
1

2

Artificial Intelligence Syllabus

UNIT I

Introduction - Intelligent Agents- Problem Solving - by Searching - Informed Search and
Exploration - Constraint Satisfaction Problems - Adversarial Search

UNIT II

Knowledge and Reasoning - Logical Agents - First-Order Logic - Inference in First-Order Logic
- Knowledge Representation

UNIT III

Planning – Planning and Acting in the Real World - Uncertain knowledge and reasoning -
Uncertainty - Probabilistic Reasoning - Probabilistic Reasoning Over Time - Making Simple
Decisions - Making Complex Decisions

UNIT IV

Learning - Learning from Observations - Knowledge in Learning - Statistical Learning Methods
- Reinforcement Learning

UNIT V

Communicating, Perceiving, and Acting - Communication - Probabilistic Language Processing -
Perception – Robotics.

Text Books

(i) Stuart Russell and Peter Norvig, 2003, Artificial Intelligence: A Modern Approach, 2nd
Edition, Prentice Hall of India, New Delhi.

Reference Books

(i) Elaine Rich and Kevin Knight, 1991, Artificial Intelligence, 2nd Edition, Tata McGraw-Hill,
New Delhi.

(ii) Herbert A. Simon, 1998, The Sciences of the Artificial Intelligence, 3rd Edition, MIT Press.

(iii) N.J. Nilson, 1983, Principles of AI, Springer Verlag.

Website, E-learning resources

(i) http://aima.eecs.berkeley.edu/slides-pdf/

3

ARTIFICIAL INTELLIGENCE

UNIT I

An AI system is composed of an agent and its environment. The agents act in their

environment. The environment may contain other agents.

What are Agent and Environment?

An agent is anything that can perceive its environment through sensors and acts upon that

environment through effectors.

 A human agent has sensory organs such as eyes, ears, nose, tongue and skin parallel to

the sensors, and other organs such as hands, legs, mouth, for effectors.

 A robotic agent replaces cameras and infrared range finders for the sensors, and various

motors and actuators for effectors.

 A software agent has encoded bit strings as its programs and actions.

Agent Terminology

 Performance Measure of Agent − It is the criteria, which determines how successful an

agent is.

 Behavior of Agent − It is the action that agent performs after any given sequence of

percepts.

 Percept − It is agent’s perceptual inputs at a given instance.

4

 Percept Sequence − It is the history of all that an agent has perceived till date.

 Agent Function − It is a map from the precept sequence to an action.

Rationality

Rationality is nothing but status of being reasonable, sensible, and having good sense of

judgment.

Rationality is concerned with expected actions and results depending upon what the agent has

perceived. Performing actions with the aim of obtaining useful information is an important part

of rationality.

What is Ideal Rational Agent?

An ideal rational agent is the one, which is capable of doing expected actions to maximize its

performance measure, on the basis of −

 Its percept sequence

 Its built-in knowledge base

Rationality of an agent depends on the following −

 The performance measures, which determine the degree of success.

 Agent’s Percept Sequence till now.

 The agent’s prior knowledge about the environment.

 The actions that the agent can carry out.

A rational agent always performs right action, where the right action means the action that

causes the agent to be most successful in the given percept sequence. The problem the agent

solves is characterized by Performance Measure, Environment, Actuators, and Sensors (PEAS).

The Structure of Intelligent Agents

Agent’s structure can be viewed as −

 Agent = Architecture + Agent Program

 Architecture = the machinery that an agent executes on.

5

 Agent Program = an implementation of an agent function.

Simple Reflex Agents

 They choose actions only based on the current percept.

 They are rational only if a correct decision is made only on the basis of current precept.

 Their environment is completely observable.

Condition-Action Rule − It is a rule that maps a state (condition) to an action.

Model Based Reflex Agents

They use a model of the world to choose their actions. They maintain an internal state.

Model − knowledge about “how the things happen in the world”.

Internal State − It is a representation of unobserved aspects of current state depending on

percept history.

Updating the state requires the information about −

 How the world evolves.

 How the agent’s actions affect the world.

6

Goal Based Agents

They choose their actions in order to achieve goals. Goal-based approach is more flexible than

reflex agent since the knowledge supporting a decision is explicitly modeled, thereby allowing

for modifications.

Goal − It is the description of desirable situations.

7

Utility Based Agents

They choose actions based on a preference (utility) for each state.

Goals are inadequate when −

 There are conflicting goals, out of which only few can be achieved.

 Goals have some uncertainty of being achieved and you need to weigh likelihood of

success against the importance of a goal.

The Nature of Environments

Some programs operate in the entirely artificial environment confined to keyboard input,

database, computer file systems and character output on a screen.

In contrast, some software agents (software robots or softbots) exist in rich, unlimited softbots

domains. The simulator has a very detailed, complex environment. The software agent needs

to choose from a long array of actions in real time. A softbot designed to scan the online

preferences of the customer and show interesting items to the customer works in the real as well

as an artificial environment.

8

The most famous artificial environment is the Turing Test environment, in which one real

and other artificial agents are tested on equal ground. This is a very challenging environment as

it is highly difficult for a software agent to perform as well as a human.

Turing Test

The success of an intelligent behavior of a system can be measured with Turing Test.

Two persons and a machine to be evaluated participate in the test. Out of the two persons, one

plays the role of the tester. Each of them sits in different rooms. The tester is unaware of who is

machine and who is a human. He interrogates the questions by typing and sending them to both

intelligences, to which he receives typed responses.

This test aims at fooling the tester. If the tester fails to determine machine’s response from the

human response, then the machine is said to be intelligent.

Properties of Environment

The environment has multifold properties −

 Discrete / Continuous − If there are a limited number of distinct, clearly defined, states

of the environment, the environment is discrete (For example, chess); otherwise it is

continuous (For example, driving).

 Observable / Partially Observable − If it is possible to determine the complete state of

the environment at each time point from the percepts it is observable; otherwise it is

only partially observable.

 Static / Dynamic − If the environment does not change while an agent is acting, then it

is static; otherwise it is dynamic.

 Single agent / Multiple agents − The environment may contain other agents which may

be of the same or different kind as that of the agent.

 Accessible / Inaccessible − If the agent’s sensory apparatus can have access to the

complete state of the environment, then the environment is accessible to that agent.

9

 Deterministic / Non-deterministic − If the next state of the environment is completely

determined by the current state and the actions of the agent, then the environment is

deterministic; otherwise it is non-deterministic.

 Episodic / Non-episodic − In an episodic environment, each episode consists of the

agent perceiving and then acting. The quality of its action depends just on the episode

itself. Subsequent episodes do not depend on the actions in the previous episodes.

Episodic environments are much simpler because the agent does not need to think

ahead.

Searching is the universal technique of problem solving in AI. There are some single-player

games such as tile games, Sudoku, crossword, etc. The search algorithms help you to search for

a particular position in such games.

Single Agent Pathfinding Problems

The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four tile puzzles are single-

agent-path-finding challenges. They consist of a matrix of tiles with a blank tile. The player is

required to arrange the tiles by sliding a tile either vertically or horizontally into a blank space

with the aim of accomplishing some objective.

The other examples of single agent pathfinding problems are Travelling Salesman Problem,

Rubik’s Cube, and Theorem Proving.

Search Terminology

 Problem Space − It is the environment in which the search takes place. (A set of states

and set of operators to change those states)

 Problem Instance − It is Initial state + Goal state.

 Problem Space Graph − It represents problem state. States are shown by nodes and

operators are shown by edges.

 Depth of a problem − Length of a shortest path or shortest sequence of operators from

Initial State to goal state.

10

 Space Complexity − The maximum number of nodes that are stored in memory.

 Time Complexity − The maximum number of nodes that are created.

 Admissibility − A property of an algorithm to always find an optimal solution.

 Branching Factor − The average number of child nodes in the problem space graph.

 Depth − Length of the shortest path from initial state to goal state.

Brute-Force Search Strategies

They are most simple, as they do not need any domain-specific knowledge. They work fine with

small number of possible states.

Requirements −

 State description

 A set of valid operators

 Initial state

 Goal state description

Breadth-First Search

It starts from the root node, explores the neighboring nodes first and moves towards the next

level neighbors. It generates one tree at a time until the solution is found. It can be implemented

using FIFO queue data structure. This method provides shortest path to the solution.

If branching factor (average number of child nodes for a given node) = b and depth = d, then

number of nodes at level d = bd.

The total no of nodes created in worst case is b + b2 + b3 + … + bd.

Disadvantage − Since each level of nodes is saved for creating next one, it consumes a lot of

memory space. Space requirement to store nodes is exponential.

Its complexity depends on the number of nodes. It can check duplicate nodes.

11

Depth-First Search

It is implemented in recursion with LIFO stack data structure. It creates the same set of nodes as

Breadth-First method, only in the different order.

As the nodes on the single path are stored in each iteration from root to leaf node, the space

requirement to store nodes is linear. With branching factor b and depth as m, the storage space

is bm.

Disadvantage − This algorithm may not terminate and go on infinitely on one path. The

solution to this issue is to choose a cut-off depth. If the ideal cut-off is d, and if chosen cut-off is

lesser than d, then this algorithm may fail. If chosen cut-off is more than d, then execution time

increases.

Its complexity depends on the number of paths. It cannot check duplicate nodes.

12

Bidirectional Search

It searches forward from initial state and backward from goal state till both meet to identify a

common state.

The path from initial state is concatenated with the inverse path from the goal state. Each search

is done only up to half of the total path.

Uniform Cost Search

Sorting is done in increasing cost of the path to a node. It always expands the least cost node. It

is identical to Breadth First search if each transition has the same cost.

It explores paths in the increasing order of cost.

Disadvantage − There can be multiple long paths with the cost ≤ C*. Uniform Cost search must

explore them all.

Iterative Deepening Depth-First Search

It performs depth-first search to level 1, starts over, executes a complete depth-first search to

level 2, and continues in such way till the solution is found.

It never creates a node until all lower nodes are generated. It only saves a stack of nodes. The

algorithm ends when it finds a solution at depth d. The number of nodes created at depth d is

bd and at depth d-1 is bd-1.

13

Comparison of Various Algorithms Complexities

Let us see the performance of algorithms based on various criteria −

Criterion
Breadth

First

Depth

First
Bidirectional

Uniform

Cost

Interactive

Deepening

Time bd bm bd/2 bd bd

Space bd bm bd/2 bd bd

Optimality Yes No Yes Yes Yes

Completeness Yes No Yes Yes Yes

Informed (Heuristic) Search Strategies

To solve large problems with large number of possible states, problem-specific knowledge

needs to be added to increase the efficiency of search algorithms.

Heuristic Evaluation Functions

They calculate the cost of optimal path between two states. A heuristic function for sliding-tiles

games is computed by counting number of moves that each tile makes from its goal state and

adding these number of moves for all tiles.

Pure Heuristic Search

It expands nodes in the order of their heuristic values. It creates two lists, a closed list for the

already expanded nodes and an open list for the created but unexpanded nodes.

In each iteration, a node with a minimum heuristic value is expanded, all its child nodes are

created and placed in the closed list. Then, the heuristic function is applied to the child nodes

and they are placed in the open list according to their heuristic value. The shorter paths are

saved and the longer ones are disposed.

14

A * Search

It is best-known form of Best First search. It avoids expanding paths that are already expensive,

but expands most promising paths first.

f(n) = g(n) + h(n), where

 g(n) the cost (so far) to reach the node

 h(n) estimated cost to get from the node to the goal

 f(n) estimated total cost of path through n to goal. It is implemented using priority queue

by increasing f(n).

Greedy Best First Search

It expands the node that is estimated to be closest to goal. It expands nodes based on f(n) = h(n).

It is implemented using priority queue.

Disadvantage − It can get stuck in loops. It is not optimal.

Local Search Algorithms

They start from a prospective solution and then move to a neighboring solution. They can return

a valid solution even if it is interrupted at any time before they end.

Hill-Climbing Search

It is an iterative algorithm that starts with an arbitrary solution to a problem and attempts to find

a better solution by changing a single element of the solution incrementally. If the change

produces a better solution, an incremental change is taken as a new solution. This process is

repeated until there are no further improvements.

function Hill-Climbing (problem), returns a state that is a local maximum.

inputs: problem, a problem

local variables: current, a node

 neighbor, a node

current <-Make_Node(Initial-State[problem])

loop

 do neighbor <- a highest_valued successor of current

15

 if Value[neighbor] ≤ Value[current] then

 return State[current]

 current <- neighbor

end

Disadvantage − This algorithm is neither complete, nor optimal.

Local Beam Search

In this algorithm, it holds k number of states at any given time. At the start, these states are

generated randomly. The successors of these k states are computed with the help of objective

function. If any of these successors is the maximum value of the objective function, then the

algorithm stops.

Otherwise the (initial k states and k number of successors of the states = 2k) states are placed in

a pool. The pool is then sorted numerically. The highest k states are selected as new initial

states. This process continues until a maximum value is reached.

function BeamSearch(problem, k), returns a solution state.

start with k randomly generated states

loop

 generate all successors of all k states

 if any of the states = solution, then return the state

 else select the k best successors

end

Simulated Annealing

Annealing is the process of heating and cooling a metal to change its internal structure for

modifying its physical properties. When the metal cools, its new structure is seized, and the

metal retains its newly obtained properties. In simulated annealing process, the temperature is

kept variable.

16

We initially set the temperature high and then allow it to ‘cool' slowly as the algorithm

proceeds. When the temperature is high, the algorithm is allowed to accept worse solutions with

high frequency.

Start

 Initialize k = 0; L = integer number of variables;

 From i → j, search the performance difference Δ.

 If Δ <= 0 then accept else if exp(-Δ/T(k)) > random(0,1) then accept;

 Repeat steps 1 and 2 for L(k) steps.

 k = k + 1;

Repeat steps 1 through 4 till the criteria is met.

End

Travelling Salesman Problem

In this algorithm, the objective is to find a low-cost tour that starts from a city, visits all cities

en-route exactly once and ends at the same starting city.

Start

 Find out all (n -1)! Possible solutions, where n is the total number of cities.

 Determine the minimum cost by finding out the cost of each of these (n -1)! solutions.

 Finally, keep the one with the minimum cost.

end

17

Fuzzy Logic Systems (FLS) produce acceptable but definite output in response to incomplete,

ambiguous, distorted, or inaccurate (fuzzy) input.

What is Fuzzy Logic?

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of

FL imitates the way of decision making in humans that involves all intermediate possibilities

between digital values YES and NO.

The conventional logic block that a computer can understand takes precise input and produces a

definite output as TRUE or FALSE, which is equivalent to human’s YES or NO.

The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision

making includes a range of possibilities between YES and NO, such as −

CERTAINLY YES

POSSIBLY YES

CANNOT SAY

POSSIBLY NO

CERTAINLY NO

The fuzzy logic works on the levels of possibilities of input to achieve the definite output.

18

Implementation

 It can be implemented in systems with various sizes and capabilities ranging from small

micro-controllers to large, networked, workstation-based control systems.

 It can be implemented in hardware, software, or a combination of both.

Why Fuzzy Logic?

Fuzzy logic is useful for commercial and practical purposes.

 It can control machines and consumer products.

 It may not give accurate reasoning, but acceptable reasoning.

 Fuzzy logic helps to deal with the uncertainty in engineering.

Fuzzy Logic Systems Architecture

It has four main parts as shown −

 Fuzzification Module − It transforms the system inputs, which are crisp numbers, into

fuzzy sets. It splits the input signal into five steps such as −

LP x is Large

Positive

MP x is Medium

Positive

S x is Small

MN x is Medium

Negative

LN x is Large

Negative

19

 Knowledge Base − It stores IF-THEN rules provided by experts.

 Inference Engine − It simulates the human reasoning process by making fuzzy inference

on the inputs and IF-THEN rules.

 Defuzzification Module − It transforms the fuzzy set obtained by the inference engine

into a crisp value.

The membership functions work on fuzzy sets of variables.

Membership Function

Membership functions allow you to quantify linguistic term and represent a fuzzy set

graphically. A membership function for a fuzzy set A on the universe of discourse X is defined

as μA:X → [0,1].

Here, each element of X is mapped to a value between 0 and 1. It is called membership

value or degree of membership. It quantifies the degree of membership of the element in X to

the fuzzy set A.

 x axis represents the universe of discourse.

 y axis represents the degrees of membership in the [0, 1] interval.

20

There can be multiple membership functions applicable to fuzzify a numerical value. Simple

membership functions are used as use of complex functions does not add more precision in the

output.

All membership functions for LP, MP, S, MN, and LN are shown as below −

The triangular membership function shapes are most common among various other membership

function shapes such as trapezoidal, singleton, and Gaussian.

Here, the input to 5-level fuzzifier varies from -10 volts to +10 volts. Hence the corresponding

output also changes.

Example of a Fuzzy Logic System

Let us consider an air conditioning system with 5-level fuzzy logic system. This system adjusts

the temperature of air conditioner by comparing the room temperature and the target

temperature value.

21

Algorithm

 Define linguistic Variables and terms (start)

 Construct membership functions for them. (start)

 Construct knowledge base of rules (start)

 Convert crisp data into fuzzy data sets using membership functions. (fuzzification)

 Evaluate rules in the rule base. (Inference Engine)

 Combine results from each rule. (Inference Engine)

 Convert output data into non-fuzzy values. (defuzzification)

22

Development

Step 1 − Define linguistic variables and terms

Linguistic variables are input and output variables in the form of simple words or sentences. For

room temperature, cold, warm, hot, etc., are linguistic terms.

Temperature (t) = {very-cold, cold, warm, very-warm, hot}

Every member of this set is a linguistic term and it can cover some portion of overall

temperature values.

Step 2 − Construct membership functions for them

The membership functions of temperature variable are as shown −

Step3 − Construct knowledge base rules

Create a matrix of room temperature values versus target temperature values that an air

conditioning system is expected to provide.

RoomTemp.

/Target
Very_Cold Cold Warm Hot Very_Hot

23

Very_Cold No_Change Heat Heat Heat Heat

Cold Cool No_Change Heat Heat Heat

Warm Cool Cool No_Change Heat Heat

Hot Cool Cool Cool No_Change Heat

Very_Hot Cool Cool Cool Cool No_Change

Build a set of rules into the knowledge base in the form of IF-THEN-ELSE structures.

Sr.

No.

Condition Action

1

IF temperature=(Cold OR

Very_Cold) AND

target=Warm THEN

Heat

2

IF temperature=(Hot OR

Very_Hot) AND target=Warm

THEN

Cool

3
IF (temperature=Warm) AND

(target=Warm) THEN

No_Change

Step 4 − Obtain fuzzy value

24

Fuzzy set operations perform evaluation of rules. The operations used for OR and AND are

Max and Min respectively. Combine all results of evaluation to form a final result. This result is

a fuzzy value.

Step 5 − Perform defuzzification

Defuzzification is then performed according to membership function for output variable.

Application Areas of Fuzzy Logic

The key application areas of fuzzy logic are as given −

Automotive Systems

 Automatic Gearboxes

 Four-Wheel Steering

 Vehicle environment control

Consumer Electronic Goods

 Hi-Fi Systems

 Photocopiers

 Still and Video Cameras

 Television

25

Domestic Goods

 Microwave Ovens

 Refrigerators

 Toasters

 Vacuum Cleaners

 Washing Machines

Environment Control

 Air Conditioners/Dryers/Heaters

 Humidifiers

Advantages of FLSs

 Mathematical concepts within fuzzy reasoning are very simple.

 You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic.

 Fuzzy logic Systems can take imprecise, distorted, noisy input information.

 FLSs are easy to construct and understand.

 Fuzzy logic is a solution to complex problems in all fields of life, including medicine, as

it resembles human reasoning and decision making.

Disadvantages of FLSs

 There is no systematic approach to fuzzy system designing.

 They are understandable only when simple.

 They are suitable for the problems which do not need high accuracy.

Best First Search (Informed Search)

Prerequisites : BFS, DFS

In BFS and DFS, when we are at a node, we can consider any of the adjacent as next node.

So both BFS and DFS blindly explore paths without considering any cost function. The idea

of Best First Search is to use an evaluation function to decide which adjacent is most

https://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

26

promising and then explore. Best First Search falls under the category of Heuristic Search

or Informed Search.

We use a priority queue to store costs of nodes. So the implementation is a variation of

BFS, we just need to change Queue to PriorityQueue.

// This pseudocode is adapted from below

// source:

// https://courses.cs.washington.edu/

Best-First-Search(Grah g, Node start)

 1) Create an empty PriorityQueue

 PriorityQueue pq;

 2) Insert "start" in pq.

 pq.insert(start)

 3) Until PriorityQueue is empty

 u = PriorityQueue.DeleteMin

 If u is the goal

 Exit

 Else

 Foreach neighbor v of u

 If v "Unvisited"

 Mark v "Visited"

 pq.insert(v)

 Mark u "Examined"

End procedure

Let us consider the below example.

https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirstsearch.html

27

We start from source "S" and search for

goal "I" using given costs and Best

First search.

pq initially contains S

We remove s from and process unvisited

neighbors of S to pq.

pq now contains {A, C, B} (C is put

before B because C has lesser cost)

We remove A from pq and process unvisited

neighbors of A to pq.

pq now contains {C, B, E, D}

We remove C from pq and process unvisited

neighbors of C to pq.

pq now contains {B, H, E, D}

https://media.geeksforgeeks.org/wp-content/uploads/BFS2.png
https://media.geeksforgeeks.org/wp-content/uploads/BFS2.png

28

We remove B from pq and process unvisited

neighbors of B to pq.

pq now contains {H, E, D, F, G}

We remove H from pq. Since our goal

"I" is a neighbor of H, we return.

Constraint Satisfaction Problems in Artificial Intelligence

We have seen so many techniques like Local search, Adversarial search to solve different

problems. The objective of every problem-solving technique is one, i.e., to find a solution to

reach the goal. Although, in adversarial search and local search, there were no constraints on the

agents while solving the problems and reaching to its solutions.

In this section, we will discuss another type of problem-solving technique known as Constraint

satisfaction technique. By the name, it is understood that constraint satisfaction means solving a

problem under certain constraints or rules.

Constraint satisfaction is a technique where a problem is solved when its values satisfy certain

constraints or rules of the problem. Such type of technique leads to a deeper understanding of

the problem structure as well as its complexity.

Constraint satisfaction depends on three components, namely:

 X: It is a set of variables.

 D: It is a set of domains where the variables reside. There is a specific domain for each variable.

 C: It is a set of constraints which are followed by the set of variables.

In constraint satisfaction, domains are the spaces where the variables reside, following the

problem specific constraints. These are the three main elements of a constraint satisfaction

technique. The constraint value consists of a pair of {scope, rel}. The scope is a tuple of

variables which participate in the constraint and rel is a relation which includes a list of values

which the variables can take to satisfy the constraints of the problem.

Solving Constraint Satisfaction Problems

The requirements to solve a constraint satisfaction problem (CSP) is:

 A state-space

 The notion of the solution.

29

A state in state-space is defined by assigning values to some or all variables such as

{X1=v1, X2=v2, and so on…}.

An assignment of values to a variable can be done in three ways:

 Consistent or Legal Assignment: An assignment which does not violate any constraint or rule

is called Consistent or legal assignment.

 Complete Assignment: An assignment where every variable is assigned with a value, and the

solution to the CSP remains consistent. Such assignment is known as Complete assignment.

 Partial Assignment: An assignment which assigns values to some of the variables only. Such

type of assignments are called Partial assignments.

Types of Domains in CSP

There are following two types of domains which are used by the variables :

 Discrete Domain: It is an infinite domain which can have one state for multiple variables. For

example, a start state can be allocated infinite times for each variable.

 Finite Domain: It is a finite domain which can have continuous states describing one domain for

one specific variable. It is also called a continuous domain.

Constraint Types in CSP

With respect to the variables, basically there are following types of constraints:

 Unary Constraints: It is the simplest type of constraints that restricts the value of a single

variable.

 Binary Constraints: It is the constraint type which relates two variables. A value x2 will contain

a value which lies between x1 and x3.

 Global Constraints: It is the constraint type which involves an arbitrary number of variables.

Some special types of solution algorithms are used to solve the following types of

constraints:

 Linear Constraints: These type of constraints are commonly used in linear programming where

each variable containing an integer value exists in linear form only.

 Non-linear Constraints: These type of constraints are used in non-linear programming where

each variable (an integer value) exists in a non-linear form.

Note: A special constraint which works in real-world is known as Preference constraint.

Constraint Propagation

30

In local state-spaces, the choice is only one, i.e., to search for a solution. But in CSP, we have

two choices either:

 We can search for a solution or

 We can perform a special type of inference called constraint propagation.

Constraint propagation is a special type of inference which helps in reducing the legal number

of values for the variables. The idea behind constraint propagation is local consistency.

In local consistency, variables are treated as nodes, and each binary constraint is treated as

an arc in the given problem. There are following local consistencies which are discussed

below:

 Node Consistency: A single variable is said to be node consistent if all the values in the

variable’s domain satisfy the unary constraints on the variables.

 Arc Consistency: A variable is arc consistent if every value in its domain satisfies the binary

constraints of the variables.

 Path Consistency: When the evaluation of a set of two variable with respect to a third variable

can be extended over another variable, satisfying all the binary constraints. It is similar to arc

consistency.

 k-consistency: This type of consistency is used to define the notion of stronger forms of

propagation. Here, we examine the k-consistency of the variables.

CSP Problems

Constraint satisfaction includes those problems which contains some constraints while solving

the problem. CSP includes the following problems:

 Graph Coloring: The problem where the constraint is that no adjacent sides can have the same

color.

31

 Sudoku Playing: The gameplay where the constraint is that no number from 0-9 can be repeated

in the same row or column.

 n-queen problem: In n-queen problem, the constraint is that no queen should be placed either

diagonally, in the same row or column.

32

Note: The n-queen problem is already discussed in Problem-solving in AI section.

 Crossword: In crossword problem, the constraint is that there should be the correct formation of

the words, and it should be meaningful.

 Latin square Problem: In this game, the task is to search the pattern which is occurring several

times in the game. They may be shuffled but will contain the same digits.

33

 Cryptarithmetic Problem: This problem has one most important constraint that is, we cannot

assign a different digit to the same character. All digits should contain a unique alphabet.

CONSTRAINT

SATISFACTION PROBLEMS

In which we see how treating states as more than just little black boxes leads to the

invention of a range of powerful new search methods and a deeper understanding

of problem structure and complexity.

Chapters 3 and 4 explored the idea that problems can be solved by searching in a

space of states. These states can be evaluated by domain-specific heuristics and tested to

see whether they are goal states. From the point of view of the search algorithm,

however,

34

BLACK BOX each state is a black box with no discernible internal structure. It is

represented by an arbi-

trary data structure that can be accessed only by the problem-specific routines—the

successor

function, heuristic function, and goal test.

This chapter examines constraint satisfaction problems, whose states and goal test

REPRESENTATION conform to a standard, structured, and very simple representation

(Section 5.1). Search al-

gorithms can be defined that take advantage of the structure of states and use general-

purpose

rather than problem-specific heuristics to enable the solution of large problems (Sections

5.2–

5.3). Perhaps most importantly, the standard representation of the goal test reveals the

struc-

ture of the problem itself (Section 5.4). This leads to methods for problem decomposition

and to an understanding of the intimate connection between the structure of a problem

and

the difficulty of solving it.

5.1 CONSTRAINT SATISFACTION PROBLEMS

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of vari-

CONSTRAINT

SATISFACTION

35

PROBLEM

VARIABLES ables, X1, X2, . . . , Xn, and a set of constraints, C1, C2, . . . , Cm. Each

variable Xi has a

CONSTRAINTS nonempty domain Di of possible values. Each constraint Ci

involves some subset of the

DOMAIN

VALUES

variables and specifies the allowable combinations of values for that subset. A state of the

problem is defined by an assignment of valuesto some or all of the variables, {Xi = vi

, Xj =

ASSIGNMENT vj , . . .}. An assignment that does not violate any constraints is called a

consistent or legal

CONSISTENT assignment. A complete assignment is one in which every variable is

mentioned, and a so-

lution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also

require a solution that maximizes an objective function.

o what does all this mean? Suppose that, having tired of Romania, we are looking

at a map of Australia showing each of its states and territories, as in Figure 5.1(a), and

that

we are given the task of coloring each region either red, green, or blue in such a way that

no

36

neighboring regions have the same color. To formulate this as a CSP, we define the

variables

to be the regions: WA, NT, Q, NSW , V , SA, and T. The domain of each variable is the

set

{red, green, blue}. The constraints require neighboring regions to have distinct colors; for

example, the allowable combinations for WA and NT are the pairs

{(red, green),(red, blue),(green, red),(green, blue),(blue, red),(blue, green)} .

(The constraint can also be represented more succinctly as the inequality WA 6= NT,

pro-

vided the constraint satisfaction algorithm has some way to evaluate such expressions.)

There

are many possible solutions, such as

{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red }.

CONSTRAINT GRAPH It is helpful to visualize a CSP as a constraint graph, as shown

in Figure 5.1(b). The nodes

of the graph correspond to variables of the problem and the arcs correspond to

constraints.

Treating a problem as a CSP confers several important benefits. Because the representa-

tion of states in a CSP conforms to a standard pattern—that is, a set of variables with

assigned

values—the successor function and goal test can written in a generic way that applies to

all

37

CSPs. Furthermore, we can develop effective, generic heuristics that require no

additional,

domain-specific expertise. Finally, the structure of the constraint graph can be used to

sim-

plify the solution process, in some cases giving an exponential reduction in complexity.

The

viewed as a constraint satisfaction problem. The goal is to assign colors to each region so

that no neighboring regions have the same color. (b) The map-coloring problem

represented

as a constraint graph.

It is fairly easy to see that a CSP can be given an incremental formulation as a standard

search problem as follows:

♦ Initial state: the empty assignment {}, in which all variables are unassigned.

♦ Successor function: a value can be assigned to any unassigned variable, provided that

it does not conflict with previously assigned variables.

♦ Goal test: the current assignment is complete.

♦ Path cost: a constant cost (e.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are

n variables. Furthermore, the search tree extends only to depth n. For these reasons, depth-

first search algorithms are popular for CSPs. (See Section 5.2.) It is also the case that the

path by which a solution is reached is irrelevant. Hence, we can also use a complete-state

formulation, in which every state is a complete assignment that might or might not satisfy

the constraints. Local search methods work well for this formulation. (See Section 5.3.)

38

FINITE DOMAINS The simplest kind of CSP involves variables that are discrete and have

finite domains.

Map-coloring problems are of this kind. The 8-queens problem described in Chapter 3 can

also be viewed as a finite-domain CSP, where the variables Q1, . . . , Q8 are the positions of

each queen in columns 1, . . . , 8 and each variable has the domain {1, 2, 3, 4, 5, 6, 7, 8}. If

the

maximum domain size of any variable in a CSP is d, then the number of possible complete

assignments is O(d

n

)—that is, exponential in the number of variables. Finite-domain CSPs

BOOLEAN CSPS include Boolean CSPs, whose variables can be either true or false.

Boolean CSPs include

as special cases some NP-complete problems, such as 3SAT. (See Chapter 7.) In the worst

case, therefore, we cannot expect to solve finite-domain CSPs in less than exponential time.

In most practical applications, however, general-purpose CSP algorithms can solve

problems

orders of magnitude larger than those solvable via the general-purpose search algorithms

that

we saw in Chapter 3.

INFINITE DOMAINS Discrete variables can also have infinite domains—for example, the

set of integers or

the set of strings. For example, when scheduling construction jobs onto a calendar, each

job’s

start date is a variable and the possible values are integer numbers of days from the

current

39

date. With infinite domains, it is no longer possible to describe constraints by enumerating

all allowed combinations of values. Instead, a constraint language must be used. For ex-

CONSTRAINT

LANGUAGE

ample, if Job1, which takes five days, must precede Job3, then we would need a constraint

language of algebraic inequalities such as StartJob1 + 5 ≤ StartJob3. It is also no longer

possible to solve such constraints by enumerating all possible assignments, because there

are

infinitely many of them. Special solution algorithms (which we will not discuss here) exist

for linear constraints on integer variables—that is, constraints, such as the one just given,

LINEAR

CONSTRAINTS

in which each variable appears only in linear form. It can be shown that no algorithm

exists

for solving general nonlinear constraints on integer variables. In some cases, we can reduce

NONLINEAR

CONSTRAINTS

integer constraint problems to finite-domain problems simply by bounding the values of all

the variables. For example, in a scheduling problem, we can set an upper bound equal to

the

total length of all the jobs to be scheduled.

Constraintsatisfaction problems with continuous domains are very common in the real

CONTINUOUS

DOMAINS

40

world and are widely studied in the field of operations research. For example, the

scheduling

of experiments on the Hubble Space Telescope requires very precise timing of

observations;

the start and finish of each observation and maneuver are continuous-valued variables that

must obey a variety of astronomical, precedence, and power constraints. The best-known

category of continuous-domain CSPs is that of linear programming problems, where con-

LINEAR

PROGRAMMING

straints must be linear inequalities forming a convex region. Linear programming

problems

can be solved in time polynomial in the number of variables. Problems with different types

of

constraints and objective functions have also been studied—quadratic programming,

second-

order conic programming, and so on.

