
 



 

 

UNIT – I 

 

Language Processors – 

Assembly language is machine dependent yet mnemonics that are being used to represent 

instructions in it are not directly understandable by machine and high Level language is 

machine independent. A computer understands instructions in machine code, i.e. in the form 

of 0s and 1s. It is a tedious task to write a computer program directly in machine code. The 

programs are written mostly in high level languages like Java, C++, Python etc. and are 

called source code. These source codes cannot be executed directly by the computer and must 

be converted into machine language to be executed. Hence, a special translator system 

software is used to translate the program written in high-level language into machine code is 

called Language Processor and the program after translated into machine code (object 

program / object code). 

   The language processors can be any of the following three types: 

1. Compiler – 

The language processor that reads the complete source program written in high level 

language as a whole in one go and translates it into an equivalent program in machine 

language is called as a Compiler. 

Example: C, C++, C#, Java 

In a compiler, the source code is translated to object code successfully if it is free of errors. The 

compiler specifies the errors at the end of compilation with line numbers when there are 

any errors in the source code. The errors must be removed before the compiler can 

successfully recompile the source code again.> 

 

2. Assembler – 

The Assembler is used to translate the program written in Assembly language into 

machine code. The source program is a input of assembler that contains assembly 

language instructions. The output generated by assembler is the object code or machine 

code understandable by the computer. 

 

 



 
 

 

3. Interpreter – 

The translation of single statement of source program into machine code is done by 

language processor and executes it immediately before moving on to the next line is 

called an interpreter. If there is an error in the statement, the interpreter terminates its 

translating process at that statement and displays an error message. The interpreter 

moves on to the next line for execution only after removal of the error. An Interpreter 

directly executes instructions written in a programming or scripting language without 

previously converting them to an object code or machine code. 

Example: Perl, Python and Matlab. 

Difference between Compiler and Interpreter – 

Compiler Interpreter 

A compiler is a program which coverts the entire 

source code of a programming language into 

executable machine code for a CPU. 

interpreter takes a source program and 

runs it line by line, translating 

each line as it comes to it. 

Compiler takes large amount of time to analyze the 

entire source code but the overall execution 

time of the program is comparatively faster. 

Interpreter takes less amount of time to 

analyze the source code but the 

overall execution time of the 

program is slower. 

Compiler generates the error message only after 

scanning the whole program, so debugging is 

comparatively hard as the error can be 

present any where in the program. 

Its Debugging is easier as it continues 

translating the program until 

the error is met 

Generates intermediate object code. 

No intermediate object code is 

generated. 

Examples: C, C++, Java Examples: Python, Perl 



 

Language processing activities arise to bridge the ideas of software designer with actual 

execution on the computer system. Due to the differences between the manners in 

which a software designer describes the ideas concerning the behavior of software and 

the manner in which these ideas are implemented in a computer system. The designer 

expresses the ideas in terms related to the application domain of the software. To 

implement these ideas, their description has to be interpreted in terms related to 

the execution domain of the computer system. We use the term semantics to represent 

the rules of meaning of a domain, and the term semantic gap to represent the difference 

between the semantics of two domains. The fundamental language processing activities 

can be divided into those that bridge the specification gap and those that bridge the 

execution gap. 

· Program Generation Activities 

· Program Execution Activities 

A program generation activity aims at automatic generation of a program. The source language 

is a specification language of an application domain and the target language is typically 

a procedure oriented PL. A program execution activity, organizes this execution of a 

program written in a PL on a computer system. Its source language could be a 

procedure-oriented language or a problem oriented language. 

o  Program Generation 

The program generator is a software system which accepts the specification of a program to be 

generated, and generates a program in the target PL. We call this the program generator 

domain. The specification gap is now the gap between the application domain and the 

program generator domain. This gap is smaller than the gap between the application 

domain and the target PL domain. 

Reduction in the specification gap increases the reliability of the generated program. Since the 

generator domain is close to the application domain, it is easy for the designer or 

programmer to write the specification of the program to be generated. 

Fig. 1.3: Program generator domain 

The harder task of bridging the gap to the PL domain is performed by the generator. This 

would be performed while implementing the generator. To test an application generated 

by using the generator, it is necessary to only verify the correctness of the specification 

input to the program generator. This is a much simpler task than verifying correctness 

of the generated program. This task can be further simplified by providing a good  

 



 

diagnostic (i.e. error indication) capability in the program generator, which would detect 

inconsistencies in the specification. 

It is more economical to develop a program generator than to develop a problem-oriented 

language. This is because a problem oriented language suffers a very large execution 

gap between the PL domain and the execution domain, whereas the program generator 

has a smaller semantic gap to the target PL domain, j which is the domain of a standard 

procedure oriented language. The execution gap between the target PL domain and the 

execution domain is bridged by the compiler or interpreter for the PL. 

o  Program Execution 

Two popular models for program execution are 

· Translation 

· Interpretation 

Program Translation 

Program translation model bridges the execution gap by translating a program written in a PL, 

called the source program (SP), into an equivalent program in the machine or assembly 

language of the computer system, called the target program (TP). 

A specification language is a formal language in computer science used during systems 

analysis, requirements analysis, and systems design to describe a system at a much 

higher level than a programming language, which is used to produce the executable 

code for a system. 

Specification languages are generally not directly executed. They are meant to describe 

the what, not the how. Indeed, it is considered as an error if a requirement specification 

is cluttered with unnecessary implementation detail. 

A common fundamental assumption of many specification approaches is that programs are 

modelled as algebraic or model-theoretic structures that include a collection of sets of 

data values together with functions over those sets. This level of abstraction coincides 

with the view that the correctness of the input/output behaviour of a program takes 

precedence over all its other properties. 

In the property-oriented approach to specification (taken e.g. by CASL), specifications of 

programs consist mainly of logical axioms, usually in a logical system in which 

equality has a prominent role, describing the properties that the functions are required 

to satisfy—often just by their interrelationship.  
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This is in contrast to so-called model-oriented specification in frameworks like VDM and Z, 

which consist of a simple realization of the required behaviour. 

Specifications must be subject to a process of refinement (the filling-in of implementation 

detail) before they can actually be implemented. The result of such a refinement 

process is an executable algorithm, which is either formulated in a programming 

language, or in an executable subset of the specification language at hand. For 

example, Hartmann pipelines, when properly applied, may be considered 

a dataflow specification which is directly executable. Another example is the actor 

model which has no specific application content and must be specialized to be 

executable.  

Software Development Tools 

 1 Text Editors. A text editor is a program that allows us to create or edit programs and 

text files. ... 

 2 Assemblers and Compilers. ... 

 3 Simulators. ... 

 4 High-Level Language Simulators. ... 

 5 Simulators With Hardware Simulation. ... 

 6 Integrated Development Environment (IDE) 

 Software tool classification 

Tool type Examples 

Language-processing tools Compilers, interpreters 

Program analysis tools Cross reference generators, static analysers, dynamic analysers 

Testing tools Test data generators, file comparators 

Debugging tools Interactive debugging systems 
 

Data Structures for Language Processing 

Data Structures used in Language Processing are classified as 

     Nature of Data Structure -  Linear  or Non Linear 

     Purpose of a Data Structure - Search and allocated 

     Lifetime of  Data Structure  - Used during Language Processing or during target 

program 

https://en.wikipedia.org/wiki/Model-based_specification
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Linear Data Structure: 
 

Data structures are categorised into two classes : linear and non-linear 

1) Linear Data Structures 

In linear data structure, member elements form a sequence. Such linear structures can be 

represented in memory by using one of the two basic strategies 

1. By having the linear relationship between the elements represented by means of 

sequential memory locations. These linear structures are called arrays. 

2. By having relationship between the elements represented by pointers. These structures 

are called linked lists. 

2)Non Linear Data Structures 
 

There are various non-linear structures, such as, trees and graphs and various operations can be 

performed on these data structures such as: 
 

 Traversal - One of the most important operations which involves processing each 

element in the list. 

 Searching - Searching or finding any element with a given value or the record with a 

given key. 

 Insertion - Adding a new element to the list 

 Deletion - Removing an element from the list 

 Sorting - Arranging the elements in some order 

 Merging - Combining two lists into a single list. 
 

Purpose of Data structure: 
 

1) Search Data Structure: Binary Search 
 

intbinary_search(int A[],int key,intimin,intimax) 

{ 

// test if array is empty 

if(imax<imin): 

// set is empty, so return value showing not found 

return KEY_NOT_FOUND; 

else 

{ 

// calculate midpoint to cut set in half 

intimid= midpoint(imin,imax); 



 

// three-way comparison 

if(A[imid]> key) 

// key is in lower subset 

returnbinary_search(A, key,imin, imid-1); 

elseif(A[imid]< key) 

// key is in upper subset 

returnbinary_search(A, key, imid+1,imax); 

else 

// key has been found 

returnimid; 

} 

} 

 

2)  HASH TABLE ORGANISATION 

8.3.1 Direct Address Tables 

If we have a collection of n elements whose keys are unique integers in (1,m), 

where m >= n, 

then we can store the items in a direct address table, T[m], 

where Ti is either empty or contains one of the elements of our 

collection.Searching a direct address table is clearly an O(1) operation: 

for a key, k, we access Tk, 

 if it contains an element, return it, 

 if it doesn't then return a NULL. 

There are two constraints here: 

1. the keys must be unique, and 

2. the range of the key must be severely bounded. 

 

If the keys are not unique, then we can simply construct a set of m lists and store the 

heads of these lists in the direct address table. The time to find an element matching an 

input key will still be O(1).However, if each element of the collection has some other 

distinguishing feature (other than its key), and if the maximum number of duplicates 

is ndup
max, then searching for a specific element is O(ndup

max). If duplicates are the 

exception rather than the rule, then ndup
max is much smaller than n and a direct address 

table will provide good performance. But if ndup
max approaches n, then the time to find a 

specific element is O(n) and a tree structure will be more efficient. 

 

 



 

The range of the key determines the size of the direct address table and may be too large to be 

practical. For instance it's not likely that you'll be able to use a direct address table to store 

elements which have arbitrary 32-bit integers as their keys for a few years yet! 

Direct addressing is easily generalised to the case where there is a function, 

h(k) => (1,m) 

which maps each value of the key, k, to the range (1,m). In this case, we place the element 

in T[h(k)] rather than T[k] and we can search in O(1) time as before. 

8.3.2 Mapping functions 

The direct address approach requires that the function, h(k), is a one-to-one mapping from 

each k to integers in (1,m). Such a function is known as a perfect hashing function: it maps 

each key to a distinct integer within some manageable range and enables us to trivially build 

an O(1) search time table. 

Unfortunately, finding a perfect hashing function is not always possible. Let's say that we can 

find a hash function, h(k), which maps most of the keys onto unique integers, but maps a 

small number of keys on to the same integer. If the number of collisions (cases where multiple 

keys map onto the same integer), is sufficiently small, then hash tables work quite well and 

give O(1) search times. 

Handling the collisions 

In the small number of cases, where multiple keys map to the same integer, then elements with 

different keys may be stored in the same "slot" of the hash table. It is clear that when the hash 

function is used to locate a potential match, it will be necessary to compare the key of that 

element with the search key. But there may be more than one element which should be stored 

in a single slot of the table. Various techniques are used to manage this problem: 

1. chaining, 

2. overflow areas, 

3. re-hashing, 

4. using neighbouring slots (linear probing), 

5. quadratic probing, 

6. random probing, ... 

Chaining 

One simple scheme is to chain all collisions in lists attached to the appropriate slot. This allows 

an unlimited number of collisions to be handled and doesn't require a priori knowledge of how 

many elements are contained in the collection. The tradeoff is the same as with linked lists  



 

versus array implementations of collections: linked list overhead in space and, to a lesser 

extent, in time. 

Re-hashing 

Re-hashing schemes use a second hashing operation when there is a collision. 

If there is a further collision, we re-hash until an empty "slot" in the table is 

found.The re-hashing function can either be a new function or a re-application 

of the original one. As long as the functions are applied to a key in the same 

order, then a sought key can always be located. 

Linear probing 

One of the simplest re-hashing functions is +1 (or -1), ie on a collision, look in 

the neighbouring slot in the table. It calculates the new address extremely 

quickly and may be extremely efficient on a modern RISC processor due to 

efficient cache utilisation (cf. the discussion of linked list 

efficiency).The animation gives you a practical demonstration of the effect of 

linear probing: it also implements a quadratic re-hash function so that you can 

compare the difference. 

 
h(j)=h(k), so 

the next hash 

function, 

h1 is used. A 

second 

collision 

occurs, 

so h2 is used. 

Clustering 

Linear probing is subject to a clustering phenomenon. Re-hashes from one location occupy a 

block of slots in the table which "grows" towards slots to which other keys hash. This 

exacerbates the collision problem and the number of re-hashed can become large. 

Quadratic Probing 

Better behaviour is usually obtained with quadratic probing, where the secondary hash 

function depends on the re-hash index: 

address = h(key) + c i2 

on the tth re-hash. (A more complex function of i may also be used.) Since keys which are 

mapped to the same value by the primary hash function follow the same sequence of addresses, 

quadratic probing shows secondary clustering. However, secondary clustering is not nearly as 

severe as the clustering shown by linear probes. 

Re-hashing schemes use the originally allocated table space and thus avoid linked list 

overhead, but require advance knowledge of the number of items to be stored. 

However, the collision elements are stored in slots to which other key values map directly, thus 

the potential for multiple collisions increases as the table becomes full. 

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/ll_time.html
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Overflow area 

Another scheme will divide the pre-allocated table into two sections: the primary area to 

which keys are mapped and an area for collisions, normally termed the overflow area. 

 

When a collision occurs, a slot in the overflow area is used for the new element and a link 

from the primary slot established as in a chained system. This is essentially the same as 

chaining, except that the overflow area is pre-allocated and thus possibly faster to access. 

As with re-hashing, the maximum number of elements must be known in advance, but in 

this case, two parameters must be estimated: the optimum size of the primary and 

overflow areas. 

Of course, it is possible to design systems with multiple overflow tables, or with a mechanism 

for handling overflow out of the overflow area, which provide flexibility without losing the 

advantages of the overflow scheme. 

Summary: Hash Table Organization 

Organization Advantages Disadvantages 

Chaining  Unlimited number of 

elements 

 Unlimited number of 

collisions 

 Overhead of multiple linked lists 

Re-hashing 
 Fast re-hashing 

 Fast access through use 

of main table space 

 Maximum number of elements 

must be known 

 Multiple collisions may become 

probable 

Overflow 

area 
 Fast access 

 Collisions don't use primary 

table space 

 Two parameters which govern 

performance 

need to be estimated 

  

 

hash table 

Tables which can be searched for an item in O(1) time using a hash function to form an 

address from the key. 

hash function 

Function which, when applied to the key, produces a integer which can be used as an 

address in a hash table. 



 

collision 

When a hash function maps two different keys to the same table address, a collision is 

said to occur. 

linear probing 

A simple re-hashing scheme in which the next slot in the table is checked on a collision. 

quadratic probing 

A re-hashing scheme in which a higher (usually 2nd) order function of the hash index is 

used to calculate the address. 

clustering. 

Tendency for clusters of adjacent slots to be filled when linear probing is used. 

secondary clustering. 

Collision sequences generated by addresses calculated with quadratic probing. 

perfect hash function 

Function which, when applied to all the members of the set of items to be stored in a 

hash table, produces a unique set of integers within some suitable range. 
 

Scanners and Parsers 

The main difference between scanning and parsing is that scanning is the process of reading 

the source code one character at a time in a methodical manner to convert them into 

tokens while parsing is the process of taking the tokens and generating a parse tree as the 

output. 

Generally, a compiler is a software program that is capable of converting the source code into 

machine code so that the computer can execute that machine code. The compiler goes through 

multiple phases to compile a program. Scanning and parsing are two activities that occur 

during this compilation process. Overall, scanning occurs at the lexical analysis phase, whereas 

parsing occurs at the syntax analysis phase. Furthermore, the lexical analyzer performs 

scanning while the parser performs parsing. 
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What is Scanning 

The first phase of compilation is lexical analysis. The lexical analyzer performs this task. It 

takes the source code as the input. Lexical analyzer reads the source program a character at a 

time and then converts it into meaningful tokens. The process of reading the source code 

methodically is called scanning. In this process, the lexical analyzer considers specific 

information of the source code. 

What is Parsing 

The tokens generated from lexical analysis goes to the next phase, which is syntax analysis. 

The parser performs this task. It takes the tokens as input and generates a parse tree as output. 

Thus, this process is called parsing. Furthermore, the parser checks whether the expression 

made by the tokens is syntactically correct or not. 

 

 

 



 

 

Moreover, in addition to lexical analysis and syntax analysis, there are other phases such as 

semantic analysis, intermediate code generation, code optimization etc. After performing all of 

the above phases, the source code will be converted into the equivalent machine code. 

Difference Between Scanning and Parsing 

Definition 

Scanning is the process of reading the source code as a stream of characters to convert them to 

meaningful lexemes or tokens. In contrast, parsing is the process of taking the tokens generated 

at the lexical analysis phase and transforming them into a parse tree. Thus, this is the main 

difference between scanning and parsing. 

Performed by 

Further, the lexical analyzer performs scanning while parser performs parsing. 



 

Associated Phase of the Compilation 

Besides, scanning occurs during lexical analysis, whereas parsing occurs during syntax 

analysis. Hence, this is another difference between scanning and parsing. 

Occurrence 

Moreover, scanning happens first, while parsing happens after performing scanning. 

Conclusion 

In overall, a compiler is a software program that is responsible for converting the source code 

into equivalent machine code. It goes through several phases to accomplish this task. Here, the 

scanning and parsing are two activities that occur during this compilation process. However, 

the main difference between scanning and parsing is that scanning is the process of reading the 

source code one character at a time in a methodical manner to convert them to tokens while 

parsing is the process of taking the tokens and generating a parse tree as the output. 

