

UNIT – I

Language Processors –

Assembly language is machine dependent yet mnemonics that are being used to represent

instructions in it are not directly understandable by machine and high Level language is

machine independent. A computer understands instructions in machine code, i.e. in the form

of 0s and 1s. It is a tedious task to write a computer program directly in machine code. The

programs are written mostly in high level languages like Java, C++, Python etc. and are

called source code. These source codes cannot be executed directly by the computer and must

be converted into machine language to be executed. Hence, a special translator system

software is used to translate the program written in high-level language into machine code is

called Language Processor and the program after translated into machine code (object

program / object code).

 The language processors can be any of the following three types:

1. Compiler –

The language processor that reads the complete source program written in high level

language as a whole in one go and translates it into an equivalent program in machine

language is called as a Compiler.

Example: C, C++, C#, Java

In a compiler, the source code is translated to object code successfully if it is free of errors. The

compiler specifies the errors at the end of compilation with line numbers when there are

any errors in the source code. The errors must be removed before the compiler can

successfully recompile the source code again.>

2. Assembler –

The Assembler is used to translate the program written in Assembly language into

machine code. The source program is a input of assembler that contains assembly

language instructions. The output generated by assembler is the object code or machine

code understandable by the computer.

3. Interpreter –

The translation of single statement of source program into machine code is done by

language processor and executes it immediately before moving on to the next line is

called an interpreter. If there is an error in the statement, the interpreter terminates its

translating process at that statement and displays an error message. The interpreter

moves on to the next line for execution only after removal of the error. An Interpreter

directly executes instructions written in a programming or scripting language without

previously converting them to an object code or machine code.

Example: Perl, Python and Matlab.

Difference between Compiler and Interpreter –

Compiler Interpreter

A compiler is a program which coverts the entire

source code of a programming language into

executable machine code for a CPU.

interpreter takes a source program and

runs it line by line, translating

each line as it comes to it.

Compiler takes large amount of time to analyze the

entire source code but the overall execution

time of the program is comparatively faster.

Interpreter takes less amount of time to

analyze the source code but the

overall execution time of the

program is slower.

Compiler generates the error message only after

scanning the whole program, so debugging is

comparatively hard as the error can be

present any where in the program.

Its Debugging is easier as it continues

translating the program until

the error is met

Generates intermediate object code.

No intermediate object code is

generated.

Examples: C, C++, Java Examples: Python, Perl

Language processing activities arise to bridge the ideas of software designer with actual

execution on the computer system. Due to the differences between the manners in

which a software designer describes the ideas concerning the behavior of software and

the manner in which these ideas are implemented in a computer system. The designer

expresses the ideas in terms related to the application domain of the software. To

implement these ideas, their description has to be interpreted in terms related to

the execution domain of the computer system. We use the term semantics to represent

the rules of meaning of a domain, and the term semantic gap to represent the difference

between the semantics of two domains. The fundamental language processing activities

can be divided into those that bridge the specification gap and those that bridge the

execution gap.

· Program Generation Activities

· Program Execution Activities

A program generation activity aims at automatic generation of a program. The source language

is a specification language of an application domain and the target language is typically

a procedure oriented PL. A program execution activity, organizes this execution of a

program written in a PL on a computer system. Its source language could be a

procedure-oriented language or a problem oriented language.

o Program Generation

The program generator is a software system which accepts the specification of a program to be

generated, and generates a program in the target PL. We call this the program generator

domain. The specification gap is now the gap between the application domain and the

program generator domain. This gap is smaller than the gap between the application

domain and the target PL domain.

Reduction in the specification gap increases the reliability of the generated program. Since the

generator domain is close to the application domain, it is easy for the designer or

programmer to write the specification of the program to be generated.

Fig. 1.3: Program generator domain

The harder task of bridging the gap to the PL domain is performed by the generator. This

would be performed while implementing the generator. To test an application generated

by using the generator, it is necessary to only verify the correctness of the specification

input to the program generator. This is a much simpler task than verifying correctness

of the generated program. This task can be further simplified by providing a good

diagnostic (i.e. error indication) capability in the program generator, which would detect

inconsistencies in the specification.

It is more economical to develop a program generator than to develop a problem-oriented

language. This is because a problem oriented language suffers a very large execution

gap between the PL domain and the execution domain, whereas the program generator

has a smaller semantic gap to the target PL domain, j which is the domain of a standard

procedure oriented language. The execution gap between the target PL domain and the

execution domain is bridged by the compiler or interpreter for the PL.

o Program Execution

Two popular models for program execution are

· Translation

· Interpretation

Program Translation

Program translation model bridges the execution gap by translating a program written in a PL,

called the source program (SP), into an equivalent program in the machine or assembly

language of the computer system, called the target program (TP).