In addition to examining the types of variables that can appear in CSPs, it is useful to

UNARY CONSTRAINT look at the types of constraints. The simplest type is the unary

constraint, which restricts the

value of a single variable. For example, it could be the case that South Australians actively

dislike the color green. Every unary constraint can be eliminated simply by preprocessing

the domain of the corresponding variable to remove any value that violates the constraint.

A

BINARY CONSTRAINT binary constraint relates two variables. For example, SA 6=

NSW is a binary constraint. A

41

binary CSP is one with only binary constraints; it can be represented as a constraint graph,

as

in Figure 5.1(b).

Higher-order constraints involve three or more variables. A familiar example is pro-

CRYPTARITHMETIC vided by cryptarithmetic puzzles. (See Figure 5.2(a).) It is usual to

insist that each letter in

a cryptarithmetic puzzle represent a different digit. For the case in Figure 5.2(a)), this

would

be represented as the six-variable constraint Alldiff (F, T,U, W, R, O). Alternatively, it can

be represented by a collection of binary constraints such as F 6= T. The addition

constraints

on the four columns of the puzzle also involve several variables and can be written as

O + O = R + 10 · X1

X1 + W + W = U + 10 · X2

X2 + T + T = O + 10 · X3

X3 = F

where X1, X2, and X3 are auxiliary variables representing the digit (0 or 1) carried over

into AUXILIARY

VARIABLES

the next column. Higher-order constraints can be represented in a constraint hypergraph,

CONSTRAINT

HYPERGRAPH

such as the one shown in Figure 5.2(b). The sharp-eyed reader will have noticed that the

Alldiff constraint can be broken down into binary constraints—F 6= T, F 6= U, and so on.

42

In fact, as Exercise 5.11 asks you to prove, every higher-order, finite-domain constraint can

be reduced to a set of binary constraints if enough auxiliary variables are introduced.

Because

of this, we will deal only with binary constraints in this chapter.

The constraints we have described so far have all been absolute constraints, violation

PREFERENCE of which rules out a potential solution. Many real-world CSPs include

preference constraints

indicating which solutions are preferred. For example, in a university timetabling problem,

Prof. X might prefer teaching in the morning whereas Prof. Y prefers teaching in the after-

noon. A timetable that has Prof. X teaching at 2 p.m. would still be a solution (unless Prof.

X

happens to be the department chair), but would not be an optimal one. Preference

constraints

can often be encoded as costs on individual variable assignments—for example, assigning

an afternoon slot for Prof. X costs 2 points against the overall objective function, whereas a

morning slot costs 1. With this formulation, CSPs with preferences can be solved using opti

The preceding section gave a formulation of CSPs as search problems. Using this formula-

tion, any of the search algorithms from Chapters 3 and 4 can solve CSPs. Suppose we apply

breadth-first search to the generic CSP problem formulation given in the preceding

section.

We quickly notice something terrible: the branching factor at the top level is nd, because

any

of d values can be assigned to any of n variables. At the next level, the branching factor is

(n − 1)d, and so on for n levels. We generate a tree with n! · d

43

n

leaves, even though there are

only d

n possible complete assignments!

Our seemingly reasonable but na¨ıve problem formulation has ignored a crucial property

COMMUTATIVITY common to all CSPs: commutativity. A problem is commutative if the

order of application

of any given set of actions has no effect on the outcome. This is the case for CSPs be-

cause, when assigning values to variables, we reach the same partial assignment, regardless

of order. Therefore, all CSP search algorithms generate successors by considering possible

assignments for only a single variable at each node in the search tree. For example, at the

root node of a search tree for coloring the map of Australia, we might have a choice

between

SA = red, SA = green, and SA = blue, but we would never choose between SA = red and

WA = blue. With this restriction, the number of leaves is d

n

, as we would hope.

The term backtracking search is used for a depth-first search that chooses values for

BACKTRACKING

SEARCH

one variable at a time and backtracks when a variable has no legal values left to assign.

The

algorithm is shown in Figure 5.3. Notice that it uses, in effect, the one-at-a-time method of

44

AI Adversarial search: Adversarial search is a game-playing technique where the agents are

surrounded by a competitive environment. A conflicting goal is given to the agents (multiagent).

These agents compete with one another and try to defeat one another in order to win the game.

Such conflicting goals give rise to the adversarial search. Here, game-playing means discussing

those games where human intelligence and logic factor is used, excluding other factors such

as luck factor. Tic-tac-toe, chess, checkers, etc., are such type of games where no luck factor

works, only mind works.

Mathematically, this search is based on the concept of ‘Game Theory.’ According to game

theory, a game is played between two players. To complete the game, one has to win the game

and the other looses automatically.’

Techniques required to get the best optimal solution

There is always a need to choose those algorithms which provide the best optimal solution in a

limited time. So, we use the following techniques which could fulfill our requirements:

 Pruning: A technique which allows ignoring the unwanted portions of a search tree which make

no difference in its final result.

 Heuristic Evaluation Function: It allows to approximate the cost value at each level of the

search tree, before reaching the goal node.

Elements of Game Playing search

To play a game, we use a game tree to know all the possible choices and to pick the best one out.

There are following elements of a game-playing:

 S0: It is the initial state from where a game begins.

 PLAYER (s): It defines which player is having the current turn to make a move in the state.

 ACTIONS (s): It defines the set of legal moves to be used in a state.

https://www.javatpoint.com/ai-adversarial-search

45

 RESULT (s, a): It is a transition model which defines the result of a move.

 TERMINAL-TEST (s): It defines that the game has ended and returns true.

 UTILITY (s,p): It defines the final value with which the game has ended. This function is also

known as Objective function or Payoff function. The price which the winner will get i.e.

 (-1): If the PLAYER loses.

 (+1): If the PLAYER wins.

 (0): If there is a draw between the PLAYERS.

For example, in chess, tic-tac-toe, we have two or three possible outcomes. Either to win, to

lose, or to draw the match with values +1,-1 or 0.

Let’s understand the working of the elements with the help of a game tree designed for tic-tac-

toe. Here, the node represents the game state and edges represent the moves taken by the

players.

46

A game-tree for tic-tac-toe

 INITIAL STATE (S0): The top node in the game-tree represents the initial state in the tree and

shows all the possible choice to pick out one.

 PLAYER (s): There are two players, MAX and MIN. MAX begins the game by picking one

best move and place X in the empty square box.

 ACTIONS (s): Both the players can make moves in the empty boxes chance by chance.

 RESULT (s, a): The moves made by MIN and MAX will decide the outcome of the game.

 TERMINAL-TEST(s): When all the empty boxes will be filled, it will be the terminating state

of the game.

 UTILITY: At the end, we will get to know who wins: MAX or MIN, and accordingly, the price

will be given to them.

Types of algorithms in Adversarial search

In a normal search, we follow a sequence of actions to reach the goal or to finish the game

optimally. But in an adversarial search, the result depends on the players which will decide the

result of the game. It is also obvious that the solution for the goal state will be an optimal

solution because the player will try to win the game with the shortest path and under limited

time.

There are following types of adversarial search:

 Minmax Algorithm

 Alpha-beta Pruning.

Minimax Strategy

In artificial intelligence, minimax is a decision-making strategy under game theory, which is

used to minimize the losing chances in a game and to maximize the winning chances. This

strategy is also known as ‘Minmax,’ ’MM,’ or ‘Saddle point.’ Basically, it is a two-player

game strategy where if one wins, the other loose the game. This strategy simulates those games

that we play in our day-to-day life. Like, if two persons are playing chess, the result will be in

favor of one player and will unfavor the other one. The person who will make his best try,efforts

as well as cleverness, will surely win.

47

We can easily understand this strategy via game tree– where the nodes represent the states of

the game and edges represent the moves made by the players in the game. Players will be two

namely:

 MIN: Decrease the chances of MAX to win the game.

 MAX: Increases his chances of winning the game.

They both play the game alternatively, i.e., turn by turn and following the above strategy, i.e., if

one wins, the other will definitely lose it. Both players look at one another as competitors and

will try to defeat one-another, giving their best.

In minimax strategy, the result of the game or the utility value is generated by a heuristic

function by propagating from the initial node to the root node. It follows the backtracking

technique and backtracks to find the best choice. MAX will choose that path which will increase

its utility value and MIN will choose the opposite path which could help it to minimize MAX’s

utility value.

MINIMAX Algorithm

MINIMAX algorithm is a backtracking algorithm where it backtracks to pick the best move out

of several choices. MINIMAX strategy follows the DFS (Depth-first search) concept. Here, we

have two players MIN and MAX, and the game is played alternatively between them, i.e.,

when MAX made a move, then the next turn is of MIN. It means the move made by MAX is

fixed and, he cannot change it. The same concept is followed in DFS strategy, i.e., we follow the

same path and cannot change in the middle. That’s why in MINIMAX algorithm, instead of BFS,

we follow DFS.

 Keep on generating the game tree/ search tree till a limit d.

 Compute the move using a heuristic function.

 Propagate the values from the leaf node till the current position following the minimax strategy.

 Make the best move from the choices.

Alpha-beta Pruning | Artificial Intelligence

Alpha-beta pruning is an advance version of MINIMAX algorithm. The drawback of minimax

strategy is that it explores each node in the tree deeply to provide the best path among all the

paths. This increases its time complexity. But as we know, the performance measure is the first

48

consideration for any optimal algorithm. Therefore, alpha-beta pruning reduces this drawback of

minimax strategy by less exploring the nodes of the search tree.

The method used in alpha-beta pruning is that it cutoff the search by exploring less number of

nodes. It makes the same moves as a minimax algorithm does, but it prunes the unwanted

branches using the pruning technique (discussed in adversarial search). Alpha-beta pruning

works on two threshold values, i.e., ? (alpha) and ? (beta).

 ?: It is the best highest value, a MAX player can have. It is the lower bound, which represents

negative infinity value.

 ?: It is the best lowest value, a MIN player can have. It is the upper bound which represents

positive infinity.

So, each MAX node has ?-value, which never decreases, and each MIN node has ?-value, which

never increases.

Note: Alpha-beta pruning technique can be applied to trees of any depth, and it is possible to

prune the entire subtrees easily.

Working of Alpha-beta Pruning

Consider the below example of a game tree where P and Q are two players. The game will be

played alternatively, i.e., chance by chance. Let, P be the player who will try to win the game by

maximizing its winning chances. Q is the player who will try to minimize P’s winning chances.

Here, ? will represent the maximum value of the nodes, which will be the value for P as

well. ? will represent the minimum value of the nodes, which will be the value of Q.

49

 Any one player will start the game. Following the DFS order, the player will choose one path

and will reach to its depth, i.e., where he will find the TERMINAL value.

 If the game is started by player P, he will choose the maximum value in order to increase its

winning chances with maximum utility value.

 If the game is started by player Q, he will choose the minimum value in order to decrease the

winning chances of A with the best possible minimum utility value.

 Both will play the game alternatively.

 The game will be started from the last level of the game tree, and the value will be chosen

accordingly.

 Like in the below figure, the game is started by player Q. He will pick the leftmost value of the

TERMINAL and fix it for beta (?). Now, the next TERMINAL value will be compared with the

?-value. If the value will be smaller than or equal to the ?-value, replace it with the current ?-

value otherwise no need to replace the value.

50

 After completing one part, move the achieved ?-value to its upper node and fix it for the other

threshold value, i.e., ?.

 Now, its P turn, he will pick the best maximum value. P will move to explore the next part only

after comparing the values with the current ?-value. If the value is equal or greater than the

current ?-value, then only it will be replaced otherwise we will prune the values.

 The steps will be repeated unless the result is not obtained.

 So, number of pruned nodes in the above example are four and MAX wins the game with the

maximum UTILITY value, i.e.,3

The rule which will be followed is: “Explore nodes if necessary otherwise prune the

unnecessary nodes.”

For example, in the above figure, the two players MAX and MIN are there. MAX starts the

game by choosing one path and propagating all the nodes of that path. Now, MAX will

backtrack to the initial node and choose the best path where his utility value will be the

maximum. After this, its MIN chance. MIN will also propagate through a path and again will

backtrack, but MIN will choose the path which could minimize MAX winning chances or the

utility value.

51

So, if the level is minimizing, the node will accept the minimum value from the successor

nodes. If the level is maximizing, the node will accept the maximum value from the successor.

Unit II

Knowledge representation and reasoning (KR², KR&R) is the field of artificial

intelligence (AI) dedicated to representing information about the world in a form that a computer

system can utilize to solve complex tasks such as diagnosing a medical condition or having a

dialog in a natural language. Knowledge representation incorporates findings from

psychology[1] about how humans solve problems and represent knowledge in order to

design formalisms that will make complex systems easier to design and build. Knowledge

representation and reasoning also incorporates findings from logic to automate various kinds

of reasoning, such as the application of rules or the relations of sets and subsets.

Examples of knowledge representation formalisms include semantic nets, systems

architecture, frames, rules, and ontologies. Examples of automated reasoning engines

include inference engines, theorem provers, and classifiers.

A Knowledge Based Agent in Artificial Intelligence has two levels: Knowledge Base (KB) and

Inference Engine.

1. Knowledge Base- It is the base level of an agent, which consist of domain specific content. In

this level agent has facts or information about the surrounding environment in which they are

working. It does not consider the actual implementation.

2. Implementation level- It consists of domain independent algorithms. At this level, agents can

recognize the data structures used in the knowledge base and algorithms which use them. For

example, propositional logic and resolution. Knowledge based agents are crucial to use in

partially observable environments. Before choosing any action, knowledge based agents make use

of the existing knowledge along with the current inputs from the environment in order to infer

hidden aspects of the current state.

https://en.m.wikipedia.org/wiki/Artificial_intelligence
https://en.m.wikipedia.org/wiki/Artificial_intelligence
https://en.m.wikipedia.org/wiki/Computer-aided_diagnosis
https://en.m.wikipedia.org/wiki/Natural_language_user_interface
https://en.m.wikipedia.org/wiki/Natural_language_user_interface
https://en.m.wikipedia.org/wiki/Knowledge_representation_and_reasoning#cite_note-1
https://en.m.wikipedia.org/wiki/Formalism_(mathematics)
https://en.m.wikipedia.org/wiki/Logic
https://en.m.wikipedia.org/wiki/Set_theory
https://en.m.wikipedia.org/wiki/Subset
https://en.m.wikipedia.org/wiki/Semantic_network
https://en.m.wikipedia.org/wiki/Systems_architecture
https://en.m.wikipedia.org/wiki/Systems_architecture
https://en.m.wikipedia.org/wiki/Frame_(artificial_intelligence)
https://en.m.wikipedia.org/wiki/Ontology_(information_science)
https://en.m.wikipedia.org/wiki/Automated_reasoning
https://en.m.wikipedia.org/wiki/Inference_engine
https://en.m.wikipedia.org/wiki/Automated_theorem_proving

52

An agent makes use of TELL and ASK mechanism.

-TELL the agent, about surrounding environment what it needs to know in order to perform some

action. TELL mechanism is similar to taking input for a system.

-Then the agent ASKs itself what action should be carried out to get desired output. ASK

mechanism is similar to producing output for a system. However, ASK mechanism makes use of

the knowledge base to decide what it should do.

TELL(K): Is a function that adds knowledge K to the knowledge base.

ASK(K): Is a function that queries the agent about the truth of K.

An agent carries out the following operations: First, it TELLs the knowledge base about facts/

information it perceives with the help of sensors. Then, it ASKs the knowledge base what action

should be carried out based on the input it has received. Then it performs the selected action with

the help of effectors.

Representation of knowledge in AI

The objective here is to express knowledge in a computer traceable form such that it can be used

to help agents perform well. To make programs capable of representing and using this knowledge

in a more explicit way. There is a set of facts which the program will use to figure out how to

solve the problem. One approaches to deal with knowledge is based on Logic.

Let’s start with the simplest type of logic.

Propositional logic

It is a simple knowledge representation language. It works at the sentential level. The sentences

here are called propositions. We do not go within the individual sentences and discuss their

meaning. Propositional logic is unambiguous and is also called Boolean logic as the sentences or

propositions return a true or false value. Further, all other logic like First Order Logic are built on

top of Propositional Logic. For instance,

53

Grass is green.

It is Sunday.

2 + 2=4.

These are all valid propositions, whereas

Close the door.

Is it Monday today?

x=x are invalid propositions.

Atomic propositions are simple propositions and Compound propositions are constructed by

combining atomic propositions using logical connectives and parenthesis. For instance, It is

Sunday and it is a holiday. Logical connectives are used in propositional logic to connect two

sentences logically:

Let’s look at this with the help of an example. If it is hot and humid, then it is raining.

Here P= It is hot,

Q= It is humid,

54

R=It is raining

This can be represented as:

(P ^ Q) → R

Properties of Propositional Logic

1. Commutativity

2. Associativity

3. Distributive property

4. DeMorgan’s law

5. Double negation elimination

6. Identity element

However, Propositional Logic has limited expressive power. It cannot be used to represent

specializations, generalizations, or patterns. Elements like all, some and none cannot be expressed

using propositional logic. For example, All mushrooms are brown, some grapes are sweet, and

more.

Predicate logic or First Order Logic

It is another knowledge representation language built on top of propositional logic. It is more

expressive as compared to propositional logic and supports temporal information. It is also called

higher order logic and can support complex statements.

Components

55

 User defines primitives:

1. Constant symbols- terms with fixed value which belong to the domain. Example: Tara, 2.

2. Function symbols- mapping individuals to individuals. Example: Mary is the mother of Tara.

mother_of(Tara)=Mary

3. Predicate symbols- mapping individuals to truth values. Example: 4 is greater than 2.

greater(4,2)

 FOL supports these primitives:

1. Variable symbols- x,y

2. Connectives- conjunction, disjunction, implication, negation, biconditional

3. Quantifiers

A. Universal — It stands for “for all” and is represented by the symbol ∀. It corresponds to

conjunction ‘and.’ Example: All dolphins are mammals.

∀x: dolphin(x) — -> mammal(x)

B. Existential- It stands for “there exists”. It is represented by the symbol ∃ and corresponds to

disjunction ‘or.’ Example: Some mammals lay eggs.

∃x: mammal(x) — -> lay_eggs(x)

C. Equal: X=Y

https://en.wikipedia.org/wiki/%E2%88%80
https://en.wikipedia.org/wiki/%E2%88%80
https://en.wikipedia.org/wiki/%E2%88%83
https://en.wikipedia.org/wiki/%E2%88%83

56

In predicate logic, a rule has two parts: predecessor and successor. If the predecessor is true, the

successor is true. It uses the implication symbol. It represents if-then type of sentences. Example:

If the bag is of pink color, I will buy it. colour(bag, pink) — — -> buy(bag)

Inference in FOL- Chaining

It is used for simple problems or arrangement of facts. It is used when the knowledge base

consists of sentences with horn clauses (I.e. disjunction of literals of which at the most one is

positive).

Forward Chaining

It is an inference technique that starts with sentences in the knowledge base and generates new

conclusions that can in turn allow more inferences to be made. It is a data driven approach. We

start with known facts and arrange or chain them in order to reach the query. It uses modus

ponens. It starts with available information and uses inference rules to extract more data until the

goal is reached.

Example: To conclude color of the pet named Fritz, given that it croaks and eats flies. The

Knowledge Base contains these rules:

If X croaks and eats flies — → Then X is a frog.

If X sings — → Then X is a bird.

If X is a frog — → Then X is green.

If x is a bird — -> Then X is blue.

Given: Croaks and eats flies is searched in the KB. This leads us to rule 1 as its antecedent

matches our data. The consequent of rule 1 i.e. X is a frog is added to the KB. Now the KB is

searched again and rule 3 is chosen since its antecedent (X is a frog) matches our data that was

just confirmed. Then the new consequent is added to the KB (i.e. X is green). Thus we have

reached the goal of determining color of the pet given than it croaks and eats flies.

57

Backward Chaining

It is an inference technique that starts from the goal. We find implication sentences that allow us

to conclude the it and attempt to establish its premises. It uses modus ponens backwards. It is a

goal driven approach and is used in theorem proving.

Example: To conclude color of the pet named Fritz, given that it croaks and eats flies. The KB

contains these rules:

If X croaks and eats flies — → Then X is a frog.

If X sings — → Then X is a bird.

If X is a frog — → Then X is green.

If x is a bird — -> Then X is blue.

The third and forth rules are selected as they match our goal of determining color of the pet. i.e. X

is green or X is blue. Both the antecedents of the rules i.e. X is a frog and X is a bird are added to

the goal list. Then KB is searched again and the first two rules are selected as their consequents

match the new goals added to the list i.e. X is a frog or X is a bird. The antecedent (If X croaks

and eats flies) is true/ given and thus we can conclude than Fritz is a frog. The goal of determining

color of the pet is achieved (Fritz is green if it is a frog and blue if it is a bird. But it is a frog as it

croaks and eats flies). Thus Fritz is Green.

Resolution

It is a type of inference technique. The following steps are executed.

1. Convert data into logical statements (propositional or predicate logic).

2. Convert these into Conjunctive Normal form (CNF).

3. Negate the conclusion.

58

4. Resolve using resolution tree.

Example: If the maid stole the jewellery, then the butler was not guilty.

Either the maid stole the maid stole the jewellery, or she milked the cow.

If the maid milked the cow, then the butler got the cream.

Therefore, if the butler was guilty, then he got his cream.

Step1 : Expressing as propositional logic.

P= maid stole the jewellery.

Q= butler is guilty.

R= maid milked the cow.

S= butler got the cream.

Step 2: Convert to propositional logic.

1. P — -> ~Q

2. P v R

3. R — -> S

4. Q — -> S (Conclusion)

Step 3: Converting to CNF.

1. ~P v ~Q

59

2. P v R

3. ~R v S

4. ~Q v S (Conclusion)

Step 4:

Negate the conclusion.

~(~Q v S) = Q ^ ~S

It is not in CNF due to the presence of ‘^’. Thus we break it into two parts: Q and ~S. We start

with Q and resolve using resolution tree.

60

Negation of the conclusion gives a null value. Hence our conclusion is proved.

Semantic Networks

This document concerns the management of the output of insight generators, the software agents

utilized in the insight generation systems. The solution to managing these reports involves the

automatic creation of a repository for all materials generated by various insight generators; this

repository allows the user to navigate through this continually growing space of marketing

reports, gaining new insights about the relationships between items of interest and adding new

insights in the process. The goal of the system is to make all marketing information and insights

generated by the man/machine interaction available to the user, so that there is a convergence

towards a "conservation of information". To use a geometric metaphor, the goal is to make the

user equidistant from all information at all times, as illustrated below.

The output of insight generators like I Want is paper; every time the system is run, a paper report

is produced. If the system were run for every retail account in every market, it would produce

hundreds of reports. If similar insight generators focused on other insights (distribution, variety,

coupons, shelf space, prices, etc.), the collection of agents would produce thousands of reports. If

each agent were run for each brand item (each size, package type, flavor, etc.), there could be

61

many thousands of reports. Finally, if all of the agents were run each month for all the brands,

then millions of reports could accumulate.

Further, these agents could be run for a firm's competitors. The system could be

run backwards; that is to say, it could be run from the perspective of the brand's competitors in a

particular category. From this, the brand group could learn where their brand is vulnerable to

attack from competitors seeking to take merchandising support away from it. Also, the sales

force could be informed where not to ask for more support, such as in the instance where their

brand is receiving far more feature support than its volume share warrants. Such use of this

system can be called exposure analysis and it was further explored in the Market Opportunity

Inspector (MOI) prototype.

One approach to dealing with all of these insights is summarization, which is explored in the

Marketing Opportunity Inspector (MOI) document. The MOI system assumes that an "I Want..."

system has been run for a brand in all accounts in all markets. Each page of output corresponds

to an exposure, an opportunity or neither for the brand. MOI takes these and summarizes the

number and magnitude of the opportunities and exposures. The output of the system is again a

sheet of paper. MOI helps to generate insights about a brand's situation, by locating its strengths

and its weaknesses. The output of one insight generation system (I Want) became the input of

another insight generating system (MOI). In both systems the output is a high-quality paper

report. Insight generating systems such as MOI are employed to summarize the lower level

information and pinpoint insights from this mass of textual output. But, the summaries

themselves also add to the ever-growing output and must also be made available to users.

A second approach to the problem of insight management is to manage the output itself as a sort

of library of information known about the brand. This library would be part of a system that

manages information and insights that are in the form of compound documents, i.e. pictures and

text, that goes beyond a strict hierarchical arrangement. The user needs to be able to move in

multiple directions from any vantage point and create hierarchies as needed. The information

needs to be arranged in a structure that follows the intrinsic relationships between the context of

the reports and their contents. The reports must be managed according to some "mental-model"

of the world of marketing.

62

One technology for capturing and reasoning with such mental models is a semantic network ...

the topic of this document.

What is a Semantic Network?

Semantic networks are knowledge representation schemes involving nodes and links (arcs or

arrows) between nodes. The nodes represent objects or concepts and the links represent relations

between nodes. The links are directed and labeled; thus, a semantic network is a directed graph.

In print, the nodes are usually represented by circles or boxes and the links are drawn as arrows

between the circles as in Figure 1. This represents the simplest form of a semantic network, a

collection of undifferentiated objects and arrows. The structure of the network defines its

meaning. The meanings are merely which node has a pointer to which other node. The network

defines a set of binary relations on a set of nodes.

Figure 1

Pick up almost any technical book and look in the preface or introduction. Invariably there is a

chapter dependency diagram. It is a node-link structure, a semantic network in which the nodes

represent chapters and the links represent the relationship of which chapters should be read

before which other chapters.

To move semantic nets from this abstract realm to something more concrete, let us consider an

example from the structure of marketing. To begin simply, let us introduce two nodes and a link.

63

Figure 2

The node on the left labeled "Quad Cities" is linked to the node on the right, labeled "Market",

and the arrow is labeled "is-a". Quad Cities is an example of a market. The diagram, in other

words represents the fact that there is a binary relation between a market, Quad Cities, and the

concept of a market. Another node with the label "Los Angeles" and a "is-a" link from this node

to the "Market" node could be added, again representing that "Los Angeles" is a type of

"Market".

Figure 3

If a retailer node is added to Figure 2, the structure of the network becomes apparent as shown in

Figure 4. Markets generally contain retailing entities. To add an example of a retailer, add a node

labeled "Chain56" and two links - one from the retailer "Chain56" to "Quad Cities" labeled "is-a-

retailer-in" and one from the node "Chain56" to the node "Retailer" labeled "is-a". This

illustrates that Chain 56 is a retailer in the Quad Cities market.

64

Figure 4

It is now important to note a point or two of possible semantic confusion. Notice that the nodes

in this small network are not all of the same "type". The node labeled "Market" represents the

generic or meta or class concept of a market; it represents the abstract concept of a market. It can

be thought of as possessing properties common to all markets. The node "Quad Cities"

represents an individual instance of the node "Market". The node "Quad Cities" represents a

particular market. The same is true of the relation between the node labeled "Retailer" and the

node labeled "Chain56". The node "Retailer" again represents the concept of a retailer that is

common across all particular retailers. One instance of such a retailer is the node labeled

"Chain56". In order to distinguish between these two types of nodes, the class nodes become

boxes and the instance nodes become ellipses, as in Figure 5.

Figure 5

Another class node, labeled "Item", that represents the abstraction of items in a category, can

now be added. Along with that, an instance of an item, labeled "87481", is added. Notice that

there is a strong relationship between the type or class nodes and the column headings or entities

65

of a relational database table. We will exploit this similarity later in this paper. Thus, another "is-

a" link and a new link, "item-carried-in", must be added to the node "87481" and the node

"Chain56" respectively. These new additions are shown in Figure 6. The information now being

represented is that Chain56 is a retailer in the Quad Cities market and that Chain56 carries the

item 87481.

Figure 6

As the nodes proliferate, the meanings of these links need to be considered. It should become

apparent that not all links are alike. Some links express only relationships between nodes, and

are therefore "assertions" of the nature of the relationship between two different nodes. For

example, the link "item-carried-in" in Figure 6, which illustrates the relationship that retailer

Chain56 carries the item 87481. The "is-a" links in Figure 6 are "structural" links in that they

convey "type" information about the node. This information is about the node itself and not

about the relationship it has to a different "type" of node. For instance, the node labeled "87481"

is an instantiation of the class node labeled "Item".

In Figure 7, more nodes and links are introduced to the original network. There is now a "Brand"

class node with an instance node "Ivory". The link "is-brand" conveys the information that the

item 87481 is the Ivory brand. There are now also class nodes labeled "Manufacturer",

"Category", and "Category Attributes". The Category Attributes class is linked to three other

class nodes labeled "Size", "Color" and "Segment". These represent particular attributes of a

66

particular category; in this instance, the liquid light duty detergent category, of which Ivory is a

member. The "is-a" links between the class node Category Attributes and the class nodes Size,

Color, and Segment represent a relationship of class to subclass and, hence, "structural" links.

Here again are links that do not denote a relationship between different types of instance nodes,

but give information about a class node itself. The class node Color is a type of Category

Attribute.

67

Figure 7

Our network in Figure 7 now has a representation for information about the item node 87481.

For instance, it is a form of Ivory which is manufactured by Procter & Gamble; it is the 22 ounce

size, white in color and competes in the Mildness market segment of the liquid light-duty

detergent category. This is one item in one chain in one market. The database used in the

Marketing Information Center prototype has 100 items in five chains in one market. Each item

68

can be one of seventeen brands made by twelve manufacturers which comes in seven sizes and

eight colors and can compete in one of five segments. This database is a pared-down version of a

scanner database for the Quad Cities market which has many more retailers and a good many

more items. The network in Figure 7 becomes very complex with a 100-fold increase in the

amount of information.

None of the networks have shown any structural links among class nodes, except for Figure 7

which shows only a subclass relationship between Category Attributes nodes and various class

node attributes. Figure 8 shows possible structural relationships between class nodes.

Figure 8

In this figure the instance nodes have been left out in order to show more clearly possible

relationships between classes. Remember class nodes represent larger, more general concepts

69

and just as general concepts can have more refined sub-concepts, the particular types of category

attributes, such as Size, are represented as a sub-class of the broader concept of Category

Attributes as shown previously. Notice that the class Category Attributes is a kind of abstract

class that probably would never have an instance node tied directly to it. It can only have

relationships to other class nodes. So, general concepts are represented such as the concept that

there are Manufacturers who create things termed Brands which are suppied to things called

Retailers. Retailers are in an abstraction called a Market and carry instances of Items. All of this

is obvious from the diagram. What is not so obvious is that the nodes themselves can contain

more than meets the eye. The Retailer node is a short-hand notation for a bundle of concepts that

make up a real-live retailer, such as the fact that retailers have a headquarters and stores and

control shelf space, price and display. The links, such as the one labeled "supplies" between the

Manufacturer node and the Retailer node, are really more like a co-axial link than a simple arc.

This particular link represents a bundle of various relationships between Manufacturer and the

abstraction, Retailer. This detail is shown in Figure 9.

Figure 9

Another import characteristic of the node-link representation is the implicit "inverse" of all

relationships represented by the directional arrows. If there is an arrow going from one node to

70

another, this also implies the reverse - that there is an arrow from the second node to the first. In

Figure 10, there are the nodes labeled "P & G" and "Ivory" with the link labeled "makes". The

direction of the relationship is that "P & G makes Ivory". Further, some linguistic terminology

for our binary relationships could be used: "P & G" is the subject and "Ivory" is the object, and

"makes" is the verb or action or link between them. This will be discussed in greater detail later.

Figure 10

This "P & G makes Ivory" relation implies the inverse relationship that "Ivory is-made-by P &

G", as shown in Figure 11.

Figure 11

The representational or expressive power of semantic networks has been discussed thus far. As

with any kind of knowledge representation scheme, a way of inferring knowledge that is not

directly represented by the scheme is needed. The ability to work with incomplete knowledge

sets a knowledge representation apart from a database. To give an example of what can be

gleaned from the semantic network in Figure 7 that is not directly represented, consider Figure

12. It is an extraction of Figure 7 containing only three nodes and two links.

71

Figure 12

The information explicitly represented is that the item numbered 87481 is the Ivory brand and

that Procter & Gamble makes Ivory. The inverse relationship of the item 87481 to the brand

Ivory, i.e. that Ivory is-item-number 87481 is shown in Figure 13.

Figure 13

By tracing the path from the node P & G to the node Ivory via the arrow labeled "makes" and

then from the node Ivory to the node 87481 via the arrow labeled "is-item-number", we can infer

that Procter & Gamble manufactures the item 87481 by inferring a link labeled "makes-item"

between the node P & G and the node 87481, as shown in Figure 14. This may seem obvious, but

remember this small amount of new information need not be explicitly represented in the original

network.

72

Figure 14

Described mathematically, composing arrows occurs by placing them end-to-tail.

This composition creates a new arrow. In Figure 14, a triad of nodes is formed by arrows said to

"commute". It is not possible to compose every pair of arrows, only those whose destinations and

sources correspond. The destination of the first must be the source of the second. By composing

arrows, new relationships between nodes can be found and described. This process is sometimes

called "chasing arrows" and the terminology introduced stems from a branch of mathematics

called Category Theory.

