets. If your trade 
secret is an improved sorting algorithm and part of your job involves investigating and 
testing sorting algorithms, your employer will probably claim at least partial ownership of 
the algorithm you try to market. 
Employment Contracts 

An employment contract often spells out rights of ownership. But sometimes the 
software developer and possible employer have no contract. Having a contract is desirable 
both for employees and employers so that both will understand their rights and 
responsibilities. 

Typically, an employment contract specifies that the employee be hired to work as a 
programmer exclusively for the benefit of the company. The company states that this is a 
work for hire situation. The company claims all rights to any programs developed, including 
all copyright rights and the right to market. The contract may further state that the 
employee is receiving access to certain trade secrets as a part of employment, and the 
employee agrees not to reveal those secrets to anyone. 

More restrictive contracts (from the employee's perspective) assign to the employer 
rights to all inventions (patents) and all creative works (copyrights), not just those that 
follow directly from one's job. For example, suppose an employee is hired as an accountant 
for an automobile company. While on the job, the employee invents a more efficient way to 
burn fuel in an automobile engine. The employer would argue that the employee used 
company time to think about the problem, and therefore the company was entitled to this 
product. An employment contract transferring all rights of inventions to the employer would 
strengthen the case even more. 

An agreement not to compete is sometimes included in a contract. The employee 
states that simply having worked for one employer will make the employee very valuable to 
a competitor. 

The employee agrees not to compete by working in the same field for a set period of 
time after termination. For example, a programmer who has a very high position involving 
the design of operating systems would understandably be familiar with a large body of 
operating system design techniques. The employee might memorize the major parts of a 
proprietary operating system and be able to write a similar one for a competitor in a very 
short time. To prevent this, the employer might require the employee not to work for a 
competitor (including working as an independent contractor). Agreements not to compete 
are not always enforceable in law; in some states the employee's right to earn a living takes 
precedence over the employer's rights. 

Software failures 
So far, we have considered programs, algorithms, and data as objects of ownership. 

But these objects vary in quality, and some of the legal issues involved with them concern 
the degree to which they function properly or well. In fact, people have legitimate differences 
of opinion on what constitutes "fair," "good," and "prudent" as these terms relate to 
computer software and programmers and vendors. The law applies most easily when there 
is broad consensus. In this section we look closely at the role that quality plays in various 
legal disputes. At the same time, we also look at the ethical side of software quality, 
foreshadowing a broader discussion on ethics later in this chapter. 

Program development is a human process of design, creation, and testing, involving 
a great deal of communication and interaction. For these reasons, there will always be 
errors in the software we produce. We sometimes expect perfect consumer products, such 
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as automobiles or lawn mowers. At other times, we expect products to be "good enough" for 
use, in that most instances will be acceptable. We do not mind variation in the amount of 
cheese in our pizza or a slight flaw in the glaze on a ceramic tile. If an instance of a product 
is not usable, we expect the manufacturer to provide some appropriate remedy, such as 
repair or replacement. In fact, the way in which these problems are handled can contribute 
to a vendor's reputation for quality service; on the rare occasions when there is a problem, 
the vendor will promptly and courteously make amends. 

But the situation with software is very different. To be fair, an operating system is a 
great deal more complex than many consumer products, and more opportunities for failure 
exist. For this reason, this section addresses three questions: 
• What are the legal issues in selling correct and usable software? 
• What are the moral or ethical issues in producing correct and usable software? 
• What are the moral or ethical issues in finding, reporting, publicizing, and fixing flaws? 

In some ways, the legal issues are evolving. Everyone acknowledges that all vendors 
should produce good software, but that does not always happen. The more difficult 
concerns arise in the development and maintenance communities about what to do when 
faults are discovered. 

Selling Correct Software 
Software is a product. It is built with a purpose and an audience in mind, and it is 

purchased by a consumer with an intended use in an expected context. And the consumer 
has some expectations of a reasonable level of quality and function. In that sense, buying 
software is like buying a radio. If you buy a faulty radio, you have certain legal rights 
relating to your purchase and you can enforce them in court if necessary. You may have 
three reactions if you find something wrong with the radio: You want your money back, you 
want a different (not faulty) radio, or you want someone to fix your radio. With software you 
have the same three possibilities, and we consider each one in turn. 

To consider our alternatives with software, we must first investigate the nature of 
the faulty code. Why was the software bad? One possibility is that it was presented on a 
defective medium. For example, the CD may have had a flaw and you could not load the 
software on your computer. In this case, almost any merchant will exchange the faulty copy 
with a new one with little argument. The second possibility is that the software worked 
properly, but you don't like it when you try it out. It may not do all it was advertised to do. 
Or you don't like the "look and feel," or it is slower than you expected it to be, or it works 
only with European phone numbers, not the phone scheme in your country. The bottom 
line is that there is some attribute of the software that disappoints you, and you do not 
want this software. 

The final possibility is that the software malfunctions, so you cannot use it with 
your computer system. Here, too, you do not want the software and hope to return it. 
I Want a Refund 

If the item were a radio, you would have the opportunity to look at it and listen to it 
in the shop, to assess its sound quality, measure its size (if it is to fit in a particular space), 
and inspect it for flaws. Do you have that opportunity with a program? Probably not. 

The U.S. Uniform Commercial Code (UCC) governs transactions between buyers and 
sellers in the United States. Section 2-601 says that "if the goods or the tender of delivery 
fail in any respect to conform to the contract, the buyer may reject them." You may have 
had no opportunity to try out the software before purchase, particularly on your computer. 
Your inspection often could not occur in the store (stores tend to frown on your bringing 
your own computer, opening their shrink-wrapped software, installing the software on your 
machine, and checking the features). Even if you could have tried the software in the store, 
you may not have been able to assess how it works with the other applications with which it 
must interface. So you take home the software, only to find that it is free from flaws but 
does not fit your needs. You are entitled to a reasonable period to inspect the software, long 
enough to try out its features. If you decide within a reasonably short period of time that 
the product is not for you, you can cite UCC §2-601 to obtain a refund. 

More often, though, the reason you want to return the software is because it simply 
is not of high enough quality. Unfortunately, correctness of software is more difficult to 
enforce legally. 
I Want It to Be Good 
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Quality demands for mass market software are usually outside the range of legal 
enforcement for several reasons. 

 Mass-market software is seldom totally bad. Certain features may not work, and faults 
may prevent some features from working as specified or as advertised. But the software 
works for most of its many users or works most of the time for all of its users. 

 The manufacturer has "deep pockets." An individual suing a major manufacturer could 
find that the manufacturer has a permanent legal staff of dozens of full-time attorneys. The 
cost to the individual of bringing a suit is prohibitive.  

 Legal remedies typically result in monetary awards for damages, not a mandate to fix 
the faulty software. 

 The manufacturer has little incentive to fix small problems. Unless a problem will 
seriously damage a manufacturer's image or possibly leave the manufacturer open to large 
damage amounts, there is little justification to fix problems that affect only a small number 
of users or that do not render the product unfit for general use. 

Thus, legal remedies are most appropriate only for a large complaint, such as one 
from a government or one representing a large class of dissatisfied and vocal users. The "fit 
for use" provision of the UCC dictates that the product must be usable for its intended 
purpose; software that doesn't work is clearly not usable. The UCC may help you get your 
money back, but you may not necessarily end up with working software. 

Some manufacturers are very attentive to their customers. When flaws are 
discovered, the manufacturers promptly investigate the problems and fix serious ones 
immediately, perhaps holding smaller corrections for a later release. These companies are 
motivated more by public image or moral obligation than by legal requirement. 

Trope [TRO04] proposes a warranty of cyberworthiness. The warranty would state 
that the manufacturer made a diligent search for security vulnerabilities and had removed 
all known critical ones. Furthermore, the vendor will continue to search for vulnerabilities 
after release and, on learning of any critical ones, will contact affected parties with patches 
and work-arounds. Now, a maker is potentially liable for all possible failings, and a major 
security-critical flaw could be very costly. Trope's approach limits the exposure to 
addressing known defects reasonably promptly. 

Reporting Software Flaws 
Who should publicize flawsthe user or the manufacturer? A user might want the 

recognition of finding a flaw; delaying the release might let someone else get that credit. A 
manufacturer might want to ignore a problem or fail to credit the user. And either could say 
the other was wrong. And how should these flaws be reported? Several different viewpoints 
exist.  
What You Don't Know Can Hurt You 

The several variants of Code Red in 2001 sparked a debate about whether we should 
allow full disclosure of the mechanisms that allow malicious code to enter and thrive in our 
systems. For example, the first variant of Code Red was relatively benign, but the third and 
fourth variants were powerful. When the first Code Red variant appeared, it was studied by 
many security analysts, including those at eEye Digital Security in Aliso Viejo, California. In 
an effort to pressure vendors and software managers to take seriously the threats they 
represent, eEye practices full disclosure of what it knows about security flaws. 

However, some observers claim that such open sharing of information is precisely 
what enables hackers to learn about vulnerabilities and then exploit them. Several 
developers suspect that eEye's openness about Code Red enabled the more powerful 
variants to be written and disseminated [HUL01]. 

Scott Culp [CUL01], Microsoft's manager of Windows security, distinguishes between 
full disclosure and full exposure; he thinks that source code or detailed explanations of a 
vulnerability's concept should be protected. And many security analysts encourage users 
and managers to apply patches right away, closing security holes before they can be 
exploited. 

But as we saw in Sidebar 3-5, the patches require resources and may introduce 
other problems while fixing the initial one. Each software-using organization must analyze 
and balance the risks and cost of not acting with the risks and costs of acting right away. 
The Vendor's Interests 

Microsoft argues that producing one patch for each discovered vulnerability is 
inefficient both for the vendor and the user. The vendor might prefer to bundle several 
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patches into a single service pack or, for noncritical vulnerabilities, to hold them until the 
next version. So, Microsoft would like to control if or when the report of a vulnerability goes 
public.  

Craig Mundie, Microsoft's Chief Technology Officer, suggests a stronger reason to 
minimize disclosure of vulnerability information. "Every time we become explicit about a 
problem that exists in a legacy product, the response to our disclosure is to focus the 
attack. In essence we end up funneling them to the vulnerability." [FIS02a] Scott Culp 
argued [CUL01] that " a vendor's responsibility is to its customers, not to a self-described 
security community." He opposed what he called "information anarchy,… the practice of 
deliberately publishing explicit, step-by-step instructions for exploiting security 
vulnerabilities without regard for how the information may be used." But he also 
acknowledged that the process of developing, distributing, and applying patches is 
imperfect, and his own company "need[s] to make it easier for users to keep their systems 
secure." 
Users' Interests 

David Litchfield, a security researcher noted for locating flaws in vendors' programs, 
announced in May 2002 that he would no longer automatically wait for a vendor's patch 
before going public with a vulnerability announcement. Citing "lethargy and an 
unwillingness to patch security problems as and when they are found," [FIS02b] Litchfield 
criticized the approach of holding fixes of several vulnerabilities until enough had 
accumulated to warrant a single service pack. He makes the point that publicized or not, 
the vulnerabilities still exist. If one reporter has found the problem, so too could any 
number of malicious attackers. For a vendor to fail to provide timely patches to 
vulnerabilities of which the vendor is aware leaves the users wide open to attacks of which 
the user may be unaware. 