UNIT II  

ASSEMBLERS 

What is an Assembler? 

The first idea a new computer programmer has of how a computer works is learned from a 

programming language. Invariably, the language is a textual or symbolic method of encoding 

programs to be executed by the computer. In fact, this language is far removed from what the 

computer hardware actually "understands". At the hardware level, after all, computers only 

understand bits and bit patterns. Somewhere between the programmer and the hardware the 

symbolic programming language must be translated to a pattern of bits. The language 

processing software which accomplishes this translation is usually centered around either an 

assembler, a compiler, or an interpreter. The difference between these lies in how much of the 

meaning of the language is "understood" by the language processor. 

An interpreter is a language processor which actually executes programs written in its source 

language. As such, it can be considered to fully understand that language. At the lowest level 

of any computer system, there must always be some kind of interpreter, since something must 

ultimately execute programs. Thus, the hardware may be considered to be the interpreter for 

the machine language itself. Languages such as BASIC, LISP, and SNOBOL are typically 

implemented by interpreter programs which are themselves interpreted by this lower level 

hardware interpreter. 



Interpreters running as machine language programs introduce inefficiency because each 

instruction of the higher level language requires many machine instructions to execute. This 

motivates the translation of high level language programs to machine language. This 

translation is accomplished by either assemblers or compilers. If the translation can be 

accomplished with no attention to the meaning of the source language, then the language is 

called an assembly or low level language, and the translator is called an assembler. If the 

meaning must be considered, the translator is called a compiler and the source language is 

called a high level language. The distinction between high and low level languages is 

somewhat artificial since there is a continuous spectrum of possible levels of complexity in 

language design. In fact, many assembly languages contain some high level features, and some 

high level languages contain low level features. 

Since assemblers are the simplest of symbolic programming languages, and since high level 

languages are complex enough to be the subject of entire texts, only assembly languages will 

be discussed here. Although this simplifies the discussion of language processing, it does not 

limit its applicability; most of the problems faced by an implementor of an assembly language 

are also faced in high level language implementations. Furthermore, most of these problems 

are present in even the simplest of assembly languages. For this reason, little reference will be 

made to the comparatively complex assembly languages of real machines in the following 

sections. 

The Assembly Process 

It is useful to consider how a person would process a program before trying to think about how 

it is done by a program. For this purpose, consider the program in Figure 2.1. It is important to 

note that the assembly process does not require any understanding of the program being 

assembled. Thus, it is unnecessary to understand the algorithm implemented by the code in 

Figure 2.1, and little understanding of the particular machine code being used is needed (for 

those who are curious, the code is written for an R6502 microprocessor, the processor used in 

the historically important Apple II family of personal computers from the late 1970's). 

; UNSIGNED INTEGER DIVIDE ROUTINE 

;   Takes dividend in A, divisor in Y 

;   Returns remainder in A, quotient in Y 

START: STA IDENDL     ;Store the low half of the dividend 

       STY ISOR       ;Store the divisor 

       LDA #0         ;Zero the high half of the dividend (in register A) 

       TAX            ;Zero the loop counter (in register X) 

  LOOP:  ASL IDENDL     ;Shift the dividend left (low half first) 

         ROL            ;                        (high half second) 



         CMP ISOR       ;Compare high dividend with divisor 

         BCC NOSUB      ;If IDEND < ISOR don't subtract 

           SBC ISOR       ;Subtract ISOR from IDEND 

           INC IDENDL     ;Put a one bit in the quotient 

  NOSUB: INX            ;Count times through the loop 

         CPX #8 

         BNE LOOP       ;Repeat loop 8 times 

       LDY IDENDL     ;Return quotient in Y 

       RTS            ;Return remainder in A 

 

IDENDL:B 0            ;Reserve storage for the low dividend/quotient 

ISOR:  B 0            ;Reserve storage for the divisor 

Figure 2.1. An example assembly language program. 

When a person who knows the Roman alphabet looks at text such as that illustrated in Figure 

2.1, an important, almost unconscious processing step takes place: The text is seen not as a 

random pattern on the page, but as a sequence of lines, each composed of a sequence of 

punctuation marks, numbers, and word-like strings. This processing step is formally 

called lexical analysis, and the words and similar structures recognized at this level are 

called lexemes. 

If the person knows the language in which the text is written, a second and still possibly 

unconscious processing step will occur: Lexical elements of the text will be classified into 

structures according to their function in the text. In the case of an assembly language, these 

might be labels, opcodes, operands, and comments; in English, they might be subjects, objects, 

verbs, and subsidiary phrases. This level of analysis is called syntactic analysis, and is 

performed with respect to the grammar or syntax of the language in question. 

A person trying to hand translate the above example program must know that the R6502 

microprocessor has a 16 bit memory address, that memory is addressed in 8 bit (one byte) 

units, and that instructions have a one byte opcode field followed optionally by additional bytes 

for the operands. The first step would typically involve looking at each instruction to find out 

how many bytes of memory it occupies. Table 2.1 lists the instructions used in the above 

example and gives the necessary information for this step. 

Opcode Bytes  Hex Code 

 

ASL   3       0E aa aa 

B   1   cc 



BCC   2   90 oo 

BNE   2   D0 oo 

CMP   3   CD aa aa 

CPX #   2   E0 cc 

INC   3       EE aa aa 

INX       1   E8 

LDA #   2   A9 cc 

LDY   3   AC aa aa 

ROL   1   2A 

RTS   1   60 

SBC   3   ED aa aa 

STA   3   8D aa aa 

STY   3   8C aa aa 

TAX   1   AA 

 

Notes: aa aa - two byte address, least significant byte first. 

 oo - one byte relative address. 

 cc - one byte of constant data. 

Table 2.1. Opcodes on the R6502. 

To begin the translation of the example program to machine code, we take the data from table 

2.1 and attach it to each line of code. Each significant line of an assembly language program 

includes the symbolic name of one machine instruction, for example, STA. This is called 

the opcode or operation code for that line. The programmer, of course, needs to know what the 

program is supposed to do and what these opcodes are supposed to do, but the translator has no 

need to know this! Here, we show the numerical equivalent of each opcode code in 

hexadecimal, or base 16. We could have used any number base; inside the computer, the bytes 

are stored in binary, and because hexidecimal to binary conversion is trivial, we use that base 

here. While we're at it, we will strip off all the irrelevant commentary and formatting that was 

only included only for the human reader, and leave only the textual description of the program. 

8D START: STA IDENDL 

aa 

aa 

8C        STY ISOR 

aa 

aa 

A9        LDA #0 

cc 



AA        TAX 

0E LOOP:  ASL IDENDL 

aa 

aa 

2A        ROL 

CD        CMP ISOR 

aa 

aa 

90        BCC NOSUB 

oo 

ED        SBC ISOR 

aa 

aa 

EE        INC IDENDL 

aa 

aa 

E8 NOSUB: INX 

E0        CPX #8 

cc 

D0        BNE LOOP 

oo 

AC        LDY IDENDL 

aa 

aa 

60        RTS 

cc IDENDL:B 0 

cc ISOR:  B 0 

Figure 2.2. Partial translation of the example to machine language 

The result of this first step in the translation is shown in Figure 2.2. This certainly does not 

complete the job! Table 2.1 included constant data, relative offsets and addresses, as indicated 

by the lower case notatons cc, oo and aaaa, and to finish the translation to machine code, we 

must substitute numeric values for these! 

Constants are the easiest. We simply incorporate the appropriate constants from the source 

code into the machine code, translating each to hexadecimal. Relative offsets are a bit more 

difficult! These give the number of bytes ahead (if positive) or behind (if negative) the location 

immediately after the location that references the offset. Negative offsets are represented using 

2's complement notation. 



8D START: STA IDENDL 

aa 

aa 

8C        STY ISOR 

aa 

aa 

A9        LDA #0 

00 

AA        TAX 

0E LOOP:  ASL IDENDL 

aa 

aa 

2A        ROL 

CD        CMP ISOR 

aa 

aa 

90        BCC NOSUB 

06 

ED        SBC ISOR 

aa 

aa 

EE        INC IDENDL 

aa 

aa 

E8 NOSUB: INX 

E0        CPX #8 

08 

D0        BNE LOOP 

EC 

AC        LDY IDENDL 

aa 

aa 

60        RTS 

00 IDENDL:B 0 

00 ISOR:  B 0 

Figure 2.3. Additional translation of the example to machine language 



The result of this next translation step is shown in boldface in Figure 2.3. We cannot complete 

the translation without determining where the code will be placed in memory. Suppose, for 

example, that we place this code in memory starting at location 020016. This allows us to 

determine which byte goes in what memory location, and it allows us to assign values to the 

two labels IDENDL and ISOR, and thus, fill out the values of all of the 2-byte address fields to 

complete the translation. 

0200: 8D START: STA IDENDL 

0201: 21 

0202: 02 

0203: 8C        STY ISOR 

0204: 22 

0205: 02 

0206: A9        LDA #0 

0207: 00 

0208: AA        TAX 

0209: 0E LOOP:  ASL IDENDL 

020A: 21 

020B: 02 

020C: 2A        ROL 

020D: CD        CMP ISOR 

020E: 22 

020F: 02 

0210: 90        BCC NOSUB 

0211: 06 

0212: ED        SBC ISOR 

0213: 22 

0214: 02 

0215: EE        INC IDENDL 

0216: 21 

0217: 02 

0218: E8 NOSUB: INX 

0219: E0        CPX #8 

021A: 08 

021B: D0        BNE LOOP 

021C: EC 

021D: AC        LDY IDENDL 

021E: 21 

021F: 02 

0220: 60        RTS 



0221: 00 IDENDL:B 0 

0222: 00 ISOR:  B 0 

Figure 2.4. Complete translation of the example to machine language 

Again, in completing the translation to machine code, the changes from Figure 2.3 to Figure 

2.4 are shown in boldface. For hand assembly of a small program, we don't need anything 

additional, but if we were assembling a program that ran on for pages and pages, it would be 

helpful to read through it once to find the numerical addresses of each label in the program, 

and then read through it again, substituting those numerical values into the code where they are 

needed. 

symbol address 

 

START  0200 

LOOP  0209 

NOSUB  0218 

IDENDL  0221 

ISOR  0222 

Table 2.2. The symbol table for Figure 2.4. 

Table 2.2 shows the symbol table for this small example, sorted into numerical order. For a 

really large program, we might rewrite the table into alphabetical order to before using it to 

finish the assembly. 

It is worth noting the role which the meaning of the assembly code played in the assembly 

process. None! The programmer writing the line STA IDENDL must have understood its 

meaning, "store the value of the A register in the location labeled IDENDL", and the CPU, 

when it executes the corresponding binary instruction 8D 21 02 must know that this means 

"store the value of the A register in the location 0221", but there is no need for the person or 

computer program that translates assembly code to machine code to understand this! 

To the translator performing the assembly process, the line STA IDENDL means "allocate 3 

bytes of memory, put 8D in the first byte, and put the 16 bit value of the symbol IDENDL in 

the remaining 2 bytes." If the symbol IDENDL is mapped to the value 0221 by the symbol 

table, then the interpretation of the result of the assembler's interpretation of the source code is 

the same as the programmers interpretation. These relationships may be illustrated in Figure 

2.5. 

                          Source Text 



                            /    \ 

          programmer's     /      \      assembler's 

        view of meaning   /        \  view of meaning 

                         /          \ 

            Abstract Meaning ----- Machine Code 

 

                          hardware's 

                       view of meaning 

Figure 2.5. Views of the meaning of a program. 

A Simple Assembly Language 

In order to simplify this discussion of the translation process, an assembly language less 

complex than that used in the previous example will be used. The R6502 language used there is 

complicated by the fact that a single symbolic instruction may assemble in many different 

ways; for example, the symbolic instruction LDA assembles to either A9, AD, A5, or others 

depending on the form of the operand field. For example, if the operand field begins with a 

hash mark (#), the immediate form, A9 is used, while if the operand is an expression with a 16 

bit value but is not preceded by a hash mark, the direct addressing form, AD is used. In a 

simplified assembly language, these differences in the address mode can be indicated by 

different symbolic names. 

Another problem with using the R6502 assembly language is its size; it has 56 different 

symbolic instructions. None of the basic functions of the assembler depend on the number of 

different instructions, so a simple assembly language with two instructions will be used as an 

example for the remainder of this chapter. These instructions are B, which means, initialize one 

byte (8 bits) of memory, and W, which means initialize one word (16 bits) of memory. These 

correspond to the .BYTE and .WORD directives in the MACRO-11 assembly language for the 

PDP-11 (circa 1970), or to variants of the DC directive in the IBM 360 (and 370) assembly 

language (circa 1965). The syntax of most modern assembly languages can be traced back to 

one or the other of these older languages, although many minor changes have been introduced 

in the years since the widespread use of these older languages. 

These two simple instructions could be used to assemble code for the R6502 processor by 

composing however many B and W directives as are needed to make up each actual machine 

instruction, as is illustrated in Figure 2.6. 

; --  DEFINE SYMBOLIC INSTRUCTION NAMES  -- 

STA = #8D            ;STA direct addressing 



STY = #8C            ;STY direct addressing 

LDAI= #A9            ;LDA immediate operand 

TAX = #AA            ;TAX 

ASL = #0E            ;ASL 

 

; --  THE PROGRAM ITSELF  -- 

START: B STA          ; Store 

          W IDENDL    ; ... the low half of the dividend 

       B STY          ; Store 

          W ISOR      ; ... the divisor 

       B LDAI         ; Load register A (the high half of the dividend) 

          B 0         ; ... with zero 

       B TAX          ; Zero the loop counter (in register X) 

LOOP:  B ASL          ; Shift left 

          W IDENDL    ; ... the dividend 

Figure 2.6. Part of Figure 2.1 recoded in the simple assembly language. 

Figure 2.6 completes the first 5 instructions of the original example, except that the 

programmer has had to remember the instruction format and write one line per byte or per 16-

bit word in the program, and the programmer had to begin his or her efforts by explicitly 

defining to the assembler the values to be assembled for each machine instruction. In the 

Figure, indenting has been used to distinguish between instructions and their operands. 

Informally, each line of this simple assembly language is either a definition or a statement. 

Definitions assign values to symbolic names and do not imply the loading of any values in 

memory; each of the two statements we have defined loads values in memory in its own way. 

Each statements consists of an optional label followed by an opcode and an operand. Labels 

end with a colon and may begin anywhere on the line. Note that the freedom to indent labels is 

not common. Many assemblers require that labels begin at the left margin. 

The valid opcodes are B and W; these mean, respectively, assemble one byte and assemble one 

word. The operand field, which is the same as the value field in a definition, may be either an 

identifier, a symbolic name, a decimal number, or a hexadecimal number; the latter is indicated 

by the use of the # symbol as a prefix (this should not be confused with the use of the # prefix 

in the official R6502 assembly language, where it means an immediate constant). If an 

identifier or symbolic name is used, it must be defined elsewhere in the program, either by its 

use as a label, or by its use in a definition. 



Formal Definitions 

The above informal definition is accurate as far as it goes, but its very informality leads to 

difficulties. If two different programmers used this definition and wrote their own assemblers, 

it is likely that they would end up supporting slightly different languages. With definitions of 

larger languages, the differences between independently written processors frequently become 

insurmountable. 

Over the years, a number of formal definition techniques have been developed which help to 

overcome this problem. Perhaps the oldest of these is BNF notation. 

The initials BNF stand for either Backus-Naur Form or Backus Normal Form (depending on 

who is talking). This notation became widely used after Peter Naur used it in the definition of 

Algol 60; Naur modified a notation used by John Backus (the developer of FORTRAN). Since 

Backus has claimed that he did not invent the notation himself, but merely used it, and since 

the notation is not (technically speaking) a normal form, perhaps it is best to forget what the 

initials BNF stand for. 

An important limitation of this notation is that it only defines the syntax of a language, while 

informal definitions such as the one given above indicate something about the meaning or 

semantics involved. Thus, a BNF definition can describe how to construct an assembly 

language program, but it can notdescribe the meaning of the result. The small assembly 

language used here is defined in Figure 2.7, with added informal comments. 

<program> ::= <line><end of file> | <line><program> 

     -- a program is a sequence of 1 or more lines 

 

<line> ::= <definition> | <statement> | <comment> 

     -- a line is either a definition, statement or comment 

 

<definition> ::= <identifier> = <operand><comment> 

     -- a definition is an identifier, followed by an 

        equals sign, followed by an operand         

 

<statement> ::= <label><instruction> | <instruction> 

     -- the label part of a statement is optional 

 

<instruction> ::= <opcode><operand><comment> | <comment> 

     -- the opcode, operand part of an instruction is optional 

 



<comment> ::= ;<text><line end> | <line end> 

     -- comments at ends of lines are optional 

 

<label> ::= <identifier> : 

     -- a label is a symbol followed by a colon 

 

<opcode> ::= B | W 

     -- the legal opcodes are B and W 

 

<operand> ::= <identifier> | <number> 

     -- an operand is either an identifier or a number 

Figure 2.7. BNF definition of the small assembly language. 

Each line in the formal part of the above definition is called a production rule because it 

defines how to produce an object in the language from simpler objects. For example, a 

definition is made by concatenating a symbol, an equals sign, an operand, and a comment. 

Similarly, a comment is made by either a line end or a semicolon followed by any text 

followed by a line end. 

In BNF, the symbols <> | and ::= have special meanings. The ::= symbol is used to indicate 

that the object on the left is defined by the "expression" to the right. The vertical bar is used to 

separate alternatives, while the angle brackets are used to enclose "nonterminal" symbols 

(those which must be further defined elsewhere). All of these special symbols are 

called metasymbols because they are used to "speak about" symbols in the language being 

defined. 