Figure 15 shows the results of more "arrow chasing". Additional relationships are derived, such

as Ivory is a Brand carried by Chain 56, Procter & Gamble makes a product that competes in the

Mildness segment,and Ivory is a Brand competing in the Mildness segment. Notice that layers of

relationships between nodes can be built.

73

Figure 15

This discussion has introduced the concept of a semantic network consisting of nodes and links.

The nodes represent concepts and the links represent relationships between these concepts. A

distinction was made between instance nodes and class nodes: the former represents general

notions of the latter of which there may be many types. The concept of links which extend from

the instance node level to the class node level was given along with an introduction of the notion

of abstract classes. The reversibility of the arrows and the method of inferring new relationships

between nodes from existing ones was also given. Several figures illustrated these concepts using

an example semantic network built from a scanner database header file of the liquid light-duty

detergent category.

Limitations of Semantic Networks

This chapter should not end without some discussion of the limitations of semantic networks,

and a comparison of their traditional use versus their use in the management of marketing

insights.

74

Semantic networks as a representation of knowledge have been in use in artificial intelligence

(AI) research in a number of different areas. Some of the first uses of the nodes-and-links

formulation were in the work of Quillian and Winston, where the networks acted as models of

associative memory. Quillian's work centers on how natural language is understood and how the

meanings of words can be captured in a machine. Winston's work concentrates on machine

learning and specifically on structural descriptions of an environment. Winston's work describes

pedestals and arches formed from more elementary pieces such as wedges and blocks; these

make up the famous "blocks world" that has been utilized by many research efforts in semantic

networks.

The other major area in which the use of semantic networks is prevalent, is in models based on

linguistics. These stem in part from the work of Chomsky. This latter work is concerned with the

explicit representation of grammatical structures of language. It is opposed to other systems that

tried to model, in some machine-implementable fashion, the way human memory works.

Another approach combining aspects of both the previously mentioned areas of study was taken

by Schank in his conceptual dependency approach. He attempted to break down the surface

features of language into a network of deeper, more primitive concepts of meaning that were

universal and language independent.

Such creations and uses of semantic networks have led to any number of epistemological

problems. Numerous researchers have attempted to address these problems. Barr and

Feigenbaum state that:

In semantic network representations, there is no formal semantics, no agreed-upon notion of

what a given representational structure means, as there is in logic, for instance.

Of course, the success of logic in this respect is debatable, but semantic networks do tend to rely

upon the procedures that manipulate them.

For example, the system is limited by the user's understanding of the meanings of the links in a

semantic network. As pointed out previously in the example of the network of marketing

insights, links between nodes are not all alike in function or form. Hence we need to differentiate

between links that assert some relationship and links that are structural in nature). A paper by

75

Brachman on the subtleties of the "is-a" link revealed even more distinctions in the uses of this

link. According to Brachman "is-a" links can be divided into two groups, depending upon the

nodes involved. One use of the "is-a" link resembles our distinction between an instance node

and a class node. The link represents the relationship of instance nodes to abstract, generic

qualities shared by many instance nodes. Brachman's other use of a link is between two instance

nodes. These two major divisions can then be further broken down into finer uses of the link.

If problems and sublime uses characterize links, then nodes are not much better. The seeming

simplicity of a node that represents a single concept or object in the world is actually fraught

with complications. The question "what is a node?" is on par with "what is a market?" As in the

discussion of links above, we need to distinguish between nodes that represent some set of

objects and nodes that represent classes of qualities shared by these objects. There can be

properties for instances of a class that all members of a class share as well as properties of the

class itself. A property of a market is that it is made up of retailers. For example, a member of

the class Market, such as Quad Cities, contains specific retailers, such as Chain 56. Chain 56 is

an instance of the class Retailer. The problems of epistomology and the semantics of semantic

network representations are discussed further in Brachman.

It should be noted that the sample network discussed at length in this book shares the advantages

and disadvantages of any semantic network. We take "naive semantic networks" aka "naive set

theory". We do not worry overly about the epistemologico-semantic problems associated with

the use of the representation. Some of the difficulties are in fact side-stepped since the final goal

for this network is not quite the same as the goals of other researchers. One fundamental

difference between the use of the network representation in this book as opposed to elsewhere, is

that we are not trying to represent natural language or associative memory independent of users.

In fact we rely heavily on the user's intuitive understanding of the world. Semantic networks are

used in this project as structures of knowledge that encourage the user to interact with them.

Having marketing knowledge visible to the marketing professional is one of the major

advantages of AI technologies and of tools such as spreadsheets. This topic is pursued in more

depth in Chapter 18, while the next chapter describes a computer-based tool for implementing

semantic networks.

76

Abstract. People communicate with each other in sentences that incorporate two kinds of

information: propositions about some subject, and metalevel speech acts that specify how the

propositional information is used — as an assertion, a command, a question, or a promise. By

means of speech acts, a group of people who have different areas of expertise can cooperate and

dynamically reconfigure their social interactions to perform tasks and solve problems that would

be difficult or impossible for any single individual. This paper proposes a framework for

intelligent systems that consist of a variety of specialized components together with logic-based

languages that can express propositions and speech acts about those propositions. The result is a

system with a dynamically changing architecture that can be reconfigured in various ways: by a

human knowledge engineer who specifies a script of speech acts that determine how the

components interact; by a planning component that generates the speech acts to redirect the other

components; or by a committee of components, which might include human assistants, whose

speech acts serve to redirect one another. The components communicate by sending messages to

a Linda-like blackboard, in which components accept messages that are either directed to them

or that they consider themselves competent to handle.

In the years since its founding conference in 1956, the field of artificial intelligence has

generated an impressive collection of valuable components, but no comparably successful

architecture for assembling them into intelligent systems. As examples, the following list

illustrates the range of AI components that were designed and implemented in the 1950s and

'60s:

parsers, theorem provers, inference engines, search engines, learning programs,

classification tools, statistical tools, neural networks, pattern matchers, problem

solvers, planning systems, game-playing programs, question-answering systems,

dialog managers, machine-translation systems, knowledge acquisition tools,

modeling tools, and robot guidance systems.

Over the past 40 years, the performance, reliability, and generality of these components have

been vastly improved. Their theoretical foundations are much better understood, and they have

found their way into applications that are no longer considered part of AI. Yet despite attempts to

77

integrate the components into general-purpose intelligent systems, the results are

disappointing: the commercially successful systems are limited to special-purpose applications,

and the more general systems have not progressed beyond the stage of clever demos. Nothing

remotely resembling the HAL computer in the movie 2001 exists today, and there are no credible

designs for building one soon.

The lack of progress in building general-purpose intelligent systems could be explained by

several different hypotheses:

1. Simulating human intelligence on a digital computer is impossible.

2. The ideal architecture for true AI has not yet been found.

3. Human intelligence is so flexible that no fixed architecture can do more than simulate a

single aspect of what is humanly possible.

Many people have presented strong, but not completely convincing arguments for the first

hypothesis (Winograd & Flores 1986; Penrose 1989; Dreyfus 1992). In the search for an ideal

architecture, others have implemented a variety of at best partially successful designs. The

purpose of this paper is to explore the third hypothesis: propose a flexible modular framework

that can be tailored to an open-ended variety of architectures for different kinds of applications.

The tailoring could be done either by a human knowledge engineer who uses specialized AI

languages or by semiautomated design tools in collaboration with a human editor who has little

or no training in AI. Such a system would not be as intelligent as HAL, but it should be valuable

for a wide range of important applications.

The idea of a flexible modular framework (FMF) is not new. It is, in fact, the underlying

philosophy of the Unix operating system and its descendants. That philosophy is characterized

by four design principles:

1. A small kernel that provides the basic services of resource allocation and process

management.

2. A large, open-ended collection of highly modular utilities, which can be used by

themselves or be combined with other modules.

78

3. Glue languages, also called scripting languages, for linking modules to form larger

modules or complete applications.

4. A uniform data representation, based on character strings, which constitute the storage

format of Unix files and the content transmitted by Unix pipes.

The first three principles are as valid today as they ever were, but the fourth has been modified to

accommodate modules that require data with more structure than linear strings, especially

database management systems (DBMS) and graphical user interfaces (GUIs). Unix systems

implement the DBMS and the GUI as independent modules, but their nonlinear data structures

cannot be communicated via pipes. Other operating systems make different compromises: the

IBM AS/400 implements the DBMS in the kernel, and the Macintosh and Windows systems

implement the GUI in the kernel.

The LISP language, which was the primary language of AI since the late 1950s, pioneered

techniques that entered the mainstream of commercial computing when they were adopted by

other languages ranging from PL/I to Java. For AI systems, LISP served as both an

implementation language and a glue language for AI components and complete systems. Unlike

the Unix character strings, the basic data structures of LISP consist of tree-like lists, which can

be supplemented with cross links to form arbitrary graphs. During the 1970s and '80s, the trees

and graphs of LISP proved to be rich enough to support the operating systems of the LISP

machines with their stunning graphics. Those graphics techniques, which were invented at Xerox

PARC, have been copied in all modern GUIs, including those of the Macintosh and Windows.

Although LISP was, and still is, a highly advanced programming language, it is not by itself a

knowledge representation language. The Prolog language is a step closer to a KR language. It

supports the same kinds of data structures as LISP, but it has a built-in inference engine for the

Horn-clause subset of logic, which can be used to express the rules of an expert system or the

grammars of natural languages. For many applications, Prolog has been used as a KR language,

either directly or with some syntactic sugar to make its notation more palatable. Yet Prolog still

has limitations that make it unsuitable as the glue language for intelligent systems: procedural

dependencies, a nonstandard treatment of negation, and the limited expressive power of Horn-

79

clause logic. Like LISP, Prolog is better suited to implementing the components of intelligent

systems rather than representing the knowledge they process.

The most promising candidate for a glue language is Elephant 2000, which McCarthy (1989)

proposed as a design goal for the AI languages of the new millennium. Sentences in the Elephant

language include "requests, questions, offers, acceptances of offers, permissions as well

as answers to questions and other assertions of fact. Its outputs also include promises and

statements of commitment analogous to promises." As an inspiration for Elephant, McCarthy

cited the speech acts of natural languages (Austin 1962; Searle 1969), but he believed that

Elephant sentences should be written in a formally defined version of logic, rather than the much

more informal natural languages. Unix only supports one kind of speech act: a command that

invokes some program. The Unix scripting languages add loops and conditionals, which

determine the sequence of commands to execute. Prolog supports two kinds of speech

acts: assertions for stating facts and goals for issuing commands or asking questions. Besides

those special cases, Elephant provides a framework that can support the full range of

illocutionary and perlocutionary speech acts.

Although the glue language for intelligent systems should be at a higher level than the scripting

languages of Unix, the four design principles of the Unix philosophy can serve as guidelines.

Following are AI generalizations of the four principles:

1. Like the Unix kernel, an AI kernel must support resource allocation and process

management. But unlike Unix, which invokes a specific module for each command, an

AI kernel should have a pattern-directed or associative method for determining when a

module should be invoked. In many AI systems, a blackboard or bulletin board is used to

post messages, which any appropriate component can access when it detects a

characteristic pattern. The Linda language (Carriero & Gelernter 1992) is an example of

an efficient blackboard system that has been widely used for scheduling parallel

computations by clusters of computers.

2. Like Unix, an AI system should have an open-ended collection of modular components,

but the kinds of components should be traditional AI tools of the kinds that have been

developed over the past 40 years. New kinds may also be needed, but they could also be

80

invoked by a glue language like Elephant in combination with a Linda-like blackboard.

More conventional components, such as a DBMS, GUI, and various networks, could be

invoked by the same mechanisms. The Jini system of Java, for example, uses a version of

the Linda operators for invoking components distributed across a network.

3. An AI glue language, as McCarthy emphasized, should be based on a version of logic

that is rich enough to include all of first-order logic plus metalevels that can talk about

the object level and state whatever speech act is intended. Two such languages are

conceptual graphs (CGs) and the Knowledge Interchange Format (KIF), which are being

standardized as logically equivalent notations for the same model-theoretic foundations.

Other versions of logic, which are discussed in Section 5 of this paper, can be translated

to or from subsets of CGs and KIF. For communication with people who are not

logicians, those logics can also be translated to or from versions of controlled natural

languages (CNLs), which can serve as readable notations for the underlying logic.

4. Instead of the linear character strings stored in files and transmitted by pipes, logic

provides a much richer notation that can represent all the data structures needed for a

DBMS, GUI, or network protocol. The messages posted to a Linda-like blackboard could

include any logical expression, which in extreme cases might represent an arbitrarily

large graph or even the conjunction of any or all the data in a DBMS. The metalevel

capabilities of logic, which can represent any desired speech act, can state what should,

would, could, or must be done with the data.

This paper shows how a framework based on these four principles can support a family of

architectures that can easily be tailored for different kinds of applications. Section 2 discusses

three logically equivalent notations for an Elephant-like glue language: controlled natural

language for the human interface; conceptual graphs for components that use graph-based

algorithms; and KIF for components that use other notations for logic. Section 3 surveys the use

of CNLs as a front end to AI systems. Section 4 shows how graph algorithms can simplify or

clarify the techniques for searching, querying, and theorem proving. Section 5 discusses

techniques for handling the computational complexities in different applications of logic. Finally,

Section 6 discusses the kinds of components needed for a flexible modular framework and how a

81

glue language communicating through a blackboard can be used to combine them, relate them,

and drive them.

2. Notations for Logic

McCarthy's Elephant language requires a highly expressive version of logic, but he did not

propose any particular notation for it. Although various notations — graphical, linear, or NL-like

— can express equivalent semantic information, the choice of notation can have a major

influence on both the human interfaces and the kinds of algorithms used in the computations.

This section illustrates three notations for logic: conceptual graphs, KIF, and controlled natural

languages. All three of them can express exactly the same semantics in logically equivalent

ways, but they have complementary strengths and weaknesses that make them better suited to

different kinds of tasks. Any or all of them could be used in messages passed through a Linda-

like blackboard.

For his syllogisms, the first version of formal logic, Aristotle defined a highly stylized form of

Greek, which became the world's first controlled natural language. During the middle ages,

Aristotle's sentence patterns were translated to controlled Arabic and controlled Latin, and they

became the major form of logic until the 20th century. The following table lists the names of the

four types of propositions used in syllogisms and the corresponding sentence patterns that

express them.

Type Name Pattern

A Universal affirmative Every A is B.

I Particular affirmative Some A is B.

E Universal negative No A is B.

O Particular negative Some A is not B.

82

With letters such as A and B in the sentence patterns, Aristotle introduced the first known use of

variables in history. Each letter represents some category, which the Scholastics

called praedicatum in Latin and which became predicate in English. If necessary, the verb

form is may be replaced by are, has, or have in order to make grammatical English sentences.

Although the patterns may look like English, they are limited to a highly constrained syntax and

semantics: each sentence has exactly one quantifier, at most one negation, and a single predicate

that is true or false of the individuals indicated by the subject.

Although Aristotle's syllogisms are the oldest version of formal logic, they are still an important

subset of logic, which forms the foundation for description logics, such as DAML and OIL. For

frame-like inheritance, the major premise is a universal affirmative statement with the

connecting verb is; the minor premise is a universal or particular affirmative with is, has, or other

verbs. Many constraints for a DBMS or an expert system can be stated as universal negative

statement with any of the verbs. For constraint checking and constraint inheritance, the major

premise is the constraint, and the minor premise is a statement in one of the other three patterns.

Another important version of logic is the Horn-clause subset, which is widely used for defining

expert system rules and SQL views. The basic syntax has an if-then pattern: the if-part of the

rule is a conjunction of one or more statements, which may have some negations; the then-part is

a conjunction of one or more statements, which may not have negations. Following are two such

rules for a library database, written in Attempto Controlled English (Fuchs et al. 1998; Schwitter

1998):

If a copy of a book is checked out to a borrower

 and a staff member returns the copy

then the copy is available.

If a staff member adds a copy of a book to the library

 and no catalog entry of the book exists

then the staff member creates a catalog entry

 that contains the author name of the book

 and the title of the book

 and the subject area of the book

83

 and the staff member enters the id of the copy

 and the copy is available.

The Attempto system translates these rules to an executable form in Prolog. Anyone who can

read English can read controlled English as if it were English, but controlled languages are

formal languages that require some training for an author to stay within their limitations. Section

3 of this paper discusses tools that can guide an author to avoid the ambiguities of full natural

language or help a human editor to clarify them.

In the late 19th century, three logically equivalent, but structurally very different notations for

first-order logic (FOL) were developed. The first was the tree-like Begriffsschrift by Frege

(1879), and the second was the algebraic notation by Peirce (1880, 1885). With minor

modifications by Peano (1889), Peirce's version became the most commonly used notation for

logic during the 20th century. The third notation was Peirce's existential graphs of 1897, which

he called his chef d'oeuvre. KIF is a sorted version of Peirce's algebraic notation, and conceptual

graphs are a sorted version of Peirce's graph notation. For comparison, Figure 1 is a CG

representation of the controlled English sentence, John is going to Boston by bus.

Figure 1: A conceptual graph in the display form

The boxes in Figure 1 are called concepts, and the circles are called conceptual relations. The

default quantifier for each concept is the existential, which says that something of the specified

type exists; the concept [City: Boston] means that there exists a city, which is named Boston.

Each conceptual relation has one or more arcs: (Agnt) links a concept that represents an action to

the concept that represents its agent; (Inst) links the action to its instrument; and (Dest) links an

84

action that involves motion to its destination. All the relations in Figure 1 are dyadic, but in

general, a conceptual relation may have any number of arcs.

Although the display form is quite readable, it is not easy to type or to transmit across a network.

Therefore, two interchange formats have been developed: the Conceptual Graph Interchange

Format (CGIF) maps directly to and from the display form; and the Knowledge Interchange

Format (KIF) maps directly to and from the algebraic notation for predicate calculus. Following

is the CGIF representation of Figure 1:

[Go: *x] [Person: 'John' *y] [City: 'Boston' *z] [Bus: *w]

 (Agnt ?x ?y) (Dest ?x ?z) (Inst ?x ?w)

This statement captures every detail of the display form except the two-dimensional layout,

which is not semantically relevant. If desired, the layout information could be included as

structured comments inside the brackets and parentheses that enclose the nodes of the graph. The

connections between concepts and relations, which are shown directly by the arcs of the graph in

Figure 1, are shown indirectly by labels, such as ?x and ?y in CGIF. Those labels are translated

to variables in KIF, as in the following example:

(exists ((?x Go) (?y Person) (?z City) (?w Bus))

 (and (Name ?y John) (Name ?z Boston)

 (Agnt ?x ?y) (Dest ?x ?z) (Inst ?x ?w)))

KIF notation is used for many theorem provers and inference engines that are based on predicate

calculus. The translations between KIF and CGIF preserve the semantics: a mapping from KIF

to CGIF and back to KIF might not generate an identical statement, but it will generate a

statement that is logically equivalent.

KIF and conceptual graphs can represent the full range of operators and quantifiers of first-order

logic, and they have been extended with metalevel features that can be used to define extensions

to FOL, including modal logic and higher-order logic. The metalevel features are necessary for

representing the speech acts of Elephant 2000, which uses logic to talk about the use of logic. In

natural languages, metalevels are marked by a variety of syntactic features that delimit the

context of the metalanguage from the context the object language. The most obvious delimiters

are quotation marks, but similar contexts are introduced by verbs that express what some agent

85

says, thinks, believes, requests, wants, promises, or hopes. As an example, the following English

sentence contains two nested levels, which are enclosed in brackets for emphasis:

Tom believes [Mary wants [to marry a sailor]].

This sentence is represented by the CG in Figure 2.

Figure 2: A conceptual graph with two nested contexts

The context of Tom's belief is represented by a concept of type Proposition, which contains a

nested CG that states the proposition. The context of Mary's desire is represented by a concept of

type Situation, which is described by a proposition that is stated by the nested CG. The (Expr)

relation represents the experiencer of a mental state, and the (Thme) relation represents the

theme. In general, the theme of a belief or an assertion is a proposition, but the theme of a desire

must be something physical, such as a situation. Following is the CGIF equivalent of Figure 2:

[Person: *x1 'Tom'] [Believe *x2] (Expr ?x2 ?x1)

 (Thme ?x2 [Proposition:

 [Person: *x3 'Mary'] [Want *x4] (Expr ?x4 ?x3)

 (Thme ?x4 [Situation:

 [Marry *x5] (Agnt ?x5 ?x3) (Thme ?x5 [Sailor])])])

And following is the equivalent KIF statement.

86

(exists ((?x1 person) (?x2 believe))

 (and (name ?x1 'Tom) (expr ?x2 ?x1)

 (thme ?x2

 (exists ((?x3 person) (?x4 want) (?x8 situation))

 (and (name ?x3 'Mary) (expr ?x4 ?x3) (thme ?x4 ?x8)

 (dscr ?x8 (exists ((?x5 marry) (?x6 sailor))

 (and (Agnt ?x5 ?x3) (Thme ?x5 ?x6)))))))))

The context boxes delimit the scope of quantifiers and other logical operators. The sailor, whose

existential quantifier occurs inside the context of Mary's desire, which itself is nested inside the

context of Tom's belief, might not exist in reality. Following is another sentence that makes it

clear that the sailor does exist:

There is a sailor that Tom believes Mary wants to marry.

This sentence corresponds to the CG in Figure 3.

Figure 3: A CG that asserts the sailor's existence

87

The English sentence mentions the sailor before introducing any verb that creates a nested

context. Therefore, the concept [Sailor] in Figure 3, with its implicit existential quantifier, is

moved outside any nested context. In the CGIF and KIF notations, the concept or the quantifier

that refers to the sailor would be moved to the front of the statement. Another possibility,

represented by the sentence Tom believes there is a sailor that Mary wants to marry, could be

represented by moving the concept [Sailor] into the middle context, which represents Tom's

belief. In CGIF and KIF, the corresponding concept or quantifier would also be moved to the

context of Tom's belief.

As these examples illustrate, conceptual graphs in the display form are more readable than either

CGIF or KIF. There are two reasons for the improved readability:

1. Direct connections. The arcs of the graph show connections directly without the need for

labels or variables. In Figure 1, for example, the four concept boxes map to four distinct

labels or variables in CGIF and KIF. To show the links to the relations, CGIF requires 10

occurrences of those labels, and KIF requires 12; furthermore, those occurrences are

scattered throughout the linear strings.

2. Nested enclosures. As Figures 2 and 3 show, the contexts are shown more clearly with

nested enclosures than with nested parentheses or brackets. By using both brackets and

parentheses, CGIF has a slight advantage over KIF, but neither notation can compete

with the nested boxes of the display form.

Besides human readability, graphs also have theoretical and computational advantages, which

are discussed in Section 4.

3. Using Controlled Natural Languages

During the 1980s, the dominant approach to knowledge acquisition required two kinds of highly

trained, highly paid professionals. At the top of Figure 4, a knowledge engineer is interviewing

a subject matter expert in order to capture her knowledge and encode it in the arcane formats of

an AI system. Meanwhile, computational linguists, who were designing natural-language tools,

tried to make them translate NL documents into similar encodings without requiring any human

intervention. At the bottom of Figure 4, a physician who is examining a patient scribbles some

88

notes on a sheet of paper, which some clerk will later transcribe for the computer. Then the NL

tools will attempt to convert those notes to the formats specified by the knowledge engineer.

Figure 4: Twentieth century approaches to knowledge acquisition and NL processing

There are two things wrong with Figure 4: the top row requires far too much human effort, and

the bottom row is expected to process unrestricted natural language without any human

assistance. To reduce the cost of two high-priced experts, some developers merged the two roles

at the top row into one: either the subject matter expert learned knowledge engineering, or the

knowledge engineer learned enough about the subject matter to extract knowledge from

documents. Yet people with expertise in both fields became even more expensive to find, hire,

and train. Figure 5 shows a better alternative: simplify the tools and the training required by the

people who use them. Instead of designing complex NL tools that process documents without

human intervention, AI researchers developed simpler knowledge extraction (KE) tools that can

extract knowledge from documents with assistance from just one human editor. Furthermore, the

editor communicates with the KE tools in a controlled natural language, which people can read

without special training.

89

Figure 5: Replacing two experts with one editor

The editor in Figure 5 represents various people who at different times might play different roles

with respect to the subject matter, the computer system, and the people and activities involved

with them. Each of the three people in Figure 4 has a different kind of expertise. Any of them

might use KE tools to edit their knowledge or to write a note, a report, or a book that someone

else might edit with the aid of KE tools. Following are the three kinds of knowledge, the roles of

the two experts in Figure 4, and the way that KE tools can help the editor in Figure 5 do the work

of both:

 Semantic knowledge. The subject matter expert contributes the terminology and

background knowledge that is typically recorded in textbooks, research reports, and

reference manuals. That knowledge represents the semantics of the subject matter and its

links to the natural language vocabulary. A editor in Figure 5 could use the KE tools to

extract that knowledge from the documents, or the experts who write the documents

could use the KE tools to generate a printable document and a knowledge base at the

same time.

 Episodic knowledge. The physician at the patient's bedside contributes knowledge of

particular instances or episodes in the day to day application of the subject matter. Instead

of writing notes on a pad of paper, as in Figure 4, such people could enter that

information into a computerized tablet or voice recognition system. The KE tools could

90

process the information immediately and respond with a paraphrase in a controlled

natural language, which the operational personnel would correct and approve.

 Patterns of language and logic. The knowledge engineer in Figure 4 is a specialist in

translating unformatted natural language to database tables, if-then rules, and procedural

sequences. That kind of knowledge could be codified in a library of patterns or templates

represented as conceptual graphs (Sowa 1999). The KE tools would apply the language

patterns to extract information from documents and use the associated logic patterns to

reformat it in a CNL. Since the KE process is not foolproof, a human editor must review,

correct, and approve the output before it goes into the knowledge base.

From an editor's point of view, a KE system looks like an intelligent word processor combined

with sophisticated tools for searching, classifying, summarizing, and paraphrasing. After the

output has been revised by an editor, who might be the original author of the documents, the

result can be stored in a knowledge base or be written as an annotation to the documents.

As examples of KE tools, Doug Skuce (1995, 1998, 2000) has designed an evolving series of

knowledge extraction systems, which he called CODE, IKARUS, and DocKMan (Document-

based Knowledge Management). All the input to the knowledge base, whether generated by the

KE tools or entered directly by an editor, is represented in a CNL called ClearTalk. The KE tools

have the following advantages over the older systems represented by Figure 4:

 Reduced training for people. A controlled natural language is a subset of the

corresponding natural language. Anyone who can read English can immediately read

ClearTalk, and the knowledge editors who write ClearTalk can learn to write it in a few

hours. The ClearTalk system itself does most of the training through use: the restrictions

are shown by menus and templates and enforced by immediate syntactic checks. By

consistently using ClearTalk for all its output, the system reinforces the acceptable

syntactic forms.

 Reduced complexity in the system. During the knowledge extraction process, the KE

tools can ask the editor to resolve ambiguities in the documents, to select relevant

passages, and to correct misinterpretations. After the knowledge has been translated to

ClearTalk with human assistance, the restricted syntax of ClearTalk eliminates the

91

syntactic ambiguities of ordinary language. The semantic ambiguities are eliminated by

the system, which enforces a single definition for every term. As a result, the system can

automatically translate ClearTalk to and from logic and various computational languages.

 Self-documenting systems. People can read ClearTalk without special training, and a

computer system can translate it automatically to a notation for logic, such as CGs or

KIF. As a result, the comments and the implementation become identical, and there is

never a discrepancy between what the human reads and what the machine is processing.

 Document annotations. The double-headed arrow in Figure 5 indicates that the

ClearTalk output from the KE tools can also be written as an annotation to the original

source documents. Those annotations can serve as humanly readable comments or as

input to other ClearTalk systems.

As an example, the students in Skuce's operating systems course used the KE tools to map

information from on-line Linux manuals to a knowledge base for a Linux help facility. The

people who wrote the manuals were experts, but the students who edited the knowledge base

were novice users of both Linux and the KE tools. As another example, Skuce built a simple

knowledge base about animals for his 9-year-old daughter's school project. She and her class

could browse the knowledge base on the web, and they had no difficulty in understanding every

fact presented in ClearTalk.

Over the past thirty years, many natural-language query systems have been developed that are

much easier to use than SQL. Unfortunately, one major stumbling block has prevented them

from becoming commercially successful: the amount of effort required to define the vocabulary

terms and map them to the appropriate fields of the database is a large fraction of the effort

required to design the database itself. However, if appropriate KE tools are used to design the

database, the vocabulary needed for the query system can be generated as a by-product of the

design process. As an example, the RÉCIT system (Rassinoux 1994; Rassinoux et al. 1998) uses

KE tools to extract knowledge from medical documents written in English, French, or German

and translates the results to a language-independent representation in conceptual graphs. The

knowledge extraction process defines the appropriate vocabulary, specifies the database design,

and adds new information to the database. The vocabulary generated by the KE process is

sufficient for end users to ask questions and get answers in any of the three languages.

92

Translating an informal diagram to a formal notation of any kind is as difficult as translating

informal English specifications to executable programs. But it is much easier to translate a

formal representation in any version of logic to controlled natural languages, to various kinds of

graphics, and to executable specifications. Walling Cyre and his students have developed KE

tools for mapping both the text and the diagrams from patent applications and similar documents

to conceptual graphs (Cyre et al. 1994, 1997, 1999). Then they implemented a scripting language

for translating the CGs to circuit diagrams, block diagrams, and other graphic depictions. Their

tools can also translate CGs to VHDL, a hardware design language used to specify very high-

speed integrated circuits (VHSIC).

Design and specification languages have multiple metalevels. As an example, the Unified

Modeling Language has four levels: the metametalanguage defines the syntax and semantics of

the UML notations; the metalanguage defines the general-purpose UML types; a systems analyst

defines application types as instances of the UML types; finally, the working data of an

application program consists of instances of the application types. To provide a unified view of

all these levels, Olivier Gerbé and his colleagues at the DMR Consulting Group implemented

design tools that use conceptual graphs as the representation language at every level (Gerbé et al.

1995, 1996, 1997, 1998, 2000). For his PhD dissertation, Gerbé developed an ontology for using

CGs as the metametalanguage for defining CGs themselves. He also applied it to other notations,

including UML and the Common KADS system for designing expert systems. Using that theory,

Gerbé and his colleagues developed the Method Repository System as an authoring environment

for editing, storing, and displaying the methods used by the DMR consultants. Internally, the

knowledge base is stored in conceptual graphs, but externally, the graphs can be translated to

web pages in either English or French. About 200 business processes have been modeled in a

total of 80,000 CGs. Since DMR is a Canadian company, the language-independent nature of

CGs is important because it allows the specifications to be stored in the neutral CG form. Then

any manager, systems analyst, or programmer can read them in his or her native language.

No single system discussed in this paper incorporates all the features desired in a KE system, but

the critical research has been done, and the remaining work requires more development effort

than pure research. Figure 6 shows the flow of information from documents to logic and then to

documents or to various computational representations. The dotted arrow from documents to

93

controlled languages requires human assistance. The solid arrows represent fully automated

translations that have been implemented in one or more systems.

Figure 6: Flow of information from documents to computer representations

For all these tools, the unifying representation language is logic, which could be represented in

KIF, CGs, or other notations specialized for various tools. Aristotelian syllogisms together with

Horn-clause rules provide sufficient expressive power to specify a Turing machine, and they

support efficient computational mechanisms for executing the specifications. For database

queries and constraints, statements in full first-order logic can be translated to SQL. All these

subsets, however, use the same vocabulary of natural-language terms, which map to the same

ontology of concepts and relations. From the user's point of view, the system communicates in a

subset of natural language, and the differences between tools appear to be task-related

differences rather than differences in language.

4. Graph Algorithms

For many purposes, graphs are a natural representation that is isomorphic to the structure of an

application: maps with cities as nodes and highways as arcs; flow diagrams through programs,

electrical wiring, and plumbing; the valence bonds between atoms of an organic molecule; the

communication links in a computer network; the reference patterns between documents and web

sites on the Internet; and the semantics of natural languages with their complex phrase structures

and anaphoric references. When such networks are represented by strings or matrices, the

resulting data structures tend to make inefficient use of storage space, execution time, or both.

This section surveys five important components of an intelligent system that can benefit from

graph-based algorithms:

94

1. Storage, retrieval, and query.

2. Deductive reasoning for logical inference and theorem proving.

3. Inductive reasoning for learning new kinds of structures.

4. Abductive reasoning for discovering analogies.

5. Representing natural language semantics.

In all five of these areas, the direct connectivity of CGs and their nested contexts support

algorithms that are simpler and more efficient than algorithms on linear strings and tables. For

these reasons, most reasoning systems in AI, even those that use linear notations externally, use

tree and graph data structures internally.