Litchfield's solution is to put pressure on the vendor. He announced he would give 
vendors one week's notice of a vulnerability before publicizing the vulnerability but not the 
details of how to exploit itto the world. 
"Responsible" Vulnerability Reporting 

Clearly the conflicting interests of vendors and users must meet at some 
compromise position. (For an example of how vulnerability disclosure does not work, see 
Sidebar 11-3.) Christey and Wysopal [CHR02] have proposed a vulnerability reporting 
process that meets constraints of timeliness, fair play, and responsibility. They call the user 
reporting a suspected vulnerability a "reporter" and the manufacturer the "vendor." A third 
party such as a computer emergency response center called a "coordinator" could also play 
a role when a conflict or power issue arises between reporter and vendor. Basically, the 
process requires reporter and vendor to do the following: 

 The vendor must acknowledge a vulnerability report confidentially to the reporter. 
 The vendor must agree that the vulnerability exists (or argue otherwise) confidentially 

to the reporter. 
 The vendor must inform users of the vulnerability and any available countermeasures 

within 30 days or request additional time from the reporter as needed. 
 After informing users, the vendor may request from the reporter a 30-day quiet period 

to allow users time to install patches. 
 At the end of the quiet period the vendor and reporter should agree upon a date at which 

time the vulnerability information may be released to the general public. 
 The vendor should credit the reporter with having located the vulnerability. 
 If the vendor does not follow these steps, the reporter should work with a coordinator 

to determine a responsible way to publicize the vulnerability. 
Such a proposal can only have the status of a commonly agreed-on process, since 

there is no authority that can enforce adherence on either users or vendors. 
Quality Software 

Boris Beizer, a consultant, has said, "Software should be shipped with bugs. The 
zero-defect notion is mythological and theoretically unachievable. That doesn't mean 
shipping ill-behaved or useless software; it means being open with users about the bugs we 
find, sending notices or including the bug list, publishing the workarounds when we have 
them, and being honest and open about what we have and haven't yet tested and when we 
do and don't plan to test in the near future." [COF02] 
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The whole debate over how and when to disclose vulnerabilities avoids the real 
issue. The world does not need faster patches, it needs better software with fewer 
vulnerabilities after delivery to the user. Forno [FOR01] says, "The most significant danger 
and vulnerability facing the Wired World is continuing to accept and standardize corporate 
and consumer computer environments on technology that's proven time and again to be 
insecure, unstable, and full of undocumented bugs ('features') that routinely place the 
Internet community at risk." 

In January 2002, Bill Gates, CEO of Microsoft, announced that producing quality 
software with minimal defects was his highest priority for Microsoft, ahead of new 
functionality. His manager of development of the XP operating system announced he was 
requiring programmers involved in development of XP to attend a course in secure 
programming. Did the initiative work? In one five-day period in June 2002, Microsoft 
released six separate patches for security vulnerabilities. In November 2004, Microsoft went 
to once-a-month patch releases and has distributed an average of two to three new critical 
patches each month since then. 

The issue is not how promptly a vulnerability is patched or how much detail is 
released with a vulnerability announcement. The issue is that, as the Anderson report 
[AND72] noted over three decades ago, "penetrate and patch" is a fatally flawed concept: 
after a flaw was patched, the penetrators always found other old flaws or new flaws 
introduced because of or in the patch. The issue is technical, psychological, sociological, 
managerial, and economic. 

Until we produce consistently solid software, our entire computing infrastructure is 
seriously at risk. 

Computer crime 
The law related to contracts and employment is difficult, but at least employees, 

objects, contracts, and owners are fairly standard entities for which legal precedents have 
been developed over centuries. The definitions in copyright and patent law are strained 
when applied to computing because old forms must be made to fit new objects; for these 
situations, however, cases being decided now are establishing legal precedents. But crimes 
involving computers are an area of the law that is even less clear than the other areas. In 
this section we study computer crime and consider why new laws are needed to address 
some of its problems. 

Why a Separate Category for Computer Crime Is Needed 
Crimes can be organized into certain recognized categories, including murder, 

robbery, and littering. We do not separate crime into categories for different weapons, such 
as gun crime or knife crime, but we separate crime victims into categories, depending on 
whether they are people or other objects. Nevertheless, driving into your neighbor's picture 
window can be as bad as driving into his evergreen tree or pet sheep. Let us look at an 
example to see why these categories are not sufficient and why we need special laws 
relating to computers as subjects and objects of crime. 
Rules of Property 

Parker and Nycom [PAR84] describe the theft of a trade secret proprietary software 
package. The theft occurred across state boundaries by means of a telephone line; this 
interstate aspect is important because it means that the crime is subject to federal law as 
well as state law. The California Supreme Court ruled that this software acquisition was not 
theft because Implicit in the definition of "article" in Section 499c(a) is that it must be 
something tangible… 

Based on the record here, the defendant did not carry any tangible thing… from the 
computer to his terminal unless the impulses which defendant allegedly caused to be 
transmitted over the telephone wire could be said to be tangible. It is the opinion of the Court 
that such impulses are not tangible and hence do not constitute an aarticle." 

The legal system has explicit rules about what constitutes property. Generally, 
property is tangible, unlike magnetic impulses. For example, unauthorized use of a 
neighbor's lawn mower constitutes theft, even if the lawn mower was returned in essentially 
the same condition as it was when taken. To a computer professional, taking a copy of a 
software package without permission is clear-cut theft. Fortunately, laws evolve to fit the 
times, and this interpretation from the 1980s has been refined so that bits are now 
recognized items of property. 
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A similar problem arises with computer services. We would generally agree that 
unauthorized access to a computing system is a crime. For example, if a stranger enters 
your garden and walks around, even if nothing is touched or damaged, the act is considered 
trespassing. 

However, because access by computer does not involve a physical object, not all 
courts punish it as a serious crime. 
Rules of Evidence 

Computer printouts have been used as evidence in many successful prosecutions. 
Frequently-used are computer records generated in the ordinary course of operation, such 
as system audit logs. 

Under the rules of evidence, courts prefer an original source document to a copy, 
under the assumption that the copy may be inaccurate or may have been modified in the 
copying process. The biggest difficulty with computer-based evidence in court is being able 
to demonstrate the authenticity of the evidence. Law enforcement officials operate under a 
chain of custody requirement: From the moment a piece of evidence is taken until it is 
presented in court, they track clearly and completely the order and identities of the people 
who had personal custody of that object. The reason for the chain of custody is to ensure 
that nobody has had the opportunity to alter the evidence in any way before its presentation 
in court. With computer-based evidence, it can be difficult to establish a chain of custody. If 
a crime occurred on Monday but was not discovered until Wednesday, who can verify that 
the log file was not altered? In fact, it probably was altered many times as different 
processes generated log entries. The issue is to demonstrate convincingly that the log entry 
for 2:37 on Monday does in fact correspond to the event that took place at that time on 
Monday, not some attempt on Thursday to plant a false clue long after the crime took place. 
Threats to Integrity and Confidentiality 

The integrity and secrecy of data are also issues in many court cases. Parker and 
Nycom [PAR84] describe a case in which a trespasser gained remote access to a computing 
system. 

The computing system contained confidential records about people, and the integrity 
of the data was important. The prosecution of this case had to be phrased in terms of theft 
of computer time and valued as such, even though that was insignificant compared with 
loss of privacy and integrity. Why? Because the law as written recognized theft of computer 
time as a loss, but not loss of privacy or destruction of data. 

Now, however, several federal and state laws recognize the privacy of data about 
individuals. For example, disclosing grades or financial information without permission is a 
crime, and tort law would recognize other cases of computer abuse. 
Value of Data 

In another computer crime, a person was found guilty of having stolen a substantial 
amount of data from a computer data bank. However, the court determined that the "value" 
of that data was the cost of the paper on which it was printed, which was only a few dollars. 
Because of that valuation, this crime was classified as a misdemeanor and considered to be 
a minor crime. 

Fortunately, the courts have since determined that information and other 
intangibles can have significant value. The concept of what we value and how we determine 
its value is key to understanding the problems with computer-based law. In most 
economies, paper money is accepted as a valuable commodity, even if the paper on which it 
is printed is worth only a few cents. Cash is easy to value: A dollar bill is worth one dollar. 
But consider the way we determine the value of a company's assets. Usually, the valuation 
reflects the amount of money a person or organization is willing to pay for it. For example, 
the assets of a credit bureau are its files. 

Banks and insurance companies willingly pay $20 or more for a credit report, even 
though the paper itself is worth less than a dollar. For a credit bureau, the amount a willing 
customer will pay for a report is a fair estimate of the report's value; this estimate is called 
the market value of the report. However, the credit bureau (or any company) has other 
assets that are not sold but are just as valuable to the company's financial viability. For 
instance, a confidential list of clients has no market value that can be established, but the 
list may be essential. Its value is apparent only when a loss is suffered, such as when the 
secret information is made available to a competitor. Over time, the legal system will find 
ways to place a value on data that is representative of its value to those who use it. 
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Although these methods of valuation are accepted in civil suits, they have not yet been 
widely accepted in criminal prosecution. 
Acceptance of Computer Terminology 

The law is also lagging behind technology in its acceptance of definitions of 
computing terms. For example, according to a federal statute, it is unlawful to commit 
arson within a federal enclave (18 USC 81). Part of that act relates to "machinery or 
building material or supplies" in the enclave, but court decisions have ruled that a motor 
vehicle located within a federal enclave at the time of the burning was not included under 
this statute. Because of that ruling, it is not clear whether computer hardware constitutes 
"machinery" in this context; "supplies" almost certainly does not include software. 
Computers and their software, media, and data must be understood and accepted by the 
legal system. 

Why Computer Crime Is Hard to Define 
From these examples, it is clear that the legal community has not accommodated 

advances in computers as rapidly as has the rest of society. Some people in the legal 
process do not understand computers and computing, so crimes involving computers are 
not always treated properly. Creating and changing laws are slow processes, intended to 
involve substantial thought about the effects of proposed changes. This deliberate process 
is very much out of pace with a technology that is progressing as fast as computing. 

Adding to the problem of a rapidly changing technology, a computer can perform 
many roles in a crime. A particular computer can be the subject, object, or medium of a 
crime. A computer can be attacked (attempted unauthorized access), used to attack 
(impersonating a legitimate node on a network), and used as a means to commit crime 
(Trojan horse or fake login). 

Computer crime statutes must address all of these evils. 

Why Computer Crime Is Hard to Prosecute 
Even when everyone acknowledges that a computer crime has been committed, 

computer crime is hard to prosecute for the following reasons. 
 Lack of understanding. Courts, lawyers, police agents, or jurors do not necessarily 

understand computers. Many judges began practicing law before the invention of 
computers, and most began before the widespread use of the personal computer. 
Fortunately, computer literacy in the courts is improving as judges, lawyers, and police 
officers use computers in their daily activities. 

 Lack of physical evidence. Police and courts have for years depended on tangible evidence, 
such as fingerprints. As readers of Sherlock Holmes know, seemingly minuscule clues can 
lead to solutions to the most complicated crimes (or so Doyle would have you believe). But 
with many computer crimes there simply are no fingerprints and no physical clues of any 
sort. 

 Lack of recognition of assets. We know what cash is, or diamonds, or even negotiable 
securities. But are twenty invisible magnetic spots really equivalent to a million dollars? 
Is computer time an asset? What is the value of stolen computer time if the system would 
have been idle during the time of the theft? 

 Lack of political impact. Solving and obtaining a conviction for a murder or robbery is 
popular with the public, and so it gets high priority with prosecutors and police chiefs. 
Solving and obtaining a conviction for an obscure high-tech crime, especially one not 
involving obvious and significant loss, may get less attention. However, as computing 
becomes more pervasive, the visibility and impact of computer crime will increase. 