This definition has two faults: It is wordy, and it omits lexical details such as the rules 

governing spacing and the construction of identifiers and numbers. Using BNF, the latter 

details can be defined as shown in Figure 2.8: 

<identifier> ::= <letter> | <symbol><letter or digit> 

     -- identifiers start with a letter 

 

<letter> ::= A | B | C | ... | X | Y | Z 

 

<digit> ::= 0 | 1 | 2 | ... | 7 | 8 | 9 

 

<letter or digit> ::= <letter> | <digit> 

 



<number> ::= <decimal> | #<hexadecimal> 

 

<decimal> ::= <digit> | <digit><decimal> 

     -- a decimal number is a sequence of digits 

 

<hexadecimal> ::= <hexdigit> | <hexdigit><hexadecimal> 

 

<hexdigit> ::= <digit> | A | B | C | D | E | F 

Figure 2.8: Lexical details of the example language. 

Note that Figure 2.8 does not mention the spaces between lexemes! It is fairly common to 

leave this detail out of the formal description of programming languages. Instead, the informal 

statement is made that spaces may be included before any lexeme or between lexemes but may 

not be included within them. It is sometimes necessary to include the additional rule that 

successive identifiers or numbers must be separated by at least one space. 

There are a number of ways of formally including the treatment of spaces in the definit ion of 

the syntax of a language, but it is more common to do this in a formal description of the lexical 

structure, as will be discussed later. 

The primary problem with the BNF definitions given above is that they are wordy. There are 

too many nonterminal symbols. The most common solution to this is to introduce new 

metasymbols which allow many BNF production rules to be combined into a single rule in the 

new notation. The symbols which are generally introduced are [], {}, and (). Square brackets 

enclose optional constructs, curly brackets enclose constructs which may be repeated zero or 

more times, and parentheses group alternatives. 

Notations such as this are commonly called extended BNF or EBNF notations; this one derives 

from a merger of BNF with the form of definition used originally for COBOL, in which 

vertical groupings of symbols indicated alternatives, and the different kinds of brackets were 

used as they are here. Figure 2.9 gives the definition of the example assembly language in this 

notation. 

<program> ::= <line> { <line> } <end of file> 

     -- a program is a line followed by zero or more lines 

 

<line> ::= ( <definition> | <statement> ) [ ;<text> ] <line end> 

     -- a line is a definition or statement with an optional comment 

 

<definition> ::= <identifier> = <operand> 



 

<statement> ::= [ <identifier> : ] [ ( B | W ) <operand> ] 

 

<operand> ::= <identifier> | <number> 

Figure 2.9. An Extended BNF grammar for the example language. 

The difficulty with the definition given in Figure 2.9 is that, by omitting nonterminal symbols 

such as <comment> and <label>, less of the meaning of the grammar has been conveyed by 

this definition of the syntax. Of course, if meaningless symbols such as <a> and <b> had been 

substituted for <comment> and <label> in the original BNF grammar, the same difficulty 

would have arisen. This illustrates that, by carefully naming nonterminal symbols in a 

grammar, the grammar can be made to informally describe the meaning of a language at the 

same time that it formally describes the syntax. 

A third notation for the formal definition of the syntax of a language is known as RTN 

(Recursive Transition Network) notation. Definitions in this form are also frequently 

called syntax diagrams or railroad charts, and are frequently used for the definition of 

languages descended from Pascal. The syntax diagrams for the example assembly language are 

given in Figure 2.10. 

program       ------ 

    ---------| line |-------(end of file)---- 

         /    ------    \ 

         \______________/ 

 

              ------------ 

           --| definition |-- 

line     /    ------------    \ 

    ----                        -------------------------(line end)-- 

         \    -----------     /   \       ---------   / 

           --| statement |---       -(;)-| comment |- 

              -----------                 --------- 

 

definition   ------------           --------- 

    --------| identifier |---(=)---| operand |---------- 

             ------------           --------- 

 

statement 

    -------------------------------------------------------------- 



       \   ------------        /  \                           / 

         -| identifier |--(:)-     \ --(B)--     ---------   /  

           ------------             \         --| operand |-  

                                      -(W)--     --------- 

Figure 2.10. RTN notation for the example language. 

In RTN notation, nonterminal symbols are boxed, while terminal symbols (those which appear 

in the language) are circled. These syntax diagrams are essentially translations of the Extended 

BNF grammar given previously. The term "railroad chart" comes from the similarity of these 

diagrams to the schematic descriptions of railroad networks frequently used in railroad control 

towers and dispatching centers. As with flowcharts, poorly structured syntax diagrams are 

possible which are not easily translated to a structured form such as Extended BNF. 

RTN notation has an important property: The RTN diagrams for a language are isomorphic to 

the flowchart of a program which reads input in that language! Such a program is called 

a parser. The same observations can be made about Extended BNF notation. In that case, the 

relation to be noted is that there are operations for selection between alternatives (a|b is like if ? 

then a else b), for repetition ({a} is like while ? do a), and for conditional inclusion ([a] is like 

if ? then a). Additionally, in both Extended BNF and RTN notation, the inclusion of a 

nonterminal symbol in the definition is equivalent to a procedure or function call in a program 

(hence the R in RTN). 

There is a problem with the relationship between language definitions and programs which 

process that language. This problem is hinted at by the question marks in the parenthetic 

remarks in the last paragraph. The problem is that, although the form of the parsing program is 

specified by the language definition, the conditions to be tested at each branch in the flowchart 

are not specified. This is the crux of the parsing problem. 

Before discussing some solutions to the parsing problem, it is interesting to consider the 

reverse problem, that of writing a program which generates programs in the language being 

defined. In that case, each terminal symbol in the language definition maps to a write 

statement. A simple program generator for random programs would request a new random 

number to be used as the basis of each branch in the program. For example, if "random" is a 

function returning a random boolean value each time it is called, the random generator for lines 

of assembly code would have the form given in Figure 2.11. 

procedure line;   void line() 

begin    { 

     if random then begin     if (random()) { 

         if random   if (random()) 



             then definition      definition();     

             else statement;         else 

     end;        statement(); 

     if random then begin     } 

         write(';');      if (random()) { 

         text;    putchar(';') 

     end    text(); 

end {line};       } 

    } /* line */ 

Figure 2.11. A random program generator in Pascal and C. 

Most of the "computer poetry" which is the subject of occasional jokes is produced using 

essentially this technique, except that the basic grammar is that of a language such as English, 

and variables are added to control such things as rhyme and meter. In artificial intelligence 

work, an RTN grammar with added variables is referred to as an ATN or Augmented 

Transition Network grammar. The use of ATN grammars is at the center of much work with 

natural language understanding. 

Parsing 

A program (or part of a program) which reads text in an input language and classifies its 

components according to their grammatic derivation is called a parser. In this section, we will 

deal only with parsers and not with the problem of what to do with the output of the parser. A 

language processing program where the parser directs the translation process is said to be 

a syntax directed translator; later sections will describe these. As has already been mentioned, 

the flowchart of a parser can be derived from the grammar of a language; there are other forms 

of parsers, for example, table driven ones, but these will not be discussed here. 

The parsers discussed here are sometimes called top-down parsers because they begin with the 

assumption that the input will be a program and they operate by trying to decide which of the 

ways of constructing a program matches the input. An alternative, bottom-up parsing, involves 

putting pieces of the input together to see what they make, hoping eventually to reduce the 

entire input to a single object and then making sure that the result is a program. The differences 

between these two approaches are most apparent in the context of expression analysis, where 

they will be discussed in more detail. An important property of both techniques, however, is 

that parsing is accomplished as the input text is read; computer programming languages are 

designed so that a parser can operate by reading only a few lexemes at a time, without any need 

to hold the entire text in memory at once. 



The basic problem faced in a top-down parser is that of differentiating between the various 

alternate forms that may be substituted for some nonterminal symbol. The example given in 

Figure 2.12 demonstrates this problem in the context of the nonterminal symbol <line> from 

the extended BNF grammar given in Figure 2.9: 

B = 5 

B : B 5 

B 5 

W 5 

Figure 2.12. A parsing problem for the nonterminal <line>. 

The first line in Figure 2.12 is a <definition> while the others are <statement>s. Clearly, these 

cannot be distinguished by their first lexeme, but the second lexeme does the job. The first 

lexemes of the second and third lines are the same, but they serve different purposes; again, the 

second lexeme distinguishes between these purposes. Only in the last two lines is the first 

lexeme sufficient to distinguish between the forms. These examples suggest (correctly) that the 

example assembly language can be parsed by reading one lexeme at a time, from left to right, 

with the added ability to peek ahead at the next lexeme from time to time when that is needed 

to distinguish between forms which do not differ in their first lexeme. 

This process of 'peeking ahead' at the next lexeme is conventionally called looking ahead, 

or looking right in the input. The number of lexemes ahead of the current lexeme which must 

be examined in order to parse a language is commonly used as a measure of the complexity of 

the grammar for that language. Thus, a grammar which allows a language to be parsed without 

looking ahead is the simplest; such grammars are called LL0 grammars (for Left-to-right 

parsing, Leftmost reduction first, looking right 0 places'). The example assembly language is in 

the class LL1 because it requires one symbol look-ahead. It is interesting to speculate about 

how far ahead one must look in order to parse English; is English an LL6 language? 

Most grammars for English appear to require infinite look-ahead, but example sentences 

illustrating the need for more than a few words of look-ahead are very hard for real people to 

follow even though they may be correct under the commonplace grammars people use to 

describe natural languages. It may be that the human capacity for look-ahead is limited by the 

fact that human short-term memory can hold about 'seven plus or minus two' things at any 

time; if this is the case, it becomes reasonable to speculate that a grammar requiring 

somewhere between 5 and 9 symbols of lookahead might be adequate to describe English as it 

is actually used. 



For the example assembly language, the main body of the parser is easy to propose. This is 

simply a loop which processes lines until the end of a file. Prior to the 1970's, of course, most 

parsers were written in assembly language or even machine language, but today, it is common 

to write language processors in decent high-level languages. Figure 2.13 shows how this might 

look in Pascal and C. 

procedure program;  void program() 

begin    { 

    repeat       do {   

        line;    line(); 

    until eof(input);      } while (!feof(stdin)); 

end {program};   } 

Figure 2.13. The main body of a parser in Pascal and C. 

The predicates "eof(input)" or "feof(stdin)" can be formally treated as asking if the current 

lexeme is a special, invisible, "end of file" lexeme, although it would probably be implemented 

as a simple test for end of file. Note that the parser given in Figure 2.13 has not been coded to 

anticipate an empty input file; thus, it may well produce unexpected results for an empty file.  

Processing a line is more complex, since there must be some way to examine the current and 

next lexeme. To allow this, we will use two variables, "lex.this" and "lex.next"; the variable 

"lex.this" always holds the current lexeme, while the variable "lex.next" always holds the 

lexeme that comes next after the current one. Thus, examining the contents of "lex.next" 

corresponds to looking ahead in the input. The procedure "lex.scan" will be used to advance 

the state of the lexical analyzer. 

Formally, the lexical analyzer is an object with two read-only public variables, "lex.this" and 

"lex.next", and one public procedure, "lex.scan". In a language that doesn't support objects, we 

can simply make these variables global, naming them "lex_this" and "lex_next", with no loss 

of utility, because we have no intention of ever introducing multiple instances of the lexical 

analyzer. In fact, if our programming environment requires that we name the lexical analyzer 

class and then instantiate it, our environment is forcing us to do something inappropriate by 

suggesting the possibility of multiple instances of this class. 

For now, we will assume that the values of "lex.next" and "lex.this" are strings, although this 

would rarely be the case in a production parser; instead, in production, these really ought to be 

values of type "lexeme", where values of type lexeme carry compact encodings of the 

attributes of the lexeme as they are computed. 



Using the extended BNF grammar of the example assembly language as a basis, a procedure to 

parse one line can be written as shown in Figure 2.14. 

procedure line;   void line() 

begin    { 

    if lex.next = "="      if (!strcmp(lex.next,"=")) 

        then definition   definition(); 

        else statement;      else 

skipline;    statement(); 

end {line};   skipline(); 

    } 

Figure 2.14. A parser for lines in Pascal and C. 

Note that the inclusion of a comment after the body of the definition or statement has been 

ignored! Whatever follows the definition or statement up to the end of line has simply been 

skipped over by the call to "skipline". Detection of errors significantly complicates this code; 

as is illustrated in Figure 2.15. 

procedure line {with error detection}; 

begin 

    if is_identifier(lex.this) then 

        if lex.next = "=" 

            then definition 

            else statement; 

    if (lex.this = ";") or is_eol(lex.this) then begin 

 skipline; 

    end else begin 

        error("comment expected, something else found"); 

 skipline; 

    end; 

end {line}; 

Figure 2.15. A parser with error detection. 

Here, the predicate "is_identifier" has been used to check that the line begins with a valid 

identifier, since all legal nonblank lines start with a valid identifier. Similarly, the predicate 

"iseol" has been used to check to see if the current lexeme is an end-of-line marker. In the 

remainder of this discussion of parsing, this extra code to handle errors will be ignored, but it 

should be kept in mind that this code frequently dominates the structure of production-quality 

parsers because users demand good error detection and reporting. 



The procedures for parsing definitions and statements which were called from the above 

routines can easily be written as shown in Figure 2.16. 

void definition () 

{ 

lex_scan(); /* skip over identifier */ 

lex_scan(); /* skip over equals sign */ 

     operand; 

} /* definition */ 

 

void statement () 

{ 

     if (!strcmp(lex.next,":")) { 

lex_scan(); /* skip over identifier */ 

lex_scan(); /* skip over colon */ 

     } 

     if (!strcmp(lex.this,"B")) { 

lex_scan(); /* skip over B */ 

          operand(); 

     } else if (!strcmp(lex.this,"W")) { 

lex_scan(); /* skip over W */ 

          operand; 

     } 

} /* statement */ 

Figure 2.16. Parsers for definitions and statements. 

It is interesting to note that these versions of definition and statement would require no 

additional error checking code if called from the error checking version of line given in Figure 

2.12, assuming that the operand procedure performs appropriate checks for malformed 

operands. 

A Syntax Directed Assembler 

The parser given in the previous section provides a convenient scaffolding on which to build 

the rest of an assembler. In order to do this, there must be a place to store the assembled code; 

here, this will "M", standing for memory, an array of bytes. 

It should be noted that most production assemblers do not directly store assembled code in 

memory, but store it in special files called object files; these will be discussed in detail in 



Chapter 7. When assembly is directly into memory, it becomes necessary to violate the "sane 

usage" constraints on pointers, perhaps by using a small assembly language routine that 

directly interprets an integer memory address as a pointer. A classic name for this routine 

would be "poke", after the common name for the built-in procedure in many early 

microcomputer BASIC implementations that did this. Typically, "poke(b,a)" has the effect of 

"M[a]:=b". 

We also need a mechanism to store the association of symbols with values in the symbol table. 

Logically, the symboltable is an object, perhaps named "st", with two access routines, 

"st.define" and "st.lookup"; the former defines (or redefines) a symbol by associating a value 

with it, while the latter returns the value associated with a symbol. Appropriate 

implementations for these routines will not be discussed until the next chapter, but it is worth 

noting that, again, the object-oriented paradigm poses minor problems. We don't really want to 

create a symbol-table class, with the suggestion that there might be multiple coexisting symbol 

tables in our assembler; rather, we want a guarantee that there will always be exactly one 

object, the symbol table, that is the only instance of thisr class. Furthermore, with only one 

instance, the need to prefix each use of an access routine for that instance with the instance 

name becomes annoying. 

We can now rewrite the procedures "definition" and "statement" as shown in Figure 2.17 for 

use in a real assembler. 

procedure definition; 

begin 

     s := lex.this {save the symbol to be st_defined}; 

lex_scan      {skip that symbol}; 

lex_scan      {skip the equals sign}; 

     v := operand; 

st_define(s,v); 

end {definition}; 

 

procedure statement; 

begin 

     if lex.next = ":" then begin 

          s := lex.this {save symbol used as label}; 

lex_scan  {skip label}; 

lex_scan  {skip colon}; 

st_define(s,location); 

     end; 

 



     if lex.this = "B" then begin 

lex_scan {skip B}; 

          M[location] := operand; 

          location := location + 1; 

     end else if lex.this = "W" then begin 

lex_scan {skip W}; 

   o := operand 

          M[location] := first_byte_of(o); 

          M[location + 1] := second_byte_of(o); 

          location := location + 2; 

     end; 

end {statement}; 

Figure 2.17. The heart of an assembler. 

To paraphrase the actions taken by these procedures, when a definition is found, the identifier 

is set equal to the associated operand. In a statement, when a label is found, it is set equal to the 

current location. The opcode B causes the operand to be stored in the current location, after 

which the current location is incremented by one. The opcode W causes the operand to be 

stored in the current and next location (taken as a 16 bit word), after which the current location 

is incremented by two. 

The variable called "location" above is an important component of any assembler. It is 

commonly called the location counter in the assembler, by analogy with the program counter 

maintained by the computer when it runs a program. The assembler uses the location counter to 

determine where to place assembled instructions in memory during the assembly process, 

while the computer uses the program counter to determine where to fetch instructions from in 

memory when it runs a program. 

Lexical Analysis 

Before the shortcomings of the above basic assembler are examined, We will examine the 

implementation of the lexical analysis package, with the access procedure "lex.scan" and the 

variables "lex.this" and "lex.next". The "lex.scan" procedure identifies lexemes (words, tokens, 

or other logical units) from the lexicon (vocabulary) of a language. Although the syntactic 

structures (grammars) of computer languages differ greatly, their lexical structures are very 

similar to each other and to the written forms of natural languages which use the same 

alphabet. Thus, spaces serve to delimit lexemes, as do punctuation marks, which are 

themselves lexemes. It is important to note that the process of lexical analysis never depends 



on the meaning of the language or on syntactic issues such as whether or not some lexeme is 

allowed in a particular context. 

The lexical structure of the example assembly language can be summarized as follows: All 

lexemes are either symbolic names, numbers, or punctuation marks. B and W are simply 

symbolic names. A symbolic name is a letter followed by zero or more letters or digits. A 

number is either a string of digits or a pound sign followed by a string of hexadecimal digits. 