During the 1970s, the database field was embroiled in a controversy between the proponents of

the new relational DBMS, which stored data in tables, and the proponents of older DBMS

systems, which stored data in networks or hierarchies. For many applications, the network and

hierarchical systems had better performance, but the relational systems became the universal

standard because their logic-based query languages, such as SQL, were far easier to use than the

navigational systems, which required a link-by-link traversal of the networks. The battle for

network DBMS was finally lost when one its staunchest defenders claimed that ease of use was

not important because "programmers enjoy a challenge." Today, network systems have come

back into vogue as the foundation for object-oriented DBMS, which represent the connections

between objects more directly than the now standard RDBMS. Yet the query languages for

OODBMS require the same kind of link-by-link traversals as the navigational methods of the

1970s. Unlike the logic-based SQL standard, the OODBMS query languages require far more

programming effort, which must be specialized to the formats of each vendor.

To support a more natural interface between humans and computers, Sowa (1976, 1984)

proposed conceptual graphs as an intermediate language between natural languages and logic-

based computer languages. For question-answering systems, a CG derived from a natural

language question could be translated to logic-based query languages such as SQL or be matched

against the graphs of a network DBMS. In principle, CGs could provide a high-level interface for

any DBMS — relational, network, or object-oriented. However, there were two obstacles to

using CGs as the universal interface to every DBMS: the natural language processors were not

95

sufficiently robust to generate them, and the algorithms for generating answers from network

databases were too slow.

The breakthrough in performance that made a CG database efficient was accomplished by

Levinson and Ellis (1992), who developed algorithms that could search a lattice of graphs in

logarithmic time. Instead of navigating the networks link by link, their systems could take any

query graph q and determine where it fit within the lattice. As a result, it would return two

pointers: one would point to the lower sublattice of all graphs that are more specialized than q,

and the other would point to the upper sublattice of all graphs that are more generalized than q.

For deduction and theorem proving, Peirce (1897, 1909) discovered graph-based rules of

inference, which are generalizations and simplifications of the rules of natural deduction by

Gentzen (1935). The beauty of Peirce's rules is that they make a perfect fit with a system that

stores and retrieves graphs in a generalization hierarchy: Peirce's rules are based on the

conditions in which any graph p may be replaced by a generalization of p or a specialization of p.

Furthermore, the negation of any context reverses the ordering for all graphs in the context:

if p is a generalization of q, then ~p is a specialization of ~q. Esch and Levinson (1995, 1996)

presented algorithms for combining Peirce's rules with search and retrieval from a generalization

hierarchy, and one of Levinson's students, Stewart (1996), implemented those algorithms in a

high-speed theorem prover for first-order logic. Every proposition that was proved, either as a

theorem or as an intermediate result, was stored in its appropriate place in the generalization

hierarchy together with a pointer to its proof. During a proof, each possible step that could be

generated by Peirce's rules was used as a query graph q to determine whether q or any

specialization of q had already been proved. If so, the proof was done.

A high-speed search and retrieval mechanism for generalization hierarchies of graphs can also be

used as the basis for structural learning algorithms. Unlike neural networks and statistical

algorithms, whose learning consists of changing numerical weights, a graph-based algorithm can

learn arbitrarily large structures represented as graphs. To demonstrate that principle, Levinson

(1996) used his search algorithms in a learning program that would learn to play board games,

such as chess, by starting with no knowledge about the game other than the ability to make legal

moves. His chess program, called Morph, learned chess by playing games with a tutor called

96

Gnu Chess, which was a master-level program, but it could not improve its performance by

learning. At the end of each game, Morph was told whether the game was won, lost, or drawn

(usually lost, especially in the early stages of learning). Then Morph would estimate the values

of all the intermediate positions achieved during the game by backpropagation from the final

value (1.0 for a win, 0.5 for a draw, or 0 for a loss), and save the chess positions with their

estimated values as graphs in the hierarchy. When it made a move, Morph would determine all

the possible moves, look up the corresponding positions in the hierarchy, find the closest

matching positions, and consider their previously estimated values. Morph would then make the

move that led to the position with the best estimated value. After playing a few thousand games

with its tutor, Morph would have a sufficient database of moves with estimated values to play a

decent game of chess.

To find analogies, Majumdar (2001) implemented a system called VivoMind, which represents

knowledge in dynamic conceptual graphs. What makes the graphs dynamic are algorithms that

pass messages along the nodes of a graph. Each node in a CG corresponds to an object that can

pass messages to neighboring nodes. The result is an elegant generalization of the marker-

passing algorithms originally implemented by Quillian (1966) and further developed by Fahlman

(1979) and Hendler (1987). For finding analogies, VivoMind has proved to be as good or better

than other analogical reasoners on all the usual test cases. It is also far more efficient

computationally.

The contexts of conceptual graphs are based on Peirce's logic of existential graphs and his theory

of indexicals. Yet the CG contexts happen to be isomorphic to the similarly nested discourse

representation structures (DRS), which Hans Kamp (1981a,b) developed for representing and

resolving indexicals in natural languages. When Kamp published his first version of DRS, he

was not aware of Peirce's graphs. When Sowa (1984) published his book on conceptual graphs,

he was not aware of Kamp's work. Yet the independently developed theories converged on

semantically equivalent representations; therefore, Sowa and Way (1986) were able to apply

Kamp's techniques to conceptual graphs. Such convergence is common in science; Peirce and

Frege, for example, started from very different assumptions and converged on equivalent

semantics for FOL, which 120 years later is still the most widely used version of logic.

97

Independently developed, but convergent theories that stand the test of time are a more reliable

basis for standards than the consensus of a committee.

Although graphs are one of the most versatile representations, many good tools use other

notations. A framework for intelligent systems should take advantage of different structural

properties: some algorithms are more efficient on graphs, and some algorithms are more

efficient on strings or tables. The logical equivalence of KIF and CGIF facilitates the mapping

from one to the other. Their generality facilitates the integration with other languages that have

more restricted expressive power, such as SQL, DAML, OIL, RDF, and others. Components

based on any of those languages can be integrated with a system that uses KIF and CGs as its

primary languages.

5. Expressive Power and Computational Complexity

The limitations of AI systems have often been blamed on the complexity of the required

computations. Various solutions have been proposed, ranging from highly parallel networks that

mimic the mechanisms of the human brain to restricted languages that limit the complexity of the

problem definition. A modular architecture could support components that use such strategies for

special purposes: neural networks, for example, have been highly successful for pattern

recognition, and restricted languages can be highly efficient for specific kinds of problems. For

central communications among all components, however, the Elephant language used in the

blackboard must be the most expressive, since it must transmit any information that any other

component might use or generate. That extreme expressive power raises a question about the

complexity of the computations needed to process it.

Computational complexity, however, is not a property of a language, but a property of the

problems stated in that language. First-order logic has been criticized as computationally

intractable because the proof of an arbitrary FOL theorem may take an exponentially increasing

amount of time. That criticism, however, is misleading, since large numbers of problems stated

in full FOL are easily solvable. Placing restrictions on the logic or the notation cannot make an

intractable problem solvable; they merely make it impossible to state. The expressive power of

Elephant does not slow down the communications from one component to another. The

98

components that receive a communication are responsible for determining what they can do with

it.

For certain kinds of problems, first-order logic can be the most efficient way to express them and

to solve them. A typical example is answering a query in terms of a relational database. The

answer to an SQL query that uses the full expressive power of FOL can be evaluated in at most

polynomial time, with the exponent of the polynomial equal to the number of quantifiers in the

query. If the quantifiers range over an indexed domain, the evaluation can often be done in

logarithmic time. Evaluating a constraint against a relational database is just as efficient as

evaluating a query; in fact, every constraint can be translated to a corresponding query that asks

for all instances in the database that violate the constraint. In commercial SQL systems, queries

and constraints with the expressive power of FOL are routinely evaluated with databases

containing gigabytes and terabytes of data.

Although the time to solve an intractable problem may be very long, the time to detect the

complexity class of a problem can be very short. Callaghan (2001) took advantage of syntactic

criteria to subdivide the Levinson-Ellis graph hierarchies into several disjoint subhierarchies,

each of which is limited to one complexity class. For each subhierarchy, he determined

appropriate algorithms for efficiently classifying and searching that hierarchy. To determine the

complexity class of any graph, Callaghan computed a signature or descriptor to determine its

complexity properties. Each graph's descriptor would specify easily computable prerequisites

(necessary conditions) that any matching graph must meet. By precomputing the descriptor of a

query graph, Callaghan accomplished several goals at once: determining the complexity of the

search (tractability or decidability); narrowing the search to a particular class of graphs that have

compatible descriptors; or determining whether the query graph lies outside the known

complexity classes.

Besides the subhierarchies of graphs supported by the Levinson-Ellis algorithms, Callaghan's

approach can accommodate any external subsystem for which a suitable descriptor can be

computed by simple syntactic tests. Among those subsystems are the relational databases, which

are highly optimized for data stored in tables. In fact, the Levinson-Ellis hierarchies are

complementary to an RDBMS: the kinds of data that are most efficient with one are the least

99

efficient with the other. Other important subsystems include the specialized query languages of

many versions of description logics. If a query graph lies outside of any of the known classes, it

can be sent to a general first-order theorem prover. As a result, this approach can accept any

query expressible in first-order logic, determine its complexity class, and send it to the most

efficient subsystem for processing it.

Mapping a smaller logic to a more expressive logic is always possible, but the reverse mapping

usually requires some restrictions. To map information from a large, rich knowledge base to a

smaller, more efficiently computable one, Peterson, Andersen, and Engel (1998) developed a

system they called the knowledge bus. Their source was the CYC knowledge base (Lenat &

Guha 1990; Lenat 1995), which contains over 500,000 axioms expressed in full FOL with

temporal, higher-order, and nonmonotonic extensions. Their target was a hybrid system that

combined a relational database with an inference engine based on the Horn-clause subset of

FOL. To map from one to the other, the knowledge bus performs the following transformations:

 Extracting a subontology. To extract an ontology for a particular application, the

knowledge bus starts with a seed consisting of the concept types explicitly mentioned in

the application. Then it searches through CYC to determine which axioms might deduce

information about any of the seed types. Finally, it extracts those axioms together with

the types and predicates used in them. For the sample application, it extracted

approximately 1% of the total CYC knowledge base: 1531 types, 1267 predicates, and

5532 axioms.

 Separating rules and constraints. Since the Horn-clause inference engine cannot process

arbitrary FOL statements, the knowledge bus separates the axioms into two classes: 4667

Horn-clause rules that are used for inferences, and 875 FOL statements that are used as

database constraints. Both the inferencing and the constraint checking can be done

efficiently, in at most polynomial time.

 Restrictions and modifications. For temporal reasoning, the knowledge bus adds extra

arguments for starting and ending times to the CYC time-dependent predicates. To

eliminate the higher-order features, it introduces constants of type Assertion. And to

simulate the CYC nonmonotonic features, it uses a version of negation as failure.

http://www.knowledgebus.com/

100

For a particular application, the knowledge bus extracts a small subset of the CYC knowledge

base that can be processed more efficiently by simpler tools. Although some information and

some potential inferences are lost, the extracted subset has a well-founded semantics that is

guaranteed to be free of contradictions. Furthermore, the resulting subset is more portable: the

inference engine can be used as an extension to any relational database, and Engel (1999) has

developed techniques for mapping the definitions and axioms to Java classes that can be used in

web-based applications.

6. A Flexible Modular Framework

A framework based on Elephant and Linda would subsume anything that could be done with a

more conventional scripting language. Natural languages can specify procedures with a sequence

of imperative statements linked by adverbs like then and next. A translation of those statements

into KIF or CGs would specify the same procedure. But natural languages and their translations

into logic could also specify more complex speech acts that could dynamically reconfigure the

components of an intelligent system and their ways of interacting.

In the original Linda system, the operators access a blackboard that contains tuples, which

consist of sequences of arbitrary data. For a system that supports multiple languages, the first

element of the tuple should identify the language so that the Linda system could immediately

determine how to interpret the remainder. A general format would have six elements:

1. Language. A character string that specifies the language, such as "KIF", "CGIF",

"English", or "Deutsch".

2. Source. A character string that identifies the sender.

3. Message Id. A character string generated by the sender.

4. Destination. A character string that identifies the intended receiver, if known. For

pattern-directed communications, this string is empty, and the message is matched to the

patterns of available receivers.

5. Speech Act. A character string that states the speech act.

6. Message. An arbitrary expression in the specified language that states the propositional

content of the message.

101

The Linda pattern matcher could use an ordinary string comparison for the first five elements of

the tuple, but it would require a more general logical unification (of CGs or KIF statements) for

the sixth. Unification of messages in controlled natural languages might be difficult to define,

and the pattern matcher might need to translate the message to CGs or KIF if a pattern match is

necessary.

To simulate a conventional scripting language, the destination would always be specified, and

the speech act would always be "command". To access a relational database, the speech act

would be "assertion" for an update, "question" for a query, or "definition" for creating a new

table with a new format. At the end of his book, Austin (1962) specified a large number of

possible speech acts, and he insisted that his list was not exhaustive. Following are his five

categories, his description of each, and a few of his examples:

1. Verdictives "are typified by the giving of a verdict, as the name implies, by a jury,

arbitrator, or umpire."

Examples: acquit, convict, calculate, estimate, measure, assess, characterize, diagnose.

2. Exercitives "are the exercising of powers, rights, or influence."

Examples: appoint, demote, excommunicate, command, direct, bequeath, claim, pardon,

countermand, veto, dedicate.

3. Commissives "are typified by promising or otherwise undertaking."

Examples: promise, contract, undertake, intend, plan, propose, contemplate, engage,

vow, consent, champion, oppose.

4. Behabitives "are a very miscellaneous group, and have to do with attitudes and social

behavior."

Examples: apologize, thank, deplore, congratulate, welcome, bless, curse, defy,

challenge.

102

5. Expositives "make plain how our utterances fit into the course of an argument or

conversation, how we are using words, or, in general, are expository."

Examples: affirm, deny, state, assert, ask, identify, remark, mention, inform, answer,

repudiate, recognize, define, postulate, illustrate, explain, argue, correct, revise, tell,

report, interpret.

The verbs listed in these examples illustrate the kinds of speech acts that people commonly

perform, but in most cases, they omit the verb that specifies the speech act. A man who stands up

in a meeting to shout something in an angry voice seldom begins with the words "I protest." Yet

the people in the audience would recognize that the new speaker is protesting rather than

agreeing with the previous speakers. Computers, however, need to be told how to interpret such

speech, and an explicit statement of the speech act would enable them to respond more

"intelligently."

To illustrate the kinds of speech acts in an AI system, Figure 7 shows a kind of system discussed

by Sowa (2000). The boxes labeled FMF represent the same flexible modular framework that has

been adapted to different kinds of tasks by changing the roles and the kinds of speech acts

expected of the users. At the upper left, logicians, linguists, and philosophers are using the FMF

to define a general ontology. Logicians could use FMF to enter the definitions and axioms for

logical operators, set theory, and basic mathematical concepts and relations. Linguists could use

it to enter the grammar rules of natural languages and the kinds of semantic types and relations.

Philosophers could use FMF to collaborate with the linguists and logicians in analyzing and

defining the fundamental ontologies of space, time, and causality common to all domains of

application. The major speech act for these users would be definition, but they might also ask

questions about how to use the system, and they might use verdictives to evaluate the work of

their colleagues.

103

Figure 7: Tailoring an FMF for different purposes

In the center of Figure 7, application developers use FMF to enter domain-dependent information

about specific applications. Some of them would use FMF to define generic ontologies for

industries such as banking, agriculture, mining, education, and manufacturing. Others would start

with one or more generic ontologies and combine them or tailor them to a particular business,

project, or application. The users in this mode would perform the same kinds of speech acts as

the logicians, linguists, and philosophers. But they might put more emphasis on commissives,

which would commit them to strict deadlines and performance goals.

At the bottom right of Figure 7 the application users might interact with the FMF in an

unpredictable number of ways. A business user with a job to do would have different

requirements from a recreational user. Both, however, might react with behabitives, such as

104

grumbling, complaining, or cursing, when the system doesn't do what they wish. But unlike more

conventional systems, an FMF could apologize, sympathize, and commiserate.

The examples shown in Figure 7 do not begin to expoit the kinds of opportunities offered by an

FMF that is able to recognize and respond to a wide range of speech acts. An important reason

for building an FMF is to explore new ways of interaction, either between computers and

humans or among mixed committees of human and computer participants. The explicit

recognition and marking of speech acts enables the components of an FMF to interact, negotiate,

and cooperate more intelligently among themselves and with their human users.

7. Implementing the FMF

A major advantage of a flexible modular framework is that it doesn't have to be implemented all

at once. The four design principles, which enabled Unix-like systems to be implemented on

anything from a wearable computer to the largest supercomputers, can also support the growth of

intelligent systems from simple beginnings to a large "society of mind," as Minsky (1985) called

it. For an initial implementation, each of the four principles could be reduced to the barest

minimum, but any of them could be enhanced incrementally without disturbing any previously

supported operations:

1. The first component that must be implemented is a blackboard for passing messages.

Even the pattern matcher might be omitted in the first implementation, and messages

could only be sent to named destinations. For greater power and flexibility, a pattern

matcher is necessary, but the basic Linda systems use only a simple pattern matcher that

is far less sophisticated than most AI systems. The greatest power would come from

patterns stored in a hierarchy of graphs based on the Levinson-Ellis algorithms, which

could accommodate millions of patterns that might invoke intelligent agents distributed

anywhere across the Internet.

2. Any components that accept inputs and generate outputs could be accommodated in an

FMF. The first implementation might support only conventional components that do

exactly what they are told, such as the traditional collection of Unix utilities. More

sophisticated components for reasoning, planning, problem solving, and natural language

105

processing could be added incrementally. The initial implementation would look like a

pattern-matching front-end to a Unix command line, but it could grow arbitrarily far.

Each stage in the growth would continue to have the full functionality of every preceding

stage. Nothing would become obsolete as more intelligence is added by the new

components.

3. The Elephant language, which serves as the glue for linking components, could also grow

incrementally. An initial version could consist of just the three verbs implemented in

conventional computer systems: tell, ask, and do. Those verbs correspond to the

declarative, interrogative, and imperative moods of English. They also correspond to the

three operators supported by a Linda blackboard: output, input, and execute. Those verbs

would be necessary to support many, if not most of the messages in even the most

sophisticated systems. As more sophisticated components are added to the FMF, other

verbs could be added to support more complex interactions: authorize for secure

communications; reply, lock, and commit for transactions that require multiple

exchanges; explain for help facilities; and promise for future commitments.

4. The communication language for writing messages could be conventional first-order

logic, which supports a wide range of simpler subsets, such as lists, frames and rules. The

richer CG language includes FOL, but with nested contexts and metalevel statements

about the contents of any context. New languages and dialects of languages could be

added whenever a translator becomes available for mapping them to and from the

patterns of CGs that are used by the blackboard communication center.

As an FMF is being developed, it can accommodate any mixture of a variety of

components: newly designed components specially tailored for the FMF; legacy systems

enclosed in a wrapper that translates their I/O formats to the common language of the

blackboard; commercial products that perform specific services; experimental components that

are being designed and tested in research projects; an open-ended variety of client interfaces

specialized for different applications; remote servers distributed anywhere across the Internet.

A blackboard is an ideal platform for supporting hot-swap or plug-n-play components. When a

new component is added to the FMF, it would send a message to the blackboard to identify itself

and the patterns of messages it accepts. It could then be invoked by any other component whose

106

message matches the appropriate pattern. To take advantage of that flexibility, the Jini system

uses the Linda operators to accommodate any kind of I/O device that might be attached to a

network. But for intelligent systems, it is even more important to have that flexibility at the

center instead of the periphery.

Any server anywhere on the Internet could be converted to an intelligent agent by using an FMF

as its front end. It could then respond to requests from other FMF servers anywhere else on the

Internet. Each FMF would be, in Minsky's terms, a society of mind, and the entire Internet would

become a society of societies. Human users could have a personal FMF running on their own

computers, which could communicate with any other FMF to request services. The traditional

help desks, in which a human expert answers the same questions repeatedly for multiple users,

could be replaced by a human teacher or editor, as in Figure 5, who would build a knowledge

base. That knowledge base would drive a specialized FMF, which could be consulted by the

personal FMF of anyone who asks a relevant question. The intelligence accessible to any user

would then be the combined intelligence of his or her personal FMF together with every FMF

accessible to it across the Internet.

LOGICAL AGENTS

Artificial intelligence is defined as a study of rational agents. A rational agent could be

anything which makes decisions, as a person, firm, machine, or software. It carries out an

action with the best outcome after considering past and current percepts(agent’s perceptual

inputs at a given instance).

An AI system is composed of an agent and its environment. The agents act in their

environment. The environment may contain other agents. An agent is anything that can be

viewed as :

 perceiving its environment through sensors and

 acting upon that environment through actuators

107

Note : Every agent can perceive its own actions (but not always the effects)

To understand the structure of Intelligent Agents, we should be familiar

with Architecture and Agent Program. Architecture is the machinery that the agent executes

on. It is a device with sensors and actuators, for example : a robotic car, a camera, a PC. Agent

program is an implementation of an agent function. An agent function is a map from the

percept sequence(history of all that an agent has perceived till date) to an action.

Agent = Architecture + Agent Program

Examples of Agent:-

A software agent has Keystrokes, file contents, received network packages which act as

sensors and displays on the screen, files, sent network packets acting as actuators.

A Human agent has eyes, ears, and other organs which act as sensors and hands, legs, mouth,

and other body parts acting as actuators.

A Robotic agent has Cameras and infrared range finders which act as sensors and various

108

motors acting as actuators.

Types of Agents

Agents can be grouped into four classes based on their degree of perceived intelligence and

capability :

 Simple Reflex Agents

 Model-Based Reflex Agents

 Goal-Based Agents

 Utility-Based Agents

 Learning Agent

Simple reflex agents

Simple reflex agents ignore the rest of the percept history and act only on the basis of

the current percept. Percept history is the history of all that an agent has perceived till date.

109

The agent function is based on the condition-action rule. A condition-action rule is a rule that

maps a state i.e, condition to an action. If the condition is true, then the action is taken, else

not. This agent function only succeeds when the environment is fully observable. For simple

reflex agents operating in partially observable environments, infinite loops are often

unavoidable. It may be possible to escape from infinite loops if the agent can randomize its

actions. Problems with Simple reflex agents are :

 Very limited intelligence.

 No knowledge of non-perceptual parts of state.

 Usually too big to generate and store.

 If there occurs any change in the environment, then the collection of rules need to be

updated.

Model-based reflex agents

It works by finding a rule whose condition matches the current situation. A model-based agent

can handle partially observable environments by use of model about the world. The agent

has to keep track of internal state which is adjusted by each percept and that depends on the

percept history. The current state is stored inside the agent which maintains some kind of

structure describing the part of the world which cannot be seen. Updating the state requires

information about :

 how the world evolves in-dependently from the agent, and

110

 how the agent actions affects the world.

Goal-based agents

These kind of agents take decision based on how far they are currently from

their goal(description of desirable situations). Their every action is intended to reduce its

distance from the goal. This allows the agent a way to choose among multiple possibilities,

selecting the one which reaches a goal state. The knowledge that supports its decisions is

represented explicitly and can be modified, which makes these agents more flexible. They

111

usually require search and planning. The goal-based agent’s behavior can easily be changed.

Utility-based agents

The agents which are developed having their end uses as building blocks are called utility

based agents. When there are multiple possible alternatives, then to decide which one is best,

utility-based agents are used.They choose actions based on a preference (utility) for each

state. Sometimes achieving the desired goal is not enough. We may look for a quicker, safer,

cheaper trip to reach a destination. Agent happiness should be taken into consideration. Utility

describes how “happy” the agent is. Because of the uncertainty in the world, a utility agent

chooses the action that maximizes the expected utility. A utility function maps a state onto a

112

real number which describes the associated degree of happiness.

Learning Agent

A learning agent in AI is the type of agent which can learn from its past experiences or it has

learning capabilities.

It starts to act with basic knowledge and then able to act and adapt automatically through

learning.

A learning agent has mainly four conceptual components, which are:

1. Learning element :It is responsible for making improvements by learning from the

environment

2. Critic: Learning element takes feedback from critic which describes how well the agent is

doing with respect to a fixed performance standard.

3. Performance element: It is responsile for selecting external action

4. Problem Generator: This component is responsible for suggesting actions that will lead to

new and informative experiences.

113

First-Order Logic in Artificial intelligence

In the topic of Propositional logic, we have seen that how to represent statements using

propositional logic. But unfortunately, in propositional logic, we can only represent the facts,

which are either true or false. PL is not sufficient to represent the complex sentences or natural

language statements. The propositional logic has very limited expressive power. Consider the

following sentence, which we cannot represent using PL logic.

o "Some humans are intelligent", or

o "Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some more powerful

logic, such as first-order logic.

First-Order logic:

o First-order logic is another way of knowledge representation in artificial intelligence. It is

an extension to propositional logic.

o FOL is sufficiently expressive to represent the natural language statements in a concise

way.

o First-order logic is also known as Predicate logic or First-order predicate logic. First-

order logic is a powerful language that develops information about the objects in a more

easy way and can also express the relationship between those objects.

114

o First-order logic (like natural language) does not only assume that the world contains

facts like propositional logic but also assumes the following things in the world:

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,

......

o Relations: It can be unary relation such as: red, round, is adjacent, or n-any

relation such as: the sister of, brother of, has color, comes between

o Function: Father of, best friend, third inning of, end of,

o As a natural language, first-order logic also has two main parts:

a. Syntax

b. Semantics

Syntax of First-Order logic:

The syntax of FOL determines which collection of symbols is a logical expression in first-order

logic. The basic syntactic elements of first-order logic are symbols. We write statements in short-

hand notation in FOL.

Basic Elements of First-order logic:

Following are the basic elements of FOL syntax:

Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >,....

Function sqrt, LeftLegOf,

Connectives ∧, ∨, ¬, ⇒, ⇔

115

Equality ==

Quantifier ∀, ∃

Atomic sentences:

o Atomic sentences are the most basic sentences of first-order logic. These sentences are

formed from a predicate symbol followed by a parenthesis with a sequence of terms.

o We can represent atomic sentences as Predicate (term1, term2,, term n).

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).

 Chinky is a cat: => cat (Chinky).

Complex Sentences:

o Complex sentences are made by combining atomic sentences using connectives.

First-order logic statements can be divided into two parts:

o Subject: Subject is the main part of the statement.

o Predicate: A predicate can be defined as a relation, which binds two atoms together in a

statement.

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject

of the statement and second part "is an integer," is known as a predicate.

Quantifiers in First-order logic:

o A quantifier is a language element which generates quantification, and quantification

specifies the quantity of specimen in the universe of discourse.

116

o These are the symbols that permit to determine or identify the range and scope of the

variable in the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)

b. Existential quantifier, (for some, at least one).

Universal Quantifier:

Universal quantifier is a symbol of logical representation, which specifies that the statement

within its range is true for everything or every instance of a particular thing.

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A.

Note: In universal quantifier we use implication "→".

If x is a variable, then ∀x is read as:

o For all x

o For each x

o For every x.

Example:

All man drink coffee.

Let a variable x which refers to a cat so all x can be represented in UOD as below:

117

∀x man(x) → drink (x, coffee).

It will be read as: There are all x where x is a man who drink coffee.

Existential Quantifier:

Existential quantifiers are the type of quantifiers, which express that the statement within its

scope is true for at least one instance of something.

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used with a

predicate variable then it is called as an existential quantifier.

Note: In Existential quantifier we always use AND or Conjunction symbol (∧).

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as:

o There exists a 'x.'

o For some 'x.'

118

o For at least one 'x.'

Example:

Some boys are intelligent.

∃x: boys(x) ∧ intelligent(x)

It will be read as: There are some x where x is a boy who is intelligent.

Points to remember:

o The main connective for universal quantifier ∀ is implication →.

o The main connective for existential quantifier ∃ is and ∧.

Properties of Quantifiers:

o In universal quantifier, ∀x∀y is similar to ∀y∀x.

o In Existential quantifier, ∃x∃y is similar to ∃y∃x.

o ∃x∀y is not similar to ∀y∃x.

119

Some Examples of FOL using quantifier:

1. All birds fly.

In this question the predicate is "fly(bird)."

And since there are all birds who fly so it will be represented as follows.

 ∀x bird(x) →fly(x).

2. Every man respects his parent.

In this question, the predicate is "respect(x, y)," where x=man, and y= parent.

Since there is every man so will use ∀, and it will be represented as follows:

 ∀x man(x) → respects (x, parent).

3. Some boys play cricket.

In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are some

boys so we will use ∃, and it will be represented as:

 ∃x boys(x) → play(x, cricket).

4. Not all students like both Mathematics and Science.

In this question, the predicate is "like(x, y)," where x= student, and y= subject.

Since there are not all students, so we will use ∀ with negation, so following representation for

this:

 ¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

5. Only one student failed in Mathematics.

In this question, the predicate is "failed(x, y)," where x= student, and y= subject.

Since there is only one student who failed in Mathematics, so we will use following

representation for this:

 ∃(x) [student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) → ¬failed

(x, Mathematics)].

120

Free and Bound Variables:

The quantifiers interact with variables which appear in a suitable way. There are two types of

variables in First-order logic which are given below:

Free Variable: A variable is said to be a free variable in a formula if it occurs outside the scope

of the quantifier.

 Example: ∀x ∃(y)[P (x, y, z)], where z is a free variable.

Bound Variable: A variable is said to be a bound variable in a formula if it occurs within the

scope of the quantifier.

 Example: ∀x [A (x) B(y)], here x and y are the bound variables.

Knowledge Engineering in First-order logic

What is knowledge-engineering?

The process of constructing a knowledge-base in first-order logic is called as knowledge-

engineering. In knowledge-engineering, someone who investigates a particular domain, learns

important concept of that domain, and generates a formal representation of the objects, is known

as knowledge engineer.

In this topic, we will understand the Knowledge engineering process in an electronic circuit

domain, which is already familiar. This approach is mainly suitable for creating special-purpose

knowledge base.

The knowledge-engineering process:

Following are some main steps of the knowledge-engineering process. Using these steps, we will

develop a knowledge base which will allow us to reason about digital circuit (One-bit full

adder) which is given below

121

1. Identify the task:

The first step of the process is to identify the task, and for the digital circuit, there are various

reasoning tasks.

At the first level or highest level, we will examine the functionality of the circuit:

o Does the circuit add properly?

o What will be the output of gate A2, if all the inputs are high?

At the second level, we will examine the circuit structure details such as:

o Which gate is connected to the first input terminal?

o Does the circuit have feedback loops?

2. Assemble the relevant knowledge:

In the second step, we will assemble the relevant knowledge which is required for digital

circuits. So for digital circuits, we have the following required knowledge:

o Logic circuits are made up of wires and gates.

o Signal flows through wires to the input terminal of the gate, and each gate produces the

corresponding output which flows further.

122

o In this logic circuit, there are four types of gates used: AND, OR, XOR, and NOT.

o All these gates have one output terminal and two input terminals (except NOT gate, it has

one input terminal).

3. Decide on vocabulary:

The next step of the process is to select functions, predicate, and constants to represent the

circuits, terminals, signals, and gates. Firstly we will distinguish the gates from each other and

from other objects. Each gate is represented as an object which is named by a constant, such

as, Gate(X1). The functionality of each gate is determined by its type, which is taken as

constants such as AND, OR, XOR, or NOT. Circuits will be identified by a predicate: Circuit

(C1).

For the terminal, we will use predicate: Terminal(x).

For gate input, we will use the function In(1, X1) for denoting the first input terminal of the gate,

and for output terminal we will use Out (1, X1).

The function Arity(c, i, j) is used to denote that circuit c has i input, j output.

The connectivity between gates can be represented by predicate Connect(Out(1, X1), In(1,

X1)).

We use a unary predicate On (t), which is true if the signal at a terminal is on.

4. Encode general knowledge about the domain:

To encode the general knowledge about the logic circuit, we need some following rules:

o If two terminals are connected then they have the same input signal, it can be represented

as:

1. ∀ t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal (t1) = Signal (2).

o Signal at every terminal will have either value 0 or 1, it will be represented as:

123

1. ∀ t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0.

o Connect predicates are commutative:

1. ∀ t1, t2 Connect(t1, t2) → Connect (t2, t1).

o Representation of types of gates:

1. ∀ g Gate(g) ∧ r = Type(g) → r = OR ∨r = AND ∨r = XOR ∨r = NOT.

o Output of AND gate will be zero if and only if any of its input is zero.

1. ∀ g Gate(g) ∧ Type(g) = AND →Signal (Out(1, g))= 0 ⇔ ∃n Signal (In(n, g))= 0.

o Output of OR gate is 1 if and only if any of its input is 1:

1. ∀ g Gate(g) ∧ Type(g) = OR → Signal (Out(1, g))= 1 ⇔ ∃n Signal (In(n, g))= 1

o Output of XOR gate is 1 if and only if its inputs are different:

1. ∀ g Gate(g) ∧ Type(g) = XOR → Signal (Out(1, g)) = 1 ⇔ Signal (In(1, g)) ≠ Signal (In(2, g)).

o Output of NOT gate is invert of its input:

1. ∀ g Gate(g) ∧ Type(g) = NOT → Signal (In(1, g)) ≠ Signal (Out(1, g)).

o All the gates in the above circuit have two inputs and one output (except NOT gate).