 Complexity of case. Basic crimes that everyone understands, such as murder, 
kidnapping, or auto theft, can be easy to prosecute. A complex money-laundering or tax 
fraud case may be more difficult to present to a jury because jurors have a hard time 
following a circuitous accounting trail. But the hardest crime to present may be a high-tech 
crime, described, for example, as root access by a buffer overflow in which memory was 
overwritten by other instructions, which allowed the attacker to copy and execute code at 
will and then delete the code, eliminating all traces of entry (after disabling the audit 
logging, of course). 

 Age of defendant.. Many computer crimes are committed by juveniles. Society 
understands immaturity and disregards even very serious crimes by juveniles because the 
juveniles did not understand the impact of their actions. A more serious, related problem is 
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that many adults see juvenile computer crimes as childhood pranks, the modern equivalent 
of tipping over an outhouse. 

Even when there is clear evidence of a crime, the victim may not want to prosecute 
because of possible negative publicity. Banks, insurance companies, investment firms, the 
government, and healthcare groups think their trust by the public will be diminished if a 
computer vulnerability is exposed. Also, they may fear repetition of the same crime by 
others: so-called copycat crimes. For all of these reasons, computer crimes are often not 
prosecuted. 

Examples of Statutes 
As a few examples from the 1980s have pointed out, in the early days, prosecution 

of computer crimes was hampered by lack of clear appreciation of the nature or seriousness 
of crime involving computers. Although theft, harm to persons, and damage to property 
have been crimes for a long time, in some cases new laws were useful to make it obvious to 
the courts what computer-related behavior was unacceptable. Most states now have laws 
covering computer crime of one sort or another. Also, computer-related crimes now appear 
in sentencing guidelines. In this section we highlight a few of the laws defining aspects of 
crime against or using computers. 
U.S. Computer Fraud and Abuse Act 

The primary federal statute, 18 USC 1030, was enacted in 1984 and has been 
amended several times since. This statute prohibits 

 unauthorized access to a computer containing data protected for national defense or 
foreign relations concerns 

 unauthorized access to a computer containing certain banking or financial information 
 unauthorized access, use, modification, destruction, or disclosure of a computer or 

information in a computer operated on behalf of the U.S. government 
 accessing without permission a "protected computer," which the courts now interpret 

to include any computer connected to the Internet 
 computer fraud 
 transmitting code that causes damage to a computer system or network 
 trafficking in computer passwords 

Penalties range from $5,000 to $100,000 or twice the value obtained by the offense, 
whichever is higher, or imprisonment from 1 year to 20 years, or both. 
U.S. Economic Espionage Act 

This 1996 act outlaws use of a computer for foreign espionage to benefit a foreign 
country or business or theft of trade secrets. 
U.S. Electronic Funds Transfer Act 

This law prohibits use, transport, sale, receipt, or supply of counterfeit, stolen, 
altered, lost, or fraudulently obtained debit instruments in interstate or foreign commerce. 
U.S. Freedom of Information Act 

The Freedom of Information Act provides public access to information collected by 
the executive branch of the federal government. The act requires disclosure of any available 
data, unless the data fall under one of several specific exceptions, such as national security 
or personal privacy. The law's original intent was to release to individuals any information 
the government had collected on them. However, more corporations than individuals file 
requests for information as a means of obtaining information about the workings of the 
government. 

Even foreign governments can file for information. This act applies only to 
government agencies, although similar laws could require disclosure from private sources. 
The law's effect is to require increased classification and protection for sensitive 
information. 
U.S. Privacy Act 

The Privacy Act of 1974 protects the privacy of personal data collected by the 
government. An individual is allowed to determine what data have been collected on him or 
her, for what purpose, and to whom such information has been disseminated. An additional 
use of the law is to prevent one government agency from accessing data collected by 
another agency for another purpose. This act requires diligent efforts to preserve the 
secrecy of private data collected. 
U.S. Electronic Communications Privacy Act 
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This law, enacted in 1986, protects against electronic wiretapping. There are some 
important qualifications. First, law enforcement agencies are always allowed to obtain a 
court order to access communications or records of them. And an amendment to the act 
requires Internet service providers to install equipment as needed to permit these court-
ordered wiretaps. 

Second, the act allows Internet service providers to read the content of 
communications in order to maintain service or to protect the provider itself from damage. 
So, for example, a provider could monitor traffic for viruses. 
Gramm Leach Bliley 

The U.S. Gramm Leach Bliley Act (Public Law 106-102) of 1999 covers privacy of 
data for customers of financial institutions. Each institution must have a privacy policy of 
which it informs its customers, and customers must be given the opportunity to reject any 
use of the data beyond the necessary business uses for which the private data were 
collected. The act and its implementation regulations also require financial institutions to 
undergo a detailed security-risk assessment. Based on the results of that assessment, the 
institution must adopt a comprehensive "information security program" designed to protect 
against unauthorized access to or use of customers' nonpublic personal information. 
HIPAA 

In 1996, Public Law 104-191, the Health Insurance Portability and Accountability 
Act (HIPAA) was passed in the United States. Although the first part of the law concerned 
the rights of workers to maintain health insurance coverage after their employment was 
terminated, the second part of the law required protection of the privacy of individuals' 
medical records. HIPAA and its associated implementation standards mandate protection of 
"individually identifiable healthcare information," that is, medical data that can be 
associated with an identifiable individual. To protect the privacy of individuals' healthcare 
data, healthcare providers must perform standard security practices, such as the following: 

 Enforce need to know. 
 Ensure minimum necessary disclosure. 
 Designate a privacy officer. 
 Document information security practices. 
 Track disclosures of information. 
 Develop a method for patients' inspection and copying of their information. 
 Train staff at least every three years. 

Perhaps most far-reaching is the requirement for healthcare organizations to develop 
"business associate contracts," which are coordinated agreements on how data shared 
among entities will be protected. This requirement could affect the sharing and transmittal 
of patient information among doctors, clinics, laboratories, hospitals, insurers, and any 
other organizations that handle such data. 
USA Patriot Act 

Passed in 2001 in reaction to terrorist attacks in the United States, the USA Patriot 
Act includes a number of provisions supporting law enforcement's access to electronic 
communications. Under this act, law enforcement need only convince a court that a target 
is probably an agent of a foreign power in order to obtain a wiretap order. The main 
computer security provision of the Patriot Act is an amendment to the Computer Fraud and 
Abuse Act: 

 Knowingly causing the transmission of code resulting in damage to a protected computer 
is a felony. 

 Recklessly causing damage to a computer system as a consequence of unauthorized 
access is also a felony. 

 Causing damage (even unintentionally) as a consequence of unauthorized access to a 
protected computer is a misdemeanor. 
The CAN SPAM Act 

Unsolicited "junk" e-mail or spam is certainly a problem. Analysts estimate that as 
much as 70 percent of all e-mail traffic is spam. To address pressure from their 
constituents, in 2003 U.S. lawmakers passed the Controlling the Assault of Non-Solicited 
Pornography and Marketing (CAN SPAM) Act. (One wonders how many staff members it 
took to find a sequence of words to yield that acronym.) Key requirements of the law are 
these:  

 It bans false or misleading header information. 
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 It prohibits deceptive subject lines. 
 It requires commercial e-mail to give recipients an opt-out method. 
 It bans sale or transfer of e-mail addresses of people who have opted out. 
 It requires that commercial e-mail be identified as an advertisement. 

Critics of the law point out that it preempts state laws, and some states had 
stronger laws. It also can be read as permitting commercial e-mail as long as the mail is not 
deceptive. Finally, and most importantly, it does little to regulate spam that comes from 
offshore: a spam sender simply sends spam from a foreign mailer, perhaps in a country 
more interested in generating business for its national ISPs than in controlling worldwide 
junk e-mail. The most telling result: 
The volume of spam has not declined since the law. 
California Breach Notification 

The first state in the U.S. to enact such a law, California passed SB1386, effective in 
2003. This law requires any company doing business in California or any California 
government agency to notify individuals of any breach that has, or is reasonably believed to 
have, compromised personal information on any California resident. As a state law, it is 
limited to California residents and California companies. At least 20 other states have since 
followed with some form of breach notification. 

The most widely reported application of the law was in February 2005 when 
Choicepoint disclosed that some California residents had been affected by loss of 145,000 
pieces of personal identity information. Initially only affected California residents were 
informed, but after news of that disclosure was made public, Choicepoint revealed how 
many people total were involved and began notifying them. 

International Dimensions 
So far we have explored laws in the United States. But many people outside the 

United States will read this book, perhaps wondering why they should learn about laws 
from a foreign country. This question has two answers. 

Technically, computer security laws in the United States are similar to those in 
many other countries: Lawmakers in each country learn about subtle legal points and 
interpretation or enforcement difficulties from laws passed in other countries. Many other 
countries, such as Australia, Canada, Brazil, Japan, the Czech Republic, and India, have 
recently enacted computer crime laws. These laws cover offenses such as fraud, 
unauthorized computer access, data privacy, and computer misuse. Schjolberg [SCH02] 
has compiled a survey of different countries' laws to counter unauthorized access. 

The second reason to study laws from a foreign country is that the Internet is an 
international entity. Citizens in one country are affected by users in other countries, and 
users in one country may be subject to the laws in other countries. Therefore, you need to 
know which laws may affect you. The international nature of computer crime makes life 
much more complicated. For example, a citizen of country A may sit in country B, dial into 
an ISP in country C, use a compromised host in country D, and attack machines in country 
E (not to mention traveling on communications lines through dozens of other countries). To 
prosecute this crime may require cooperation of all five countries. The attacker may need to 
be extradited from B to E to be prosecuted there, but there may be no extradition treaty for 
computer crimes between B and E. And the evidence obtained in D may be inadmissible in 
E because of the manner in which it was obtained or stored. And the crime in E may not be 
a crime in B, so the law enforcement authorities, even if sympathetic, may be unable to act. 
Although computer crime is truly international, differing statutes in different jurisdictions 
inhibit prosecution of international computer crime. In the remainder of this section we 
briefly discuss laws around the world that differ from U.S. laws and that should be of 
interest to computer security students. 
Council of Europe Agreement on Cybercrime 

In November 2001, the United States, Canada, Japan, and 22 European countries 
signed the Council of Europe Agreement on Cybercrime to define cybercrime activities and 
support their investigation and prosecution across national boundaries. The significance of 
this treaty is not so much that these activities are illegal but that the countries 
acknowledged them as crimes across their borders, making it easier for law enforcement 
agencies to cooperate and for criminals to be extradited for offenses against one country 
committed from within another country. But to really support investigation, prosecution, 
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and conviction of computer criminals, more than just these 25 countries will have to be 
involved. 

The treaty requires countries that ratify it to adopt similar criminal laws on hacking, 
computer-related fraud and forgery, unauthorized access, infringements of copyright, 
network disruption, and child pornography. The treaty also contains provisions on 
investigative powers and procedures, such as the search of computer networks and 
interception of communications, and requires cross-border law enforcement cooperation in 
searches and seizures and extradition. The original treaty has been supplemented by an 
additional protocol making any publication of racist and xenophobic propaganda via 
computer networks a criminal offense. 
E.U. Data Protection Act 

The E.U. Data Protection Act, based on the European Privacy Directive, is model 
legislation for all the countries in the European Union. It establishes privacy rights and 
protection responsibilities for all citizens of member countries. The act governs the 
collection and storage of personal data about individuals, such as name, address, and 
identification numbers. The law requires a business purpose for collecting the data, and it 
controls against disclosure. Dating from 1994 in its initial form, this law was one of the first 
to establish protection requirements for the privacy of personal data. Most significantly, the 
act requires equivalent protection in non-E.U. countries if organizations in the European 
Union pass protected data outside the European Union. Chapter 10 contains more detail on 
this directive. 
Restricted Content 

Some countries have laws controlling Internet content allowed in their countries. 
Singapore requires service providers to filter content allowed in. China bans material that 
disturbs social order or undermines social stability. Tunisia has a law that applies the same 
controls on critical speech as for other media forms [HRW99]. 

