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ARTIFICIAL INTELLIGENCE  

UNIT I 

An AI system is composed of an agent and its environment. The agents act in their 

environment. The environment may contain other agents. 

What are Agent and Environment? 

An agent is anything that can perceive its environment through sensors and acts upon that 

environment through effectors. 

 A human agent has sensory organs such as eyes, ears, nose, tongue and skin parallel to 

the sensors, and other organs such as hands, legs, mouth, for effectors. 

 A robotic agent replaces cameras and infrared range finders for the sensors, and various 

motors and actuators for effectors. 

 A software agent has encoded bit strings as its programs and actions. 

 

Agent Terminology 

 Performance Measure of Agent − It is the criteria, which determines how successful an 

agent is. 

 Behavior of Agent − It is the action that agent performs after any given sequence of 

percepts. 

 Percept − It is agent’s perceptual inputs at a given instance. 
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 Percept Sequence − It is the history of all that an agent has perceived till date. 

 Agent Function − It is a map from the precept sequence to an action. 

Rationality 

Rationality is nothing but status of being reasonable, sensible, and having good sense of 

judgment. 

Rationality is concerned with expected actions and results depending upon what the agent has 

perceived. Performing actions with the aim of obtaining useful information is an important part 

of rationality. 

What is Ideal Rational Agent? 

An ideal rational agent is the one, which is capable of doing expected actions to maximize its 

performance measure, on the basis of − 

 Its percept sequence 

 Its built-in knowledge base 

Rationality of an agent depends on the following − 

 The performance measures, which determine the degree of success. 

 Agent’s Percept Sequence till now. 

 The agent’s prior knowledge about the environment. 

 The actions that the agent can carry out. 

A rational agent always performs right action, where the right action means the action that 

causes the agent to be most successful in the given percept sequence. The problem the agent 

solves is characterized by Performance Measure, Environment, Actuators, and Sensors (PEAS). 

The Structure of Intelligent Agents 

Agent’s structure can be viewed as − 

 Agent = Architecture + Agent Program 

 Architecture = the machinery that an agent executes on. 
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 Agent Program = an implementation of an agent function. 

Simple Reflex Agents 

 They choose actions only based on the current percept. 

 They are rational only if a correct decision is made only on the basis of current precept. 

 Their environment is completely observable. 

Condition-Action Rule − It is a rule that maps a state (condition) to an action. 

 

Model Based Reflex Agents 

They use a model of the world to choose their actions. They maintain an internal state. 

Model − knowledge about “how the things happen in the world”. 

Internal State − It is a representation of unobserved aspects of current state depending on 

percept history. 

Updating the state requires the information about − 

 How the world evolves. 

 How the agent’s actions affect the world. 



6 
 

 

Goal Based Agents 

They choose their actions in order to achieve goals. Goal-based approach is more flexible than 

reflex agent since the knowledge supporting a decision is explicitly modeled, thereby allowing 

for modifications. 

Goal − It is the description of desirable situations. 
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Utility Based Agents 

They choose actions based on a preference (utility) for each state. 

Goals are inadequate when − 

 There are conflicting goals, out of which only few can be achieved. 

 Goals have some uncertainty of being achieved and you need to weigh likelihood of 

success against the importance of a goal. 

 

The Nature of Environments 

Some programs operate in the entirely artificial environment confined to keyboard input, 

database, computer file systems and character output on a screen. 

In contrast, some software agents (software robots or softbots) exist in rich, unlimited softbots 

domains. The simulator has a very detailed, complex environment. The software agent needs 

to choose from a long array of actions in real time. A softbot designed to scan the online 

preferences of the customer and show interesting items to the customer works in the real as well 

as an artificial environment. 
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The most famous artificial environment is the Turing Test environment, in which one real 

and other artificial agents are tested on equal ground. This is a very challenging environment as 

it is highly difficult for a software agent to perform as well as a human. 

Turing Test 

The success of an intelligent behavior of a system can be measured with Turing Test. 

Two persons and a machine to be evaluated participate in the test. Out of the two persons, one 

plays the role of the tester. Each of them sits in different rooms. The tester is unaware of who is 

machine and who is a human. He interrogates the questions by typing and sending them to both 

intelligences, to which he receives typed responses. 

This test aims at fooling the tester. If the tester fails to determine machine’s response from the 

human response, then the machine is said to be intelligent. 

Properties of Environment 

The environment has multifold properties − 

 Discrete / Continuous − If there are a limited number of distinct, clearly defined, states 

of the environment, the environment is discrete (For example, chess); otherwise it is 

continuous (For example, driving). 

 Observable / Partially Observable − If it is possible to determine the complete state of 

the environment at each time point from the percepts it is observable; otherwise it is 

only partially observable. 

 Static / Dynamic − If the environment does not change while an agent is acting, then it 

is static; otherwise it is dynamic. 

 Single agent / Multiple agents − The environment may contain other agents which may 

be of the same or different kind as that of the agent. 

 Accessible / Inaccessible − If the agent’s sensory apparatus can have access to the 

complete state of the environment, then the environment is accessible to that agent. 
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 Deterministic / Non-deterministic − If the next state of the environment is completely 

determined by the current state and the actions of the agent, then the environment is 

deterministic; otherwise it is non-deterministic. 

 Episodic / Non-episodic − In an episodic environment, each episode consists of the 

agent perceiving and then acting. The quality of its action depends just on the episode 

itself. Subsequent episodes do not depend on the actions in the previous episodes. 

Episodic environments are much simpler because the agent does not need to think 

ahead. 

 

Searching is the universal technique of problem solving in AI. There are some single-player 

games such as tile games, Sudoku, crossword, etc. The search algorithms help you to search for 

a particular position in such games. 

Single Agent Pathfinding Problems 

The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four tile puzzles are single-

agent-path-finding challenges. They consist of a matrix of tiles with a blank tile. The player is 

required to arrange the tiles by sliding a tile either vertically or horizontally into a blank space 

with the aim of accomplishing some objective. 

The other examples of single agent pathfinding problems are Travelling Salesman Problem, 

Rubik’s Cube, and Theorem Proving. 

Search Terminology 

 Problem Space − It is the environment in which the search takes place. (A set of states 

and set of operators to change those states) 

 Problem Instance − It is Initial state + Goal state. 

 Problem Space Graph − It represents problem state. States are shown by nodes and 

operators are shown by edges. 

 Depth of a problem − Length of a shortest path or shortest sequence of operators from 

Initial State to goal state. 
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 Space Complexity − The maximum number of nodes that are stored in memory. 

 Time Complexity − The maximum number of nodes that are created. 

 Admissibility − A property of an algorithm to always find an optimal solution. 

 Branching Factor − The average number of child nodes in the problem space graph. 

 Depth − Length of the shortest path from initial state to goal state. 

Brute-Force Search Strategies 

They are most simple, as they do not need any domain-specific knowledge. They work fine with 

small number of possible states. 

Requirements − 

 State description 

 A set of valid operators 

 Initial state 

 Goal state description 

Breadth-First Search 

It starts from the root node, explores the neighboring nodes first and moves towards the next 

level neighbors. It generates one tree at a time until the solution is found. It can be implemented 

using FIFO queue data structure. This method provides shortest path to the solution. 

If branching factor (average number of child nodes for a given node) = b and depth = d, then 

number of nodes at level d = bd. 

The total no of nodes created in worst case is b + b2 + b3 + … + bd. 

Disadvantage − Since each level of nodes is saved for creating next one, it consumes a lot of 

memory space. Space requirement to store nodes is exponential. 

Its complexity depends on the number of nodes. It can check duplicate nodes. 
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Depth-First Search 

It is implemented in recursion with LIFO stack data structure. It creates the same set of nodes as 

Breadth-First method, only in the different order. 

As the nodes on the single path are stored in each iteration from root to leaf node, the space 

requirement to store nodes is linear. With branching factor b and depth as m, the storage space 

is bm. 

Disadvantage − This algorithm may not terminate and go on infinitely on one path. The 

solution to this issue is to choose a cut-off depth. If the ideal cut-off is d, and if chosen cut-off is 

lesser than d, then this algorithm may fail. If chosen cut-off is more than d, then execution time 

increases. 

Its complexity depends on the number of paths. It cannot check duplicate nodes. 
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Bidirectional Search 

It searches forward from initial state and backward from goal state till both meet to identify a 

common state. 

The path from initial state is concatenated with the inverse path from the goal state. Each search 

is done only up to half of the total path. 

Uniform Cost Search 

Sorting is done in increasing cost of the path to a node. It always expands the least cost node. It 

is identical to Breadth First search if each transition has the same cost. 

It explores paths in the increasing order of cost. 

Disadvantage − There can be multiple long paths with the cost ≤ C*. Uniform Cost search must 

explore them all. 

Iterative Deepening Depth-First Search 

It performs depth-first search to level 1, starts over, executes a complete depth-first search to 

level 2, and continues in such way till the solution is found. 

It never creates a node until all lower nodes are generated. It only saves a stack of nodes. The 

algorithm ends when it finds a solution at depth d. The number of nodes created at depth d is 

bd and at depth d-1 is bd-1. 
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Comparison of Various Algorithms Complexities 

Let us see the performance of algorithms based on various criteria − 

Criterion 
Breadth 

First 

Depth 

First 
Bidirectional 

Uniform 

Cost 

Interactive 

Deepening 

Time bd bm bd/2 bd bd 

Space bd bm bd/2 bd bd 

Optimality Yes No Yes Yes Yes 

Completeness Yes No Yes Yes Yes 

Informed (Heuristic) Search Strategies 

To solve large problems with large number of possible states, problem-specific knowledge 

needs to be added to increase the efficiency of search algorithms. 

Heuristic Evaluation Functions 

They calculate the cost of optimal path between two states. A heuristic function for sliding-tiles 

games is computed by counting number of moves that each tile makes from its goal state and 

adding these number of moves for all tiles. 

Pure Heuristic Search 

It expands nodes in the order of their heuristic values. It creates two lists, a closed list for the 

already expanded nodes and an open list for the created but unexpanded nodes. 

In each iteration, a node with a minimum heuristic value is expanded, all its child nodes are 

created and placed in the closed list. Then, the heuristic function is applied to the child nodes 

and they are placed in the open list according to their heuristic value. The shorter paths are 

saved and the longer ones are disposed. 
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A * Search 

It is best-known form of Best First search. It avoids expanding paths that are already expensive, 

but expands most promising paths first. 

f(n) = g(n) + h(n), where 

 g(n) the cost (so far) to reach the node 

 h(n) estimated cost to get from the node to the goal 

 f(n) estimated total cost of path through n to goal. It is implemented using priority queue 

by increasing f(n). 

Greedy Best First Search 

It expands the node that is estimated to be closest to goal. It expands nodes based on f(n) = h(n). 

It is implemented using priority queue. 

Disadvantage − It can get stuck in loops. It is not optimal. 

Local Search Algorithms 

They start from a prospective solution and then move to a neighboring solution. They can return 

a valid solution even if it is interrupted at any time before they end. 

Hill-Climbing Search 

It is an iterative algorithm that starts with an arbitrary solution to a problem and attempts to find 

a better solution by changing a single element of the solution incrementally. If the change 

produces a better solution, an incremental change is taken as a new solution. This process is 

repeated until there are no further improvements. 

function Hill-Climbing (problem), returns a state that is a local maximum. 

inputs: problem, a problem 

local variables: current, a node 

                 neighbor, a node 

current <-Make_Node(Initial-State[problem]) 

loop 

   do neighbor <- a highest_valued successor of current 
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      if Value[neighbor] ≤ Value[current] then 

      return State[current] 

      current <- neighbor     

  

end 

Disadvantage − This algorithm is neither complete, nor optimal. 

Local Beam Search 

In this algorithm, it holds k number of states at any given time. At the start, these states are 

generated randomly. The successors of these k states are computed with the help of objective 

function. If any of these successors is the maximum value of the objective function, then the 

algorithm stops. 

Otherwise the (initial k states and k number of successors of the states = 2k) states are placed in 

a pool. The pool is then sorted numerically. The highest k states are selected as new initial 

states. This process continues until a maximum value is reached. 

function BeamSearch( problem, k), returns a solution state. 

start with k randomly generated states 

loop 

   generate all successors of all k states 

   if any of the states = solution, then return the state 

   else select the k best successors 

end 

Simulated Annealing 

Annealing is the process of heating and cooling a metal to change its internal structure for 

modifying its physical properties. When the metal cools, its new structure is seized, and the 

metal retains its newly obtained properties. In simulated annealing process, the temperature is 

kept variable. 
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We initially set the temperature high and then allow it to ‘cool' slowly as the algorithm 

proceeds. When the temperature is high, the algorithm is allowed to accept worse solutions with 

high frequency. 

Start 

 Initialize k = 0; L = integer number of variables; 

 From i → j, search the performance difference Δ. 

 If Δ <= 0 then accept else if exp(-Δ/T(k)) > random(0,1) then accept; 

 Repeat steps 1 and 2 for L(k) steps. 

 k = k + 1; 

Repeat steps 1 through 4 till the criteria is met. 

End 

Travelling Salesman Problem 

In this algorithm, the objective is to find a low-cost tour that starts from a city, visits all cities 

en-route exactly once and ends at the same starting city. 

Start 

   Find out all (n -1)! Possible solutions, where n is the total number of cities. 

   Determine the minimum cost by finding out the cost of each of these (n -1)! solutions. 

   Finally, keep the one with the minimum cost. 

end 
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Fuzzy Logic Systems (FLS) produce acceptable but definite output in response to incomplete, 

ambiguous, distorted, or inaccurate (fuzzy) input. 

What is Fuzzy Logic? 

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of 

FL imitates the way of decision making in humans that involves all intermediate possibilities 

between digital values YES and NO. 

The conventional logic block that a computer can understand takes precise input and produces a 

definite output as TRUE or FALSE, which is equivalent to human’s YES or NO. 

The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision 

making includes a range of possibilities between YES and NO, such as − 

CERTAINLY YES 

POSSIBLY YES 

CANNOT SAY 

POSSIBLY NO 

CERTAINLY NO 

The fuzzy logic works on the levels of possibilities of input to achieve the definite output. 
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Implementation 

 It can be implemented in systems with various sizes and capabilities ranging from small 

micro-controllers to large, networked, workstation-based control systems. 

 It can be implemented in hardware, software, or a combination of both. 

Why Fuzzy Logic? 

Fuzzy logic is useful for commercial and practical purposes. 

 It can control machines and consumer products. 

 It may not give accurate reasoning, but acceptable reasoning. 

 Fuzzy logic helps to deal with the uncertainty in engineering. 

Fuzzy Logic Systems Architecture 

It has four main parts as shown − 

 Fuzzification Module − It transforms the system inputs, which are crisp numbers, into 

fuzzy sets. It splits the input signal into five steps such as − 

LP x is Large 

Positive 

MP x is Medium 

Positive 

S x is Small 

MN x is Medium 

Negative 

LN x is Large 

Negative 
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 Knowledge Base − It stores IF-THEN rules provided by experts. 

 Inference Engine − It simulates the human reasoning process by making fuzzy inference 

on the inputs and IF-THEN rules. 

 Defuzzification Module − It transforms the fuzzy set obtained by the inference engine 

into a crisp value. 

 

The membership functions work on fuzzy sets of variables. 

Membership Function 

Membership functions allow you to quantify linguistic term and represent a fuzzy set 

graphically. A membership function for a fuzzy set A on the universe of discourse X is defined 

as μA:X → [0,1]. 

Here, each element of X is mapped to a value between 0 and 1. It is called membership 

value or degree of membership. It quantifies the degree of membership of the element in X to 

the fuzzy set A. 

 x axis represents the universe of discourse. 

 y axis represents the degrees of membership in the [0, 1] interval. 
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There can be multiple membership functions applicable to fuzzify a numerical value. Simple 

membership functions are used as use of complex functions does not add more precision in the 

output. 

All membership functions for LP, MP, S, MN, and LN are shown as below − 

 

The triangular membership function shapes are most common among various other membership 

function shapes such as trapezoidal, singleton, and Gaussian. 

Here, the input to 5-level fuzzifier varies from -10 volts to +10 volts. Hence the corresponding 

output also changes. 

Example of a Fuzzy Logic System 

Let us consider an air conditioning system with 5-level fuzzy logic system. This system adjusts 

the temperature of air conditioner by comparing the room temperature and the target 

temperature value. 
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Algorithm 

 Define linguistic Variables and terms (start) 

 Construct membership functions for them. (start) 

 Construct knowledge base of rules (start) 

 Convert crisp data into fuzzy data sets using membership functions. (fuzzification) 

 Evaluate rules in the rule base. (Inference Engine) 

 Combine results from each rule. (Inference Engine) 

 Convert output data into non-fuzzy values. (defuzzification) 
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Development 

Step 1 − Define linguistic variables and terms 

Linguistic variables are input and output variables in the form of simple words or sentences. For 

room temperature, cold, warm, hot, etc., are linguistic terms. 

Temperature (t) = {very-cold, cold, warm, very-warm, hot} 

Every member of this set is a linguistic term and it can cover some portion of overall 

temperature values. 

Step 2 − Construct membership functions for them 

The membership functions of temperature variable are as shown − 

 

Step3 − Construct knowledge base rules 

Create a matrix of room temperature values versus target temperature values that an air 

conditioning system is expected to provide. 

RoomTemp. 

/Target 
Very_Cold Cold Warm Hot Very_Hot 
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Very_Cold No_Change Heat Heat Heat Heat 

Cold Cool No_Change Heat Heat Heat 

Warm Cool Cool No_Change Heat Heat 

Hot Cool Cool Cool No_Change Heat 

Very_Hot Cool Cool Cool Cool No_Change 

Build a set of rules into the knowledge base in the form of IF-THEN-ELSE structures. 

Sr. 

No. 

Condition Action 

1 

IF temperature=(Cold OR 

Very_Cold) AND 

target=Warm THEN 

Heat 

2 

IF temperature=(Hot OR 

Very_Hot) AND target=Warm 

THEN 

Cool 

3 
IF (temperature=Warm) AND 

(target=Warm) THEN 

No_Change 

Step 4 − Obtain fuzzy value 
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Fuzzy set operations perform evaluation of rules. The operations used for OR and AND are 

Max and Min respectively. Combine all results of evaluation to form a final result. This result is 

a fuzzy value. 

Step 5 − Perform defuzzification 

Defuzzification is then performed according to membership function for output variable. 

 

Application Areas of Fuzzy Logic 

The key application areas of fuzzy logic are as given − 

Automotive Systems 

 Automatic Gearboxes 

 Four-Wheel Steering 

 Vehicle environment control 

Consumer Electronic Goods 

 Hi-Fi Systems 

 Photocopiers 

 Still and Video Cameras 

 Television 
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Domestic Goods 

 Microwave Ovens 

 Refrigerators 

 Toasters 

 Vacuum Cleaners 

 Washing Machines 

Environment Control 

 Air Conditioners/Dryers/Heaters 

 Humidifiers 

Advantages of FLSs 

 Mathematical concepts within fuzzy reasoning are very simple. 

 You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic. 

 Fuzzy logic Systems can take imprecise, distorted, noisy input information. 

 FLSs are easy to construct and understand. 

 Fuzzy logic is a solution to complex problems in all fields of life, including medicine, as 

it resembles human reasoning and decision making. 

Disadvantages of FLSs 

 There is no systematic approach to fuzzy system designing. 

 They are understandable only when simple. 

 They are suitable for the problems which do not need high accuracy. 

Best First Search (Informed Search) 

Prerequisites : BFS, DFS  

In BFS and DFS, when we are at a node, we can consider any of the adjacent as next node. 

So both BFS and DFS blindly explore paths without considering any cost function. The idea 

of Best First Search is to use an evaluation function to decide which adjacent is most 

https://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
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promising and then explore. Best First Search falls under the category of Heuristic Search 

or Informed Search.  

We use a priority queue to store costs of nodes. So the implementation is a variation of 

BFS, we just need to change Queue to PriorityQueue.  

// This pseudocode is adapted from below  

// source: 

// https://courses.cs.washington.edu/ 

Best-First-Search(Grah g, Node start) 

    1) Create an empty PriorityQueue 

       PriorityQueue pq; 

    2) Insert "start" in pq. 

       pq.insert(start) 

    3) Until PriorityQueue is empty 

          u = PriorityQueue.DeleteMin 

          If u is the goal 

             Exit 

          Else 

             Foreach neighbor v of u 

                If v "Unvisited" 

                    Mark v "Visited"                     

                    pq.insert(v) 

             Mark u "Examined"                     

End procedure 

Let us consider the below example.  

  

https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirstsearch.html
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We start from source "S" and search for 

goal "I" using given costs and Best 

First search. 

 

pq initially contains S 

We remove s from and process unvisited 

neighbors of S to pq. 

pq now contains {A, C, B} (C is put 

before B because C has lesser cost) 

 

We remove A from pq and process unvisited 

neighbors of A to pq. 

pq now contains {C, B, E, D} 

 

We remove C from pq and process unvisited 

neighbors of C to pq. 

pq now contains {B, H, E, D} 

https://media.geeksforgeeks.org/wp-content/uploads/BFS2.png
https://media.geeksforgeeks.org/wp-content/uploads/BFS2.png
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We remove B from pq and process unvisited 

neighbors of B to pq. 

pq now contains {H, E, D, F, G} 

 

We remove H from pq.  Since our goal 

"I" is a neighbor of H, we return. 

Constraint Satisfaction Problems in Artificial Intelligence 

We have seen so many techniques like Local search, Adversarial search to solve different 

problems. The objective of every problem-solving technique is one, i.e., to find a solution to 

reach the goal. Although, in adversarial search and local search, there were no constraints on the 

agents while solving the problems and reaching to its solutions. 

In this section, we will discuss another type of problem-solving technique known as Constraint 

satisfaction technique. By the name, it is understood that constraint satisfaction means solving a 

problem under certain constraints or rules. 

Constraint satisfaction is a technique where a problem is solved when its values satisfy certain 

constraints or rules of the problem. Such type of technique leads to a deeper understanding of 

the problem structure as well as its complexity. 

Constraint satisfaction depends on three components, namely: 

 X: It is a set of variables. 

 D: It is a set of domains where the variables reside. There is a specific domain for each variable. 

 C: It is a set of constraints which are followed by the set of variables. 

In constraint satisfaction, domains are the spaces where the variables reside, following the 

problem specific constraints. These are the three main elements of a constraint satisfaction 

technique. The constraint value consists of a pair of {scope, rel}. The scope is a tuple of 

variables which participate in the constraint and rel is a relation which includes a list of values 

which the variables can take to satisfy the constraints of the problem. 

Solving Constraint Satisfaction Problems 

The requirements to solve a constraint satisfaction problem (CSP) is: 

 A state-space 

 The notion of the solution. 



29 
 

A state in state-space is defined by assigning values to some or all variables such as 

{X1=v1, X2=v2, and so on…}. 

An assignment of values to a variable can be done in three ways: 

 Consistent or Legal Assignment: An assignment which does not violate any constraint or rule 

is called Consistent or legal assignment. 

 Complete Assignment: An assignment where every variable is assigned with a value, and the 

solution to the CSP remains consistent. Such assignment is known as Complete assignment. 

 Partial Assignment: An assignment which assigns values to some of the variables only. Such 

type of assignments are called Partial assignments. 

Types of Domains in CSP 

There are following two types of domains which are used by the variables : 

 Discrete Domain: It is an infinite domain which can have one state for multiple variables. For 

example, a start state can be allocated infinite times for each variable. 

 Finite Domain: It is a finite domain which can have continuous states describing one domain for 

one specific variable. It is also called a continuous domain. 

Constraint Types in CSP 

With respect to the variables, basically there are following types of constraints: 

 Unary Constraints: It is the simplest type of constraints that restricts the value of a single 

variable. 

 Binary Constraints: It is the constraint type which relates two variables. A value x2 will contain 

a value which lies between x1 and x3. 

 Global Constraints: It is the constraint type which involves an arbitrary number of variables. 

Some special types of solution algorithms are used to solve the following types of 

constraints: 

 Linear Constraints: These type of constraints are commonly used in linear programming where 

each variable containing an integer value exists in linear form only. 

 Non-linear Constraints: These type of constraints are used in non-linear programming where 

each variable (an integer value) exists in a non-linear form. 

Note: A special constraint which works in real-world is known as Preference constraint. 

Constraint Propagation 
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In local state-spaces, the choice is only one, i.e., to search for a solution. But in CSP, we have 

two choices either: 

 We can search for a solution or 

 We can perform a special type of inference called constraint propagation. 

Constraint propagation is a special type of inference which helps in reducing the legal number 

of values for the variables. The idea behind constraint propagation is local consistency. 

In local consistency, variables are treated as nodes, and each binary constraint is treated as 

an arc in the given problem. There are following local consistencies which are discussed 

below: 

 Node Consistency: A single variable is said to be node consistent if all the values in the 

variable’s domain satisfy the unary constraints on the variables. 

 Arc Consistency: A variable is arc consistent if every value in its domain satisfies the binary 

constraints of the variables. 

 Path Consistency: When the evaluation of a set of two variable with respect to a third variable 

can be extended over another variable, satisfying all the binary constraints. It is similar to arc 

consistency. 

 k-consistency: This type of consistency is used to define the notion of stronger forms of 

propagation. Here, we examine the k-consistency of the variables. 

CSP Problems 

Constraint satisfaction includes those problems which contains some constraints while solving 

the problem. CSP includes the following problems: 

 Graph Coloring: The problem where the constraint is that no adjacent sides can have the same 

color. 
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 Sudoku Playing: The gameplay where the constraint is that no number from 0-9 can be repeated 

in the same row or column. 

 

 n-queen problem: In n-queen problem, the constraint is that no queen should be placed either 

diagonally, in the same row or column. 
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Note: The n-queen problem is already discussed in Problem-solving in AI section. 

 Crossword: In crossword problem, the constraint is that there should be the correct formation of 

the words, and it should be meaningful. 

 

 Latin square Problem: In this game, the task is to search the pattern which is occurring several 

times in the game. They may be shuffled but will contain the same digits. 
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 Cryptarithmetic Problem: This problem has one most important constraint that is, we cannot 

assign a different digit to the same character. All digits should contain a unique alphabet. 

CONSTRAINT 

SATISFACTION PROBLEMS 

In which we see how treating states as more than just little black boxes leads to the 

invention of a range of powerful new search methods and a deeper understanding 

of problem structure and complexity. 

Chapters 3 and 4 explored the idea that problems can be solved by searching in a 

space of states. These states can be evaluated by domain-specific heuristics and tested to 

see whether they are goal states. From the point of view of the search algorithm, 

however, 
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BLACK BOX each state is a black box with no discernible internal structure. It is 

represented by an arbi- 

trary data structure that can be accessed only by the problem-specific routines—the 

successor 

function, heuristic function, and goal test. 

This chapter examines constraint satisfaction problems, whose states and goal test 

REPRESENTATION conform to a standard, structured, and very simple representation 

(Section 5.1). Search al- 

gorithms can be defined that take advantage of the structure of states and use general-

purpose 

rather than problem-specific heuristics to enable the solution of large problems (Sections 

5.2– 

5.3). Perhaps most importantly, the standard representation of the goal test reveals the 

struc- 

ture of the problem itself (Section 5.4). This leads to methods for problem decomposition 

and to an understanding of the intimate connection between the structure of a problem 

and 

the difficulty of solving it. 

5.1 CONSTRAINT SATISFACTION PROBLEMS 

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of vari- 

CONSTRAINT 

SATISFACTION 
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PROBLEM 

VARIABLES ables, X1, X2, . . . , Xn, and a set of constraints, C1, C2, . . . , Cm. Each 

variable Xi has a 

CONSTRAINTS nonempty domain Di of possible values. Each constraint Ci 

involves some subset of the 

DOMAIN 

VALUES 

variables and specifies the allowable combinations of values for that subset. A state of the 

problem is defined by an assignment of valuesto some or all of the variables, {Xi = vi 

, Xj = 

ASSIGNMENT vj , . . .}. An assignment that does not violate any constraints is called a 

consistent or legal 

CONSISTENT assignment. A complete assignment is one in which every variable is 

mentioned, and a so- 

lution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also 

require a solution that maximizes an objective function. 

o what does all this mean? Suppose that, having tired of Romania, we are looking 

at a map of Australia showing each of its states and territories, as in Figure 5.1(a), and 

that 

we are given the task of coloring each region either red, green, or blue in such a way that 

no 
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neighboring regions have the same color. To formulate this as a CSP, we define the 

variables 

to be the regions: WA, NT, Q, NSW , V , SA, and T. The domain of each variable is the 

set 

{red, green, blue}. The constraints require neighboring regions to have distinct colors; for 

example, the allowable combinations for WA and NT are the pairs 

{(red, green),(red, blue),(green, red),(green, blue),(blue, red),(blue, green)} . 

(The constraint can also be represented more succinctly as the inequality WA 6= NT, 

pro- 

vided the constraint satisfaction algorithm has some way to evaluate such expressions.) 

There 

are many possible solutions, such as 

{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red }. 

CONSTRAINT GRAPH It is helpful to visualize a CSP as a constraint graph, as shown 

in Figure 5.1(b). The nodes 

of the graph correspond to variables of the problem and the arcs correspond to 

constraints. 

Treating a problem as a CSP confers several important benefits. Because the representa- 

tion of states in a CSP conforms to a standard pattern—that is, a set of variables with 

assigned 

values—the successor function and goal test can written in a generic way that applies to 

all 
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CSPs. Furthermore, we can develop effective, generic heuristics that require no 

additional, 

domain-specific expertise. Finally, the structure of the constraint graph can be used to 

sim- 

plify the solution process, in some cases giving an exponential reduction in complexity. 

The 

viewed as a constraint satisfaction problem. The goal is to assign colors to each region so 

that no neighboring regions have the same color. (b) The map-coloring problem 

represented 

as a constraint graph. 

It is fairly easy to see that a CSP can be given an incremental formulation as a standard 

search problem as follows: 

♦ Initial state: the empty assignment {}, in which all variables are unassigned. 

♦ Successor function: a value can be assigned to any unassigned variable, provided that 

it does not conflict with previously assigned variables. 

♦ Goal test: the current assignment is complete. 

♦ Path cost: a constant cost (e.g., 1) for every step. 

Every solution must be a complete assignment and therefore appears at depth n if there are 

n variables. Furthermore, the search tree extends only to depth n. For these reasons, depth- 

first search algorithms are popular for CSPs. (See Section 5.2.) It is also the case that the 

path by which a solution is reached is irrelevant. Hence, we can also use a complete-state 

formulation, in which every state is a complete assignment that might or might not satisfy 

the constraints. Local search methods work well for this formulation. (See Section 5.3.) 
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FINITE DOMAINS The simplest kind of CSP involves variables that are discrete and have 

finite domains. 

Map-coloring problems are of this kind. The 8-queens problem described in Chapter 3 can 

also be viewed as a finite-domain CSP, where the variables Q1, . . . , Q8 are the positions of 

each queen in columns 1, . . . , 8 and each variable has the domain {1, 2, 3, 4, 5, 6, 7, 8}. If 

the 

maximum domain size of any variable in a CSP is d, then the number of possible complete 

assignments is O(d 

n 

)—that is, exponential in the number of variables. Finite-domain CSPs 

BOOLEAN CSPS include Boolean CSPs, whose variables can be either true or false. 

Boolean CSPs include 

as special cases some NP-complete problems, such as 3SAT. (See Chapter 7.) In the worst 

case, therefore, we cannot expect to solve finite-domain CSPs in less than exponential time. 

In most practical applications, however, general-purpose CSP algorithms can solve 

problems 

orders of magnitude larger than those solvable via the general-purpose search algorithms 

that 

we saw in Chapter 3. 

INFINITE DOMAINS Discrete variables can also have infinite domains—for example, the 

set of integers or 

the set of strings. For example, when scheduling construction jobs onto a calendar, each 

job’s 

start date is a variable and the possible values are integer numbers of days from the 

current 
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date. With infinite domains, it is no longer possible to describe constraints by enumerating 

all allowed combinations of values. Instead, a constraint language must be used. For ex- 

CONSTRAINT 

LANGUAGE 

ample, if Job1, which takes five days, must precede Job3, then we would need a constraint 

language of algebraic inequalities such as StartJob1 + 5 ≤ StartJob3. It is also no longer 

possible to solve such constraints by enumerating all possible assignments, because there 

are 

infinitely many of them. Special solution algorithms (which we will not discuss here) exist 

for linear constraints on integer variables—that is, constraints, such as the one just given, 

LINEAR 

CONSTRAINTS 

in which each variable appears only in linear form. It can be shown that no algorithm 

exists 

for solving general nonlinear constraints on integer variables. In some cases, we can reduce 

NONLINEAR 

CONSTRAINTS 

integer constraint problems to finite-domain problems simply by bounding the values of all 

the variables. For example, in a scheduling problem, we can set an upper bound equal to 

the 

total length of all the jobs to be scheduled. 

Constraintsatisfaction problems with continuous domains are very common in the real 

CONTINUOUS 

DOMAINS 
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world and are widely studied in the field of operations research. For example, the 

scheduling 

of experiments on the Hubble Space Telescope requires very precise timing of 

observations; 

the start and finish of each observation and maneuver are continuous-valued variables that 

must obey a variety of astronomical, precedence, and power constraints. The best-known 

category of continuous-domain CSPs is that of linear programming problems, where con- 

LINEAR 

PROGRAMMING 

straints must be linear inequalities forming a convex region. Linear programming 

problems 

can be solved in time polynomial in the number of variables. Problems with different types 

of 

constraints and objective functions have also been studied—quadratic programming, 

second- 

order conic programming, and so on. 