1. ∀ g Gate(g) ∧ Type(g) = NOT → Arity(g, 1, 1)

2. ∀ g Gate(g) ∧ r =Type(g) ∧ (r= AND ∨r= OR ∨r= XOR) → Arity (g, 2, 1).

o All gates are logic circuits:

1. ∀ g Gate(g) → Circuit (g).

124

5. Encode a description of the problem instance:

Now we encode problem of circuit C1, firstly we categorize the circuit and its gate components.

This step is easy if ontology about the problem is already thought. This step involves the writing

simple atomics sentences of instances of concepts, which is known as ontology.

For the given circuit C1, we can encode the problem instance in atomic sentences as below:

Since in the circuit there are two XOR, two AND, and one OR gate so atomic sentences for these

gates will be:

1. For XOR gate: Type(x1)= XOR, Type(X2) = XOR

2. For AND gate: Type(A1) = AND, Type(A2)= AND

3. For OR gate: Type (O1) = OR.

And then represent the connections between all the gates.

Note: Ontology defines a particular theory of the nature of existence.

6. Pose queries to the inference procedure and get answers:

In this step, we will find all the possible set of values of all the terminal for the adder circuit. The

first query will be:

What should be the combination of input which would generate the first output of circuit C1, as 0

and a second output to be 1?

1. ∃ i1, i2, i3 Signal (In(1, C1))=i1 ∧ Signal (In(2, C1))=i2 ∧ Signal (In(3, C1))= i3

2. ∧ Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1

7. Debug the knowledge base:

Now we will debug the knowledge base, and this is the last step of the complete process. In this

step, we will try to debug the issues of knowledge base.

125

In the knowledge base, we may have omitted assertions like 1 ≠ 0.

What is knowledge representation?

Humans are best at understanding, reasoning, and interpreting knowledge. Human knows things,

which is knowledge and as per their knowledge they perform various actions in the real

world. But how machines do all these things comes under knowledge representation and

reasoning. Hence we can describe Knowledge representation as following:

o Knowledge representation and reasoning (KR, KRR) is the part of Artificial intelligence

which concerned with AI agents thinking and how thinking contributes to intelligent

behavior of agents.

o It is responsible for representing information about the real world so that a computer can

understand and can utilize this knowledge to solve the complex real world problems such

as diagnosis a medical condition or communicating with humans in natural language.

o It is also a way which describes how we can represent knowledge in artificial

intelligence. Knowledge representation is not just storing data into some database, but it

also enables an intelligent machine to learn from that knowledge and experiences so that

it can behave intelligently like a human.

What to Represent:

Following are the kind of knowledge which needs to be represented in AI systems:

o Object: All the facts about objects in our world domain. E.g., Guitars contains strings,

trumpets are brass instruments.

o Events: Events are the actions which occur in our world.

o Performance: It describe behavior which involves knowledge about how to do things.

o Meta-knowledge: It is knowledge about what we know.

o Facts: Facts are the truths about the real world and what we represent.

o Knowledge-Base: The central component of the knowledge-based agents is the

knowledge base. It is represented as KB. The Knowledgebase is a group of the Sentences

126

(Here, sentences are used as a technical term and not identical with the English

language).

Knowledge: Knowledge is awareness or familiarity gained by experiences of facts, data, and

situations. Following are the types of knowledge in artificial intelligence:

Types of knowledge

Following are the various types of knowledge:

1. Declarative Knowledge:

o Declarative knowledge is to know about something.

o It includes concepts, facts, and objects.

o It is also called descriptive knowledge and expressed in declarativesentences.

o It is simpler than procedural language.

127

2. Procedural Knowledge

o It is also known as imperative knowledge.

o Procedural knowledge is a type of knowledge which is responsible for knowing how to

do something.

o It can be directly applied to any task.

o It includes rules, strategies, procedures, agendas, etc.

o Procedural knowledge depends on the task on which it can be applied.

3. Meta-knowledge:

o Knowledge about the other types of knowledge is called Meta-knowledge.

4. Heuristic knowledge:

o Heuristic knowledge is representing knowledge of some experts in a filed or subject.

o Heuristic knowledge is rules of thumb based on previous experiences, awareness of

approaches, and which are good to work but not guaranteed.

5. Structural knowledge:

o Structural knowledge is basic knowledge to problem-solving.

o It describes relationships between various concepts such as kind of, part of, and grouping

of something.

o It describes the relationship that exists between concepts or objects.

The relation between knowledge and intelligence:

Knowledge of real-worlds plays a vital role in intelligence and same for creating artificial

intelligence. Knowledge plays an important role in demonstrating intelligent behavior in AI

agents. An agent is only able to accurately act on some input when he has some knowledge or

experience about that input.

128

Let's suppose if you met some person who is speaking in a language which you don't know, then

how you will able to act on that. The same thing applies to the intelligent behavior of the agents.

As we can see in below diagram, there is one decision maker which act by sensing the

environment and using knowledge. But if the knowledge part will not present then, it cannot

display intelligent behavior.

AI knowledge cycle:

An Artificial intelligence system has the following components for displaying intelligent

behavior:

o Perception

o Learning

o Knowledge Representation and Reasoning

o Planning

o Execution

129

The above diagram is showing how an AI system can interact with the real world and what

components help it to show intelligence. AI system has Perception component by which it

retrieves information from its environment. It can be visual, audio or another form of sensory

input. The learning component is responsible for learning from data captured by Perception

comportment. In the complete cycle, the main components are knowledge representation and

Reasoning. These two components are involved in showing the intelligence in machine-like

humans. These two components are independent with each other but also coupled together. The

planning and execution depend on analysis of Knowledge representation and reasoning.

Approaches to knowledge representation:

There are mainly four approaches to knowledge representation, which are givenbelow:

1. Simple relational knowledge:

o It is the simplest way of storing facts which uses the relational method, and each fact

about a set of the object is set out systematically in columns.

o This approach of knowledge representation is famous in database systems where the

relationship between different entities is represented.

o This approach has little opportunity for inference.

130

Example: The following is the simple relational knowledge representation.

Player Weight Age

Player1 65 23

Player2 58 18

Player3 75 24

2. Inheritable knowledge:

o In the inheritable knowledge approach, all data must be stored into a hierarchy of classes.

o All classes should be arranged in a generalized form or a hierarchal manner.

o In this approach, we apply inheritance property.

o Elements inherit values from other members of a class.

o This approach contains inheritable knowledge which shows a relation between instance

and class, and it is called instance relation.

o Every individual frame can represent the collection of attributes and its value.

o In this approach, objects and values are represented in Boxed nodes.

o We use Arrows which point from objects to their values.

o Example:

131

3. Inferential knowledge:

o Inferential knowledge approach represents knowledge in the form of formal logics.

o This approach can be used to derive more facts.

o It guaranteed correctness.

o Example: Let's suppose there are two statements:

a. Marcus is a man

b. All men are mortal

Then it can represent as;

man(Marcus)

∀x = man (x) ----------> mortal (x)s

4. Procedural knowledge:

o Procedural knowledge approach uses small programs and codes which describes how to

do specific things, and how to proceed.

o In this approach, one important rule is used which is If-Then rule.

132

o In this knowledge, we can use various coding languages such as LISP

language and Prolog language.

o We can easily represent heuristic or domain-specific knowledge using this approach.

o But it is not necessary that we can represent all cases in this approach.

Requirements for knowledge Representation system:

A good knowledge representation system must possess the following properties.

1. 1. Representational Accuracy:

KR system should have the ability to represent all kind of required knowledge.

2. 2. Inferential Adequacy:

KR system should have ability to manipulate the representational structures to produce

new knowledge corresponding to existing structure.

3. 3. Inferential Efficiency:

The ability to direct the inferential knowledge mechanism into the most productive

directions by storing appropriate guides.

4. 4. Acquisitional efficiency- The ability to acquire the new knowledge easily using

automatic methods.

Techniques of knowledge representation

There are mainly four ways of knowledge representation which are given as follows:

1. Logical Representation

2. Semantic Network Representation

3. Frame Representation

4. Production Rules

133

1. Logical Representation

Logical representation is a language with some concrete rules which deals with propositions and

has no ambiguity in representation. Logical representation means drawing a conclusion based on

various conditions. This representation lays down some important communication rules. It

consists of precisely defined syntax and semantics which supports the sound inference. Each

sentence can be translated into logics using syntax and semantics.

Syntax:

o Syntaxes are the rules which decide how we can construct legal sentences in the logic.

o It determines which symbol we can use in knowledge representation.

o How to write those symbols.

Semantics:

o Semantics are the rules by which we can interpret the sentence in the logic.

o Semantic also involves assigning a meaning to each sentence.

Logical representation can be categorised into mainly two logics:

134

a. Propositional Logics

b. Predicate logics

Note: We will discuss Prepositional Logics and Predicate logics in later chapters.

Advantages of logical representation:

1. Logical representation enables us to do logical reasoning.

2. Logical representation is the basis for the programming languages.

Disadvantages of logical Representation:

1. Logical representations have some restrictions and are challenging to work with.

2. Logical representation technique may not be very natural, and inference may not be so

efficient.

Note: Do not be confused with logical representation and logical reasoning as logical

representation is a representation language and reasoning is a process of thinking logically.

2. Semantic Network Representation

Semantic networks are alternative of predicate logic for knowledge representation. In Semantic

networks, we can represent our knowledge in the form of graphical networks. This network

consists of nodes representing objects and arcs which describe the relationship between those

objects. Semantic networks can categorize the object in different forms and can also link those

objects. Semantic networks are easy to understand and can be easily extended.

This representation consist of mainly two types of relations:

a. IS-A relation (Inheritance)

b. Kind-of-relation

Example: Following are some statements which we need to represent in the form of nodes and

arcs.

Statements:

a. Jerry is a cat.

135

b. Jerry is a mammal

c. Jerry is owned by Priya.

d. Jerry is brown colored.

e. All Mammals are animal.

In the above diagram, we have represented the different type of knowledge in the form of nodes

and arcs. Each object is connected with another object by some relation.

Drawbacks in Semantic representation:

1. Semantic networks take more computational time at runtime as we need to traverse the

complete network tree to answer some questions. It might be possible in the worst case

scenario that after traversing the entire tree, we find that the solution does not exist in this

network.

2. Semantic networks try to model human-like memory (Which has 1015 neurons and links)

to store the information, but in practice, it is not possible to build such a vast semantic

network.

3. These types of representations are inadequate as they do not have any equivalent

quantifier, e.g., for all, for some, none, etc.

4. Semantic networks do not have any standard definition for the link names.

136

5. These networks are not intelligent and depend on the creator of the system.

Advantages of Semantic network:

1. Semantic networks are a natural representation of knowledge.

2. Semantic networks convey meaning in a transparent manner.

3. These networks are simple and easily understandable.

3. Frame Representation

A frame is a record like structure which consists of a collection of attributes and its values to

describe an entity in the world. Frames are the AI data structure which divides knowledge into

substructures by representing stereotypes situations. It consists of a collection of slots and slot

values. These slots may be of any type and sizes. Slots have names and values which are called

facets.

Facets: The various aspects of a slot is known as Facets. Facets are features of frames which

enable us to put constraints on the frames. Example: IF-NEEDED facts are called when data of

any particular slot is needed. A frame may consist of any number of slots, and a slot may include

any number of facets and facets may have any number of values. A frame is also known as slot-

filter knowledge representation in artificial intelligence.

Frames are derived from semantic networks and later evolved into our modern-day classes and

objects. A single frame is not much useful. Frames system consist of a collection of frames

which are connected. In the frame, knowledge about an object or event can be stored together in

the knowledge base. The frame is a type of technology which is widely used in various

applications including Natural language processing and machine visions.

Example: 1

Let's take an example of a frame for a book

Slots Filters

137

Title Artificial Intelligence

Genre Computer Science

Author Peter Norvig

Edition Third Edition

Year 1996

Page 1152

Example 2:

Let's suppose we are taking an entity, Peter. Peter is an engineer as a profession, and his age is

25, he lives in city London, and the country is England. So following is the frame representation

for this:

Slots Filter

Name Peter

Profession Doctor

Age 25

Marital status Single

Weight 78

138

Advantages of frame representation:

1. The frame knowledge representation makes the programming easier by grouping the

related data.

2. The frame representation is comparably flexible and used by many applications in AI.

3. It is very easy to add slots for new attribute and relations.

4. It is easy to include default data and to search for missing values.

5. Frame representation is easy to understand and visualize.

Disadvantages of frame representation:

1. In frame system inference mechanism is not be easily processed.

2. Inference mechanism cannot be smoothly proceeded by frame representation.

3. Frame representation has a much generalized approach.

4. Production Rules

Production rules system consist of (condition, action) pairs which mean, "If condition then

action". It has mainly three parts:

o The set of production rules

o Working Memory

o The recognize-act-cycle

In production rules agent checks for the condition and if the condition exists then production rule

fires and corresponding action is carried out. The condition part of the rule determines which rule

may be applied to a problem. And the action part carries out the associated problem-solving

steps. This complete process is called a recognize-act cycle.

The working memory contains the description of the current state of problems-solving and rule

can write knowledge to the working memory. This knowledge match and may fire other rules.

139

If there is a new situation (state) generates, then multiple production rules will be fired together,

this is called conflict set. In this situation, the agent needs to select a rule from these sets, and it

is called a conflict resolution.

Example:

o IF (at bus stop AND bus arrives) THEN action (get into the bus)

o IF (on the bus AND paid AND empty seat) THEN action (sit down).

o IF (on bus AND unpaid) THEN action (pay charges).

o IF (bus arrives at destination) THEN action (get down from the bus).

Advantages of Production rule:

1. The production rules are expressed in natural language.

2. The production rules are highly modular, so we can easily remove, add or modify an

individual rule.

Disadvantages of Production rule:

1. Production rule system does not exhibit any learning capabilities, as it does not store the

result of the problem for the future uses.

2. During the execution of the program, many rules may be active hence rule-based

production systems are inefficient.

Propositional logic in Artificial intelligence

Propositional logic (PL) is the simplest form of logic where all the statements are made by

propositions. A proposition is a declarative statement which is either true or false. It is a

technique of knowledge representation in logical and mathematical form.

Example:

1. a) It is Sunday.

2. b) The Sun rises from West (False proposition)

3. c) 3+3= 7(False proposition)

4. d) 5 is a prime number.

140

Following are some basic facts about propositional logic:

o Propositional logic is also called Boolean logic as it works on 0 and 1.

o In propositional logic, we use symbolic variables to represent the logic, and we can use

any symbol for a representing a proposition, such A, B, C, P, Q, R, etc.

o Propositions can be either true or false, but it cannot be both.

o Propositional logic consists of an object, relations or function, and logical connectives.

o These connectives are also called logical operators.

o The propositions and connectives are the basic elements of the propositional logic.

o Connectives can be said as a logical operator which connects two sentences.

o A proposition formula which is always true is called tautology, and it is also called a

valid sentence.

o A proposition formula which is always false is called Contradiction.

o A proposition formula which has both true and false values is called

o Statements which are questions, commands, or opinions are not propositions such as

"Where is Rohini", "How are you", "What is your name", are not propositions.

Syntax of propositional logic:

The syntax of propositional logic defines the allowable sentences for the knowledge

representation. There are two types of Propositions:

a. Atomic Propositions

b. Compound propositions

o Atomic Proposition: Atomic propositions are the simple propositions. It consists of a

single proposition symbol. These are the sentences which must be either true or false.

Example:

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact.

2. b) "The Sun is cold" is also a proposition as it is a false fact.

141

o Compound proposition: Compound propositions are constructed by combining simpler

or atomic propositions, using parenthesis and logical connectives.

Example:

1. a) "It is raining today, and street is wet."

2. b) "Ankit is a doctor, and his clinic is in Mumbai."

Logical Connectives:

Logical connectives are used to connect two simpler propositions or representing a sentence

logically. We can create compound propositions with the help of logical connectives. There are

mainly five connectives, which are given as follows:

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive

literal or negative literal.

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,

P= Rohan is intelligent,

Q= Rohan is hardworking. → P∧ Q.

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction,

where P and Q are the propositions.

Example: "Ritika is a doctor or Engineer",

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q.

4. Implication: A sentence such as P → Q, is called an implication. Implications are also

known as if-then rules. It can be represented as

 If it is raining, then the street is wet.

 Let P= It is raining, and Q= Street is wet, so it is represented as P → Q

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am

breathing, then I am alive

 P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q.

142

Following is the summarized table for Propositional Logic Connectives:

Truth Table:

In propositional logic, we need to know the truth values of propositions in all possible scenarios.

We can combine all the possible combination with logical connectives, and the representation of

these combinations in a tabular format is called Truth table. Following are the truth table for all

logical connectives:

143

144

Truth table with three propositions:

We can build a proposition composing three propositions P, Q, and R. This truth table is made-

up of 8n Tuples as we have taken three proposition symbols.

Precedence of connectives:

Just like arithmetic operators, there is a precedence order for propositional connectors or logical

operators. This order should be followed while evaluating a propositional problem. Following is

the list of the precedence order for operators:

Precedence Operators

First Precedence Parenthesis

Second Precedence Negation

Third Precedence Conjunction(AND)

Fourth Precedence Disjunction(OR)

Fifth Precedence Implication

145

Six Precedence Biconditional

Note: For better understanding use parenthesis to make sure of the correct interpretations.

Such as ¬R∨ Q, It can be interpreted as (¬R) ∨ Q.

Logical equivalence:

Logical equivalence is one of the features of propositional logic. Two propositions are said to be

logically equivalent if and only if the columns in the truth table are identical to each other.

Let's take two propositions A and B, so for logical equivalence, we can write it as A⇔B. In

below truth table we can see that column for ¬A∨ B and A→B, are identical hence A is

Equivalent to B

Properties of Operators:

o Commutativity:

o P∧ Q= Q ∧ P, or

o P ∨ Q = Q ∨ P.

o Associativity:

o (P ∧ Q) ∧ R= P ∧ (Q ∧ R),

o (P ∨ Q) ∨ R= P ∨ (Q ∨ R)

o Identity element:

o P ∧ True = P,

o P ∨ True= True.

o Distributive:

o P∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R).

146

o P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R).

o DE Morgan's Law:

o ¬ (P ∧ Q) = (¬P) ∨ (¬Q)

o ¬ (P ∨ Q) = (¬ P) ∧ (¬Q).

o Double-negation elimination:

o ¬ (¬P) = P.

Limitations of Propositional logic:

o We cannot represent relations like ALL, some, or none with propositional logic.

Example:

a. All the girls are intelligent.

b. Some apples are sweet.

 Propositional logic has limited expressive power.

 In propositional logic, we cannot describe statements in terms of their properties or

logical relationships.

Rules of Inference in Artificial intelligence

Inference:

In artificial intelligence, we need intelligent computers which can create new logic from old

logic or by evidence, so generating the conclusions from evidence and facts is termed as

Inference.

Inference rules:

Inference rules are the templates for generating valid arguments. Inference rules are applied to

derive proofs in artificial intelligence, and the proof is a sequence of the conclusion that leads to

the desired goal.

In inference rules, the implication among all the connectives plays an important role. Following

are some terminologies related to inference rules:

147

o Implication: It is one of the logical connectives which can be represented as P → Q. It is

a Boolean expression.

o Converse: The converse of implication, which means the right-hand side proposition

goes to the left-hand side and vice-versa. It can be written as Q → P.

o Contrapositive: The negation of converse is termed as contrapositive, and it can be

represented as ¬ Q → ¬ P.

o Inverse: The negation of implication is called inverse. It can be represented as ¬ P → ¬

Q.

From the above term some of the compound statements are equivalent to each other, which we

can prove using truth table:

Hence from the above truth table, we can prove that P → Q is equivalent to ¬ Q → ¬ P, and Q→

P is equivalent to ¬ P → ¬ Q.

Types of Inference rules:

1. Modus Ponens:

The Modus Ponens rule is one of the most important rules of inference, and it states that if P and

P → Q is true, then we can infer that Q will be true. It can be represented as:

Example:

148

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q

Statement-2: "I am sleepy" ==> P

Conclusion: "I go to bed." ==> Q.

Hence, we can say that, if P→ Q is true and P is true then Q will be true.

Proof by Truth table:

2. Modus Tollens:

The Modus Tollens rule state that if P→ Q is true and ¬ Q is true, then ¬ P will also true. It can

be represented as:

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q

Statement-2: "I do not go to the bed."==> ~Q

Statement-3: Which infers that "I am not sleepy" => ~P

Proof by Truth table:

149

3. Hypothetical Syllogism:

The Hypothetical Syllogism rule state that if P→R is true whenever P→Q is true, and Q→R is

true. It can be represented as the following notation:

Example:

Statement-1: If you have my home key then you can unlock my home. P→Q

Statement-2: If you can unlock my home then you can take my money. Q→R

Conclusion: If you have my home key then you can take my money. P→R

Proof by truth table:

4. Disjunctive Syllogism:

The Disjunctive syllogism rule state that if P∨Q is true, and ¬P is true, then Q will be true. It can

be represented as:

Example:

Statement-1: Today is Sunday or Monday. ==>P∨Q

Statement-2: Today is not Sunday. ==> ¬P

Conclusion: Today is Monday. ==> Q

150

Proof by truth-table:

5. Addition:

The Addition rule is one the common inference rule, and it states that If P is true, then P∨Q will

be true.

Example:

Statement: I have a vanilla ice-cream. ==> P

Statement-2: I have Chocolate ice-cream.

Conclusion: I have vanilla or chocolate ice-cream. ==> (P∨Q)

Proof by Truth-Table:

6. Simplification:

The simplification rule state that if P∧ Q is true, then Q or P will also be true. It can be

represented as:

151

Proof by Truth-Table:

7. Resolution:

The Resolution rule state that if P∨Q and ¬ P∧R is true, then Q∨R will also be true. It can be

represented as

Proof by Truth-Table:

152

UNIT III

Planning and Acting in the Real World

What is planning in AI?

 The planning in Artificial Intelligence is about the decision making tasks performed by the

robots or computer programs to achieve a specific goal.

 The execution of planning is about choosing a sequence of actions with a high likelihood to

complete the specific task.

Blocks-World planning problem

 The blocks-world problem is known as Sussman Anomaly.

 Noninterleaved planners of the early 1970s were unable to solve this problem, hence it is

considered as anomalous.

 When two subgoals G1 and G2 are given, a noninterleaved planner produces either a plan for

G1 concatenated with a plan for G2, or vice-versa.

 In blocks-world problem, three blocks labeled as 'A', 'B', 'C' are allowed to rest on the flat

surface. The given condition is that only one block can be moved at a time to achieve the goal.

 The start state and goal state are shown in the following diagram.

Components of Planning System

The planning consists of following important steps:

 Choose the best rule for applying the next rule based on the best available heuristics.

 Apply the chosen rule for computing the new problem state.

153

 Detect when a solution has been found.

 Detect dead ends so that they can be abandoned and the system’s effort is directed in more

fruitful directions.

 Detect when an almost correct solution has been found.

Goal stack planning

This is one of the most important planning algorithms, which is specifically used by STRIPS.

 The stack is used in an algorithm to hold the action and satisfy the goal. A knowledge base is

used to hold the current state, actions.

 Goal stack is similar to a node in a search tree, where the branches are created if there is a

choice of an action.

The important steps of the algorithm are as stated below:

i. Start by pushing the original goal on the stack. Repeat this until the stack becomes empty. If

stack top is a compound goal, then push its unsatisfied subgoals on the stack.

ii. If stack top is a single unsatisfied goal then, replace it by an action and push the action’s

precondition on the stack to satisfy the condition.

iii. If stack top is an action, pop it from the stack, execute it and change the knowledge base by

the effects of the action.

iv. If stack top is a satisfied goal, pop it from the stack.

Non-linear planning

This planning is used to set a goal stack and is included in the search space of all possible

subgoal orderings. It handles the goal interactions by interleaving method.

Advantage of non-Linear planning

Non-linear planning may be an optimal solution with respect to plan length (depending on search

strategy used).

Disadvantages of Nonlinear planning
[

 It takes larger search space, since all possible goal orderings are taken into consideration.

154

 Complex algorithm to understand.

Algorithm

1. Choose a goal 'g' from the goalset

2. If 'g' does not match the state, then

 Choose an operator 'o' whose add-list matches goal g

 Push 'o' on the opstack

 Add the preconditions of 'o' to the goalset

3. While all preconditions of operator on top of opstack are met in state

 Pop operator o from top of opstack

 state = apply(o, state)

 plan = [plan; o]

Probabilistic reasoning in Artificial intelligence

Uncertainty:

Till now, we have learned knowledge representation using first-order logic and propositional

logic with certainty, which means we were sure about the predicates. With this knowledge

representation, we might write A→B, which means if A is true then B is true, but consider a

situation where we are not sure about whether A is true or not then we cannot express this

statement, this situation is called uncertainty.

So to represent uncertain knowledge, where we are not sure about the predicates, we need

uncertain reasoning or probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to occur in the real world.

1. Information occurred from unreliable sources.

2. Experimental Errors

3. Equipment fault

155

4. Temperature variation

5. Climate change.

Probabilistic reasoning:

Probabilistic reasoning is a way of knowledge representation where we apply the concept of

probability to indicate the uncertainty in knowledge. In probabilistic reasoning, we combine

probability theory with logic to handle the uncertainty.

We use probability in probabilistic reasoning because it provides a way to handle the uncertainty

that is the result of someone's laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty of something is not confirmed,

such as "It will rain today," "behavior of someone for some situations," "A match between two

teams or two players." These are probable sentences for which we can assume that it will happen

but not sure about it, so here we use probabilistic reasoning.

Need of probabilistic reasoning in AI:

o When there are unpredictable outcomes.

o When specifications or possibilities of predicates becomes too large to handle.

o When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge:

o Bayes' rule

o Bayesian Statistics

Note: We will learn the above two rules in later chapters.

As probabilistic reasoning uses probability and related terms, so before understanding

probabilistic reasoning, let's understand some common terms:

156

Probability: Probability can be defined as a chance that an uncertain event will occur. It is the

numerical measure of the likelihood that an event will occur. The value of probability always

remains between 0 and 1 that represent ideal uncertainties.

1. 0 ≤ P(A) ≤ 1, where P(A) is the probability of an event A.

1. P(A) = 0, indicates total uncertainty in an event A.

1. P(A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

o P(¬A) = probability of a not happening event.

o P(¬A) + P(A) = 1.

Event: Each possible outcome of a variable is called an event.

Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects in the real

world.

Prior probability: The prior probability of an event is probability computed before observing

new information.

Posterior Probability: The probability that is calculated after all evidence or information has

taken into account. It is a combination of prior probability and new information.

Conditional probability:

Conditional probability is a probability of occurring an event when another event has already

happened.

157

Let's suppose, we want to calculate the event A when event B has already occurred, "the

probability of A under the conditions of B", it can be written as:

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the probability of B, then it will be given as:

It can be explained by using the below Venn diagram, where B is occurred event, so sample

space will be reduced to set B, and now we can only calculate event A when event B is already

occurred by dividing the probability of P(A⋀B) by P(B).

Example:

158

In a class, there are 70% of the students who like English and 40% of the students who likes

English and mathematics, and then what is the percent of students those who like English also

like mathematics?

Solution:

Let, A is an event that a student likes Mathematics

B is an event that a student likes English.

Hence, 57% are the students who like English also like Mathematics.

Bayes' theorem in Artificial intelligence

Bayes' theorem:

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian reasoning, which

determines the probability of an event with uncertain knowledge.

In probability theory, it relates the conditional probability and marginal probabilities of two

random events.

Bayes' theorem was named after the British mathematician Thomas Bayes. The Bayesian

inference is an application of Bayes' theorem, which is fundamental to Bayesian statistics.

It is a way to calculate the value of P(B|A) with the knowledge of P(A|B).

Bayes' theorem allows updating the probability prediction of an event by observing new

information of the real world.

Example: If cancer corresponds to one's age then by using Bayes' theorem, we can determine the

probability of cancer more accurately with the help of age.

159

Bayes' theorem can be derived using product rule and conditional probability of event A with

known event B:

As from product rule we can write:

1. P(A ⋀ B)= P(A|B) P(B) or

Similarly, the probability of event B with known event A:

1. P(A ⋀ B)= P(B|A) P(A)

Equating right hand side of both the equations, we will get:

The above equation (a) is called as Bayes' rule or Bayes' theorem. This equation is basic of

most modern AI systems for probabilistic inference.

It shows the simple relationship between joint and conditional probabilities. Here,

P(A|B) is known as posterior, which we need to calculate, and it will be read as Probability of

hypothesis A when we have occurred an evidence B.

P(B|A) is called the likelihood, in which we consider that hypothesis is true, then we calculate

the probability of evidence.

P(A) is called the prior probability, probability of hypothesis before considering the evidence

P(B) is called marginal probability, pure probability of an evidence.

In the equation (a), in general, we can write P (B) = P(A)*P(B|Ai), hence the Bayes' rule can be

written as:

160

Where A1, A2, A3,........, An is a set of mutually exclusive and exhaustive events.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) in terms of P(A|B), P(B), and P(A). This

is very useful in cases where we have a good probability of these three terms and want to

determine the fourth one. Suppose we want to perceive the effect of some unknown cause, and

want to compute that cause, then the Bayes' rule becomes:

Example-1:

Question: what is the probability that a patient has diseases meningitis with a stiff neck?

Given Data:

A doctor is aware that disease meningitis causes a patient to have a stiff neck, and it occurs 80%

of the time. He is also aware of some more facts, which are given as follows:

o The Known probability that a patient has meningitis disease is 1/30,000.

o The Known probability that a patient has a stiff neck is 2%.

Let a be the proposition that patient has stiff neck and b be the proposition that patient has

meningitis. , so we can calculate the following as:

P(a|b) = 0.8

P(b) = 1/30000

161

P(a)= .02

Hence, we can assume that 1 patient out of 750 patients has meningitis disease with a stiff neck.

Example-2:

Question: From a standard deck of playing cards, a single card is drawn. The probability

that the card is king is 4/52, then calculate posterior probability P(King|Face), which means

the drawn face card is a king card.

Solution:

P(king): probability that the card is King= 4/52= 1/13

P(face): probability that a card is a face card= 3/13

P(Face|King): probability of face card when we assume it is a king = 1

Putting all values in equation (i) we will get:

Application of Bayes' theorem in Artificial intelligence:

Following are some applications of Bayes' theorem:

o It is used to calculate the next step of the robot when the already executed step is given.

162

o Bayes' theorem is helpful in weather forecasting.

o It can solve the Monty Hall problem.

Bayesian Belief Network in artificial intelligence

Bayesian belief network is key computer technology for dealing with probabilistic events and to

solve a problem which has uncertainty. We can define a Bayesian network as:

"A Bayesian network is a probabilistic graphical model which represents a set of variables and

their conditional dependencies using a directed acyclic graph."

It is also called a Bayes network, belief network, decision network, or Bayesian model.

Bayesian networks are probabilistic, because these networks are built from a probability

distribution, and also use probability theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to represent the relationship between

multiple events, we need a Bayesian network. It can also be used in various tasks

including prediction, anomaly detection, diagnostics, automated insight, reasoning, time

series prediction, and decision making under uncertainty.

Bayesian Network can be used for building models from data and experts opinions, and it

consists of two parts:

o Directed Acyclic Graph

o Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve decision problems under

uncertain knowledge is known as an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

163

o Each node corresponds to the random variables, and a variable can

be continuous or discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities

between random variables. These directed links or arrows connect the pair of nodes in the

graph.

These links represent that one node directly influence the other node, and if there is no

directed link that means that nodes are independent with each other

o In the above diagram, A, B, C, and D are random variables represented by

the nodes of the network graph.

o If we are considering node B, which is connected with node A by a directed

arrow, then node A is called the parent of Node B.

o Node C is independent of node A.

164

Note: The Bayesian network graph does not contain any cyclic graph. Hence, it is known as

a directed acyclic graph or DAG.

The Bayesian network has mainly two components:

o Causal Component

o Actual numbers

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi)),

which determines the effect of the parent on that node.

Bayesian network is based on Joint probability distribution and conditional probability. So let's

first understand the joint probability distribution:

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1,

x2, x3.. xn, are known as Joint probability distribution.

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability

distribution.

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi))

Explanation of Bayesian network:

Let's understand the Bayesian network through an example by creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably

responds at detecting a burglary but also responds for minor earthquakes. Harry has two

165

neighbors David and Sophia, who have taken a responsibility to inform Harry at work when they

hear the alarm. David always calls Harry when he hears the alarm, but sometimes he got

confused with the phone ringing and calls at that time too. On the other hand, Sophia likes to

listen to high music, so sometimes she misses to hear the alarm. Here we would like to compute

the probability of Burglary Alarm.

Problem:

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an

earthquake occurred, and David and Sophia both called the Harry.