Further laws have been proposed to make it illegal to transmit outlawed content 
through a country, regardless of whether the source or destination of the content is in that 
country. 

Given the complex and unpredictable routing structure of the Internet, complying 
with these laws, let alone enforcing them, is effectively impossible. 
Use of Cryptography 

Cryptography is the fourth major area in which different countries have developed 
laws. We survey these laws in a subsequent section. 

Why Computer Criminals Are Hard to Catch 
As if computer crime laws and prosecution were not enough, it is also difficult for 

law enforcement agencies to catch computer criminals. There are two major reasons for 
this. 

First, computer crime is a multinational activity that must usually be pursued on a 
national or local level. There are no international laws on computer crime. Even though the 
major industrial nations cooperate very effectively on tracking computer criminals, 
criminals know there are "safe havens" from which they cannot be caught. Often, the trail of 
a criminal stops cold at the boundary of a country. Riptech Inc. [BEL02] studies Internet 
attack trends by many factors. For the period JanuaryJune 2002 the United States led the 
world in source of Internet attacks (40 percent) followed by Germany (7 percent). But when 
you normalize these data for number of users, a very different pattern emerges. Per Internet 
user, Israel and Hong Kong lead among those nations with more than 1 million users, and 
Kuwait and Iran top the list among nations with fewer than 1 million users. Nations all over 
the globe appear on these lists, which demonstrates that attackers can and do operate from 
many different countries. 

Complexity is an even more significant factor than country of origin. As we have 
stated throughout this book, networked attacks are hard to trace and investigate because 
they can involve so many steps. A smart attacker will "bounce" an attack through many 
places to obscure the trail. Each step along the way makes the investigator complete more 
legal steps. 

If the trail leads from server A to B to C, the law enforcement investigators need a 
search warrant for data at A, and others for B and C. Even after obtaining the search 
warrants, the investigator has to find the right administrator and serve the warrants to 
begin obtaining data. 
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In the time the investigator has to get and serve warrants, not to mention follow 
leads and correlate findings, the attacker has carefully erased the digital evidence. In a 
CNET News article, Sandoval [SAN02] says law enforcement agencies are rarely able to 
track down hackers sophisticated enough to pull off complicated attacks. Sandoval quotes 
Richard Power, editorial director of the Computer Security Institute: "It's a world class 
business." Independent investigator Dan Clements says, "only about 10 percent of active 
hackers are savvy enough to work this way consistently, but they are almost always 
successful." 

What Computer Crime Does Not Address 
Even with the definitions included in the statutes, the courts must interpret what a 

computer is. Legislators cannot define precisely what a computer is because computer 
technology is used in many other devices, such as robots, calculators, watches, 
automobiles, microwave ovens, and medical instruments. More importantly, we cannot 
predict what kinds of devices may be invented ten or fifty years from now. Therefore, the 
language in each of these laws indicates the kinds of devices the legislature seeks to include 
as computers and leaves it up to the court to rule on a specific case. Unfortunately, it takes 
awhile for courts to build up a pattern of cases, and different courts may rule differently in 
similar situations. The interpretation of each of these terms will be unsettled for some time 
to come.  

Value presents a similar problem. As noted in some of the cases presented, the 
courts have trouble separating the intrinsic value of an object (such as a sheet of paper with 
writing on it) from its cost to reproduce. The courts now recognize that a Van Gogh painting 
is worth more than the cost of the canvas and paint. But the courts have not agreed on the 
value of printed computer output. The cost of a blank diskette is miniscule, but it may have 
taken thousands of hours of data gathering and machine time to produce the data encoded 
on a diskette. The courts are still striving to determine the fair value of computer objects. 
Both the value of a person's privacy and the confidentiality of data about a person are even 
less settled. In a later section we consider how ethics and individual morality take over 
where the law stops. 

Cryptography and the Law 
The law is used to regulate people for their own good and for the greater good of 

society. Murder, theft, drinking, and smoking are circumscribed by laws. Generally, the 
balance between personal freedom and the good of society is fairly easy to judge; for 
example, one's right to fire a gun ends when the bullet hits someone. Cryptography is also a 
regulated activity, but the issues are a little less clear-cut, in part because there is little 
open discussion of the subject. 

People want to protect their privacy, including the secrecy of communications with 
others. Businesses want similar confidentiality. Criminals want secrecy so that they can 
communicate criminal plans in private. Governments want to track illegal activity, both to 
prevent crime and to apprehend and convict criminals after a crime has been committed. 
Finally, nations want to know the military and diplomatic plans of other nations. As shown 
throughout this book, cryptography can be a powerful tool to protect confidentiality, but 
being able to break cryptography can be a potent tool for government. Phrased differently, it 
suits governments' interests if people cannot use cryptography that is too good (meaning, 
unbreakable by the government). 
Controls on Use of Cryptography 

Closely related to restrictions on content are restrictions on the use of cryptography 
imposed on users in certain countries. In China, for example, State Council Order 273 
requires foreign organizations or individuals to apply for permission to use encryption in 
China. Pakistan requires that all encryption hardware and software be inspected and 
approved by the Pakistan Telecommunication Authority. And in Iraq, use of even the 
Internet is strictly limited, and unauthorized use of encryption carries heavy penalties. 

France's encryption policy is probably the most widely discussed. Import of 
encryption products is subject to a registration requirement: A vendor's registration for a 
mass-market commercial product is valid for all imports of that product. Use of encryption 
for authentication is unlimited. Use of encryption with a key length up to 128 for 
confidentiality requires only the vendor's registration. Use of products with a key length 
greater than 128 bits requires that the key be escrowed with a trusted third party. 
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Such laws are very difficult to enforce individually. Cryptography, steganography, 
and secret writing have been used for centuries. The governments know they cannot 
prevent two cooperating people from concealing their communications. However, 
governments can limit widespread computer-based use by limiting cryptography in mass-
market products. Although policing 50 million computer users is impossible, controlling a 
handful of major computer manufacturers is feasible, especially ones whose profits would 
be affected by not being able to sell any products in a particular country. Thus, 
governments have addressed cryptography use at the source: the manufacturer and vendor. 
Controls on Export of Cryptography  

Until 1998, the United States led other industrialized nations in controlling 
cryptography. It did this by controlling export of cryptographic products, using the same 
category as munitions, such as bombs and atomic missiles. Although the law applied to 
everyone, in practice it could be enforced reasonably only against mass-market software 
manufacturers. Software makers could export freely[1] any product using symmetric 
encryption with a key length of 40 bits or less. Exceptions allowed stronger encryption for 
financial institutions and for multinational corporations using the encryption for 
intracompany communication. Cryptography solely for authentication (for example, digital 
signatures) was also permitted. Although the law did not control the use of cryptography, 
limiting export effectively limited its use because major vendors could not sell products 
worldwide with strong encryption. 
[1] That is, they could export to all but a handful of so-called rogue nations subject to stringent controls on 

munitions. 

U.S. policy was especially important because most mass-market software vendors 
were based in the United States, and many users were in the United States. The United 
States could also pressure software vendors not to write programs in such a way that 
someone could add the cryptography at an overseas location. Although a software vendor 
could move to or open a subsidiary in an uncontrolled country, a new vendor has a hard 
time obtaining a significant share of the market against large, established competitors. If 
such a vendor were able to take a significant amount of business away from U.S. 
companies, there would be an outcry and possible political pressure from the U.S. 
government. Thus, U.S. policy on this issue would and did dominate the world market. 
Cryptography and Free Speech 

Cryptography involves not just products; it involves ideas, too. Although 
governments effectively control the flow of products across borders, controlling the flow of 
ideas, either in people's heads or on the Internet, is almost impossible. 

In a decision akin to splitting hairs, the U.S. courts ruled that computer object code 
was subject to the export restrictions, but a printed version of the corresponding source 
code was an idea that could not be restricted. The case in question involved Phil 
Zimmermann, the inventor of PGP e-mail encryption. In 1997, Zimmermann "exported" 
books containing the printed source code to PGP, and volunteers in Europe spent 1000 
hours scanning the pages of the book; they then posted this source code publicly on the 
Internet. To highlight the vacuousness of this distinction, people reduced the object code of 
the PGP program to a bar code and printed that code on T-shirts with the caption "Warning, 
this T-shirt may be a controlled munition." 
Cryptographic Key Escrow 

Although laws enable governments to read encrypted communications, the 
governments don't really want to read all of them. A joking e-mail message or a file with 
your tax data is seldom a national security concern. But suppose there was evidence of 
cheating on your taxes or your writings were seditious. In these cases the government could 
convince a court to allow it to search your home, office, or computer files. It might then 
have reason and justification for wanting to read your encrypted data. So the government 
devised a scheme in which your encryption keys would become available only with court 
authorization. 

In 1996 the U.S. government offered to relax the export restriction for so-called 
escrowed encryption, in which the government would be able to obtain the encryption key 
for any encrypted communication. The key escrow approach was a part of an initiative 
known under names such as Clipper, Capstone, and Fortezza. Ultimately this approach 
failed; the public feared what the government could actually access. See [HOF95] and 
[DEN99] for more discussion on the key escrow debate. 
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Current Policy 
The U.S. National Research Council (NRC) reported the results of an 18-month 

study [NRC96] to recommend a cryptographic policy for the U.S. federal government. The 
report carefully weighed all the factors affected by cryptographic policy, such as protecting 
sensitive information for U.S. companies and individuals as well as foreign ones, 
international commerce, enforcing laws (prevention, investigation, and prosecution), and 
intelligence gathering. The report's recommendations for policy include the following: 

 No law should bar the manufacture, sale, or use of any form of encryption within the 
United States. 

 Export controls on cryptography should be relaxed but not eliminated. 
 Products providing confidentiality at a level that meets most general commercial 

requirements should be easily exportable. In 1996, that level included products that 
incorporate 56-bit key DES, and so these products should be easily exportable. 

 Escrowed encryption should be studied further, but, as it is not yet a mature technology, 
its use should not be mandated. 

 Congress should seriously consider legislation that would impose criminal penalties on 
the use of encrypted communications in interstate commerce with the intent to commit a 
crime. 

 The U.S. government should develop a mechanism to promote information security in the 
private sector. 

In September 1998, the U.S. government announced that it was opening up export 
of encryption. Export of single (56-bit) key DES would be allowed to all countries except 
seven that supported terrorism. Unlimited size encryption would be exportable to 45 major 
industrial countries for use by financial institutions, medical providers, and e-commerce 
companies. 

Furthermore, the process for applying for permission, which had been another 
formidable deterrent, was simplified to a review taking no more than a week in most cases. 

Summary of Legal Issues in Computer Security 
This section has described four aspects of the relationship between computing and 

the law. First, we presented the legal mechanisms of copyright, patent, and trade secret as 
means to protect the secrecy of computer hardware, software, and data. These mechanisms 
were designed before the invention of the computer, so their applicability to computing 
needs is somewhat limited. However, program protection is especially desired, and software 
companies are pressing the courts to extend the interpretation of these means of protection 
to include computers. 