The allowed punctuation marks are the equals sign, colon, semicolon, line-end and end-of-file. 

Any number of spaces may be inserted between lexemes without changing the lexical structure 

of a string, but at least one space must initially separate successive symbolic names or 

numbers. The extended BNF grammar given in Figure 2.18 describes the lexical level of the 

example assembly language in more detail than that in Figure 2.8. 

<program> ::= <lexeme> { <lexeme> } 

     -- a program is a string of one or more lexemes 

 

<lexeme> ::= { <blank> } ( <identifier> | <number> | <punctuation> ) 

     -- any lexeme may be preceded by blanks 

 

<identifier> ::= <letter> { <letter> | <digit> } 

 

<number> ::= # <hexdigit> { <hexdigit> } | <digit> { <digit> } 

 

<punctuation> ::= : | ; | = | <line end> | <end of file> 

Figure 2.18. Lexical details in EBNF. 

This definition of the lexical level does not include the rule that consecutive identifiers or 

decimal numbers must be separated by spaces; thus, it is ambiguous. This does not cause a 

problem in lexical analysis, but programmers must be aware that the string "B12" will be 

interpreted as one identifier, even though the above rules would allow it to be interpreted as 

starting with the identifiers "B" or "B1" followed by the numbers "12" or "2". The reason this 

causes no problem in lexical analysis is that, for both parsers and lexical analyzers, a so called 

greedy approach is commonly used. That is, we assume that the parser or lexical analyzer will 

construct the largest identifier or number it can by following the rules for <identifier> or 

<number> before it returns to the level where it looks for the start of the next lexeme. 

An alternate way of formalizing the description of the lexical level of a language rests on the 

use of finite state transition diagrams or simple state transition networks. In such a definition, 

state changes are caused by the processing of successive input characters, and some state 



changes also signal the completion of the analysis of some lexeme. The notation used is very 

similar to RTN notation, and is shown in Figure 2.19. 

          ________________________________________________  

        /                                                  \ 

start   \                                     identifier   /| 

  -------->----------(letter)-------->--------------------  | 

    /         \  \             /            \               | 

    \         /   |           |\            /|              | 

      (blank)     |           |  -(letter)-  |              | 

                  |            \            /               | 

                  |              -(digit)--                 | 

                  |\                          number       /| 

                  |  (#)----(hexdigit)---->---------------  | 

                  |       /            \                    | 

                  |       \____________/                    | 

                  |\                          number       /| 

                  |  ----(digit)---------->---------------  | 

                  |    /         \                          | 

                  |    \_________/                          | 

                  |\                          punctuation  /| 

                  |\ ---------(:)--------->--------------- /| 

                  |\ -----(;)----------------------------- /| 

                   \ --------------(line end)------------- /  

                     -(end of file)-----------------------  

Figure 2.19. Finite state description of the lexical level. 

None of the rules given up to this point mention anything about a maximum length for 

identifiers, maximum value for numbers, maximum number of characters in a line, or 

maximum program size. These are frequently considered to be outside of the realm of formal 

definition, and may even vary from one implementation of a language to another. Typically, 

the informal part of the language specification will include minimum values for the line length, 

number of significant characters in an identifier, and the maximum number of digits allowed in 

a number. 

A typical lexical analyzer will contain, as a private component, a line buffer which holds one 

line of input (a string variable or an array of characters). With this buffer is associated a 

variable which points to or indexes the first character in the buffer which has not yet been 

processed at the lexical level. Because of the need for look-ahead, processing at the lexical 



level will generally be a few lexemes ahead of processing at the syntactic level. We will use 

the variable "pos" to serve this purpose. 

In addition, we need a more sophisticated way to represent the current lexemes than simple 

character strings! Instead, we will represent lexemes with a record or structure that contains 

information about the lexeme. Figure 2.20 illustrates appropriate type definitions: 

type lextypes = (identifier, number, punctuation); 

type lexeme = record 

                 start: integer { index of start of lexeme on line }; 

   stop: integer  { index of end of lexeme on line }; 

typ: lextypes; 

              end; 

 

enumlextypes { identifier, number, punctuation }; 

struct lexeme { 

int start; /* index of start of lexeme on line */ 

int stop;  /* index of end of lexeme on line */ 

lextypestyp;  /* index of end of lexeme on line */ 

} 

Figure 2.20. Type definitions for lexeme types in Pascal and C. 

A programming language such as Ada allows a clear definition of the interface between the 

lexical analyzer and the rest of the world, as shown in Figure 2.21. 

package lex is 

   type lextype is (identifier, number, punctuation); 

   type lexeme is 

      record 

         start: integer; -- starting position of lexeme on line 

         stop: integer;  -- ending position of lexeme on line 

typ: lextype;   -- nature of this lexeme 

      end record; 

 

   this: lexeme; -- the current lexeme 

   next: lexeme; -- the lexeme following the current one 

 

   procedure init;     -- called to start the lexical analyzer 

   procedure nextline; -- called to advance to the next line 



 -- after a call to either of the above, this and next will 

 -- be the first and second lexeme on the current line 

 

   procedure scan;     -- called to advance to the next lexeme on the line 

 -- after a call to next, this and next will advance one lexeme 

 -- within the current line 

end lex; 

Figure 2.21: An Ada interface to the Lexical Analyzer 

As with C++ and Java, the Ada language allows interface specificiations to be given separately 

from the implementation of an abstraction. All of the definitions in an Ada package declaration 

are publically available to the rest of the program, including type definitions, variables and 

functions. Unlike C++ and Java, however, Ada packages are objects, not classes; Ada does 

include something called a generic package that corresponds to classes, but the purpose of this 

discussion is not to teach all of Ada. 

It is fair to ask, why didn't we add a string field to the lexeme structure to hold the text of the 

current lexeme? The answer to this is that we are interested in writing efficient software, and 

copying strings is something that should be avoided if it is not necessary. Therefore, what we 

want in the lexeme data structure is not the text of the lexeme, but rather, the numerical value 

of numeric lexemes, some equally concise indication of what identifer is represented, and in 

the case of punctuation, a quick and easy way to determine what mark is involved. We will 

deal with these issues later. 

Given an interface specification, we can go on to define the functions and private variables of 

the lexical analyzer as shown in Figure 2.22: 

package body lex is 

   line: array (0 .. linelen) of char; 

pos: integer; -- current position in line 

 

   ...  -- we omit a few details (initialization etc) 

 

   procedure scan is 

   begin 

      this := next; 

      while line(pos) = ' ' loop 

pos := pos + 1; 

endloop 



next.start := pos; -- mark start of lexeme 

      if line(pos) in 'A' .. 'Z' then 

next.typ := identifier; 

         loop 

 pos := pos + 1; 

     exit when   (line(pos) not in 'A' .. 'Z') 

        and then (line(pos) not in '0' .. '9'); 

endloop; 

elsif line(pos) in '0' .. '9' then 

next.typ := number; 

         repeat pos := pos + 1; 

         loop 

 pos := pos + 1; 

     exit when line(pos) not in '0' .. '9'; 

endloop; 

elsiflinebuf[pos] = '#' then 

next.typ := number; 

         loop 

 pos := pos + 1; 

     exit when   (line(pos) not in '0' .. '9') 

        and then (line(pos) not in 'A' .. 'F'); 

endloop; 

      else 

         -- we treat everything else as punctuation 

next.typ := punctuation; 

pos := pos + 1; 

endif; 

next.stop := pos - 1 {remember where lexeme ends}; 

   end scan; 

end lex; 

Figure 2.22. A lexical analyzer. 

Note that important details have been ignored in this version of "lex.scan" such as 

initialization, checking for the end of a line, or handling of invalid characters; furthermore, 

we've provided no way for the user to inspect the current lexeme to determine if it is a 

particular identifier or a particular punctuation mark! 

The version of "lex.scan" given in Figure 2.22 makes it clear that the cost of one lexeme look-

ahead is a single assignment statement per lexeme processed, plus an extra variable to store the 



value of one lexeme. In fact, the assignment statement is not free, since it actually involves 

copying an entire record that is several words long, but we can afford this. 

The fact that the cost of look-ahead is low was not understood in the design of some early 

programming, where the need for look-ahead was eliminated by having a leading keyword on 

each line to identify the type of that line. For example, all early versions of BASIC required the 

keyword "LET" at the start of each assignment statement. 

It is common to make the lexical analyzer responsible for skipping comments; thus, semicolon 

would not be considered a lexeme type in the example assembly language; rather, the end of 

line lexeme would be considered to include the comments leading up to the end of line. In 

languages such as Pascal and PL/I, where comments may be interspersed between any 

lexemes, the lexical analyzer would identify and skip comments as part of the code responsible 

for skipping spaces between lexemes. 

It is also common to integrate the production of a listing with the lexical analyzer. Thus, the 

routine to print a line is typically called from within the lexical analyzer as a consequence of 

finishing the analysis of the previous line, and error message formatting is tied to the lexical 

analyzer so that error messages can be printed under the lexeme to which they apply. 

Alternatives 

The assembler presented up to this point is incomplete, since it lacks any symbol table 

mechanism, and even if that were provided, it would not be able to handle identifiers which are 

defined after their first use. These problems will be solved in the next two chapters, but before 

solving them, it is useful to look at the alternatives which have been avoided in this 

presentation of parsing techniques. 

A natural objection to the above presentation is that it avoids using powerful high level 

language features; specifically, it makes little use of string operations which are supposed to 

greatly simplify text processing. In fact, the extensive use of string operations can lead to 

trouble, as the following example illustrates: 

Consider an assembler which, after reading a line in as a string, searches the line, using a string 

search operator, for any semicolon and uses substring operations to remove that and all 

following characters (the comment) from the line. The next step might be to use a search 

operation for an equals sign in order to distinguish between statements and definitions. For 

statements, a second search operation could be used to see if there is a colon, and if there is, 

substring operations could be used to remove the colon from the line and process it. Although 

there is no doubt that a working assembler could be written this way, this approach is also 

computationally expensive: Each substring operation is typically implemented by a loop which 



copies one character at a time, and string searches are typically implemented by sequentially 

testing successive characters. Even if these are done by hardware, the above approach leads to 

testing each character on a line many times, requiring many memory cycles where the lexical 

analyzer given requires only one. 

Actually, there is an appropriate way to use string functions in the lexical analysis routine 

presented above. The key is to use the string function to do exactly the same processing as is 

explicitly indicated in the code given above; for example: 

while linebuf[pos] = ' ' do pos := pos + 1; 

can be replaced by 

pos := (pos-1) + verify(substr(linebuf,pos),' '); 

assuming the PL/I string functions "verify" and "substr", which return the position of some 

character in a string and take a substring, respectively. Unfortunately, unless a good optimizing 

compiler is used, the "substr" operation will involve making an unnecessary copy of part of the 

line buffer, and it is not much harder to write explicit code for the operation in the first place.  

 

TWO PASS ASSEMBLER 

Assembler is a program for converting instructions written in low-level assembly code into 

relocatable machine code and generating along information for the loader. 

 

It generates instructions by evaluating the mnemonics (symbols) in operation field and find the 

value of symbol and literals to produce machine code. Now, if assembler do all this work in 

one scan then it is called single pass assembler, otherwise if it does in multiple scans then 

called multiple pass assembler. Here assembler divide these tasks in two passes: 

 Pass-1: 

1. Define symbols and literals and remember them in symbol table and literal table 

respectively. 

2. Keep track of location counter 

3. Process pseudo-operations 

 Pass-2: 

1. Generate object code by converting symbolic op-code into respective numeric op-code 



2. Generate data for literals and look for values of symbols 

Firstly, We will take a small assembly language program to understand the working in their 

respective passes. Assembly language statement format: 

[Label] [Opcode] [operand] 

 

Example:  M  ADD  R1, ='3' 

where, M - Label; ADD - symbolic opcode;  

R1 - symbolic register operand; (='3') - Literal 

 

Assembly Program: 

Label  Op-code   operand   LC value(Location counter) 

JOHN   START     200 

       MOVER     R1, ='3'    200 

       MOVEM     R1, X       201 

L1     MOVER     R2, ='2'    202 

       LTORG                 203 

X      DS        1           204 

       END                   205 

Let’s take a look on how this program is working: 

 

 

 

1. START: This instruction starts the execution of program from location 200 and label with 

START provides name for the program.(JOHN is name for program) 

2. MOVER: It moves the content of literal(=’3′) into register operand R1. 

3. MOVEM: It moves the content of register into memory operand(X). 

4. MOVER: It again moves the content of literal(=’2′) into register operand R2 and its label 

is specified as L1. 

5. LTORG: It assigns address to literals(current LC value). 

6. DS(Data Space): It assigns a data space of 1 to Symbol X. 

7. END: It finishes the program execution. 

Working of Pass-1: Define Symbol and literal table with their addresses. 

Note: Literal address is specified by LTORG or END. 

Step-1: START 200 (here no symbol or literal is found so both table would be empty) 

Step-2: MOVER R1, =’3′ 200 ( =’3′ is a literal so literal table is made) 

Literal Address 



Literal Address 

=’3′ – – – 

Step-3: MOVEM R1, X 201 

X is a symbol referred prior to its declaration so it is stored in symbol table with blank address 

field. 

Symbol Address 

X – – – 

 

ADVERTISING 

 

 

Step-4: L1 MOVER R2, =’2′ 202 

L1 is a label and =’2′ is a literal so store them in respective tables 

Symbol Address 

X – – – 

L1 202 

Literal Address 

=’3′ – – – 

=’2′ – – – 

Step-5: LTORG 203 

Assign address to first literal specified by LC value, i.e., 203 

Literal Address 

=’3′ 203 

=’2′ – – – 

Step-6: X DS 1 204 

It is a data declaration statement i.e X is assigned data space of 1. But X is a symbol which was 

referred earlier in step 3 and defined in step 6.This condition is called Forward Reference 



Problem where variable is referred prior to its declaration and can be solved by back-patching. 

So now assembler will assign X the address specified by LC value of current step. 

Symbol Address 

X 204 

L1 202 

Step-7: END 205 

Program finishes execution and remaining literal will get address specified by LC value of 

END instruction. Here is the complete symbol and literal table made by pass 1 of assembler. 

Symbol Address 

X 204 

L1 202 

Literal Address 

=’3′ 203 

=’2′ 205 

Now tables generated by pass 1 along with their LC value will go to pass-2 of assembler for 

further processing of pseudo-opcodes and machine op-codes. 

Working of Pass-2: 

Pass-2 of assembler generates machine code by converting symbolic machine-opcodes into 

their respective bit configuration(machine understandable form). It stores all machine-opcodes 

in MOT table (op-code table) with symbolic code, their length and their bit configuration. It 

will also process pseudo-ops and will store them in POT table(pseudo-op table). 

Various Data bases required by pass-2: 

1. MOT table(machine opcode table) 

2. POT table(pseudo opcode table) 

3. Base table(storing value of base register) 

4. LC ( location counter) 

Take a look at flowchart to understand: 



 

As a whole assembler works as: 



 

A Single pass ASSEMBLER for IBM PC 

A Single Pass Assembler for IBM PC  Single pass assembler for the Intel 8088 processor 

used in IBM PC.  Focuses on the design features for handling the forward reference problem 

in an environment using segment-based addressing. 1. Architecture of Intel 8088. 2. Intel 8088 

Instructions. 3. Assembly Language of Intel 8088. 4. Problems of Single pass assembly 5. 

Design of the Assembler. 

 

1. The Architecture of Intel 8088 

 

 Supports 8 and 16 bit arithmetic.  Provides special instructions for string manipulation.  

The CPU contains following features – 1. Data registers AX, BX, CX and DX 2. Index 

registers SI and DI 3. Stack pointer registers BP and SP 4. Segment registers Code, Stack, Data 

and Extra. 

 

a) 

 

AH BH CH DH 

 

AL BL CL DL 

 

b) 

 

BP SP 

 

c) 

https://www.geeksforgeeks.org/language-processors-assembler-compiler-and-interpreter/
https://www.geeksforgeeks.org/language-processors-assembler-compiler-and-interpreter/


 

SI DI 

 

d) 

 

Code Stack Data Extra 

 

AX BX CX DX 

 

Fig:- a) Data b) Base c) Index d) Segment registers 

 

 Each data register is 16 bits in size, split into upper and lower halves.  Either half can be 

used for 8 bit arithmetic, while the two halves together constitute the data register for 16 bit 

arithmetic.  Architecture supports stacks for storing subroutine and interrupt return addresses, 

parameters and other data.  The index registers SI and DI are used to index the source and 

destination addresses in string manipulation instructions.  Two stack pointer registers called 

SP and BP are provided to address the stack. Push and Pop instructions are provided. 

 

 The Intel 8088 provides addressing capability for 1 MB of primary memory.  The memory 

is used to store three components of program, Program code, Data and Stack.  The Code, 

Stack and Data segment registers are used to contain the start addresses of these three 

components.  The Extra segment register points to another memory area which can be used to 

store data.  The size of each segment is limited to 216 i.e 64 K bytes. 

 

 The 8088 architecture provides 24 addressing modes.  In the Immediate addressing mode, 

the instruction itself contains the data that is to participate in the instruction. This data can be 8 

or 16 bits in length.  In the Direct addressing mode, the instruction contains 16 bit number 

which is taken to be displacement from the segment base contained in segment register.  In 

the Indexed mode, contents of the index register indicated in the instruction ( SI or DI ) are 

added to the 8 or 16 bit displacement contained in the instruction. 

 

 In the Based mode, contents of the base register are added to the displacement.  The based-

and-indexed with displacement mode combines the effect of the based and indexed modes.  