A specification language is a formal language in computer science used during systems

analysis, requirements analysis, and systems design to describe a system at a much

higher level than a programming language, which is used to produce the executable

code for a system.

Specification languages are generally not directly executed. They are meant to describe

the what, not the how. Indeed, it is considered as an error if a requirement specification

is cluttered with unnecessary implementation detail.

A common fundamental assumption of many specification approaches is that programs are

modelled as algebraic or model-theoretic structures that include a collection of sets of

data values together with functions over those sets. This level of abstraction coincides

with the view that the correctness of the input/output behaviour of a program takes

precedence over all its other properties.

In the property-oriented approach to specification (taken e.g. by CASL), specifications of

programs consist mainly of logical axioms, usually in a logical system in which

equality has a prominent role, describing the properties that the functions are required

to satisfy—often just by their interrelationship.

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Systems_analysis
https://en.wikipedia.org/wiki/Systems_analysis
https://en.wikipedia.org/wiki/Requirements_analysis
https://en.wikipedia.org/wiki/Systems_design
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Common_Algebraic_Specification_Language
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Logical_system

This is in contrast to so-called model-oriented specification in frameworks like VDM and Z,

which consist of a simple realization of the required behaviour.

Specifications must be subject to a process of refinement (the filling-in of implementation

detail) before they can actually be implemented. The result of such a refinement

process is an executable algorithm, which is either formulated in a programming

language, or in an executable subset of the specification language at hand. For

example, Hartmann pipelines, when properly applied, may be considered

a dataflow specification which is directly executable. Another example is the actor

model which has no specific application content and must be specialized to be

executable.

Software Development Tools

 1 Text Editors. A text editor is a program that allows us to create or edit programs and

text files. ...

 2 Assemblers and Compilers. ...

 3 Simulators. ...

 4 High-Level Language Simulators. ...

 5 Simulators With Hardware Simulation. ...

 6 Integrated Development Environment (IDE)

 Software tool classification

Tool type Examples

Language-processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Data Structures for Language Processing

Data Structures used in Language Processing are classified as

 Nature of Data Structure - Linear or Non Linear

 Purpose of a Data Structure - Search and allocated

 Lifetime of Data Structure - Used during Language Processing or during target

program

https://en.wikipedia.org/wiki/Model-based_specification
https://en.wikipedia.org/wiki/Vienna_Development_Method
https://en.wikipedia.org/wiki/Z_notation
https://en.wikipedia.org/wiki/Hartmann_pipeline
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Actor_model

Linear Data Structure:

Data structures are categorised into two classes : linear and non-linear

1) Linear Data Structures

In linear data structure, member elements form a sequence. Such linear structures can be

represented in memory by using one of the two basic strategies

1. By having the linear relationship between the elements represented by means of

sequential memory locations. These linear structures are called arrays.

2. By having relationship between the elements represented by pointers. These structures

are called linked lists.

2)Non Linear Data Structures

There are various non-linear structures, such as, trees and graphs and various operations can be

performed on these data structures such as:

 Traversal - One of the most important operations which involves processing each

element in the list.

 Searching - Searching or finding any element with a given value or the record with a

given key.

 Insertion - Adding a new element to the list

 Deletion - Removing an element from the list

 Sorting - Arranging the elements in some order

 Merging - Combining two lists into a single list.

Purpose of Data structure:

1) Search Data Structure: Binary Search

intbinary_search(int A[],int key,intimin,intimax)

{

// test if array is empty

if(imax<imin):

// set is empty, so return value showing not found

return KEY_NOT_FOUND;

else

{

// calculate midpoint to cut set in half

intimid= midpoint(imin,imax);

// three-way comparison

if(A[imid]> key)

// key is in lower subset

returnbinary_search(A, key,imin, imid-1);

elseif(A[imid]< key)

// key is in upper subset

returnbinary_search(A, key, imid+1,imax);

else

// key has been found

returnimid;

}

}

2) HASH TABLE ORGANISATION

8.3.1 Direct Address Tables

If we have a collection of n elements whose keys are unique integers in (1,m),

where m >= n,

then we can store the items in a direct address table, T[m],

where Ti is either empty or contains one of the elements of our

collection.Searching a direct address table is clearly an O(1) operation:

for a key, k, we access Tk,

 if it contains an element, return it,

 if it doesn't then return a NULL.