We also explored the relationship between employers and employees, in the context 
of writers of software. Well-established laws and precedents control the acceptable access 
an employee has to software written for a company. 

Third, we examined the legal side of software vulnerabilities: Who is liable for errors 
in software, and how is that liability enforced? Additionally, we considered alternative ways 
to report software errors. 

Fourth, we noted some of the difficulties in prosecuting computer crime. Several 
examples showed how breaches of computer security are treated by the courts. In general, 
the courts have not yet granted computers, software, and data appropriate status, 
considering value of assets and seriousness of crime. The legal system is moving cautiously 
in its acceptance of computers. We described several important pieces of computer crime 
legislation that represent slow progress forward. 
Privacy- Ethical issues in computer society 

This final section helps clarify thinking about the ethical issues involved in 
computer security. We offer no answers. Rather, after listing and explaining some ethical 
principles, we present several case studies to which the principles can be applied. Each 
case is followed by a list of possible ethical issues involved, although the list is not 
necessarily all-inclusive or conclusive. The primary purpose of this section is to explore 
some of the ethical issues associated with computer security and to show how ethics 
functions as a control. 

Differences Between the Law and Ethics 
As we noted earlier, law is not always the appropriate way to deal with issues of 

human behavior. It is difficult to define a law to preclude only the events we want it to. For 
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example, a law that restricts animals from public places must be refined to permit guide 
dogs for the blind. Lawmakers, who are not computer professionals, are hard pressed to 
think of all the exceptions when they draft a law concerning computer affairs. Even when a 
law is well conceived and well written, its enforcement may be difficult. The courts are 
overburdened, and prosecuting relatively minor infractions may be excessively time 
consuming relative to the benefit. 

Thus, it is impossible or impractical to develop laws to describe and enforce all 
forms of behavior acceptable to society. Instead, society relies on ethics or morals to 
prescribe generally accepted standards of proper behavior. (In this section the terms ethics 
and morals are used interchangeably.) An ethic is an objectively defined standard of right 
and wrong. Ethical standards are often idealistic principles because they focus on one 
objective. In a given situation, however, several moral objectives may be involved, so people 
have to determine an action that is appropriate considering all the objectives. Even though 
religious groups and professional organizations promote certain standards of ethical 
behavior, ultimately each person is responsible for deciding what to do in a specific 
situation. Therefore, through our choices, each of us defines a personal set of ethical 
practices. A set of ethical principles is called an ethical system. 

An ethic is different from a law in several important ways. First, laws apply to 
everyone: One may disagree with the intent or the meaning of a law, but that is not an 
excuse for disobeying the law. Second, the courts have a regular process for determining 
which law supersedes which if two laws conflict. Third, the laws and the courts identify 
certain actions as right and others as wrong. From a legal standpoint, anything that is not 
illegal is right. Finally, laws can be enforced to rectify wrongs done by unlawful behavior. 
By contrast, ethics are personal: two people may have different frameworks for making 
moral judgments. What one person deems perfectly justifiable, another would never 
consider doing. 

Second, ethical positions can and often do come into conflict. As an example, the 
value of a human life is very important in most ethical systems. Most people would not 
cause the sacrifice of one life, but in the right context some would approve of sacrificing one 
person to save another, or one to save many others. The value of one life cannot be readily 
measured against the value of others, and many ethical decisions must be founded on 
precisely this ambiguity. Yet, there is no arbiter of ethical positions: when two ethical goals 
collide, each person must choose which goal is dominant. Third, two people may assess 
ethical values differently; no universal standard of right and wrong exists in ethical 
judgments. Nor can one person simply look to what another has done as guidance for 
choosing the right thing to do. Finally, there is no enforcement for ethical choices. 
These differences are summarized in Table 11-3. 
Described by formal, written documents Described by unwritten principles 

Table 11-3. Contrast of  

Studying Ethics 
The study of ethics is not 
easy because the issues are 
complex. Sometimes people 
confuse ethics 
with religion because many 
religions supply a 
framework in which to 
make ethical choices. 
However, ethics can be 
studied apart from any 
religious connection. 
Difficult choices would be 
easier to make if there were a set of universal ethical principles to which everyone agreed. 
But the variety of social, cultural, and religious beliefs makes the identification of such a set 
of universal principles impossible. In this section we explore some of these problems and 
then consider how understanding ethics can help in dealing with issues of computer 
security. 
Ethics and Religion 
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Ethics is a set of principles or norms for justifying what is right or wrong in a given 
situation. To understand what ethics is we may start by trying to understand what it is not. 
Ethical principles are different from religious beliefs. Religion is based on personal notions 
about the creation of the world and the existence of controlling forces or beings. Many 
moral principles are embodied in the major religions, and the basis of a personal morality is 
a matter of belief and conviction, much the same as for religions. However, two people with 
different religious backgrounds may develop the same ethical philosophy, while two 
exponents of the same religion might reach opposite ethical conclusions in a particular 
situation. Finally, we can analyze a situation from an ethical perspective and reach ethical 
conclusions without appealing to any particular religion or religious framework. Thus, it is 
important to distinguish ethics from religion. 
Ethical Principles Are Not Universal 

Ethical values vary by society, and from person to person within a society. For 
example, the concept of privacy is important in Western cultures. But in Eastern cultures, 
privacy is not desirable because people associate privacy with having something to hide. Not 
only is a Westerner's desire for privacy not understood but in fact it has a negative 
connotation. 

Therefore, the attitudes of people may be affected by culture or background.  Also, 
an individual's standards of behavior may be influenced by past events in life. A person who 
grew up in a large family may place greater emphasis on personal control and ownership of 
possessions than would an only child who seldom had to share. Major events or close 
contact with others can also shape one's ethical position. Despite these differences, the 
underlying principles of how to make moral judgment are the same. 

Although these aspects of ethics are quite reasonable and understandable, they lead 
people to distrust ethics because it is not founded on basic principles all can accept. Also, 
people from a scientific or technical background expect precision and universality. 
Ethics Does Not Provide Answers 

Ethical pluralism is recognizing or admitting that more than one position may be 
ethically justifiableeven equally soin a given situation. Pluralism is another way of noting 
that two people may legitimately disagree on issues of ethics. We expect and accept 
disagreement in such areas as politics and religion. 

However, in the scientific and technical fields, people expect to find unique, 
unambiguous, and unequivocal answers. In science, one answer must be correct or 
demonstrable in some sense. 

Science has provided life with fundamental explanations. Ethics is rejected or 
misunderstood by some scientists because it is "soft," meaning that it has no underlying 
framework or it does not depend on fundamental truths. 

One need only study the history of scientific discovery to see that science itself is 
founded largely on temporary truths. For many years the earth was believed to be the 
center of the solar system. 

Ptolemy developed a complicated framework of epicycles, orbits within orbits of the 
planets, to explain the inconsistency of observed periods of rotation. Eventually his theory 
was superseded by the Copernican model of planets that orbit the sun. Similarly, Einstein's 
relativity theory opposed the traditional quantum basis of physics. Science is littered with 
theories that have fallen from favor as we learned or observed more and as new 
explanations were proposed. As each new theory is proposed, some people readily accept 
the new proposal, while others cling to the old. 

But the basis of science is presumed to be "truth." A statement is expected to be 
provably true, provably false, or unproven, but a statement can never be both true and 
false. Scientists are uncomfortable with ethics because ethics does not provide these clean 
distinctions. 

Worse, there is no higher authority of ethical truth. Two people may disagree on 
their opinion of the ethics of a situation, but there is no one to whom to appeal for a final 
determination of who is "right." Conflicting answers do not deter one from considering 
ethical issues in computer security. 

Nor do they excuse us from making and defending ethical choices. 

Ethical Reasoning 
Most people make ethical judgments often, perhaps daily. (Is it better to buy from a 

hometown merchant or from a nationwide chain? Should I spend time with a volunteer 
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organization or with my friends? Is it acceptable to release sensitive data to someone who 
might not have justification for access to that data?) Because we all engage in ethical 
choice, we should clarify how we do this so that we can learn to apply the principles of 
ethics in professional situations, as we do in private life. 

Study of ethics can yield two positive results. First, in situations in which we already 
know what is right and what is wrong, ethics should help us justify our choice. Second, if 
we do not know the ethical action to take in a situation, ethics can help us identify the 
issues involved so that we can make reasoned judgments. 
Examining a Case for Ethical Issues 

How, then, can issues of ethical choice in computer security be approached? Here 
are several steps to making and justifying an ethical choice. 
1. Understand the situation. Learn the facts of the situation. Ask questions of interpretation 
or clarification. Attempt to find out whether any relevant forces have not been considered. 
2. Know several theories of ethical reasoning. To make an ethical choice, you have to know 
how those choices can be justified. 
3. List the ethical principles involved. What different philosophies could be applied in this 
case? 
Do any of these include others? 
4. Determine which principles outweigh others. This is a subjective evaluation. It often 
involves extending a principle to a logical conclusion or determining cases in which one 
principle clearly supersedes another. 

The most important steps are the first and third. Too often people judge a situation 
on incomplete information, a practice that leads to judgments based on prejudice, 
suspicion, or misinformation.  

Considering all the different ethical issues raised forms the basis for evaluating the 
competing interests of step four. 
Examples of Ethical Principles 

There are two different schools of ethical reasoning: one based on the good that 
results from actions and one based on certain prima facie duties of people. 
Consequence-Based Principles 

The teleological theory of ethics focuses on the consequences of an action. The 
action to be chosen is that which results in the greatest future good and the least harm. For 
example, if a fellow student asks you to write a program he was assigned for a class, you 
might consider the good (he will owe you a favor) against the bad (you might get caught, 
causing embarrassment and possible disciplinary action, plus your friend will not learn the 
techniques to be gained from writing the program, leaving him deficient). The negative 
consequences clearly outweigh the positive, so you would refuse. Teleology is the general 
name applied to many theories of behavior, all of which focus on the goal, outcome, or 
consequence of the action. 

There are two important forms of teleology. Egoism is the form that says a moral 
judgment is based on the positive benefits to the person taking the action. An egoist weighs 
the outcomes of all possible acts and chooses the one that produces the most personal good 
for him or her with the least negative consequence. The effects on other people are not 
relevant. For example, an egoist trying to justify the ethics of writing shoddy computer code 
when pressed for time might argue as follows. "If I complete the project quickly, I will satisfy 
my manager, which will bring me a raise and other good things. The customer is unlikely to 
know enough about the program to complain, so I am not likely to be blamed. My 
company's reputation may be tarnished, but that will not be tracked directly to me. Thus, I 
can justify writing shoddy code." 

The principle of utilitarianism is also an assessment of good and bad results, but 
the reference group is the entire universe. The utilitarian chooses that action that will bring 
the greatest collective good for all people with the least possible negative for all. In this 
situation, the utilitarian would assess personal good and bad, good and bad for the 
company, good and bad for the customer, and, perhaps, good and bad for society at large. 
For example, a developer designing software to monitor smokestack emissions would need 
to assess its effects on everyone breathing. The utilitarian might perceive greater good to 
everyone by taking the time to write high-quality code, despite the negative personal 
consequence of displeasing management. 
Rule-Based Principles 
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Another ethical theory is deontology, which is founded in a sense of duty. This 
ethical principle states that certain things are good in and of themselves. These things that 
are naturally good are good rules or acts, which require no higher justification. Something 
just is good; it does not have to be judged for its effect. 