 

Addressing mode 

 

Example 

 



Remarks 

 

Immediate 

 

MOV SUM, 1234H 

 

Data= 1234H 

 

Register 

 

MOV SUM, AX 

 

AX contains the data 

 

Direct 

 

MOV SUM, [1234H] 

 

Data disp.= 1234H 

 

Register indirect 

 

MOV SUM, [BX] 

 

Data disp.= (BX) 

 

Based 

 

MOV SUM, 12H [BX] 

 

Indexed 

 

MOV SUM, 34H [SI] 

 

Data disp.= 12H+ (BX) Data disp.= 34H+ (SI) 

 

Based & Indexed MOV SUM, 56H [SI] [BX] Data disp.= 56H+ (SI) + (BX) Addressing 

modes of 8088 

 



2. Intel 8088 Instructions Arithmetic Instructions  Operands can be in one of the four 16 bit 

registers or in memory location designated by one of the 24 addressing modes.  Three 

instruction formats are as shown in figure.  The mod and r/m fields specify first operand, 

which can be in register or in memory.  The reg field describes the second operand, which is 

always a register.  The instruction opcode indicates which instruction format is applicable. 

 

 The direction field (d) indicates which operand is the destination operand.  If d=0, the 

register/memory operand is the destination, else the register operand indicated by reg is the 

destination.  The width field (w) indicates whether 8 or 16 bit arithmetic is to be used. 

 

a) Register/Memory to Register opcode d 

 

w 

 

mod reg r/m 

 

b) Immediate to Register/Memory opcode d 

 

w 

 

mod reg r/m 

 

data 

 

c) Immediate to Accumulator opcode w 

 

data 

 

data 

 

data 

 

r/m 

 

mod= 00 

 

mod= 01 

 



mod= 10 

 

mod= 11 w=0 w=1 

 

000 

 

(BX)+(SI) 

 

(BX)+(SI)+ d8 

 

Note 2 

 

AL 

 

AX 

 

001 

 

(BX)+(DI) 

 

(BX)+(DI)+d8 

 

Note 2 

 

CL 

 

CX 

 

010 

 

(BP)+(SI) 

 

(BP)+(SI)+ d8 

 

Note 2 

 

DL 

 

DX 



 

011 

 

(BP)+(DI) 

 

(BP)+(DI)+ d8 

 

Note 2 

 

BL 

 

BX 

 

100 

 

(SI) 

 

(SI) + d8 

 

Note 2 

 

AH 

 

SP 

 

101 

 

(DI) 

 

(DI) + d8 

 

Note 2 

 

CH 

 

BP 

 

110 

 



Note 1 

 

(BP) + d8 

 

Note 2 

 

DH 

 

SI 

 

111 

 

(BX) 

 

(BX) + d8 

 

Note 2 

 

BH 

 

DI 

 

Note 1: (BP)+ DISP for indirect addressing, d16 for direct Note 2: Same as previous column, 

except d16 instead of d8 reg 

 

Register 8 bit ( w=0 ) 

 

16 bit ( w=1 ) 

 

000 

 

AL 

 

AX 

 

001 

 

CL 

 



CX 

 

010 

 

DL 

 

DX 

 

011 

 

BL 

 

BX 

 

100 

 

AH 

 

SP 

 

101 

 

CH 

 

BP 

 

110 

 

DH 

 

SI 

 

111 

 

BH 

 

DI 

 



Control Transfer Instructions  Two groups of control transfer instructions are supported. 1. 

Calls, jumps and returns 2. Iteration control instructions  Calls, jumps and returns can occur 

within the same segment or can cross segment boundaries.  Intra-segment transfers are 

preferably assembled using a self-relative displacement.  The longer form of intra-segment 

transfers uses a 16 bit logical address within the segment.  Inter-segment transfers indicate a 

new segment base and an offset. 

 

 Control transfers can be both direct and indirect. Their instruction formats are :a) Intra-

segment Opcode 

 

Disp. low 

 

Disp. high 

 

b) Inter-segment Opcode 

 

Offset 

 

Offset 

 

Segment 

 

Base 

 

c) Indirect 

 

Opcode 

 

mod 100 r/m 

 

Disp. low 

 

Disp. high 

 

Formats of Control Transfer Instruction 

 

 Iteration control operations perform looping decisions in string operations.  Example:- 

Consider the program MOV MOVMOV CLD REP 



 

SI, 100H DI, 200H CX, 50H 

 

MOVSB 

 

; Source address ; Destination address ; No. of bytes ; Clear direction flag ; Move 80 bytes 

 

3. The Assembly Language of Intel 8088 1) Statement Format [Label:] opcode operand(s) ; 

comment string 2) Assembler Directives a) Declarations - Declaration of constants and 

reservation of storage are both achieved in the same direction A DB 25 ; Reserve byte & 

initialize B DW ? ; Reserve word, no initialization C DD 6DUP(0) ; 6 Double words, all 0’s 

 

b) EQU and PURGE  EQU defines symbolic names to represent values  PURGE undefined 

the symbolic names. That name can be reused for other purpose later in the program. 

Example:XYZ DB ? ABC EQU XYZ ; ABC represents name XYZ PURGE ABC ; ABC no 

longer XYZ ABC EQU 25 ; ABC now stands for ‘25’ 

 
 

UNIT III 

MACROS and MACRO PROCESSORS 

Macro Processor 

 Last Updated : 06 Oct, 2020 

A Macro instruction is the notational convenience for the programmer. For every occurrence of 

macro the whole macro body or macro block of statements gets expanded in the main source 

code. Thus Macro instructions make writing code more convenient.  

Salient features of Macro Processor:  

 Macro represents a group of commonly used statements in the source programming 

language. 

 Macro Processor replaces each macro instruction with the corresponding group of source 

language statements. This is known as the expansion of macros. 

 Using Macro instructions programmer can leave the mechanical details to be handled by 

the macro processor. 

 Macro Processor designs are not directly related to the computer architecture on which it 

runs. 

 Macro Processor involves definition, invocation, and expansion. 

Macro Definition and Expansion:  

 



Line                 Label                 Opcode                 Operand 

 

5                    COPY                  START                  0 

10                   RDBUFF                MACRO                  &INDEV, &BUFADR 

15                    

. 

. 

90 

95                                         MEND 

 Line 10:  

RDBUFF (Read Buffer) in the Label part is the name of the Macro or definition of the 

Macro. &INDEV and &BUFADR are the parameters present in the Operand part. Each 

parameter begins with the character &.  

 Line 15 – Line 90:  

From Line 15 to Line 90 Macro Body is present. Macro directives are the statements that 

make up the body of the macro definition.  

 Line 95:  

MEND is the assembler directive that means the end of the macro definition.  

  

Macro Invocation:  

 

Line                 Label                 Opcode                 Operand 

 

180                  FIRST                 STL                    RETADR 

190                  CLOOP                 RDBUFF                 F1, BUFFER 

15                    

. 

. 

255                                         END                    FIRST 

Line 190:  

RDBUFF is the Macro invocation or Macro Call that gives the name of the macro instruction 

being invoked and F1, BUFFER are the arguments to be used in expanding the macro. The 

statement that form the expansion of a macro are generated each time the macro is invoked. 

  

Nesting macro instruction definitions 

A nested macro instruction definition is a macro instruction definition you can specify as a set 

of model statements in the body of an enclosing macro definition. This lets you create a macro 

definition by expanding the outer macro that contains the nested definition. 



All nested inner macro definitions are effectively "black boxes": there is no visibility to the 

outermost macro definition of any variable symbol or sequence symbol within any of the 

nested macro definitions. This means that you cannot use an enclosing macro definition to 

tailor or parameterize the contents of a nested inner macro definition. 

High Level Assembler allows both inner macro instructions and inner macro definitions. The 

inner macro definition is not edited until the outer macro is generated as the result of a macro 

instruction calling it, and then only if the inner macro definition is encountered during the 

generation of the outer macro. If the outer macro is not called, or if the inner macro is not 

encountered in the generation of the outer macro, the inner macro definition is never 

edited. Figure 1 shows the editing of inner macro definitions. 

Figure 1. Editing inner macro definitions 

┌─────────────┐ 

│    MACRO    │ 

│    MAC1     ├─────────────────────────────────────┐ 

│     •       │                                     │ 

└─────────────┘                                     │ 

┌─────────────┐                                     │ 

│    MACRO    │                                     │ 

│    MAC2     ├──────────────────┐                  │ 

│     •       │                  │                  │ 

└─────────────┘                  │                  │ 

┌─────────────┐                  │                  │ 

│    MACRO    │                  │                  │ 

│    MAC3     │                  │                  │ 

│     •       │   Edited when    │   Edited when    │   Edited when  

│     •       ├── MAC2 is called ├── MAC1 is called ├── definition first  

│     •       │   and generated  │   and generated  │   encountered  

│     •       │                  │                  │ 

│    MEND     │                  │                  │ 

└─────────────┘                  │                  │ 

┌─────────────┐                  │                  │ 

│     •       ├──────────────────┘                  │ 

│    MEND     │                                     │ 

└─────────────┘                                     │ 

┌─────────────┐                                     │ 

│     •       ├─────────────────────────────────────┘ 

│    MEND     │ 

https://www.ibm.com/docs/en/zos/2.2.0?topic=SSLTBW_2.2.0/com.ibm.zos.v2r2.asma400/nestmac.htm#nestmac__fgmac


└─────────────┘ 

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called, MAC2 is edited 

(unless its definition is bypassed by an AIF or AGO branch); when MAC2 is called, MAC3 is 

edited. No macro can be called until it has been edited. 

There is no limit to the number of nestings allowed for inner macro definitions. 

The lack of parameterization can be overcome in some cases by using the AINSERT 

statement. This lets you generate a macro definition from within another macro generation. A 

simple example is shown at Where to define a macro in a source module. In Figure 2, 

macro ainsert_test_macro generates the macro mac1 using a combination of AINSERT and 

AREAD instructions. The mac1 macro is then called with a list of seven parameters. 

 

 

 

 

 

NESTED MACRO CALLS :- 
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Advanced macro facilities are aimed at supporting semantic expansion. These facilities can be 

grouped into : 

a) Facilities for alteration of flow of control during expansion 

b) Expansion Time Variables 

c) Attributes of parameters. 

d) Facilities for alteration of flow of control during expansion. 

a) Facilities for alteration of flow of control during expansion 

Expansion with statements AIF, AGO and ANOP. 

A sequencing symbol (SS) has the syntax 

            < ordinary String > 

As SS is defined by putting it in the field ‘ LABEL’ of a statement in the macro body. This 

LABEL field will act as target address on which control is transferred for conditional as well as 

unconditional way. It never appear in the expanded form of a model statement. 



Syntax of AIF :-          conditional jump 

            AIF      ( < expression > ) < LABEL sequential symbol > 

Where < expression > is formal parameters and their attributes like T, L,S ( Type , Length and 

size ). If expression is true, control is transferred to LABEL or sequential symbol 

           Syntax of AGO                       Unconditional  jump 

                        AGO < sequential symbol > 

Without checking condition control is transferred to LABEL. 

An ANOT statement is written as 

            < Sequential symbol >                        ANOP. 

Which will simply act as LABEL. 

Example of altering flow of control during expansion :- 

            MACRO                                 

            EVAL & X, & Y                      

AIF ( & Y EQ & X ) AGAIN              

            AGO NEXT                            

AGAI N : ANOP                               

               MOVER AREG, BREG        

NEXT : ANOP                                               

            MEND            

1.   AIF ( & Y EQ & X ) AGAIN   If  value of X = Y then it     will jump on label  again 

 i.e conditional jump.   

2.   AGO NEXT     Unconditionally   it will go on NEXT 

3.   Every label is having first   statement as ANOP. 

b) Expansion Time Variables :- 



EV are used during expansion of macros A local EV is created for use inside a particular 

MACRO. A global EV exists across all macro calls. Syntax for local and global EV’s 

            LCL     < EV    specification > 

            GBL     < EV    specification > 

Where < EV specification > has the syntax  &< EV Name > 

Where < EV Name > is an ordinary string. 

            Values of EV’s can be manipulated by SET statement . A SET statement is written as 

            < EV Specification > SET  < SET – expression > 

Here < EV specification > appears in the label field and SET in mnemonic field . A SET 

statement assigns the value of < SET- expression > to the < EV specification. 

e.g.                  MACRO 

                        CALC 

                        LAL                 & A, & B 

            & A     SET                  1 

            & B      SET                  5 

                        MEND 

A call on macro CALC is expanded by creating two local EV A & B . The first SET statement 

assigns value ‘1’ to A and second SET statement assigns value ‘s’ to B. 

c) Attributes of formal parameters:- 

An attribute is written using the syntax 

            < attribute name >’ < formal parameter > and represents information about the value of 

the formal parameter. These attributes are type, length and size have the names T, L and S 

e.g                   MACRO 

                        CALC & B 

                        AIF ( L’ & A EQ 1 )    NEXT 



            NEXT :             

                           MEND 

Here expression control is transferred to NEXT only if Length of A. is equal to 1. 

A general-purpose macro processor or general purpose preprocessor is a macro processor 

that is not tied to or integrated with a particular language or piece of software. 

A macro processor is a program that copies a stream of text from one place to another, making 

a systematic set of replacements as it does so. Macro processors are often embedded in other 

programs, such as assemblers and compilers. Sometimes they are standalone programs that can 

be used to process any kind of text. 

Macro processors have been used for language expansion (defining new language constructs 

that can be expressed in terms of existing language components), for systematic text 

replacements that require decision making, and for text reformatting 

 

 

UNIT IV 

COMPILERS AND INTERPRETERS 

Principles of Compilers 

Introduction 

The word compilation is used to denote the task of translating high level language (HLL) 

programs into machine language programs. Though the objective of this task of translation is 

similar to that of an assembler, the problem of compilation is much more complex than that of 

an assembler. A compiler is a program that does the compilation task. A compiler recognises 

programs in a particular HLL and produces equivalent output programs appropriate for some 

particular computer configuration (hardware and OS). Thus, an HLL program is to a great 

extent independent of the configuration of the machine it will eventually run on, as long as it is 

ensured that the program is compiled by a compiler that recognises that HLL and produces 

output for the required machine configuration. It is common for a machine to have compilers 

that would translate programs to produce executables for that machine (hosts). But there also 

are compilers that runs on one type of machine but the output of which are programs that shall 

run on some other machine configuration, such as generating an MS-DOS executable program 

by compiling an HLL program in UNIX. Such a compiler is called a cross compiler. Another 

kind of translator that accepts programs in HLL are known as interpreters. An interpreter 

https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Macro_(computer_science)


translates an input HLL program and also runs the program on the same machine. Hence the 

output of running an interpreter is actually the output of the program that it translates. 

Important phases in Compilation 

The following is a typical breakdown of the overall task of a compiler in an approximate 

sequence - 

Lexical analysis, Syntax analysis, Intermediate code generation, Code optimisation, Code 

generation. 

Like an assembler, a compiler usually performs the above tasks by making multiple passes 

over the input or some intermediate representation of the same. The compilation task calls for 

intensive processing of information extracted from the input programs, and hence data 

structures for representing such information needs to be carefully selected. During the process 

of translation a compiler also detects certain kinds of errors in the input, and may try to take 

some recovery steps for these. 

Lexical Analysis 

Lexical analysis in a compiler can be performed in the same way as in an assembler. Generally 

in an HLL there are more number of tokens to be recognised - various keywords (such as, for, 

while, if, else, etc.), punctuation symbols (such as, comma, semi-colon, braces, etc.), operators 

(such as arithmatic operators, logical operators, etc.), identifiers, etc. Tools like lex or flex are 

used to create lexcical analysers. 

Syntax Analysis 

Syntax analysis deals with recognising the structure of input programs according to known set 

of syntax rules defined for the HLL. This is the most important aspect in which HLLs are 

significantly different from lower level languages such as assembly language. In assembly 

languages the syntax rules are simple which roughly requires that a program should be a 

sequence of statements, and each statement should esentially contain a mnemonic followed by 

zero or more operands depending on the mnemonic. Optionally, there can be also be an 

identifier preceding the mnemonic. In case of HLLs, the syntax rules are much more 

complicated. In most HLLs the notion of a statement itself is very flexible, and often 

allows recursion, making nested constructs valid. These languages usually support multiple 

data types and often allow programmers to define abstruct data types to be used in the 

programs. These and many other such features make the process of creating software easier 

and less error prone compared to assembly language programming. But, on the other hand, 

these features make the process of compilation complicated. 

The non-trivial syntax rules of HLLs need to be cleverly specified using some suitable 

notation, so that these can be encoded in the compiler program. One commonly used formalism 



for this purpose is the Context Free Grammar (CFG). CFG is a formalism that is more 

powerful than regular grammars (used to write regular expressions to describe tokens in a 

lexical analyser). Recursion, which is a common feature in most constructs of HLLs, can be 

defined using a CFG in a concise way, whereas a regular grammar is incapable of doing so. It 

needs to be noted that there are certain constructs that cannot be adequately described using 

CFG, and may require other more powerful formalisms, such as Context Sensitive Grammars 

(CSG). A common notation used to write the rules of CFG or CSG is the BNF (Backus Naur 

Form). 

During syntax analysis, the compiler tries to apply the rules of the grammar of the input HLL 

given using BNF, to recognise the structure of the input program. This is called parsing and the 

module that performs this task is called a parser. From a somewhat abstract point of view, the 

output of this phase is a parse tree that depicts how various rules of the grammar can be 

repetitively applied to recognise the input program. If the parser cannot create a parse tree for 

some given input program, then the input program is not valid according to the syntax of the 

HLL. 

The soundness of the CFG formalism and the BNF notation makes it possible to create 

different types of efficient parsers to recognise input according to a given language. These 

parsers can be broadly classified as top-down parsers and bottom-up parsers. Recursive 

descent parsers and Predictive parsers are two examples of top-down parsers. SLR 

parsers and LALR parser are two examples of bottom-up parsers. For certain simple context 

free languages (languages that can be defined using CFG) simpler bottom-up parsers can be 

written. For example, for recognising mathematical expressions, an operator precedence 

parser can be created. 