There are two constraints here:

1. the keys must be unique, and

2. the range of the key must be severely bounded.

If the keys are not unique, then we can simply construct a set of m lists and store the

heads of these lists in the direct address table. The time to find an element matching an

input key will still be O(1).However, if each element of the collection has some other

distinguishing feature (other than its key), and if the maximum number of duplicates

is ndup
max, then searching for a specific element is O(ndup

max). If duplicates are the

exception rather than the rule, then ndup
max is much smaller than n and a direct address

table will provide good performance. But if ndup
max approaches n, then the time to find a

specific element is O(n) and a tree structure will be more efficient.

The range of the key determines the size of the direct address table and may be too large to be

practical. For instance it's not likely that you'll be able to use a direct address table to store

elements which have arbitrary 32-bit integers as their keys for a few years yet!

Direct addressing is easily generalised to the case where there is a function,

h(k) => (1,m)

which maps each value of the key, k, to the range (1,m). In this case, we place the element

in T[h(k)] rather than T[k] and we can search in O(1) time as before.

8.3.2 Mapping functions

The direct address approach requires that the function, h(k), is a one-to-one mapping from

each k to integers in (1,m). Such a function is known as a perfect hashing function: it maps

each key to a distinct integer within some manageable range and enables us to trivially build

an O(1) search time table.

Unfortunately, finding a perfect hashing function is not always possible. Let's say that we can

find a hash function, h(k), which maps most of the keys onto unique integers, but maps a

small number of keys on to the same integer. If the number of collisions (cases where multiple

keys map onto the same integer), is sufficiently small, then hash tables work quite well and

give O(1) search times.

Handling the collisions

In the small number of cases, where multiple keys map to the same integer, then elements with

different keys may be stored in the same "slot" of the hash table. It is clear that when the hash

function is used to locate a potential match, it will be necessary to compare the key of that

element with the search key. But there may be more than one element which should be stored

in a single slot of the table. Various techniques are used to manage this problem:

1. chaining,

2. overflow areas,

3. re-hashing,

4. using neighbouring slots (linear probing),

5. quadratic probing,

6. random probing, ...

Chaining

One simple scheme is to chain all collisions in lists attached to the appropriate slot. This allows

an unlimited number of collisions to be handled and doesn't require a priori knowledge of how

many elements are contained in the collection. The tradeoff is the same as with linked lists

versus array implementations of collections: linked list overhead in space and, to a lesser

extent, in time.

Re-hashing

Re-hashing schemes use a second hashing operation when there is a collision.

If there is a further collision, we re-hash until an empty "slot" in the table is

found.The re-hashing function can either be a new function or a re-application

of the original one. As long as the functions are applied to a key in the same

order, then a sought key can always be located.

Linear probing

One of the simplest re-hashing functions is +1 (or -1), ie on a collision, look in

the neighbouring slot in the table. It calculates the new address extremely

quickly and may be extremely efficient on a modern RISC processor due to

efficient cache utilisation (cf. the discussion of linked list

efficiency).The animation gives you a practical demonstration of the effect of

linear probing: it also implements a quadratic re-hash function so that you can

compare the difference.

h(j)=h(k), so

the next hash

function,

h1 is used. A

second

collision

occurs,

so h2 is used.

Clustering

Linear probing is subject to a clustering phenomenon. Re-hashes from one location occupy a

block of slots in the table which "grows" towards slots to which other keys hash. This

exacerbates the collision problem and the number of re-hashed can become large.

Quadratic Probing

Better behaviour is usually obtained with quadratic probing, where the secondary hash

function depends on the re-hash index:

address = h(key) + c i2

on the tth re-hash. (A more complex function of i may also be used.) Since keys which are

mapped to the same value by the primary hash function follow the same sequence of addresses,

quadratic probing shows secondary clustering. However, secondary clustering is not nearly as

severe as the clustering shown by linear probes.

Re-hashing schemes use the originally allocated table space and thus avoid linked list

overhead, but require advance knowledge of the number of items to be stored.

However, the collision elements are stored in slots to which other key values map directly, thus

the potential for multiple collisions increases as the table becomes full.

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/ll_time.html
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/ll_time.html
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/ll_time.html
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/hash_tables.html#hash_anim

Overflow area

Another scheme will divide the pre-allocated table into two sections: the primary area to

which keys are mapped and an area for collisions, normally termed the overflow area.

When a collision occurs, a slot in the overflow area is used for the new element and a link

from the primary slot established as in a chained system. This is essentially the same as

chaining, except that the overflow area is pre-allocated and thus possibly faster to access.