In addition to examining the types of variables that can appear in CSPs, it is useful to 

UNARY CONSTRAINT look at the types of constraints. The simplest type is the unary 

constraint, which restricts the 

value of a single variable. For example, it could be the case that South Australians actively 

dislike the color green. Every unary constraint can be eliminated simply by preprocessing 

the domain of the corresponding variable to remove any value that violates the constraint. 

A 

BINARY CONSTRAINT binary constraint relates two variables. For example, SA 6= 

NSW is a binary constraint. A 
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binary CSP is one with only binary constraints; it can be represented as a constraint graph, 

as 

in Figure 5.1(b). 

Higher-order constraints involve three or more variables. A familiar example is pro- 

CRYPTARITHMETIC vided by cryptarithmetic puzzles. (See Figure 5.2(a).) It is usual to 

insist that each letter in 

a cryptarithmetic puzzle represent a different digit. For the case in Figure 5.2(a)), this 

would 

be represented as the six-variable constraint Alldiff (F, T,U, W, R, O). Alternatively, it can 

be represented by a collection of binary constraints such as F 6= T. The addition 

constraints 

on the four columns of the puzzle also involve several variables and can be written as 

O + O = R + 10 · X1 

X1 + W + W = U + 10 · X2 

X2 + T + T = O + 10 · X3 

X3 = F 

where X1, X2, and X3 are auxiliary variables representing the digit (0 or 1) carried over 

into AUXILIARY 

VARIABLES 

the next column. Higher-order constraints can be represented in a constraint hypergraph, 

CONSTRAINT 

HYPERGRAPH 

such as the one shown in Figure 5.2(b). The sharp-eyed reader will have noticed that the 

Alldiff constraint can be broken down into binary constraints—F 6= T, F 6= U, and so on. 
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In fact, as Exercise 5.11 asks you to prove, every higher-order, finite-domain constraint can 

be reduced to a set of binary constraints if enough auxiliary variables are introduced. 

Because 

of this, we will deal only with binary constraints in this chapter. 

The constraints we have described so far have all been absolute constraints, violation 

PREFERENCE of which rules out a potential solution. Many real-world CSPs include 

preference constraints 

indicating which solutions are preferred. For example, in a university timetabling problem, 

Prof. X might prefer teaching in the morning whereas Prof. Y prefers teaching in the after- 

noon. A timetable that has Prof. X teaching at 2 p.m. would still be a solution (unless Prof. 

X 

happens to be the department chair), but would not be an optimal one. Preference 

constraints 

can often be encoded as costs on individual variable assignments—for example, assigning 

an afternoon slot for Prof. X costs 2 points against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with preferences can be solved using opti 

The preceding section gave a formulation of CSPs as search problems. Using this formula- 

tion, any of the search algorithms from Chapters 3 and 4 can solve CSPs. Suppose we apply 

breadth-first search to the generic CSP problem formulation given in the preceding 

section. 

We quickly notice something terrible: the branching factor at the top level is nd, because 

any 

of d values can be assigned to any of n variables. At the next level, the branching factor is 

(n − 1)d, and so on for n levels. We generate a tree with n! · d 
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n 

leaves, even though there are 

only d 

n possible complete assignments! 

Our seemingly reasonable but na¨ıve problem formulation has ignored a crucial property 

COMMUTATIVITY common to all CSPs: commutativity. A problem is commutative if the 

order of application 

of any given set of actions has no effect on the outcome. This is the case for CSPs be- 

cause, when assigning values to variables, we reach the same partial assignment, regardless 

of order. Therefore, all CSP search algorithms generate successors by considering possible 

assignments for only a single variable at each node in the search tree. For example, at the 

root node of a search tree for coloring the map of Australia, we might have a choice 

between 

SA = red, SA = green, and SA = blue, but we would never choose between SA = red and 

WA = blue. With this restriction, the number of leaves is d 

n 

, as we would hope. 

The term backtracking search is used for a depth-first search that chooses values for 

BACKTRACKING 

SEARCH 

one variable at a time and backtracks when a variable has no legal values left to assign. 

The 

algorithm is shown in Figure 5.3. Notice that it uses, in effect, the one-at-a-time method of 
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AI Adversarial search: Adversarial search is a game-playing technique where the agents are 

surrounded by a competitive environment. A conflicting goal is given to the agents (multiagent). 

These agents compete with one another and try to defeat one another in order to win the game. 

Such conflicting goals give rise to the adversarial search. Here, game-playing means discussing 

those games where human intelligence and logic factor is used, excluding other factors such 

as luck factor. Tic-tac-toe, chess, checkers, etc., are such type of games where no luck factor 

works, only mind works. 

Mathematically, this search is based on the concept of ‘Game Theory.’ According to game 

theory, a game is played between two players. To complete the game, one has to win the game 

and the other looses automatically.’ 

 

Techniques required to get the best optimal solution 

There is always a need to choose those algorithms which provide the best optimal solution in a 

limited time. So, we use the following techniques which could fulfill our requirements: 

 Pruning: A technique which allows ignoring the unwanted portions of a search tree which make 

no difference in its final result. 

 Heuristic Evaluation Function: It allows to approximate the cost value at each level of the 

search tree, before reaching the goal node. 

Elements of Game Playing search 

To play a game, we use a game tree to know all the possible choices and to pick the best one out. 

There are following elements of a game-playing: 

 S0: It is the initial state from where a game begins. 

 PLAYER (s): It defines which player is having the current turn to make a move in the state. 

 ACTIONS (s): It defines the set of legal moves to be used in a state. 

https://www.javatpoint.com/ai-adversarial-search
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 RESULT (s, a): It is a transition model which defines the result of a move. 

 TERMINAL-TEST (s): It defines that the game has ended and returns true. 

 UTILITY (s,p): It defines the final value with which the game has ended. This function is also 

known as Objective function or Payoff function. The price which the winner will get i.e. 

 (-1): If the PLAYER loses. 

 (+1): If the PLAYER wins. 

 (0): If there is a draw between the PLAYERS. 

For example, in chess, tic-tac-toe, we have two or three possible outcomes. Either to win, to 

lose, or to draw the match with values +1,-1 or 0. 

Let’s understand the working of the elements with the help of a game tree designed for tic-tac-

toe. Here, the node represents the game state and edges represent the moves taken by the 

players. 
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A game-tree for tic-tac-toe 

 INITIAL STATE (S0): The top node in the game-tree represents the initial state in the tree and 

shows all the possible choice to pick out one. 

 PLAYER (s): There are two players, MAX and MIN. MAX begins the game by picking one 

best move and place X in the empty square box.   

 ACTIONS (s): Both the players can make moves in the empty boxes chance by chance. 

 RESULT (s, a): The moves made by MIN and MAX will decide the outcome of the game. 

 TERMINAL-TEST(s): When all the empty boxes will be filled, it will be the terminating state 

of the game. 

 UTILITY: At the end, we will get to know who wins: MAX or MIN, and accordingly, the price 

will be given to them. 

Types of algorithms in Adversarial search 

In a normal search, we follow a sequence of actions to reach the goal or to finish the game 

optimally. But in an adversarial search, the result depends on the players which will decide the 

result of the game. It is also obvious that the solution for the goal state will be an optimal 

solution because the player will try to win the game with the shortest path and under limited 

time. 

There are following types of adversarial search: 

 Minmax Algorithm 

 Alpha-beta Pruning. 

Minimax Strategy 

 

In artificial intelligence, minimax is a decision-making strategy under game theory, which is 

used to minimize the losing chances in a game and to maximize the winning chances. This 

strategy is also known as ‘Minmax,’ ’MM,’ or ‘Saddle point.’ Basically, it is a two-player 

game strategy where if one wins, the other loose the game. This strategy simulates those games 

that we play in our day-to-day life. Like, if two persons are playing chess, the result will be in 

favor of one player and will unfavor the other one. The person who will make his best try,efforts 

as well as cleverness, will surely win. 
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We can easily understand this strategy via game tree– where the nodes represent the states of 

the game and edges represent the moves made by the players in the game. Players will be two 

namely: 

 MIN: Decrease the chances of MAX to win the game. 

 MAX: Increases his chances of winning the game. 

They both play the game alternatively, i.e., turn by turn and following the above strategy, i.e., if 

one wins, the other will definitely lose it. Both players look at one another as competitors and 

will try to defeat one-another, giving their best. 

In minimax strategy, the result of the game or the utility value is generated by a heuristic 

function by propagating from the initial node to the root node. It follows the backtracking 

technique and backtracks to find the best choice. MAX will choose that path which will increase 

its utility value and MIN will choose the opposite path which could help it to minimize MAX’s 

utility value. 

MINIMAX Algorithm 

MINIMAX algorithm is a backtracking algorithm where it backtracks to pick the best move out 

of several choices. MINIMAX strategy follows the DFS (Depth-first search) concept. Here, we 

have two players MIN and MAX, and the game is played alternatively between them, i.e., 

when MAX made a move, then the next turn is of MIN. It means the move made by MAX is 

fixed and, he cannot change it. The same concept is followed in DFS strategy, i.e., we follow the 

same path and cannot change in the middle. That’s why in MINIMAX algorithm, instead of BFS, 

we follow DFS. 

 Keep on generating the game tree/ search tree till a limit d. 

 Compute the move using a heuristic function. 

 Propagate the values from the leaf node till the current position following the minimax strategy. 

 Make the best move from the choices. 

Alpha-beta Pruning | Artificial Intelligence 

 

Alpha-beta pruning is an advance version of MINIMAX algorithm. The drawback of minimax 

strategy is that it explores each node in the tree deeply to provide the best path among all the 

paths. This increases its time complexity. But as we know, the performance measure is the first 
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consideration for any optimal algorithm. Therefore, alpha-beta pruning reduces this drawback of 

minimax strategy by less exploring the nodes of the search tree. 

The method used in alpha-beta pruning is that it cutoff the search by exploring less number of 

nodes. It makes the same moves as a minimax algorithm does, but it prunes the unwanted 

branches using the pruning technique (discussed in adversarial search).  Alpha-beta pruning 

works on two threshold values, i.e., ? (alpha) and ? (beta). 

 ?: It is the best highest value, a MAX player can have. It is the lower bound, which represents 

negative infinity value. 

 ?: It is the best lowest value, a MIN player can have. It is the upper bound which represents 

positive infinity. 

So, each MAX node has ?-value, which never decreases, and each MIN node has ?-value, which 

never increases. 

Note: Alpha-beta pruning technique can be applied to trees of any depth, and it is possible to 

prune the entire subtrees easily. 

Working of Alpha-beta Pruning 

Consider the below example of a game tree where P and Q are two players. The game will be 

played alternatively, i.e., chance by chance. Let, P be the player who will try to win the game by 

maximizing its winning chances.  Q is the player who will try to minimize P’s winning chances. 

Here, ? will represent the maximum value of the nodes, which will be the value for P as 

well. ? will represent the minimum value of the nodes, which will be the value of Q. 
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 Any one player will start the game. Following the DFS order, the player will choose one path 

and will reach to its depth, i.e., where he will find the TERMINAL value. 

 If the game is started by player P, he will choose the maximum value in order to increase its 

winning chances with maximum utility value. 

 If the game is started by player Q, he will choose the minimum value in order to decrease the 

winning chances of A with the best possible minimum utility value. 

 Both will play the game alternatively. 

 The game will be started from the last level of the game tree, and the value will be chosen 

accordingly. 

 Like in the below figure, the game is started by player Q. He will pick the leftmost value of the 

TERMINAL and fix it for beta (?). Now, the next TERMINAL value will be compared with the 

?-value. If the value will be smaller than or equal to the ?-value, replace it with the current ?-

value otherwise no need to replace the value. 
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 After completing one part, move the achieved ?-value to its upper node and fix it for the other 

threshold value, i.e., ?. 

 Now, its P turn, he will pick the best maximum value. P will move to explore the next part only 

after comparing the values with the current ?-value. If the value is equal or greater than the 

current ?-value, then only it will be replaced otherwise we will prune the values. 

 The steps will be repeated unless the result is not obtained. 

 So, number of pruned nodes in the above example are four and MAX wins the game with the 

maximum UTILITY value, i.e.,3 

The rule which will be followed is: “Explore nodes if necessary otherwise prune the 

unnecessary nodes.” 

 

For example, in the above figure, the two players MAX and MIN are there. MAX starts the 

game by choosing one path and propagating all the nodes of that path. Now, MAX will 

backtrack to the initial node and choose the best path where his utility value will be the 

maximum. After this, its MIN chance. MIN will also propagate through a path and again will 

backtrack, but MIN will choose the path which could minimize MAX winning chances or the 

utility value. 
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So, if the level is minimizing, the node will accept the minimum value from the successor 

nodes. If the level is maximizing, the node will accept the maximum value from the successor. 

 

Unit II 

 

Knowledge representation and reasoning (KR², KR&R) is the field of artificial 

intelligence (AI) dedicated to representing information about the world in a form that a computer 

system can utilize to solve complex tasks such as diagnosing a medical condition or having a 

dialog in a natural language. Knowledge representation incorporates findings from 

psychology[1] about how humans solve problems and represent knowledge in order to 

design formalisms that will make complex systems easier to design and build. Knowledge 

representation and reasoning also incorporates findings from logic to automate various kinds 

of reasoning, such as the application of rules or the relations of sets and subsets. 

Examples of knowledge representation formalisms include semantic nets, systems 

architecture, frames, rules, and ontologies. Examples of automated reasoning engines 

include inference engines, theorem provers, and classifiers. 

 

A Knowledge Based Agent in Artificial Intelligence has two levels: Knowledge Base (KB) and 

Inference Engine. 

1. Knowledge Base- It is the base level of an agent, which consist of domain specific content. In 

this level agent has facts or information about the surrounding environment in which they are 

working. It does not consider the actual implementation. 

2. Implementation level- It consists of domain independent algorithms. At this level, agents can 

recognize the data structures used in the knowledge base and algorithms which use them. For 

example, propositional logic and resolution. Knowledge based agents are crucial to use in 

partially observable environments. Before choosing any action, knowledge based agents make use 

of the existing knowledge along with the current inputs from the environment in order to infer 

hidden aspects of the current state. 

https://en.m.wikipedia.org/wiki/Artificial_intelligence
https://en.m.wikipedia.org/wiki/Artificial_intelligence
https://en.m.wikipedia.org/wiki/Computer-aided_diagnosis
https://en.m.wikipedia.org/wiki/Natural_language_user_interface
https://en.m.wikipedia.org/wiki/Natural_language_user_interface
https://en.m.wikipedia.org/wiki/Knowledge_representation_and_reasoning#cite_note-1
https://en.m.wikipedia.org/wiki/Formalism_(mathematics)
https://en.m.wikipedia.org/wiki/Logic
https://en.m.wikipedia.org/wiki/Set_theory
https://en.m.wikipedia.org/wiki/Subset
https://en.m.wikipedia.org/wiki/Semantic_network
https://en.m.wikipedia.org/wiki/Systems_architecture
https://en.m.wikipedia.org/wiki/Systems_architecture
https://en.m.wikipedia.org/wiki/Frame_(artificial_intelligence)
https://en.m.wikipedia.org/wiki/Ontology_(information_science)
https://en.m.wikipedia.org/wiki/Automated_reasoning
https://en.m.wikipedia.org/wiki/Inference_engine
https://en.m.wikipedia.org/wiki/Automated_theorem_proving
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An agent makes use of TELL and ASK mechanism. 

-TELL the agent, about surrounding environment what it needs to know in order to perform some 

action. TELL mechanism is similar to taking input for a system. 

-Then the agent ASKs itself what action should be carried out to get desired output. ASK 

mechanism is similar to producing output for a system. However, ASK mechanism makes use of 

the knowledge base to decide what it should do. 

TELL(K): Is a function that adds knowledge K to the knowledge base. 

ASK(K): Is a function that queries the agent about the truth of K. 

An agent carries out the following operations: First, it TELLs the knowledge base about facts/ 

information it perceives with the help of sensors. Then, it ASKs the knowledge base what action 

should be carried out based on the input it has received. Then it performs the selected action with 

the help of effectors. 

Representation of knowledge in AI 

The objective here is to express knowledge in a computer traceable form such that it can be used 

to help agents perform well. To make programs capable of representing and using this knowledge 

in a more explicit way. There is a set of facts which the program will use to figure out how to 

solve the problem. One approaches to deal with knowledge is based on Logic. 

Let’s start with the simplest type of logic. 

Propositional logic 

It is a simple knowledge representation language. It works at the sentential level. The sentences 

here are called propositions. We do not go within the individual sentences and discuss their 

meaning. Propositional logic is unambiguous and is also called Boolean logic as the sentences or 

propositions return a true or false value. Further, all other logic like First Order Logic are built on 

top of Propositional Logic. For instance, 
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Grass is green. 

It is Sunday. 

2 + 2=4. 

These are all valid propositions, whereas 

Close the door. 

Is it Monday today? 

x=x are invalid propositions. 

Atomic propositions are simple propositions and Compound propositions are constructed by 

combining atomic propositions using logical connectives and parenthesis. For instance, It is 

Sunday and it is a holiday. Logical connectives are used in propositional logic to connect two 

sentences logically: 

 

 

Let’s look at this with the help of an example. If it is hot and humid, then it is raining. 

Here P= It is hot, 

Q= It is humid, 
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R=It is raining 

This can be represented as: 

(P ^ Q) → R 

Properties of Propositional Logic 

1. Commutativity 

2. Associativity 

3. Distributive property 

4. DeMorgan’s law 

5. Double negation elimination 

6. Identity element 

However, Propositional Logic has limited expressive power. It cannot be used to represent 

specializations, generalizations, or patterns. Elements like all, some and none cannot be expressed 

using propositional logic. For example, All mushrooms are brown, some grapes are sweet, and 

more. 

Predicate logic or First Order Logic 

It is another knowledge representation language built on top of propositional logic. It is more 

expressive as compared to propositional logic and supports temporal information. It is also called 

higher order logic and can support complex statements. 

Components 
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 User defines primitives: 

1. Constant symbols- terms with fixed value which belong to the domain. Example: Tara, 2. 

2. Function symbols- mapping individuals to individuals. Example: Mary is the mother of Tara. 

mother_of(Tara)=Mary 

3. Predicate symbols- mapping individuals to truth values. Example: 4 is greater than 2. 

greater(4,2) 

 FOL supports these primitives: 

1. Variable symbols- x,y 

2. Connectives- conjunction, disjunction, implication, negation, biconditional 

3. Quantifiers 

A. Universal — It stands for “for all” and is represented by the symbol ∀. It corresponds to 

conjunction ‘and.’ Example: All dolphins are mammals. 

∀x: dolphin(x) — -> mammal(x) 

B. Existential- It stands for “there exists”. It is represented by the symbol ∃ and corresponds to 

disjunction ‘or.’ Example: Some mammals lay eggs. 

∃x: mammal(x) — -> lay_eggs(x) 

C. Equal: X=Y 

https://en.wikipedia.org/wiki/%E2%88%80
https://en.wikipedia.org/wiki/%E2%88%80
https://en.wikipedia.org/wiki/%E2%88%83
https://en.wikipedia.org/wiki/%E2%88%83
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In predicate logic, a rule has two parts: predecessor and successor. If the predecessor is true, the 

successor is true. It uses the implication symbol. It represents if-then type of sentences. Example: 

If the bag is of pink color, I will buy it. colour(bag, pink) — — -> buy(bag) 

Inference in FOL- Chaining 

It is used for simple problems or arrangement of facts. It is used when the knowledge base 

consists of sentences with horn clauses (I.e. disjunction of literals of which at the most one is 

positive). 

Forward Chaining 

It is an inference technique that starts with sentences in the knowledge base and generates new 

conclusions that can in turn allow more inferences to be made. It is a data driven approach. We 

start with known facts and arrange or chain them in order to reach the query. It uses modus 

ponens. It starts with available information and uses inference rules to extract more data until the 

goal is reached. 

Example: To conclude color of the pet named Fritz, given that it croaks and eats flies. The 

Knowledge Base contains these rules: 

If X croaks and eats flies — → Then X is a frog. 

If X sings — → Then X is a bird. 

If X is a frog — → Then X is green. 

If x is a bird — -> Then X is blue. 

Given: Croaks and eats flies is searched in the KB. This leads us to rule 1 as its antecedent 

matches our data. The consequent of rule 1 i.e. X is a frog is added to the KB. Now the KB is 

searched again and rule 3 is chosen since its antecedent (X is a frog) matches our data that was 

just confirmed. Then the new consequent is added to the KB (i.e. X is green). Thus we have 

reached the goal of determining color of the pet given than it croaks and eats flies. 
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Backward Chaining 

It is an inference technique that starts from the goal. We find implication sentences that allow us 

to conclude the it and attempt to establish its premises. It uses modus ponens backwards. It is a 

goal driven approach and is used in theorem proving. 

Example: To conclude color of the pet named Fritz, given that it croaks and eats flies. The KB 

contains these rules: 

If X croaks and eats flies — → Then X is a frog. 

If X sings — → Then X is a bird. 

If X is a frog — → Then X is green. 

If x is a bird — -> Then X is blue. 

The third and forth rules are selected as they match our goal of determining color of the pet. i.e. X 

is green or X is blue. Both the antecedents of the rules i.e. X is a frog and X is a bird are added to 

the goal list. Then KB is searched again and the first two rules are selected as their consequents 

match the new goals added to the list i.e. X is a frog or X is a bird. The antecedent (If X croaks 

and eats flies) is true/ given and thus we can conclude than Fritz is a frog. The goal of determining 

color of the pet is achieved ( Fritz is green if it is a frog and blue if it is a bird. But it is a frog as it 

croaks and eats flies). Thus Fritz is Green. 

Resolution 

It is a type of inference technique. The following steps are executed. 

1. Convert data into logical statements (propositional or predicate logic). 

2. Convert these into Conjunctive Normal form (CNF). 

3. Negate the conclusion. 
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4. Resolve using resolution tree. 

Example: If the maid stole the jewellery, then the butler was not guilty. 

Either the maid stole the maid stole the jewellery, or she milked the cow. 

If the maid milked the cow, then the butler got the cream. 

Therefore, if the butler was guilty, then he got his cream. 

Step1 : Expressing as propositional logic. 

P= maid stole the jewellery. 

Q= butler is guilty. 

R= maid milked the cow. 

S= butler got the cream. 

Step 2: Convert to propositional logic. 

1. P — -> ~Q 

2. P v R 

3. R — -> S 

4. Q — -> S (Conclusion) 

Step 3: Converting to CNF. 

1. ~P v ~Q 
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2. P v R 

3. ~R v S 

4. ~Q v S (Conclusion) 

Step 4: 

Negate the conclusion. 

~(~Q v S) = Q ^ ~S 

It is not in CNF due to the presence of ‘^’. Thus we break it into two parts: Q and ~S. We start 

with Q and resolve using resolution tree. 
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Negation of the conclusion gives a null value. Hence our conclusion is proved. 

Semantic Networks 

 

This document concerns the management of the output of insight generators, the software agents 

utilized in the insight generation systems. The solution to managing these reports involves the 

automatic creation of a repository for all materials generated by various insight generators; this 

repository allows the user to navigate through this continually growing space of marketing 

reports, gaining new insights about the relationships between items of interest and adding new 

insights in the process. The goal of the system is to make all marketing information and insights 

generated by the man/machine interaction available to the user, so that there is a convergence 

towards a "conservation of information". To use a geometric metaphor, the goal is to make the 

user equidistant from all information at all times, as illustrated below. 

The output of insight generators like I Want is paper; every time the system is run, a paper report 

is produced. If the system were run for every retail account in every market, it would produce 

hundreds of reports. If similar insight generators focused on other insights (distribution, variety, 

coupons, shelf space, prices, etc.), the collection of agents would produce thousands of reports. If 

each agent were run for each brand item (each size, package type, flavor, etc.), there could be 
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many thousands of reports. Finally, if all of the agents were run each month for all the brands, 

then millions of reports could accumulate. 

Further, these agents could be run for a firm's competitors. The system could be 

run backwards; that is to say, it could be run from the perspective of the brand's competitors in a 

particular category. From this, the brand group could learn where their brand is vulnerable to 

attack from competitors seeking to take merchandising support away from it. Also, the sales 

force could be informed where not to ask for more support, such as in the instance where their 

brand is receiving far more feature support than its volume share warrants. Such use of this 

system can be called exposure analysis and it was further explored in the Market Opportunity 

Inspector (MOI) prototype. 

One approach to dealing with all of these insights is summarization, which is explored in the 

Marketing Opportunity Inspector (MOI) document. The MOI system assumes that an "I Want..." 

system has been run for a brand in all accounts in all markets. Each page of output corresponds 

to an exposure, an opportunity or neither for the brand. MOI takes these and summarizes the 

number and magnitude of the opportunities and exposures. The output of the system is again a 

sheet of paper. MOI helps to generate insights about a brand's situation, by locating its strengths 

and its weaknesses. The output of one insight generation system (I Want) became the input of 

another insight generating system (MOI). In both systems the output is a high-quality paper 

report. Insight generating systems such as MOI are employed to summarize the lower level 

information and pinpoint insights from this mass of textual output. But, the summaries 

themselves also add to the ever-growing output and must also be made available to users. 

A second approach to the problem of insight management is to manage the output itself as a sort 

of library of information known about the brand. This library would be part of a system that 

manages information and insights that are in the form of compound documents, i.e. pictures and 

text, that goes beyond a strict hierarchical arrangement. The user needs to be able to move in 

multiple directions from any vantage point and create hierarchies as needed. The information 

needs to be arranged in a structure that follows the intrinsic relationships between the context of 

the reports and their contents. The reports must be managed according to some "mental-model" 

of the world of marketing. 
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One technology for capturing and reasoning with such mental models is a semantic network ... 

the topic of this document. 

What is a Semantic Network? 

Semantic networks are knowledge representation schemes involving nodes and links (arcs or 

arrows) between nodes. The nodes represent objects or concepts and the links represent relations 

between nodes. The links are directed and labeled; thus, a semantic network is a directed graph. 

In print, the nodes are usually represented by circles or boxes and the links are drawn as arrows 

between the circles as in Figure 1. This represents the simplest form of a semantic network, a 

collection of undifferentiated objects and arrows. The structure of the network defines its 

meaning. The meanings are merely which node has a pointer to which other node. The network 

defines a set of binary relations on a set of nodes. 

 
Figure 1 

Pick up almost any technical book and look in the preface or introduction. Invariably there is a 

chapter dependency diagram. It is a node-link structure, a semantic network in which the nodes 

represent chapters and the links represent the relationship of which chapters should be read 

before which other chapters. 

To move semantic nets from this abstract realm to something more concrete, let us consider an 

example from the structure of marketing. To begin simply, let us introduce two nodes and a link. 
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Figure 2 

The node on the left labeled "Quad Cities" is linked to the node on the right, labeled "Market", 

and the arrow is labeled "is-a". Quad Cities is an example of a market. The diagram, in other 

words represents the fact that there is a binary relation between a market, Quad Cities, and the 

concept of a market. Another node with the label "Los Angeles" and a "is-a" link from this node 

to the "Market" node could be added, again representing that "Los Angeles" is a type of 

"Market". 

 
Figure 3 

If a retailer node is added to Figure 2, the structure of the network becomes apparent as shown in 

Figure 4. Markets generally contain retailing entities. To add an example of a retailer, add a node 

labeled "Chain56" and two links - one from the retailer "Chain56" to "Quad Cities" labeled "is-a-

retailer-in" and one from the node "Chain56" to the node "Retailer" labeled "is-a". This 

illustrates that Chain 56 is a retailer in the Quad Cities market. 



64 
 

 
Figure 4 

It is now important to note a point or two of possible semantic confusion. Notice that the nodes 

in this small network are not all of the same "type". The node labeled "Market" represents the 

generic or meta or class concept of a market; it represents the abstract concept of a market. It can 

be thought of as possessing properties common to all markets. The node "Quad Cities" 

represents an individual instance of the node "Market". The node "Quad Cities" represents a 

particular market. The same is true of the relation between the node labeled "Retailer" and the 

node labeled "Chain56". The node "Retailer" again represents the concept of a retailer that is 

common across all particular retailers. One instance of such a retailer is the node labeled 

"Chain56". In order to distinguish between these two types of nodes, the class nodes become 

boxes and the instance nodes become ellipses, as in Figure 5. 

 
Figure 5 

Another class node, labeled "Item", that represents the abstraction of items in a category, can 

now be added. Along with that, an instance of an item, labeled "87481", is added. Notice that 

there is a strong relationship between the type or class nodes and the column headings or entities 
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of a relational database table. We will exploit this similarity later in this paper. Thus, another "is-

a" link and a new link, "item-carried-in", must be added to the node "87481" and the node 

"Chain56" respectively. These new additions are shown in Figure 6. The information now being 

represented is that Chain56 is a retailer in the Quad Cities market and that Chain56 carries the 

item 87481. 

 
Figure 6 

As the nodes proliferate, the meanings of these links need to be considered. It should become 

apparent that not all links are alike. Some links express only relationships between nodes, and 

are therefore "assertions" of the nature of the relationship between two different nodes. For 

example, the link "item-carried-in" in Figure 6, which illustrates the relationship that retailer 

Chain56 carries the item 87481. The "is-a" links in Figure 6 are "structural" links in that they 

convey "type" information about the node. This information is about the node itself and not 

about the relationship it has to a different "type" of node. For instance, the node labeled "87481" 

is an instantiation of the class node labeled "Item". 

In Figure 7, more nodes and links are introduced to the original network. There is now a "Brand" 

class node with an instance node "Ivory". The link "is-brand" conveys the information that the 

item 87481 is the Ivory brand. There are now also class nodes labeled "Manufacturer", 

"Category", and "Category Attributes". The Category Attributes class is linked to three other 

class nodes labeled "Size", "Color" and "Segment". These represent particular attributes of a 
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particular category; in this instance, the liquid light duty detergent category, of which Ivory is a 

member. The "is-a" links between the class node Category Attributes and the class nodes Size, 

Color, and Segment represent a relationship of class to subclass and, hence, "structural" links. 

Here again are links that do not denote a relationship between different types of instance nodes, 

but give information about a class node itself. The class node Color is a type of Category 

Attribute. 
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Figure 7 

Our network in Figure 7 now has a representation for information about the item node 87481. 

For instance, it is a form of Ivory which is manufactured by Procter & Gamble; it is the 22 ounce 

size, white in color and competes in the Mildness market segment of the liquid light-duty 

detergent category. This is one item in one chain in one market. The database used in the 

Marketing Information Center prototype has 100 items in five chains in one market. Each item 
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can be one of seventeen brands made by twelve manufacturers which comes in seven sizes and 

eight colors and can compete in one of five segments. This database is a pared-down version of a 

scanner database for the Quad Cities market which has many more retailers and a good many 

more items. The network in Figure 7 becomes very complex with a 100-fold increase in the 

amount of information. 

None of the networks have shown any structural links among class nodes, except for Figure 7 

which shows only a subclass relationship between Category Attributes nodes and various class 

node attributes. Figure 8 shows possible structural relationships between class nodes. 

 
Figure 8 

In this figure the instance nodes have been left out in order to show more clearly possible 

relationships between classes. Remember class nodes represent larger, more general concepts 
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and just as general concepts can have more refined sub-concepts, the particular types of category 

attributes, such as Size, are represented as a sub-class of the broader concept of Category 

Attributes as shown previously. Notice that the class Category Attributes is a kind of abstract 

class that probably would never have an instance node tied directly to it. It can only have 

relationships to other class nodes. So, general concepts are represented such as the concept that 

there are Manufacturers who create things termed Brands which are suppied to things called 

Retailers. Retailers are in an abstraction called a Market and carry instances of Items. All of this 

is obvious from the diagram. What is not so obvious is that the nodes themselves can contain 

more than meets the eye. The Retailer node is a short-hand notation for a bundle of concepts that 

make up a real-live retailer, such as the fact that retailers have a headquarters and stores and 

control shelf space, price and display. The links, such as the one labeled "supplies" between the 

Manufacturer node and the Retailer node, are really more like a co-axial link than a simple arc. 

This particular link represents a bundle of various relationships between Manufacturer and the 

abstraction, Retailer. This detail is shown in Figure 9. 

 
Figure 9 

Another import characteristic of the node-link representation is the implicit "inverse" of all 

relationships represented by the directional arrows. If there is an arrow going from one node to 



70 
 

another, this also implies the reverse - that there is an arrow from the second node to the first. In 

Figure 10, there are the nodes labeled "P & G" and "Ivory" with the link labeled "makes". The 

direction of the relationship is that "P & G makes Ivory". Further, some linguistic terminology 

for our binary relationships could be used: "P & G" is the subject and "Ivory" is the object, and 

"makes" is the verb or action or link between them. This will be discussed in greater detail later. 

 
Figure 10 

This "P & G makes Ivory" relation implies the inverse relationship that "Ivory is-made-by P & 

G", as shown in Figure 11. 

 
Figure 11 

The representational or expressive power of semantic networks has been discussed thus far. As 

with any kind of knowledge representation scheme, a way of inferring knowledge that is not 

directly represented by the scheme is needed. The ability to work with incomplete knowledge 

sets a knowledge representation apart from a database. To give an example of what can be 

gleaned from the semantic network in Figure 7 that is not directly represented, consider Figure 

12. It is an extraction of Figure 7 containing only three nodes and two links. 
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Figure 12 

The information explicitly represented is that the item numbered 87481 is the Ivory brand and 

that Procter & Gamble makes Ivory. The inverse relationship of the item 87481 to the brand 

Ivory, i.e. that Ivory is-item-number 87481 is shown in Figure 13. 