In creating a compiler, a parser is often built using tools such as yacc and bison. To do so the 

CFG of the input language is written in BNF notation, and given as input to the tool (along 

with other details). 

Intermediate Code Generation 

Having recognised a given input program as valid, a compiler tries to create the equivalent 

program in the language of the target environment. In case of an assembler this translation was 

somewhat simpler since the operation implied by the mnemonic opcode in each statement in 

the input program, there is some equivalent machine opcode. The number of operands 

applicable for each operation in the machine language is the same as allowed for the 

corresponding assembly language mnemonic opcodes. Thus for the assembly language the 

translation for each statement can be done for each statement almost independently of the rest 

of the program. But, in case of an HLL, it is futile to try to associate a single machine opcode 

for each statement of the input language. One of the reasons for this is, as stated above, the 



extent of a statement is not always fixed and may contain recursion. Moreover, data references 

in HLL programs can assume significant levels of abstractions in comparision to what the 

target execution environment may directly support. The task of associating meanings (in terms 

of primitive operations that can be supported by a machine) to programs or segments of a 

program is called semantic processing. 

Syntax Directed Translation 

Though it is not entirely straightforward to associate target language operations to statements 

in the HLL programs, the CFG for the HLL allows one to associate semantic actions (or 

implications) for the various syntactic rules. Hence in the broad task of translation, when the 

input program is parsed, a compiler also tries to perform certain semantic actions 

corresponding to the various syntactic rules that are eventually applied. However, most HLLs 

contain certain syntactic features for which the semantic actions are to be determined using 

some additional information, such as the contents of the symbol table. Hence, building and 

usage of data-structures such as the symbol table are an important part of the semantic action 

that are performed by the compiler. 

Upon carrying out the semantic processing a more manageable equivalent form of the input 

program is obtained. This is stored (represented) using some Intermediate code representation 

that makes further processing easy. In this representation, the compiler often has to introduce 

several temporary variables to store intermediate results of various operations. The language 

used for the intermediate code is generally not any particular machine language, but is such 

which can be efficiently converted to a required machine language (some form of assembly 

language can be considered for such use). 

Code Optimisation 

The programs represented in the intermediate code form usually contains much scope for 

optimisation both in terms of storage space as well as run time efficiency of the intended 

output program. Sometimes the input program itself contains such scope. Besides that, the 

process of generating the intermediate code representation usually leaves much room for such 

optimisation. Hence, compilers usually implement explicit steps to optimise the intermediate 

code. 

Code Generation 

Finally, the compiler converts the (optimised) program in the intermediate code representation 

to the required machine language. It needs to be noted that if the program being translated by 

the compiler actually has dependencies on some external modules, then linking has to be 

performed to the output of the compiler. These activities are independent of whether the input 

program was in HLL or assembly language. 

http://www.tezu.ernet.in/~utpal/course_mat/sdt.txt


Run-time Storage Administration 

One of the important aspects of the semantic actions of a compiler is to ensure an efficient and 

error free run-time storage 

model to the output 

program. Most modern programming languages 

allows some extent of block-structuring, nesting of 

constructs, and recursion of subroutines. All these calls for an efficient modelling of data 

storage that is dynamic, and it turns out that a stack meets much of the criteria. Thus allocation 

and access of storage for program variables, subroutine parameters, and compiler generated 

internal variables on the stack is an important part of the task of a compiler. 

Memory allocation is primarily a computer hardware operation but is managed through 

operating system and software applications. ... Once the program has finished its operation or 

is idle, the memory is released and allocated to another program or merged within the 

primary memory. 

There are two types of memory allocation. 1) Static memory allocation -- allocated by the 

compiler. Exact size and type of memory must be known at compile time. 2) 

Dynamic memory allocation -- memory allocated during run time. 

Memory allocation is the process of assigning blocks of memory on request. Typically the 

allocator receives memory from the operating system in a small number of large blocks that it 

must divide up to satisfy the requests for smaller blocks. It must also make any returned blocks 

available for reuse. 

A partition allocation method is considered better if it avoids internal fragmentation. When it 

is time to load a process into the main memory and if there is more than one free block 

of memory of sufficient size then the OS decides which free block to allocate. 1.06-Nov-2020 

emory Allocation  

appropriately. It affects execution efficiency of the target program. 
about the relevant binding during its execution and use it to access the entity  
findinformation 
compilation time. Sothecompilerhastogenerateageneralpurposecodethatwould 

•    However,suchtailoringisnotpossibleifthebindingisperformedlaterthan 
was performed before or during compilation time. 

•    A compiler can tailor the code generated to access an entity if a relevant binding 
language processor can handle use of the entity in the program. 

•    The binding time of an entity's attributes determines the manner in which a 
Importance of binding times 

UNIT-IV (COMPILERS AND INTERPRETERS)  

19: 



{ 
Procedure C 

} 
Inta,b 

{ 
e B 
ur 
ed 
oc 
Pr 
,z 
x,y 
int 

{ 
example Procedure A 

• To understand local and non-local variable consider the following  
2.    Non localvariable 
1.    Local variable 

•    Therearetwotypesofvariablesituated    in theblockstructuredlanguage 
2.    Variable X is accessed by any statement in block B2 and block B2 is situated in block B1. 

situated in blockB1. 
1.    Variable X is accessed within the block B1 if it can be accessed by any statement  

•    Following are the rulesusedtodetermine the scope of the variable: 
•    Findingthescopeofthevariablemeanscheckingthevisibilitywithintheblock 
•    A block structured language usesdynamicmemoryallocation. 

for ex: block B2 can be completely defined within the block B1. 
• The delimiters mark the beginning and the end of the block. There can be nested blocks  

} 
….. 
Statements 

{ 
A 

 Ex: 
are enclosed within thedelimiters. 

• The block is a sequence of statements containing the local data and declarations which  

Memory Allocation in block structured language  

time. 
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• Access to non local variable is implemented using the second reserved pointer in AR.  
Static pointer 

 

 

 
•    Followingexampleshowsmemoryallocationforprogramgivenbelow. 
•    The dynamic pointer is used for de-allocating an AR. 

parent. This is called dynamicpointerand hastheaddress0  (ARB). 
•    The first reserved pointer in block’s AR points to the activation record of its dynamic  

Dynamic pointer 

call an activation record(AR). 
• Each stack record accommodates the variable for one activation of a block, which we  
•    Each record in the stackhastworeserved pointers instead of one. 
•    Automaticdynamicallocationisimplementedusingtheextendedstackmodel. 

within theseblocks. 
C because these variable are not defined locally within the block B and C but are accessible  

• Variables x, y and z are local variables to procedure A but those are non-local to block B and  
m,n x,y,z C 

B a,b x,y,z 
A x,y,z 
Procedure Local variables Nonlocalvariables 

} 
} 

Intm,n 
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•    Addressabilitycode:Takesthevalues'M'(operandisinmemory),and'R'(operandis 
two subfields 

2.   Addressability: Specifies where the operand is located, and how it can be accessed. It has  
1.   Attributes:Containsthesubfieldstype,lengthandmiscellaneousinformation 

An operand descriptor has the following fields: 
Operand Descriptor 

Compilation of Expression  

Return values:Thisfieldisusedtostoretheresultofa function call. 7. 

parameters. Theseactualparametersarepassedtothe called procedure. 
Actualparameters:Thisfieldholdstheinformationabouttheactual 6. 

other activation record. This field is also called static link field. 
Access link: This field is also optional. It refers to the non local data in 5. 

calling procedure. This link is also called dynamic link. 
Control link: Thisfieldisoptional. Itpointstotheactivation  record ofthe 4. 

registers and program counter. 
of  machine  just  before  the  procedure  is  called.  This  field  contains  the  
Saved machine registers: This field holds the information regarding the status  3. 

is stored in this field of activation record. 
Localvariables:Thelocaldataisadatathatislocaltotheexecutionprocedure 2. 

record. 
of  expressions. Such variables are stored in the temporary field of activation  
Temporary values: The temporary variables are needed during the evaluation  1. 

Temporaries 

Local variables 

Saved M/c status 

Access link 

Control link 

Actual parameter 

Return value 

bya single execution of a procedure. 
•    Theactivationrecordisablockofmemoryusedformanaginginformationneeded 

Activation record 

This pointer which hastheaddress 1 (ARB) is calledthestaticpointer. 
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•    Wherea,b or c are theoperandsthat can benames, constants. 
statement. The generalformofthreeaddresscoderepresentation  is -a:=bopc 

• In three address code form at the most three addresses are used to represent  
2)   Three address code 

a*bwillbe  x a –b * a-b*+= 
•    thepostfixnotationofx=-a*b+- 
•    italistofnodesofthetreeinwhichanodeappearsimmediatelyafteritschildren 
•    Postfix notation is a linearized representation of a syntax tree. 

1)   Postfix notation 
Three addresscode. 2. 

Postfix notation 1. 

There are two types of intermediate representation 
Intermediate code for expression 

•    ThisindicatesthatregisterAREGcontainstheoperanddescribedbydescriptor#3. 
Occupied  #3 

be 
• InaboveExampletheregisterdescriptorforAREGaftergeneratingcodefora*bwould 

register descriptor exists for each CPU register. 
•    Register descriptors are stored in an array called Register_descriptor. One 

operand contained in theregister. 
2.    Operand descriptor #: If status = occupied, this field contains the descriptor for the  
1.    Status: Containsthecodefreeoroccupiedtoindicateregisterstatus. 

A register descriptor has two fields 
Register descriptors 

(int, 1) Address(AREG) 
(int, 1) Address(b) 
(int, 1) Address(a) 
Attribute    Addressability 

occupying 1 memory word, these are: 
Three operand descriptors are used during code generation. Assuming a, b to be integers  
AREG, B 
A MULT  
MOVER AREG,  

•    Ex: a*b 
•    Address:Address of a CPU register or memory word. 

memory ('AM'), are alsopossible, 
in  register). Other addressability codes, e.g. address in register ('AR') and address in  
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• Theindirecttriplerepresentationthelistingoftriplesisbeendone.Andlisting 
Indirect Triples 

(5) := X (4) 
(4) + (1) (3) 

(2) b * (3) 
(2) uminus a 

(0) b * (1) 
(0) uminus a 

Number Op Arg1    Arg2 
•    theexpression x : = - a * b + - a * b thetriple representation isasgivenbelow 

the pointers in the symbol table. 
• The triple representation the use of temporary variables is avoided by referring  

Triples 

5 x= t (5) := t5 X 
5 2 4 t := t + t (4) + t2 t4 t5 
4 3 t := t * b (3) * t3 b t4 

t = - a (2) uminus a t3 3 

2 t := t1 * b (1) * t1 b t2 

t1=uminus a (0) uminus a t1 

Op Arg1    Arg2 result 

•    Consider the input statement x:= -a*b + -a*b 
of an expression. 
arg2 represent the two operands used and result field is used to store the result  

•    The op  field is used to  represent the internal  code for operator, the  arg1 and 
•    Thequadrupleisastructurewithatthemosttourfieldssuchasop,arg1,arg2andresult. 

Quadruple representation 

indirect triples. 
• There are three representations used for three code such as quadruples, triples and 

addressesallowed.Hence,thisrepresentationisthree-addresscode. three 
• Heret1andt arethetemporarynamesgeneratedbythecompiler.Therearemost 2 

t2=t1+d 
will be t1=b+c 

• For the expression like a = b+c+d the three address code  
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t4 = 4 * i 
t3 = 4 * j 
t2 = a[t1] 

Example: t1 = 4 * i 

such sub expression isused instead of recomputing it each time 
•    Theniftheoperandsofthissubexpressiondonotgetchangedatallthenresultof 

which is computedpreviously. 
• The common sub expression is an expression appearing repeatedly in the program  

II. Common Sub Expression Elimination 

then computation of 3.14 * 5 * 5 is done during compilation. 
• Hereatthecompilationtimethevalueofpiisreplacedby3.14andrby5 

Area=pi*r*r 
example:pi=3.14;r=5; 

expression is done at the compilation time. 
•    In this technique the value of variable is replaced and computation of an  
2.   Constant propagation 
•    Here foldingis implied byperformingthe computation of22/7at  compiletime 

example : length = (22/7) * d 
instead of runtime. 

• Inthefoldingtechniquethecomputationofconstantisdoneatcompiletime 
Folding 1.  

•    Therearetwomethodsused to obtain the compile time evaluation. 
•    Compiletimeevaluationmeansshiftingofcomputationsfromruntimetocompilation. 

I. Compile Time Evaluation 

Code Optimization  

(5) (16) 
(5) := X (15) 

(4) (15) 
(4) + (12) (14) 

(3) (14) 
(13) b * (3) 

(2) (13) 
(2) uminus a 

(1) (12) 
(11) b * (1) 

(0) (11) 
(0) uminus a 

Number Op Arg1 Arg2 Statement 
pointers are used instead of using statements. 
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•    For instance strength of * is higher than +. 

•    Strength of certain operators is higher than others. 
IV.     Strength Reduction 

} 
sum=sum+a[i]; 
{ 
While(i<=N) 
a N=max-1; 
optimized as  
Can be  
} 

sum=sum+a[i]; 
{ 
-1) 

<=max 

while(i 

ple: 

• Exam 

•    This method is also called code motion. 
the loop and placing it just before entering in the loop. 

• Loop invariant optimization can be obtained by moving some amount of code outside  
III. Loop   invariant computation (Frequency reduction) 

} 
and value of i is not been changed from definition to use. 

• Thecommonsubexpressiont4:=4*iiseliminatedasitscomputationisalreadyint1 
t6=b[t1]+t5 
t5=n 
t3=4*j 
t2=a[t1] 
t1=4*i 

•    The above code can be optimized using common sub expression elimination 
t6 = b[t4]+t5 
t5 = n 
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statement can be eliminated and optimization can be done. 
statement is a dead code as this condition will never get satisfied hence,  • if  

} 
a=x+5; 

{ 
if(i==1) 
i=0; 

•    Example : 
suchadeadcode. 
supposed to be  adeadcode.Andanoptimizationcanbeperformedbyeliminating 
value  contained into it is never been used. The code containing such a variable  

•    On the other hand, the variable is said to be dead at a point in a program if the 
•    Avariableissaidtobeliveinaprogramifthevaluecontainedintoissubsequently. 

V. Dead Code Elimination 
} 

7; 
temp+ 
= 
temp 
temp; 
= 
count 

{ 
for(i=l;i<=50;i++) 
follows temp=7 

• This code can be replaced by using strength reduction as  
•    Here we get the count values as7,14,21and soonuptolessthan   50. 

} 
count = i x 7; 

{ 
for(i=1;i<=50;i++) 

• Example: 
strength operators. 

• In this technique the higher strength operators can be replaced by lower  
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and execution-time of compiled statement, respectively. 
i e , t , and t be the interpretation-time statement, compilation-time statement, c •    Let t 

the averageCPUtimecostfordifferentkindsofprocessingofa   statement. 
• Comparative performance of a compiler and an interpreter can be realized by inspecting  

Comparing the Performance of Compilers and Interpreters 

machine and cannot be ported. in higher level language. 
Compilers are bound to a specific target Canbemadeportablebycarefullycodingthem 
environment. development environment. 
Compilers  are suitable for production Interpreters are suited for program 
modification in the source program. program each time during execution. 
output program in target language after each modification issues as it processes the source 
Need recompilation for generating a fresh The interpreter is independent of program 
source program statements. 
execution if there is any error in any of the an error is found. 
Do not generate the output program for Can evaluate and execute program statement until 
memory. program to be interpreted. 
doesnotneedthepresenceofcompilerinthe interpretation, i.e. it coexists with the source 
Target program executes independently and The interpreter exists in the memory during 
entire output program is produced. basis. 
compilation and performed only after the and performed on a statement by statement 
Program execution is separated from Program execution is a part of interpretation 
Language. 
the     source    program     written    in     Source     for execution. 
output, which can be run independently from theyevaluatethesourceprogramateachtime 
Generate a target output program as an Do not generate any output program; rather 
loading model. 
based on the language translation-linking- based on the interpretation model. 
Compilers are language processors that are Interpreters are a class of language processors  
Compilers Interpreters 

Comparison between Compilers and Interpreters 

executing it. 
interpreter takes  the program,  one statement  at a time,  and translates  each line before 
low-level one, but it differs  from compilers. Interpretation is a real-time activity  where an 
An interpreter is system software that translates a given High-Level Language (HLL) program into a  

Interpreter  
Overview of Interpretation OR Write a note on  
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a source language program into the Java bytecode, which is a program in the machine 
• Figure 8.1 shows a schematic of the Java language environment. The Java compiler converts  

o AnoptionalJavajust-in-time(JIT)compiler,whichprovidesefficientexecution. 
programandthe operating system. 
dynamically loadedprogrammodulesdonotinterferewiththeoperationofthe 

o A    Java   bytecode   verifier,   which   provides    security   by   ensuring   that 
interpretation. 
capability   for   inclusion   of  program   modules   dynamically,   i.e.,  during 

o An   impure interpretive  scheme, whose  flexibility is exploited  to provide  a 
o TheJavavirtualmachine(JVM),whichprovidesportabilityofJavaprograms. 

•    Java language environment has four key features: 

Java Language Environment 

•    Suitedfordebuggingofthecodeandfacilitatesinteractivecodedevelopment. 
means alteration of code can be performed dynamically. 