Examples (from Frankena [FRA73]) of intrinsically good things are 
 truth, knowledge, and true opinion of various kinds; understanding, wisdom 
 just distribution of good and evil; justice 
 pleasure, satisfaction; happiness; life, consciousness 
 peace, security, freedom 
 good reputation, honor, esteem; mutual affection, love, friendship, cooperation; morally 

good dispositions or virtues 
 beauty, aesthetic experience 

Rule-deontology is the school of ethical reasoning that believes certain universal, 
self-evident, natural rules specify our proper conduct. Certain basic moral principles are 
adhered to because of our responsibilities to one another; these principles are often stated 
as rights: the right to know, the right to privacy, the right to fair compensation for work. Sir 
David Ross [ROS30] lists various duties incumbent on all human beings: 

 fidelity, or truthfulness 
 reparation, the duty to recompense for a previous wrongful act 
 gratitude, thankfulness for previous services or kind acts 
 justice, distribution of happiness in accordance with merit 
 beneficence, the obligation to help other people or to make their lives better 
 nonmaleficence, not harming others 
 self-improvement, to become continually better, both in a mental sense and in a moral 

sense (for example, by not committing a wrong a second time) 
Another school of reasoning is based on rules derived by each individual. Religion, 

teaching, experience, and reflection lead each person to a set of personal moral principles. 
The answer to an ethical question is found by weighing values in terms of what a person 
believes to be right behavior. 
Summary of Ethical Theories 

We have seen two bases of ethical theories, each applied in two ways. Simply stated, 
the two bases are consequence based and rule based, and the applications are either 
individual or universal. These theories are depicted in Table 11-4. 

Table 11-4. Taxonomy 

of Ethical Theories. 
In the next section, 

we apply these theories to 
analyze certain situations 
that arise in the ethics of 
computer security. 

Case studies of 

ethics. 
To understand how ethics affects professional actions, ethicists often study example 

situations. The remainder of this section consists of several representative examples. These 
cases are modeled after ones developed by Parker [PAR79] as part of the AFIPS/NSF study 
of ethics in computing and technology. Each case study is designed to bring out certain 
ethical points, some of which are listed following the case. You should reflect on each case, 
determining for yourself what the most influential points are. These cases are suitable for 
use in a class discussion, during which other values will certainly be mentioned. Finally, 
each case reaches no conclusion because each individual must assess the ethical situation 
alone. In a class discussion it may be appropriate to take a vote. Remember, however, that 
ethics are not determined by majority rule. 
Those siding with the majority are not "right," and the rest are not "wrong." 

Case I: Use of Computer Services 
This case concerns deciding what is appropriate use of computer time. Use of 

computer time is a question both of access by one person and of availability of quality of 
service to others. The person involved is permitted to access computing facilities for a 
certain purpose. Many companies rely on an unwritten standard of behavior that governs 
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the actions of people who have legitimate access to a computing system. The ethical issues 
involved in this case can lead to an understanding of that unwritten standard. 
The Case 

Dave works as a programmer for a large software company. He writes and tests 
utility programs such as compilers. His company operates two computing shifts: During the 
day program development and online applications are run; at night batch production jobs 
are completed. Dave has access to workload data and learns that the evening batch runs 
are complementary to daytime programming tasks; that is, adding programming work 
during the night shift would not adversely affect performance of the computer to other 
users. 

Dave comes back after normal hours to develop a program to manage his own stock 
portfolio. His drain on the system is minimal, and he uses very few expendable supplies, 
such as printer paper. 
Is Dave's behavior ethical? 
Values Issues 

Some of the ethical principles involved in this case are listed below. 
 Ownership of resources. The company owns the computing resources and provides them 

for its own computing needs. 
 Effect on others. Although unlikely, a flaw in Dave's program could adversely affect other 

users, perhaps even denying them service because of a system failure. 
 Universalism principle. If Dave's action is acceptable, it should also be acceptable for 

others to do the same. However, too many employees working in the evening could reduce 
system effectiveness. 

 Possibility of detection, punishment. Dave does not know whether his action would be 
wrong or right if discovered by his company. If his company decided it was improper use, 
Dave could be punished. 
What other issues are involved? Which principles are more important than others? 
Analysis 

The utilitarian would consider the total excess of good over bad for all people. Dave 
receives benefit from use of computer time, although for this application the amount of time 
is not large. 

Dave has a possibility of punishment, but he may rate that as unlikely. The 
company is neither harmed nor helped by this. Thus, the utilitarian could argue that Dave's 
use is justifiable. 

The universalism principle seems as if it would cause a problem because clearly if 
everyone did this, quality of service would degrade. A utilitarian would say that each new 
user has to weigh good and bad separately. Dave's use might not burden the machine, and 
neither might Ann's; but when Bill wants to use the machine, it is heavily enough used that 
Bill's use would affect other people. 
Alternative Situations 

Would it affect the ethics of the situation if any of the following actions or 
characteristics were considered? 

 Dave began a business managing stock portfolios for many people for profit. 
 Dave's salary was below average for his background, implying that Dave was due the 

computer use as a fringe benefit. 
 Dave's employer knew of other employees doing similar things and tacitly approved by not 

seeking to stop them. 
 Dave worked for a government office instead of a private company and reasoned that the 

computer belonged "to the people." 

Case II: Privacy Rights 
In this case the central issue is the individual's right to privacy. Privacy is both a 

legal and an ethical issue because of the pertinent laws discussed in the previous section. 
The Case 

Donald works for the county records department as a computer records clerk, where 
he has access to files of property tax records. For a scientific study, a researcher, Ethel, has 
been granted access to the numerical portion but not the corresponding names of some 
records. 

Ethel finds some information that she would like to use, but she needs the names 
and addresses corresponding with certain properties. Ethel asks Donald to retrieve the 
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names and addresses so she can contact these people for more information and for 
permission to do further study. 
Should Donald release the names and addresses? 
Some Principles Involved 
Here are some of the ethical principles involved in this case. What are other ethical 
principles? 
Which principles are subordinate to which others? 

 Job responsibility. Donald's job is to manage individual records, not to make 
determinations of appropriate use. Policy decisions should be made by someone of higher 
authority. 

 Use. The records are used for legitimate scientific study, not for profit or to expose 
sensitive data. (However, Ethel's access is authorized only for the numerical data, not for 
the private information relating property conditions to individuals.) 

 Possible misuse. Although he believes Ethel's motives are proper, Donald cannot 
guarantee that Ethel will use the data only to follow up on interesting data items. 

 Confidentiality. Had Ethel been intended to have names and addresses, they would have 
been given initially. 

 Tacit permission. Ethel has been granted permission to access parts of these records for 
research purposes, so she should have access to complete her research. 

 Propriety. Because Ethel has no authority to obtain names and addresses and because 
the names and addresses represent the confidential part of the data, Donald should deny 
Ethel's request for access. 
Analysis 

A rule-deontologist would argue that privacy is an inherent good and that one 
should not violate the privacy of another. Therefore, Donald should not release the names. 
Extensions to the Basic Case 

We can consider several possible extensions to the scenario. These extensions probe 
other ethical issues involved in this case. 
• Suppose Donald were responsible for determining allowable access to the files. 
What ethical issues would be involved in his deciding whether to grant access to Ethel? 
• Should Ethel be allowed to contact the individuals involved? That is, should the health 
department release individuals' names to a researcher? What are the ethical issues for the 
health department to consider? 
• Suppose Ethel contacts the individuals to ask their permission, and one-third of them 
respond giving permission, one-third respond denying permission, and one-third do not 
respond. Ethel claims that at least one-half of the individuals are needed to make a valid 
study. What options are available to Ethel? What are the ethical issues involved in deciding 
which of these options to pursue?  

To show that ethics can be context dependent, let us consider some variations of the 
situation. Notice that these changes affect the domain of the problem, but not the basic 
question: access to personal data. 

If the domain were medical records, the case would be covered by HIPAA, and so we 
would first consider a legal issue, not an ethical one. Notice, however, how the case changes 
subtly depending on the medical condition involved. You may reach one conclusion if the 
records deal with "ordinary" conditions (colds, broken legs, muscle injuries), but a different 
conclusion if the cases are for sexually transmitted diseases or AIDS. You may also reach a 
different conclusion if the research involves genetic conditions of which the subject may be 
unaware (for example, being a carrier for Huntington's disease or hemophilia). 

But change the context once more, and consider web surfing habits. If Donald works 
for an Internet service provider and could determine all the web sites a person had visited, 
would that be fair to disclose? 

Case III: Denial of Service 
This case addresses issues related to the effect of one person's computation on other 

users. This situation involves people with legitimate access, so standard access controls 
should not exclude them. However, because of the actions of some, other people are denied 
legitimate access to the system. Thus, the focus of this case is on the rights of all users. 
The Case  

Charlie and Carol are students at a university in a computer science program. Each 
writes a program for a class assignment. Charlie's program happens to uncover a flaw in a 
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compiler that ultimately causes the entire computing system to fail; all users lose the 
results of their current computation. Charlie's program uses acceptable features of the 
language; the compiler is at fault. Charlie did not suspect his program would cause a 
system failure. He reports the program to the computing center and tries to find ways to 
achieve his intended result without exercising the system flaw. 

The system continues to fail periodically, for a total of ten times (beyond the first 
failure). When the system fails, sometimes Charlie is running a program, but sometimes 
Charlie is not. The director contacts Charlie, who shows all of his program versions to the 
computing center staff. 

The staff concludes that Charlie may have been inadvertently responsible for some, 
but not all, of the system failures, but that his latest approach to solving the assigned 
problem is unlikely to lead to additional system failures. 

On further analysis, the computing center director notes that Carol has had 
programs running each of the first eight (of ten) times the system failed. The director uses 
administrative privilege to inspect Carol's files and finds a file that exploits the same 
vulnerability as did Charlie's program. The director immediately suspends Carol's account, 
denying Carol access to the computing system. Because of this, Carol is unable to complete 
her assignment on time, she receives a D in the course, and she drops out of school. 
Analysis 

In this case the choices are intentionally not obvious. The situation is presented as a 
completed scenario, but in studying it you are being asked to suggest alternative actions 
the players could have taken. In this way, you build a repertoire of actions that you can 
consider in similar situations that might arise. 
• What additional information is needed? 
• Who has rights in this case? What rights are those? Who has a responsibility to protect 
those rights? (This step in ethical study is used to clarify who should be considered as the 
reference group for a deontological analysis.) 
• Has Charlie acted responsibly? By what evidence do you conclude so? Has Carol? How? 
Has the computing center director acted responsibly? How? (In this step you look for past 
judgments that should be confirmed or wrongs that should be redressed.) 
• What are some alternative actions Charlie or Carol or the director could have taken that 
would have been more responsible? 

Case IV: Ownership of Programs 
In this case we consider who owns programs: the programmer, the employer, the 

manager, or all. From a legal standpoint, most rights belong to the employer, as presented 
earlier in this chapter. However, this case expands on that position by presenting several 
competing arguments that might be used to support positions in this case. As described in 
the previous section, legal controls for secrecy of programs can be complicated, time 
consuming, and expensive to apply. In this case we search for individual ethical controls 
that can prevent the need to appeal to the legal system. 
The Case 

Greg is a programmer working for a large aerospace firm, Star Computers, which 
works on many government contracts; Cathy is Greg's supervisor. Greg is assigned to 
program various kinds of simulations. 

To improve his programming abilities, Greg writes some programming tools, such as 
a cross-reference facility and a program that automatically extracts documentation from 
source code. These are not assigned tasks for Greg; he writes them independently and uses 
them at work, but he does not tell anyone about them. Greg has written them in the 
evenings, at home, on his personal computer. 