As with re-hashing, the maximum number of elements must be known in advance, but in

this case, two parameters must be estimated: the optimum size of the primary and

overflow areas.

Of course, it is possible to design systems with multiple overflow tables, or with a mechanism

for handling overflow out of the overflow area, which provide flexibility without losing the

advantages of the overflow scheme.

Summary: Hash Table Organization

Organization Advantages Disadvantages

Chaining Unlimited number of

elements

 Unlimited number of

collisions

 Overhead of multiple linked lists

Re-hashing
 Fast re-hashing

 Fast access through use

of main table space

 Maximum number of elements

must be known

 Multiple collisions may become

probable

Overflow

area
 Fast access

 Collisions don't use primary

table space

 Two parameters which govern

performance

need to be estimated

hash table

Tables which can be searched for an item in O(1) time using a hash function to form an

address from the key.

hash function

Function which, when applied to the key, produces a integer which can be used as an

address in a hash table.

collision

When a hash function maps two different keys to the same table address, a collision is

said to occur.

linear probing

A simple re-hashing scheme in which the next slot in the table is checked on a collision.

quadratic probing

A re-hashing scheme in which a higher (usually 2nd) order function of the hash index is

used to calculate the address.

clustering.

Tendency for clusters of adjacent slots to be filled when linear probing is used.

secondary clustering.

Collision sequences generated by addresses calculated with quadratic probing.

perfect hash function

Function which, when applied to all the members of the set of items to be stored in a

hash table, produces a unique set of integers within some suitable range.

Scanners and Parsers

The main difference between scanning and parsing is that scanning is the process of reading

the source code one character at a time in a methodical manner to convert them into

tokens while parsing is the process of taking the tokens and generating a parse tree as the

output.

Generally, a compiler is a software program that is capable of converting the source code into

machine code so that the computer can execute that machine code. The compiler goes through

multiple phases to compile a program. Scanning and parsing are two activities that occur

during this compilation process. Overall, scanning occurs at the lexical analysis phase, whereas

parsing occurs at the syntax analysis phase. Furthermore, the lexical analyzer performs

scanning while the parser performs parsing.

https://pediaa.com/what-is-the-difference-between-parse-tree-and-syntax-tree/#Parse%20Tree
https://pediaa.com/what-is-the-difference-between-lexical-analysis-and-syntax-analysis/#Lexical%20Analysis
https://pediaa.com/what-is-the-difference-between-lexical-analysis-and-syntax-analysis/#Syntax%20Analysis

What is Scanning

The first phase of compilation is lexical analysis. The lexical analyzer performs this task. It

takes the source code as the input. Lexical analyzer reads the source program a character at a

time and then converts it into meaningful tokens. The process of reading the source code

methodically is called scanning. In this process, the lexical analyzer considers specific

information of the source code.

What is Parsing

The tokens generated from lexical analysis goes to the next phase, which is syntax analysis.

The parser performs this task. It takes the tokens as input and generates a parse tree as output.

Thus, this process is called parsing. Furthermore, the parser checks whether the expression

made by the tokens is syntactically correct or not.

Moreover, in addition to lexical analysis and syntax analysis, there are other phases such as

semantic analysis, intermediate code generation, code optimization etc. After performing all of

the above phases, the source code will be converted into the equivalent machine code.

Difference Between Scanning and Parsing

Definition

Scanning is the process of reading the source code as a stream of characters to convert them to

meaningful lexemes or tokens. In contrast, parsing is the process of taking the tokens generated

at the lexical analysis phase and transforming them into a parse tree. Thus, this is the main

difference between scanning and parsing.

Performed by

Further, the lexical analyzer performs scanning while parser performs parsing.

Associated Phase of the Compilation

Besides, scanning occurs during lexical analysis, whereas parsing occurs during syntax

analysis. Hence, this is another difference between scanning and parsing.

Occurrence

Moreover, scanning happens first, while parsing happens after performing scanning.

Conclusion

In overall, a compiler is a software program that is responsible for converting the source code

into equivalent machine code. It goes through several phases to accomplish this task. Here, the

scanning and parsing are two activities that occur during this compilation process. However,

the main difference between scanning and parsing is that scanning is the process of reading the

source code one character at a time in a methodical manner to convert them to tokens while

parsing is the process of taking the tokens and generating a parse tree as the output.

UNIT II

ASSEMBLERS

What is an Assembler?