 
Figure 13 

By tracing the path from the node P & G to the node Ivory via the arrow labeled "makes" and 

then from the node Ivory to the node 87481 via the arrow labeled "is-item-number", we can infer 

that Procter & Gamble manufactures the item 87481 by inferring a link labeled "makes-item" 

between the node P & G and the node 87481, as shown in Figure 14. This may seem obvious, but 

remember this small amount of new information need not be explicitly represented in the original 

network. 



72 
 

 
Figure 14 

Described mathematically, composing arrows occurs by placing them end-to-tail. 

This composition creates a new arrow. In Figure 14, a triad of nodes is formed by arrows said to 

"commute". It is not possible to compose every pair of arrows, only those whose destinations and 

sources correspond. The destination of the first must be the source of the second. By composing 

arrows, new relationships between nodes can be found and described. This process is sometimes 

called "chasing arrows" and the terminology introduced stems from a branch of mathematics 

called Category Theory. 

Figure 15 shows the results of more "arrow chasing". Additional relationships are derived, such 

as Ivory is a Brand carried by Chain 56, Procter & Gamble makes a product that competes in the 

Mildness segment,and Ivory is a Brand competing in the Mildness segment. Notice that layers of 

relationships between nodes can be built. 
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Figure 15 

This discussion has introduced the concept of a semantic network consisting of nodes and links. 

The nodes represent concepts and the links represent relationships between these concepts. A 

distinction was made between instance nodes and class nodes: the former represents general 

notions of the latter of which there may be many types. The concept of links which extend from 

the instance node level to the class node level was given along with an introduction of the notion 

of abstract classes. The reversibility of the arrows and the method of inferring new relationships 

between nodes from existing ones was also given. Several figures illustrated these concepts using 

an example semantic network built from a scanner database header file of the liquid light-duty 

detergent category. 

Limitations of Semantic Networks 

This chapter should not end without some discussion of the limitations of semantic networks, 

and a comparison of their traditional use versus their use in the management of marketing 

insights. 
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Semantic networks as a representation of knowledge have been in use in artificial intelligence 

(AI) research in a number of different areas. Some of the first uses of the nodes-and-links 

formulation were in the work of Quillian and Winston, where the networks acted as models of 

associative memory. Quillian's work centers on how natural language is understood and how the 

meanings of words can be captured in a machine. Winston's work concentrates on machine 

learning and specifically on structural descriptions of an environment. Winston's work describes 

pedestals and arches formed from more elementary pieces such as wedges and blocks; these 

make up the famous "blocks world" that has been utilized by many research efforts in semantic 

networks. 

The other major area in which the use of semantic networks is prevalent, is in models based on 

linguistics. These stem in part from the work of Chomsky. This latter work is concerned with the 

explicit representation of grammatical structures of language. It is opposed to other systems that 

tried to model, in some machine-implementable fashion, the way human memory works. 

Another approach combining aspects of both the previously mentioned areas of study was taken 

by Schank in his conceptual dependency approach. He attempted to break down the surface 

features of language into a network of deeper, more primitive concepts of meaning that were 

universal and language independent. 

Such creations and uses of semantic networks have led to any number of epistemological 

problems. Numerous researchers have attempted to address these problems. Barr and 

Feigenbaum state that: 

In semantic network representations, there is no formal semantics, no agreed-upon notion of 

what a given representational structure means, as there is in logic, for instance. 

Of course, the success of logic in this respect is debatable, but semantic networks do tend to rely 

upon the procedures that manipulate them. 

For example, the system is limited by the user's understanding of the meanings of the links in a 

semantic network. As pointed out previously in the example of the network of marketing 

insights, links between nodes are not all alike in function or form. Hence we need to differentiate 

between links that assert some relationship and links that are structural in nature). A paper by 
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Brachman on the subtleties of the "is-a" link revealed even more distinctions in the uses of this 

link. According to Brachman "is-a" links can be divided into two groups, depending upon the 

nodes involved. One use of the "is-a" link resembles our distinction between an instance node 

and a class node. The link represents the relationship of instance nodes to abstract, generic 

qualities shared by many instance nodes. Brachman's other use of a link is between two instance 

nodes. These two major divisions can then be further broken down into finer uses of the link. 

If problems and sublime uses characterize links, then nodes are not much better. The seeming 

simplicity of a node that represents a single concept or object in the world is actually fraught 

with complications. The question "what is a node?" is on par with "what is a market?" As in the 

discussion of links above, we need to distinguish between nodes that represent some set of 

objects and nodes that represent classes of qualities shared by these objects. There can be 

properties for instances of a class that all members of a class share as well as properties of the 

class itself. A property of a market is that it is made up of retailers. For example, a member of 

the class Market, such as Quad Cities, contains specific retailers, such as Chain 56. Chain 56 is 

an instance of the class Retailer. The problems of epistomology and the semantics of semantic 

network representations are discussed further in Brachman. 

It should be noted that the sample network discussed at length in this book shares the advantages 

and disadvantages of any semantic network. We take "naive semantic networks" aka "naive set 

theory". We do not worry overly about the epistemologico-semantic problems associated with 

the use of the representation. Some of the difficulties are in fact side-stepped since the final goal 

for this network is not quite the same as the goals of other researchers. One fundamental 

difference between the use of the network representation in this book as opposed to elsewhere, is 

that we are not trying to represent natural language or associative memory independent of users. 

In fact we rely heavily on the user's intuitive understanding of the world. Semantic networks are 

used in this project as structures of knowledge that encourage the user to interact with them. 

Having marketing knowledge visible to the marketing professional is one of the major 

advantages of AI technologies and of tools such as spreadsheets. This topic is pursued in more 

depth in Chapter 18, while the next chapter describes a computer-based tool for implementing 

semantic networks. 
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Abstract.  People communicate with each other in sentences that incorporate two kinds of 

information:  propositions about some subject, and metalevel speech acts that specify how the 

propositional information is used — as an assertion, a command, a question, or a promise. By 

means of speech acts, a group of people who have different areas of expertise can cooperate and 

dynamically reconfigure their social interactions to perform tasks and solve problems that would 

be difficult or impossible for any single individual. This paper proposes a framework for 

intelligent systems that consist of a variety of specialized components together with logic-based 

languages that can express propositions and speech acts about those propositions. The result is a 

system with a dynamically changing architecture that can be reconfigured in various ways:  by a 

human knowledge engineer who specifies a script of speech acts that determine how the 

components interact; by a planning component that generates the speech acts to redirect the other 

components; or by a committee of components, which might include human assistants, whose 

speech acts serve to redirect one another. The components communicate by sending messages to 

a Linda-like blackboard, in which components accept messages that are either directed to them 

or that they consider themselves competent to handle. 

 

In the years since its founding conference in 1956, the field of artificial intelligence has 

generated an impressive collection of valuable components, but no comparably successful 

architecture for assembling them into intelligent systems. As examples, the following list 

illustrates the range of AI components that were designed and implemented in the 1950s and 

'60s:  

parsers, theorem provers, inference engines, search engines, learning programs, 

classification tools, statistical tools, neural networks, pattern matchers, problem 

solvers, planning systems, game-playing programs, question-answering systems, 

dialog managers, machine-translation systems, knowledge acquisition tools, 

modeling tools, and robot guidance systems. 

Over the past 40 years, the performance, reliability, and generality of these components have 

been vastly improved. Their theoretical foundations are much better understood, and they have 

found their way into applications that are no longer considered part of AI. Yet despite attempts to 
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integrate the components into general-purpose intelligent systems, the results are 

disappointing:  the commercially successful systems are limited to special-purpose applications, 

and the more general systems have not progressed beyond the stage of clever demos. Nothing 

remotely resembling the HAL computer in the movie 2001 exists today, and there are no credible 

designs for building one soon. 

The lack of progress in building general-purpose intelligent systems could be explained by 

several different hypotheses:  

1. Simulating human intelligence on a digital computer is impossible. 

2. The ideal architecture for true AI has not yet been found. 

3. Human intelligence is so flexible that no fixed architecture can do more than simulate a 

single aspect of what is humanly possible. 

Many people have presented strong, but not completely convincing arguments for the first 

hypothesis (Winograd & Flores 1986; Penrose 1989; Dreyfus 1992). In the search for an ideal 

architecture, others have implemented a variety of at best partially successful designs. The 

purpose of this paper is to explore the third hypothesis:  propose a flexible modular framework 

that can be tailored to an open-ended variety of architectures for different kinds of applications. 

The tailoring could be done either by a human knowledge engineer who uses specialized AI 

languages or by semiautomated design tools in collaboration with a human editor who has little 

or no training in AI. Such a system would not be as intelligent as HAL, but it should be valuable 

for a wide range of important applications. 

The idea of a flexible modular framework (FMF) is not new. It is, in fact, the underlying 

philosophy of the Unix operating system and its descendants. That philosophy is characterized 

by four design principles:  

1. A small kernel that provides the basic services of resource allocation and process 

management. 

2. A large, open-ended collection of highly modular utilities, which can be used by 

themselves or be combined with other modules. 



78 
 

3. Glue languages, also called scripting languages, for linking modules to form larger 

modules or complete applications. 

4. A uniform data representation, based on character strings, which constitute the storage 

format of Unix files and the content transmitted by Unix pipes. 

The first three principles are as valid today as they ever were, but the fourth has been modified to 

accommodate modules that require data with more structure than linear strings, especially 

database management systems (DBMS) and graphical user interfaces (GUIs). Unix systems 

implement the DBMS and the GUI as independent modules, but their nonlinear data structures 

cannot be communicated via pipes. Other operating systems make different compromises:  the 

IBM AS/400 implements the DBMS in the kernel, and the Macintosh and Windows systems 

implement the GUI in the kernel. 

The LISP language, which was the primary language of AI since the late 1950s, pioneered 

techniques that entered the mainstream of commercial computing when they were adopted by 

other languages ranging from PL/I to Java. For AI systems, LISP served as both an 

implementation language and a glue language for AI components and complete systems. Unlike 

the Unix character strings, the basic data structures of LISP consist of tree-like lists, which can 

be supplemented with cross links to form arbitrary graphs. During the 1970s and '80s, the trees 

and graphs of LISP proved to be rich enough to support the operating systems of the LISP 

machines with their stunning graphics. Those graphics techniques, which were invented at Xerox 

PARC, have been copied in all modern GUIs, including those of the Macintosh and Windows. 

Although LISP was, and still is, a highly advanced programming language, it is not by itself a 

knowledge representation language. The Prolog language is a step closer to a KR language. It 

supports the same kinds of data structures as LISP, but it has a built-in inference engine for the 

Horn-clause subset of logic, which can be used to express the rules of an expert system or the 

grammars of natural languages. For many applications, Prolog has been used as a KR language, 

either directly or with some syntactic sugar to make its notation more palatable. Yet Prolog still 

has limitations that make it unsuitable as the glue language for intelligent systems:  procedural 

dependencies, a nonstandard treatment of negation, and the limited expressive power of Horn-
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clause logic. Like LISP, Prolog is better suited to implementing the components of intelligent 

systems rather than representing the knowledge they process. 

The most promising candidate for a glue language is Elephant 2000, which McCarthy (1989) 

proposed as a design goal for the AI languages of the new millennium. Sentences in the Elephant 

language include "requests, questions, offers, acceptances of offers, permissions as well 

as answers to questions and other assertions of fact. Its outputs also include promises and 

statements of commitment analogous to promises." As an inspiration for Elephant, McCarthy 

cited the speech acts of natural languages (Austin 1962; Searle 1969), but he believed that 

Elephant sentences should be written in a formally defined version of logic, rather than the much 

more informal natural languages. Unix only supports one kind of speech act:  a command that 

invokes some program. The Unix scripting languages add loops and conditionals, which 

determine the sequence of commands to execute. Prolog supports two kinds of speech 

acts:  assertions for stating facts and goals for issuing commands or asking questions. Besides 

those special cases, Elephant provides a framework that can support the full range of 

illocutionary and perlocutionary speech acts. 

Although the glue language for intelligent systems should be at a higher level than the scripting 

languages of Unix, the four design principles of the Unix philosophy can serve as guidelines. 

Following are AI generalizations of the four principles:  

1. Like the Unix kernel, an AI kernel must support resource allocation and process 

management. But unlike Unix, which invokes a specific module for each command, an 

AI kernel should have a pattern-directed or associative method for determining when a 

module should be invoked. In many AI systems, a blackboard or bulletin board is used to 

post messages, which any appropriate component can access when it detects a 

characteristic pattern. The Linda language (Carriero & Gelernter 1992) is an example of 

an efficient blackboard system that has been widely used for scheduling parallel 

computations by clusters of computers. 

2. Like Unix, an AI system should have an open-ended collection of modular components, 

but the kinds of components should be traditional AI tools of the kinds that have been 

developed over the past 40 years. New kinds may also be needed, but they could also be 
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invoked by a glue language like Elephant in combination with a Linda-like blackboard. 

More conventional components, such as a DBMS, GUI, and various networks, could be 

invoked by the same mechanisms. The Jini system of Java, for example, uses a version of 

the Linda operators for invoking components distributed across a network. 

3. An AI glue language, as McCarthy emphasized, should be based on a version of logic 

that is rich enough to include all of first-order logic plus metalevels that can talk about 

the object level and state whatever speech act is intended. Two such languages are 

conceptual graphs (CGs) and the Knowledge Interchange Format (KIF), which are being 

standardized as logically equivalent notations for the same model-theoretic foundations. 

Other versions of logic, which are discussed in Section 5 of this paper, can be translated 

to or from subsets of CGs and KIF. For communication with people who are not 

logicians, those logics can also be translated to or from versions of controlled natural 

languages (CNLs), which can serve as readable notations for the underlying logic. 

4. Instead of the linear character strings stored in files and transmitted by pipes, logic 

provides a much richer notation that can represent all the data structures needed for a 

DBMS, GUI, or network protocol. The messages posted to a Linda-like blackboard could 

include any logical expression, which in extreme cases might represent an arbitrarily 

large graph or even the conjunction of any or all the data in a DBMS. The metalevel 

capabilities of logic, which can represent any desired speech act, can state what should, 

would, could, or must be done with the data. 

This paper shows how a framework based on these four principles can support a family of 

architectures that can easily be tailored for different kinds of applications. Section 2 discusses 

three logically equivalent notations for an Elephant-like glue language:  controlled natural 

language for the human interface; conceptual graphs for components that use graph-based 

algorithms; and KIF for components that use other notations for logic. Section 3 surveys the use 

of CNLs as a front end to AI systems. Section 4 shows how graph algorithms can simplify or 

clarify the techniques for searching, querying, and theorem proving. Section 5 discusses 

techniques for handling the computational complexities in different applications of logic. Finally, 

Section 6 discusses the kinds of components needed for a flexible modular framework and how a 
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glue language communicating through a blackboard can be used to combine them, relate them, 

and drive them. 

2. Notations for Logic 

McCarthy's Elephant language requires a highly expressive version of logic, but he did not 

propose any particular notation for it. Although various notations — graphical, linear, or NL-like 

— can express equivalent semantic information, the choice of notation can have a major 

influence on both the human interfaces and the kinds of algorithms used in the computations. 

This section illustrates three notations for logic:  conceptual graphs, KIF, and controlled natural 

languages. All three of them can express exactly the same semantics in logically equivalent 

ways, but they have complementary strengths and weaknesses that make them better suited to 

different kinds of tasks. Any or all of them could be used in messages passed through a Linda-

like blackboard. 

For his syllogisms, the first version of formal logic, Aristotle defined a highly stylized form of 

Greek, which became the world's first controlled natural language. During the middle ages, 

Aristotle's sentence patterns were translated to controlled Arabic and controlled Latin, and they 

became the major form of logic until the 20th century. The following table lists the names of the 

four types of propositions used in syllogisms and the corresponding sentence patterns that 

express them. 

Type Name Pattern 

A Universal affirmative Every A is B. 

I Particular affirmative Some A is B. 

E Universal negative No A is B. 

O Particular negative Some A is not B. 
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With letters such as A and B in the sentence patterns, Aristotle introduced the first known use of 

variables in history. Each letter represents some category, which the Scholastics 

called praedicatum in Latin and which became predicate in English. If necessary, the verb 

form is may be replaced by are, has, or have in order to make grammatical English sentences. 

Although the patterns may look like English, they are limited to a highly constrained syntax and 

semantics:  each sentence has exactly one quantifier, at most one negation, and a single predicate 

that is true or false of the individuals indicated by the subject. 

Although Aristotle's syllogisms are the oldest version of formal logic, they are still an important 

subset of logic, which forms the foundation for description logics, such as DAML and OIL. For 

frame-like inheritance, the major premise is a universal affirmative statement with the 

connecting verb is; the minor premise is a universal or particular affirmative with is, has, or other 

verbs. Many constraints for a DBMS or an expert system can be stated as universal negative 

statement with any of the verbs. For constraint checking and constraint inheritance, the major 

premise is the constraint, and the minor premise is a statement in one of the other three patterns. 

Another important version of logic is the Horn-clause subset, which is widely used for defining 

expert system rules and SQL views. The basic syntax has an if-then pattern:  the if-part of the 

rule is a conjunction of one or more statements, which may have some negations; the then-part is 

a conjunction of one or more statements, which may not have negations. Following are two such 

rules for a library database, written in Attempto Controlled English (Fuchs et al. 1998; Schwitter 

1998):  

If a copy of a book is checked out to a borrower 

   and a staff member returns the copy 

then the copy is available. 

If a staff member adds a copy of a book to the library 

   and no catalog entry of the book exists 

then the staff member creates a catalog entry 

        that contains the author name of the book 

           and the title of the book 

           and the subject area of the book 
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   and the staff member enters the id of the copy 

   and the copy is available. 

The Attempto system translates these rules to an executable form in Prolog. Anyone who can 

read English can read controlled English as if it were English, but controlled languages are 

formal languages that require some training for an author to stay within their limitations. Section 

3 of this paper discusses tools that can guide an author to avoid the ambiguities of full natural 

language or help a human editor to clarify them. 

In the late 19th century, three logically equivalent, but structurally very different notations for 

first-order logic (FOL) were developed. The first was the tree-like Begriffsschrift by Frege 

(1879), and the second was the algebraic notation by Peirce (1880, 1885). With minor 

modifications by Peano (1889), Peirce's version became the most commonly used notation for 

logic during the 20th century. The third notation was Peirce's existential graphs of 1897, which 

he called his chef d'oeuvre. KIF is a sorted version of Peirce's algebraic notation, and conceptual 

graphs are a sorted version of Peirce's graph notation. For comparison, Figure 1 is a CG 

representation of the controlled English sentence, John is going to Boston by bus. 

 

Figure 1:  A conceptual graph in the display form 

The boxes in Figure 1 are called concepts, and the circles are called conceptual relations. The 

default quantifier for each concept is the existential, which says that something of the specified 

type exists; the concept [City: Boston] means that there exists a city, which is named Boston. 

Each conceptual relation has one or more arcs: (Agnt) links a concept that represents an action to 

the concept that represents its agent; (Inst) links the action to its instrument; and (Dest) links an 
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action that involves motion to its destination. All the relations in Figure 1 are dyadic, but in 

general, a conceptual relation may have any number of arcs. 

Although the display form is quite readable, it is not easy to type or to transmit across a network. 

Therefore, two interchange formats have been developed:  the Conceptual Graph Interchange 

Format (CGIF) maps directly to and from the display form; and the Knowledge Interchange 

Format (KIF) maps directly to and from the algebraic notation for predicate calculus. Following 

is the CGIF representation of Figure 1:  

[Go: *x] [Person: 'John' *y] [City: 'Boston' *z] [Bus: *w] 

   (Agnt ?x ?y) (Dest ?x ?z) (Inst ?x ?w) 

This statement captures every detail of the display form except the two-dimensional layout, 

which is not semantically relevant. If desired, the layout information could be included as 

structured comments inside the brackets and parentheses that enclose the nodes of the graph. The 

connections between concepts and relations, which are shown directly by the arcs of the graph in 

Figure 1, are shown indirectly by labels, such as ?x and ?y in CGIF. Those labels are translated 

to variables in KIF, as in the following example: 

(exists ((?x Go) (?y Person) (?z City) (?w Bus)) 

        (and (Name ?y John) (Name ?z Boston) 

             (Agnt ?x ?y) (Dest ?x ?z) (Inst ?x ?w))) 

KIF notation is used for many theorem provers and inference engines that are based on predicate 

calculus. The translations between KIF and CGIF preserve the semantics:  a mapping from KIF 

to CGIF and back to KIF might not generate an identical statement, but it will generate a 

statement that is logically equivalent. 

KIF and conceptual graphs can represent the full range of operators and quantifiers of first-order 

logic, and they have been extended with metalevel features that can be used to define extensions 

to FOL, including modal logic and higher-order logic. The metalevel features are necessary for 

representing the speech acts of Elephant 2000, which uses logic to talk about the use of logic. In 

natural languages, metalevels are marked by a variety of syntactic features that delimit the 

context of the metalanguage from the context the object language. The most obvious delimiters 

are quotation marks, but similar contexts are introduced by verbs that express what some agent 
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says, thinks, believes, requests, wants, promises, or hopes. As an example, the following English 

sentence contains two nested levels, which are enclosed in brackets for emphasis: 

Tom believes [Mary wants [to marry a sailor]]. 

This sentence is represented by the CG in Figure 2. 

 

Figure 2:  A conceptual graph with two nested contexts 

The context of Tom's belief is represented by a concept of type Proposition, which contains a 

nested CG that states the proposition. The context of Mary's desire is represented by a concept of 

type Situation, which is described by a proposition that is stated by the nested CG. The (Expr) 

relation represents the experiencer of a mental state, and the (Thme) relation represents the 

theme. In general, the theme of a belief or an assertion is a proposition, but the theme of a desire 

must be something physical, such as a situation. Following is the CGIF equivalent of Figure 2:  

[Person: *x1 'Tom'] [Believe *x2] (Expr ?x2 ?x1) 

   (Thme ?x2 [Proposition:  

      [Person: *x3 'Mary'] [Want *x4] (Expr ?x4 ?x3) 

         (Thme ?x4 [Situation: 

            [Marry *x5] (Agnt ?x5 ?x3) (Thme ?x5 [Sailor]) ]) ]) 

And following is the equivalent KIF statement. 
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(exists ((?x1 person) (?x2 believe)) 

   (and (name ?x1 'Tom) (expr ?x2 ?x1) 

        (thme ?x2 

           (exists ((?x3 person) (?x4 want) (?x8 situation)) 

              (and (name ?x3 'Mary) (expr ?x4 ?x3) (thme ?x4 ?x8) 

                   (dscr ?x8 (exists ((?x5 marry) (?x6 sailor)) 

                                (and (Agnt ?x5 ?x3) (Thme ?x5 ?x6))))))))) 

The context boxes delimit the scope of quantifiers and other logical operators. The sailor, whose 

existential quantifier occurs inside the context of Mary's desire, which itself is nested inside the 

context of Tom's belief, might not exist in reality. Following is another sentence that makes it 

clear that the sailor does exist: 

There is a sailor that Tom believes Mary wants to marry. 

This sentence corresponds to the CG in Figure 3. 

 

Figure 3:  A CG that asserts the sailor's existence 
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The English sentence mentions the sailor before introducing any verb that creates a nested 

context. Therefore, the concept [Sailor] in Figure 3, with its implicit existential quantifier, is 

moved outside any nested context. In the CGIF and KIF notations, the concept or the quantifier 

that refers to the sailor would be moved to the front of the statement. Another possibility, 

represented by the sentence Tom believes there is a sailor that Mary wants to marry, could be 

represented by moving the concept [Sailor] into the middle context, which represents Tom's 

belief. In CGIF and KIF, the corresponding concept or quantifier would also be moved to the 

context of Tom's belief. 

As these examples illustrate, conceptual graphs in the display form are more readable than either 

CGIF or KIF. There are two reasons for the improved readability: 

1. Direct connections.  The arcs of the graph show connections directly without the need for 

labels or variables. In Figure 1, for example, the four concept boxes map to four distinct 

labels or variables in CGIF and KIF. To show the links to the relations, CGIF requires 10 

occurrences of those labels, and KIF requires 12; furthermore, those occurrences are 

scattered throughout the linear strings. 

2. Nested enclosures.  As Figures 2 and 3 show, the contexts are shown more clearly with 

nested enclosures than with nested parentheses or brackets. By using both brackets and 

parentheses, CGIF has a slight advantage over KIF, but neither notation can compete 

with the nested boxes of the display form. 

Besides human readability, graphs also have theoretical and computational advantages, which 

are discussed in Section 4. 

3. Using Controlled Natural Languages 

During the 1980s, the dominant approach to knowledge acquisition required two kinds of highly 

trained, highly paid professionals. At the top of Figure 4, a knowledge engineer is interviewing 

a subject matter expert in order to capture her knowledge and encode it in the arcane formats of 

an AI system. Meanwhile, computational linguists, who were designing natural-language tools, 

tried to make them translate NL documents into similar encodings without requiring any human 

intervention. At the bottom of Figure 4, a physician who is examining a patient scribbles some 
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notes on a sheet of paper, which some clerk will later transcribe for the computer. Then the NL 

tools will attempt to convert those notes to the formats specified by the knowledge engineer. 

 

Figure 4:  Twentieth century approaches to knowledge acquisition and NL processing 

There are two things wrong with Figure 4:  the top row requires far too much human effort, and 

the bottom row is expected to process unrestricted natural language without any human 

assistance. To reduce the cost of two high-priced experts, some developers merged the two roles 

at the top row into one:  either the subject matter expert learned knowledge engineering, or the 

knowledge engineer learned enough about the subject matter to extract knowledge from 

documents. Yet people with expertise in both fields became even more expensive to find, hire, 

and train. Figure 5 shows a better alternative:  simplify the tools and the training required by the 

people who use them. Instead of designing complex NL tools that process documents without 

human intervention, AI researchers developed simpler knowledge extraction (KE) tools that can 

extract knowledge from documents with assistance from just one human editor. Furthermore, the 

editor communicates with the KE tools in a controlled natural language, which people can read 

without special training. 
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Figure 5:  Replacing two experts with one editor 

The editor in Figure 5 represents various people who at different times might play different roles 

with respect to the subject matter, the computer system, and the people and activities involved 

with them. Each of the three people in Figure 4 has a different kind of expertise. Any of them 

might use KE tools to edit their knowledge or to write a note, a report, or a book that someone 

else might edit with the aid of KE tools. Following are the three kinds of knowledge, the roles of 

the two experts in Figure 4, and the way that KE tools can help the editor in Figure 5 do the work 

of both:  

 Semantic knowledge. The subject matter expert contributes the terminology and 

background knowledge that is typically recorded in textbooks, research reports, and 

reference manuals. That knowledge represents the semantics of the subject matter and its 

links to the natural language vocabulary. A editor in Figure 5 could use the KE tools to 

extract that knowledge from the documents, or the experts who write the documents 

could use the KE tools to generate a printable document and a knowledge base at the 

same time. 

 Episodic knowledge. The physician at the patient's bedside contributes knowledge of 

particular instances or episodes in the day to day application of the subject matter. Instead 

of writing notes on a pad of paper, as in Figure 4, such people could enter that 

information into a computerized tablet or voice recognition system. The KE tools could 
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process the information immediately and respond with a paraphrase in a controlled 

natural language, which the operational personnel would correct and approve. 

 Patterns of language and logic. The knowledge engineer in Figure 4 is a specialist in 

translating unformatted natural language to database tables, if-then rules, and procedural 

sequences. That kind of knowledge could be codified in a library of patterns or templates 

represented as conceptual graphs (Sowa 1999). The KE tools would apply the language 

patterns to extract information from documents and use the associated logic patterns to 

reformat it in a CNL. Since the KE process is not foolproof, a human editor must review, 

correct, and approve the output before it goes into the knowledge base. 

From an editor's point of view, a KE system looks like an intelligent word processor combined 

with sophisticated tools for searching, classifying, summarizing, and paraphrasing. After the 

output has been revised by an editor, who might be the original author of the documents, the 

result can be stored in a knowledge base or be written as an annotation to the documents. 

As examples of KE tools, Doug Skuce (1995, 1998, 2000) has designed an evolving series of 

knowledge extraction systems, which he called CODE, IKARUS, and DocKMan (Document-

based Knowledge Management). All the input to the knowledge base, whether generated by the 

KE tools or entered directly by an editor, is represented in a CNL called ClearTalk. The KE tools 

have the following advantages over the older systems represented by Figure 4:  

 Reduced training for people.  A controlled natural language is a subset of the 

corresponding natural language. Anyone who can read English can immediately read 

ClearTalk, and the knowledge editors who write ClearTalk can learn to write it in a few 

hours. The ClearTalk system itself does most of the training through use:  the restrictions 

are shown by menus and templates and enforced by immediate syntactic checks. By 

consistently using ClearTalk for all its output, the system reinforces the acceptable 

syntactic forms. 

 Reduced complexity in the system.  During the knowledge extraction process, the KE 

tools can ask the editor to resolve ambiguities in the documents, to select relevant 

passages, and to correct misinterpretations. After the knowledge has been translated to 

ClearTalk with human assistance, the restricted syntax of ClearTalk eliminates the 
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syntactic ambiguities of ordinary language. The semantic ambiguities are eliminated by 

the system, which enforces a single definition for every term. As a result, the system can 

automatically translate ClearTalk to and from logic and various computational languages. 

 Self-documenting systems.  People can read ClearTalk without special training, and a 

computer system can translate it automatically to a notation for logic, such as CGs or 

KIF. As a result, the comments and the implementation become identical, and there is 

never a discrepancy between what the human reads and what the machine is processing. 

 Document annotations.  The double-headed arrow in Figure 5 indicates that the 

ClearTalk output from the KE tools can also be written as an annotation to the original 

source documents. Those annotations can serve as humanly readable comments or as 

input to other ClearTalk systems. 

As an example, the students in Skuce's operating systems course used the KE tools to map 

information from on-line Linux manuals to a knowledge base for a Linux help facility. The 

people who wrote the manuals were experts, but the students who edited the knowledge base 

were novice users of both Linux and the KE tools. As another example, Skuce built a simple 

knowledge base about animals for his 9-year-old daughter's school project. She and her class 

could browse the knowledge base on the web, and they had no difficulty in understanding every 

fact presented in ClearTalk. 

Over the past thirty years, many natural-language query systems have been developed that are 

much easier to use than SQL. Unfortunately, one major stumbling block has prevented them 

from becoming commercially successful:  the amount of effort required to define the vocabulary 

terms and map them to the appropriate fields of the database is a large fraction of the effort 

required to design the database itself. However, if appropriate KE tools are used to design the 

database, the vocabulary needed for the query system can be generated as a by-product of the 

design process. As an example, the RÉCIT system (Rassinoux 1994; Rassinoux et al. 1998) uses 

KE tools to extract knowledge from medical documents written in English, French, or German 

and translates the results to a language-independent representation in conceptual graphs. The 

knowledge extraction process defines the appropriate vocabulary, specifies the database design, 

and adds new information to the database. The vocabulary generated by the KE process is 

sufficient for end users to ask questions and get answers in any of the three languages. 
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Translating an informal diagram to a formal notation of any kind is as difficult as translating 

informal English specifications to executable programs. But it is much easier to translate a 

formal representation in any version of logic to controlled natural languages, to various kinds of 

graphics, and to executable specifications. Walling Cyre and his students have developed KE 

tools for mapping both the text and the diagrams from patent applications and similar documents 

to conceptual graphs (Cyre et al. 1994, 1997, 1999). Then they implemented a scripting language 

for translating the CGs to circuit diagrams, block diagrams, and other graphic depictions. Their 

tools can also translate CGs to VHDL, a hardware design language used to specify very high-

speed integrated circuits (VHSIC). 

Design and specification languages have multiple metalevels. As an example, the Unified 

Modeling Language has four levels:  the metametalanguage defines the syntax and semantics of 

the UML notations; the metalanguage defines the general-purpose UML types; a systems analyst 

defines application types as instances of the UML types; finally, the working data of an 

application program consists of instances of the application types. To provide a unified view of 

all these levels, Olivier Gerbé and his colleagues at the DMR Consulting Group implemented 

design tools that use conceptual graphs as the representation language at every level (Gerbé et al. 

1995, 1996, 1997, 1998, 2000). For his PhD dissertation, Gerbé developed an ontology for using 

CGs as the metametalanguage for defining CGs themselves. He also applied it to other notations, 

including UML and the Common KADS system for designing expert systems. Using that theory, 

Gerbé and his colleagues developed the Method Repository System as an authoring environment 

for editing, storing, and displaying the methods used by the DMR consultants. Internally, the 

knowledge base is stored in conceptual graphs, but externally, the graphs can be translated to 

web pages in either English or French. About 200 business processes have been modeled in a 

total of 80,000 CGs. Since DMR is a Canadian company, the language-independent nature of 

CGs is important because it allows the specifications to be stored in the neutral CG form. Then 

any manager, systems analyst, or programmer can read them in his or her native language. 

No single system discussed in this paper incorporates all the features desired in a KE system, but 

the critical research has been done, and the remaining work requires more development effort 

than pure research. Figure 6 shows the flow of information from documents to logic and then to 

documents or to various computational representations. The dotted arrow from documents to 
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controlled languages requires human assistance. The solid arrows represent fully automated 

translations that have been implemented in one or more systems. 

 

Figure 6:  Flow of information from documents to computer representations 

For all these tools, the unifying representation language is logic, which could be represented in 

KIF, CGs, or other notations specialized for various tools. Aristotelian syllogisms together with 

Horn-clause rules provide sufficient expressive power to specify a Turing machine, and they 

support efficient computational mechanisms for executing the specifications. For database 

queries and constraints, statements in full first-order logic can be translated to SQL. All these 

subsets, however, use the same vocabulary of natural-language terms, which map to the same 

ontology of concepts and relations. From the user's point of view, the system communicates in a 

subset of natural language, and the differences between tools appear to be task-related 

differences rather than differences in language. 