Greg decides to market these programming aids by himself. When Star's 
management hears of this, Cathy is instructed to tell Greg that he has no right to market 
these products since, when he was employed, he signed a form stating that all inventions 
become the property of the company. Cathy does not agree with this position because she 
knows that Greg has done this work on his own. She reluctantly tells Greg that he cannot 
market these products. She also asks Greg for a copy of the products. 

Cathy quits working for Star and takes a supervisory position with Purple 
Computers, a competitor of Star. She takes with her a copy of Greg's products and 
distributes it to the people who work with her. These products are so successful that they 
substantially improve the effectiveness of her employees, and Cathy is praised by her 
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management and receives a healthy bonus. Greg hears of this, and contacts Cathy, who 
contends that because the product was determined to belong to Star and because Star 
worked largely on government funding, the products were really in the public domain and 
therefore they belonged to no one in particular. 
Analysis 

This case certainly has major legal implications. Probably everyone could sue 
everyone else and, depending on the amount they are willing to spend on legal expenses, 
they could keep the cases in the courts for several years. Probably no judgment would 
satisfy all. 

Let us set aside the legal aspects and look at the ethical issues. We want to 
determine who might have done what, and what changes might have been possible to 
prevent a tangle for the courts to unscramble. 
First, let us explore the principles involved. 
• Rights. What are the respective rights of Greg, Cathy, Star, and Purple? 
• Basis. What gives Greg, Cathy, Star, and Purple those rights? What principles of fair play, 
business, property rights, and so forth are involved in this case? 
• Priority. Which of these principles are inferior to which others? Which ones take 
precedence? (Note that it may be impossible to compare two different rights, so the outcome 
of this analysis may yield some rights that are important but that cannot be ranked first, 
second, third.) 
• Additional information. What additional facts do you need in order to analyze this case? 
What assumptions are you making in performing the analysis? 
Next, we want to consider what events led to the situation described and what alternative 
actions could have prevented the negative outcomes. 
• What could Greg have done differently before starting to develop his product? 

After developing the product? After Cathy explained that the product belonged to 
Star? 
• What could Cathy have done differently when she was told to tell Greg that his products 
belonged to Star? What could Cathy have done differently to avert this decision by her 
management? What could Cathy have done differently to prevent the clash with Greg after 
she went to work at Purple? 
• What could Purple have done differently upon learning that it had products from Star (or 
from Greg)? 
• What could Greg and Cathy have done differently after Greg spoke to Cathy at Purple? 
• What could Star have done differently to prevent Greg from feeling that he owned his 
products? What could Star have done differently to prevent Cathy from taking the products 
to Purple? 

Case V: Proprietary Resources 
In this case, we consider the issue of access to proprietary or restricted resources. 

Like the previous one, this case involves access to software. The focus of this case is the 
rights of a software developer in contrast with the rights of users, so this case concerns 
determining legitimate access rights. 
The Case 

Suzie owns a copy of G-Whiz, a proprietary software package she purchased 
legitimately. The software is copyrighted, and the documentation contains a license 
agreement that says that the software is for use by the purchaser only. Suzie invites Luis to 
look at the software to see if it will fit his needs. Luis goes to Suzie's computer and she 
demonstrates the software to him. He says he likes what he sees, but he would like to try it 
in a longer test. 
Extensions to the Case 

So far the actions have all been ethically sound. The next steps are where ethical 
responsibilities arise. Take each of the following steps as independent; that is, do not 
assume that any of the other steps has occurred in your analysis of one step. 

 Suzie offers to copy the disk for Luis to use. 
 Suzie copies the disk for Luis to use, and Luis uses it for some period of time. 
 Suzie copies the disk for Luis to use; Luis uses it for some period of time and then buys a 

copy for himself. 
 Suzie copies the disk for Luis to try out overnight, under the restriction that he must 

bring the disk back to her tomorrow and must not copy it for himself. Luis does so. 
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 Suzie copies the disk with the same restrictions, but Luis makes a copy for himself before 
returning it to Suzie. 

 Suzie copies the disk with the same restrictions, and Luis makes a copy for himself, but 
he then purchases a copy. 

 Suzie copies the disk with the same restrictions, but Luis does not return it. 
For each of these extensions, describe who is affected, which ethical issues are involved, 
and which principles override which others. 

Case VI: Fraud 
In previous cases, we have dealt with people acting in situations that were legal or, 

at worst, debatable. In this case, we consider outright fraud, which is illegal. However, the 
case really concerns the actions of people who are asked to do fraudulent things. 
The Case 

Alicia works as a programmer in a corporation. Ed, her supervisor, tells her to write 
a program to allow people to post entries directly to the company's accounting files ("the 
books"). Alicia knows that ordinarily programs that affect the books involve several steps, 
all of which have to balance. Alicia realizes that with the new program, it will be possible for 
one person to make changes to crucial amounts, and there will be no way to trace who 
made these changes, with what justification, or when. 

Alicia raises these concerns to Ed, who tells her not to be concerned, that her job is 
simply to write the programs as he specifies. He says that he is aware of the potential 
misuse of these programs, but he justifies his request by noting that periodically a figure is 
mistakenly entered in the books and the company needs a way to correct the inaccurate 
figure. 
Extensions 

First, let us explore the options Alicia has. If Alicia writes this program, she might be 
an accomplice to fraud. If she complains to Ed's superior, Ed or the superior might 
reprimand or fire her as a troublemaker. If she refuses to write the program, Ed can clearly 
fire her for failing to carry out an assigned task. We do not even know that the program is 
desired for fraudulent purposes; Ed suggests an explanation that is not fraudulent. 
She might write the program but insert extra code that creates a secret log of when the 
program was run, by whom, and what changes were made. This extra file could provide 
evidence of fraud, or it might cause trouble for Alicia if there is no fraud but Ed discovers 
the secret log. 

At this point, here are some of the ethical issues involved. 
• Is a programmer responsible for the programs he or she writes? Is a programmer 
responsible for the results of those programs? (In contemplating this question, suppose the 
program were to adjust dosage in a computer-controlled medical application, and Ed's 
request were for a way to override the program controls to cause a lethal dosage. Would 
Alicia then be responsible for the results of the program?) 
• Is a programmer merely an employee who follows orders (assigned tasks) unthinkingly? 
• What degree of personal risk (such as possible firing) is an employee obliged to accept for 
opposing an action he or she thinks is improper? 
• Would a program to manipulate the books as described here ever be justified? If so, in 
what circumstances would it be justified? 
• What kinds of controls can be placed on such programs to make them acceptable? 
What are some ways that a manager could legitimately ask an employee to write a program 
like this? 
• Would the ethical issues in this situation be changed if Alicia designed and wrote this 
program herself? 
Analysis 

The act-deontologist would say that truth is good. Therefore, if Alicia thought the 
purpose of the program was to deceive, writing it would not be a good act. (If the purpose 
were for learning or to be able to admire beautiful code, then writing it might be justifiable.) 
A more useful analysis is from the perspective of the utilitarian. To Alicia, writing the 
program brings possible harm for being an accomplice to fraud, with the gain of having 
cooperated with her manager. She has a possible item with which to blackmail Ed, but Ed 
might also turn on her and say the program was her idea. On balance, this option seems to 
have a strong negative slant. 
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By not writing the program her possible harm is being fired. However, she has a 
potential gain by being able to "blow the whistle" on Ed. This option does not seem to bring 
her much good, either. But fraudulent acts have negative consequences for the 
stockholders, the banks, and other innocent employees. Not writing the program brings 
only personal harm to Alicia, which is similar to the harm described earlier. Thus, it seems 
as if not writing the program is the more positive option. 
 There is another possibility. The program may not be for fraudulent purposes. If so, 
then there is no ethical conflict. Therefore, Alicia might try to determine whether Ed's 
motives are fraudulent. 

Case VII: Accuracy of Information 
For our next case, we consider responsibility for accuracy or integrity of information. 

Again, this is an issue addressed by database management systems and other access 
control mechanisms. 

However, as in previous cases, the issue here is access by an authorized user, so the 
controls do not prevent access. 
The Case 
 Emma is a researcher at an institute where Paul is a statistical programmer. Emma 
wrote a grant request to a cereal manufacturer to show the nutritional value of a new 
cereal, Raw Bits. The manufacturer funded Emma's study. Emma is not a statistician. She 
has brought all of her data to Paul to ask him to perform appropriate analyses and to print 
reports for her to send to the manufacturer. Unfortunately, the data Emma has collected 
seem to refute the claim that Raw Bits is nutritious, and, in fact, they may indicate that 
Raw Bits is harmful. 

Paul presents his analyses to Emma but also indicates that some other correlations 
could be performed that would cast Raw Bits in a more favorable light. Paul makes a 
facetious remark about his being able to use statistics to support either side of any issue. 
Ethical Concerns 

Clearly, if Paul changed data values in this study, he would be acting unethically. 
But is it any more ethical for him to suggest analyzing correct data in a way that supports 
two or more different conclusions? Is Paul obligated to present both the positive and the 
negative analyses? 

Is Paul responsible for the use to which others put his program results? 
If Emma does not understand statistical analysis, is she acting ethically in accepting Paul's 
positive conclusions? His negative conclusions? Emma suspects that if she forwards 
negative results to the manufacturer, they will just find another researcher to do another 
study. She suspects that if she forwards both sets of results to the manufacturer, they will 
publicize only the positive ones. What ethical principles support her sending both sets of 
data? What principles support her sending just the positive set? What other courses of 
action has she? 

Case VIII: Ethics of Hacking or Cracking 
What behavior is acceptable in cyberspace? Who owns or controls the Internet? Does 

malicious or nonmalicious intent matter? Legal issues are involved in the answers to these 
questions, but as we have pointed out previously, laws and the courts cannot protect 
everything, nor should we expect them to. Some people separate investigating computer 
security vulnerabilities from exploiting them, calling the former "white hat" hacking and the 
latter "black hat." It is futile to try to stop people from learning nor should we even try, for 
the sake of society, as Cross [CRO06] points out. There is reasonable debate over 
publication or dissemination of knowledge: Is theworld safer if only a few are allowed to 
know how to build sophisticated weapons? Or how to break certain security systems? Is the 
public better served by open knowledge of system vulnerabilities? We recommend students, 
researchers, faculty, and technologists, and certainly users, join in thoughtful debate of this 
issue, one of the largest ethical matters in our field. 
 In this final case study we consider ethical behavior in a shared-use computing 
environment, such as the Internet. The questions are similar to "what behavior is 
acceptable in outer space?" or "who owns the oceans?" 

Goli is a computer security consultant; she enjoys the challenge of finding and fixing 
security vulnerabilities. Independently wealthy, she does not need to work, so she has 
ample spare time in which to test the security of systems. 
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In her spare time, Goli does three things: First, she aggressively attacks commercial 
products for vulnerabilities. She is quite proud of the tools and approach she has 
developed, and she is quite successful at finding flaws. Second, she probes accessible 
systems on the Internet, and when she finds vulnerable sites, she contacts the owners to 
offer her services repairing the problems. 

Finally, she is a strong believer in high-quality pastry, and she plants small 
programs to slow performance in the web sites of pastry shops that do not use enough 
butter in their pastries. Let us examine these three actions in order. 
Vulnerabilities in Commercial Products 

We have already described a current debate regarding the vulnerability reporting 
process. Now let us explore the ethical issues involved in that debate. Clearly from a rule-
based ethical theory, attackers are wrong to perform malicious attacks. The appropriate 
theory seems to be one of consequence: who is helped or hurt by finding and publicizing 
flaws in products? Relevant parties are attackers, the vulnerability finder, the vendor, and 
the using public. Notoriety or credit for finding the flaw is a small interest. And the interests 
of the vendor (financial, public relations) are less important than the interests of users to 
have secure products. But how are the interests of users best served? 