The first idea a new computer programmer has of how a computer works is learned from a

programming language. Invariably, the language is a textual or symbolic method of encoding

programs to be executed by the computer. In fact, this language is far removed from what the

computer hardware actually "understands". At the hardware level, after all, computers only

understand bits and bit patterns. Somewhere between the programmer and the hardware the

symbolic programming language must be translated to a pattern of bits. The language

processing software which accomplishes this translation is usually centered around either an

assembler, a compiler, or an interpreter. The difference between these lies in how much of the

meaning of the language is "understood" by the language processor.

An interpreter is a language processor which actually executes programs written in its source

language. As such, it can be considered to fully understand that language. At the lowest level

of any computer system, there must always be some kind of interpreter, since something must

ultimately execute programs. Thus, the hardware may be considered to be the interpreter for

the machine language itself. Languages such as BASIC, LISP, and SNOBOL are typically

implemented by interpreter programs which are themselves interpreted by this lower level

hardware interpreter.

Interpreters running as machine language programs introduce inefficiency because each

instruction of the higher level language requires many machine instructions to execute. This

motivates the translation of high level language programs to machine language. This

translation is accomplished by either assemblers or compilers. If the translation can be

accomplished with no attention to the meaning of the source language, then the language is

called an assembly or low level language, and the translator is called an assembler. If the

meaning must be considered, the translator is called a compiler and the source language is

called a high level language. The distinction between high and low level languages is

somewhat artificial since there is a continuous spectrum of possible levels of complexity in

language design. In fact, many assembly languages contain some high level features, and some

high level languages contain low level features.

Since assemblers are the simplest of symbolic programming languages, and since high level

languages are complex enough to be the subject of entire texts, only assembly languages will

be discussed here. Although this simplifies the discussion of language processing, it does not

limit its applicability; most of the problems faced by an implementor of an assembly language

are also faced in high level language implementations. Furthermore, most of these problems

are present in even the simplest of assembly languages. For this reason, little reference will be

made to the comparatively complex assembly languages of real machines in the following

sections.

The Assembly Process

It is useful to consider how a person would process a program before trying to think about how

it is done by a program. For this purpose, consider the program in Figure 2.1. It is important to

note that the assembly process does not require any understanding of the program being

assembled. Thus, it is unnecessary to understand the algorithm implemented by the code in

Figure 2.1, and little understanding of the particular machine code being used is needed (for

those who are curious, the code is written for an R6502 microprocessor, the processor used in

the historically important Apple II family of personal computers from the late 1970's).

; UNSIGNED INTEGER DIVIDE ROUTINE

; Takes dividend in A, divisor in Y

; Returns remainder in A, quotient in Y

START: STA IDENDL ;Store the low half of the dividend

 STY ISOR ;Store the divisor

 LDA #0 ;Zero the high half of the dividend (in register A)

 TAX ;Zero the loop counter (in register X)

 LOOP: ASL IDENDL ;Shift the dividend left (low half first)

 ROL ; (high half second)

 CMP ISOR ;Compare high dividend with divisor

 BCC NOSUB ;If IDEND < ISOR don't subtract

 SBC ISOR ;Subtract ISOR from IDEND

 INC IDENDL ;Put a one bit in the quotient

 NOSUB: INX ;Count times through the loop

 CPX #8

 BNE LOOP ;Repeat loop 8 times

 LDY IDENDL ;Return quotient in Y

 RTS ;Return remainder in A

IDENDL:B 0 ;Reserve storage for the low dividend/quotient

ISOR: B 0 ;Reserve storage for the divisor

Figure 2.1. An example assembly language program.

When a person who knows the Roman alphabet looks at text such as that illustrated in Figure

2.1, an important, almost unconscious processing step takes place: The text is seen not as a

random pattern on the page, but as a sequence of lines, each composed of a sequence of

punctuation marks, numbers, and word-like strings. This processing step is formally

called lexical analysis, and the words and similar structures recognized at this level are

called lexemes.

If the person knows the language in which the text is written, a second and still possibly

unconscious processing step will occur: Lexical elements of the text will be classified into

structures according to their function in the text. In the case of an assembly language, these

might be labels, opcodes, operands, and comments; in English, they might be subjects, objects,

verbs, and subsidiary phrases. This level of analysis is called syntactic analysis, and is

performed with respect to the grammar or syntax of the language in question.

A person trying to hand translate the above example program must know that the R6502

microprocessor has a 16 bit memory address, that memory is addressed in 8 bit (one byte)

units, and that instructions have a one byte opcode field followed optionally by additional bytes

for the operands. The first step would typically involve looking at each instruction to find out

how many bytes of memory it occupies. Table 2.1 lists the instructions used in the above

example and gives the necessary information for this step.