Solution:

o The Bayesian network for the above problem is given below. The network structure is

showing that burglary and earthquake is the parent node of the alarm and directly

affecting the probability of alarm's going off, but David and Sophia's calls depend on

alarm probability.

o The network is representing that our assumptions do not directly perceive the burglary

and also do not notice the minor earthquake, and they also not confer before calling.

o The conditional distributions for each node are given as conditional probabilit ies table or

CPT.

o Each row in the CPT must be sum to 1 because all the entries in the table represent an

exhaustive set of cases for the variable.

o In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if

there are two parents, then CPT will contain 4 probability values

List of all events occurring in this network:

o Burglary (B)

o Earthquake(E)

o Alarm(A)

o David Calls(D)

166

o Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can

rewrite the above probability statement using joint probability distribution:

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

= P [D| A]. P [S| A, B, E]. P[A, B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B |E]. P[E]

Let's take the observed probability for the Burglary and earthquake component:

P(B= True) = 0.002, which is the probability of burglary.

167

P(B= False)= 0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor earthquake

P(E= False)= 0.999, Which is the probability that an earthquake not occurred.

We can provide the conditional probabilities as per the below tables:

Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:

The Conditional probability of David that he will call depends on the probability of Alarm.

A P(D= True) P(D= False)

True 0.91 0.09

False 0.05 0.95

168

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm."

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

From the formula of joint distribution, we can write the problem statement in the form of

probability distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

= 0.00068045.

Hence, a Bayesian network can answer any query about the domain by using Joint

distribution.

The semantics of Bayesian Network:

There are two ways to understand the semantics of the Bayesian network, which is given below:

1. To understand the network as the representation of the Joint probability distribution.

It is helpful to understand how to construct the network.

2. To understand the network as an encoding of a collection of conditional independence

statements.

It is helpful in designing inference procedure.

169

Subsets of Artificial Intelligence

Till now, we have learned about what is AI, and now we will learn in this topic about

various subsets of AI. Following are the most common subsets of AI:

o Machine Learning

o Deep Learning

o Natural Language processing

o Expert System

o Robotics

o Machine Vision

o Speech Recognition

Note: Among all of the above, Machine learning plays a crucial role in AI. Machine learning

and deep learning are the ways of achieving AI in real life.

Machine Learning

Machine learning is a part of AI which provides intelligence to machines with the ability to

automatically learn with experiences without being explicitly programmed.

170

o It is primarily concerned with the design and development of algorithms that allow the

system to learn from historical data.

o Machine Learning is based on the idea that machines can learn from past data, identify

patterns, and make decisions using algorithms.

o Machine learning algorithms are designed in such a way that they can learn and improve

their performance automatically.

o Machine learning helps in discovering patterns in data.

Types of Machine Learning

Machine learning can be subdivided intothe main three types:

o Supervised learning:

Supervised learning is a type of machine learning in which machine learn from known

datasets (set of training examples), and then predict the output. A supervised learning

agent needs to find out the function that matches a given sample set.

Supervised learning further can be classified into two categories of algorithms:

a. Classifications

b. Regression

 Reinforcement learning:

Reinforcement learning is a type of learning in which an AI agent is trained by giving some

commands, and on each action, an agent gets a reward as a feedback.Using these feedbacks,

agent improves its performance.

Reward feedback can be positive or negative which means on each good action, agent receives a

171

positive reward while for wrong action, it gets a negative reward.

Reinforcement learning is of two types:

 . Positive Reinforcement learning

a. Negative Reinforcement learning

 Unsupervised learning:

Unsupervised learning is associated with learning without supervision or training. In

unsupervised learning, the algorithms are trained with data which is neither labeled nor

classified. In unsupervised learning, the agent needs to learn from patterns without corresponding

output values.

Unsupervised learning can be classified into two categories of algorithms:

 . Clustering

a. Association

Natural Language processing

Natural language processing is a subfield of computer science and artificial intelligence. NLP

enables a computer system to understand and process human language such as English.

NLP plays an important role in AI as without NLP, AI agent cannot work on human instructions,

but with the help of NLP, we can instruct an AI system on our language. Today we are all around

AI, and as well as NLP, we can easily ask Siri, Google or Cortana to help us in our language.

Natural language processing application enables a user to communicate with the system in their

own words directly.

The Input and output of NLP applications can be in two forms:

o Speech

o Text

172

Deep Learning

Deep learning is a subset of machine learning which provides the ability to machine to perform

human-like tasks without human involvement. It provides the ability to an AI agent to mimic the

human brain. Deep learning can use both supervised and unsupervised learning to train an AI

agent.

o Deep learning is implemented through neural networks architecture hence also called

a deep neural network.

o Deep learning is the primary technology behind self-driving cars, speech recognition,

image recognition, automatic machine translation, etc.

o The main challenge for deep learning is that it requires lots of data with lots of

computational power.

How deep learning works:

o Deep Learning Algorithms work on deep neural networks, so it is called deep

learning. These deep neural networks are made of multiple layers.

o The first layer is called an Input layer, the last layer is called an output layer, and

all layers between these two layers are called hidden layers.

o In the deep neural network, there are multiple hidden layers, and each layer is

composed of neurons. These neurons are connected in each layer.

o The input layer receives input data, and the neurons propagate the input signal to

its above layers.

o The hidden layers perform mathematical operations on inputs, and the performed

data forwarded to the output layer.

o The output layer returns the output to the user.

173

Expert Systems

o An expert system is an application of artificial intelligence. In artificial intelligence,

expert systems are the computer programs that rely on obtaining the knowledge of

human experts and programming that knowledge into a system.

o Expert systems emulate the decision-making ability of human experts. These

systems are designed to solve the complex problem through bodies of knowledge

rather than conventional procedural code.

o One of the examples of an expert system is a Suggestion for the spelling error while

typing in the Google search box.

o Following are some characteristics of expert systems:

o High performance

o Reliable

o Highly responsive

o Understandable

174

Robotics

o Robotics is a branch of artificial intelligence and engineering which is used for designing

and manufacturing of robots.

o Robots are the programmed machines which can perform a series of actions

automatically or semi-automatically.

o AI can be applied to robots to make intelligent robots which can perform the task with

their intelligence. AI algorithms are necessary to allow a robot to perform more complex

tasks.

o Nowadays, AI and machine learning are being applied on robots to manufacture

intelligent robots which can also interact socially like humans. One of the best examples

of AI in robotics is Sophia robot.

Machine Vision

o Machine vision is an application of computer vision which enables a machine to

recognize the object.

o Machine vision captures and analyses visual information using one or more video

cameras, analog-to-digital conversations, and digital signal processing.

o Machine vision systems are programmed to perform narrowly defined tasks such as

counting objects, reading the serial number, etc.

o Computer systems do not see in the same way as human eyes can see, but it is also not

bounded by human limitations such as to see through the wall.

o With the help of machine learning and machine vision, an AI agent can be able to see

through walls.

Speech Recognition:

Speech recognition is a technology which enables a machine to understand the spoken language

and translate into a machine-readable format. It can also be said as automatic Speech recognition

and computer speech recognition. It is a way to talk with a computer, and on the basis of that

command, a computer can perform a specific task.

175

There is some speech recognition software which has a limited vocabulary of words and phrase.

This software requires unambiguous spoken language to understand and perform specific task.

Today's there are various software or devices which contains speech recognition technology such

as Cortana, Google virtual assistant, Apple Siri, etc.

We need to train our speech recognition system to understand our language. In previous days,

these systems were only designed to convert the speech to text, but now there are various devices

which can directly convert speech into commands.

Speech recognition systems can be used in the following areas:

o System control or navigation system

o Industrial application

o Voice dialing system

There are two types of speech recognition

1. Speaker Dependent

2. Speaker Independent

Simple Decision Making

A decision network (also called an influence diagram) is a graphical representation of a finite

sequential decision problem. Decision networks extend belief networks to include decision

variables and utility. A decision network extends the single-stage decision network to allow for

sequential decisions.

In particular, a decision network is a directed acyclic graph (DAG) with chance nodes, decision

nodes, and a utility node. This extends single-stage decision networks by allowing both chance

nodes and decision nodes to be parents of decision nodes. Arcs coming into decision nodes

represent the information that will be available when the decision is made. Arcs coming into

chance nodes represents probabilistic dependence. Arcs coming into the utility node represent

what the utility depends on.

https://artint.info/html/ArtInt_217.html#ssdn

176

A no-forgetting agent is an agent whose decisions are totally ordered, and the agent remembers

its previous decisions and any information that was available to a previous decision. A no-

forgetting decision network is a decision network in which the decision nodes are totally

ordered and, if decision node Di is before Dj in the total ordering, then Di is a parent of Dj, and

any parent of Di is also a parent of Dj. Thus, any information available to Di is available to Dj,

and the action chosen for decision Di is part of the information available at decision Dj. The no-

forgetting condition is sufficient to make sure that the following definitions make sense and that

the following algorithms work.

Figure 9.7: Decision network for decision of whether to take an umbrella

Example 9.11: Figure 9.7 shows a simple decision network for a decision of whether the

agent should take an umbrella when it goes out. The agent's utility depends on the

weather and whether it takes an umbrella. However, it does not get to observe the

weather. It only gets to observe the forecast. The forecast probabilistically depends on

the weather.

As part of this network, the designer must specify the domain for each random variable

and the domain for each decision variable. Suppose the random variable Weather has

domain {norain,rain}, the random variable Forecast has domain {sunny,rainy,cloudy},

and the decision variable Umbrella has domain {takeIt,leaveIt}. There is no domain

associated with the utility node. The designer also must specify the probability of the

random variables given their parents. Suppose P(Weather) is defined by

P(Weather=rain)=0.3.

https://artint.info/html/ArtInt_219.html#umbrella-ID
https://artint.info/html/ArtInt_219.html#umbrella-ID

177

P(Forecast|Weather) is given by

Weather Forecast Probability

norain sunny 0.7

norain cloudy 0.2

norain rainy 0.1

rain sunny 0.15

rain cloudy 0.25

rain rainy 0.6

Suppose the utility function, Utility(Weather,Umbrella), is

Weather Umbrella Utility

norain takeIt 20

norain leaveIt 100

rain takeIt 70

rain leaveIt 0

There is no table specified for the Umbrella decision variable. It is the task of the planner

to determine which value of Umbrella to select, depending on the forecast.

178

Figure 9.8: Decision network for diagnosis

Example 9.12: Figure 9.8 shows a decision network that represents the scenario

of Example 9.10. The symptoms depend on the disease. What test to perform is decided based on

the symptoms. The test result depends on the disease and the test performed. The treatment

decision is based on the symptoms, the test performed, and the test result. The outcome depends

on the disease and the treatment. The utility depends on the costs and the side effects of the test

and on the outcome.

Note that the diagnostic assistant that is deciding on the tests and the treatments never actually

finds out what disease the patient has, unless the test result is definitive, which it typically is not.

Figure 9.9: Decision network for the alarm problem

Example 9.13: Figure 9.9 gives a decision network that is an extension of the belief network

of Figure 6.1. The agent can receive a report of people leaving a building and has to decide

whether or not to call the fire department. Before calling, the agent can check for smoke, but this

has some cost associated with it. The utility depends on whether it calls, whether there is a fire,

and the cost associated with checking for smoke.

In this sequential decision problem, there are two decisions to be made. First, the agent must

decide whether to check for smoke. The information that will be available when it makes this

decision is whether there is a report of people leaving the building. Second, the agent must

https://artint.info/html/ArtInt_219.html#diagnosisDN-fig
https://artint.info/html/ArtInt_219.html#diagnosisDN-fig
https://artint.info/html/ArtInt_218.html#diagnosis-example
https://artint.info/html/ArtInt_218.html#diagnosis-example
https://artint.info/html/ArtInt_219.html#alarm-infl
https://artint.info/html/ArtInt_219.html#alarm-infl
https://artint.info/html/ArtInt_148.html#leaving
https://artint.info/html/ArtInt_148.html#leaving

179

decide whether or not to call the fire department. When making this decision, the agent will

know whether there was a report, whether it checked for smoke, and whether it can see smoke.

Assume that all of the variables are binary.

The information necessary for the decision network includes the conditional probabilities of the

belief network and

 P(SeeSmoke|Smoke,CheckSmoke); how seeing smoke depends on whether the agent looks

for smoke and whether there is smoke. Assume that the agent has a perfect sensor for

smoke. It will see smoke if and only if it looks for smoke and there is smoke.

[See Exercise 9.6.]

 Utility(CheckSmoke,Fire,Call); how the utility depends on whether the agent checks for

smoke, whether there is a fire, and whether the fire department is

called. Figure 9.10 provides this utility information.

CheckSmoke Fire Call Utility

yes yes call -220

yes yes do not call -5020

yes no call -220

yes no do not call -20

no yes call -200

no yes do not call -5000

no no call -200

no no do not call 0

Figure 9.10: Utility for alarm decision network

https://artint.info/html/ArtInt_233.html#noisy-smoke-sensor
https://artint.info/html/ArtInt_233.html#noisy-smoke-sensor
https://artint.info/html/ArtInt_219.html#val-tab
https://artint.info/html/ArtInt_219.html#val-tab

180

This utility function expresses the cost structure that calling has a cost of 200, checking

has a cost of 20, but not calling when there is a fire has a cost of 5,000. The utility is the

negative of the cost.

The integration of artificial intelligence (AI) into acute care brings a new source of intellectual

thought to the bedside. This offers great potential for synergy between AI systems and the human

intellect already delivering care. This much needed help should be embraced, if proven effective.

However, there is a risk that the present role of physicians and nurses as the primary arbiters of

acute care in hospitals may be overtaken by computers. While many argue that this transition is

inevitable, the process of developing a formal plan to prevent the need to pass control of patient

care to computers should not be further delayed.

The first step in the interdiction process is to recognize; the limitations of existing hospital

protocols, why we need AI in acute care, and finally how the focus of medical decision making

will change with the integration of AI based analysis. The second step is to develop a strategy for

changing the focus of medical education to empower physicians to maintain oversight of AI.

Physicians, nurses, and experts in the field of safe hospital communication must control the

transition to AI integrated care because there is significant risk during the transition period and

much of this risk is subtle, unique to the hospital environment, and outside the expertise of AI

designers.

AI is needed in acute care because AI detects complex relational time-series patterns within

datasets and this level of analysis transcends conventional threshold based analysis applied in

hospital protocols in use today. For this reason medical education will have to change to provide

healthcare workers with the ability to understand and over-read relational time pattern centered

communications from AI. Medical education will need to place less emphasis on threshold

decision making and a greater focus on detection, analysis, and the pathophysiologic basis of

relational time patterns. This should be an early part of a medical student’s education because

this is what their hospital companion (the AI) will be doing.

181

Effective communication between human and artificial intelligence requires a common pattern

centered knowledge base. Experts in safety focused human to human communication in hospitals

should lead during this transition process.

Background

Facing the challenge from Silicon Valley

Three thousand years ago the perceived power of the human brain to affect survival from illness

was hyperbolized in Asclepius, the Greek god of medicine. Asclepius was credited with such a

powerful intellect that he altered the ratio of living to dead.

While mortal physicians have never matched his success, for thousands of years patients have

placed their confidence in the intellect of physicians for medical diagnosis and care. However,

the present role of physicians and nurses as preeminent diagnosticians and providers of care may

soon be overtaken by computers. While many argue that this transition is inevitable, physicians

have not yet developed a formal plan to respond to the challenge from Silicon Valley. This is a

momentous time and the process of developing a formal plan to prevent the need to pass the

Caduceus should not be further delayed.

The first step in the prevention of loss of the position of physicians and nurses as preeminent

overseers of hospital care is to understand the present limitations of medical diagnostics in the

acute care environment and in medical education which have driven the need for AI integration.

The present state of acute care decision making

A computer programmer examining the present threshold based hospital protocols with the intent

to develop algorithms for managing care might quickly conclude that automation of acute care

diagnostics and treatment would be easy to implement. The reason for this is that present hospital

protocols are based on twentieth century threshold decision making [1] and are generally quite

simple. In an example, it might appear to a computer programmer that all that is required to

diagnose and treat sepsis is an indication that infection is suspected, a simple threshold breach

detection algorithm [2] and a branching set of treatment rules.

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR1
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR2

182

However expert clinicians know that these simple protocols are not indicative of the true levels

of acute care complexity [3, 4]. The randomized controlled trials (RCT) which use the threshold

rules applied in hospital protocols as unified standards for an entire population are subject to

marked heterogeneous treatment effects (HTE) [5]. Such trials provide evidence of the average

treatment effect on the group under test as a whole but not whether the treatment used in the

RCT will be beneficial or harmful to the instant patient under care. It therefore logically follows

that no protocol, no matter how well supported by RCT, can be applied without expert oversight

provided by either by a human or AI to protect patients from harm.

For this reason designers of automated systems must recognize that the true complexity of

diagnosis and management of adverse conditions, such as sepsis, resides in the portion of

diagnosis and care provided by nuanced expert oversight which is difficult to study and

reproduce. If the patient is worsening despite adherence to the standard protocol, a physician

with naïve trust in RCT may adhere to the guidelines thinking she must stay the course. In the

alternative the expert physician knows to detect and track worsening, knows the potential for

HTE, and modifies care off protocol if necessary. In addition to responding to worsening, expert

clinical nuance is also applied to change diagnosis and/or alter the care in the presence of an

unusual presentation, rare cases, and less common mixes of overlapping diseases.

Figure 1 illustrates the present state of hospital care based on uniform protocols with physicians

and nurses operating as expert overseers, protecting patients from the hazards of oversimplified

threshold based decisions. Physicians and nurses can provide oversight because the decision

process of the protocols are transparent so, using their own intellect, they are able to modify the

diagnosis and treatment as needed in real-time.

Fig. 1

The present state of nuanced threshold decision making. Threshold protocols are simple and

transparent so nuanced care with complex decisions outside the protocols can be provided by the

nurse/physician when needed

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR3
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR4
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR5
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig1

183

Full size image

The integration of artificial intelligence into acute care

AI and the acute care environment

The future of medical AI extends far beyond the interpretation of medical images, pathology

slides and radiographs. AI is being developed to detect critical, highly complex and time

dependent conditions such as adverse drug reactions and sepsis [6, 7] in acute care environments

where timely nuanced communication is pivotal. It is likely that within 5 years, AI based

protocols will replace many of the threshold based protocols which are presently providing acute

care diagnostic and treatment decisions.

One advantage of AI is that it can analyze more relationally complex portions of a patient’s

dataset. However, a major disadvantage is that the complex decision processing of the AI may be

substantially opaque if not designed to provide transparency and nuanced communication.

Effective communication from an AI must not be inferior to communication from a human.

However the need for detailed real-time communication is even more acute when the adverse

clinical conditions under investigation and care are highly complex and rapidly progressing

critical conditions. For this reason, the introduction of AI into the acute care environment should

be preceded by detailed consideration of how AI, if not properly implemented, may cause harm

by adversely affecting communication as well as the role of the physician and nurse as expert

overseers of care.

The hazards of black-box artificial intelligence in acute care

In the worst case, complex analytics may be provided by AI without disclosure of the data used

to make the decision or the analytic processes applied. This is often called “black-box AI”. This

approach is reasonable in acute care only if expert human oversight will not be beneficial even if

the patient is worsening. One example of inadequate black box AI would be the application of an

AI based protocol which, after an opaque analysis of a complex data set, provides only an output

stating “Sepsis detected--severity score 20”. This limited output would constitute a

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/1
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR6
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR7

184

communication error by human standards because it does not communicate the relational time

patterns (RTP) of laboratory tests and vitals detected, the other factors considered, how the

patterns were combined, which component patterns are rapidly worsening, and how the overall

state of the sepsis pattern has progressed over time for example in relation to treatment or to a

potentially inciting event such as a surgery. This level of communication would be required if the

detection was performed by a human expert so the AI must deliver equivalent or better

communication.

While black box AI is clearly unacceptable in acute care, the standards for AI transparency and

for timely communication by AI of the details of its decision process have not been determined.

Yet it is clear that AI should meet the minimum standards of detail required for physician to

physician handoff.

Figure 2 shows that the use of Black Box AI (which has not been programmed to communicate

the nuanced details of the decision process) renders a state wherein the AI stands alone.

Oversight by the expert is not facilitated because she cannot see the pattern combinations

detected by the AI.

Fig. 2

The bedside state with “Black Box AI” based decision making. Complex decisions made by AI

without transparency or detailed timely communication of the factors considered and how these

factors were combined to render decision process. If the patient worsens under the care of the AI

the handoff to the physician will be blind

Full size image

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig2
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/2

185

Medical diagnostic analysis is more complex than in many other environments

One problem with AI use in acute care which may not be readily apparent to those with a limited

understanding of the medical domain is the common delay between the decision and the result

which occurs responsive to the decision. Often it is not clear that a medical decision was wrong

for a given patient’s condition until many days later when complications, recovery failure, or

worsening occurs. Contrast this to AI based autonomous driving. Here, a human in the car can

rapidly intervene because the correctness of the decisions made by the AI are generally

immediately transparent to the overseeing driver. The immediacy of feedback simplifies the

training processes of AI based autonomous driving and allows the use of black box AI because

the decision process is largely irrelevant and can be opaque to the driver who is only concerned

with the result which is promptly apparent. By comparison, in medical care, where the

correctness of the decision is often not immediately obvious, the clinician responsible for the

patient cannot simply wait with faith to see the outcome. Rather the clinician needs to be able to

see the decision making process itself in fine relational detail and in real-time (before the

outcome) to be sure it applies to the complexities and comorbidities of the instant patient under

care. Here we can easily see the need for a new focus of medical education because bedside

transparency of AI is not useful if the physician is not trained to be able to interpret the RTP

detected by the AI.

The handoff from an artificial intelligence system to a physician

The addition of AI brings new communication challenges to a complex hospital environment

already associated with a high error rate. Communication errors, including those associated with

patient handoffs between multiple humans, have been cited by the Joint Commission as the root

cause of up to 60% of adverse events [8, 9]. Yet any action which moves care from one caregiver

to another is a handoff. This is true even if a computer is the diagnostician and is now handing

off the care to a human who is expected to deliver treatment. Guidelines for handoffs involving

AI should be prioritized to assure they are ready when AI is integrated into hospital care.

In addition the danger of the potential delay between decision and result will likely be most

evident when a patient managed by Black Box AI fails to recover. The clinician will want to

know if a mistake was made in AI based diagnoses or in the therapeutic choices made or both.

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR8
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#ref-CR9

186

Here the need for real-time and detailed communication is evident. The clinician must know

which components of the data set comprised the basis for the AI decision and what part of the

decision process might be wrong. The answers to these pivotal questions will not be evident

when detailed real time communication is lacking and the physician is blind to processing. Again

this shows the need for refocused education since transparency and disclosure of RTP detected

by the AI are only useful to the physician if she is trained to interpret them.

Fortunately there is already a major body of literature directed toward the study of factors which

induce error during human to human communication in the patient care environment. Under

these guidelines, a physician handing off care to another must provide detailed communication

which explains the time patterns or threshold breaches identified in the data, the diagnostic

considerations, and the state and rational for various therapies applied or under consideration.

With those lessons learned, it follows that an AI system which is entrusted with critical clinical

decisions, should be considered a human equivalent for the purpose of defining AI

communication protocols and standards.

Artificial intelligence as a cause of clinical dependency

The second problem which may develop over time in the acute care environment comprises

intellectual dependency on AI, especially AI which lacks detailed communication capability. The

lack of detailed communication renders the state presented in Fig. 2 which will reduce the

perceived need for nurses and physicians to learn complex pathophysiology or to intellectually

engage the complexity of care. As the perceived need to learn complex pathophysiology

diminishes, so too does the competency of the physician or nurse.

Perhaps there will come a time when AI is so highly effective that loss of the quality of the

oversight function of nurses and physicians will not be a concern. However, over the next few

decades we must focus on the transition state. This is the present state of automated driving,

where the performance of AI must still be evaluated and supervised by a human in real time.

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig2

187

The need for a new focus of medical education

There is little doubt that there will be a diminishing role for the portions of traditional medical

education which are focused on simple rules and threshold decision making. The simple

threshold rules most students have been taught, for example the threshold criteria used to

diagnose sepsis, will be abandoned because they are based on data fragments and the AI does not

need to keep it simple. Also, physicians will not be able to rely on those simple threshold rules to

over read the outputs of the AI because the weakness of those rules is one of the reasons AI is

being introduced.

With the emergence of AI, simple threshold based diagnostic and treatment rules will be

replaced by AI based protocols which will be much more complex and will include RTP

analysis. Fortunately the teaching of threshold rules, which became popular in the late twentieth

century, was always an oversimplification so the abandonment of this aspect of medical

education will not be much of a loss.

However, if proper steps are not taken soon, the effect of AI on medical education has the

potential to cause a much deeper cut. Indeed, it has been suggested that, in the age of AI,

physicians will not need to be as intelligent as is required today. Instead, it is argued, the focus of

education will be on empathy, comfort, counseling, and end of life care.

Nascent resignation to intellectual subservience to AI is driven, at least in part, by the complexity

of the processing performed by the computer. The decision processing of the AI is not easy to

teach and it will not be possible for many medical professionals to determine, at the bedside, the

integrity of the processing itself. However that does not mean that the loss of the oversight role

for the physician and nurse is inevitable. For healthcare workers to maintain their pivotal

oversight role they must prepare themselves to cognitively engage the same data, the RTP and

the same relationships which are detected and processed by the AI. Just as importantly they must

demand that AI for acute care is configured to provide real-time communication of the analysis

performed in a format which can be over read by clinicians at the bedside so that physicians can

protect their patients from treatment failure due to HTE and the AI and physicians can learn

together. If medical educators and physicians do not go forward with both of these steps, they

188

will become intellectually subservient because they will not be able to oversee the integrity of

decisions made by the AI.

The over reading function of the physician or nurse will be facilitated by AI driven cognitive

support which presents the detected RTP and the data from which the patterns were detected to

the user in an organized way. When this cognitive support is provided, the over reading of such

patterns is well within the capability of physicians and nurses trained to understand them but this

will require agreement on terminology.

Time-series patterns, the “integers of physiology”

One way to advance ones understanding of biologic time patterns is to start with the most basic

pattern pieces, the pattern building blocks of the biological data. Note, we are starting with

pattern building blocks of the biologic data not with the biologic data itself. In other words we

are going to consider fundamental time patterns of data which are reliably present regardless of

the biologic process being considered. One might call these basic time patterns the “integers of

physiology” as they are quite simple and universally present in all biologic time series.

Using the basic integers to build a complex pattern means that the complex patterns can be

disassembled (factored) into its component parts including the components which define the

onset of the pattern. This assures that the variations of complex patterns can be understood,

quantified in reliably definable terms.

To understand, and communicate with, and over read time pattern based outputs of advanced

medical AI, it is important to begin with a common terminology describing these fundamental

integers of physiology. After this we will see how physiologic and pathophysiologic time

patterns fit together as we build outward from there.

Fortunately there are only 5 primary fundamental time pattern types. This makes the terminology

and the patterns easy to learn. Of course this is only one proposed terminology as no standards

have been developed.

These are:

189

1. 1.

Perturbation- (a rise or fall away from the phenotypic or baseline range)

2. 2.

Recovery (a rise or fall from a perturbation back toward baseline)

3. 3.

Reciprocation (a perturbation followed by its recovery)

4. 4.

Distortion (a combination of perturbations induced by a common force such as a drug or

invading organism)

5. 5.

Recovery from a Distortion (a combination of recoveries from the perturbations which

comprise the distortion)

Using images of time patterns as the fundamental communication tool between AI and humans

allows both the AI and the physician to succinctly communicate complexity while speaking a

common language. Both still having the ability to factor these complex images into their

component parts for deeper analysis to learn together and over read each other’s work.

Biologic time patterns are relational time patterns

Unless only one dataset from a single point in time is available (which is almost never the case),

the patterns detected by the AI are relational time patterns (RTP) of sequential lab values, vitals,

pharmaceutical doses, and test results in relation to other things such as image results, other

diagnoses, sex, age, etc. Relational time patterns (RTP) are the next level up (from simple time

patterns) of pattern complexity. RTP are comprised of two or more time patterns occurring in

190

temporal relation to each other. Since RTP are built from time pattern “integers” their

composition can be widely varied and quite complex depending on how many time patterns are

included and of what type. The number of potential time pattern combinations (and therefore

RTP) is profound. One example of a complex RTP common in a phenotype of sepsis is

comprised of; a fall in absolute neutrophil count, a rise in bands, a fall in platelets, a fall in

bicarbonate and a rise in lactate. Together they comprise part of the image of a distortion induced

by sepsis.

The acceptance of the view that thresholds can be remembered but RTP are too complex, to

numerous and to varied in type to remember would thead to rapid decline in the role of

physicians in the management of complex patients and loss of protection provided by physician

oversight. There is no alternative to learning these patterns short of giving up the rod of

Asclepius to the machines. However, here the computer can assist by presenting the time data in

a unified picture so that the patterns are identifiable by the trained eye in the picture rendering

the process of relational time pattern detection by physicians and associated AI oversight much

easier.

Seeing the data of a patient as a factorable time matrix

To understand any machine (including a biologic one), and to detect its failures, one must first

construct the normal relationships of its fundamental parts. The fundamental parts of a human

are not its appendages or organs but rather humans are comprised of a massive set of biologic

particle densities. Examples of biologic particles include ions, cells, cell fragments, and

molecules. The venous platelet count, potassium concentration, an antibody concentration, and

the SPO2 or etCO2 are all examples of biologic particle densities or measurement surrogates for

those densities. Like the parts of a machine, these densities also are held in a highly organized

baseline operational state and change over time in a relational way within that baseline

operational state.

A human, viewed as a machine, is actually an aggregation of biologic particle densities which

are held, in health, in the baseline operational state over time (Fig. 3). As with the machine, one

way to cognitively engage a unified patient dataset is by defining a human time matrix model as

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig3

191

a unified aggregation of the fundamental time patterns. With this approach it is possible to

perceive an entire patient dataset as a single image which grows over the patient’s life time.

Fig. 3

A Healthy Human Time Matrix (HTM). Humans are comprised of a matrix of biologic particle

densities (e.g. bicarb, sodium, neutrophils), and forces which project along a time axis in a

dynamically relational configuration. As represented in the time domain, the HTM is comprised

of individual time series (waves) in specific relation to the phenotypic range and to each other

(events, forces, lab values, vitals, drugs, etc.)

Full size image

When a sufficient new force, such as a medication or invading organism, acts on the matrix, the

force often causes at least one “perturbation” generated away from the phenotypic range. When

the force is removed or a countermeasure is applied, a “recovery” generally occurs in the

opposite direction of the perturbation. Perturbations and recoveries are vectors with features of

duration, slope, magnitude, acceleration, percent change, etc. The combination of the

perturbation and its recovery is a reciprocation and these can be complete (with a full recovery)

or incomplete when there is recovery failure.

When a grouping of perturbations caused by a force occurs, this can be seen as a “distortion of

the matrix” (Fig. 4). Distortions may have the temporal characteristics of onset, worsening and

recovery. A distortions can be factored into its component parts and this factoring can be used by

AI or the physician to track back to the earlies perturbation of the distortion when, for example,

seeking the force which caused the distortion.

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/3
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig4

192

Fig. 4

A Distortion of the Human Time Matrix. When an internal or external distortion force (e.g.

infection, a drug, a pathogenic molecule) is applied to the matrix, a set of perturbations occur

producing a “distortion” of the HTM

Full size image

Figure 4 illustrates that the distortion force (e.g. infection, a drug, a pathogenic molecule)

precedes the individual perturbations which form the distortion. Some perturbations occur early

after the onset of the force and some occur late. The types, timing and relational patterns of these

perturbations defines the time dimensioned conformation of the distortion.

Distortions produced by different adverse conditions have different conformations which change

over time as severity worsens or recovery evolves. Complex conditions such as sepsis may be

associated with several phenotypes of distortions.

One way to think about different phenotypes of distortions of a single condition, such as sepsis,

is to consider as analogous, sequential images of different groups (image phenotypes) of

pneumonia. One image group is that of lobar pneumonia, another bronchopneumonia and a third

would be the scattered infiltrates and cavitation often associated with MRSA pneumonia.

Although all are pneumonia the images from one group may not be very similar to the images of

another and the time patterns of worsening may also be quite dissimilar. Yet, within each of these

groups the images generally have quite similar time pattern characteristics. The same is true of

groups (phenotypes) of distortions of the time matrix for a complex clinical condition.

While the oversight of AI may sound complex, it is not if the data are properly formatted and

presented. By modifying medical education and turning the education focus away from simple

threshold rules to the recognition of the RTP which AI systems will be detecting, physicians and

nurses will be able to continue their pivotal role as overseers of care in the age of AI.

https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2/figures/4
https://pssjournal.biomedcentral.com/articles/10.1186/s13037-019-0188-2#Fig4

193

Summary of considerations

Present acute care protocols based by twentieth century threshold decision making are

inadequate and AI integration into acute care offers the potential to improve care. Yet, there is a

risk that the present role of physicians and nurses as the primary arbiters of acute care in

hospitals may be overtaken by computers. While many argue that this transition is inevitable, the

process of developing a formal plan to prevent the need to pass control of patient care in the

acute care environment to computers should not be further delayed.