 Full disclosure helps users assess the seriousness of the vulnerability and apply 
appropriate protection. But it also gives attackers more information with which to formulate 
attacks. Early full disclosure before the vendor has countermeasures ready may actually 
harm users by leaving them vulnerable to a now widely known attack. 

 Partial disclosure the general nature of the vulnerability but not a detailed exploitation 
Scenario may forestall attackers. One can argue that the vulnerability details are there to 
be discovered; when a vendor announces a patch for an unspecified flaw in a product, the 
attackers will test that product aggressively and study the patch carefully to try to 
determine the vulnerability. Attackers will then spread a complete description of the 
vulnerability to other attackers through an underground network, and attacks will start 
against users who may not have applied the vendor's fix. 

 No disclosure. Perhaps users are best served by a scheme in which every so often new 
code is released, sometimes fixing security vulnerabilities, sometimes fixing things that are 
not security related, and sometimes adding new features. But without a sense of 
significance or urgency, users may not install this new code. 
Searching for Vulnerabilities and Customers 

What are the ethical issues involved in searching for vulnerabilities? Again, the party 
of greatest interest is the user community and the good or harm that can come from the 
search. 

On the positive side, searching may find vulnerabilities. Clearly, it would be wrong 
for Goli to report vulnerabilities that were not there simply to get work, and it would also be 
wrong to report some but not all vulnerabilities to be able to use the additional 
vulnerabilities as future leverage against the client. 

But suppose Goli does a diligent search for vulnerabilities and reports them to the 
potential client. Is that not similar to a service station owner's advising you that a headlight 
is not operating when you take your car in for gasoline? Not quite, you might say. The 
headlight flaw can be seen without any possible harm to your car; probing for 
vulnerabilities might cause your system to fail. 

The ethical question seems to be which is greater: the potential for good or the 
potential for harm? And if the potential for good is stronger, how much stronger does it 
need to be to override the risk of harm? 

This case is also related to the common practice of ostensible nonmalicious probing 
for vulnerabilities: Hackers see if they can access your system without your permission, 
perhaps by guessing a password. Spafford [SPA98] points out that many crackers simply 
want to look around, without damaging anything. As discussed in Sidebar 11-4, Spafford 
compares this seemingly innocent activity with entry into your house when the door is 
unlocked. Even when done without malicious intent, cracking can be a serious offense; at 
its worst, it has caused millions of dollars in damage. Although crackers are prosecuted 
severely with harsh penalties, cracking continues to be an appealing crime, especially to 
juveniles. 
Politically Inspired Attacks 
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Finally, consider Goli's interfering with operation of web sites whose actions she 
opposes. We have purposely phrased the issue in a situation that arouses perhaps only a 
few gourmands and pâtissiers. We can dismiss the interest of the butter fans as an 
insignificant minority on an insignificant issue. But you can certainly think of many other 
issues that have brought on wars. (See Denning's excellent article on cybercriminals 
[DEN99a] for real examples of politically motivated computer activity.) 

The ethical issues abound in this scenario. Some people will see the (butter) issue as 
one of inherent good, but is butter use one of the fundamental good principles, such as 
honesty or fairness or not doing harm to others? Is there universal agreement that butter 
use is good? 

Probably there will be a division of the world into the butter advocates (x%), the 
unrestricted pastry advocates (y%), and those who do not take a position (z%). By how 
much does x have to exceed y for Goli's actions to be acceptable? What if the value of z is 
large? Greatest good for the greatest number requires a balance among these three 
percentages and some measure of benefit or harm. 

Is butter use so patently good that it justifies harm to those who disagree? Who is 
helped and who suffers? Is the world helped if only good, but more expensive, pastries are 
available, so poor people can no longer afford pastry? Suppose we could determine that 
99.9 percent of people in the world agreed that butter use was a good thing. Would that 
preponderance justify overriding the interests of the other 0.1 percent? 

Codes of Ethics 
Because of ethical issues such as these, various computer groups have sought to 

develop codes of ethics for their members. Most computer organizations, such as the 
Association for Computing 

Machinery (ACM), the Institute of Electrical and Electronics Engineers (IEEE), and 
the Data Processing Management Association (DPMA), are voluntary organizations. Being a 
member of one of these organizations does not certify a level of competence, responsibility, 
or experience in computing. For these reasons, codes of ethics in these organizations are 
primarily advisory. 

Nevertheless, these codes are fine starting points for analyzing ethical issues. IEEE 
The IEEE has produced a code of ethics for its members. The IEEE is an organization of 
engineers, not limited to computing. Thus, their code of ethics is a little broader than might 
be expected for computer security, but the basic principles are applicable in computing 
situations. 
The IEEE Code of Ethics is shown in Figure 11-1. 

Figure 11-1. IEEE Code of Ethics. (Reprinted courtesy of the 
Institute of Electrical and Electronics Engineers © 1996.) 

We, the members of the IEEE, in recognition of the importance of our technologies in 
affecting the quality of life throughout the world, and in accepting a personal obligation to 
our profession, its members, and the communities we serve, do hereby commit ourselves to 
conduct of the highest ethical and professional manner and agree might endanger the 
public or the environment; 
 
1. to accept responsibility in making engineering decisions consistent with the safety, 
health, and welfare of the public, and to disclose promptly factors that 
2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to 
affected parties when they do exist; 
3. to be honest and realistic in stating claims or estimates based on available data; 
4. to reject bribery in all of its forms; 
5. to improve understanding of technology, its appropriate application, and potential 
consequences; 
6. to maintain and improve our technical competence and to undertake technological tasks 
for others only if qualified by training or experience, or after full disclosure of pertinent 
limitations; 
7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct 
errors, and to credit properly the contributions of others; 
8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, 
age, or national origin; 
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9. to avoid injuring others, their property, reputation, or employment by false or malicious 
action; 
10. to assist colleagues and coworkers in their professional development and to support 
them in following this code of ethics. 
ACM 

The ACM code of ethics recognizes three kinds of responsibilities of its members: 
general moral imperatives, professional responsibilities, and leadership responsibilities, 
both inside the association and in general. The code of ethics has three sections (plus a 
fourth commitment section), as shown in Figure 11-2. 

Figure 11-2. ACM Code of Ethics and Professional Conduct. 

(Reprinted courtesy of the Association for Computing Machinery © 

1993.) 
As an ACM member I will ... 
1.1 Contribute to society and human well-being 
1.2 Avoid harm to others 
1.3 Be honest and trustworthy 
1.4 Be fair and take action not to discriminate 
1.5 Honor property rights including copyrights and patents 
1.6 Give proper credit for intellectual property 
1.7 Respect the privacy of others 
1.8 Honor confidentiality 
As an ACM computing professional I will ... 
2.1 Strive to achieve the highest quality, effectiveness, and dignity in both the process 
and products of professional work 
2.2 Acquire and maintain professional competence 
2.3 Know and respect existing laws pertaining to professional work 
2.4 Accept and provide appropriate professional review 
2.5 Give comprehensive and thorough evaluations of computer systems and their 
impacts, including analysis of possible risks 
2.6 Honor contracts, agreements, and assigned responsibilities 
2.7 Improve public understanding of computing and its consequences 
2.8 Access computing and communication resources only when authorized to do so 
As an ACM member and an organization leader, I will ... 
3.1 Articulate social responsibilities of members of an organizational unit and encourage 
full acceptance of those responsibilities 
3.2 Manage personnel and resources 
3.3 Acknowledge and support proper and authorized uses of an organization's computing 
and communication resources 
3.4 Ensure that users and those who will be affected by a system have their needs 
clearly articulated during the assessment and design of requirements; later the system 
must be validated to meet requirements 
3.5 Articulate and support policies that protect the dignity of users and others affected 
by a computing system 
3.6 Create opportunities for members of the organization to learn the principles and 
limitations of computer systems 
As an ACM member, I will ... 
4.1 Uphold and promote the principles of this code 
4.2 Treat violations of this code as inconsistent with membership in the ACM 
Computer Ethics Institute 

The Computer Ethics Institute is a nonprofit group that aims to encourage people to 
consider the ethical aspects of their computing activities. The organization has been in 
existence since the mid-1980s, founded as a joint activity of IBM, the Brookings Institution, 
and the Washington Theological Consortium. The group has published its ethical guidance 
as ten commandments of computer ethics, listed in Figure 11-3. 

Figure 11-3. The Ten Commandments of Computer Ethics. 

(Reprinted with permission, Computer Ethics Institute, 

Washington, D.C.) 
1. Thou shalt not use a computer to harm other people. 
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2. Thou shalt not interfere with other people's computer work. 
3. Thou shalt not snoop around in other people's computer files. 
4. Thou shalt not use a computer to steal. 
5. Thou shalt not use a computer to bear false witness. 
6. Thou shalt not copy or use proprietary software for which you have not paid. 
7. Thou shalt not use other people's computer resources without authorization or 
proper compensation. 
8. Thou shalt not appropriate other people's intellectual output. 
9. Thou shalt think about the social consequences of the program you are writing or 
the system you are designing. 
10. Thou shalt always use a computer in ways that insure consideration and respect 
for your fellow humans. 

Many organizations take ethics seriously and produce a document guiding the 
behavior of its members or employees. Some corporations require new employees to read its 
code of ethics and sign a promise to abide by it. Others, especially at universities and 
research centers, have special boards that must approve proposed research and ensure that 
projects and team members act ethically. As an individual professional, it may be useful for 
you to review these codes of ethics and compose a code of your own, reflecting your ideas 
about appropriate behavior in likely situations. A code of ethics can help you assess 
situations quickly and act in a consistent, comfortable, and ethical manner. 

Conclusion of Computer Ethics 
In this study of ethics, we have tried not to decide right and wrong, or even to brand 

certain acts as ethical or unethical. The purpose of this section is to stimulate thinking 
about ethical issues concerned with confidentiality, integrity, and availability of data and 
computations. 

The cases presented show complex, conflicting ethical situations. The important first 
step in acting ethically in a situation is to obtain the facts, ask about any uncertainties, and 
acquire any additional information needed. In other words, first we must understand the 
situation. 

The second step is to identify the ethical principles involved. Honesty, fair play, 
proper compensation, and respect for privacy are all ethical principles. Sometimes these 
conflict, and then we must determine which principles are more important than others. 
This analysis may not lead to one principle that obviously overshadows all others. Still, a 
ranking to identify the major principles involved is needed. 

The third step is choosing an action that meets these ethical principles. Making a 
decision and taking action are difficult, especially if the action has evident negative 
consequences. However, taking action based on a personal ranking of principles is 
necessary. The fact that other equally sensible people may choose a different action does 
not excuse us from taking some action. 

This section is not trying to force the development of rigid, inflexible principles. 
Decisions may vary, based on fine differences between two situations. Or a person's views 
can change over time in response to experience and changing context. Learning to reason 
about ethical situations is not quite the same as learning "right" from "wrong." Terms such 
as right and wrong or good and bad imply a universal set of values. Yet we know that even 
widely accepted principles are overridden by some people in some situations. For example, 
the principle of not killing people may be violated in the case of war or capital punishment. 
Few, if any, values are held by everyone or in all cases. Therefore, our purpose in 
introducing this material has been to stimulate you to recognize and think about ethical 
principles involved in cases related to computer security. Only by recognizing and analyzing 
principles can you act consistently, thoughtfully, and responsibly. 
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