Opcode Bytes Hex Code

ASL 3 0E aa aa

B 1 cc

BCC 2 90 oo

BNE 2 D0 oo

CMP 3 CD aa aa

CPX # 2 E0 cc

INC 3 EE aa aa

INX 1 E8

LDA # 2 A9 cc

LDY 3 AC aa aa

ROL 1 2A

RTS 1 60

SBC 3 ED aa aa

STA 3 8D aa aa

STY 3 8C aa aa

TAX 1 AA

Notes: aa aa - two byte address, least significant byte first.

 oo - one byte relative address.

 cc - one byte of constant data.

Table 2.1. Opcodes on the R6502.

To begin the translation of the example program to machine code, we take the data from table

2.1 and attach it to each line of code. Each significant line of an assembly language program

includes the symbolic name of one machine instruction, for example, STA. This is called

the opcode or operation code for that line. The programmer, of course, needs to know what the

program is supposed to do and what these opcodes are supposed to do, but the translator has no

need to know this! Here, we show the numerical equivalent of each opcode code in

hexadecimal, or base 16. We could have used any number base; inside the computer, the bytes

are stored in binary, and because hexidecimal to binary conversion is trivial, we use that base

here. While we're at it, we will strip off all the irrelevant commentary and formatting that was

only included only for the human reader, and leave only the textual description of the program.

8D START: STA IDENDL

aa

aa

8C STY ISOR

aa

aa

A9 LDA #0

cc

AA TAX

0E LOOP: ASL IDENDL

aa

aa

2A ROL

CD CMP ISOR

aa

aa

90 BCC NOSUB

oo

ED SBC ISOR

aa

aa

EE INC IDENDL

aa

aa

E8 NOSUB: INX

E0 CPX #8

cc

D0 BNE LOOP

oo

AC LDY IDENDL

aa

aa

60 RTS

cc IDENDL:B 0

cc ISOR: B 0

Figure 2.2. Partial translation of the example to machine language

The result of this first step in the translation is shown in Figure 2.2. This certainly does not

complete the job! Table 2.1 included constant data, relative offsets and addresses, as indicated

by the lower case notatons cc, oo and aaaa, and to finish the translation to machine code, we

must substitute numeric values for these!

Constants are the easiest. We simply incorporate the appropriate constants from the source

code into the machine code, translating each to hexadecimal. Relative offsets are a bit more

difficult! These give the number of bytes ahead (if positive) or behind (if negative) the location

immediately after the location that references the offset. Negative offsets are represented using

2's complement notation.

8D START: STA IDENDL

aa

aa

8C STY ISOR

aa

aa

A9 LDA #0

00

AA TAX

0E LOOP: ASL IDENDL

aa

aa

2A ROL

CD CMP ISOR

aa

aa

90 BCC NOSUB

06

ED SBC ISOR

aa

aa

EE INC IDENDL

aa

aa

E8 NOSUB: INX

E0 CPX #8

08

D0 BNE LOOP

EC

AC LDY IDENDL

aa

aa

60 RTS

00 IDENDL:B 0

00 ISOR: B 0

Figure 2.3. Additional translation of the example to machine language

The result of this next translation step is shown in boldface in Figure 2.3. We cannot complete

the translation without determining where the code will be placed in memory. Suppose, for

example, that we place this code in memory starting at location 020016. This allows us to

determine which byte goes in what memory location, and it allows us to assign values to the

two labels IDENDL and ISOR, and thus, fill out the values of all of the 2-byte address fields to

complete the translation.

0200: 8D START: STA IDENDL

0201: 21

0202: 02

0203: 8C STY ISOR

0204: 22

0205: 02

0206: A9 LDA #0

0207: 00

0208: AA TAX

0209: 0E LOOP: ASL IDENDL

020A: 21

020B: 02

020C: 2A ROL

020D: CD CMP ISOR

020E: 22

020F: 02

0210: 90 BCC NOSUB

0211: 06

0212: ED SBC ISOR

0213: 22

0214: 02

0215: EE INC IDENDL

0216: 21

0217: 02

0218: E8 NOSUB: INX

0219: E0 CPX #8

021A: 08

021B: D0 BNE LOOP

021C: EC

021D: AC LDY IDENDL

021E: 21

021F: 02

0220: 60 RTS

0221: 00 IDENDL:B 0

0222: 00 ISOR: B 0

Figure 2.4. Complete translation of the example to machine language

Again, in completing the translation to machine code, the changes from Figure 2.3 to Figure

2.4 are shown in boldface. For hand assembly of a small program, we don't need anything

additional, but if we were assembling a program that ran on for pages and pages, it would be

helpful to read through it once to find the numerical addresses of each label in the program,

and then read through it again, substituting those numerical values into the code where they are

needed.

symbol address

START 0200

LOOP 0209

NOSUB 0218

IDENDL 0221

ISOR 0222

Table 2.2. The symbol table for Figure 2.4.