The addition of AI as a new bedside intellectual source brings new communication challenges to

an environment already associated with a high error rate. When a patient managed under the

decision process of AI worsens, at some point the AI will need to “handoff” the patient to a

physician. Without transparency this will be a blind handoff. For this reason, any AI system

which determines clinical care, must be programmed to provide effective and detailed

communication with clinicians as any action which moves care from one caregiver to another is

a handoff. This is true even if a computer is the diagnostician and is now handing off the care to

a human who is expected to deliver treatment. The patient safety requirements for handoffs,

which include full transparency, must be maintained.

Physicians and nurses must control the transition to AI integrated acute care because there is

significant risk during the transition period and much of this risk is subtle, unique to the medical

environment, and outside the expertise of AI designers.

AI systems detect and analyze relational time patterns and oversight of AI using conventional

threshold decision making will not be effective. For this reason, medical education will have to

change to provide healthcare workers with the ability to understand AI communications. An

increased focus on teaching clinical time pattern recognition is required. Students should be

taught in early phases of their medical education to factor complex relational time patterns and to

think in relational time pattern terms.

Effective communication between human and artificial intelligence requires a new relational

time pattern centered knowledge base and terminology. This terminology must support detailed

194

and nuanced communication with AI. Experts in safety focused human to human communication

in hospitals should lead during this transition process.

It is the functional hybridization of human and artificial intelligence at the bedside, which offers

the greatest hope for safely revolutionizing medical care over the next decade. To achieve this

lofty goal early collaboration by experts from many diverse fields of study is required..

UNIT IV

Learning From Observation

Decision Tree Introduction with example

 Decision tree algorithm falls under the category of the supervised learning. They can be used to

solve both regression and classification problems.

 Decision tree uses the tree representation to solve the problem in which each leaf node

corresponds to a class label and attributes are represented on the internal node of the tree.

 We can represent any boolean function on discrete attributes using the decision tree.

Below are some assumptions that we made while using decision tree:

 At the beginning, we consider the whole training set as the root.

 Feature values are preferred to be categorical. If the values are continuous then they are

discretized prior to building the model.

 On the basis of attribute values records are distributed recursively.

 We use statistical methods for ordering attributes as root or the internal node.

195

As you can see from the above image that Decision Tree works on the Sum of Product form

which is also knnown as Disjunctive Normal Form. In the above image we are predicting the use

of computer in daily life of the people.

In Decision Tree the major challenge is to identification of the attribute for the root node in each

level. This process is known as attribute selection. We have two popular attribute selection

measures:

1. Information Gain

2. Gini Index

1. Information Gain

When we use a node in a decision tree to partition the training instances into smaller subsets the

entropy changes. Information gain is a measure of this change in entropy.

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and

Values (A) is the set of all possible values of A, then

Entropy

Entropy is the measure of uncertainty of a random variable, it characterizes the impurity of an

arbitrary collection of examples. The higher the entropy more the information content.

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and

Values (A) is the set of all possible values of A, then

Example:

196

For the set X = {a,a,a,b,b,b,b,b}

Total intances: 8

Instances of b: 5

Instances of a: 3

 = -[0.375 * (-1.415) + 0.625 * (-0.678)]

 =-(-0.53-0.424)

 = 0.954

Building Decision Tree using Information Gain

The essentials:

 Start with all training instances associated with the root node

 Use info gain to choose which attribute to label each node with

 Note: No root-to-leaf path should contain the same discrete attribute twice

 Recursively construct each subtree on the subset of training instances that would be classified

down that path in the tree.

The border cases:

 If all positive or all negative training instances remain, label that node “yes” or “no”

accordingly

 If no attributes remain, label with a majority vote of training instances left at that node

 If no instances remain, label with a majority vote of the parent’s training instances

Example:

Now, lets draw a Decision Tree for the following data using Information gain.

Training set: 3 features and 2 classes

X Y Z C

1 1 1 I
1 1 0 I

197

X Y Z C

0 0 1 II
1 0 0 II
Here, we have 3 features and 2 output classes.

To build a decision tree using Information gain. We will take each of the feature and calculate

the information for each feature.

Split on feature X

Decision Tree Introduction with example

 Decision tree algorithm falls under the category of the supervised learning. They can be used to

solve both regression and classification problems.

 Decision tree uses the tree representation to solve the problem in which each leaf node

corresponds to a class label and attributes are represented on the internal node of the tree.

 We can represent any boolean function on discrete attributes using the decision tree.

Below are some assumptions that we made while using decision tree:

 At the beginning, we consider the whole training set as the root.

 Feature values are preferred to be categorical. If the values are continuous then they are

discretized prior to building the model.

 On the basis of attribute values records are distributed recursively.

198

 We use statistical methods for ordering attributes as root or the internal node.

As you can see from the above image that Decision Tree works on the Sum of Product form

which is also knnown as Disjunctive Normal Form. In the above image we are predicting the use

of computer in daily life of the people.

In Decision Tree the major challenge is to identification of the attribute for the root node in each

level. This process is known as attribute selection. We have two popular attribute selection

measures:

Information Gain

1. Gini Index

1. Information Gain

When we use a node in a decision tree to partition the training instances into smaller subsets the

entropy changes. Information gain is a measure of this change in entropy.

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and

Values (A) is the set of all possible values of A, then

Entropy

Entropy is the measure of uncertainty of a random variable, it characterizes the impurity of an

arbitrary collection of examples. The higher the entropy more the information content.

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S with A = v, and

Values (A) is the set of all possible values of A, then

199

Example:

For the set X = {a,a,a,b,b,b,b,b}

Total intances: 8

Instances of b: 5

Instances of a: 3

 = -[0.375 * (-1.415) + 0.625 * (-0.678)]

 =-(-0.53-0.424)

 = 0.954

Building Decision Tree using Information Gain

The essentials:

 Start with all training instances associated with the root node

 Use info gain to choose which attribute to label each node with

 Note: No root-to-leaf path should contain the same discrete attribute twice

 Recursively construct each subtree on the subset of training instances that would be classified

down that path in the tree.

The border cases:

 If all positive or all negative training instances remain, label that node “yes” or “no”

accordingly

 If no attributes remain, label with a majority vote of training instances left at that node

 If no instances remain, label with a majority vote of the parent’s training instances

Example:

Now, lets draw a Decision Tree for the following data using Information gain.

Training set: 3 features and 2 classes

200

X Y Z C

1 1 1 I

1 1 0 I

0 0 1 II

1 0 0 II

Here, we have 3 features and 2 output classes.

To build a decision tree using Information gain. We will take each of the feature and calculate

the information for each feature.

Split on feature X

Split on feature Y

201

Split on feature Z

From the above images we can see that the information gain is maximum when we make a split

on feature Y. So, for the root node best suited feature is feature Y. Now we can see that while

spliting the dataset by feature Y, the child contains pure subset of the target variable. So we

don’t need to further split the dataset.

The final tree for the above dataset would be look like this:

2. Gini Index

 Gini Index is a metric to measure how often a randomly chosen element would be incorrectly

identified.

 It means an attribute with lower Gini index should be preferred.

 Sklearn supports “Gini” criteria for Gini Index and by default, it takes “gini” value.

 The Formula for the calculation of the of the Gini Index is given below.

202

Example:

Lets consider the dataset in the image below and draw a decision tree using gini index.

Index A B C D E

1 4.8 3.4 1.9 0.2 positive

2 5 3 1.6 1.2 positive

3 5 3.4 1.6 0.2 positive

4 5.2 3.5 1.5 0.2 positive

5 5.2 3.4 1.4 0.2 positive

6 4.7 3.2 1.6 0.2 positive

7 4.8 3.1 1.6 0.2 positive

8 5.4 3.4 1.5 0.4 positive

9 7 3.2 4.7 1.4 negative

10 6.4 3.2 4.7 1.5 negative

11 6.9 3.1 4.9 1.5 negative

12 5.5 2.3 4 1.3 negative

13 6.5 2.8 4.6 1.5 negative

14 5.7 2.8 4.5 1.3 negative

15 6.3 3.3 4.7 1.6 negative

16 4.9 2.4 3.3 1 negative

In the dataset above there are 5 attributes from which attribute E is the predicting feature which

contains 2(Positive & Negitive) classes. We have equal proportion for both the classes.

In Gini Index, we have to choose some random values to categorize each attribute. These values

for this dataset are:

203

 A B C D

>= 5 >= 3.0 >= 4.2 >= 1.4

< 5 < 3.0 < 4.2 < 1.4

Calculating Gini Index for Var A:

Value >= 5: 12

Attribute A >= 5 & class = positive:

Attribute A >= 5 & class = negative:

Gini(5, 7) = 1 –

Value < 5: 4

Attribute A < 5 & class = positive:

Attribute A < 5 & class = negative:

Gini(3, 1) = 1 –

By adding weight and sum each of the gini indices:

Calculating Gini Index for Var B:

Value >= 3: 12

Attribute B >= 3 & class = positive:

Attribute B >= 5 & class = negative:

Gini(5, 7) = 1 –

Value < 3: 4

Attribute A < 3 & class = positive:

204

Attribute A < 3 & class = negative:

Gini(3, 1) = 1 –

By adding weight and sum each of the gini indices:

Using the same approach we can calculate the Gini index for C and D attributes.

 Positive Negative

For A|>= 5.0 5 7

 |<5 3 1

Ginin Index of A = 0.45825

 Positive Negative

For B|>= 3.0 8 4

 |< 3.0 0 4

Gini Index of B= 0.3345

 Positive Negative

For C|>= 4.2 0 6

 |< 4.2 8 2

Gini Index of C= 0.2

 Positive Negative

For D|>= 1.4 0 5

 |< 1.4 8 3

Gini Index of D= 0.273

205

Artificial Intelligence includes the simulation process of human intelligence by machines and

special computer systems. The examples of artificial intelligence include learning, reasoning

and self-correction. Applications of AI include speech recognition, expert systems, and image

recognition and machine vision.

Machine learning is the branch of artificial intelligence, which deals with systems and

algorithms that can learn any new data and data patterns.

Let us focus on the Venn diagram mentioned below for understanding machine learning and

deep learning concepts.

Machine learning includes a section of machine learning and deep learning is a part of machine

learning. The ability of program which follows machine learning concepts is to improve its

performance of observed data. The main motive of data transformation is to improve its

206

knowledge in order to achieve better results in the future, provide output closer to the desired

output for that particular system. Machine learning includes “pattern recognition” which

includes the ability to recognize the patterns in data.

The patterns should be trained to show the output in desirable manner.

Machine learning can be trained in two different ways −

 Supervised training

 Unsupervised training

Supervised Learning

Supervised learning or supervised training includes a procedure where the training set is given

as input to the system wherein, each example is labeled with a desired output value. The

training in this type is performed using minimization of a particular loss function, which

represents the output error with respect to the desired output system.

After completion of training, the accuracy of each model is measured with respect to disjoint

examples from training set, also called the validation set.

The best example to illustrate “Supervised learning” is with a bunch of photos given with

information included in them. Here, the user can train a model to recognize new photos.

Unsupervised Learning

In unsupervised learning or unsupervised training, include training examples, which are not

labeled by the system to which class they belong. The system looks for the data, which share

207

common characteristics, and changes them based on internal knowledge features.This type of

learning algorithms are basically used in clustering problems.

The best example to illustrate “Unsupervised learning” is with a bunch of photos with no

information included and user trains model with classification and clustering. This type of

training algorithm works with assumptions as no information is given.

It is important to understand mathematical concepts needed for TensorFlow before creating the

basic application in TensorFlow. Mathematics is considered as the heart of any machine

learning algorithm. It is with the help of core concepts of Mathematics, a solution for specific

machine learning algorithm is defined.

Vector

An array of numbers, which is either continuous or discrete, is defined as a vector. Machine

learning algorithms deal with fixed length vectors for better output generation.

Machine learning algorithms deal with multidimensional data so vectors play a crucial role.

208

The pictorial representation of vector model is as shown below −

Scalar

Scalar can be defined as one-dimensional vector. Scalars are those, which include only

magnitude and no direction. With scalars, we are only concerned with the magnitude.

Examples of scalar include weight and height parameters of children.

209

Matrix

Matrix can be defined as multi-dimensional arrays, which are arranged in the format of rows

and columns. The size of matrix is defined by row length and column length. Following figure

shows the representation of any specified matrix.

Consider the matrix with “m” rows and “n” columns as mentioned above, the matrix

representation will be specified as “m*n matrix” which defined the length of matrix as well.

Mathematical Computations

In this section, we will learn about the different Mathematical Computations in TensorFlow.

Addition of matrices

Addition of two or more matrices is possible if the matrices are of the same dimension. The

addition implies addition of each element as per the given position.

Consider the following example to understand how addition of matrices works −

210

Example:A=[1324]B=[5768]thenA+B=[1+53+72+64+8]=[610812]Example:A=[1234]B=[5678]

thenA+B=[1+52+63+74+8]=[681012]

Subtraction of matrices

The subtraction of matrices operates in similar fashion like the addition of two matrices. The

user can subtract two matrices provided the dimensions are equal.

Example:A−[1324]B−[5768]thenA−B−[1−53−72−64−8]−[−4−4−4−4]Example:A−[1234]B−[56

78]thenA−B−[1−52−63−74−8]−[−4−4−4−4]

Multiplication of matrices

For two matrices A m*n and B p*q to be multipliable, n should be equal to p. The resulting

matrix is −

C m*q

A=[1324]B=[5768]A=[1234]B=[5678]

c11=[12][57]=1×5+2×7=19c12=[12][68]=1×6+2×8=22c11=[12][57]=1×5+2×7=19c12=[12][68]

=1×6+2×8=22

c21=[34][57]=3×5+4×7=43c22=[34][68]=3×6+4×8=50c21=[34][57]=3×5+4×7=43c22=[34][68]

=3×6+4×8=50

C=[c11c21c12c22]=[19432250]C=[c11c12c21c22]=[19224350]

Transpose of matrix

The transpose of a matrix A, m*n is generally represented by AT (transpose) n*m and is

obtained by transposing the column vectors as row vectors.

Example:A=[1324]thenAT[1234]Example:A=[1234]thenAT[1324]

Dot product of vectors

Any vector of dimension n can be represented as a matrix v = R^n*1.

211

v1=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢v11v12⋅⋅⋅v1n⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥v2=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢v21v22⋅⋅⋅v2n⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥v1=[v11v12⋅⋅⋅v1n]v2=[v21

v22⋅⋅⋅v2n]

The dot product of two vectors is the sum of the product of corresponding components −

Components along the same dimension and can be expressed as

v1⋅v2=vT1v2=vT2v1=v11v21+v12v22+⋅⋅+v1nv2n=∑k=1nv1kv2kv1⋅v2=v1Tv2=v2Tv1=v11v21

+v12v22+⋅⋅+v1nv2n=∑k=1nv1kv2k

The example of dot product of vectors is mentioned below −

Example:v1=⎡⎣⎢123⎤⎦⎥v2=⎡⎣⎢35−1⎤⎦⎥v1⋅v2=vT1v2=1×3+2×5−3×1=10

Statistical Learning Methods

Statistical Learning is a set of tools for understanding data. These tools broadly come under two

classes: supervised learning & unsupervised learning. Generally, supervised learning refers to

predicting or estimating an output based on one or more inputs. Unsupervised learning, on the

other hand, provides a relationship or finds a pattern within the given data without a supervised

output.

What is Statistical Learning?

Let, suppose that we observe a response Y and p different predictors X = (X₁, X₂,…., Xp). In

general, we can say:

Y =f(X) + ε

Here f is an unknown function, and ε is the random error term.

In essence, statistical learning refers to a set of approaches for estimating f.

In cases where we have set of X readily available, but the output Y, not so much, the error

averages to zero, and we can say:

¥ = ƒ(X)

212

where ƒ represents our estimate of f and ¥ represents the resulting prediction.

Hence for a set of predictors X, we can say:

E(Y — ¥)² = E[f(X) + ε — ƒ(X)]²=> E(Y — ¥)² = [f(X) - ƒ(X)]² + Var(ε)

where,

 E(Y — ¥)² represents the expected value of the squared difference between actual and

expected result.

 [f(X) — ƒ(X)]² represents the reducible error. It is reducible because we can potentially

improve the accuracy of ƒ by better modeling.

 Var(ε) represents the irreducible error. It is irreducible because no matter how well we

estimate ƒ, we cannot reduce the error introduced by variance in ε.

Regression Vs Classification Problem

Variables, Y, can be broadly be characterized as quantitative or qualitative(also known

as categorical). Quantitative variables take on numerical values, e.g., age, height, income, price,

and much more. Estimating qualitative responses is often termed as a regression problem.

Qualitative variables take on categorical values, e.g., gender, brand, parts of speech, and much

more. Estimating qualitative responses is often termed as a classification problem.

There is no free lunch in statistics: no one method dominates all other over all possible data sets.

Variance And Bias

Variance refers to the amount by which ƒ would change if we estimated with different training

data sets. In general, when we over-fit a model on a given training data set(reducible error in

training set is very low but on test set is very high), we get a model that has higher variance since

any change in the data points would results in a significantly different model.

213

Bias refers to the error introduced by approximating a real-life problem, which may be extremely

complicated by a much simpler model — for example, modeling non-linear problems with a

linear model. In general, when we over-fit, a model on given data set it results in very less bias.

This results in the variance bias trade-off.

As we fit the model over a given data set, the bias tends to decrease faster than the variance

increases initially. Consequently, the expected test error(reducible) declines. However, at some

point, when over-fitting starts, there is a little impact on the bias, but variance starts to increase

rapidly when this happens the test error increases.

Linear Regression

Linear regression is a statistical method belonging to supervised learning used for predicting

quantitative responses.

Simple Linear Regression approach predicts a quantitative response ¥ based on a single variable

X assuming a linear relationship. We can say :

¥ ≈ β₀ + β₁X

Our job is now to estimate β₀ and β₁, the parameters/coefficients of our model based on the

training data set, such that the hyperplane(in this case a line) is close to the training data set. Many

criteria can estimate the closeness, the most common being least square.

The sum of the square of the difference between all observed response and the predicted response

formulates to Residual Sum Of Squares(RSS).

Problems in Linear Regression

 Non-linearity of the response-predictor relationships.

 Correlation of error terms.

214

 The non-constant variance of error terms.

 Outliers: when the actual prediction is very far from the estimated one, can arise due to

inaccurate recording of data.

 High-leverage points: Unusual values of the predictors impact the regression line known as

high leverage points.

 Collinearity: where two or more predictor variables are closely related to each other, it may

be challenging to weed out the individual effect of a single predictor variable.

KNN Regression

KNN Regression is a non-parametric approach towards estimating or predicting values, which do

not assume the form of ƒ(X). It estimates/predicts ƒ(x₀) where x₀ is a prediction point by

averaging out all N₀ responses closest to x₀. We can say:

Note: If K is small, the fit would be flexible and any change in the data would result in a different fit,

hence for small K the variance would be high and bias low; conversely, if K is large, it might mask

some structure in the data hence the bias would be high.

The Classification Problem

The responses as we discussed till now, may not always be quantitative, it can be

also qualitative, predicting these qualitative responses is called classification.

We will discuss various statistical approaches to classification including:

215

 SVM

 Logistic Regression

 KNN Classifier

 GAM

 Trees

 Random Forest

 Boosting

Support Vector Machine(SVM)

SVM or support vector machine is the classifier that maximizes the margin. The goal of a

classifier in our example below is to find a line or (n-1) dimension hyper-plane that separates the

two classes present in the n-dimensional space. I have written a detailed article explaining the

derivation and formulation of SVM. In my opinion, it is one of the most powerful techniques in

our tool box of statistical methods in AI.

Logistic Regression

Logistic model models the probability of output response ¥ belonging to a particular category.

We can say:

https://towardsdatascience.com/support-vector-machine-formulation-and-derivation-b146ce89f28

216

Applying componendo dividendo we get:

which is nothing but the odds.

For estimating the beta coefficients, we can use maximum likelihood. The basic idea is to estimate

the betas such that the estimated value and observed value of the results are as close as possible.

In a binary classification, with observed classes as 1 and 0, we can say the likelihood function

would look like:

https://brilliant.org/wiki/componendo-and-dividendo/
https://en.wikipedia.org/wiki/Odds
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

217

KNN Classifier

KNN(K nearest neighbors) Classifier is a lazy learning technique, where the training data set is

represented on a Euclidean hyperplane, and test data is assigned the labels based on the K

Euclidean distance metrics.

Practical Aspects

 K should be chosen empirically and preferably odd to avoid tie situation.

 KNN should have both discrete and continuous target functions.

 Weighted contribution(e.g. distance based) from different neighbors can be used computing

the final label.

Note: Performance of KNN degrades when the data is high dimensional. This can be avoided by

providing weights to the features itself.

Effect Of K on the decision boundary

218

Advantages Of KNN

 We can learn a complex target function.

219

 Zero loss of any information.

Disadvantages of KNN

 Classification cost of new instances is very high.

 Significant computation takes place at classification time.

Generalized Additive Models

GAM provides a generalized framework extending standard multivariable linear regression with

the nonlinear function of each variable while maintaining its additive nature. Thus, all nonlinear

functions can be independently calculated and added later.

Note: GAM like linear regression can be applied to both quantitative and qualitative responses.

Trees, Random Forest, Boosting, and Bagging

Trees or decision trees are useful and straightforward methods for both regression and

classification involving segmenting the predictor space into simple regions.

Typically decision trees are drawn upside down meaning the leaves are at the bottom of the tree.

The points where the predictor space is split are known as internal nodes, and the leaf

nodes or terminal nodes are the ones which given the predictions. Segments joining the nodes are

known as branches.

For prediction, we take a top-down(at the first point all the observation belongs to just one

region), greedy(best split is made in the particular step) approach known as recursive binary

fitting.

There are strategies like tree pruning that solves the over-fitting problem of trees by cutting some

of the branches to get a small sub-tree.

For a classification problem, we either use Gini index,

https://en.wikipedia.org/wiki/Decision_tree_pruning

220

or entropy

to represent the purity of a node, where Pmk is the proportion of samples in the mth region from

kth class.

Decision trees still suffer from high variance and are not competitive with other supervised

approaches. Therefore, we introduce random forest boosting and bagging.

Bagging

Bagging is a general-purpose method to reduce variance in a statistical learning method. The core

idea is that averaging a set of observations reduces variance. Hence we do a random sampling of

our data multiple times, and for each sample, we construct a tree and average out all the

predictions to give a low variance result.

Random Forest

When in the collection of bagged trees, a fix k predictors are chosen at random from each tree

having total m predictors (k < m), then bagging becomes a random forest.

221

This is done because most of the bagged trees would look more or less the same. Hence, the

predictions of individual bag trees would be highly co-related. Therefore, there would not be

much reduction in the variance of our inferences. Random forests can be thought of as the process

of de-correlating bagged trees.

Boosting

Boosting approach is a slow learning statistical method, where classifiers are learned on modified

data set sequentially. In the context of decision trees, each tree is grown using information from

the previous trees. This way, we do not fit a single large tree.

Unsupervised Learning

All the above methods had some form of annotated data set. But when we want to learn patterns

in our data without any annotations unsupervised learning comes into the picture.

The most widely used statistical method for unsupervised learning is K-Means Clustering. We

take k random points in our data set and map all other points to one of the K regions based on

their closeness to K chosen random points. Then we change the K random points to the centroid

of the clusters thus formed. We do that until we observe a negligible change in the cluster formed

after each iteration.

There are other techniques like PCA in unsupervised learning that are used a lot, but for now, we

end here.

Reinforcement Learning Tutorial

222

Our Reinforcement learning tutorial will give you a complete overview of reinforcement

learning, including MDP and Q-learning. In RL tutorial, you will learn the below topics:

o What is Reinforcement Learning?

o Terms used in Reinforcement Learning.

o Key features of Reinforcement Learning.

o Elements of Reinforcement Learning.

o Approaches to implementing Reinforcement Learning.

o How does Reinforcement Learning Work?

o The Bellman Equation.

o Types of Reinforcement Learning.

o Reinforcement Learning Algorithm.

o Markov Decision Process.

o What is Q-Learning?

o Difference between Supervised Learning and Reinforcement Learning.

o Applications of Reinforcement Learning.

o Conclusion.

What is Reinforcement Learning?

o Reinforcement Learning is a feedback-based Machine learning technique in which an

agent learns to behave in an environment by performing the actions and seeing the results

of actions. For each good action, the agent gets positive feedback, and for each bad

action, the agent gets negative feedback or penalty.

o In Reinforcement Learning, the agent learns automatically using feedbacks without any

labeled data, unlike supervised learning.

o Since there is no labeled data, so the agent is bound to learn by its experience only.

o RL solves a specific type of problem where decision making is sequential, and the goal is

long-term, such as game-playing, robotics, etc.

https://www.javatpoint.com/reinforcement-learning#What
https://www.javatpoint.com/reinforcement-learning#Terms
https://www.javatpoint.com/reinforcement-learning#Key-features
https://www.javatpoint.com/reinforcement-learning#Elements
https://www.javatpoint.com/reinforcement-learning#Approaches
https://www.javatpoint.com/reinforcement-learning#Work
https://www.javatpoint.com/reinforcement-learning#Bellman
https://www.javatpoint.com/reinforcement-learning#Types
https://www.javatpoint.com/reinforcement-learning#Algorithm
https://www.javatpoint.com/reinforcement-learning#Markov
https://www.javatpoint.com/reinforcement-learning#Q-Learning
https://www.javatpoint.com/reinforcement-learning#Difference
https://www.javatpoint.com/reinforcement-learning#Applications
https://www.javatpoint.com/reinforcement-learning#Conclusion
https://www.javatpoint.com/supervised-machine-learning

223

o The agent interacts with the environment and explores it by itself. The primary goal of an

agent in reinforcement learning is to improve the performance by getting the maximum

positive rewards.

o The agent learns with the process of hit and trial, and based on the experience, it learns to

perform the task in a better way. Hence, we can say that "Reinforcement learning is a

type of machine learning method where an intelligent agent (computer program)

interacts with the environment and learns to act within that." How a Robotic dog learns

the movement of his arms is an example of Reinforcement learning.

o It is a core part of Artificial intelligence, and all AI agent works on the concept of

reinforcement learning. Here we do not need to pre-program the agent, as it learns from

its own experience without any human intervention.

o Example: Suppose there is an AI agent present within a maze environment, and his goal

is to find the diamond. The agent interacts with the environment by performing some

actions, and based on those actions, the state of the agent gets changed, and it also

receives a reward or penalty as feedback.

o The agent continues doing these three things (take action, change state/remain in the

same state, and get feedback), and by doing these actions, he learns and explores the

environment.

o The agent learns that what actions lead to positive feedback or rewards and what actions

lead to negative feedback penalty. As a positive reward, the agent gets a positive point,

and as a penalty, it gets a negative point.

https://www.javatpoint.com/artificial-intelligence-tutorial
https://www.javatpoint.com/agents-in-ai

224

Terms used in Reinforcement Learning

o Agent(): An entity that can perceive/explore the environment and act upon it.

o Environment(): A situation in which an agent is present or surrounded by. In RL, we

assume the stochastic environment, which means it is random in nature.

o Action(): Actions are the moves taken by an agent within the environment.

o State(): State is a situation returned by the environment after each action taken by the

agent.

o Reward(): A feedback returned to the agent from the environment to evaluate the action

of the agent.

o Policy(): Policy is a strategy applied by the agent for the next action based on the current

state.

o Value(): It is expected long-term retuned with the discount factor and opposite to the

short-term reward.

225

o Q-value(): It is mostly similar to the value, but it takes one additional parameter as a

current action (a).

Key Features of Reinforcement Learning

o In RL, the agent is not instructed about the environment and what actions need to be

taken.

o It is based on the hit and trial process.

o The agent takes the next action and changes states according to the feedback of the

previous action.

o The agent may get a delayed reward.

o The environment is stochastic, and the agent needs to explore it to reach to get the

maximum positive rewards.

Approaches to implement Reinforcement Learning

There are mainly three ways to implement reinforcement-learning in ML, which are:

1. Value-based:

The value-based approach is about to find the optimal value function, which is the

maximum value at a state under any policy. Therefore, the agent expects the long-term

return at any state(s) under policy π.

2. Policy-based:

Policy-based approach is to find the optimal policy for the maximum future rewards

without using the value function. In this approach, the agent tries to apply such a policy

that the action performed in each step helps to maximize the future reward.

The policy-based approach has mainly two types of policy:

o Deterministic: The same action is produced by the policy (π) at any state.

o Stochastic: In this policy, probability determines the produced action.

226

3. Model-based: In the model-based approach, a virtual model is created for the

environment, and the agent explores that environment to learn it. There is no particular

solution or algorithm for this approach because the model representation is different for

each environment.

Elements of Reinforcement Learning

There are four main elements of Reinforcement Learning, which are given below:

1. Policy

2. Reward Signal

3. Value Function

4. Model of the environment

1) Policy: A policy can be defined as a way how an agent behaves at a given time. It maps the

perceived states of the environment to the actions taken on those states. A policy is the core

element of the RL as it alone can define the behavior of the agent. In some cases, it may be a

simple function or a lookup table, whereas, for other cases, it may involve general computation

as a search process. It could be deterministic or a stochastic policy:

For deterministic policy: a = π(s)

For stochastic policy: π(a | s) = P[At =a | St = s]

2) Reward Signal: The goal of reinforcement learning is defined by the reward signal. At each

state, the environment sends an immediate signal to the learning agent, and this signal is known

as a reward signal. These rewards are given according to the good and bad actions taken by the

agent. The agent's main objective is to maximize the total number of rewards for good actions.

The reward signal can change the policy, such as if an action selected by the agent leads to low

reward, then the policy may change to select other actions in the future.

3) Value Function: The value function gives information about how good the situation and

action are and how much reward an agent can expect. A reward indicates the immediate signal

227

for each good and bad action, whereas a value function specifies the good state and action for

the future. The value function depends on the reward as, without reward, there could be no

value. The goal of estimating values is to achieve more rewards.

4) Model: The last element of reinforcement learning is the model, which mimics the behavior

of the environment. With the help of the model, one can make inferences about how the

environment will behave. Such as, if a state and an action are given, then a model can predict the

next state and reward.

The model is used for planning, which means it provides a way to take a course of action by

considering all future situations before actually experiencing those situations. The approaches for

solving the RL problems with the help of the model are termed as the model-based approach.

Comparatively, an approach without using a model is called a model-free approach.

How does Reinforcement Learning Work?

To understand the working process of the RL, we need to consider two main things:

o Environment: It can be anything such as a room, maze, football ground, etc.

o Agent: An intelligent agent such as AI robot.

Let's take an example of a maze environment that the agent needs to explore. Consider the below

image:

228

In the above image, the agent is at the very first block of the maze. The maze is consisting of an

S6 block, which is a wall, S8 a fire pit, and S4 a diamond block.

The agent cannot cross the S6 block, as it is a solid wall. If the agent reaches the S4 block, then

get the +1 reward; if it reaches the fire pit, then gets -1 reward point. It can take four actions:

move up, move down, move left, and move right.

The agent can take any path to reach to the final point, but he needs to make it in possible fewer

steps. Suppose the agent considers the path S9-S5-S1-S2-S3, so he will get the +1-reward point.

The agent will try to remember the preceding steps that it has taken to reach the final step. To

memorize the steps, it assigns 1 value to each previous step. Consider the below step:

229

Now, the agent has successfully stored the previous steps assigning the 1 value to each previous

block. But what will the agent do if he starts moving from the block, which has 1 value block on

both sides? Consider the below diagram:

230

It will be a difficult condition for the agent whether he should go up or down as each block has

the same value. So, the above approach is not suitable for the agent to reach the destination.

Hence to solve the problem, we will use the Bellman equation, which is the main concept

behind reinforcement learning.

The Bellman Equation

The Bellman equation was introduced by the Mathematician Richard Ernest Bellman in the

year 1953, and hence it is called as a Bellman equation. It is associated with dynamic

programming and used to calculate the values of a decision problem at a certain point by

including the values of previous states.

It is a way of calculating the value functions in dynamic programming or environment that leads

to modern reinforcement learning.

The key-elements used in Bellman equations are:

231

o Action performed by the agent is referred to as "a"

o State occurred by performing the action is "s."

o The reward/feedback obtained for each good and bad action is "R."

o A discount factor is Gamma "γ."

The Bellman equation can be written as:

1. V(s) = max [R(s,a) + γV(s`)]

Where,

V(s)= value calculated at a particular point.

R(s,a) = Reward at a particular state s by performing an action.

γ = Discount factor

V(s`) = The value at the previous state.

In the above equation, we are taking the max of the complete values because the agent tries to

find the optimal solution always.

So now, using the Bellman equation, we will find value at each state of the given environment.

We will start from the block, which is next to the target block.

For 1st block:

V(s3) = max [R(s,a) + γV(s`)], here V(s')= 0 because there is no further state to move.

V(s3)= max[R(s,a)]=> V(s3)= max[1]=> V(s3)= 1.

For 2nd block:

V(s2) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 1, and R(s, a)= 0, because there is no

reward at this state.