4. Graph Algorithms 

For many purposes, graphs are a natural representation that is isomorphic to the structure of an 

application: maps with cities as nodes and highways as arcs; flow diagrams through programs, 

electrical wiring, and plumbing; the valence bonds between atoms of an organic molecule; the 

communication links in a computer network; the reference patterns between documents and web 

sites on the Internet; and the semantics of natural languages with their complex phrase structures 

and anaphoric references. When such networks are represented by strings or matrices, the 

resulting data structures tend to make inefficient use of storage space, execution time, or both. 

This section surveys five important components of an intelligent system that can benefit from 

graph-based algorithms: 
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1. Storage, retrieval, and query. 

2. Deductive reasoning for logical inference and theorem proving. 

3. Inductive reasoning for learning new kinds of structures. 

4. Abductive reasoning for discovering analogies. 

5. Representing natural language semantics. 

In all five of these areas, the direct connectivity of CGs and their nested contexts support 

algorithms that are simpler and more efficient than algorithms on linear strings and tables. For 

these reasons, most reasoning systems in AI, even those that use linear notations externally, use 

tree and graph data structures internally. 

During the 1970s, the database field was embroiled in a controversy between the proponents of 

the new relational DBMS, which stored data in tables, and the proponents of older DBMS 

systems, which stored data in networks or hierarchies. For many applications, the network and 

hierarchical systems had better performance, but the relational systems became the universal 

standard because their logic-based query languages, such as SQL, were far easier to use than the 

navigational systems, which required a link-by-link traversal of the networks. The battle for 

network DBMS was finally lost when one its staunchest defenders claimed that ease of use was 

not important because "programmers enjoy a challenge." Today, network systems have come 

back into vogue as the foundation for object-oriented DBMS, which represent the connections 

between objects more directly than the now standard RDBMS. Yet the query languages for 

OODBMS require the same kind of link-by-link traversals as the navigational methods of the 

1970s. Unlike the logic-based SQL standard, the OODBMS query languages require far more 

programming effort, which must be specialized to the formats of each vendor. 

To support a more natural interface between humans and computers, Sowa (1976, 1984) 

proposed conceptual graphs as an intermediate language between natural languages and logic-

based computer languages. For question-answering systems, a CG derived from a natural 

language question could be translated to logic-based query languages such as SQL or be matched 

against the graphs of a network DBMS. In principle, CGs could provide a high-level interface for 

any DBMS — relational, network, or object-oriented. However, there were two obstacles to 

using CGs as the universal interface to every DBMS:  the natural language processors were not 
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sufficiently robust to generate them, and the algorithms for generating answers from network 

databases were too slow. 

The breakthrough in performance that made a CG database efficient was accomplished by 

Levinson and Ellis (1992), who developed algorithms that could search a lattice of graphs in 

logarithmic time. Instead of navigating the networks link by link, their systems could take any 

query graph q and determine where it fit within the lattice. As a result, it would return two 

pointers: one would point to the lower sublattice of all graphs that are more specialized than q, 

and the other would point to the upper sublattice of all graphs that are more generalized than q. 

For deduction and theorem proving, Peirce (1897, 1909) discovered graph-based rules of 

inference, which are generalizations and simplifications of the rules of natural deduction by 

Gentzen (1935). The beauty of Peirce's rules is that they make a perfect fit with a system that 

stores and retrieves graphs in a generalization hierarchy: Peirce's rules are based on the 

conditions in which any graph p may be replaced by a generalization of p or a specialization of p. 

Furthermore, the negation of any context reverses the ordering for all graphs in the context: 

if p is a generalization of q, then ~p is a specialization of ~q. Esch and Levinson (1995, 1996) 

presented algorithms for combining Peirce's rules with search and retrieval from a generalization 

hierarchy, and one of Levinson's students, Stewart (1996), implemented those algorithms in a 

high-speed theorem prover for first-order logic. Every proposition that was proved, either as a 

theorem or as an intermediate result, was stored in its appropriate place in the generalization 

hierarchy together with a pointer to its proof. During a proof, each possible step that could be 

generated by Peirce's rules was used as a query graph q to determine whether q or any 

specialization of q had already been proved. If so, the proof was done. 

A high-speed search and retrieval mechanism for generalization hierarchies of graphs can also be 

used as the basis for structural learning algorithms. Unlike neural networks and statistical 

algorithms, whose learning consists of changing numerical weights, a graph-based algorithm can 

learn arbitrarily large structures represented as graphs. To demonstrate that principle, Levinson 

(1996) used his search algorithms in a learning program that would learn to play board games, 

such as chess, by starting with no knowledge about the game other than the ability to make legal 

moves. His chess program, called Morph, learned chess by playing games with a tutor called 
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Gnu Chess, which was a master-level program, but it could not improve its performance by 

learning. At the end of each game, Morph was told whether the game was won, lost, or drawn 

(usually lost, especially in the early stages of learning). Then Morph would estimate the values 

of all the intermediate positions achieved during the game by backpropagation from the final 

value (1.0 for a win, 0.5 for a draw, or 0 for a loss), and save the chess positions with their 

estimated values as graphs in the hierarchy. When it made a move, Morph would determine all 

the possible moves, look up the corresponding positions in the hierarchy, find the closest 

matching positions, and consider their previously estimated values. Morph would then make the 

move that led to the position with the best estimated value. After playing a few thousand games 

with its tutor, Morph would have a sufficient database of moves with estimated values to play a 

decent game of chess. 

To find analogies, Majumdar (2001) implemented a system called VivoMind, which represents 

knowledge in dynamic conceptual graphs. What makes the graphs dynamic are algorithms that 

pass messages along the nodes of a graph. Each node in a CG corresponds to an object that can 

pass messages to neighboring nodes. The result is an elegant generalization of the marker-

passing algorithms originally implemented by Quillian (1966) and further developed by Fahlman 

(1979) and Hendler (1987). For finding analogies, VivoMind has proved to be as good or better 

than other analogical reasoners on all the usual test cases. It is also far more efficient 

computationally. 

The contexts of conceptual graphs are based on Peirce's logic of existential graphs and his theory 

of indexicals. Yet the CG contexts happen to be isomorphic to the similarly nested discourse 

representation structures (DRS), which Hans Kamp (1981a,b) developed for representing and 

resolving indexicals in natural languages. When Kamp published his first version of DRS, he 

was not aware of Peirce's graphs. When Sowa (1984) published his book on conceptual graphs, 

he was not aware of Kamp's work. Yet the independently developed theories converged on 

semantically equivalent representations; therefore, Sowa and Way (1986) were able to apply 

Kamp's techniques to conceptual graphs. Such convergence is common in science; Peirce and 

Frege, for example, started from very different assumptions and converged on equivalent 

semantics for FOL, which 120 years later is still the most widely used version of logic. 
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Independently developed, but convergent theories that stand the test of time are a more reliable 

basis for standards than the consensus of a committee. 

Although graphs are one of the most versatile representations, many good tools use other 

notations. A framework for intelligent systems should take advantage of different structural 

properties:  some algorithms are more efficient on graphs, and some algorithms are more 

efficient on strings or tables. The logical equivalence of KIF and CGIF facilitates the mapping 

from one to the other. Their generality facilitates the integration with other languages that have 

more restricted expressive power, such as SQL, DAML, OIL, RDF, and others. Components 

based on any of those languages can be integrated with a system that uses KIF and CGs as its 

primary languages. 

5. Expressive Power and Computational Complexity 

The limitations of AI systems have often been blamed on the complexity of the required 

computations. Various solutions have been proposed, ranging from highly parallel networks that 

mimic the mechanisms of the human brain to restricted languages that limit the complexity of the 

problem definition. A modular architecture could support components that use such strategies for 

special purposes:  neural networks, for example, have been highly successful for pattern 

recognition, and restricted languages can be highly efficient for specific kinds of problems. For 

central communications among all components, however, the Elephant language used in the 

blackboard must be the most expressive, since it must transmit any information that any other 

component might use or generate. That extreme expressive power raises a question about the 

complexity of the computations needed to process it. 

Computational complexity, however, is not a property of a language, but a property of the 

problems stated in that language. First-order logic has been criticized as computationally 

intractable because the proof of an arbitrary FOL theorem may take an exponentially increasing 

amount of time. That criticism, however, is misleading, since large numbers of problems stated 

in full FOL are easily solvable. Placing restrictions on the logic or the notation cannot make an 

intractable problem solvable;  they merely make it impossible to state. The expressive power of 

Elephant does not slow down the communications from one component to another. The 
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components that receive a communication are responsible for determining what they can do with 

it. 

For certain kinds of problems, first-order logic can be the most efficient way to express them and 

to solve them. A typical example is answering a query in terms of a relational database. The 

answer to an SQL query that uses the full expressive power of FOL can be evaluated in at most 

polynomial time, with the exponent of the polynomial equal to the number of quantifiers in the 

query. If the quantifiers range over an indexed domain, the evaluation can often be done in 

logarithmic time. Evaluating a constraint against a relational database is just as efficient as 

evaluating a query; in fact, every constraint can be translated to a corresponding query that asks 

for all instances in the database that violate the constraint. In commercial SQL systems, queries 

and constraints with the expressive power of FOL are routinely evaluated with databases 

containing gigabytes and terabytes of data. 

Although the time to solve an intractable problem may be very long, the time to detect the 

complexity class of a problem can be very short. Callaghan (2001) took advantage of syntactic 

criteria to subdivide the Levinson-Ellis graph hierarchies into several disjoint subhierarchies, 

each of which is limited to one complexity class. For each subhierarchy, he determined 

appropriate algorithms for efficiently classifying and searching that hierarchy. To determine the 

complexity class of any graph, Callaghan computed a signature or descriptor to determine its 

complexity properties. Each graph's descriptor would specify easily computable prerequisites 

(necessary conditions) that any matching graph must meet. By precomputing the descriptor of a 

query graph, Callaghan accomplished several goals at once:  determining the complexity of the 

search (tractability or decidability); narrowing the search to a particular class of graphs that have 

compatible descriptors; or determining whether the query graph lies outside the known 

complexity classes. 

Besides the subhierarchies of graphs supported by the Levinson-Ellis algorithms, Callaghan's 

approach can accommodate any external subsystem for which a suitable descriptor can be 

computed by simple syntactic tests. Among those subsystems are the relational databases, which 

are highly optimized for data stored in tables. In fact, the Levinson-Ellis hierarchies are 

complementary to an RDBMS:  the kinds of data that are most efficient with one are the least 
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efficient with the other. Other important subsystems include the specialized query languages of 

many versions of description logics. If a query graph lies outside of any of the known classes, it 

can be sent to a general first-order theorem prover. As a result, this approach can accept any 

query expressible in first-order logic, determine its complexity class, and send it to the most 

efficient subsystem for processing it. 

Mapping a smaller logic to a more expressive logic is always possible, but the reverse mapping 

usually requires some restrictions. To map information from a large, rich knowledge base to a 

smaller, more efficiently computable one, Peterson, Andersen, and Engel (1998) developed a 

system they called the knowledge bus. Their source was the CYC knowledge base (Lenat & 

Guha 1990; Lenat 1995), which contains over 500,000 axioms expressed in full FOL with 

temporal, higher-order, and nonmonotonic extensions. Their target was a hybrid system that 

combined a relational database with an inference engine based on the Horn-clause subset of 

FOL. To map from one to the other, the knowledge bus performs the following transformations:  

 Extracting a subontology. To extract an ontology for a particular application, the 

knowledge bus starts with a seed consisting of the concept types explicitly mentioned in 

the application. Then it searches through CYC to determine which axioms might deduce 

information about any of the seed types. Finally, it extracts those axioms together with 

the types and predicates used in them. For the sample application, it extracted 

approximately 1% of the total CYC knowledge base:  1531 types, 1267 predicates, and 

5532 axioms. 

 Separating rules and constraints. Since the Horn-clause inference engine cannot process 

arbitrary FOL statements, the knowledge bus separates the axioms into two classes:  4667 

Horn-clause rules that are used for inferences, and 875 FOL statements that are used as 

database constraints. Both the inferencing and the constraint checking can be done 

efficiently, in at most polynomial time. 

 Restrictions and modifications. For temporal reasoning, the knowledge bus adds extra 

arguments for starting and ending times to the CYC time-dependent predicates. To 

eliminate the higher-order features, it introduces constants of type Assertion. And to 

simulate the CYC nonmonotonic features, it uses a version of negation as failure. 

http://www.knowledgebus.com/
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For a particular application, the knowledge bus extracts a small subset of the CYC knowledge 

base that can be processed more efficiently by simpler tools. Although some information and 

some potential inferences are lost, the extracted subset has a well-founded semantics that is 

guaranteed to be free of contradictions. Furthermore, the resulting subset is more portable:  the 

inference engine can be used as an extension to any relational database, and Engel (1999) has 

developed techniques for mapping the definitions and axioms to Java classes that can be used in 

web-based applications. 

6. A Flexible Modular Framework 

A framework based on Elephant and Linda would subsume anything that could be done with a 

more conventional scripting language. Natural languages can specify procedures with a sequence 

of imperative statements linked by adverbs like then and next. A translation of those statements 

into KIF or CGs would specify the same procedure. But natural languages and their translations 

into logic could also specify more complex speech acts that could dynamically reconfigure the 

components of an intelligent system and their ways of interacting. 

In the original Linda system, the operators access a blackboard that contains tuples, which 

consist of sequences of arbitrary data. For a system that supports multiple languages, the first 

element of the tuple should identify the language so that the Linda system could immediately 

determine how to interpret the remainder. A general format would have six elements: 

1. Language.  A character string that specifies the language, such as "KIF", "CGIF", 

"English", or "Deutsch". 

2. Source.  A character string that identifies the sender. 

3. Message Id.  A character string generated by the sender. 

4. Destination.  A character string that identifies the intended receiver, if known. For 

pattern-directed communications, this string is empty, and the message is matched to the 

patterns of available receivers. 

5. Speech Act.  A character string that states the speech act. 

6. Message.  An arbitrary expression in the specified language that states the propositional 

content of the message. 
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The Linda pattern matcher could use an ordinary string comparison for the first five elements of 

the tuple, but it would require a more general logical unification (of CGs or KIF statements) for 

the sixth. Unification of messages in controlled natural languages might be difficult to define, 

and the pattern matcher might need to translate the message to CGs or KIF if a pattern match is 

necessary. 

To simulate a conventional scripting language, the destination would always be specified, and 

the speech act would always be "command". To access a relational database, the speech act 

would be "assertion" for an update, "question" for a query, or "definition" for creating a new 

table with a new format. At the end of his book, Austin (1962) specified a large number of 

possible speech acts, and he insisted that his list was not exhaustive. Following are his five 

categories, his description of each, and a few of his examples: 

1. Verdictives "are typified by the giving of a verdict, as the name implies, by a jury, 

arbitrator, or umpire." 

Examples:  acquit, convict, calculate, estimate, measure, assess, characterize, diagnose. 

2. Exercitives "are the exercising of powers, rights, or influence." 

Examples:  appoint, demote, excommunicate, command, direct, bequeath, claim, pardon, 

countermand, veto, dedicate. 

3. Commissives "are typified by promising or otherwise undertaking." 

Examples:  promise, contract, undertake, intend, plan, propose, contemplate, engage, 

vow, consent, champion, oppose. 

4. Behabitives "are a very miscellaneous group, and have to do with attitudes and social 

behavior." 

Examples:  apologize, thank, deplore, congratulate, welcome, bless, curse, defy, 

challenge. 
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5. Expositives "make plain how our utterances fit into the course of an argument or 

conversation, how we are using words, or, in general, are expository." 

Examples:  affirm, deny, state, assert, ask, identify, remark, mention, inform, answer, 

repudiate, recognize, define, postulate, illustrate, explain, argue, correct, revise, tell, 

report, interpret. 

The verbs listed in these examples illustrate the kinds of speech acts that people commonly 

perform, but in most cases, they omit the verb that specifies the speech act. A man who stands up 

in a meeting to shout something in an angry voice seldom begins with the words "I protest." Yet 

the people in the audience would recognize that the new speaker is protesting rather than 

agreeing with the previous speakers. Computers, however, need to be told how to interpret such 

speech, and an explicit statement of the speech act would enable them to respond more 

"intelligently." 

To illustrate the kinds of speech acts in an AI system, Figure 7 shows a kind of system discussed 

by Sowa (2000). The boxes labeled FMF represent the same flexible modular framework that has 

been adapted to different kinds of tasks by changing the roles and the kinds of speech acts 

expected of the users. At the upper left, logicians, linguists, and philosophers are using the FMF 

to define a general ontology. Logicians could use FMF to enter the definitions and axioms for 

logical operators, set theory, and basic mathematical concepts and relations. Linguists could use 

it to enter the grammar rules of natural languages and the kinds of semantic types and relations. 

Philosophers could use FMF to collaborate with the linguists and logicians in analyzing and 

defining the fundamental ontologies of space, time, and causality common to all domains of 

application. The major speech act for these users would be definition, but they might also ask 

questions about how to use the system, and they might use verdictives to evaluate the work of 

their colleagues. 
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Figure 7:  Tailoring an FMF for different purposes 

In the center of Figure 7, application developers use FMF to enter domain-dependent information 

about specific applications. Some of them would use FMF to define generic ontologies for 

industries such as banking, agriculture, mining, education, and manufacturing. Others would start 

with one or more generic ontologies and combine them or tailor them to a particular business, 

project, or application. The users in this mode would perform the same kinds of speech acts as 

the logicians, linguists, and philosophers. But they might put more emphasis on commissives, 

which would commit them to strict deadlines and performance goals. 

At the bottom right of Figure 7 the application users might interact with the FMF in an 

unpredictable number of ways. A business user with a job to do would have different 

requirements from a recreational user. Both, however, might react with behabitives, such as 
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grumbling, complaining, or cursing, when the system doesn't do what they wish. But unlike more 

conventional systems, an FMF could apologize, sympathize, and commiserate. 

The examples shown in Figure 7 do not begin to expoit the kinds of opportunities offered by an 

FMF that is able to recognize and respond to a wide range of speech acts. An important reason 

for building an FMF is to explore new ways of interaction, either between computers and 

humans or among mixed committees of human and computer participants. The explicit 

recognition and marking of speech acts enables the components of an FMF to interact, negotiate, 

and cooperate more intelligently among themselves and with their human users. 

7. Implementing the FMF 

A major advantage of a flexible modular framework is that it doesn't have to be implemented all 

at once. The four design principles, which enabled Unix-like systems to be implemented on 

anything from a wearable computer to the largest supercomputers, can also support the growth of 

intelligent systems from simple beginnings to a large "society of mind," as Minsky (1985) called 

it. For an initial implementation, each of the four principles could be reduced to the barest 

minimum, but any of them could be enhanced incrementally without disturbing any previously 

supported operations: 

1. The first component that must be implemented is a blackboard for passing messages. 

Even the pattern matcher might be omitted in the first implementation, and messages 

could only be sent to named destinations. For greater power and flexibility, a pattern 

matcher is necessary, but the basic Linda systems use only a simple pattern matcher that 

is far less sophisticated than most AI systems. The greatest power would come from 

patterns stored in a hierarchy of graphs based on the Levinson-Ellis algorithms, which 

could accommodate millions of patterns that might invoke intelligent agents distributed 

anywhere across the Internet. 

2. Any components that accept inputs and generate outputs could be accommodated in an 

FMF. The first implementation might support only conventional components that do 

exactly what they are told, such as the traditional collection of Unix utilities. More 

sophisticated components for reasoning, planning, problem solving, and natural language 
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processing could be added incrementally. The initial implementation would look like a 

pattern-matching front-end to a Unix command line, but it could grow arbitrarily far. 

Each stage in the growth would continue to have the full functionality of every preceding 

stage. Nothing would become obsolete as more intelligence is added by the new 

components. 

3. The Elephant language, which serves as the glue for linking components, could also grow 

incrementally. An initial version could consist of just the three verbs implemented in 

conventional computer systems:  tell, ask, and do. Those verbs correspond to the 

declarative, interrogative, and imperative moods of English. They also correspond to the 

three operators supported by a Linda blackboard:  output, input, and execute. Those verbs 

would be necessary to support many, if not most of the messages in even the most 

sophisticated systems. As more sophisticated components are added to the FMF, other 

verbs could be added to support more complex interactions:  authorize for secure 

communications; reply, lock, and commit for transactions that require multiple 

exchanges; explain for help facilities; and promise for future commitments. 

4. The communication language for writing messages could be conventional first-order 

logic, which supports a wide range of simpler subsets, such as lists, frames and rules. The 

richer CG language includes FOL, but with nested contexts and metalevel statements 

about the contents of any context. New languages and dialects of languages could be 

added whenever a translator becomes available for mapping them to and from the 

patterns of CGs that are used by the blackboard communication center. 

As an FMF is being developed, it can accommodate any mixture of a variety of 

components:  newly designed components specially tailored for the FMF; legacy systems 

enclosed in a wrapper that translates their I/O formats to the common language of the 

blackboard; commercial products that perform specific services; experimental components that 

are being designed and tested in research projects; an open-ended variety of client interfaces 

specialized for different applications; remote servers distributed anywhere across the Internet. 

A blackboard is an ideal platform for supporting hot-swap or plug-n-play components. When a 

new component is added to the FMF, it would send a message to the blackboard to identify itself 

and the patterns of messages it accepts. It could then be invoked by any other component whose 
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message matches the appropriate pattern. To take advantage of that flexibility, the Jini system 

uses the Linda operators to accommodate any kind of I/O device that might be attached to a 

network. But for intelligent systems, it is even more important to have that flexibility at the 

center instead of the periphery. 

Any server anywhere on the Internet could be converted to an intelligent agent by using an FMF 

as its front end. It could then respond to requests from other FMF servers anywhere else on the 

Internet. Each FMF would be, in Minsky's terms, a society of mind, and the entire Internet would 

become a society of societies. Human users could have a personal FMF running on their own 

computers, which could communicate with any other FMF to request services. The traditional 

help desks, in which a human expert answers the same questions repeatedly for multiple users, 

could be replaced by a human teacher or editor, as in Figure 5, who would build a knowledge 

base. That knowledge base would drive a specialized FMF, which could be consulted by the 

personal FMF of anyone who asks a relevant question. The intelligence accessible to any user 

would then be the combined intelligence of his or her personal FMF together with every FMF 

accessible to it across the Internet. 

LOGICAL AGENTS 

Artificial intelligence is defined as a study of rational agents. A rational agent could be 

anything which makes decisions, as a person, firm, machine, or software. It carries out an 

action with the best outcome after considering past and current percepts(agent’s perceptual 

inputs at a given instance). 

An AI system is composed of an agent and its environment. The agents act in their 

environment. The environment may contain other agents. An agent is anything that can be 

viewed as : 

 perceiving its environment through sensors and 

 acting upon that environment through actuators 
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Note : Every agent can perceive its own actions (but not always the effects)  

 
To understand the structure of Intelligent Agents, we should be familiar 

with Architecture and Agent Program. Architecture is the machinery that the agent executes 

on. It is a device with sensors and actuators, for example : a robotic car, a camera, a PC. Agent 

program is an implementation of an agent function. An agent function is a map from the 

percept sequence(history of all that an agent has perceived till date) to an action. 

Agent = Architecture + Agent Program 

Examples of Agent:- 

A software agent has Keystrokes, file contents, received network packages which act as 

sensors and displays on the screen, files, sent network packets acting as actuators.  

A Human agent has eyes, ears, and other organs which act as sensors and hands, legs, mouth, 

and other body parts acting as actuators. 

A Robotic agent has Cameras and infrared range finders which act as sensors and various 
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motors acting as actuators. 

 
Types of Agents 

Agents can be grouped into four classes based on their degree of perceived intelligence and 

capability : 

 

 

 

 Simple Reflex Agents 

 Model-Based Reflex Agents 

 Goal-Based Agents 

 Utility-Based Agents 

 Learning Agent 

Simple reflex agents 

Simple reflex agents ignore the rest of the percept history and act only on the basis of 

the current percept. Percept history is the history of all that an agent has perceived till date. 
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The agent function is based on the condition-action rule. A condition-action rule is a rule that 

maps a state i.e, condition to an action. If the condition is true, then the action is taken, else 

not. This agent function only succeeds when the environment is fully observable. For simple 

reflex agents operating in partially observable environments, infinite loops are often 

unavoidable. It may be possible to escape from infinite loops if the agent can randomize its 

actions. Problems with Simple reflex agents are : 

 Very limited intelligence. 

 No knowledge of non-perceptual parts of state. 

 Usually too big to generate and store. 

 If there occurs any change in the environment, then the collection of rules need to be 

updated. 

 

Model-based reflex agents 

It works by finding a rule whose condition matches the current situation. A model-based agent 

can handle partially observable environments by use of model about the world. The agent 

has to keep track of internal state which is adjusted by each percept and that depends on the 

percept history. The current state is stored inside the agent which maintains some kind of 

structure describing the part of the world which cannot be seen. Updating the state requires 

information about : 

 how the world evolves in-dependently from the agent, and 
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 how the agent actions affects the world. 

 

Goal-based agents 

These kind of agents take decision based on how far they are currently from 

their goal(description of desirable situations). Their every action is intended to reduce its 

distance from the goal. This allows the agent a way to choose among multiple possibilities, 

selecting the one which reaches a goal state. The knowledge that supports its decisions is 

represented explicitly and can be modified, which makes these agents more flexible. They 
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usually require search and planning. The goal-based agent’s behavior can easily be changed. 

 

Utility-based agents 

The agents which are developed having their end uses as building blocks are called utility 

based agents. When there are multiple possible alternatives, then to decide which one is best, 

utility-based agents are used.They choose actions based on a preference (utility) for each 

state. Sometimes achieving the desired goal is not enough. We may look for a quicker, safer, 

cheaper trip to reach a destination. Agent happiness should be taken into consideration. Utility 

describes how “happy” the agent is. Because of the uncertainty in the world, a utility agent 

chooses the action that maximizes the expected utility. A utility function maps a state onto a 
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real number which describes the associated degree of happiness. 

 
Learning Agent 

A learning agent in AI is the type of agent which can learn from its past experiences or it has 

learning capabilities. 

It starts to act with basic knowledge and then able to act and adapt automatically through 

learning. 

A learning agent has mainly four conceptual components, which are: 

1. Learning element :It is responsible for making improvements by learning from the 

environment 

2. Critic: Learning element takes feedback from critic which describes how well the agent is 

doing with respect to a fixed performance standard. 

3. Performance element: It is responsile for selecting external action 

4. Problem Generator: This component is responsible for suggesting actions that will lead to 

new and informative experiences. 
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First-Order Logic in Artificial intelligence 

In the topic of Propositional logic, we have seen that how to represent statements using 

propositional logic. But unfortunately, in propositional logic, we can only represent the facts, 

which are either true or false. PL is not sufficient to represent the complex sentences or natural 

language statements. The propositional logic has very limited expressive power. Consider the 

following sentence, which we cannot represent using PL logic. 

o "Some humans are intelligent", or 

o "Sachin likes cricket." 

To represent the above statements, PL logic is not sufficient, so we required some more powerful 

logic, such as first-order logic. 

First-Order logic: 

o First-order logic is another way of knowledge representation in artificial intelligence. It is 

an extension to propositional logic. 

o FOL is sufficiently expressive to represent the natural language statements in a concise 

way. 

o First-order logic is also known as Predicate logic or First-order predicate logic. First-

order logic is a powerful language that develops information about the objects in a more 

easy way and can also express the relationship between those objects. 
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o First-order logic (like natural language) does not only assume that the world contains 

facts like propositional logic but also assumes the following things in the world: 

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus, 

...... 

o Relations: It can be unary relation such as: red, round, is adjacent, or n-any 

relation such as: the sister of, brother of, has color, comes between 

o Function: Father of, best friend, third inning of, end of, ...... 

o As a natural language, first-order logic also has two main parts: 

a. Syntax 

b. Semantics 

Syntax of First-Order logic: 

The syntax of FOL determines which collection of symbols is a logical expression in first-order 

logic. The basic syntactic elements of first-order logic are symbols. We write statements in short-

hand notation in FOL. 

Basic Elements of First-order logic: 

Following are the basic elements of FOL syntax: 

Constant 1, 2, A, John, Mumbai, cat,.... 

Variables x, y, z, a, b,.... 

Predicates Brother, Father, >,.... 

Function sqrt, LeftLegOf, .... 

Connectives ∧, ∨, ¬, ⇒, ⇔ 
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Equality == 

Quantifier ∀, ∃ 

Atomic sentences: 

o Atomic sentences are the most basic sentences of first-order logic. These sentences are 

formed from a predicate symbol followed by a parenthesis with a sequence of terms. 

o We can represent atomic sentences as Predicate (term1, term2, ......, term n). 

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay). 

                Chinky is a cat: => cat (Chinky). 

Complex Sentences: 

o Complex sentences are made by combining atomic sentences using connectives. 

First-order logic statements can be divided into two parts: 

o Subject: Subject is the main part of the statement. 

o Predicate: A predicate can be defined as a relation, which binds two atoms together in a 

statement. 

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject 

of the statement and second part "is an integer," is known as a predicate. 

 

Quantifiers in First-order logic: 

o A quantifier is a language element which generates quantification, and quantification 

specifies the quantity of specimen in the universe of discourse. 
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o These are the symbols that permit to determine or identify the range and scope of the 

variable in the logical expression. There are two types of quantifier: 

a. Universal Quantifier, (for all, everyone, everything) 

b. Existential quantifier, (for some, at least one). 

Universal Quantifier: 

Universal quantifier is a symbol of logical representation, which specifies that the statement 

within its range is true for everything or every instance of a particular thing. 

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A. 

Note: In universal quantifier we use implication "→". 

If x is a variable, then ∀x is read as: 

o For all x 

o For each x 

o For every x. 

Example: 

All man drink coffee. 

Let a variable x which refers to a cat so all x can be represented in UOD as below: 
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∀x man(x) → drink (x, coffee). 

It will be read as: There are all x where x is a man who drink coffee. 

Existential Quantifier: 

Existential quantifiers are the type of quantifiers, which express that the statement within its 

scope is true for at least one instance of something. 

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used with a 

predicate variable then it is called as an existential quantifier. 

Note: In Existential quantifier we always use AND or Conjunction symbol (∧). 

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as: 

o There exists a 'x.' 

o For some 'x.' 
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o For at least one 'x.' 

Example: 

Some boys are intelligent. 

 

∃x: boys(x) ∧ intelligent(x) 

It will be read as: There are some x where x is a boy who is intelligent. 

Points to remember: 

o The main connective for universal quantifier ∀ is implication →. 

o The main connective for existential quantifier ∃ is and ∧. 

Properties of Quantifiers: 

o In universal quantifier, ∀x∀y is similar to ∀y∀x. 

o In Existential quantifier, ∃x∃y is similar to ∃y∃x. 

o ∃x∀y is not similar to ∀y∃x. 
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Some Examples of FOL using quantifier: 

1. All birds fly. 

In this question the predicate is "fly(bird)." 

And since there are all birds who fly so it will be represented as follows. 

              ∀x bird(x) →fly(x). 

2. Every man respects his parent. 

In this question, the predicate is "respect(x, y)," where x=man, and y= parent. 

Since there is every man so will use ∀, and it will be represented as follows: 

              ∀x man(x) → respects (x, parent). 

3. Some boys play cricket. 

In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are some 

boys so we will use ∃, and it will be represented as: 

              ∃x boys(x) → play(x, cricket). 

4. Not all students like both Mathematics and Science. 

In this question, the predicate is "like(x, y)," where x= student, and y= subject. 

Since there are not all students, so we will use ∀ with negation, so following representation for 

this: 

              ¬∀ (x) [ student(x) → like(x, Mathematics) ∧ like(x, Science)]. 

5. Only one student failed in Mathematics. 

In this question, the predicate is "failed(x, y)," where x= student, and y= subject. 

Since there is only one student who failed in Mathematics, so we will use following 

representation for this: 

              ∃(x) [ student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) → ¬failed 

(x, Mathematics)]. 
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Free and Bound Variables: 

The quantifiers interact with variables which appear in a suitable way. There are two types of 

variables in First-order logic which are given below: 

Free Variable: A variable is said to be a free variable in a formula if it occurs outside the scope 

of the quantifier. 

          Example: ∀x ∃(y)[P (x, y, z)], where z is a free variable. 

Bound Variable: A variable is said to be a bound variable in a formula if it occurs within the 

scope of the quantifier. 

          Example: ∀x [A (x) B( y)], here x and y are the bound variables. 

Knowledge Engineering in First-order logic 

What is knowledge-engineering? 

The process of constructing a knowledge-base in first-order logic is called as knowledge- 

engineering. In knowledge-engineering, someone who investigates a particular domain, learns 

important concept of that domain, and generates a formal representation of the objects, is known 

as knowledge engineer. 

In this topic, we will understand the Knowledge engineering process in an electronic circuit 

domain, which is already familiar. This approach is mainly suitable for creating special-purpose 

knowledge base. 

The knowledge-engineering process: 

Following are some main steps of the knowledge-engineering process. Using these steps, we will 

develop a knowledge base which will allow us to reason about digital circuit (One-bit full 

adder) which is given below 
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1. Identify the task: 

The first step of the process is to identify the task, and for the digital circuit, there are various 

reasoning tasks. 

At the first level or highest level, we will examine the functionality of the circuit: 

o Does the circuit add properly? 

o What will be the output of gate A2, if all the inputs are high? 