Table 2.2 shows the symbol table for this small example, sorted into numerical order. For a

really large program, we might rewrite the table into alphabetical order to before using it to

finish the assembly.

It is worth noting the role which the meaning of the assembly code played in the assembly

process. None! The programmer writing the line STA IDENDL must have understood its

meaning, "store the value of the A register in the location labeled IDENDL", and the CPU,

when it executes the corresponding binary instruction 8D 21 02 must know that this means

"store the value of the A register in the location 0221", but there is no need for the person or

computer program that translates assembly code to machine code to understand this!

To the translator performing the assembly process, the line STA IDENDL means "allocate 3

bytes of memory, put 8D in the first byte, and put the 16 bit value of the symbol IDENDL in

the remaining 2 bytes." If the symbol IDENDL is mapped to the value 0221 by the symbol

table, then the interpretation of the result of the assembler's interpretation of the source code is

the same as the programmers interpretation. These relationships may be illustrated in Figure

2.5.

 Source Text

 / \

 programmer's / \ assembler's

 view of meaning / \ view of meaning

 / \

 Abstract Meaning ----- Machine Code

 hardware's

 view of meaning

Figure 2.5. Views of the meaning of a program.

A Simple Assembly Language

In order to simplify this discussion of the translation process, an assembly language less

complex than that used in the previous example will be used. The R6502 language used there is

complicated by the fact that a single symbolic instruction may assemble in many different

ways; for example, the symbolic instruction LDA assembles to either A9, AD, A5, or others

depending on the form of the operand field. For example, if the operand field begins with a

hash mark (#), the immediate form, A9 is used, while if the operand is an expression with a 16

bit value but is not preceded by a hash mark, the direct addressing form, AD is used. In a

simplified assembly language, these differences in the address mode can be indicated by

different symbolic names.

Another problem with using the R6502 assembly language is its size; it has 56 different

symbolic instructions. None of the basic functions of the assembler depend on the number of

different instructions, so a simple assembly language with two instructions will be used as an

example for the remainder of this chapter. These instructions are B, which means, initialize one

byte (8 bits) of memory, and W, which means initialize one word (16 bits) of memory. These

correspond to the .BYTE and .WORD directives in the MACRO-11 assembly language for the

PDP-11 (circa 1970), or to variants of the DC directive in the IBM 360 (and 370) assembly

language (circa 1965). The syntax of most modern assembly languages can be traced back to

one or the other of these older languages, although many minor changes have been introduced

in the years since the widespread use of these older languages.

These two simple instructions could be used to assemble code for the R6502 processor by

composing however many B and W directives as are needed to make up each actual machine

instruction, as is illustrated in Figure 2.6.

; -- DEFINE SYMBOLIC INSTRUCTION NAMES --

STA = #8D ;STA direct addressing

STY = #8C ;STY direct addressing

LDAI= #A9 ;LDA immediate operand

TAX = #AA ;TAX

ASL = #0E ;ASL

; -- THE PROGRAM ITSELF --

START: B STA ; Store

 W IDENDL ; ... the low half of the dividend

 B STY ; Store

 W ISOR ; ... the divisor

 B LDAI ; Load register A (the high half of the dividend)

 B 0 ; ... with zero

 B TAX ; Zero the loop counter (in register X)

LOOP: B ASL ; Shift left

 W IDENDL ; ... the dividend

Figure 2.6. Part of Figure 2.1 recoded in the simple assembly language.

Figure 2.6 completes the first 5 instructions of the original example, except that the

programmer has had to remember the instruction format and write one line per byte or per 16-

bit word in the program, and the programmer had to begin his or her efforts by explicitly

defining to the assembler the values to be assembled for each machine instruction. In the

Figure, indenting has been used to distinguish between instructions and their operands.

Informally, each line of this simple assembly language is either a definition or a statement.

Definitions assign values to symbolic names and do not imply the loading of any values in

memory; each of the two statements we have defined loads values in memory in its own way.

Each statements consists of an optional label followed by an opcode and an operand. Labels

end with a colon and may begin anywhere on the line. Note that the freedom to indent labels is

not common. Many assemblers require that labels begin at the left margin.