232

V(s2)= max[0.9(1)]=> V(s)= max[0.9]=> V(s2) =0.9

For 3rd block:

V(s1) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.9, and R(s, a)= 0, because there is no

reward at this state also.

V(s1)= max[0.9(0.9)]=> V(s3)= max[0.81]=> V(s1) =0.81

For 4th block:

V(s5) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.81, and R(s, a)= 0, because there is no

reward at this state also.

V(s5)= max[0.9(0.81)]=> V(s5)= max[0.81]=> V(s5) =0.73

For 5th block:

V(s9) = max [R(s,a) + γV(s`)], here γ= 0.9(lets), V(s')= 0.73, and R(s, a)= 0, because there is no

reward at this state also.

V(s9)= max[0.9(0.73)]=> V(s4)= max[0.81]=> V(s4) =0.66

Consider the below image:

233

Now, we will move further to the 6th block, and here agent may change the route because it

always tries to find the optimal path. So now, let's consider from the block next to the fire pit.

234

Now, the agent has three options to move; if he moves to the blue box, then he will feel a bump

if he moves to the fire pit, then he will get the -1 reward. But here we are taking only positive

rewards, so for this, he will move to upwards only. The complete block values will be calculated

using this formula. Consider the below image:

235

Types of Reinforcement learning

There are mainly two types of reinforcement learning, which are:

o Positive Reinforcement

o Negative Reinforcement

Positive Reinforcement:

The positive reinforcement learning means adding something to increase the tendency that

expected behavior would occur again. It impacts positively on the behavior of the agent and

increases the strength of the behavior.

This type of reinforcement can sustain the changes for a long time, but too much positive

reinforcement may lead to an overload of states that can reduce the consequences.

236

Negative Reinforcement:

The negative reinforcement learning is opposite to the positive reinforcement as it increases the

tendency that the specific behavior will occur again by avoiding the negative condition.

It can be more effective than the positive reinforcement depending on situation and behavior, but

it provides reinforcement only to meet minimum behavior.

How to represent the agent state?

We can represent the agent state using the Markov State that contains all the required

information from the history. The State St is Markov state if it follows the given condition:

P[St+1 | St] = P[St +1 | S1,......, St]

The Markov state follows the Markov property, which says that the future is independent of the

past and can only be defined with the present. The RL works on fully observable environments,

where the agent can observe the environment and act for the new state. The complete process is

known as Markov Decision process, which is explained below:

Markov Decision Process

Markov Decision Process or MDP, is used to formalize the reinforcement learning problems.

If the environment is completely observable, then its dynamic can be modeled as a Markov

Process. In MDP, the agent constantly interacts with the environment and performs actions; at

each action, the environment responds and generates a new state.

237

MDP is used to describe the environment for the RL, and almost all the RL problem can be

formalized using MDP.

MDP contains a tuple of four elements (S, A, Pa, Ra):

o A set of finite States S

o A set of finite Actions A

o Rewards received after transitioning from state S to state S', due to action a.

o Probability Pa.

MDP uses Markov property, and to better understand the MDP, we need to learn about it.

238

Markov Property:

It says that "If the agent is present in the current state S1, performs an action a1 and move to

the state s2, then the state transition from s1 to s2 only depends on the current state and future

action and states do not depend on past actions, rewards, or states."

Or, in other words, as per Markov Property, the current state transition does not depend on any

past action or state. Hence, MDP is an RL problem that satisfies the Markov property. Such as in

a Chess game, the players only focus on the current state and do not need to remember past

actions or states.

Finite MDP:

A finite MDP is when there are finite states, finite rewards, and finite actions. In RL, we consider

only the finite MDP.

Markov Process:

Markov Process is a memoryless process with a sequence of random states S1, S2,, St that

uses the Markov Property. Markov process is also known as Markov chain, which is a tuple (S,

P) on state S and transition function P. These two components (S and P) can define the dynamics

of the system.

Reinforcement Learning Algorithms

Reinforcement learning algorithms are mainly used in AI applications and gaming applications.

The main used algorithms are:

o Q-Learning:

o Q-learning is an Off policy RL algorithm, which is used for the temporal

difference Learning. The temporal difference learning methods are the way of

comparing temporally successive predictions.

239

o It learns the value function Q (S, a), which means how good to take action "a" at a

particular state "s."

o The below flowchart explains the working of Q- learning:

o State Action Reward State action (SARSA):

o SARSA stands for State Action Reward State action, which is an on-

policy temporal difference learning method. The on-policy control method selects

the action for each state while learning using a specific policy.

o The goal of SARSA is to calculate the Q π (s, a) for the selected current policy

π and all pairs of (s-a).

o The main difference between Q-learning and SARSA algorithms is that unlike Q-

learning, the maximum reward for the next state is not required for updating

the Q-value in the table.

o In SARSA, new action and reward are selected using the same policy, which has

determined the original action.

240

o The SARSA is named because it uses the quintuple Q(s, a, r, s', a'). Where,

 s: original state

 a: Original action

 r: reward observed while following the states

 s' and a': New state, action pair.

o Deep Q Neural Network (DQN):

o As the name suggests, DQN is a Q-learning using Neural networks.

o For a big state space environment, it will be a challenging and complex task to

define and update a Q-table.

o To solve such an issue, we can use a DQN algorithm. Where, instead of defining a

Q-table, neural network approximates the Q-values for each action and state.

Now, we will expand the Q-learning.

Q-Learning Explanation:

o Q-learning is a popular model-free reinforcement learning algorithm based on the

Bellman equation.

o The main objective of Q-learning is to learn the policy which can inform the agent

that what actions should be taken for maximizing the reward under what

circumstances.

o It is an off-policy RL that attempts to find the best action to take at a current state.

o The goal of the agent in Q-learning is to maximize the value of Q.

o The value of Q-learning can be derived from the Bellman equation. Consider the Bellman

equation given below:

In the equation, we have various components, including reward, discount factor (γ), probability,

and end states s'. But there is no any Q-value is given so first consider the below image:

241

In the above image, we can see there is an agent who has three values options, V(s1), V(s2),

V(s3). As this is MDP, so agent only cares for the current state and the future state. The agent can

go to any direction (Up, Left, or Right), so he needs to decide where to go for the optimal path.

Here agent will take a move as per probability bases and changes the state. But if we want some

exact moves, so for this, we need to make some changes in terms of Q-value. Consider the below

image:

242

Q- represents the quality of the actions at each state. So instead of using a value at each state, we

will use a pair of state and action, i.e., Q(s, a). Q-value specifies that which action is more

lubricative than others, and according to the best Q-value, the agent takes his next move. The

Bellman equation can be used for deriving the Q-value.

To perform any action, the agent will get a reward R(s, a), and also he will end up on a certain

state, so the Q -value equation will be:

Hence, we can say that, V(s) = max [Q(s, a)]

The above formula is used to estimate the Q-values in Q-Learning.

What is 'Q' in Q-learning?

The Q stands for quality in Q-learning, which means it specifies the quality of an action taken

by the agent.

Q-table:

A Q-table or matrix is created while performing the Q-learning. The table follows the state and

action pair, i.e., [s, a], and initializes the values to zero. After each action, the table is updated,

and the q-values are stored within the table.

The RL agent uses this Q-table as a reference table to select the best action based on the q-

values.

243

Difference between Reinforcement Learning and Supervised Learning

The Reinforcement Learning and Supervised Learning both are the part of machine learning, but

both types of learnings are far opposite to each other. The RL agents interact with the

environment, explore it, take action, and get rewarded. Whereas supervised learning algorithms

learn from the labeled dataset and, on the basis of the training, predict the output.

The difference table between RL and Supervised learning is given below:

Reinforcement Learning Supervised Learning

RL works by interacting

with the environment.

Supervised learning

works on the existing

dataset.

The RL algorithm works

like the human brain

works when making some

decisions.

Supervised Learning

works as when a human

learns things in the

supervision of a guide.

There is no labeled dataset

is present

The labeled dataset is

present.

No previous training is

provided to the learning

agent.

Training is provided to

the algorithm so that it

can predict the output.

RL helps to take decisions

sequentially.

In Supervised learning,

decisions are made when

input is given.

244

Reinforcement Learning Applications

1. Robotics:

a. RL is used in Robot navigation, Robo-soccer, walking, juggling, etc.

 Control:

 . RL can be used for adaptive control such as Factory processes, admission

control in telecommunication, and Helicopter pilot is an example of reinforcement

learning.

 Game Playing:

 . RL can be used in Game playing such as tic-tac-toe, chess, etc.

 Chemistry:

 . RL can be used for optimizing the chemical reactions.

245

 Business:

 . RL is now used for business strategy planning.

 Manufacturing:

 . In various automobile manufacturing companies, the robots use deep

reinforcement learning to pick goods and put them in some containers.

 Finance Sector:

 . The RL is currently used in the finance sector for evaluating trading strategies.

UNIT V

Robotics is a domain in artificial intelligence that deals with the study of creating intelligent and

efficient robots.

What are Robots?

Robots are the artificial agents acting in real world environment.

Objective

Robots are aimed at manipulating the objects by perceiving, picking, moving, modifying the

physical properties of object, destroying it, or to have an effect thereby freeing manpower from

doing repetitive functions without getting bored, distracted, or exhausted.

What is Robotics?

Robotics is a branch of AI, which is composed of Electrical Engineering, Mechanical

Engineering, and Computer Science for designing, construction, and application of robots.

Aspects of Robotics

 The robots have mechanical construction, form, or shape designed to accomplish a

particular task.

 They have electrical components which power and control the machinery.

246

 They contain some level of computer program that determines what, when and how a

robot does something.

Difference in Robot System and Other AI Program

Here is the difference between the two −

AI Programs Robots

They usually operate

in computer-

stimulated worlds.

They operate in real

physical world

The input to an AI

program is in

symbols and rules.

Inputs to robots is analog

signal in the form of

speech waveform or

images

They need general

purpose computers to

operate on.

They need special

hardware with sensors and

effectors.

Robot Locomotion

Locomotion is the mechanism that makes a robot capable of moving in its environment. There

are various types of locomotions −

 Legged

 Wheeled

 Combination of Legged and Wheeled Locomotion

 Tracked slip/skid

247

Legged Locomotion

 This type of locomotion consumes more power while demonstrating walk, jump, trot,

hop, climb up or down, etc.

 It requires more number of motors to accomplish a movement. It is suited for rough as

well as smooth terrain where irregular or too smooth surface makes it consume more

power for a wheeled locomotion. It is little difficult to implement because of stability

issues.

 It comes with the variety of one, two, four, and six legs. If a robot has multiple legs then

leg coordination is necessary for locomotion.

The total number of possible gaits (a periodic sequence of lift and release events for each of the

total legs) a robot can travel depends upon the number of its legs.

If a robot has k legs, then the number of possible events N = (2k-1)!.

In case of a two-legged robot (k=2), the number of possible events is N = (2k-1)! = (2*2-1)! =

3! = 6.

Hence there are six possible different events −

 Lifting the Left leg

 Releasing the Left leg

 Lifting the Right leg

 Releasing the Right leg

 Lifting both the legs together

 Releasing both the legs together

In case of k=6 legs, there are 39916800 possible events. Hence the complexity of robots is

directly proportional to the number of legs.

248

Wheeled Locomotion

It requires fewer number of motors to accomplish a movement. It is little easy to implement as

there are less stability issues in case of more number of wheels. It is power efficient as

compared to legged locomotion.

 Standard wheel − Rotates around the wheel axle and around the contact

 Castor wheel − Rotates around the wheel axle and the offset steering joint.

 Swedish 45o and Swedish 90o wheels − Omni-wheel, rotates around the contact point,

around the wheel axle, and around the rollers.

 Ball or spherical wheel − Omnidirectional wheel, technically difficult to implement.

249

Slip/Skid Locomotion

In this type, the vehicles use tracks as in a tank. The robot is steered by moving the tracks with

different speeds in the same or opposite direction. It offers stability because of large contact

area of track and ground.

Components of a Robot

Robots are constructed with the following −

 Power Supply − The robots are powered by batteries, solar power, hydraulic, or

pneumatic power sources.

 Actuators − They convert energy into movement.

 Electric motors (AC/DC) − They are required for rotational movement.

 Pneumatic Air Muscles − They contract almost 40% when air is sucked in them.

 Muscle Wires − They contract by 5% when electric current is passed through them.

 Piezo Motors and Ultrasonic Motors − Best for industrial robots.

 Sensors − They provide knowledge of real time information on the task environment.

Robots are equipped with vision sensors to be to compute the depth in the environment.

A tactile sensor imitates the mechanical properties of touch receptors of human

fingertips.

250

Computer Vision

This is a technology of AI with which the robots can see. The computer vision plays vital role in

the domains of safety, security, health, access, and entertainment.

Computer vision automatically extracts, analyzes, and comprehends useful information from a

single image or an array of images. This process involves development of algorithms to

accomplish automatic visual comprehension.

Hardware of Computer Vision System

This involves −

 Power supply

 Image acquisition device such as camera

 A processor

 A software

 A display device for monitoring the system

 Accessories such as camera stands, cables, and connectors

Tasks of Computer Vision

 OCR − In the domain of computers, Optical Character Reader, a software to convert

scanned documents into editable text, which accompanies a scanner.

 Face Detection − Many state-of-the-art cameras come with this feature, which enables to

read the face and take the picture of that perfect expression. It is used to let a user access

the software on correct match.

 Object Recognition − They are installed in supermarkets, cameras, high-end cars such

as BMW, GM, and Volvo.

 Estimating Position − It is estimating position of an object with respect to camera as in

position of tumor in human’s body.

Application Domains of Computer Vision

 Agriculture

251

 Autonomous vehicles

 Biometrics

 Character recognition

 Forensics, security, and surveillance

 Industrial quality inspection

 Face recognition

 Gesture analysis

 Geoscience

 Medical imagery

 Pollution monitoring

 Process control

 Remote sensing

 Robotics

 Transport

Applications of Robotics

The robotics has been instrumental in the various domains such as −

 Industries − Robots are used for handling material, cutting, welding, color coating,

drilling, polishing, etc.

 Military − Autonomous robots can reach inaccessible and hazardous zones during war.

A robot named Daksh, developed by Defense Research and Development Organization

(DRDO), is in function to destroy life-threatening objects safely.

 Medicine − The robots are capable of carrying out hundreds of clinical tests

simultaneously, rehabilitating permanently disabled people, and performing complex

surgeries such as brain tumors.

 Exploration − The robot rock climbers used for space exploration, underwater drones

used for ocean exploration are to name a few.

 Entertainment − Disney’s engineers have created hundreds of robots for movie making.

252

Language Processing in “A Neural Probabilistic Language Model:”

 Credit: smartdatacollective.com

253

 This is the PLN (plan): discuss NLP (Natural Language Processing) seen through

the lens of probability, in a model put forth by Bengio et al. in 2003 called NPL

(Neural Probabilistic Language). The year the paper was published is important to

consider at the get-go because it was a fulcrum moment in the history of how we

analyze human language using computers. Noam Chomsky’s Linguistics might be

seen as an effort to use the human mind like a machine and systematically break

down language into smaller and smaller components. He started with sentences

and went to words, then to morphemes and finally phonemes. Computerization

takes this powerful concept and makes it into something even more vital to

humankind: it starts with being relevant to individuals and goes to teams of people,

then to corporations and finally governments. Dr. Chomsky truly changed the way

we approach communication, and that influence can still be felt. Linguistics was

powerful when it was first introduced, and it is powerful today. N-gram analysis,

or any kind of computational linguistics for that matter, are derived from the work

of this great man, this forerunner. This blog will summarize the work of the

Bengio group, thought leaders who took up the torch of knowledge to advance our

understanding of natural language and how computers interact with it.

 Artificial Intelligence has changed considerably since 2003, but the model

presented in this paper captures the essence of why it was able to take off. Machine

learning and deep learning have both become part of the AI canon since this paper

was published, and as computing power continues to grow they are becoming ever

more important. Data Science is a confluence of fields, and today we’ll examine

one which is a cornerstone of the discipline: probability. The probabilistic

distribution model put forth in this paper, in essence, is a major reason we have

improved our capabilities to process our natural language to such wuthering

heights.

 English, considered to have the most words of any alphabetic language, is a

probability nightmare. The possibilities for sequencing word combinations in even

the most basic of sentences is inconceivable. We are facing something known

254

as the curse of dimensionality. To make this more concrete, the authors offer the

following:

 …if one wants to model the joint distribution of 10 consecutive words in a natural

language with a vocabulary V of size 100,000, there are potentially 100,000^10 − 1 =

10^50 − 1 free parameters.

 In data-driven Natural Language Processing tasks, there are practically unlimited

discrete variables, because the population size of the English vocabulary is

exponentially north of 100K. When trying to compare data that has been split into

training and test sets, how can you ever expect to put forth a readily generalizable

language model? The two divisions in your data are all but guaranteed to be vastly

different, quite ungeneralizable. You’re cursed by the amount of possibilities in the

model, the amount of dimensions. What can be done?

 The Bengio group innovates not by using neural networks but by using them on a

massive scale. Linguistics and its founding father Noam have a tendency to learn

how one word interacts with all the others in a sentence. Bengio et al. focus on

learning a statistical model of the distribution of word sequences. This research

paper improves NLP firstly by considering not how a given word is similar to

other words in the same sentence, but to new words that could fill the role of that

given word. Secondly, they take into account n-gram approaches beyond unigram

(n = 1), bigram (n = 2) or even trigram (the n typically used by researchers) up to

an n of 5.

 The math for n-gram models is given as:

255

 This formula is used to construct conditional probability tables for the next word to

be predicted. When modeling NLP, the odds in the fight against dimensionality

can be improved by taking advantage of word order, and by recognizing that

temporally closer words in the word sequence are statistically more dependent.

What does this ultimately mean in the context of what has been discussed? What

problem is this solving? The language model proposed makes dimensionality less

of a curse and more of an inconvenience. That is to say, computational and

memory complexity scale up in a linear fashion, not exponentially. It improves

upon past efforts by learning a feature vector for each word to represent similarity

and also learning a probability function for how words connect via a neural

network. Let’s take a closer look at said neural network.

256

 We’re presented here with something known as a Multi-Layer Perceptron. What

are those layers? Three input nodes make up the foundation at the bottom, fed by

the index for the word in the context of the text under study. The layer in the

middle labeled tanh represents the hidden layer. Tanh, an activation function

known as the hyberbolic tangent, is sigmoidal (s-shaped) and helps reduce the

chance of the model getting “stuck” when assigning values to the language being

processed. How is this? In the system this research team sets up, strongly negative

values get assigned values very close to -1 and vice versa for positive ones. Only

zero-valued inputs are mapped to near-zero outputs. The uppermost layer is the

output — the softmax function. It is used to bring our range of values into the

probabilistic realm (in the interval from 0 to 1, in which all vector components

sum up to 1).

257

 Don’t overlook the dotted green lines connecting the inputs directly to outputs,

either. The optional inclusion of this feature is brought up in the results section of

the paper. It provides an interesting trade-off: including the direct connections

between input and output causes the the training time to be cut in half (10 epochs

to converge instead of 20). Without them, the model produced better

generalizations via a tighter bottleneck formed in the hidden layer.

 It’s possible for a sentence to obtain a high probability (even if the model has

never encountered it before) if the words contained therein are similar to those in a

previously observed one. There’s the rub: Noam Chomsky and subsequent

linguists are subject to criticisms of having developed too brittle of a system. This

method sets the stage for a new kind of learning, deep learning. When utilized in

conjunction with vector semantics, this is powerful stuff indeed. Through this

paper, the Bengio team opened the door to the future and helped usher in a new

era. An era of AI.

Language Processing in “A Neural Probabilistic Language Model:”

https://towardsdatascience.com/natural-language-processing-in-a-neural-probabilistic-language-model-a-summary-19c9cd7cf6c4?source=post_page-----19c9cd7cf6c4--------------------------------
https://towardsdatascience.com/natural-language-processing-in-a-neural-probabilistic-language-model-a-summary-19c9cd7cf6c4?source=post_page-----19c9cd7cf6c4--------------------------------

258

Credit: smartdatacollective.com

This is the PLN (plan): discuss NLP (Natural Language Processing) seen through the lens of

probability, in a model put forth by Bengio et al. in 2003 called NPL (Neural Probabilistic

Language). The year the paper was published is important to consider at the get-go because it was

a fulcrum moment in the history of how we analyze human language using computers. Noam

Chomsky’s Linguistics might be seen as an effort to use the human mind like a machine and

systematically break down language into smaller and smaller components. He started with

sentences and went to words, then to morphemes and finally phonemes. Computerization takes

259

this powerful concept and makes it into something even more vital to humankind: it starts with

being relevant to individuals and goes to teams of people, then to corporations and finally

governments. Dr. Chomsky truly changed the way we approach communication, and that

influence can still be felt. Linguistics was powerful when it was first introduced, and it is

powerful today. N-gram analysis, or any kind of computational linguistics for that matter, are

derived from the work of this great man, this forerunner. This blog will summarize the work of

the Bengio group, thought leaders who took up the torch of knowledge to advance our

understanding of natural language and how computers interact with it.

Artificial Intelligence has changed considerably since 2003, but the model presented in this paper

captures the essence of why it was able to take off. Machine learning and deep learning have both

become part of the AI canon since this paper was published, and as computing power continues to

grow they are becoming ever more important. Data Science is a confluence of fields, and today

we’ll examine one which is a cornerstone of the discipline: probability. The probabilistic

distribution model put forth in this paper, in essence, is a major reason we have improved our

capabilities to process our natural language to such wuthering heights.

English, considered to have the most words of any alphabetic language, is a probability

nightmare. The possibilities for sequencing word combinations in even the most basic of

sentences is inconceivable. We are facing something known as the curse of dimensionality. To

make this more concrete, the authors offer the following:

…if one wants to model the joint distribution of 10 consecutive words in a natural language with a

vocabulary V of size 100,000, there are potentially 100,000^10 − 1 = 10^50 − 1 free parameters.

In data-driven Natural Language Processing tasks, there are practically unlimited discrete

variables, because the population size of the English vocabulary is exponentially north of 100K.

When trying to compare data that has been split into training and test sets, how can you ever

expect to put forth a readily generalizable language model? The two divisions in your data are all

but guaranteed to be vastly different, quite ungeneralizable. You’re cursed by the amount of

possibilities in the model, the amount of dimensions. What can be done?

260

The Bengio group innovates not by using neural networks but by using them on a massive scale.

Linguistics and its founding father Noam have a tendency to learn how one word interacts with all

the others in a sentence. Bengio et al. focus on learning a statistical model of the distribution of

word sequences. This research paper improves NLP firstly by considering not how a given word

is similar to other words in the same sentence, but to new words that could fill the role of that

given word. Secondly, they take into account n-gram approaches beyond unigram (n = 1), bigram

(n = 2) or even trigram (the n typically used by researchers) up to an n of 5.

The math for n-gram models is given as:

This formula is used to construct conditional probability tables for the next word to be predicted.

When modeling NLP, the odds in the fight against dimensionality can be improved by taking

advantage of word order, and by recognizing that temporally closer words in the word sequence

are statistically more dependent. What does this ultimately mean in the context of what has been

discussed? What problem is this solving? The language model proposed makes dimensionality

less of a curse and more of an inconvenience. That is to say, computational and memory

complexity scale up in a linear fashion, not exponentially. It improves upon past efforts by

learning a feature vector for each word to represent similarity and also learning a probability

function for how words connect via a neural network. Let’s take a closer look at said neural

network.

261

262

We’re presented here with something known as a Multi-Layer Perceptron. What are those

layers? Three input nodes make up the foundation at the bottom, fed by the index for the word in

the context of the text under study. The layer in the middle labeled tanh represents the hidden

layer. Tanh, an activation function known as the hyberbolic tangent, is sigmoidal (s-shaped) and

helps reduce the chance of the model getting “stuck” when assigning values to the language being

processed. How is this? In the system this research team sets up, strongly negative values get

assigned values very close to -1 and vice versa for positive ones. Only zero-valued inputs are

mapped to near-zero outputs. The uppermost layer is the output — the softmax function. It is used

to bring our range of values into the probabilistic realm (in the interval from 0 to 1, in which all

vector components sum up to 1).

Don’t overlook the dotted green lines connecting the inputs directly to outputs, either. The

optional inclusion of this feature is brought up in the results section of the paper. It provides an

interesting trade-off: including the direct connections between input and output causes the the

263

training time to be cut in half (10 epochs to converge instead of 20). Without them, the model

produced better generalizations via a tighter bottleneck formed in the hidden layer.

It’s possible for a sentence to obtain a high probability (even if the model has never encountered it

before) if the words contained therein are similar to those in a previously observed one. There’s

the rub: Noam Chomsky and subsequent linguists are subject to criticisms of having developed

too brittle of a system. This method sets the stage for a new kind of learning, deep learning. When

utilized in conjunction with vector semantics, this is powerful stuff indeed. Through this paper,

the Bengio team opened the door to the future and helped usher in a new era. An era of AI.

Perception

Perception in Artificial Intelligence is the process of interpreting vision, sounds, smell, and

touch. Perception helps to build machines or robots that react like humans. Perception is a

process to interpret, acquire, select, and then organize the sensory information from the physical

world to make actions like humans. The main difference between AI and robot is that the robot

makes actions in the real world.

https://intellipaat.com/blog/what-is-artificial-intelligence/

	What are Agent and Environment?
	Agent Terminology
	Rationality
	What is Ideal Rational Agent?
	The Structure of Intelligent Agents
	Simple Reflex Agents
	Model Based Reflex Agents
	Goal Based Agents
	Utility Based Agents

	The Nature of Environments
	Turing Test

	Properties of Environment
	Single Agent Pathfinding Problems
	Search Terminology
	Brute-Force Search Strategies
	Breadth-First Search
	Depth-First Search
	Bidirectional Search
	Uniform Cost Search
	Iterative Deepening Depth-First Search
	Comparison of Various Algorithms Complexities

	Informed (Heuristic) Search Strategies
	Heuristic Evaluation Functions
	Pure Heuristic Search
	A * Search
	Greedy Best First Search

	Local Search Algorithms
	Hill-Climbing Search
	Local Beam Search
	Simulated Annealing
	Travelling Salesman Problem

	What is Fuzzy Logic?
	Implementation

	Why Fuzzy Logic?
	Fuzzy Logic Systems Architecture
	Membership Function

	Example of a Fuzzy Logic System
	Algorithm
	Development

	Application Areas of Fuzzy Logic
	Advantages of FLSs
	Disadvantages of FLSs
	Best First Search (Informed Search)
	MINIMAX Algorithm

	Alpha-beta Pruning | Artificial Intelligence
	Representation of knowledge in AI
	Propositional logic
	Predicate logic or First Order Logic
	Inference in FOL- Chaining
	Forward Chaining
	Backward Chaining
	Resolution

	Semantic Networks
	What is a Semantic Network?
	2. Notations for Logic
	3. Using Controlled Natural Languages
	4. Graph Algorithms
	5. Expressive Power and Computational Complexity
	6. A Flexible Modular Framework
	7. Implementing the FMF
	Types of Agents
	Simple reflex agents
	Model-based reflex agents
	Goal-based agents
	Utility-based agents

	First-Order Logic in Artificial intelligence
	First-Order logic:
	Syntax of First-Order logic:
	Basic Elements of First-order logic:
	Atomic sentences:
	Complex Sentences:

	Quantifiers in First-order logic:
	Universal Quantifier:
	Note: In universal quantifier we use implication "→".

	Example:

	Existential Quantifier:
	Note: In Existential quantifier we always use AND or Conjunction symbol (∧).
	Example:

	Points to remember:
	Properties of Quantifiers:
	Free and Bound Variables:

	Knowledge Engineering in First-order logic
	What is knowledge-engineering?
	The knowledge-engineering process:
	1. Identify the task:
	2. Assemble the relevant knowledge:
	3. Decide on vocabulary:
	4. Encode general knowledge about the domain:
	5. Encode a description of the problem instance:
	Note: Ontology defines a particular theory of the nature of existence.

	6. Pose queries to the inference procedure and get answers:
	7. Debug the knowledge base:

	What is knowledge representation?
	What to Represent:
	Types of knowledge
	The relation between knowledge and intelligence:
	AI knowledge cycle:
	Approaches to knowledge representation:
	1. Simple relational knowledge:
	2. Inheritable knowledge:
	3. Inferential knowledge:
	4. Procedural knowledge:

	Requirements for knowledge Representation system:

	Techniques of knowledge representation
	1. Logical Representation
	Syntax:
	Semantics:
	Note: We will discuss Prepositional Logics and Predicate logics in later chapters.

	Advantages of logical representation:
	Disadvantages of logical Representation:
	Note: Do not be confused with logical representation and logical reasoning as logical representation is a representation language and reasoning is a process of thinking logically.

	2. Semantic Network Representation
	Statements:
	Drawbacks in Semantic representation:
	Advantages of Semantic network:

	3. Frame Representation
	Example: 1
	Example 2:
	Advantages of frame representation:
	Disadvantages of frame representation:

	4. Production Rules
	Example:
	Advantages of Production rule:
	Disadvantages of Production rule:

	Propositional logic in Artificial intelligence
	Example:
	Syntax of propositional logic:
	Logical Connectives:
	Following is the summarized table for Propositional Logic Connectives:

	Truth Table:
	Truth table with three propositions:
	Precedence of connectives:
	Note: For better understanding use parenthesis to make sure of the correct interpretations. Such as R∨ Q, It can be interpreted as (R) ∨ Q.

	Logical equivalence:
	Properties of Operators:
	Limitations of Propositional logic:

	Rules of Inference in Artificial intelligence
	Inference:
	Inference rules:
	Types of Inference rules:
	1. Modus Ponens:
	2. Modus Tollens:
	3. Hypothetical Syllogism:
	4. Disjunctive Syllogism:
	5. Addition:
	6. Simplification:
	7. Resolution:

	What is planning in AI?
	Blocks-World planning problem
	Components of Planning System
	Goal stack planning

	Probabilistic reasoning in Artificial intelligence
	Uncertainty:
	Causes of uncertainty:
	Probabilistic reasoning:
	Note: We will learn the above two rules in later chapters.

	Conditional probability:

	Bayes' theorem in Artificial intelligence
	Bayes' theorem:
	Applying Bayes' rule:
	Application of Bayes' theorem in Artificial intelligence:

	Bayesian Belief Network in artificial intelligence
	Note: The Bayesian network graph does not contain any cyclic graph. Hence, it is known as a directed acyclic graph or DAG.
	Joint probability distribution:
	Explanation of Bayesian network:

	Subsets of Artificial Intelligence
	Note: Among all of the above, Machine learning plays a crucial role in AI. Machine learning and deep learning are the ways of achieving AI in real life.
	Machine Learning
	Types of Machine Learning

	Natural Language processing
	Deep Learning
	How deep learning works:

	Expert Systems
	Robotics
	Machine Vision
	Speech Recognition:
	Background
	Facing the challenge from Silicon Valley
	The present state of acute care decision making

	The integration of artificial intelligence into acute care
	AI and the acute care environment
	The hazards of black-box artificial intelligence in acute care
	Medical diagnostic analysis is more complex than in many other environments
	The handoff from an artificial intelligence system to a physician
	Artificial intelligence as a cause of clinical dependency
	The need for a new focus of medical education
	Time-series patterns, the “integers of physiology”
	Biologic time patterns are relational time patterns
	Seeing the data of a patient as a factorable time matrix
	Summary of considerations

	Decision Tree Introduction with example
	Decision Tree Introduction with example
	Supervised Learning
	Unsupervised Learning
	Vector
	Scalar
	Matrix

	Mathematical Computations
	Addition of matrices
	Subtraction of matrices
	Multiplication of matrices
	Transpose of matrix
	Dot product of vectors

	What is Statistical Learning?
	Regression Vs Classification Problem
	Variance And Bias
	Linear Regression

	The Classification Problem
	Support Vector Machine(SVM)
	Logistic Regression
	KNN Classifier
	Generalized Additive Models
	Trees, Random Forest, Boosting, and Bagging
	Unsupervised Learning

	Reinforcement Learning Tutorial
	What is Reinforcement Learning?
	Terms used in Reinforcement Learning
	Key Features of Reinforcement Learning
	Approaches to implement Reinforcement Learning
	Elements of Reinforcement Learning
	How does Reinforcement Learning Work?
	The Bellman Equation
	Types of Reinforcement learning
	How to represent the agent state?

	Markov Decision Process
	Markov Property:
	Markov Process:

	Reinforcement Learning Algorithms
	Q-Learning Explanation:
	Q-table:

	Difference between Reinforcement Learning and Supervised Learning
	Reinforcement Learning Applications
	What are Robots?
	Objective

	What is Robotics?
	Aspects of Robotics

	Difference in Robot System and Other AI Program
	Robot Locomotion
	Legged Locomotion
	Wheeled Locomotion
	Slip/Skid Locomotion

	Components of a Robot
	Computer Vision
	Hardware of Computer Vision System

	Tasks of Computer Vision
	Application Domains of Computer Vision
	Applications of Robotics

	Language Processing in “A Neural Probabilistic Language Model:”
	Language Processing in “A Neural Probabilistic Language Model:”