At the second level, we will examine the circuit structure details such as: 

o Which gate is connected to the first input terminal? 

o Does the circuit have feedback loops? 

2. Assemble the relevant knowledge: 

In the second step, we will assemble the relevant knowledge which is required for digital 

circuits. So for digital circuits, we have the following required knowledge: 

o Logic circuits are made up of wires and gates. 

o Signal flows through wires to the input terminal of the gate, and each gate produces the 

corresponding output which flows further. 
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o In this logic circuit, there are four types of gates used: AND, OR, XOR, and NOT. 

o All these gates have one output terminal and two input terminals (except NOT gate, it has 

one input terminal). 

3. Decide on vocabulary: 

The next step of the process is to select functions, predicate, and constants to represent the 

circuits, terminals, signals, and gates. Firstly we will distinguish the gates from each other and 

from other objects. Each gate is represented as an object which is named by a constant, such 

as, Gate(X1). The functionality of each gate is determined by its type, which is taken as 

constants such as AND, OR, XOR, or NOT. Circuits will be identified by a predicate: Circuit 

(C1). 

For the terminal, we will use predicate: Terminal(x). 

For gate input, we will use the function In(1, X1) for denoting the first input terminal of the gate, 

and for output terminal we will use Out (1, X1). 

The function Arity(c, i, j) is used to denote that circuit c has i input, j output. 

The connectivity between gates can be represented by predicate Connect(Out(1, X1), In(1, 

X1)). 

We use a unary predicate On (t), which is true if the signal at a terminal is on. 

4. Encode general knowledge about the domain: 

To encode the general knowledge about the logic circuit, we need some following rules: 

o If two terminals are connected then they have the same input signal, it can be represented 

as: 

1. ∀  t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal (t1) = Signal (2).    

o Signal at every terminal will have either value 0 or 1, it will be represented as: 
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1. ∀  t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0.   

o Connect predicates are commutative: 

1. ∀  t1, t2 Connect(t1, t2)  →  Connect (t2, t1).        

o Representation of types of gates: 

1. ∀  g Gate(g) ∧ r = Type(g) → r = OR ∨r = AND ∨r = XOR ∨r = NOT.    

o Output of AND gate will be zero if and only if any of its input is zero. 

1. ∀  g Gate(g) ∧ Type(g) = AND →Signal (Out(1, g))= 0 ⇔  ∃n Signal (In(n, g))= 0.    

o Output of OR gate is 1 if and only if any of its input is 1: 

1. ∀  g Gate(g) ∧ Type(g) = OR → Signal (Out(1, g))= 1 ⇔  ∃n Signal (In(n, g))= 1    

o Output of XOR gate is 1 if and only if its inputs are different: 

1. ∀  g Gate(g) ∧ Type(g) = XOR → Signal (Out(1, g)) = 1 ⇔  Signal (In(1, g)) ≠ Signal (In(2, g)). 

  

o Output of NOT gate is invert of its input: 

1. ∀  g Gate(g) ∧ Type(g) = NOT →   Signal (In(1, g)) ≠ Signal (Out(1, g)).   

o All the gates in the above circuit have two inputs and one output (except NOT gate). 

1. ∀  g Gate(g) ∧ Type(g) = NOT →   Arity(g, 1, 1)    

2. ∀  g Gate(g) ∧ r =Type(g)  ∧ (r= AND ∨r= OR ∨r= XOR) →  Arity (g, 2, 1).    

o All gates are logic circuits: 

1. ∀  g Gate(g) → Circuit (g).    
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5. Encode a description of the problem instance: 

Now we encode problem of circuit C1, firstly we categorize the circuit and its gate components. 

This step is easy if ontology about the problem is already thought. This step involves the writing 

simple atomics sentences of instances of concepts, which is known as ontology. 

For the given circuit C1, we can encode the problem instance in atomic sentences as below: 

Since in the circuit there are two XOR, two AND, and one OR gate so atomic sentences for these 

gates will be: 

1. For XOR gate: Type(x1)= XOR, Type(X2) = XOR   

2. For AND gate: Type(A1) = AND, Type(A2)= AND   

3. For OR gate: Type (O1) = OR.     

And then represent the connections between all the gates. 

 

Note: Ontology defines a particular theory of the nature of existence. 

6. Pose queries to the inference procedure and get answers: 

In this step, we will find all the possible set of values of all the terminal for the adder circuit. The 

first query will be: 

What should be the combination of input which would generate the first output of circuit C1, as 0 

and a second output to be 1? 

1. ∃ i1, i2, i3 Signal (In(1, C1))=i1  ∧  Signal (In(2, C1))=i2  ∧ Signal (In(3, C1))= i3   

2.  ∧ Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1   

7. Debug the knowledge base: 

Now we will debug the knowledge base, and this is the last step of the complete process. In this 

step, we will try to debug the issues of knowledge base. 
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In the knowledge base, we may have omitted assertions like 1 ≠ 0. 

What is knowledge representation? 

Humans are best at understanding, reasoning, and interpreting knowledge. Human knows things, 

which is knowledge and as per their knowledge they perform various actions in the real 

world. But how machines do all these things comes under knowledge representation and 

reasoning. Hence we can describe Knowledge representation as following: 

o Knowledge representation and reasoning (KR, KRR) is the part of Artificial intelligence 

which concerned with AI agents thinking and how thinking contributes to intelligent 

behavior of agents. 

o It is responsible for representing information about the real world so that a computer can 

understand and can utilize this knowledge to solve the complex real world problems such 

as diagnosis a medical condition or communicating with humans in natural language. 

o It is also a way which describes how we can represent knowledge in artificial 

intelligence. Knowledge representation is not just storing data into some database, but it 

also enables an intelligent machine to learn from that knowledge and experiences so that 

it can behave intelligently like a human. 

What to Represent: 

Following are the kind of knowledge which needs to be represented in AI systems: 

o Object: All the facts about objects in our world domain. E.g., Guitars contains strings, 

trumpets are brass instruments. 

o Events: Events are the actions which occur in our world. 

o Performance: It describe behavior which involves knowledge about how to do things. 

o Meta-knowledge: It is knowledge about what we know. 

o Facts: Facts are the truths about the real world and what we represent. 

o Knowledge-Base: The central component of the knowledge-based agents is the 

knowledge base. It is represented as KB. The Knowledgebase is a group of the Sentences 
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(Here, sentences are used as a technical term and not identical with the English 

language). 

Knowledge: Knowledge is awareness or familiarity gained by experiences of facts, data, and 

situations. Following are the types of knowledge in artificial intelligence: 

Types of knowledge 

Following are the various types of knowledge: 

 

1. Declarative Knowledge: 

o Declarative knowledge is to know about something. 

o It includes concepts, facts, and objects. 

o It is also called descriptive knowledge and expressed in declarativesentences. 

o It is simpler than procedural language. 
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2. Procedural Knowledge 

o It is also known as imperative knowledge. 

o Procedural knowledge is a type of knowledge which is responsible for knowing how to 

do something. 

o It can be directly applied to any task. 

o It includes rules, strategies, procedures, agendas, etc. 

o Procedural knowledge depends on the task on which it can be applied. 

3. Meta-knowledge: 

o Knowledge about the other types of knowledge is called Meta-knowledge. 

4. Heuristic knowledge: 

o Heuristic knowledge is representing knowledge of some experts in a filed or subject. 

o Heuristic knowledge is rules of thumb based on previous experiences, awareness of 

approaches, and which are good to work but not guaranteed. 

5. Structural knowledge: 

o Structural knowledge is basic knowledge to problem-solving. 

o It describes relationships between various concepts such as kind of, part of, and grouping 

of something. 

o It describes the relationship that exists between concepts or objects. 

The relation between knowledge and intelligence: 

Knowledge of real-worlds plays a vital role in intelligence and same for creating artificial 

intelligence. Knowledge plays an important role in demonstrating intelligent behavior in AI 

agents. An agent is only able to accurately act on some input when he has some knowledge or 

experience about that input. 
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Let's suppose if you met some person who is speaking in a language which you don't know, then 

how you will able to act on that. The same thing applies to the intelligent behavior of the agents. 

As we can see in below diagram, there is one decision maker which act by sensing the 

environment and using knowledge. But if the knowledge part will not present then, it cannot 

display intelligent behavior. 

 

AI knowledge cycle: 

An Artificial intelligence system has the following components for displaying intelligent 

behavior: 

o Perception 

o Learning 

o Knowledge Representation and Reasoning 

o Planning 

o Execution 
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The above diagram is showing how an AI system can interact with the real world and what 

components help it to show intelligence. AI system has Perception component by which it 

retrieves information from its environment. It can be visual, audio or another form of sensory 

input. The learning component is responsible for learning from data captured by Perception 

comportment. In the complete cycle, the main components are knowledge representation and 

Reasoning. These two components are involved in showing the intelligence in machine-like 

humans. These two components are independent with each other but also coupled together. The 

planning and execution depend on analysis of Knowledge representation and reasoning. 

Approaches to knowledge representation: 

There are mainly four approaches to knowledge representation, which are givenbelow: 

1. Simple relational knowledge: 

o It is the simplest way of storing facts which uses the relational method, and each fact 

about a set of the object is set out systematically in columns. 

o This approach of knowledge representation is famous in database systems where the 

relationship between different entities is represented. 

o This approach has little opportunity for inference. 
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Example: The following is the simple relational knowledge representation. 

Player Weight Age 

Player1 65 23 

Player2 58 18 

Player3 75 24 

2. Inheritable knowledge: 

o In the inheritable knowledge approach, all data must be stored into a hierarchy of classes. 

o All classes should be arranged in a generalized form or a hierarchal manner. 

o In this approach, we apply inheritance property. 

o Elements inherit values from other members of a class. 

o This approach contains inheritable knowledge which shows a relation between instance 

and class, and it is called instance relation. 

o Every individual frame can represent the collection of attributes and its value. 

o In this approach, objects and values are represented in Boxed nodes. 

o We use Arrows which point from objects to their values. 

o Example: 
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3. Inferential knowledge: 

o Inferential knowledge approach represents knowledge in the form of formal logics. 

o This approach can be used to derive more facts. 

o It guaranteed correctness. 

o Example: Let's suppose there are two statements: 

a. Marcus is a man 

b. All men are mortal 

Then it can represent as; 

 

man(Marcus) 

∀x = man (x) ----------> mortal (x)s 

4. Procedural knowledge: 

o Procedural knowledge approach uses small programs and codes which describes how to 

do specific things, and how to proceed. 

o In this approach, one important rule is used which is If-Then rule. 
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o In this knowledge, we can use various coding languages such as LISP 

language and Prolog language. 

o We can easily represent heuristic or domain-specific knowledge using this approach. 

o But it is not necessary that we can represent all cases in this approach. 

Requirements for knowledge Representation system: 

A good knowledge representation system must possess the following properties. 

1. 1. Representational Accuracy: 

KR system should have the ability to represent all kind of required knowledge. 

2. 2. Inferential Adequacy: 

KR system should have ability to manipulate the representational structures to produce 

new knowledge corresponding to existing structure. 

3. 3. Inferential Efficiency: 

The ability to direct the inferential knowledge mechanism into the most productive 

directions by storing appropriate guides. 

4. 4. Acquisitional efficiency- The ability to acquire the new knowledge easily using 

automatic methods. 

Techniques of knowledge representation 

There are mainly four ways of knowledge representation which are given as follows: 

1. Logical Representation 

2. Semantic Network Representation 

3. Frame Representation 

4. Production Rules 
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1. Logical Representation 

Logical representation is a language with some concrete rules which deals with propositions and 

has no ambiguity in representation. Logical representation means drawing a conclusion based on 

various conditions. This representation lays down some important communication rules. It 

consists of precisely defined syntax and semantics which supports the sound inference. Each 

sentence can be translated into logics using syntax and semantics. 

Syntax: 

o Syntaxes are the rules which decide how we can construct legal sentences in the logic. 

o It determines which symbol we can use in knowledge representation. 

o How to write those symbols. 

Semantics: 

o Semantics are the rules by which we can interpret the sentence in the logic. 

o Semantic also involves assigning a meaning to each sentence. 

Logical representation can be categorised into mainly two logics: 
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a. Propositional Logics 

b. Predicate logics 

Note: We will discuss Prepositional Logics and Predicate logics in later chapters. 

Advantages of logical representation: 

1. Logical representation enables us to do logical reasoning. 

2. Logical representation is the basis for the programming languages. 

Disadvantages of logical Representation: 

1. Logical representations have some restrictions and are challenging to work with. 

2. Logical representation technique may not be very natural, and inference may not be so 

efficient. 

Note: Do not be confused with logical representation and logical reasoning as logical 

representation is a representation language and reasoning is a process of thinking logically. 

2. Semantic Network Representation 

Semantic networks are alternative of predicate logic for knowledge representation. In Semantic 

networks, we can represent our knowledge in the form of graphical networks. This network 

consists of nodes representing objects and arcs which describe the relationship between those 

objects. Semantic networks can categorize the object in different forms and can also link those 

objects. Semantic networks are easy to understand and can be easily extended. 

This representation consist of mainly two types of relations: 

a. IS-A relation (Inheritance) 

b. Kind-of-relation 

Example: Following are some statements which we need to represent in the form of nodes and 

arcs. 

Statements: 

a. Jerry is a cat. 
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b. Jerry is a mammal 

c. Jerry is owned by Priya. 

d. Jerry is brown colored. 

e. All Mammals are animal. 

 

In the above diagram, we have represented the different type of knowledge in the form of nodes 

and arcs. Each object is connected with another object by some relation. 

Drawbacks in Semantic representation: 

1. Semantic networks take more computational time at runtime as we need to traverse the 

complete network tree to answer some questions. It might be possible in the worst case 

scenario that after traversing the entire tree, we find that the solution does not exist in this 

network. 

2. Semantic networks try to model human-like memory (Which has 1015 neurons and links) 

to store the information, but in practice, it is not possible to build such a vast semantic 

network. 

3. These types of representations are inadequate as they do not have any equivalent 

quantifier, e.g., for all, for some, none, etc. 

4. Semantic networks do not have any standard definition for the link names. 
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5. These networks are not intelligent and depend on the creator of the system. 

Advantages of Semantic network: 

1. Semantic networks are a natural representation of knowledge. 

2. Semantic networks convey meaning in a transparent manner. 

3. These networks are simple and easily understandable. 

3. Frame Representation 

A frame is a record like structure which consists of a collection of attributes and its values to 

describe an entity in the world. Frames are the AI data structure which divides knowledge into 

substructures by representing stereotypes situations. It consists of a collection of slots and slot 

values. These slots may be of any type and sizes. Slots have names and values which are called 

facets. 

Facets: The various aspects of a slot is known as Facets. Facets are features of frames which 

enable us to put constraints on the frames. Example: IF-NEEDED facts are called when data of 

any particular slot is needed. A frame may consist of any number of slots, and a slot may include 

any number of facets and facets may have any number of values. A frame is also known as slot-

filter knowledge representation in artificial intelligence. 

Frames are derived from semantic networks and later evolved into our modern-day classes and 

objects. A single frame is not much useful. Frames system consist of a collection of frames 

which are connected. In the frame, knowledge about an object or event can be stored together in 

the knowledge base. The frame is a type of technology which is widely used in various 

applications including Natural language processing and machine visions. 

Example: 1 

Let's take an example of a frame for a book 

Slots Filters 
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Title Artificial Intelligence 

Genre Computer Science 

Author Peter Norvig 

Edition Third Edition 

Year 1996 

Page 1152 

Example 2: 

Let's suppose we are taking an entity, Peter. Peter is an engineer as a profession, and his age is 

25, he lives in city London, and the country is England. So following is the frame representation 

for this: 

Slots Filter 

Name Peter 

Profession Doctor 

Age 25 

Marital status Single 

Weight 78 
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Advantages of frame representation: 

1. The frame knowledge representation makes the programming easier by grouping the 

related data. 

2. The frame representation is comparably flexible and used by many applications in AI. 

3. It is very easy to add slots for new attribute and relations. 

4. It is easy to include default data and to search for missing values. 

5. Frame representation is easy to understand and visualize. 

Disadvantages of frame representation: 

1. In frame system inference mechanism is not be easily processed. 

2. Inference mechanism cannot be smoothly proceeded by frame representation. 

3. Frame representation has a much generalized approach. 

4. Production Rules 

Production rules system consist of (condition, action) pairs which mean, "If condition then 

action". It has mainly three parts: 

o The set of production rules 

o Working Memory 

o The recognize-act-cycle 

In production rules agent checks for the condition and if the condition exists then production rule 

fires and corresponding action is carried out. The condition part of the rule determines which rule 

may be applied to a problem. And the action part carries out the associated problem-solving 

steps. This complete process is called a recognize-act cycle. 

The working memory contains the description of the current state of problems-solving and rule 

can write knowledge to the working memory. This knowledge match and may fire other rules. 
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If there is a new situation (state) generates, then multiple production rules will be fired together, 

this is called conflict set. In this situation, the agent needs to select a rule from these sets, and it 

is called a conflict resolution. 

Example: 

o IF (at bus stop AND bus arrives) THEN action (get into the bus) 

o IF (on the bus AND paid AND empty seat) THEN action (sit down). 

o IF (on bus AND unpaid) THEN action (pay charges). 

o IF (bus arrives at destination) THEN action (get down from the bus). 

Advantages of Production rule: 

1. The production rules are expressed in natural language. 

2. The production rules are highly modular, so we can easily remove, add or modify an 

individual rule. 

Disadvantages of Production rule: 

1. Production rule system does not exhibit any learning capabilities, as it does not store the 

result of the problem for the future uses. 

2. During the execution of the program, many rules may be active hence rule-based 

production systems are inefficient. 

Propositional logic in Artificial intelligence 

Propositional logic (PL) is the simplest form of logic where all the statements are made by 

propositions. A proposition is a declarative statement which is either true or false. It is a 

technique of knowledge representation in logical and mathematical form. 

Example: 

1. a) It is Sunday.   

2. b) The Sun rises from West (False proposition)   

3. c) 3+3= 7(False proposition)   

4. d) 5 is a prime number.    
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Following are some basic facts about propositional logic: 

o Propositional logic is also called Boolean logic as it works on 0 and 1. 

o In propositional logic, we use symbolic variables to represent the logic, and we can use 

any symbol for a representing a proposition, such A, B, C, P, Q, R, etc. 

o Propositions can be either true or false, but it cannot be both. 

o Propositional logic consists of an object, relations or function, and logical connectives. 

o These connectives are also called logical operators. 

o The propositions and connectives are the basic elements of the propositional logic. 

o Connectives can be said as a logical operator which connects two sentences. 

o A proposition formula which is always true is called tautology, and it is also called a 

valid sentence. 

o A proposition formula which is always false is called Contradiction. 

o A proposition formula which has both true and false values is called 

o Statements which are questions, commands, or opinions are not propositions such as 

"Where is Rohini", "How are you", "What is your name", are not propositions. 

Syntax of propositional logic: 

The syntax of propositional logic defines the allowable sentences for the knowledge 

representation. There are two types of Propositions: 

a. Atomic Propositions 

b. Compound propositions 

o Atomic Proposition: Atomic propositions are the simple propositions. It consists of a 

single proposition symbol. These are the sentences which must be either true or false. 

Example: 

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact.   

2. b) "The Sun is cold" is also a proposition as it is a false fact.    
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o Compound proposition: Compound propositions are constructed by combining simpler 

or atomic propositions, using parenthesis and logical connectives. 

Example: 

1. a) "It is raining today, and street is wet."   

2. b) "Ankit is a doctor, and his clinic is in Mumbai."    

Logical Connectives: 

Logical connectives are used to connect two simpler propositions or representing a sentence 

logically. We can create compound propositions with the help of logical connectives. There are 

mainly five connectives, which are given as follows: 

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive 

literal or negative literal. 

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction. 

Example: Rohan is intelligent and hardworking. It can be written as, 

P= Rohan is intelligent, 

Q= Rohan is hardworking. → P∧ Q. 

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction, 

where P and Q are the propositions. 

Example: "Ritika is a doctor or Engineer", 

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q. 

4. Implication: A sentence such as P → Q, is called an implication. Implications are also 

known as if-then rules. It can be represented as 

            If it is raining, then the street is wet. 

        Let P= It is raining, and Q= Street is wet, so it is represented as P → Q 

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am 

breathing, then I am alive 

            P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q. 
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Following is the summarized table for Propositional Logic Connectives: 

 

Truth Table: 

In propositional logic, we need to know the truth values of propositions in all possible scenarios. 

We can combine all the possible combination with logical connectives, and the representation of 

these combinations in a tabular format is called Truth table. Following are the truth table for all 

logical connectives: 
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Truth table with three propositions: 

We can build a proposition composing three propositions P, Q, and R. This truth table is made-

up of 8n Tuples as we have taken three proposition symbols. 

 

Precedence of connectives: 

Just like arithmetic operators, there is a precedence order for propositional connectors or logical 

operators. This order should be followed while evaluating a propositional problem. Following is 

the list of the precedence order for operators: 

Precedence Operators 

First Precedence Parenthesis 

Second Precedence Negation 

Third Precedence Conjunction(AND) 

Fourth Precedence Disjunction(OR) 

Fifth Precedence Implication 
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Six Precedence Biconditional 

Note: For better understanding use parenthesis to make sure of the correct interpretations. 

Such as ¬R∨ Q, It can be interpreted as (¬R) ∨ Q. 

Logical equivalence: 

Logical equivalence is one of the features of propositional logic. Two propositions are said to be 

logically equivalent if and only if the columns in the truth table are identical to each other. 

Let's take two propositions A and B, so for logical equivalence, we can write it as A⇔B. In 

below truth table we can see that column for ¬A∨ B and A→B, are identical hence A is 

Equivalent to B 

 

Properties of Operators: 

o Commutativity: 

o P∧ Q= Q ∧ P, or 

o P ∨ Q = Q ∨ P. 

o Associativity: 

o (P ∧ Q) ∧ R= P ∧ (Q ∧ R), 

o (P ∨ Q) ∨ R= P ∨ (Q ∨ R) 

o Identity element: 

o P ∧ True = P, 

o P ∨ True= True. 

o Distributive: 

o P∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R). 
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o P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R). 

o DE Morgan's Law: 

o ¬ (P ∧ Q) = (¬P) ∨ (¬Q) 

o ¬ (P ∨ Q) = (¬ P) ∧ (¬Q). 

o Double-negation elimination: 

o ¬ (¬P) = P. 

Limitations of Propositional logic: 

o We cannot represent relations like ALL, some, or none with propositional logic. 

Example: 

a. All the girls are intelligent. 

b. Some apples are sweet. 

 Propositional logic has limited expressive power. 

 In propositional logic, we cannot describe statements in terms of their properties or 

logical relationships. 

Rules of Inference in Artificial intelligence 

Inference: 

In artificial intelligence, we need intelligent computers which can create new logic from old 

logic or by evidence, so generating the conclusions from evidence and facts is termed as 

Inference. 

Inference rules: 

Inference rules are the templates for generating valid arguments. Inference rules are applied to 

derive proofs in artificial intelligence, and the proof is a sequence of the conclusion that leads to 

the desired goal. 

In inference rules, the implication among all the connectives plays an important role. Following 

are some terminologies related to inference rules: 
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o Implication: It is one of the logical connectives which can be represented as P → Q. It is 

a Boolean expression. 

o Converse: The converse of implication, which means the right-hand side proposition 

goes to the left-hand side and vice-versa. It can be written as Q → P. 

o Contrapositive: The negation of converse is termed as contrapositive, and it can be 

represented as ¬ Q → ¬ P. 

o Inverse: The negation of implication is called inverse. It can be represented as ¬ P → ¬ 

Q. 

From the above term some of the compound statements are equivalent to each other, which we 

can prove using truth table: 

 

Hence from the above truth table, we can prove that P → Q is equivalent to ¬ Q → ¬ P, and Q→ 

P is equivalent to ¬ P → ¬ Q. 

Types of Inference rules: 

1. Modus Ponens: 

The Modus Ponens rule is one of the most important rules of inference, and it states that if P and 

P → Q is true, then we can infer that Q will be true. It can be represented as: 

 

Example: 
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Statement-1: "If I am sleepy then I go to bed" ==> P→ Q 

Statement-2: "I am sleepy" ==> P 

Conclusion: "I go to bed." ==> Q. 

Hence, we can say that, if P→ Q is true and P is true then Q will be true. 

Proof by Truth table: 

 

2. Modus Tollens: 

The Modus Tollens rule state that if P→ Q is true and ¬ Q is true, then ¬ P will also true. It can 

be represented as: 

 

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q 

Statement-2: "I do not go to the bed."==> ~Q 

Statement-3: Which infers that "I am not sleepy" => ~P 

Proof by Truth table: 
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3. Hypothetical Syllogism: 

The Hypothetical Syllogism rule state that if P→R is true whenever P→Q is true, and Q→R is 

true. It can be represented as the following notation: 

Example: 

Statement-1: If you have my home key then you can unlock my home. P→Q 

Statement-2: If you can unlock my home then you can take my money. Q→R 

Conclusion: If you have my home key then you can take my money. P→R 

Proof by truth table: 

 

4. Disjunctive Syllogism: 

The Disjunctive syllogism rule state that if P∨Q is true, and ¬P is true, then Q will be true. It can 

be represented as: 

 

Example: 

Statement-1: Today is Sunday or Monday. ==>P∨Q 

Statement-2: Today is not Sunday. ==> ¬P 

Conclusion: Today is Monday. ==> Q 
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Proof by truth-table: 

 

5. Addition: 

The Addition rule is one the common inference rule, and it states that If P is true, then P∨Q will 

be true. 

 

Example: 

Statement: I have a vanilla ice-cream. ==> P 

Statement-2: I have Chocolate ice-cream. 

Conclusion: I have vanilla or chocolate ice-cream. ==> (P∨Q) 

Proof by Truth-Table: 

 

6. Simplification: 

The simplification rule state that if P∧ Q is true, then Q or P will also be true. It can be 

represented as: 
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Proof by Truth-Table: 

 

7. Resolution: 

The Resolution rule state that if P∨Q and ¬ P∧R is true, then Q∨R will also be true. It can be 

represented as 

 

Proof by Truth-Table: 
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UNIT III 

 

Planning and Acting in the Real World  

What is planning in AI? 

 The planning in Artificial Intelligence is about the decision making tasks performed by the 

robots or computer programs to achieve a specific goal. 

 The execution of planning is about choosing a sequence of actions with a high likelihood to 

complete the specific task. 

Blocks-World planning problem 

 The blocks-world problem is known as Sussman Anomaly. 

 Noninterleaved planners of the early 1970s were unable to solve this problem, hence it is 

considered as anomalous. 

 When two subgoals G1 and G2 are given, a noninterleaved planner produces either a plan for 

G1 concatenated with a plan for G2, or vice-versa. 

 In blocks-world problem, three blocks labeled as 'A', 'B', 'C' are allowed to rest on the flat 

surface. The given condition is that only one block can be moved at a time to achieve the goal. 

 The start state and goal state are shown in the following diagram. 

 

 

Components of Planning System 

The planning consists of following important steps: 

 Choose the best rule for applying the next rule based on the best available heuristics. 

 Apply the chosen rule for computing the new problem state. 
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 Detect when a solution has been found. 

 Detect dead ends so that they can be abandoned and the system’s effort is directed in more 

fruitful directions. 

 Detect when an almost correct solution has been found. 

Goal stack planning 

This is one of the most important planning algorithms, which is specifically used by STRIPS. 

 The stack is used in an algorithm to hold the action and satisfy the goal.  A knowledge base is 

used to hold the current state, actions. 

 Goal stack is similar to a node in a search tree, where the branches are created if there is a 

choice of an action. 

The important steps of the algorithm are as stated below: 

 

i. Start by pushing the original goal on the stack. Repeat this  until the stack becomes empty. If 

stack top is a compound goal, then push its unsatisfied subgoals on the stack. 

ii. If stack top is a single unsatisfied goal then, replace it by an action and push the action’s 

precondition on the stack to satisfy the condition. 

iii. If stack top is an action, pop it from the stack, execute it and change the knowledge base by 

the effects of the action. 

iv. If stack top is a satisfied goal, pop it from the stack. 
 

Non-linear planning 

This planning is used to set a goal stack and is included in the search space of all possible 

subgoal orderings. It handles the goal interactions by interleaving method. 

 

Advantage of non-Linear planning 

Non-linear planning may be an optimal solution with respect to plan length (depending on search 

strategy used). 

 

Disadvantages of Nonlinear planning 
[ 

 It takes larger search space, since all possible goal orderings are taken into consideration. 
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 Complex algorithm to understand. 

Algorithm 

1. Choose a goal 'g' from the goalset 

2. If 'g' does not match the state, then 

 Choose an operator 'o' whose add-list matches goal g 

 Push 'o' on the opstack 

 Add the preconditions of 'o' to the goalset 

3. While all preconditions of operator on top of opstack are met in state 

 Pop operator o from top of opstack 

 state = apply(o, state) 

 plan = [plan; o] 

 

Probabilistic reasoning in Artificial intelligence 

Uncertainty: 

Till now, we have learned knowledge representation using first-order logic and propositional 

logic with certainty, which means we were sure about the predicates. With this knowledge 

representation, we might write A→B, which means if A is true then B is true, but consider a 

situation where we are not sure about whether A is true or not then we cannot express this 

statement, this situation is called uncertainty. 

So to represent uncertain knowledge, where we are not sure about the predicates, we need 

uncertain reasoning or probabilistic reasoning. 

Causes of uncertainty: 

Following are some leading causes of uncertainty to occur in the real world. 

1. Information occurred from unreliable sources. 

2. Experimental Errors 

3. Equipment fault 
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4. Temperature variation 

5. Climate change. 

Probabilistic reasoning: 

Probabilistic reasoning is a way of knowledge representation where we apply the concept of 

probability to indicate the uncertainty in knowledge. In probabilistic reasoning, we combine 

probability theory with logic to handle the uncertainty. 

We use probability in probabilistic reasoning because it provides a way to handle the uncertainty 

that is the result of someone's laziness and ignorance. 

In the real world, there are lots of scenarios, where the certainty of something is not confirmed, 

such as "It will rain today," "behavior of someone for some situations," "A match between two 

teams or two players." These are probable sentences for which we can assume that it will happen 

but not sure about it, so here we use probabilistic reasoning. 

Need of probabilistic reasoning in AI: 

o When there are unpredictable outcomes. 

o When specifications or possibilities of predicates becomes too large to handle. 

o When an unknown error occurs during an experiment. 

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge: 

o Bayes' rule 

o Bayesian Statistics 

Note: We will learn the above two rules in later chapters. 

As probabilistic reasoning uses probability and related terms, so before understanding 

probabilistic reasoning, let's understand some common terms: 
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Probability: Probability can be defined as a chance that an uncertain event will occur. It is the 

numerical measure of the likelihood that an event will occur. The value of probability always 

remains between 0 and 1 that represent ideal uncertainties. 

1. 0 ≤ P(A) ≤ 1,   where P(A) is the probability of an event A.   

1. P(A) = 0,  indicates total uncertainty in an event A.    

1. P(A) =1, indicates total certainty in an event A.     

We can find the probability of an uncertain event by using the below formula. 

 

o P(¬A) = probability of a not happening event. 

o P(¬A) + P(A) = 1. 

Event: Each possible outcome of a variable is called an event. 

Sample space: The collection of all possible events is called sample space. 

Random variables: Random variables are used to represent the events and objects in the real 

world. 

Prior probability: The prior probability of an event is probability computed before observing 

new information. 

Posterior Probability: The probability that is calculated after all evidence or information has 

taken into account. It is a combination of prior probability and new information. 

Conditional probability: 

Conditional probability is a probability of occurring an event when another event has already 

happened. 
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Let's suppose, we want to calculate the event A when event B has already occurred, "the 

probability of A under the conditions of B", it can be written as: 

 

Where P(A⋀B)= Joint probability of a and B 

P(B)= Marginal probability of B. 

If the probability of A is given and we need to find the probability of B, then it will be given as: 

 

It can be explained by using the below Venn diagram, where B is occurred event, so sample 

space will be reduced to set B, and now we can only calculate event A when event B is already 

occurred by dividing the probability of P(A⋀B) by P( B ). 

 

Example: 



158 
 

In a class, there are 70% of the students who like English and 40% of the students who likes 

English and mathematics, and then what is the percent of students those who like English also 

like mathematics? 

Solution: 

Let, A is an event that a student likes Mathematics 

B is an event that a student likes English. 

 

Hence, 57% are the students who like English also like Mathematics. 

Bayes' theorem in Artificial intelligence 

Bayes' theorem: 

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which 

determines the probability of an event with uncertain knowledge. 

In probability theory, it relates the conditional probability and marginal probabilities of two 

random events. 

Bayes' theorem was named after the British mathematician Thomas Bayes. The Bayesian 

inference is an application of Bayes' theorem, which is fundamental to Bayesian statistics. 

It is a way to calculate the value of P(B|A) with the knowledge of P(A|B). 

Bayes' theorem allows updating the probability prediction of an event by observing new 

information of the real world. 

Example: If cancer corresponds to one's age then by using Bayes' theorem, we can determine the 

probability of cancer more accurately with the help of age. 
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Bayes' theorem can be derived using product rule and conditional probability of event A with 

known event B: 

As from product rule we can write: 

1. P(A ⋀ B)= P(A|B) P(B) or   

Similarly, the probability of event B with known event A: 

1. P(A ⋀ B)= P(B|A) P(A)   

Equating right hand side of both the equations, we will get: 

 

The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic of 

most modern AI systems for probabilistic inference. 

It shows the simple relationship between joint and conditional probabilities. Here, 

P(A|B) is known as posterior, which we need to calculate, and it will be read as Probability of 

hypothesis A when we have occurred an evidence B. 