•    Suited for development environment where a program is modified frequently. This 
•    Ensuresportabilitysinceitdoesnotproducemachinelanguageprogram. 
•    Handles certain language featuresthat cannot be compiled. 

be performed in a single stage without theneed of acompilation stage.  
Intermediate Code (IC)  and immediately executes it. The  process of execution can 

•    Executes the source code directly.  It translates the source code into some efficient  
The distinguished benefits of interpretation are as follows: 

Benefits of Interpretation  

program development environment. 
point of view of the CPU time cost, interpreters are  a better choice at least  for the 
executionof400  statements duringtheexecution.This  clearly indicates thatfromthe 
will  be  cheaper,  which means  that  using interpreter  is  advantageous up  to  the 
if more than 400 statements are to be executed, compilation followed by execution 

c *t = 80 *t . This shows that the interpretation will be cheaper in such cases. However, i 

oftheprogram  is80 
e execution of the programis400*t +80*t ,whilethetotalCPUtimeininterpretation c 

visited  during  the  test run,  the  total  CPU  time  in  compilation  followed  by the 
•     If a 400-statement program is executed on a test data with only 80 statements being 

as the effort involved in the interpretation of the statement. 
effort for a statement performed by the compiler is of the same order of magnitude 
and  semantic analyses  of the source  statement. In  addition, the code  generation 

c i Itisassumedthatt ≈t sinceboththecompilersandinterpretersinvolvelexical,syntax, 
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a  Java program. The Java virtual machine loads one or more class files and executes  
•    AJavacompilerproducesabinaryfilecalledaclassfilewhichcontainsthebytecodefor 

Java Virtual Machine 

cannot provide any of the benefits of interpretation or just-in- time compilation. 
computer. This  scheme provides  fast execution  of the Java  program; however,  it 
partof. It simply compiles the complete Java program into the machine language of a  
The other compilation option uses the Java native code compiler shown in the lower 

machineusesamixed- mode executionapproach. 
remainder  of  the program  still exists in the  bytecode form. Hence the  Java virtual 
the  Java  source  program  has  been  converted  into  the  machine  language  while  the  

•    Afterthe just-in-time compiler has compiled some part of the program, some parts of 
implemented using the schemeof dynamic compilation. 
machine language of the   computer  to  improve  their   execution  efficiency.  It  is 
bytecode  that   are consuming a  significant fraction of  the execution time  into the 
lower  half  of  Figure  8.1.  The  Java  Just-In-Time  compiler  compiles  parts  of  the  Java  

•    The Java language environment provides the two compilation schemes shown in the  
o Theprogrammayhavestackoverflowsorunderflowsduringexecution. 

manner. 
o The program has type-mismatches whereby it may access data in an invalid  
o Theprogramviolatesaccessrestrictions,e.g.,byaccessingprivatedata. 

performing branches to invalid locations. 
o The  program forges pointers, thereby potentially accessing invalid data or 

•    The Java bytecode verifier checks whether 
verifier. 
program.TheclassloaderlocatesthedesiredclassfileandpassesittotheJavabytecode 

•    The class loader is invoked whenever a new class file is to be dynamically included in 
program modules calledJavaclassfilesduringinterpretationofaJavaprogram. 
during interpretation. This feature is  exploited to provide a capability for  including 

•    Use of an interpretive scheme allows certain elements of a program to be specified 
scheme. 
Java  compilerandtheJavavirtualmachinethusimplementtheimpureinterpretation 

•    The Java virtual machine essentially interprets the bytecode form of a program. The 
machine. 
theJava  bytecodecanbe'executed'onanycomputerthatimplementstheJavavirtual 
itself calledtheJavavirtualmachineforsimplicity.Thisschemeprovidesportabilityas 

•    The Java virtual machine is implemented by a software layer on a computer, which is 
language of the Java virtual machine. 
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Example 1: Missing punctuation- 
•    LetusseethesyntaxerrorswithJavalanguageinthefollowingexamples. 

to proceed for code generation. 
Syntaxerrorsaredetectedearlyduringthecompilationprocessandrestrictthecompiler 

writinga program. 
•    Thesearegenerallyprogrammerinducedduetomistakesandnegligencewhile 

constitute syntax errors. 
• The errors in token formation, missing operators, unbalanced parenthesis, etc.,  

not followed. 
•    Syntax errors occur due to the fact that the syntax of the programming language is 

Syntax Error 

Types of Errors  

be stored in memory—they can be simply left on the stack. 
• A stack machine can evaluate expressions very efficiently because partial results need not  

operates on values contained in the top two entries of the stack, etc. 
only on the value contained in the top entry of the stack, a binary operation 
result, if any, in the top entry of the stack. Thus, a unary operation operates 
entriesof the  stack, deletes the top n entries from the stack, and leaves the 

o n-ary  operation: This  operation operates on the values existing in the top  n 
memory location and also deletes that entry from the stack. 
value contained in the entry that is at the top of the stack into the specified 
its operand. It  performs the converse of  the push operation—it  copies the 

o Pop  operation: This operation also has  the address of a memory location as 
thisentry. 
and copies the value that is contained in the specified memory location into 
memory location. The operation creates  a new entry at the top of the stack 

o Push  operation:  This operation has one  operand, which is the  address of a 
•    The stackmachine has the following three kinds of operations: 

themandshould  take their results from the stack. 
values on  which it wishes to operate on the stack before performing operations on 
their  results on the stack. This arrangement requires that a program should load the 
computationsbyusingthe values existinginthetop  few entrieson a stack and leaving 

•    The Java virtual machine is a stack machine. By  contrast, a stack machine performs 
execution ofthe bytecode would not cause any breaches of security. 
loader,which  locates a required class file, and abytecodeverifier,which ensures that  
programs contained in them. To achieve it, the JVM requires the support of the class 
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program, the program needs to be debugged. 
•    Wheneverthereisagapbetweenanexpectedoutputandanactualoutputofa 

Debugging Procedures  

these errors remain undetected unlesstheresultsare analyzed carefully. 
•    Logical errors may causeundesirable effect andprogram behaviors. Sometimes,  

} // the loop in the code did  not terminate 
System.out.println(str); 

while (str != null) { 
str=br.readLine(); 
terminating loops String 
Example : Non- 
requiresto multiply twointegers 
//thismethodreturnstheincorrectvaluewithrespecttothespecificationthat 
} 

return a + b ; 
b){ 
staticintmul(inta,int 
computation public 
Example : Errors in  

•    Let us look into some logical errors with Java language. 
executed error free, the desired results are not obtained. 
while  writing  the  program.  Although  the program  is  successfully  compiled  and 

•    Logical errors  occur due to the fact  that the software specification  is not followed 
Logical Error 

intmsg="hello"; //note the types String and int are incompatible 
Example: Type incompatibility between operands 

•    Semantic errors are mentioned in the following examples. 
incompatible arguments to function or procedures, etc. 

• They include operands whose types are incompatible, undeclared variables,  
•    Semanticerrorsoccurduetoimproperuseofprogramminglanguagestatements. 

Semantic Error 

x=(30-15; // note the missing closing parenthesis ")" 
Errorsinexpressionsyntax 
here semicolon is missing Example2: 
"semicolon" intage=50 // note  
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•    Staticdebuggingdetectserrorsbeforethe  actual execution. 
due to truncation. This type of analysis fallsunderstaticdebugging. 
var1; then, there is a possibility that it may not get correctly assigned to the variable  
an integer,andthetypeofvar2isafloat.Now,theprogramassignsthevalueofvar2to 

•    Inacertainprogram,supposetherearetwovariables:var1andvar2.Thetypeofvar1is 
•    Static debugging focuses on semantic analysis. 

Static Debugging 

Classification of Debuggers  

execution program halts. 
true, nothing  happens. But  if  it is  realized that  the statement  is false, the 
associated with Boolean conditions. If an assert() statement  is evaluated  to be 
statement. Assertions are the statements used in programs, which are always  
erroneous  results.   For  this,   a  programmer  can  make  use  of   an  assert 
assumptions went wrong during the execution of the program, it may lead to 
assumptions  are  made  about  the  data  involved in  computation.  If  these 
before  the  execution   of  a  program.  Sometimes,  while  programming,  some  
Assertions are mechanisms used by a debugger to catch the errors at a stage  

o Assertions: 
usedinaprogramandtheiraddresses. 
information,generatesatablethatstorestheinformationaboutthevariables 
compiletheprogramwiththedebug  option first. This option, along with other 
(person). In order  to initiate  the process of debugging, a programmer must 
execution process,  depending upon  the actions carried  out by a  debugger 
reports  the  state of a program during its execution.  It may interfere in the 
A debug monitor is a program that monitors the execution of a program and 

o Debug    Monitors: 
• Types of debugging procedures: 

at any instant and, if required, offers an opportunity toupdatetheprogram.  
• Itgivesachancetoexaminethevaluesassignedtothevariablespresentintheprogram 

by inserting abreakpoint. 
•    Thedebuggerprovidesthefacilitytoexecuteaprogramuptothespecifiedinstruction 

are in the hands of the debugger. 
• Inthedebugmode,activitiessuchasstartingtheexecutionandstoppingtheexecution 

•    Duringdebugging,theexecutionofaprogramcanbemonitoredateverystep. 
•    Debugging involves executingtheprogramina controlled fashion. 

errors present in theprogram. 
•    Anerrorinaprogramiscalledbug,anddebuggingmeansfindingandremovingthe 
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o Removing  branchinstructions 
o Eliminating  unnecessarystatements 
o Merging  similarloops 
o Removing  invariant expressions from a loop 

followingissues: 
debugging  process, a debugger may use an optimizing compiler that deals with the 
optimized code. Debugging of such statements can betricky. However, to simplify the 

•    Optimization:  Sometimes,  to   make  a  program  efficient,  programmers  may  use   an  
differentuser environments and applicationssystems. 
the   debugging   is  done.   Generally,   different   programming  languages   involve 

• Multilingual capability: The debugging system must also consider the language in which  
debugged must be made visible onthe screen along with the linenumbers. 

•    Program-display   capabilities:  While   debugging  is   in  progress,   the   program  being  
current statement in the program was reached. 
utility uses stack data structure. Traceback utility should show the path by which the  

• Traceback: This gives a user the chance to traceback over the functions, and the traceback 
program. 
can  be  implemented by adding a breakpoint at the  last executable statement in a 
"step over"debuggingthat  can be executed atthelevelofprocedureorfunction.This 
in aprogram.Theothernameforthisprocessis"stepinto".Anotherpossiblevariationis 

• Tracing: Tracing monitors step by step the execution of all executable statements present  
been met in the program duringexecution. 
assertions, can be used to check whether  some pre-condition or post-condition has 
that   certain  conditions  are  reached  in  the  program.  These  statements,  known  as  

•    Conditional expressions: A debugger can include statements in a program to ensure 
theuser to verify the contents of variables declared in the program. 
gets executedwithoutdisturbance.Oncethecontrolreachessuchaposition,itallows 

•    Breakpoints:Breakpointsspecifytheposition   within aprogramtillwhichtheprogram 
instructionsare executed. 
program  execution. For example, the program may be halted after a fixed number of  

•    Execution  sequencing:  It  is  nothing but  observation  and  control  of  the  flow  of 
A dynamic debugging system should provide the following facilities: 

provides programmerswithfacilitiesthataidintestinganddebuggingprogramsinteractively. 
Dynamic analysis is carried out during program execution. An interactive debugging system 
Dynamic/Interactive Debugger 

o Presence  of unreachablecode 
o Redeclarationofvariables 
o Truncation  of value due to wrong assignment 
o Dereferencing of variable before assigning a value to it 

• Static code analysis may include detection of the following situations: 
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UNIT V 

LINKERS 

Linker is a program in a system which helps to link a object modules of program into a single 

object file. It performs the process of linking. Linker are also called link editors. Linking is 

process of collecting and maintaining piece of code and data into a single file. Linker also 

link a particular module into system library. It takes object modules from assembler as input 

and forms an executable file as output for loader. 

Linking is performed at both compile time, when the source code is translated into machine 

code and load time, when the program is loaded into memory by the loader. Linking is 

performed at the last step in compiling a program. 

Source code -> compiler -> Assembler -> Object code -> Linker -> Executable file -> 

Loader 

Linking is of two types: 

1. Static Linking – 

It is performed during the compilation of source program. Linking is performed before 

execution in static linking. It takes collection of relocatable object file and command-line 

argument and generate fully linked object file that can be loaded and run. 

Static linker perform two major task: 

 

 

 

 Symbol resolution – It associates each symbol reference with exactly one symbol 

definition .Every symbol have predefined task. 

 Relocation – It relocate code and data section and modify symbol references to the 

relocated memory location. 

The linker copy all library routines used in the program into executable image. As a result, it 

require more memory space. As it does not require the presence of library on the system 

when it is run . so, it is faster and more portable. No failure chance and less error chance. 

2. Dynamic linking – Dynamic linking is performed during the run time. This linking is 

accomplished by placing the name of a shareable library in the executable image. There is 



more chances of error and failure chances. It require less memory space as multiple program 

can share a single copy of the library. 

Here we can perform code sharing. it means we are using a same object a number of times in 

the program. Instead of linking same object again and again into the library, each module 

share information of a object with other module having same object. The shared library 

needed in the linking is stored in virtual memory to save RAM. In this linking we can also 

relocate the code for the smooth running of code but all the code is not relocatable.It fixes the 

address at run time. 

Design of a linker 

Relocation and linking requirements in segmented addressing 

The relocation requirements of a program are influenced by the addressing structure of the 

computer system on which it is to execute. Use of the segmented addressing structure reduces 

the relocation requirements of program. 

A Linker for MS-DOS 

Example : Consider the program of written in the assembly language of intel 8088. The 

ASSUME statement declares the segment registers CS and DS to the available for memory 

addressing. Hence all memory addressing is performed by using suitable displacements from 

their contents. Translation time address o A is 0196. In statement 16, a reference to A is 

assembled as a displacement of 196 from the contents of the CS register. This avoids the use 

of an absolute address, hence the instruction is not address sensitive. Now no relocation is 

needed if segment SAMPLE is to be loaded with address 2000 by a calling program (or by 

the OS). The effective operand address would be calculated as <CS>+0196, which is the 

correct address 2196. A similar situation exists with the reference to B in statement 17. The 

reference to B is assembled as a displacement of 0002 from the contents of the DS register. 

Since the DS register would be loaded with the execution time address of DATA_HERE, the 

reference to B would be automatically relocated to the correct address. 

  

Though use of segment register reduces the relocation requirements, it does not completely 

eliminate the need for relocation. Consider statement 14 . 



MOV AX, DATA_HERE 

Which loads the segment base of DATA_HERE into the AX register preparatory to its 

transfer into the DS register . Since the assembler knows DATA_HERE to be a segment, it 

makes provision to load the higher order 16 bits of the address of DATA_HERE into the AX 

register. However it does not know the link time address of DATA_HERE, hence it 

assembles the MOV instruction in the immediate operand format and puts zeroes in the 

operand field. It also makes an entry for this instruction in RELOCTAB so that the linker 

would put the appropriate address in the operand field. Inter-segment calls and jumps are 

handled in a similar way. 

 

 

Relocation is somewhat more involved in the case of intra-segment jumps assembled in the 

FAR format. For example, consider the following program : 

FAR_LAB EQU THIS FAR ; FAR_LAB is a FAR label 

JMP FAR_LAB ; A FAR jump 

Here the displacement and the segment base of FAR_LAB are to be put in the JMP 

instruction itself. The assembler puts the displacement of FAR_LAB in the first two operand 

bytes of the instruction , and makes a RELOCTAB entry for the third and fourth operand 

bytes which are to hold the segment base address. A segment like 

ADDR_A DW OFFSET A 

(which is an ‘address constant’) does not need any relocation since the assemble can itself put 

the required offset in the bytes. In summary, the only RELOCATAB entries that must exist 

for a program using segmented memory addressing are for the bytes that contain a segment 

base address. 

For linking, however both segment base address and offset of the external symbol must be 

computed by the linker. Hence there is no reduction in the linking requirements. 



Self-relocation is similar to the relocation process employed by the linker-loader when a 

program is copied from external storage into main memory; the difference is that it is the 

loaded program itself rather than the loader in the operating system or shell that performs the 

relocation. 

One form of self-relocation occurs when a program copies the code of its instructions from 

one sequence of locations to another sequence of locations within the main memory of a 

single computer, and then transfers processor control from the instructions found at the 

source locations of memory to the instructions found at the destination locations of memory. 

As such, the data operated upon by the algorithm of the program is the sequence of bytes 

which define the program. 

Self-relocation typically happens at load-time (after the operating system has loaded the 

software and passed control to it, but still before its initialization has finished), sometimes 

also when changing the program's configuration at a later stage during runtime.[3][4] 

Examples[edit] 

Boot loaders[edit] 

As an example, self-relocation is often employed in the early stages of bootstrapping 

operating systems on architectures like IBM PC compatibles, where lower-level chain boot 

loaders (like the master boot record (MBR), volume boot record (VBR) and initial boot 

stages of operating systems such as DOS) move themselves out of place in order to load the 

next stage into memory. 

x86 DOS drivers[edit] 

Under DOS, self-relocation is sometimes also used by more 

advanced drivers and RSXs/TSRs loading themselves "high" into upper memory more 

effectively than possible for externally provided "high"-loaders 

(like LOADHIGH/HILOAD, INSTALLHIGH/HIINSTALL or DEVICEHIGH/HIDEVICE et

c.[5] since DOS 5) in order to maximize the memory available for applications. This is down 

to the fact that the operating system has no knowledge of the inner workings of a driver to be 

loaded and thus has to load it into a free memory area large enough to hold the whole driver 

as a block including its initialization code, even if that would be freed after the initialization. 