P(B|A) is called the likelihood, in which we consider that hypothesis is true, then we calculate 

the probability of evidence. 

P(A) is called the prior probability, probability of hypothesis before considering the evidence 

P(B) is called marginal probability, pure probability of an evidence. 

In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes' rule can be 

written as: 
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Where A1, A2, A3,........, An is a set of mutually exclusive and exhaustive events. 

Applying Bayes' rule: 

Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). This 

is very useful in cases where we have a good probability of these three terms and want to 

determine the fourth one. Suppose we want to perceive the effect of some unknown cause, and 

want to compute that cause, then the Bayes' rule becomes: 

 

Example-1: 

Question: what is the probability that a patient has diseases meningitis with a stiff neck? 

Given Data: 

A doctor is aware that disease meningitis causes a patient to have a stiff neck, and it occurs 80% 

of the time. He is also aware of some more facts, which are given as follows: 

o The Known probability that a patient has meningitis disease is 1/30,000. 

o The Known probability that a patient has a stiff neck is 2%. 

Let a be the proposition that patient has stiff neck and b be the proposition that patient has 

meningitis. , so we can calculate the following as: 

P(a|b) = 0.8 

P(b) = 1/30000 
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P(a)= .02 

 

Hence, we can assume that 1 patient out of 750 patients has meningitis disease with a stiff neck. 

Example-2: 

Question: From a standard deck of playing cards, a single card is drawn. The probability 

that the card is king is 4/52, then calculate posterior probability P(King|Face), which means 

the drawn face card is a king card. 

Solution: 

 

P(king): probability that the card is King= 4/52= 1/13 

P(face): probability that a card is a face card= 3/13 

P(Face|King): probability of face card when we assume it is a king = 1 

Putting all values in equation (i) we will get: 

 

Application of Bayes' theorem in Artificial intelligence: 

Following are some applications of Bayes' theorem: 

o It is used to calculate the next step of the robot when the already executed step is given. 
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o Bayes' theorem is helpful in weather forecasting. 

o It can solve the Monty Hall problem. 

Bayesian Belief Network in artificial intelligence 

Bayesian belief network is key computer technology for dealing with probabilistic events and to 

solve a problem which has uncertainty. We can define a Bayesian network as: 

"A Bayesian network is a probabilistic graphical model which represents a set of variables and 

their conditional dependencies using a directed acyclic graph." 

It is also called a Bayes network, belief network, decision network, or Bayesian model. 

Bayesian networks are probabilistic, because these networks are built from a probability 

distribution, and also use probability theory for prediction and anomaly detection. 

Real world applications are probabilistic in nature, and to represent the relationship between 

multiple events, we need a Bayesian network. It can also be used in various tasks 

including prediction, anomaly detection, diagnostics, automated insight, reasoning, time 

series prediction, and decision making under uncertainty. 

Bayesian Network can be used for building models from data and experts opinions, and it 

consists of two parts: 

o Directed Acyclic Graph 

o Table of conditional probabilities. 

The generalized form of Bayesian network that represents and solve decision problems under 

uncertain knowledge is known as an Influence diagram. 

A Bayesian network graph is made up of nodes and Arcs (directed links), where: 
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o Each node corresponds to the random variables, and a variable can 

be continuous or discrete. 

o Arc or directed arrows represent the causal relationship or conditional probabilities 

between random variables. These directed links or arrows connect the pair of nodes in the 

graph. 

These links represent that one node directly influence the other node, and if there is no 

directed link that means that nodes are independent with each other 

o In the above diagram, A, B, C, and D are random variables represented by 

the nodes of the network graph. 

o If we are considering node B, which is connected with node A by a directed 

arrow, then node A is called the parent of Node B. 

o Node C is independent of node A. 
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Note: The Bayesian network graph does not contain any cyclic graph. Hence, it is known as 

a directed acyclic graph or DAG. 

The Bayesian network has mainly two components: 

o Causal Component 

o Actual numbers 

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), 

which determines the effect of the parent on that node. 

Bayesian network is based on Joint probability distribution and conditional probability. So let's 

first understand the joint probability distribution: 

Joint probability distribution: 

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, 

x2, x3.. xn, are known as Joint probability distribution. 

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability 

distribution. 

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn] 

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn]. 

In general for each variable Xi, we can write the equation as: 

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi )) 

Explanation of Bayesian network: 

Let's understand the Bayesian network through an example by creating a directed acyclic graph: 

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably 

responds at detecting a burglary but also responds for minor earthquakes. Harry has two 
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neighbors David and Sophia, who have taken a responsibility to inform Harry at work when they 

hear the alarm. David always calls Harry when he hears the alarm, but sometimes he got 

confused with the phone ringing and calls at that time too. On the other hand, Sophia likes to 

listen to high music, so sometimes she misses to hear the alarm. Here we would like to compute 

the probability of Burglary Alarm. 

Problem: 

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an 

earthquake occurred, and David and Sophia both called the Harry. 

Solution: 

o The Bayesian network for the above problem is given below. The network structure is 

showing that burglary and earthquake is the parent node of the alarm and directly 

affecting the probability of alarm's going off, but David and Sophia's calls depend on 

alarm probability. 

o The network is representing that our assumptions do not directly perceive the burglary 

and also do not notice the minor earthquake, and they also not confer before calling. 

o The conditional distributions for each node are given as conditional probabilit ies table or 

CPT. 

o Each row in the CPT must be sum to 1 because all the entries in the table represent an 

exhaustive set of cases for the variable. 

o In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if 

there are two parents, then CPT will contain 4 probability values 

List of all events occurring in this network: 

o Burglary (B) 

o Earthquake(E) 

o Alarm(A) 

o David Calls(D) 
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o Sophia calls(S) 

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can 

rewrite the above probability statement using joint probability distribution: 

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E] 

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E] 

= P [D| A]. P [ S| A, B, E]. P[ A, B, E] 

= P[D | A]. P[ S | A]. P[A| B, E]. P[B, E] 

= P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E] 

 

Let's take the observed probability for the Burglary and earthquake component: 

P(B= True) = 0.002, which is the probability of burglary. 
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P(B= False)= 0.998, which is the probability of no burglary. 

P(E= True)= 0.001, which is the probability of a minor earthquake 

P(E= False)= 0.999, Which is the probability that an earthquake not occurred. 

We can provide the conditional probabilities as per the below tables: 

Conditional probability table for Alarm A: 

The Conditional probability of Alarm A depends on Burglar and earthquake: 

B E P(A= True) P(A= False) 

True True 0.94 0.06 

True False 0.95 0.04 

False True 0.31 0.69 

False False 0.001 0.999 

Conditional probability table for David Calls: 

The Conditional probability of David that he will call depends on the probability of Alarm. 

A P(D= True) P(D= False) 

True 0.91 0.09 

False 0.05 0.95 
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Conditional probability table for Sophia Calls: 

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm." 

A P(S= True) P(S= False) 

True 0.75 0.25 

False 0.02 0.98 

From the formula of joint distribution, we can write the problem statement in the form of 

probability distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E). 

= 0.75* 0.91* 0.001* 0.998*0.999 

= 0.00068045. 

Hence, a Bayesian network can answer any query about the domain by using Joint 

distribution. 

The semantics of Bayesian Network: 

There are two ways to understand the semantics of the Bayesian network, which is given below: 

1. To understand the network as the representation of the Joint probability distribution. 

It is helpful to understand how to construct the network. 

2. To understand the network as an encoding of a collection of conditional independence 

statements. 

It is helpful in designing inference procedure. 
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Subsets of Artificial Intelligence 

Till now, we have learned about what is AI, and now we will learn in this topic about 

various subsets of AI. Following are the most common subsets of AI: 

o Machine Learning 

o Deep Learning 

o Natural Language processing 

o Expert System 

o Robotics 

o Machine Vision 

o Speech Recognition 

Note: Among all of the above, Machine learning plays a crucial role in AI. Machine learning 

and deep learning are the ways of achieving AI in real life. 

 

Machine Learning 

Machine learning is a part of AI which provides intelligence to machines with the ability to 

automatically learn with experiences without being explicitly programmed. 
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o It is primarily concerned with the design and development of algorithms that allow the 

system to learn from historical data. 

o Machine Learning is based on the idea that machines can learn from past data, identify 

patterns, and make decisions using algorithms. 

o Machine learning algorithms are designed in such a way that they can learn and improve 

their performance automatically. 

o Machine learning helps in discovering patterns in data. 

Types of Machine Learning 

 

Machine learning can be subdivided intothe main three types: 

o Supervised learning: 

Supervised learning is a type of machine learning in which machine learn from known 

datasets (set of training examples), and then predict the output. A supervised learning 

agent needs to find out the function that matches a given sample set. 

Supervised learning further can be classified into two categories of algorithms: 

a. Classifications 

b. Regression 

 Reinforcement learning: 

Reinforcement learning is a type of learning in which an AI agent is trained by giving some 

commands, and on each action, an agent gets a reward as a feedback.Using these feedbacks, 

agent improves its performance. 

Reward feedback can be positive or negative which means on each good action, agent receives a 
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positive reward while for wrong action, it gets a negative reward. 

Reinforcement learning is of two types: 

 . Positive Reinforcement learning 

a. Negative Reinforcement learning 

 Unsupervised learning: 

Unsupervised learning is associated with learning without supervision or training. In 

unsupervised learning, the algorithms are trained with data which is neither labeled nor 

classified. In unsupervised learning, the agent needs to learn from patterns without corresponding 

output values. 

Unsupervised learning can be classified into two categories of algorithms: 

 . Clustering 

a. Association 

Natural Language processing 

Natural language processing is a subfield of computer science and artificial intelligence. NLP 

enables a computer system to understand and process human language such as English. 

NLP plays an important role in AI as without NLP, AI agent cannot work on human instructions, 

but with the help of NLP, we can instruct an AI system on our language. Today we are all around 

AI, and as well as NLP, we can easily ask Siri, Google or Cortana to help us in our language. 

Natural language processing application enables a user to communicate with the system in their 

own words directly. 

The Input and output of NLP applications can be in two forms: 

o Speech 

o Text 
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Deep Learning 

Deep learning is a subset of machine learning which provides the ability to machine to perform 

human-like tasks without human involvement. It provides the ability to an AI agent to mimic the 

human brain. Deep learning can use both supervised and unsupervised learning to train an AI 

agent. 

o Deep learning is implemented through neural networks architecture hence also called 

a deep neural network. 

o Deep learning is the primary technology behind self-driving cars, speech recognition, 

image recognition, automatic machine translation, etc. 

o The main challenge for deep learning is that it requires lots of data with lots of 

computational power. 

How deep learning works: 

o Deep Learning Algorithms work on deep neural networks, so it is called deep 

learning. These deep neural networks are made of multiple layers. 

o The first layer is called an Input layer, the last layer is called an output layer, and 

all layers between these two layers are called hidden layers. 

o In the deep neural network, there are multiple hidden layers, and each layer is 

composed of neurons. These neurons are connected in each layer. 

o The input layer receives input data, and the neurons propagate the input signal to 

its above layers. 

o The hidden layers perform mathematical operations on inputs, and the performed 

data forwarded to the output layer. 

o The output layer returns the output to the user. 
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Expert Systems 

o An expert system is an application of artificial intelligence. In artificial intelligence, 

expert systems are the computer programs that rely on obtaining the knowledge of 

human experts and programming that knowledge into a system. 

o Expert systems emulate the decision-making ability of human experts. These 

systems are designed to solve the complex problem through bodies of knowledge 

rather than conventional procedural code. 

o One of the examples of an expert system is a Suggestion for the spelling error while 

typing in the Google search box. 

o Following are some characteristics of expert systems: 

o High performance 

o Reliable 

o Highly responsive 

o Understandable 
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Robotics 

o Robotics is a branch of artificial intelligence and engineering which is used for designing 

and manufacturing of robots. 

o Robots are the programmed machines which can perform a series of actions 

automatically or semi-automatically. 

o AI can be applied to robots to make intelligent robots which can perform the task with 

their intelligence. AI algorithms are necessary to allow a robot to perform more complex 

tasks. 

o Nowadays, AI and machine learning are being applied on robots to manufacture 

intelligent robots which can also interact socially like humans. One of the best examples 

of AI in robotics is Sophia robot. 

Machine Vision 

o Machine vision is an application of computer vision which enables a machine to 

recognize the object. 

o Machine vision captures and analyses visual information using one or more video 

cameras, analog-to-digital conversations, and digital signal processing. 

o Machine vision systems are programmed to perform narrowly defined tasks such as 

counting objects, reading the serial number, etc. 

o Computer systems do not see in the same way as human eyes can see, but it is also not 

bounded by human limitations such as to see through the wall. 

o With the help of machine learning and machine vision, an AI agent can be able to see 

through walls. 

Speech Recognition: 

Speech recognition is a technology which enables a machine to understand the spoken language 

and translate into a machine-readable format. It can also be said as automatic Speech recognition 

and computer speech recognition. It is a way to talk with a computer, and on the basis of that 

command, a computer can perform a specific task. 
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There is some speech recognition software which has a limited vocabulary of words and phrase. 

This software requires unambiguous spoken language to understand and perform specific task. 

Today's there are various software or devices which contains speech recognition technology such 

as Cortana, Google virtual assistant, Apple Siri, etc. 

We need to train our speech recognition system to understand our language. In previous days, 

these systems were only designed to convert the speech to text, but now there are various devices 

which can directly convert speech into commands. 

Speech recognition systems can be used in the following areas: 

o System control or navigation system 

o Industrial application 

o Voice dialing system 

There are two types of speech recognition 

1. Speaker Dependent 

2. Speaker Independent 

Simple Decision Making  

A decision network (also called an influence diagram) is a graphical representation of a finite 

sequential decision problem. Decision networks extend belief networks to include decision 

variables and utility. A decision network extends the single-stage decision network to allow for 

sequential decisions. 

In particular, a decision network is a directed acyclic graph (DAG) with chance nodes, decision 

nodes, and a utility node. This extends single-stage decision networks by allowing both chance 

nodes and decision nodes to be parents of decision nodes. Arcs coming into decision nodes 

represent the information that will be available when the decision is made. Arcs coming into 

chance nodes represents probabilistic dependence. Arcs coming into the utility node represent 

what the utility depends on. 

https://artint.info/html/ArtInt_217.html#ssdn
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A no-forgetting agent is an agent whose decisions are totally ordered, and the agent remembers 

its previous decisions and any information that was available to a previous decision. A no-

forgetting decision network is a decision network in which the decision nodes are totally 

ordered and, if decision node Di is before Dj in the total ordering, then Di is a parent of Dj, and 

any parent of Di is also a parent of Dj. Thus, any information available to Di is available to Dj, 

and the action chosen for decision Di is part of the information available at decision Dj. The no-

forgetting condition is sufficient to make sure that the following definitions make sense and that 

the following algorithms work. 

 

 

Figure 9.7: Decision network for decision of whether to take an umbrella 

 

Example 9.11: Figure 9.7 shows a simple decision network for a decision of whether the 

agent should take an umbrella when it goes out. The agent's utility depends on the 

weather and whether it takes an umbrella. However, it does not get to observe the 

weather. It only gets to observe the forecast. The forecast probabilistically depends on 

the weather. 

As part of this network, the designer must specify the domain for each random variable 

and the domain for each decision variable. Suppose the random variable Weather has 

domain {norain,rain}, the random variable Forecast has domain {sunny,rainy,cloudy}, 

and the decision variable Umbrella has domain {takeIt,leaveIt}. There is no domain 

associated with the utility node. The designer also must specify the probability of the 

random variables given their parents. Suppose P(Weather) is defined by 

P(Weather=rain)=0.3. 

https://artint.info/html/ArtInt_219.html#umbrella-ID
https://artint.info/html/ArtInt_219.html#umbrella-ID
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P(Forecast|Weather) is given by 

Weather Forecast Probability 

norain sunny 0.7 

norain cloudy 0.2 

norain rainy 0.1 

rain sunny 0.15 

rain cloudy 0.25 

rain rainy 0.6 

Suppose the utility function, Utility(Weather,Umbrella), is 

Weather Umbrella Utility 

norain takeIt 20 

norain leaveIt 100 

rain takeIt 70 

rain leaveIt 0 

There is no table specified for the Umbrella decision variable. It is the task of the planner 

to determine which value of Umbrella to select, depending on the forecast. 
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Figure 9.8: Decision network for diagnosis 

 

Example 9.12: Figure 9.8 shows a decision network that represents the scenario 

of Example 9.10. The symptoms depend on the disease. What test to perform is decided based on 

the symptoms. The test result depends on the disease and the test performed. The treatment 

decision is based on the symptoms, the test performed, and the test result. The outcome depends 

on the disease and the treatment. The utility depends on the costs and the side effects of the test 

and on the outcome. 

Note that the diagnostic assistant that is deciding on the tests and the treatments never actually 

finds out what disease the patient has, unless the test result is definitive, which it typically is not. 

 

 

Figure 9.9: Decision network for the alarm problem 

 

Example 9.13: Figure 9.9 gives a decision network that is an extension of the belief network 

of Figure 6.1. The agent can receive a report of people leaving a building and has to decide 

whether or not to call the fire department. Before calling, the agent can check for smoke, but this 

has some cost associated with it. The utility depends on whether it calls, whether there is a fire, 

and the cost associated with checking for smoke. 

In this sequential decision problem, there are two decisions to be made. First, the agent must 

decide whether to check for smoke. The information that will be available when it makes this 

decision is whether there is a report of people leaving the building. Second, the agent must 

https://artint.info/html/ArtInt_219.html#diagnosisDN-fig
https://artint.info/html/ArtInt_219.html#diagnosisDN-fig
https://artint.info/html/ArtInt_218.html#diagnosis-example
https://artint.info/html/ArtInt_218.html#diagnosis-example
https://artint.info/html/ArtInt_219.html#alarm-infl
https://artint.info/html/ArtInt_219.html#alarm-infl
https://artint.info/html/ArtInt_148.html#leaving
https://artint.info/html/ArtInt_148.html#leaving


179 
 

decide whether or not to call the fire department. When making this decision, the agent will 

know whether there was a report, whether it checked for smoke, and whether it can see smoke. 

Assume that all of the variables are binary. 

The information necessary for the decision network includes the conditional probabilities of the 

belief network and 

 P(SeeSmoke|Smoke,CheckSmoke); how seeing smoke depends on whether the agent looks 

for smoke and whether there is smoke. Assume that the agent has a perfect sensor for 

smoke. It will see smoke if and only if it looks for smoke and there is smoke. 

[See Exercise 9.6.] 

 Utility(CheckSmoke,Fire,Call); how the utility depends on whether the agent checks for 

smoke, whether there is a fire, and whether the fire department is 

called. Figure 9.10 provides this utility information. 

 

CheckSmoke Fire Call Utility 

yes yes call -220 

yes yes do not call -5020 

yes no call -220 

yes no do not call -20 

no yes call -200 

no yes do not call -5000 

no no call -200 

no no do not call 0 

Figure 9.10: Utility for alarm decision network 

 

https://artint.info/html/ArtInt_233.html#noisy-smoke-sensor
https://artint.info/html/ArtInt_233.html#noisy-smoke-sensor
https://artint.info/html/ArtInt_219.html#val-tab
https://artint.info/html/ArtInt_219.html#val-tab
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This utility function expresses the cost structure that calling has a cost of 200, checking 

has a cost of 20, but not calling when there is a fire has a cost of 5,000. The utility is the 

negative of the cost. 

 

The integration of artificial intelligence (AI) into acute care brings a new source of intellectual 

thought to the bedside. This offers great potential for synergy between AI systems and the human 

intellect already delivering care. This much needed help should be embraced, if proven effective. 

However, there is a risk that the present role of physicians and nurses as the primary arbiters of 

acute care in hospitals may be overtaken by computers. While many argue that this transition is 

inevitable, the process of developing a formal plan to prevent the need to pass control of patient 

care to computers should not be further delayed. 

The first step in the interdiction process is to recognize; the limitations of existing hospital 

protocols, why we need AI in acute care, and finally how the focus of medical decision making 

will change with the integration of AI based analysis. The second step is to develop a strategy for 

changing the focus of medical education to empower physicians to maintain oversight of AI. 

Physicians, nurses, and experts in the field of safe hospital communication must control the 

transition to AI integrated care because there is significant risk during the transition period and 

much of this risk is subtle, unique to the hospital environment, and outside the expertise of AI 

designers. 

AI is needed in acute care because AI detects complex relational time-series patterns within 

datasets and this level of analysis transcends conventional threshold based analysis applied in 

hospital protocols in use today. For this reason medical education will have to change to provide 

healthcare workers with the ability to understand and over-read relational time pattern centered 

communications from AI. Medical education will need to place less emphasis on threshold 

decision making and a greater focus on detection, analysis, and the pathophysiologic basis of 

relational time patterns. This should be an early part of a medical student’s education because 

this is what their hospital companion (the AI) will be doing. 
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Effective communication between human and artificial intelligence requires a common pattern 

centered knowledge base. Experts in safety focused human to human communication in hospitals 

should lead during this transition process. 

Background 

Facing the challenge from Silicon Valley 

Three thousand years ago the perceived power of the human brain to affect survival from illness 

was hyperbolized in Asclepius, the Greek god of medicine. Asclepius was credited with such a 

powerful intellect that he altered the ratio of living to dead. 

While mortal physicians have never matched his success, for thousands of years patients have 

placed their confidence in the intellect of physicians for medical diagnosis and care. However, 

the present role of physicians and nurses as preeminent diagnosticians and providers of care may 

soon be overtaken by computers. While many argue that this transition is inevitable, physicians 

have not yet developed a formal plan to respond to the challenge from Silicon Valley. This is a 

momentous time and the process of developing a formal plan to prevent the need to pass the 

Caduceus should not be further delayed. 

The first step in the prevention of loss of the position of physicians and nurses as preeminent 

overseers of hospital care is to understand the present limitations of medical diagnostics in the 

acute care environment and in medical education which have driven the need for AI integration. 

The present state of acute care decision making 

A computer programmer examining the present threshold based hospital protocols with the intent 

to develop algorithms for managing care might quickly conclude that automation of acute care 

diagnostics and treatment would be easy to implement. The reason for this is that present hospital 

protocols are based on twentieth century threshold decision making [1] and are generally quite 

simple. In an example, it might appear to a computer programmer that all that is required to 

diagnose and treat sepsis is an indication that infection is suspected, a simple threshold breach 

detection algorithm [2] and a branching set of treatment rules. 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR1
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR2
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However expert clinicians know that these simple protocols are not indicative of the true levels 

of acute care complexity [3, 4]. The randomized controlled trials (RCT) which use the threshold 

rules applied in hospital protocols as unified standards for an entire population are subject to 

marked heterogeneous treatment effects (HTE) [5]. Such trials provide evidence of the average 

treatment effect on the group under test as a whole but not whether the treatment used in the 

RCT will be beneficial or harmful to the instant patient under care. It therefore logically follows 

that no protocol, no matter how well supported by RCT, can be applied without expert oversight 

provided by either by a human or AI to protect patients from harm. 

For this reason designers of automated systems must recognize that the true complexity of 

diagnosis and management of adverse conditions, such as sepsis, resides in the portion of 

diagnosis and care provided by nuanced expert oversight which is difficult to study and 

reproduce. If the patient is worsening despite adherence to the standard protocol, a physician 

with naïve trust in RCT may adhere to the guidelines thinking she must stay the course. In the 

alternative the expert physician knows to detect and track worsening, knows the potential for 

HTE, and modifies care off protocol if necessary. In addition to responding to worsening, expert 

clinical nuance is also applied to change diagnosis and/or alter the care in the presence of an 

unusual presentation, rare cases, and less common mixes of overlapping diseases. 

Figure 1 illustrates the present state of hospital care based on uniform protocols with physicians 

and nurses operating as expert overseers, protecting patients from the hazards of oversimplified 

threshold based decisions. Physicians and nurses can provide oversight because the decision 

process of the protocols are transparent so, using their own intellect, they are able to modify the 

diagnosis and treatment as needed in real-time. 

Fig. 1 

 

The present state of nuanced threshold decision making. Threshold protocols are simple and 

transparent so nuanced care with complex decisions outside the protocols can be provided by the 

nurse/physician when needed 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR3
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR4
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR5
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig1
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Full size image  

The integration of artificial intelligence into acute care 

AI and the acute care environment 

The future of medical AI extends far beyond the interpretation of medical images, pathology 

slides and radiographs. AI is being developed to detect critical, highly complex and time 

dependent conditions such as adverse drug reactions and sepsis [6, 7] in acute care environments 

where timely nuanced communication is pivotal. It is likely that within 5 years, AI based 

protocols will replace many of the threshold based protocols which are presently providing acute 

care diagnostic and treatment decisions. 

One advantage of AI is that it can analyze more relationally complex portions of a patient’s 

dataset. However, a major disadvantage is that the complex decision processing of the AI may be 

substantially opaque if not designed to provide transparency and nuanced communication. 

Effective communication from an AI must not be inferior to communication from a human. 

However the need for detailed real-time communication is even more acute when the adverse 

clinical conditions under investigation and care are highly complex and rapidly progressing 

critical conditions. For this reason, the introduction of AI into the acute care environment should 

be preceded by detailed consideration of how AI, if not properly implemented, may cause harm 

by adversely affecting communication as well as the role of the physician and nurse as expert 

overseers of care. 

The hazards of black-box artificial intelligence in acute care 

In the worst case, complex analytics may be provided by AI without disclosure of the data used 

to make the decision or the analytic processes applied. This is often called “black-box AI”. This 

approach is reasonable in acute care only if expert human oversight will not be beneficial even if 

the patient is worsening. One example of inadequate black box AI would be the application of an 

AI based protocol which, after an opaque analysis of a complex data set, provides only an output 

stating “Sepsis detected--severity score 20”. This limited output would constitute a 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/1
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR6
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR7
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communication error by human standards because it does not communicate the relational time 

patterns (RTP) of laboratory tests and vitals detected, the other factors considered, how the 

patterns were combined, which component patterns are rapidly worsening, and how the overall 

state of the sepsis pattern has progressed over time for example in relation to treatment or to a 

potentially inciting event such as a surgery. This level of communication would be required if the 

detection was performed by a human expert so the AI must deliver equivalent or better 

communication. 

While black box AI is clearly unacceptable in acute care, the standards for AI transparency and 

for timely communication by AI of the details of its decision process have not been determined. 

Yet it is clear that AI should meet the minimum standards of detail required for physician to 

physician handoff. 

Figure 2 shows that the use of Black Box AI (which has not been programmed to communicate 

the nuanced details of the decision process) renders a state wherein the AI stands alone. 

Oversight by the expert is not facilitated because she cannot see the pattern combinations 

detected by the AI. 

Fig. 2 

 

The bedside state with “Black Box AI” based decision making. Complex decisions made by AI 

without transparency or detailed timely communication of the factors considered and how these 

factors were combined to render decision process. If the patient worsens under the care of the AI 

the handoff to the physician will be blind 

Full size image  

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig2
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/2
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Medical diagnostic analysis is more complex than in many other environments 

One problem with AI use in acute care which may not be readily apparent to those with a limited 

understanding of the medical domain is the common delay between the decision and the result 

which occurs responsive to the decision. Often it is not clear that a medical decision was wrong 

for a given patient’s condition until many days later when complications, recovery failure, or 

worsening occurs. Contrast this to AI based autonomous driving. Here, a human in the car can 

rapidly intervene because the correctness of the decisions made by the AI are generally 

immediately transparent to the overseeing driver. The immediacy of feedback simplifies the 

training processes of AI based autonomous driving and allows the use of black box AI because 

the decision process is largely irrelevant and can be opaque to the driver who is only concerned 

with the result which is promptly apparent. By comparison, in medical care, where the 

correctness of the decision is often not immediately obvious, the clinician responsible for the 

patient cannot simply wait with faith to see the outcome. Rather the clinician needs to be able to 

see the decision making process itself in fine relational detail and in real-time (before the 

outcome) to be sure it applies to the complexities and comorbidities of the instant patient under 

care. Here we can easily see the need for a new focus of medical education because bedside 

transparency of AI is not useful if the physician is not trained to be able to interpret the RTP 

detected by the AI. 

The handoff from an artificial intelligence system to a physician 

The addition of AI brings new communication challenges to a complex hospital environment 

already associated with a high error rate. Communication errors, including those associated with 

patient handoffs between multiple humans, have been cited by the Joint Commission as the root 

cause of up to 60% of adverse events [8, 9]. Yet any action which moves care from one caregiver 

to another is a handoff. This is true even if a computer is the diagnostician and is now handing 

off the care to a human who is expected to deliver treatment. Guidelines for handoffs involving 

AI should be prioritized to assure they are ready when AI is integrated into hospital care. 

In addition the danger of the potential delay between decision and result will likely be most 

evident when a patient managed by Black Box AI fails to recover. The clinician will want to 

know if a mistake was made in AI based diagnoses or in the therapeutic choices made or both. 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR8
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR9
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Here the need for real-time and detailed communication is evident. The clinician must know 

which components of the data set comprised the basis for the AI decision and what part of the 

decision process might be wrong. The answers to these pivotal questions will not be evident 

when detailed real time communication is lacking and the physician is blind to processing. Again 

this shows the need for refocused education since transparency and disclosure of RTP detected 

by the AI are only useful to the physician if she is trained to interpret them. 

Fortunately there is already a major body of literature directed toward the study of factors which 

induce error during human to human communication in the patient care environment. Under 

these guidelines, a physician handing off care to another must provide detailed communication 

which explains the time patterns or threshold breaches identified in the data, the diagnostic 

considerations, and the state and rational for various therapies applied or under consideration. 

With those lessons learned, it follows that an AI system which is entrusted with critical clinical 

decisions, should be considered a human equivalent for the purpose of defining AI 

communication protocols and standards. 

Artificial intelligence as a cause of clinical dependency 

The second problem which may develop over time in the acute care environment comprises 

intellectual dependency on AI, especially AI which lacks detailed communication capability. The 

lack of detailed communication renders the state presented in Fig. 2 which will reduce the 

perceived need for nurses and physicians to learn complex pathophysiology or to intellectually 

engage the complexity of care. As the perceived need to learn complex pathophysiology 

diminishes, so too does the competency of the physician or nurse. 

Perhaps there will come a time when AI is so highly effective that loss of the quality of the 

oversight function of nurses and physicians will not be a concern. However, over the next few 

decades we must focus on the transition state. This is the present state of automated driving, 

where the performance of AI must still be evaluated and supervised by a human in real time. 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig2
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The need for a new focus of medical education 

There is little doubt that there will be a diminishing role for the portions of traditional medical 

education which are focused on simple rules and threshold decision making. The simple 

threshold rules most students have been taught, for example the threshold criteria used to 

diagnose sepsis, will be abandoned because they are based on data fragments and the AI does not 

need to keep it simple. Also, physicians will not be able to rely on those simple threshold rules to 

over read the outputs of the AI because the weakness of those rules is one of the reasons AI is 

being introduced. 

With the emergence of AI, simple threshold based diagnostic and treatment rules will be 

replaced by AI based protocols which will be much more complex and will include RTP 

analysis. Fortunately the teaching of threshold rules, which became popular in the late twentieth 

century, was always an oversimplification so the abandonment of this aspect of medical 

education will not be much of a loss. 

However, if proper steps are not taken soon, the effect of AI on medical education has the 

potential to cause a much deeper cut. Indeed, it has been suggested that, in the age of AI, 

physicians will not need to be as intelligent as is required today. Instead, it is argued, the focus of 

education will be on empathy, comfort, counseling, and end of life care. 

Nascent resignation to intellectual subservience to AI is driven, at least in part, by the complexity 

of the processing performed by the computer. The decision processing of the AI is not easy to 

teach and it will not be possible for many medical professionals to determine, at the bedside, the 

integrity of the processing itself. However that does not mean that the loss of the oversight role 

for the physician and nurse is inevitable. For healthcare workers to maintain their pivotal 

oversight role they must prepare themselves to cognitively engage the same data, the RTP and 

the same relationships which are detected and processed by the AI. Just as importantly they must 

demand that AI for acute care is configured to provide real-time communication of the analysis 

performed in a format which can be over read by clinicians at the bedside so that physicians can 

protect their patients from treatment failure due to HTE and the AI and physicians can learn 

together. If medical educators and physicians do not go forward with both of these steps, they 
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will become intellectually subservient because they will not be able to oversee the integrity of 

decisions made by the AI. 

The over reading function of the physician or nurse will be facilitated by AI driven cognitive 

support which presents the detected RTP and the data from which the patterns were detected to 

the user in an organized way. When this cognitive support is provided, the over reading of such 

patterns is well within the capability of physicians and nurses trained to understand them but this 

will require agreement on terminology. 

Time-series patterns, the “integers of physiology” 

One way to advance ones understanding of biologic time patterns is to start with the most basic 

pattern pieces, the pattern building blocks of the biological data. Note, we are starting with 

pattern building blocks of the biologic data not with the biologic data itself. In other words we 

are going to consider fundamental time patterns of data which are reliably present regardless of 

the biologic process being considered. One might call these basic time patterns the “integers of 

physiology” as they are quite simple and universally present in all biologic time series. 

Using the basic integers to build a complex pattern means that the complex patterns can be 

disassembled (factored) into its component parts including the components which define the 

onset of the pattern. This assures that the variations of complex patterns can be understood, 

quantified in reliably definable terms. 

To understand, and communicate with, and over read time pattern based outputs of advanced 

medical AI, it is important to begin with a common terminology describing these fundamental 

integers of physiology. After this we will see how physiologic and pathophysiologic time 

patterns fit together as we build outward from there. 

Fortunately there are only 5 primary fundamental time pattern types. This makes the terminology 

and the patterns easy to learn. Of course this is only one proposed terminology as no standards 

have been developed. 

These are: 



189 
 

1. 1. 

Perturbation- (a rise or fall away from the phenotypic or baseline range) 

2. 2. 

Recovery (a rise or fall from a perturbation back toward baseline) 

3. 3. 

Reciprocation (a perturbation followed by its recovery) 

4. 4. 

Distortion (a combination of perturbations induced by a common force such as a drug or 

invading organism) 

5. 5. 

Recovery from a Distortion (a combination of recoveries from the perturbations which 

comprise the distortion) 

Using images of time patterns as the fundamental communication tool between AI and humans 

allows both the AI and the physician to succinctly communicate complexity while speaking a 

common language. Both still having the ability to factor these complex images into their 

component parts for deeper analysis to learn together and over read each other’s work. 

Biologic time patterns are relational time patterns 

Unless only one dataset from a single point in time is available (which is almost never the case), 

the patterns detected by the AI are relational time patterns (RTP) of sequential lab values, vitals, 

pharmaceutical doses, and test results in relation to other things such as image results, other 

diagnoses, sex, age, etc. Relational time patterns (RTP) are the next level up (from simple time 

patterns) of pattern complexity. RTP are comprised of two or more time patterns occurring in 
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temporal relation to each other. Since RTP are built from time pattern “integers” their 

composition can be widely varied and quite complex depending on how many time patterns are 

included and of what type. The number of potential time pattern combinations (and therefore 

RTP) is profound. One example of a complex RTP common in a phenotype of sepsis is 

comprised of; a fall in absolute neutrophil count, a rise in bands, a fall in platelets, a fall in 

bicarbonate and a rise in lactate. Together they comprise part of the image of a distortion induced 

by sepsis. 

The acceptance of the view that thresholds can be remembered but RTP are too complex, to 

numerous and to varied in type to remember would thead to rapid decline in the role of 

physicians in the management of complex patients and loss of protection provided by physician 

oversight. There is no alternative to learning these patterns short of giving up the rod of 

Asclepius to the machines. However, here the computer can assist by presenting the time data in 

a unified picture so that the patterns are identifiable by the trained eye in the picture rendering 

the process of relational time pattern detection by physicians and associated AI oversight much 

easier. 

Seeing the data of a patient as a factorable time matrix 

To understand any machine (including a biologic one), and to detect its failures, one must first 

construct the normal relationships of its fundamental parts. The fundamental parts of a human 

are not its appendages or organs but rather humans are comprised of a massive set of biologic 

particle densities. Examples of biologic particles include ions, cells, cell fragments, and 

molecules. The venous platelet count, potassium concentration, an antibody concentration, and 

the SPO2 or etCO2 are all examples of biologic particle densities or measurement surrogates for 

those densities. Like the parts of a machine, these densities also are held in a highly organized 

baseline operational state and change over time in a relational way within that baseline 

operational state. 

A human, viewed as a machine, is actually an aggregation of biologic particle densities which 

are held, in health, in the baseline operational state over time (Fig. 3). As with the machine, one 

way to cognitively engage a unified patient dataset is by defining a human time matrix model as 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig3
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a unified aggregation of the fundamental time patterns. With this approach it is possible to 

perceive an entire patient dataset as a single image which grows over the patient’s life time. 

Fig. 3 

 

A Healthy Human Time Matrix (HTM). Humans are comprised of a matrix of biologic particle 

densities (e.g. bicarb, sodium, neutrophils), and forces which project along a time axis in a 

dynamically relational configuration. As represented in the time domain, the HTM is comprised 

of individual time series (waves) in specific relation to the phenotypic range and to each other 

(events, forces, lab values, vitals, drugs, etc.) 

Full size image  

When a sufficient new force, such as a medication or invading organism, acts on the matrix, the 

force often causes at least one “perturbation” generated away from the phenotypic range. When 

the force is removed or a countermeasure is applied, a “recovery” generally occurs in the 

opposite direction of the perturbation. Perturbations and recoveries are vectors with features of 

duration, slope, magnitude, acceleration, percent change, etc. The combination of the 

perturbation and its recovery is a reciprocation and these can be complete (with a full recovery) 

or incomplete when there is recovery failure. 

When a grouping of perturbations caused by a force occurs, this can be seen as a “distortion of 

the matrix” (Fig. 4). Distortions may have the temporal characteristics of onset, worsening and 

recovery. A distortions can be factored into its component parts and this factoring can be used by 

AI or the physician to track back to the earlies perturbation of the distortion when, for example, 

seeking the force which caused the distortion. 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/3
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig4
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Fig. 4 

A Distortion of the Human Time Matrix. When an internal or external distortion force (e.g. 

infection, a drug, a pathogenic molecule) is applied to the matrix, a set of perturbations occur 

producing a “distortion” of the HTM 

Full size image  

Figure 4 illustrates that the distortion force (e.g. infection, a drug, a pathogenic molecule) 

precedes the individual perturbations which form the distortion. Some perturbations occur early 

after the onset of the force and some occur late. The types, timing and relational patterns of these 

perturbations defines the time dimensioned conformation of the distortion. 

Distortions produced by different adverse conditions have different conformations which change 

over time as severity worsens or recovery evolves. Complex conditions such as sepsis may be 

associated with several phenotypes of distortions. 

One way to think about different phenotypes of distortions of a single condition, such as sepsis, 

is to consider as analogous, sequential images of different groups (image phenotypes) of 

pneumonia. One image group is that of lobar pneumonia, another bronchopneumonia and a third 

would be the scattered infiltrates and cavitation often associated with MRSA pneumonia. 

Although all are pneumonia the images from one group may not be very similar to the images of 

another and the time patterns of worsening may also be quite dissimilar. Yet, within each of these 

groups the images generally have quite similar time pattern characteristics. The same is true of 

groups (phenotypes) of distortions of the time matrix for a complex clinical condition. 

While the oversight of AI may sound complex, it is not if the data are properly formatted and 

presented. By modifying medical education and turning the education focus away from simple 

threshold rules to the recognition of the RTP which AI systems will be detecting, physicians and 

nurses will be able to continue their pivotal role as overseers of care in the age of AI. 

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/4
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig4


193 
 

Summary of considerations 

Present acute care protocols based by twentieth century threshold decision making are 

inadequate and AI integration into acute care offers the potential to improve care. Yet, there is a 

risk that the present role of physicians and nurses as the primary arbiters of acute care in 

hospitals may be overtaken by computers. While many argue that this transition is inevitable, the 

process of developing a formal plan to prevent the need to pass control of patient care in the 

acute care environment to computers should not be further delayed. 

The addition of AI as a new bedside intellectual source brings new communication challenges to 

an environment already associated with a high error rate. When a patient managed under the 

decision process of AI worsens, at some point the AI will need to “handoff” the patient to a 

physician. Without transparency this will be a blind handoff. For this reason, any AI system 

which determines clinical care, must be programmed to provide effective and detailed 

communication with clinicians as any action which moves care from one caregiver to another is 

a handoff. This is true even if a computer is the diagnostician and is now handing off the care to 

a human who is expected to deliver treatment. The patient safety requirements for handoffs, 

which include full transparency, must be maintained. 

Physicians and nurses must control the transition to AI integrated acute care because there is 

significant risk during the transition period and much of this risk is subtle, unique to the medical 

environment, and outside the expertise of AI designers. 

AI systems detect and analyze relational time patterns and oversight of AI using conventional 

threshold decision making will not be effective. For this reason, medical education will have to 

change to provide healthcare workers with the ability to understand AI communications. An 

increased focus on teaching clinical time pattern recognition is required. Students should be 

taught in early phases of their medical education to factor complex relational time patterns and to 

think in relational time pattern terms. 

Effective communication between human and artificial intelligence requires a new relational 

time pattern centered knowledge base and terminology. This terminology must support detailed 
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and nuanced communication with AI. Experts in safety focused human to human communication 

in hospitals should lead during this transition process. 

It is the functional hybridization of human and artificial intelligence at the bedside, which offers 

the greatest hope for safely revolutionizing medical care over the next decade. To achieve this 

lofty goal early collaboration by experts from many diverse fields of study is required.. 

UNIT IV 

Learning From Observation  

 

Decision Tree Introduction with example 

 Decision tree algorithm falls under the category of the supervised learning. They can be used to 

solve both regression and classification problems. 

 Decision tree uses the tree representation to solve the problem in which each leaf node 

corresponds to a class label and attributes are represented on the internal node of the tree. 

 We can represent any boolean function on discrete attributes using the decision tree. 

 

Below are some assumptions that we made while using decision tree: 

 At the beginning, we consider the whole training set as the root. 

 Feature values are preferred to be categorical. If the values are continuous then they are 

discretized prior to building the model. 

 On the basis of attribute values records are distributed recursively. 

 We use statistical methods for ordering attributes as root or the internal node. 
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As you can see from the above image that Decision Tree works on the Sum of Product form 

which is also knnown as Disjunctive Normal Form. In the above image we are predicting the use 

of computer in daily life of the people. 

In Decision Tree the major challenge is to identification of the attribute for the root node in each 

level. This process is known as attribute selection. We have two popular attribute selection 

measures: 

1. Information Gain 

2. Gini Index 

1. Information Gain 

When we use a node in a decision tree to partition the training instances into smaller subsets the 

entropy changes. Information gain is a measure of this change in entropy. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and 

Values (A) is the set of all possible values of A, then 

 
Entropy 

Entropy is the measure of uncertainty of a random variable, it characterizes the impurity of an 

arbitrary collection of examples. The higher the entropy more the information content. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and 

Values (A) is the set of all possible values of A, then 

 

Example: 
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For the set X = {a,a,a,b,b,b,b,b} 

Total intances: 8 

Instances of b: 5 

Instances of a: 3 

 

 

              = -[0.375 * (-1.415) + 0.625 * (-0.678)]  

              =-(-0.53-0.424)  

              = 0.954 

Building Decision Tree using Information Gain 

The essentials: 

 Start with all training instances associated with the root node 

 Use info gain to choose which attribute to label each node with 

 Note: No root-to-leaf path should contain the same discrete attribute twice 

 Recursively construct each subtree on the subset of training instances that would be classified 

down that path in the tree. 

The border cases: 

 If all positive or all negative training instances remain, label that node “yes” or “no” 

accordingly 

 If no attributes remain, label with a majority vote of training instances left at that node 

 If no instances remain, label with a majority vote of the parent’s training instances 

Example: 

Now, lets draw a Decision Tree for the following data using Information gain. 

Training set: 3 features and 2 classes 

X Y Z C 

1 1 1 I 
1 1 0 I 
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X Y Z C 

0 0 1 II 
1 0 0 II 
Here, we have 3 features and 2 output classes. 

To build a decision tree using Information gain. We will take each of the feature and calculate 

the information for each feature. 

 
Split on feature X 

 

Decision Tree Introduction with example 

 Decision tree algorithm falls under the category of the supervised learning. They can be used to 

solve both regression and classification problems. 

 Decision tree uses the tree representation to solve the problem in which each leaf node 

corresponds to a class label and attributes are represented on the internal node of the tree. 

 We can represent any boolean function on discrete attributes using the decision tree. 

 

Below are some assumptions that we made while using decision tree: 

 At the beginning, we consider the whole training set as the root. 

 Feature values are preferred to be categorical. If the values are continuous then they are 

discretized prior to building the model. 

 On the basis of attribute values records are distributed recursively. 
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 We use statistical methods for ordering attributes as root or the internal node. 

 

As you can see from the above image that Decision Tree works on the Sum of Product form 

which is also knnown as Disjunctive Normal Form. In the above image we are predicting the use 

of computer in daily life of the people. 

In Decision Tree the major challenge is to identification of the attribute for the root node in each 

level. This process is known as attribute selection. We have two popular attribute selection 

measures: 

 

Information Gain 

1. Gini Index 

1. Information Gain 

When we use a node in a decision tree to partition the training instances into smaller subsets the 

entropy changes. Information gain is a measure of this change in entropy. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and 

Values (A) is the set of all possible values of A, then 

 
Entropy 

Entropy is the measure of uncertainty of a random variable, it characterizes the impurity of an 

arbitrary collection of examples. The higher the entropy more the information content. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and 

Values (A) is the set of all possible values of A, then 
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Example: 

For the set X = {a,a,a,b,b,b,b,b} 

Total intances: 8 

Instances of b: 5 

Instances of a: 3 

 

 

              = -[0.375 * (-1.415) + 0.625 * (-0.678)]  

              =-(-0.53-0.424)  

              = 0.954 

Building Decision Tree using Information Gain 

The essentials: 

 Start with all training instances associated with the root node 

 Use info gain to choose which attribute to label each node with 

 Note: No root-to-leaf path should contain the same discrete attribute twice 

 Recursively construct each subtree on the subset of training instances that would be classified 

down that path in the tree. 

The border cases: 

 If all positive or all negative training instances remain, label that node “yes” or “no” 

accordingly 

 If no attributes remain, label with a majority vote of training instances left at that node 

 If no instances remain, label with a majority vote of the parent’s training instances 

Example: 

Now, lets draw a Decision Tree for the following data using Information gain. 

Training set: 3 features and 2 classes 



200 
 

X Y Z C 

1 1 1 I 

1 1 0 I 

0 0 1 II 

1 0 0 II 

Here, we have 3 features and 2 output classes. 

To build a decision tree using Information gain. We will take each of the feature and calculate 

the information for each feature. 

 

Split on feature X 

 

Split on feature Y 
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Split on feature Z 

From the above images we can see that the information gain is maximum when we make a split 

on feature Y. So, for the root node best suited feature is feature Y. Now we can see that while 

spliting the dataset by feature Y, the child contains pure subset of the target variable. So we 

don’t need to further split the dataset. 

The final tree for the above dataset would be look like this: 

 
2. Gini Index 

 Gini Index is a metric to measure how often a randomly chosen element would be incorrectly 

identified. 

 It means an attribute with lower Gini index should be preferred. 

 Sklearn supports “Gini” criteria for Gini Index and by default, it takes “gini” value. 

 The Formula for the calculation of the of the Gini Index is given below. 
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Example: 

Lets consider the dataset in the image below and draw a decision tree using gini index. 

Index A B C D E 

1 4.8 3.4 1.9 0.2 positive 

2 5 3 1.6 1.2 positive 

3 5 3.4 1.6 0.2 positive 

4 5.2 3.5 1.5 0.2 positive 

5 5.2 3.4 1.4 0.2 positive 

6 4.7 3.2 1.6 0.2 positive 

7 4.8 3.1 1.6 0.2 positive 

8 5.4 3.4 1.5 0.4 positive 

9 7 3.2 4.7 1.4 negative 

10 6.4 3.2 4.7 1.5 negative 

11 6.9 3.1 4.9 1.5 negative 

12 5.5 2.3 4 1.3 negative 

13 6.5 2.8 4.6 1.5 negative 

14 5.7 2.8 4.5 1.3 negative 

15 6.3 3.3 4.7 1.6 negative 

16 4.9 2.4 3.3 1 negative 

In the dataset above there are 5 attributes from which attribute E is the predicting feature which 

contains 2(Positive & Negitive) classes. We have equal proportion for both the classes. 

In Gini Index, we have to choose some random values to categorize each attribute. These values 

for this dataset are: 
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    A       B        C         D 

>= 5     >= 3.0      >= 4.2    >= 1.4 

< 5      < 3.0       < 4.2     < 1.4 

Calculating Gini Index for Var A: 

Value >= 5: 12 

Attribute A >= 5 & class = positive:  

Attribute A >= 5 & class = negative:  

Gini(5, 7) = 1 –  

Value < 5: 4 

Attribute A < 5 & class = positive:  

Attribute A < 5 & class = negative:  

Gini(3, 1) = 1 –  

By adding weight and sum each of the gini indices: 

 
Calculating Gini Index for Var B: 

Value >= 3: 12 

Attribute B >= 3 & class = positive:  

Attribute B >= 5 & class = negative:  

Gini(5, 7) = 1 –  

Value < 3: 4 

Attribute A < 3 & class = positive:  
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Attribute A < 3 & class = negative:  

Gini(3, 1) = 1 –  

By adding weight and sum each of the gini indices: 

 
Using the same approach we can calculate the Gini index for C and D attributes. 

             Positive    Negative 

For A|>= 5.0    5       7 

     |<5    3       1 

Ginin Index of A = 0.45825     

             Positive    Negative 

For B|>= 3.0    8       4 

     |< 3.0    0       4 

Gini Index of B= 0.3345 

             Positive    Negative 

For C|>= 4.2    0       6 

     |< 4.2    8       2 

Gini Index of C= 0.2     

             Positive    Negative 

For D|>= 1.4    0       5 

     |< 1.4    8       3 

Gini Index of D= 0.273 
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Artificial Intelligence includes the simulation process of human intelligence by machines and 

special computer systems. The examples of artificial intelligence include learning, reasoning 

and self-correction. Applications of AI include speech recognition, expert systems, and image 

recognition and machine vision. 

Machine learning is the branch of artificial intelligence, which deals with systems and 

algorithms that can learn any new data and data patterns. 

Let us focus on the Venn diagram mentioned below for understanding machine learning and 

deep learning concepts. 

 

Machine learning includes a section of machine learning and deep learning is a part of machine 

learning. The ability of program which follows machine learning concepts is to improve its 

performance of observed data. The main motive of data transformation is to improve its 
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knowledge in order to achieve better results in the future, provide output closer to the desired 

output for that particular system. Machine learning includes “pattern recognition” which 

includes the ability to recognize the patterns in data. 

The patterns should be trained to show the output in desirable manner. 

Machine learning can be trained in two different ways − 

 Supervised training 

 Unsupervised training 

Supervised Learning 

Supervised learning or supervised training includes a procedure where the training set is given 

as input to the system wherein, each example is labeled with a desired output value. The 

training in this type is performed using minimization of a particular loss function, which 

represents the output error with respect to the desired output system. 

After completion of training, the accuracy of each model is measured with respect to disjoint 

examples from training set, also called the validation set. 

 

The best example to illustrate “Supervised learning” is with a bunch of photos given with 

information included in them. Here, the user can train a model to recognize new photos. 

Unsupervised Learning 

In unsupervised learning or unsupervised training, include training examples, which are not 

labeled by the system to which class they belong. The system looks for the data, which share 
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common characteristics, and changes them based on internal knowledge features.This type of 

learning algorithms are basically used in clustering problems. 

The best example to illustrate “Unsupervised learning” is with a bunch of photos with no 

information included and user trains model with classification and clustering. This type of 

training algorithm works with assumptions as no information is given. 

 

It is important to understand mathematical concepts needed for TensorFlow before creating the 

basic application in TensorFlow. Mathematics is considered as the heart of any machine 

learning algorithm. It is with the help of core concepts of Mathematics, a solution for specific 

machine learning algorithm is defined. 

Vector 

An array of numbers, which is either continuous or discrete, is defined as a vector. Machine 

learning algorithms deal with fixed length vectors for better output generation. 

Machine learning algorithms deal with multidimensional data so vectors play a crucial role. 
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The pictorial representation of vector model is as shown below − 

 

Scalar 

Scalar can be defined as one-dimensional vector. Scalars are those, which include only 

magnitude and no direction. With scalars, we are only concerned with the magnitude. 

Examples of scalar include weight and height parameters of children. 
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Matrix 

Matrix can be defined as multi-dimensional arrays, which are arranged in the format of rows 

and columns. The size of matrix is defined by row length and column length. Following figure 

shows the representation of any specified matrix. 

 

Consider the matrix with “m” rows and “n” columns as mentioned above, the matrix 

representation will be specified as “m*n matrix” which defined the length of matrix as well.  

Mathematical Computations 

In this section, we will learn about the different Mathematical Computations in TensorFlow. 

Addition of matrices 

Addition of two or more matrices is possible if the matrices are of the same dimension. The 

addition implies addition of each element as per the given position. 

Consider the following example to understand how addition of matrices works − 
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Example:A=[1324]B=[5768]thenA+B=[1+53+72+64+8]=[610812]Example:A=[1234]B=[5678]

thenA+B=[1+52+63+74+8]=[681012] 

Subtraction of matrices 

The subtraction of matrices operates in similar fashion like the addition of two matrices. The 

user can subtract two matrices provided the dimensions are equal. 

Example:A−[1324]B−[5768]thenA−B−[1−53−72−64−8]−[−4−4−4−4]Example:A−[1234]B−[56

78]thenA−B−[1−52−63−74−8]−[−4−4−4−4] 

Multiplication of matrices 

For two matrices A m*n and B p*q to be multipliable, n should be equal to p. The resulting 

matrix is − 

C m*q 

A=[1324]B=[5768]A=[1234]B=[5678] 

c11=[12][57]=1×5+2×7=19c12=[12][68]=1×6+2×8=22c11=[12][57]=1×5+2×7=19c12=[12][68]

=1×6+2×8=22 

c21=[34][57]=3×5+4×7=43c22=[34][68]=3×6+4×8=50c21=[34][57]=3×5+4×7=43c22=[34][68]

=3×6+4×8=50 

C=[c11c21c12c22]=[19432250]C=[c11c12c21c22]=[19224350] 

Transpose of matrix 

The transpose of a matrix A, m*n is generally represented by AT (transpose) n*m and is 

obtained by transposing the column vectors as row vectors. 

Example:A=[1324]thenAT[1234]Example:A=[1234]thenAT[1324] 

Dot product of vectors 

Any vector of dimension n can be represented as a matrix v = R^n*1. 
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v1=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢v11v12⋅⋅⋅v1n⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥v2=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢v21v22⋅⋅⋅v2n⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥v1=[v11v12⋅⋅⋅v1n]v2=[v21

v22⋅⋅⋅v2n] 

The dot product of two vectors is the sum of the product of corresponding components − 

Components along the same dimension and can be expressed as 

v1⋅v2=vT1v2=vT2v1=v11v21+v12v22+⋅⋅+v1nv2n=∑k=1nv1kv2kv1⋅v2=v1Tv2=v2Tv1=v11v21

+v12v22+⋅⋅+v1nv2n=∑k=1nv1kv2k 

The example of dot product of vectors is mentioned below − 

Example:v1=⎡⎣⎢123⎤⎦⎥v2=⎡⎣⎢35−1⎤⎦⎥v1⋅v2=vT1v2=1×3+2×5−3×1=10 

Statistical Learning Methods  

Statistical Learning is a set of tools for understanding data. These tools broadly come under two 

classes: supervised learning & unsupervised learning. Generally, supervised learning refers to 

predicting or estimating an output based on one or more inputs. Unsupervised learning, on the 

other hand, provides a relationship or finds a pattern within the given data without a supervised 

output. 

What is Statistical Learning? 

Let, suppose that we observe a response Y and p different predictors X = (X₁, X₂,…., Xp). In 

general, we can say: 

Y =f(X) + ε 

Here f is an unknown function, and ε is the random error term. 

In essence, statistical learning refers to a set of approaches for estimating f. 

In cases where we have set of X readily available, but the output Y, not so much, the error 

averages to zero, and we can say: 

¥ = ƒ(X) 
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where ƒ represents our estimate of f and ¥ represents the resulting prediction. 

Hence for a set of predictors X, we can say: 

E(Y — ¥)² = E[f(X) + ε — ƒ(X)]²=> E(Y — ¥)² = [f(X) - ƒ(X)]² + Var(ε) 

 

where, 

 E(Y — ¥)² represents the expected value of the squared difference between actual and 

expected result. 

 [f(X) — ƒ(X)]² represents the reducible error. It is reducible because we can potentially 

improve the accuracy of ƒ by better modeling. 

 Var(ε) represents the irreducible error. It is irreducible because no matter how well we 

estimate ƒ, we cannot reduce the error introduced by variance in ε. 

Regression Vs Classification Problem 

Variables, Y, can be broadly be characterized as quantitative or qualitative( also known 

as categorical). Quantitative variables take on numerical values, e.g., age, height, income, price, 

and much more. Estimating qualitative responses is often termed as a regression problem. 

Qualitative variables take on categorical values, e.g., gender, brand, parts of speech, and much 

more. Estimating qualitative responses is often termed as a classification problem. 

There is no free lunch in statistics: no one method dominates all other over all possible data sets. 

Variance And Bias 

Variance refers to the amount by which ƒ would change if we estimated with different training 

data sets. In general, when we over-fit a model on a given training data set(reducible error in 

training set is very low but on test set is very high), we get a model that has higher variance since 

any change in the data points would results in a significantly different model. 
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Bias refers to the error introduced by approximating a real-life problem, which may be extremely 

complicated by a much simpler model — for example, modeling non-linear problems with a 

linear model. In general, when we over-fit, a model on given data set it results in very less bias. 

This results in the variance bias trade-off. 

As we fit the model over a given data set, the bias tends to decrease faster than the variance 

increases initially. Consequently, the expected test error(reducible) declines. However, at some 

point, when over-fitting starts, there is a little impact on the bias, but variance starts to increase 

rapidly when this happens the test error increases. 

Linear Regression 

Linear regression is a statistical method belonging to supervised learning used for predicting 

quantitative responses. 

Simple Linear Regression approach predicts a quantitative response ¥ based on a single variable 

X assuming a linear relationship. We can say : 

¥ ≈ β₀ + β₁X 

Our job is now to estimate β₀ and β₁, the parameters/coefficients of our model based on the 

training data set, such that the hyperplane(in this case a line) is close to the training data set. Many 

criteria can estimate the closeness, the most common being least square. 

The sum of the square of the difference between all observed response and the predicted response 

formulates to Residual Sum Of Squares(RSS). 

Problems in Linear Regression 

 Non-linearity of the response-predictor relationships. 

 Correlation of error terms. 



214 
 

 The non-constant variance of error terms. 

 Outliers: when the actual prediction is very far from the estimated one, can arise due to 

inaccurate recording of data. 

 High-leverage points: Unusual values of the predictors impact the regression line known as 

high leverage points. 

 Collinearity: where two or more predictor variables are closely related to each other, it may 

be challenging to weed out the individual effect of a single predictor variable. 

KNN Regression 

KNN Regression is a non-parametric approach towards estimating or predicting values, which do 

not assume the form of ƒ(X). It estimates/predicts ƒ(x₀) where x₀ is a prediction point by 

averaging out all N₀ responses closest to x₀. We can say: 

 

 

Note: If K is small, the fit would be flexible and any change in the data would result in a different fit, 

hence for small K the variance would be high and bias low; conversely, if K is large, it might mask 

some structure in the data hence the bias would be high. 

The Classification Problem 

The responses as we discussed till now, may not always be quantitative, it can be 

also qualitative, predicting these qualitative responses is called classification. 

We will discuss various statistical approaches to classification including: 
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 SVM 

 Logistic Regression 

 KNN Classifier 

 GAM 

 Trees 

 Random Forest 

 Boosting 

Support Vector Machine(SVM) 

SVM or support vector machine is the classifier that maximizes the margin. The goal of a 

classifier in our example below is to find a line or (n-1) dimension hyper-plane that separates the 

two classes present in the n-dimensional space. I have written a detailed article explaining the 

derivation and formulation of SVM. In my opinion, it is one of the most powerful techniques in 

our tool box of statistical methods in AI. 

Logistic Regression 

Logistic model models the probability of output response ¥ belonging to a particular category. 

We can say: 

 

https://towardsdatascience.com/support-vector-machine-formulation-and-derivation-b146ce89f28
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Applying componendo dividendo we get: 

 

 

which is nothing but the odds. 

 

 

For estimating the beta coefficients, we can use maximum likelihood. The basic idea is to estimate 

the betas such that the estimated value and observed value of the results are as close as possible. 

In a binary classification, with observed classes as 1 and 0, we can say the likelihood function 

would look like: 

 

 

https://brilliant.org/wiki/componendo-and-dividendo/
https://en.wikipedia.org/wiki/Odds
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
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KNN Classifier 

KNN(K nearest neighbors) Classifier is a lazy learning technique, where the training data set is 

represented on a Euclidean hyperplane, and test data is assigned the labels based on the K 

Euclidean distance metrics. 

Practical Aspects 

 K should be chosen empirically and preferably odd to avoid tie situation. 

 KNN should have both discrete and continuous target functions. 

 Weighted contribution(e.g. distance based) from different neighbors can be used computing 

the final label. 

Note: Performance of KNN degrades when the data is high dimensional. This can be avoided by 

providing weights to the features itself. 

Effect Of K on the decision boundary 
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Advantages Of KNN 

 We can learn a complex target function. 
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 Zero loss of any information. 

Disadvantages of KNN 

 Classification cost of new instances is very high. 

 Significant computation takes place at classification time. 

Generalized Additive Models 

GAM provides a generalized framework extending standard multivariable linear regression with 

the nonlinear function of each variable while maintaining its additive nature. Thus, all nonlinear 

functions can be independently calculated and added later. 

Note: GAM like linear regression can be applied to both quantitative and qualitative responses. 

Trees, Random Forest, Boosting, and Bagging 

Trees or decision trees are useful and straightforward methods for both regression and 

classification involving segmenting the predictor space into simple regions. 

Typically decision trees are drawn upside down meaning the leaves are at the bottom of the tree. 

The points where the predictor space is split are known as internal nodes, and the leaf 

nodes or terminal nodes are the ones which given the predictions. Segments joining the nodes are 

known as branches. 

For prediction, we take a top-down(at the first point all the observation belongs to just one 

region), greedy(best split is made in the particular step) approach known as recursive binary 

fitting. 

There are strategies like tree pruning that solves the over-fitting problem of trees by cutting some 

of the branches to get a small sub-tree. 

For a classification problem, we either use Gini index, 

https://en.wikipedia.org/wiki/Decision_tree_pruning
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or entropy 

 

 

to represent the purity of a node, where Pmk is the proportion of samples in the mth region from 

kth class. 

Decision trees still suffer from high variance and are not competitive with other supervised 

approaches. Therefore, we introduce random forest boosting and bagging. 

Bagging 

Bagging is a general-purpose method to reduce variance in a statistical learning method. The core 

idea is that averaging a set of observations reduces variance. Hence we do a random sampling of 

our data multiple times, and for each sample, we construct a tree and average out all the 

predictions to give a low variance result. 

Random Forest 

When in the collection of bagged trees, a fix k predictors are chosen at random from each tree 

having total m predictors (k < m), then bagging becomes a random forest. 
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This is done because most of the bagged trees would look more or less the same. Hence, the 

predictions of individual bag trees would be highly co-related. Therefore, there would not be 

much reduction in the variance of our inferences. Random forests can be thought of as the process 

of de-correlating bagged trees. 

Boosting 

Boosting approach is a slow learning statistical method, where classifiers are learned on modified 

data set sequentially. In the context of decision trees, each tree is grown using information from 

the previous trees. This way, we do not fit a single large tree. 

Unsupervised Learning 

All the above methods had some form of annotated data set. But when we want to learn patterns 

in our data without any annotations unsupervised learning comes into the picture. 

The most widely used statistical method for unsupervised learning is K-Means Clustering. We 

take k random points in our data set and map all other points to one of the K regions based on 

their closeness to K chosen random points. Then we change the K random points to the centroid 

of the clusters thus formed. We do that until we observe a negligible change in the cluster formed 

after each iteration. 

There are other techniques like PCA in unsupervised learning that are used a lot, but for now, we 

end here. 

Reinforcement Learning Tutorial 
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Our Reinforcement learning tutorial will give you a complete overview of reinforcement 

learning, including MDP and Q-learning. In RL tutorial, you will learn the below topics: 

o What is Reinforcement Learning? 

o Terms used in Reinforcement Learning. 

o Key features of Reinforcement Learning. 

o Elements of Reinforcement Learning. 

o Approaches to implementing Reinforcement Learning. 

o How does Reinforcement Learning Work? 

o The Bellman Equation. 

o Types of Reinforcement Learning. 

o Reinforcement Learning Algorithm. 

o Markov Decision Process. 

o What is Q-Learning? 

o Difference between Supervised Learning and Reinforcement Learning. 

o Applications of Reinforcement Learning. 

o Conclusion. 