For TSRs, the operating system also has to allocate a Program Segment Prefix (PSP) and 

an environment segment.[6] This might cause the driver not to be loaded into the most suitable 
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free memory area or even prevent it from being loaded high at all. In contrast to this, a self-

relocating driver can be loaded anywhere (including into conventional memory) and then 

relocate only its (typically much smaller) resident portion into a suitable free memory area in 

upper memory. In addition, advanced self-relocating TSRs (even if already loaded into upper 

memory by the operating system) can relocate over most of their own PSP segment and 

command line buffer and free their environment segment in order to further reduce the 

resulting memory footprint and avoid fragmentation. Some self-relocating TSRs can also 

dynamically change their "nature" and morph into device drivers even if originally loaded as 

TSRs, thereby typically also freeing some memory.[4] Finally, it is technically impossible for 

an external loader to relocate drivers into expanded memory (EMS), the high memory 

area (HMA) or extended memory (via DPMS or CLOAKING), because these methods 

require small driver-specific stubs to remain in conventional or upper memory in order to 

coordinate the access to the relocation target area,[7][nb 1][nb 2] and in the case of device drivers 

also because the driver's header must always remain in the first megabyte.[7][6] In order to 

achieve this, the drivers must be specially designed to support self-relocation into these 

areas.[7] 

Some advanced DOS drivers also contain both a device driver (which would be loaded at 

offset +0000h by the operating system) and TSR (loaded at offset +0100h) sharing a common 

code portion internally as fat binary.[6] If the shared code is not designed to be position-

independent, it requires some form of internal address fix-up similar to what would otherwise 

have been carried out by a relocating loader already; this is similar to the fix-up stage of self-

relocation but with the code already being loaded at the target location by the operating 

system's loader (instead of done by the driver itself). 

LOADERS 

A loader is a major component of an operating system that ensures all necessary programs 

and libraries are loaded, which is essential during the startup phase of running a program. It 

places the libraries and programs into the main memory in order to prepare them for 

execution. Loading involves reading the contents of the executable file that contains the 

instructions of the program and then doing other preparatory tasks that are required in order 

to prepare the executable for running, all of which takes anywhere from a few seconds to 

minutes depending on the size of the program that needs to run. 

Advertisement 

https://en.wikipedia.org/wiki/Conventional_memory
https://en.wikipedia.org/wiki/Memory_fragmentation
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2006_FreeKEYB-4
https://en.wikipedia.org/wiki/Expanded_memory
https://en.wikipedia.org/wiki/High_memory_area
https://en.wikipedia.org/wiki/High_memory_area
https://en.wikipedia.org/wiki/Extended_memory
https://en.wikipedia.org/wiki/DOS_Protected_Mode_Services
https://en.wikipedia.org/wiki/CLOAKING_(DOS_extender)
https://en.wikipedia.org/wiki/DOS_memory_stub
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Self-relocation#cite_note-NB_Exception_EMSUMB-8
https://en.wikipedia.org/wiki/Self-relocation#cite_note-NB_Exception_HMA-9
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_CTMOUSE-6
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_CTMOUSE-6
https://en.wikipedia.org/wiki/Position-independent
https://en.wikipedia.org/wiki/Position-independent
https://en.wikipedia.org/wiki/Relocating_loader


Techopedia Explains Loader 

The loader is a component of an operating system that carries out the task of preparing a 

program or application for execution by the OS. It does this by reading the contents of the 

executable file and then storing these instructions into the RAM, as well as any library 

elements that are required to be in memory for the program to execute. This is the reason a 

splash screen appears right before most programs start, often showing what is happening in 

the background, which is what the loader is currently loading into the memory. When all of 

that is done, the program is ready to execute. For small programs, this process is almost 

instantaneous, but for large and complex applications with large libraries required for 

execution, such as games as well as 3D and CAD software, this could take longer. The 

loading speed is also dependent on the speed of the CPU and RAM. 

Not all code and libraries are loaded at program startup, only the ones required for actually 

running the program. Other libraries are loaded as the program runs, or only as required. This 

is especially true for applications such as games that only need assets loaded for the current 

level or location that the player is in. 

Though loaders in different operating systems might have their own nuances and specialized 

functions native to that particular operating system, they still serve basically the same 

function. The following are the responsibilities of a loader: 

1. Validate the program for memory requirements, permissions, etc. 

2. Copy necessary files, such as the program image or required libraries, from the disk 

into the memory 

3. Copy required command-line arguments into the stack 

4. Link the starting point of the program and link any other required library 

5. Initialize the registers 

6. Jump to the program starting point in memory 

SOFTWARE TOOLS FOR PROGRAM DEVELOPMENT 

A programming tool or software development tool is a program or application that software 

developers use to create, debug, maintain, or otherwise support other programs and 

applications. The term usually refers to relatively simple programs that can be combined 



together to accomplish a task, much as one might use multiple hand tools to fix a physical 

object. 

   The history of software tools began with the first computers in the early 1950s that used 

linkers, loaders, and control programs. Tools became famous with Unix in the early 1970s 

with tools like grep, awk and make that were meant to be combined flexibly with pipes. The 

term "software tools" came from the book of the same name by Brian Kernighan and P. J. 

Plauger. 

  

   Tools were originally simple and light weight. As some tools have been maintained, they 

have been integrated into more powerful integrated development environments (IDEs). These 

environments consolidate functionality into one place, sometimes increasing simplicity and 

productivity, other times sacrificing flexibility and extensibility. The workflow of IDEs is 

routinely contrasted with alternative approaches, such as the use of Unix shell tools with text 

editors like Vim and Emacs 

  

Software development tools can be roughly divided into the following categories: 

1) Performance analysis tools 

2) Debugging tools 

3) Static analysis and formal verification tools 

4) Correctness checking tools 

5) Memory usage tools 

6) Application build tools 

7) Integrated development environment 

 

  



   Software Development Tools also called Programming Tools, Integrated Development 

Tools, Software Development Kits, Software Developer's Kits, Design Tools, Application 

Development Software, Application Deployment Tools, Application Development Tools, 

SDK, Development Tools, Tools, Software Engineering Tools, Applications Frameworks, 

Development Kits, Program Development Tools, IT Tools, Frameworks, Software Tools, and 

Information Technology Tools . 

A software developer's kit (SDK) is a set of programs used by a computer programmer to 

write application programs. Typically, an SDK includes a visual screen builder, an editor, a 

compiler, a linker, and sometimes other facilities. The term is used by Microsoft, Sun 

Microsystems, and a number of other companies.This term is sometimes seen as software 

development kit. 

 

Debug monitors give debugging support for a program. A debug monitor executes the 

program being debugged in its own control thereby giving execution efficiency throughout 

debugging. There are debug monitors which are language independent and can handle 

programs written in several languages. For illustration-DEC-10. 

Debug monitor give the following facilities for dynamic debugging: 

1. Setting breakpoints into the program 

2. Initiating a debug conversation while control reaches a breakpoint. 

3. Displaying variable's values 

4. Assigning new values to variables. 

5. Testing in defined assertions and predicates including program variables. 

Programming Environments 

The term programming environment is sometimes reserved for environments containing 

language specific editors and source level debugging facilities; here, the term will be used in 

its broader sense to refer to all of the hardware and software in the environment used by the 

programmer. All programming can therefore be properly described as takin place in a 

programming environment. 



Programming environments may vary considerably in complexity. An example of a simple 

environment might consist of a text editor for program preparation, an assembler for 

translating programs to machine language, and a simple operating system consisting of input-

output drivers and a file system. Although card input and non-interactive operation 

characterized most early computer systems, such simple environments were supported on 

early experimental time-sharing systems by 1963. 

Although such simple programming environments are a great improvement over the bare 

hardware, tremendous improvements are possible. The first improvement which comes to 

mind is the use of a high level language instead of an assembly language, but this implies 

other changes. Most high level languages require more complicated run-time support than 

just input-output drivers and a file system. For example, most require an extensive library of 

predefined procedures and functions, many require some kind of automatic storage 

management, and some require support for concurrent execution of threads, tasks or 

processes within the program. 

Many applications require additional features, such as window managers or elaborate file 

access methods. When multiple applications coexist, perhaps written by different 

programmers, there is frequently a need to share files, windows or memory segments 

between applications. This is typical of today's electronic mail, database, and spreadsheet 

applicatons, and the programming environments that support such applications can be 

extremely complex, particularly if they attempt to protect users from malicious or accidental 

damage caused by program developers or other users. 

A programming environment may include a number of additional features which simplify the 

programmer's job. For example, library management facilities to allow programmers to 

extend the set of predefined procedures and functions with their own routines. Source level 

debugging facilities, when available, allow run-time errors to be interpreted in terms of the 

source program instead of the machine language actually run by the hardware. As a final 

example, the text editor may be language specific, with commands which operate in terms of 

the syntax of the language being used, and mechanisms which allow syntax errors to be 

detected without leaving the editor to compile the program. 

A Unifying Framework 



In all programming environments, from the most rudimentary to the most advanced, it is 

possible to identify two distinct components, the program preparation component and the 

program execution component. On a bare machine, the program preparation component 

consists of the switches or push buttons by which programs and data may be entered into the 

memory of the machine; more advanced systems supplement this with text editors, compilers, 

assemblers, object library managers, linkers, and loaders. On a bare machine, the program 

execution component consists of the hardware of the machine, the central processors, any 

peripheral processors, and the various memory resources; more advanced systems 

supplement this with operating system services, libraries of predefined procedures, functions 

and objects, and interpreters of various kinds. 

Within the program execution component of a programming environment, it is possible to 

distinguish between those facilities needed to support a single user process, and those which 

are introduced when resources are shared between processes. Among the facilities which may 

be used to support a single process environment are command language interpreters, input-

output, file systems, storage allocation, and virtual memory. In a multiple process 

environment, processor allocation, interprocess communication, and resource protection may 

be needed. Figure 1.1 lists and classifies these components. 

Editors 

Compilers 

Assemblers                           Program Preparation 

Linkers 

Loaders 

======================================================== 

Command Languages 

Sequential Input/Output 

Random Access Input/Output 

File Systems                    Used by a Single Process 

Window Managers 

Storage Allocation 

Virtual Memory 

------------------------------ Program Execution Support 

Process Scheduling 



Interprocess Communication 

Resource Sharing              Used by Multiple Processes 

Protection Mechanisms 

Figure 1.1. Components of a programming environment. 

This text is divided into three basic parts based on the distinctions illustrated in Figure 1.1. 

The distinction between preparation and execution is the basis of the division between the 

first and second parts, while the distinction between single process and multiple process 

systems is the basis of the division between the second and third parts. 

 

USER INTERFACE 

User interface is the front-end application view to which user interacts in order to use the 

software. User can manipulate and control the software as well as hardware by means of 

user interface. Today, user interface is found at almost every place where digital technology 

exists, right from computers, mobile phones, cars, music players, airplanes, ships etc. 

User interface is part of software and is designed such a way that it is expected to provide 

the user insight of the software. UI provides fundamental platform for human-computer 

interaction. 

UI can be graphical, text-based, audio-video based, depending upon the underlying 

hardware and software combination. UI can be hardware or software or a combination of 

both. 

The software becomes more popular if its user interface is: 

 Attractive 

 Simple to use 

 Responsive in short time 

 Clear to understand 

 Consistent on all interfacing screens 

UI is broadly divided into two categories: 



 Command Line Interface 

 Graphical User Interface 

Command Line Interface (CLI) 

CLI has been a great tool of interaction with computers until the video display monitors 

came into existence. CLI is first choice of many technical users and programmers. CLI is 

minimum interface a software can provide to its users. 

CLI provides a command prompt, the place where the user types the command and feeds to 

the system. The user needs to remember the syntax of command and its use. Earlier CLI 

were not programmed to handle the user errors effectively. 

A command is a text-based reference to set of instructions, which are expected to be 

executed by the system. There are methods like macros, scripts that make it easy for the user 

to operate. 

CLI uses less amount of computer resource as compared to GUI. 

CLI Elements 

 

A text-based command line interface can have the following elements: 



 Command Prompt - It is text-based notifier that is mostly shows the context in 

which the user is working. It is generated by the software system. 

 Cursor - It is a small horizontal line or a vertical bar of the height of line, to 

represent position of character while typing. Cursor is mostly found in blinking state. 

It moves as the user writes or deletes something. 

 Command - A command is an executable instruction. It may have one or more 

parameters. Output on command execution is shown inline on the screen. When 

output is produced, command prompt is displayed on the next line. 

Graphical User Interface 

Graphical User Interface provides the user graphical means to interact with the system. GUI 

can be combination of both hardware and software. Using GUI, user interprets the software. 

Typically, GUI is more resource consuming than that of CLI. With advancing technology, 

the programmers and designers create complex GUI designs that work with more efficiency, 

accuracy and speed. 

GUI Elements 

GUI provides a set of components to interact with software or hardware. 

Every graphical component provides a way to work with the system. A GUI system has 

following elements such as: 



 

 Window - An area where contents of application are displayed. Contents in a 

window can be displayed in the form of icons or lists, if the window represents file 

structure. It is easier for a user to navigate in the file system in an exploring window. 

Windows can be minimized, resized or maximized to the size of screen. They can be 

moved anywhere on the screen. A window may contain another window of the same 

application, called child window. 

 Tabs - If an application allows executing multiple instances of itself, they appear on 

the screen as separate windows. Tabbed Document Interface has come up to open 

multiple documents in the same window. This interface also helps in viewing 

preference panel in application. All modern web-browsers use this feature. 

 Menu - Menu is an array of standard commands, grouped together and placed at a 

visible place (usually top) inside the application window. The menu can be 

programmed to appear or hide on mouse clicks. 

 Icon - An icon is small picture representing an associated application. When these 

icons are clicked or double clicked, the application window is opened. Icon displays 

application and programs installed on a system in the form of small pictures. 

 Cursor - Interacting devices such as mouse, touch pad, digital pen are represented in 

GUI as cursors. On screen cursor follows the instructions from hardware in almost 



real-time. Cursors are also named pointers in GUI systems. They are used to select 

menus, windows and other application features. 

Application specific GUI components 

A GUI of an application contains one or more of the listed GUI elements: 

 Application Window - Most application windows uses the constructs supplied by 

operating systems but many use their own customer created windows to contain the 

contents of application. 

 Dialogue Box - It is a child window that contains message for the user and request 

for some action to be taken. For Example: Application generate a dialogue to get 

confirmation from user to delete a file. 

 

 Text-Box - Provides an area for user to type and enter text-based data. 

 Buttons - They imitate real life buttons and are used to submit inputs to the software. 

 



 Radio-button - Displays available options for selection. Only one can be selected 

among all offered. 

 Check-box - Functions similar to list-box. When an option is selected, the box is 

marked as checked. Multiple options represented by check boxes can be selected. 

 List-box - Provides list of available items for selection. More than one item can be 

selected. 

 

Other impressive GUI components are: 

 Sliders 

 Combo-box 

 Data-grid 

 Drop-down list 

User Interface Design Activities 

There are a number of activities performed for designing user interface. The process of GUI 

design and implementation is alike SDLC. Any model can be used for GUI implementation 

among Waterfall, Iterative or Spiral Model. 

A model used for GUI design and development should fulfill these GUI specific steps. 



 

 GUI Requirement Gathering - The designers may like to have list of all functional 

and non-functional requirements of GUI. This can be taken from user and their 

existing software solution. 

 User Analysis - The designer studies who is going to use the software GUI. The 

target audience matters as the design details change according to the knowledge and 

competency level of the user. If user is technical savvy, advanced and complex GUI 

can be incorporated. For a novice user, more information is included on how-to of 

software. 

 Task Analysis - Designers have to analyze what task is to be done by the software 

solution. Here in GUI, it does not matter how it will be done. Tasks can be 

represented in hierarchical manner taking one major task and dividing it further into 

smaller sub-tasks. Tasks provide goals for GUI presentation. Flow of information 

among sub-tasks determines the flow of GUI contents in the software. 

 GUI Design & implementation - Designers after having information about 

requirements, tasks and user environment, design the GUI and implements into code 

and embed the GUI with working or dummy software in the background. It is then 

self-tested by the developers. 



 Testing - GUI testing can be done in various ways. Organization can have in-house 

inspection, direct involvement of users and release of beta version are few of them. 

Testing may include usability, compatibility, user acceptance etc. 

GUI Implementation Tools 

There are several tools available using which the designers can create entire GUI on a mouse 

click. Some tools can be embedded into the software environment (IDE). 

GUI implementation tools provide powerful array of GUI controls. For software 

customization, designers can change the code accordingly. 

There are different segments of GUI tools according to their different use and platform. 

Example 

Mobile GUI, Computer GUI, Touch-Screen GUI etc. Here is a list of few tools which come 

handy to build GUI: 

 FLUID 

 AppInventor (Android) 

 LucidChart 

 Wavemaker 

 Visual Studio 

User Interface Golden rules 

The following rules are mentioned to be the golden rules for GUI design, described by 

Shneiderman and Plaisant in their book (Designing the User Interface). 

 Strive for consistency - Consistent sequences of actions should be required in 

similar situations. Identical terminology should be used in prompts, menus, and help 

screens. Consistent commands should be employed throughout. 

 Enable frequent users to use short-cuts - The user’s desire to reduce the number of 

interactions increases with the frequency of use. Abbreviations, function keys, 

hidden commands, and macro facilities are very helpful to an expert user. 



 Offer informative feedback - For every operator action, there should be some 

system feedback. For frequent and minor actions, the response must be modest, 

while for infrequent and major actions, the response must be more substantial. 

 Design dialog to yield closure - Sequences of actions should be organized into 

groups with a beginning, middle, and end. The informative feedback at the 

completion of a group of actions gives the operators the satisfaction of 

accomplishment, a sense of relief, the signal to drop contingency plans and options 

from their minds, and this indicates that the way ahead is clear to prepare for the next 

group of actions. 

 Offer simple error handling - As much as possible, design the system so the user 

will not make a serious error. If an error is made, the system should be able to detect 

it and offer simple, comprehensible mechanisms for handling the error. 

 Permit easy reversal of actions - This feature relieves anxiety, since the user knows 

that errors can be undone. Easy reversal of actions encourages exploration of 

unfamiliar options. The units of reversibility may be a single action, a data entry, or a 

complete group of actions. 

 Support internal locus of control - Experienced operators strongly desire the sense 

that they are in charge of the system and that the system responds to their actions. 

Design the system to make users the initiators of actions rather than the responders. 

 Reduce short-term memory load - The limitation of human information processing 

in short-term memory requires the displays to be kept simple, multiple page displays 

be consolidated, window-motion frequency be reduced, and sufficient training time 

be allotted for codes, mnemonics, and sequences of actions. 

 

***** 
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