 

What is Reinforcement Learning? 

o Reinforcement Learning is a feedback-based Machine learning technique in which an 

agent learns to behave in an environment by performing the actions and seeing the results 

of actions. For each good action, the agent gets positive feedback, and for each bad 

action, the agent gets negative feedback or penalty. 

o In Reinforcement Learning, the agent learns automatically using feedbacks without any 

labeled data, unlike supervised learning. 

o Since there is no labeled data, so the agent is bound to learn by its experience only. 

o RL solves a specific type of problem where decision making is sequential, and the goal is 

long-term, such as game-playing, robotics, etc. 

https://www.javatpoint.com/reinforcement-learning#What
https://www.javatpoint.com/reinforcement-learning#Terms
https://www.javatpoint.com/reinforcement-learning#Key-features
https://www.javatpoint.com/reinforcement-learning#Elements
https://www.javatpoint.com/reinforcement-learning#Approaches
https://www.javatpoint.com/reinforcement-learning#Work
https://www.javatpoint.com/reinforcement-learning#Bellman
https://www.javatpoint.com/reinforcement-learning#Types
https://www.javatpoint.com/reinforcement-learning#Algorithm
https://www.javatpoint.com/reinforcement-learning#Markov
https://www.javatpoint.com/reinforcement-learning#Q-Learning
https://www.javatpoint.com/reinforcement-learning#Difference
https://www.javatpoint.com/reinforcement-learning#Applications
https://www.javatpoint.com/reinforcement-learning#Conclusion
https://www.javatpoint.com/supervised-machine-learning
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o The agent interacts with the environment and explores it by itself. The primary goal of an 

agent in reinforcement learning is to improve the performance by getting the maximum 

positive rewards. 

o The agent learns with the process of hit and trial, and based on the experience, it learns to 

perform the task in a better way. Hence, we can say that "Reinforcement learning is a 

type of machine learning method where an intelligent agent (computer program) 

interacts with the environment and learns to act within that." How a Robotic dog learns 

the movement of his arms is an example of Reinforcement learning. 

o It is a core part of Artificial intelligence, and all AI agent works on the concept of 

reinforcement learning. Here we do not need to pre-program the agent, as it learns from 

its own experience without any human intervention. 

o Example: Suppose there is an AI agent present within a maze environment, and his goal 

is to find the diamond. The agent interacts with the environment by performing some 

actions, and based on those actions, the state of the agent gets changed, and it also 

receives a reward or penalty as feedback. 

o The agent continues doing these three things (take action, change state/remain in the 

same state, and get feedback), and by doing these actions, he learns and explores the 

environment. 

o The agent learns that what actions lead to positive feedback or rewards and what actions 

lead to negative feedback penalty. As a positive reward, the agent gets a positive point, 

and as a penalty, it gets a negative point. 

https://www.javatpoint.com/artificial-intelligence-tutorial
https://www.javatpoint.com/agents-in-ai
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Terms used in Reinforcement Learning 

o Agent(): An entity that can perceive/explore the environment and act upon it. 

o Environment(): A situation in which an agent is present or surrounded by. In RL, we 

assume the stochastic environment, which means it is random in nature. 

o Action(): Actions are the moves taken by an agent within the environment. 

o State(): State is a situation returned by the environment after each action taken by the 

agent. 

o Reward(): A feedback returned to the agent from the environment to evaluate the action 

of the agent. 

o Policy(): Policy is a strategy applied by the agent for the next action based on the current 

state. 

o Value(): It is expected long-term retuned with the discount factor and opposite to the 

short-term reward. 
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o Q-value(): It is mostly similar to the value, but it takes one additional parameter as a 

current action (a). 

 

Key Features of Reinforcement Learning 

o In RL, the agent is not instructed about the environment and what actions need to be 

taken. 

o It is based on the hit and trial process. 

o The agent takes the next action and changes states according to the feedback of the 

previous action. 

o The agent may get a delayed reward. 

o The environment is stochastic, and the agent needs to explore it to reach to get the 

maximum positive rewards. 

 

Approaches to implement Reinforcement Learning 

There are mainly three ways to implement reinforcement-learning in ML, which are: 

1. Value-based: 

The value-based approach is about to find the optimal value function, which is the 

maximum value at a state under any policy. Therefore, the agent expects the long-term 

return at any state(s) under policy π. 

2. Policy-based: 

Policy-based approach is to find the optimal policy for the maximum future rewards 

without using the value function. In this approach, the agent tries to apply such a policy 

that the action performed in each step helps to maximize the future reward. 

The policy-based approach has mainly two types of policy: 

o Deterministic: The same action is produced by the policy (π) at any state. 

o Stochastic: In this policy, probability determines the produced action. 
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3. Model-based: In the model-based approach, a virtual model is created for the 

environment, and the agent explores that environment to learn it. There is no particular 

solution or algorithm for this approach because the model representation is different for 

each environment. 

 

Elements of Reinforcement Learning 

There are four main elements of Reinforcement Learning, which are given below: 

1. Policy 

2. Reward Signal 

3. Value Function 

4. Model of the environment 

1) Policy: A policy can be defined as a way how an agent behaves at a given time. It maps the 

perceived states of the environment to the actions taken on those states. A policy is the core 

element of the RL as it alone can define the behavior of the agent. In some cases, it may be a 

simple function or a lookup table, whereas, for other cases, it may involve general computation 

as a search process. It could be deterministic or a stochastic policy: 

For deterministic policy: a = π(s) 

For stochastic policy: π(a | s) = P[At =a | St = s] 

2) Reward Signal: The goal of reinforcement learning is defined by the reward signal. At each 

state, the environment sends an immediate signal to the learning agent, and this signal is known 

as a reward signal. These rewards are given according to the good and bad actions taken by the 

agent. The agent's main objective is to maximize the total number of rewards for good actions. 

The reward signal can change the policy, such as if an action selected by the agent leads to low 

reward, then the policy may change to select other actions in the future. 

3) Value Function: The value function gives information about how good the situation and 

action are and how much reward an agent can expect. A reward indicates the immediate signal 
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for each good and bad action, whereas a value function specifies the good state and action for 

the future. The value function depends on the reward as, without reward, there could be no 

value. The goal of estimating values is to achieve more rewards. 

4) Model: The last element of reinforcement learning is the model, which mimics the behavior 

of the environment. With the help of the model, one can make inferences about how the 

environment will behave. Such as, if a state and an action are given, then a model can predict the 

next state and reward. 

The model is used for planning, which means it provides a way to take a course of action by 

considering all future situations before actually experiencing those situations. The approaches for 

solving the RL problems with the help of the model are termed as the model-based approach. 

Comparatively, an approach without using a model is called a model-free approach. 

How does Reinforcement Learning Work? 

To understand the working process of the RL, we need to consider two main things: 

o Environment: It can be anything such as a room, maze, football ground, etc. 

o Agent: An intelligent agent such as AI robot. 

Let's take an example of a maze environment that the agent needs to explore. Consider the below 

image: 



228 
 

 

In the above image, the agent is at the very first block of the maze. The maze is consisting of an 

S6 block, which is a wall, S8 a fire pit, and S4 a diamond block. 

The agent cannot cross the S6 block, as it is a solid wall. If the agent reaches the S4 block, then 

get the +1 reward; if it reaches the fire pit, then gets -1 reward point. It can take four actions: 

move up, move down, move left, and move right. 

The agent can take any path to reach to the final point, but he needs to make it in possible fewer 

steps. Suppose the agent considers the path S9-S5-S1-S2-S3, so he will get the +1-reward point. 

The agent will try to remember the preceding steps that it has taken to reach the final step. To 

memorize the steps, it assigns 1 value to each previous step. Consider the below step: 
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Now, the agent has successfully stored the previous steps assigning the 1 value to each previous 

block. But what will the agent do if he starts moving from the block, which has 1 value block on 

both sides? Consider the below diagram: 



230 
 

 

It will be a difficult condition for the agent whether he should go up or down as each block has 

the same value. So, the above approach is not suitable for the agent to reach the destination. 

Hence to solve the problem, we will use the Bellman equation, which is the main concept 

behind reinforcement learning. 

 

The Bellman Equation 

The Bellman equation was introduced by the Mathematician Richard Ernest Bellman in the 

year 1953, and hence it is called as a Bellman equation. It is associated with dynamic 

programming and used to calculate the values of a decision problem at a certain point by 

including the values of previous states. 

It is a way of calculating the value functions in dynamic programming or environment that leads 

to modern reinforcement learning. 

The key-elements used in Bellman equations are: 
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o Action performed by the agent is referred to as "a" 

o State occurred by performing the action is "s." 

o The reward/feedback obtained for each good and bad action is "R." 

o A discount factor is Gamma "γ." 

The Bellman equation can be written as: 

1. V(s) = max [R(s,a) + γV(s`)]   

Where, 

V(s)= value calculated at a particular point. 

R(s,a) = Reward at a particular state s by performing an action. 

γ = Discount factor 

V(s`) = The value at the previous state. 

In the above equation, we are taking the max of the complete values because the agent tries to 

find the optimal solution always. 

So now, using the Bellman equation, we will find value at each state of the given environment. 

We will start from the block, which is next to the target block. 

For 1st block: 

V(s3) = max [R(s,a) + γV(s`)], here V(s')= 0 because there is no further state to move. 

V(s3)= max[R(s,a)]=> V(s3)= max[1]=> V(s3)= 1. 

For 2nd block: 

V(s2) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 1, and R(s, a)= 0, because there is no 

reward at this state. 
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V(s2)= max[0.9(1)]=> V(s)= max[0.9]=> V(s2) =0.9 

For 3rd block: 

V(s1) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.9, and R(s, a)= 0, because there is no 

reward at this state also. 

V(s1)= max[0.9(0.9)]=> V(s3)= max[0.81]=> V(s1) =0.81 

For 4th block: 

V(s5) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.81, and R(s, a)= 0, because there is no 

reward at this state also. 

V(s5)= max[0.9(0.81)]=> V(s5)= max[0.81]=> V(s5) =0.73 

For 5th block: 

V(s9) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.73, and R(s, a)= 0, because there is no 

reward at this state also. 

V(s9)= max[0.9(0.73)]=> V(s4)= max[0.81]=> V(s4) =0.66 

Consider the below image: 
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Now, we will move further to the 6th block, and here agent may change the route because it 

always tries to find the optimal path. So now, let's consider from the block next to the fire pit. 
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Now, the agent has three options to move; if he moves to the blue box, then he will feel a bump 

if he moves to the fire pit, then he will get the -1 reward. But here we are taking only positive 

rewards, so for this, he will move to upwards only. The complete block values will be calculated 

using this formula. Consider the below image: 
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Types of Reinforcement learning 

There are mainly two types of reinforcement learning, which are: 

o Positive Reinforcement 

o Negative Reinforcement 

Positive Reinforcement: 

The positive reinforcement learning means adding something to increase the tendency that 

expected behavior would occur again. It impacts positively on the behavior of the agent and 

increases the strength of the behavior. 

This type of reinforcement can sustain the changes for a long time, but too much positive 

reinforcement may lead to an overload of states that can reduce the consequences. 
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Negative Reinforcement: 

The negative reinforcement learning is opposite to the positive reinforcement as it increases the 

tendency that the specific behavior will occur again by avoiding the negative condition. 

It can be more effective than the positive reinforcement depending on situation and behavior, but 

it provides reinforcement only to meet minimum behavior. 

How to represent the agent state? 

We can represent the agent state using the Markov State that contains all the required 

information from the history. The State St is Markov state if it follows the given condition: 

P[St+1 | St ] = P[St +1 | S1,......, St] 

The Markov state follows the Markov property, which says that the future is independent of the 

past and can only be defined with the present. The RL works on fully observable environments, 

where the agent can observe the environment and act for the new state. The complete process is 

known as Markov Decision process, which is explained below: 

 

Markov Decision Process 

Markov Decision Process or MDP, is used to formalize the reinforcement learning problems. 

If the environment is completely observable, then its dynamic can be modeled as a Markov 

Process. In MDP, the agent constantly interacts with the environment and performs actions; at 

each action, the environment responds and generates a new state. 
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MDP is used to describe the environment for the RL, and almost all the RL problem can be 

formalized using MDP. 

MDP contains a tuple of four elements (S, A, Pa, Ra): 

o A set of finite States S 

o A set of finite Actions A 

o Rewards received after transitioning from state S to state S', due to action a. 

o Probability Pa. 

MDP uses Markov property, and to better understand the MDP, we need to learn about it. 
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Markov Property: 

It says that "If the agent is present in the current state S1, performs an action a1 and move to 

the state s2, then the state transition from s1 to s2 only depends on the current state and future 

action and states do not depend on past actions, rewards, or states." 

Or, in other words, as per Markov Property, the current state transition does not depend on any 

past action or state. Hence, MDP is an RL problem that satisfies the Markov property. Such as in 

a Chess game, the players only focus on the current state and do not need to remember past 

actions or states. 

Finite MDP: 

A finite MDP is when there are finite states, finite rewards, and finite actions. In RL, we consider 

only the finite MDP. 

Markov Process: 

Markov Process is a memoryless process with a sequence of random states S1, S2, ....., St that 

uses the Markov Property. Markov process is also known as Markov chain, which is a tuple (S, 

P) on state S and transition function P. These two components (S and P) can define the dynamics 

of the system. 

 

Reinforcement Learning Algorithms 

Reinforcement learning algorithms are mainly used in AI applications and gaming applications. 

The main used algorithms are: 

o Q-Learning: 

o Q-learning is an Off policy RL algorithm, which is used for the temporal 

difference Learning. The temporal difference learning methods are the way of 

comparing temporally successive predictions. 
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o It learns the value function Q (S, a), which means how good to take action "a" at a 

particular state "s." 

o The below flowchart explains the working of Q- learning: 

 

o State Action Reward State action (SARSA): 

o SARSA stands for State Action Reward State action, which is an on-

policy temporal difference learning method. The on-policy control method selects 

the action for each state while learning using a specific policy. 

o The goal of SARSA is to calculate the Q π (s, a) for the selected current policy 

π and all pairs of (s-a). 

o The main difference between Q-learning and SARSA algorithms is that unlike Q-

learning, the maximum reward for the next state is not required for updating 

the Q-value in the table. 

o In SARSA, new action and reward are selected using the same policy, which has 

determined the original action. 
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o The SARSA is named because it uses the quintuple Q(s, a, r, s', a'). Where, 

        s: original state 

        a: Original action 

        r: reward observed while following the states 

        s' and a': New state, action pair. 

o Deep Q Neural Network (DQN): 

o As the name suggests, DQN is a Q-learning using Neural networks. 

o For a big state space environment, it will be a challenging and complex task to 

define and update a Q-table. 

o To solve such an issue, we can use a DQN algorithm. Where, instead of defining a 

Q-table, neural network approximates the Q-values for each action and state. 

Now, we will expand the Q-learning. 

Q-Learning Explanation: 

o Q-learning is a popular model-free reinforcement learning algorithm based on the 

Bellman equation. 

o The main objective of Q-learning is to learn the policy which can inform the agent 

that what actions should be taken for maximizing the reward under what 

circumstances. 

o It is an off-policy RL that attempts to find the best action to take at a current state. 

o The goal of the agent in Q-learning is to maximize the value of Q. 

o The value of Q-learning can be derived from the Bellman equation. Consider the Bellman 

equation given below: 

 

In the equation, we have various components, including reward, discount factor (γ), probability, 

and end states s'. But there is no any Q-value is given so first consider the below image: 
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In the above image, we can see there is an agent who has three values options, V(s1), V(s2), 

V(s3). As this is MDP, so agent only cares for the current state and the future state. The agent can 

go to any direction (Up, Left, or Right), so he needs to decide where to go for the optimal path. 

Here agent will take a move as per probability bases and changes the state. But if we want some 

exact moves, so for this, we need to make some changes in terms of Q-value. Consider the below 

image: 
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Q- represents the quality of the actions at each state. So instead of using a value at each state, we 

will use a pair of state and action, i.e., Q(s, a). Q-value specifies that which action is more 

lubricative than others, and according to the best Q-value, the agent takes his next move. The 

Bellman equation can be used for deriving the Q-value. 

To perform any action, the agent will get a reward R(s, a), and also he will end up on a certain 

state, so the Q -value equation will be: 

 

Hence, we can say that, V(s) = max [Q(s, a)] 

 

The above formula is used to estimate the Q-values in Q-Learning. 

What is 'Q' in Q-learning? 

The Q stands for quality in Q-learning, which means it specifies the quality of an action taken 

by the agent. 

Q-table: 

A Q-table or matrix is created while performing the Q-learning. The table follows the state and 

action pair, i.e., [s, a], and initializes the values to zero. After each action, the table is updated, 

and the q-values are stored within the table. 

The RL agent uses this Q-table as a reference table to select the best action based on the q-

values. 
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Difference between Reinforcement Learning and Supervised Learning 

The Reinforcement Learning and Supervised Learning both are the part of machine learning, but 

both types of learnings are far opposite to each other. The RL agents interact with the 

environment, explore it, take action, and get rewarded. Whereas supervised learning algorithms 

learn from the labeled dataset and, on the basis of the training, predict the output. 

The difference table between RL and Supervised learning is given below: 

Reinforcement Learning Supervised Learning 

RL works by interacting 

with the environment. 

Supervised learning 

works on the existing 

dataset. 

The RL algorithm works 

like the human brain 

works when making some 

decisions. 

Supervised Learning 

works as when a human 

learns things in the 

supervision of a guide. 

There is no labeled dataset 

is present 

The labeled dataset is 

present. 

No previous training is 

provided to the learning 

agent. 

Training is provided to 

the algorithm so that it 

can predict the output. 

RL helps to take decisions 

sequentially. 

In Supervised learning, 

decisions are made when 

input is given. 
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Reinforcement Learning Applications 

 

1. Robotics: 

a. RL is used in Robot navigation, Robo-soccer, walking, juggling, etc. 

 Control: 

 . RL can be used for adaptive control such as Factory processes, admission 

control in telecommunication, and Helicopter pilot is an example of reinforcement 

learning. 

 Game Playing: 

 . RL can be used in Game playing such as tic-tac-toe, chess, etc. 

 Chemistry: 

 . RL can be used for optimizing the chemical reactions. 
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 Business: 

 . RL is now used for business strategy planning. 

 Manufacturing: 

 . In various automobile manufacturing companies, the robots use deep 

reinforcement learning to pick goods and put them in some containers. 

 Finance Sector: 

 . The RL is currently used in the finance sector for evaluating trading strategies. 

 

UNIT V 

 

Robotics is a domain in artificial intelligence that deals with the study of creating intelligent and 

efficient robots. 

What are Robots? 

Robots are the artificial agents acting in real world environment. 

Objective 

Robots are aimed at manipulating the objects by perceiving, picking, moving, modifying the 

physical properties of object, destroying it, or to have an effect thereby freeing manpower from 

doing repetitive functions without getting bored, distracted, or exhausted. 

What is Robotics? 

Robotics is a branch of AI, which is composed of Electrical Engineering, Mechanical 

Engineering, and Computer Science for designing, construction, and application of robots. 

Aspects of Robotics 

 The robots have mechanical construction, form, or shape designed to accomplish a 

particular task. 

 They have electrical components which power and control the machinery. 
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 They contain some level of computer program that determines what, when and how a 

robot does something. 

Difference in Robot System and Other AI Program 

Here is the difference between the two − 

AI Programs Robots 

They usually operate 

in computer-

stimulated worlds. 

They operate in real 

physical world 

The input to an AI 

program is in 

symbols and rules. 

Inputs to robots is analog 

signal in the form of 

speech waveform or 

images 

They need general 

purpose computers to 

operate on. 

They need special 

hardware with sensors and 

effectors. 

Robot Locomotion 

Locomotion is the mechanism that makes a robot capable of moving in its environment. There 

are various types of locomotions − 

 Legged 

 Wheeled 

 Combination of Legged and Wheeled Locomotion 

 Tracked slip/skid 
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Legged Locomotion 

 This type of locomotion consumes more power while demonstrating walk, jump, trot, 

hop, climb up or down, etc. 

 It requires more number of motors to accomplish a movement. It is suited for rough as 

well as smooth terrain where irregular or too smooth surface makes it consume more 

power for a wheeled locomotion. It is little difficult to implement because of stability 

issues. 

 It comes with the variety of one, two, four, and six legs. If a robot has multiple legs then 

leg coordination is necessary for locomotion. 

The total number of possible gaits (a periodic sequence of lift and release events for each of the 

total legs) a robot can travel depends upon the number of its legs. 

If a robot has k legs, then the number of possible events N = (2k-1)!. 

In case of a two-legged robot (k=2), the number of possible events is N = (2k-1)! = (2*2-1)! = 

3! = 6. 

Hence there are six possible different events − 

 Lifting the Left leg 

 Releasing the Left leg 

 Lifting the Right leg 

 Releasing the Right leg 

 Lifting both the legs together 

 Releasing both the legs together 

In case of k=6 legs, there are 39916800 possible events. Hence the complexity of robots is 

directly proportional to the number of legs. 
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Wheeled Locomotion 

It requires fewer number of motors to accomplish a movement. It is little easy to implement as 

there are less stability issues in case of more number of wheels. It is power efficient as 

compared to legged locomotion. 

 Standard wheel − Rotates around the wheel axle and around the contact 

 Castor wheel − Rotates around the wheel axle and the offset steering joint. 

 Swedish 45o and Swedish 90o wheels − Omni-wheel, rotates around the contact point, 

around the wheel axle, and around the rollers. 

 Ball or spherical wheel − Omnidirectional wheel, technically difficult to implement. 
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Slip/Skid Locomotion 

In this type, the vehicles use tracks as in a tank. The robot is steered by moving the tracks with 

different speeds in the same or opposite direction. It offers stability because of large contact 

area of track and ground. 

 

Components of a Robot 

Robots are constructed with the following − 

 Power Supply − The robots are powered by batteries, solar power, hydraulic, or 

pneumatic power sources. 

 Actuators − They convert energy into movement. 

 Electric motors (AC/DC) − They are required for rotational movement. 

 Pneumatic Air Muscles − They contract almost 40% when air is sucked in them. 

 Muscle Wires − They contract by 5% when electric current is passed through them. 

 Piezo Motors and Ultrasonic Motors − Best for industrial robots. 

 Sensors − They provide knowledge of real time information on the task environment. 

Robots are equipped with vision sensors to be to compute the depth in the environment. 

A tactile sensor imitates the mechanical properties of touch receptors of human 

fingertips. 
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Computer Vision 

This is a technology of AI with which the robots can see. The computer vision plays vital role in 

the domains of safety, security, health, access, and entertainment. 

Computer vision automatically extracts, analyzes, and comprehends useful information from a 

single image or an array of images. This process involves development of algorithms to 

accomplish automatic visual comprehension. 

Hardware of Computer Vision System 

This involves − 

 Power supply 

 Image acquisition device such as camera 

 A processor 

 A software 

 A display device for monitoring the system 

 Accessories such as camera stands, cables, and connectors 

Tasks of Computer Vision 

 OCR − In the domain of computers, Optical Character Reader, a software to convert 

scanned documents into editable text, which accompanies a scanner. 

 Face Detection − Many state-of-the-art cameras come with this feature, which enables to 

read the face and take the picture of that perfect expression. It is used to let a user access 

the software on correct match. 

 Object Recognition − They are installed in supermarkets, cameras, high-end cars such 

as BMW, GM, and Volvo. 

 Estimating Position − It is estimating position of an object with respect to camera as in 

position of tumor in human’s body. 

Application Domains of Computer Vision 

 Agriculture 
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 Autonomous vehicles 

 Biometrics 

 Character recognition 

 Forensics, security, and surveillance 

 Industrial quality inspection 

 Face recognition 

 Gesture analysis 

 Geoscience 

 Medical imagery 

 Pollution monitoring 

 Process control 

 Remote sensing 

 Robotics 

 Transport 

Applications of Robotics 

The robotics has been instrumental in the various domains such as − 

 Industries − Robots are used for handling material, cutting, welding, color coating, 

drilling, polishing, etc. 

 Military − Autonomous robots can reach inaccessible and hazardous zones during war. 

A robot named Daksh, developed by Defense Research and Development Organization 

(DRDO), is in function to destroy life-threatening objects safely. 

 Medicine − The robots are capable of carrying out hundreds of clinical tests 

simultaneously, rehabilitating permanently disabled people, and performing complex 

surgeries such as brain tumors. 

 Exploration − The robot rock climbers used for space exploration, underwater drones 

used for ocean exploration are to name a few. 

 Entertainment − Disney’s engineers have created hundreds of robots for movie making. 
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Language Processing in “A Neural Probabilistic Language Model:” 

  
 Credit: smartdatacollective.com 
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 This is the PLN (plan): discuss NLP (Natural Language Processing) seen through 

the lens of probability, in a model put forth by Bengio et al. in 2003 called NPL 

(Neural Probabilistic Language). The year the paper was published is important to 

consider at the get-go because it was a fulcrum moment in the history of how we 

analyze human language using computers. Noam Chomsky’s Linguistics might be 

seen as an effort to use the human mind like a machine and systematically break 

down language into smaller and smaller components. He started with sentences 

and went to words, then to morphemes and finally phonemes. Computerization 

takes this powerful concept and makes it into something even more vital to 

humankind: it starts with being relevant to individuals and goes to teams of people, 

then to corporations and finally governments. Dr. Chomsky truly changed the way 

we approach communication, and that influence can still be felt. Linguistics was 

powerful when it was first introduced, and it is powerful today. N-gram analysis, 

or any kind of computational linguistics for that matter, are derived from the work 

of this great man, this forerunner. This blog will summarize the work of the 

Bengio group, thought leaders who took up the torch of knowledge to advance our 

understanding of natural language and how computers interact with it. 

 Artificial Intelligence has changed considerably since 2003, but the model 

presented in this paper captures the essence of why it was able to take off. Machine 

learning and deep learning have both become part of the AI canon since this paper 

was published, and as computing power continues to grow they are becoming ever 

more important. Data Science is a confluence of fields, and today we’ll examine 

one which is a cornerstone of the discipline: probability. The probabilistic 

distribution model put forth in this paper, in essence, is a major reason we have 

improved our capabilities to process our natural language to such wuthering 

heights. 

 English, considered to have the most words of any alphabetic language, is a 

probability nightmare. The possibilities for sequencing word combinations in even 

the most basic of sentences is inconceivable. We are facing something known 
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as the curse of dimensionality. To make this more concrete, the authors offer the 

following: 

 …if one wants to model the joint distribution of 10 consecutive words in a natural 

language with a vocabulary V of size 100,000, there are potentially 100,000^10 − 1 = 

10^50 − 1 free parameters. 

 In data-driven Natural Language Processing tasks, there are practically unlimited 

discrete variables, because the population size of the English vocabulary is 

exponentially north of 100K. When trying to compare data that has been split into 

training and test sets, how can you ever expect to put forth a readily generalizable 

language model? The two divisions in your data are all but guaranteed to be vastly 

different, quite ungeneralizable. You’re cursed by the amount of possibilities in the 

model, the amount of dimensions. What can be done? 

 The Bengio group innovates not by using neural networks but by using them on a 

massive scale. Linguistics and its founding father Noam have a tendency to learn 

how one word interacts with all the others in a sentence. Bengio et al. focus on 

learning a statistical model of the distribution of word sequences. This research 

paper improves NLP firstly by considering not how a given word is similar to 

other words in the same sentence, but to new words that could fill the role of that 

given word. Secondly, they take into account n-gram approaches beyond unigram 

(n = 1), bigram (n = 2) or even trigram (the n typically used by researchers) up to 

an n of 5. 

 The math for n-gram models is given as: 
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 This formula is used to construct conditional probability tables for the next word to 

be predicted. When modeling NLP, the odds in the fight against dimensionality 

can be improved by taking advantage of word order, and by recognizing that 

temporally closer words in the word sequence are statistically more dependent. 

What does this ultimately mean in the context of what has been discussed? What 

problem is this solving? The language model proposed makes dimensionality less 

of a curse and more of an inconvenience. That is to say, computational and 

memory complexity scale up in a linear fashion, not exponentially. It improves 

upon past efforts by learning a feature vector for each word to represent similarity 

and also learning a probability function for how words connect via a neural 

network. Let’s take a closer look at said neural network. 
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 We’re presented here with something known as a Multi-Layer Perceptron. What 

are those layers? Three input nodes make up the foundation at the bottom, fed by 

the index for the word in the context of the text under study. The layer in the 

middle labeled tanh represents the hidden layer. Tanh, an activation function 

known as the hyberbolic tangent, is sigmoidal (s-shaped) and helps reduce the 

chance of the model getting “stuck” when assigning values to the language being 

processed. How is this? In the system this research team sets up, strongly negative 

values get assigned values very close to -1 and vice versa for positive ones. Only 

zero-valued inputs are mapped to near-zero outputs. The uppermost layer is the 

output — the softmax function. It is used to bring our range of values into the 

probabilistic realm (in the interval from 0 to 1, in which all vector components 

sum up to 1). 
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 Don’t overlook the dotted green lines connecting the inputs directly to outputs, 

either. The optional inclusion of this feature is brought up in the results section of 

the paper. It provides an interesting trade-off: including the direct connections 

between input and output causes the the training time to be cut in half (10 epochs 

to converge instead of 20). Without them, the model produced better 

generalizations via a tighter bottleneck formed in the hidden layer. 

 It’s possible for a sentence to obtain a high probability (even if the model has 

never encountered it before) if the words contained therein are similar to those in a 

previously observed one. There’s the rub: Noam Chomsky and subsequent 

linguists are subject to criticisms of having developed too brittle of a system. This 

method sets the stage for a new kind of learning, deep learning. When utilized in 

conjunction with vector semantics, this is powerful stuff indeed. Through this 

paper, the Bengio team opened the door to the future and helped usher in a new 

era. An era of AI. 

Language Processing in “A Neural Probabilistic Language Model:”  
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Credit: smartdatacollective.com 

This is the PLN (plan): discuss NLP (Natural Language Processing) seen through the lens of 

probability, in a model put forth by Bengio et al. in 2003 called NPL (Neural Probabilistic 

Language). The year the paper was published is important to consider at the get-go because it was 

a fulcrum moment in the history of how we analyze human language using computers. Noam 

Chomsky’s Linguistics might be seen as an effort to use the human mind like a machine and 

systematically break down language into smaller and smaller components. He started with 

sentences and went to words, then to morphemes and finally phonemes. Computerization takes 
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this powerful concept and makes it into something even more vital to humankind: it starts with 

being relevant to individuals and goes to teams of people, then to corporations and finally 

governments. Dr. Chomsky truly changed the way we approach communication, and that 

influence can still be felt. Linguistics was powerful when it was first introduced, and it is 

powerful today. N-gram analysis, or any kind of computational linguistics for that matter, are 

derived from the work of this great man, this forerunner. This blog will summarize the work of 

the Bengio group, thought leaders who took up the torch of knowledge to advance our 

understanding of natural language and how computers interact with it. 

Artificial Intelligence has changed considerably since 2003, but the model presented in this paper 

captures the essence of why it was able to take off. Machine learning and deep learning have both 

become part of the AI canon since this paper was published, and as computing power continues to 

grow they are becoming ever more important. Data Science is a confluence of fields, and today 

we’ll examine one which is a cornerstone of the discipline: probability. The probabilistic 

distribution model put forth in this paper, in essence, is a major reason we have improved our 

capabilities to process our natural language to such wuthering heights. 

English, considered to have the most words of any alphabetic language, is a probability 

nightmare. The possibilities for sequencing word combinations in even the most basic of 

sentences is inconceivable. We are facing something known as the curse of dimensionality. To 

make this more concrete, the authors offer the following: 

…if one wants to model the joint distribution of 10 consecutive words in a natural language with a 

vocabulary V of size 100,000, there are potentially 100,000^10 − 1 = 10^50 − 1 free parameters. 

In data-driven Natural Language Processing tasks, there are practically unlimited discrete 

variables, because the population size of the English vocabulary is exponentially north of 100K. 

When trying to compare data that has been split into training and test sets, how can you ever 

expect to put forth a readily generalizable language model? The two divisions in your data are all 

but guaranteed to be vastly different, quite ungeneralizable. You’re cursed by the amount of 

possibilities in the model, the amount of dimensions. What can be done? 
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The Bengio group innovates not by using neural networks but by using them on a massive scale. 

Linguistics and its founding father Noam have a tendency to learn how one word interacts with all 

the others in a sentence. Bengio et al. focus on learning a statistical model of the distribution of 

word sequences. This research paper improves NLP firstly by considering not how a given word 

is similar to other words in the same sentence, but to new words that could fill the role of that 

given word. Secondly, they take into account n-gram approaches beyond unigram (n = 1), bigram 

(n = 2) or even trigram (the n typically used by researchers) up to an n of 5. 

The math for n-gram models is given as: 

 

 

This formula is used to construct conditional probability tables for the next word to be predicted. 

When modeling NLP, the odds in the fight against dimensionality can be improved by taking 

advantage of word order, and by recognizing that temporally closer words in the word sequence 

are statistically more dependent. What does this ultimately mean in the context of what has been 

discussed? What problem is this solving? The language model proposed makes dimensionality 

less of a curse and more of an inconvenience. That is to say, computational and memory 

complexity scale up in a linear fashion, not exponentially. It improves upon past efforts by 

learning a feature vector for each word to represent similarity and also learning a probability 

function for how words connect via a neural network. Let’s take a closer look at said neural 

network. 



261 
 

 



262 
 

 

We’re presented here with something known as a Multi-Layer Perceptron. What are those 

layers? Three input nodes make up the foundation at the bottom, fed by the index for the word in 

the context of the text under study. The layer in the middle labeled tanh represents the hidden 

layer. Tanh, an activation function known as the hyberbolic tangent, is sigmoidal (s-shaped) and 

helps reduce the chance of the model getting “stuck” when assigning values to the language being 

processed. How is this? In the system this research team sets up, strongly negative values get 

assigned values very close to -1 and vice versa for positive ones. Only zero-valued inputs are 

mapped to near-zero outputs. The uppermost layer is the output — the softmax function. It is used 

to bring our range of values into the probabilistic realm (in the interval from 0 to 1, in which all 

vector components sum up to 1). 

Don’t overlook the dotted green lines connecting the inputs directly to outputs, either. The 

optional inclusion of this feature is brought up in the results section of the paper. It provides an 

interesting trade-off: including the direct connections between input and output causes the the 
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training time to be cut in half (10 epochs to converge instead of 20). Without them, the model 

produced better generalizations via a tighter bottleneck formed in the hidden layer. 

It’s possible for a sentence to obtain a high probability (even if the model has never encountered it 

before) if the words contained therein are similar to those in a previously observed one. There’s 

the rub: Noam Chomsky and subsequent linguists are subject to criticisms of having developed 

too brittle of a system. This method sets the stage for a new kind of learning, deep learning. When 

utilized in conjunction with vector semantics, this is powerful stuff indeed. Through this paper, 

the Bengio team opened the door to the future and helped usher in a new era. An era of AI. 

Perception  

Perception in Artificial Intelligence is the process of interpreting vision, sounds, smell, and 

touch. Perception helps to build machines or robots that react like humans. Perception is a 

process to interpret, acquire, select, and then organize the sensory information from the physical 

world to make actions like humans. The main difference between AI and robot is that the robot 

makes actions in the real world. 

***** 
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