The valid opcodes are B and W; these mean, respectively, assemble one byte and assemble one

word. The operand field, which is the same as the value field in a definition, may be either an

identifier, a symbolic name, a decimal number, or a hexadecimal number; the latter is indicated

by the use of the # symbol as a prefix (this should not be confused with the use of the # prefix

in the official R6502 assembly language, where it means an immediate constant). If an

identifier or symbolic name is used, it must be defined elsewhere in the program, either by its

use as a label, or by its use in a definition.

Formal Definitions

The above informal definition is accurate as far as it goes, but its very informality leads to

difficulties. If two different programmers used this definition and wrote their own assemblers,

it is likely that they would end up supporting slightly different languages. With definitions of

larger languages, the differences between independently written processors frequently become

insurmountable.

Over the years, a number of formal definition techniques have been developed which help to

overcome this problem. Perhaps the oldest of these is BNF notation.

The initials BNF stand for either Backus-Naur Form or Backus Normal Form (depending on

who is talking). This notation became widely used after Peter Naur used it in the definition of

Algol 60; Naur modified a notation used by John Backus (the developer of FORTRAN). Since

Backus has claimed that he did not invent the notation himself, but merely used it, and since

the notation is not (technically speaking) a normal form, perhaps it is best to forget what the

initials BNF stand for.

An important limitation of this notation is that it only defines the syntax of a language, while

informal definitions such as the one given above indicate something about the meaning or

semantics involved. Thus, a BNF definition can describe how to construct an assembly

language program, but it can notdescribe the meaning of the result. The small assembly

language used here is defined in Figure 2.7, with added informal comments.

<program> ::= <line><end of file> | <line><program>

 -- a program is a sequence of 1 or more lines

<line> ::= <definition> | <statement> | <comment>

 -- a line is either a definition, statement or comment

<definition> ::= <identifier> = <operand><comment>

 -- a definition is an identifier, followed by an

 equals sign, followed by an operand

<statement> ::= <label><instruction> | <instruction>

 -- the label part of a statement is optional

<instruction> ::= <opcode><operand><comment> | <comment>

 -- the opcode, operand part of an instruction is optional

<comment> ::= ;<text><line end> | <line end>

 -- comments at ends of lines are optional

<label> ::= <identifier> :

 -- a label is a symbol followed by a colon

<opcode> ::= B | W

 -- the legal opcodes are B and W

<operand> ::= <identifier> | <number>

 -- an operand is either an identifier or a number

Figure 2.7. BNF definition of the small assembly language.

Each line in the formal part of the above definition is called a production rule because it

defines how to produce an object in the language from simpler objects. For example, a

definition is made by concatenating a symbol, an equals sign, an operand, and a comment.

Similarly, a comment is made by either a line end or a semicolon followed by any text

followed by a line end.

In BNF, the symbols <> | and ::= have special meanings. The ::= symbol is used to indicate

that the object on the left is defined by the "expression" to the right. The vertical bar is used to

separate alternatives, while the angle brackets are used to enclose "nonterminal" symbols

(those which must be further defined elsewhere). All of these special symbols are

called metasymbols because they are used to "speak about" symbols in the language being

defined.

This definition has two faults: It is wordy, and it omits lexical details such as the rules

governing spacing and the construction of identifiers and numbers. Using BNF, the latter

details can be defined as shown in Figure 2.8:

<identifier> ::= <letter> | <symbol><letter or digit>

 -- identifiers start with a letter

<letter> ::= A | B | C | ... | X | Y | Z

<digit> ::= 0 | 1 | 2 | ... | 7 | 8 | 9

<letter or digit> ::= <letter> | <digit>

<number> ::= <decimal> | #<hexadecimal>

<decimal> ::= <digit> | <digit><decimal>

 -- a decimal number is a sequence of digits

<hexadecimal> ::= <hexdigit> | <hexdigit><hexadecimal>

<hexdigit> ::= <digit> | A | B | C | D | E | F

Figure 2.8: Lexical details of the example language.

Note that Figure 2.8 does not mention the spaces between lexemes! It is fairly common to

leave this detail out of the formal description of programming languages. Instead, the informal

statement is made that spaces may be included before any lexeme or between lexemes but may

not be included within them. It is sometimes necessary to include the additional rule that

successive identifiers or numbers must be separated by at least one space.

There are a number of ways of formally including the treatment of spaces in the definit ion of

the syntax of a language, but it is more common to do this in a formal description of the lexical

structure, as will be discussed later.

The primary problem with the BNF definitions given above is that they are wordy. There are

too many nonterminal symbols. The most common solution to this is to introduce new

metasymbols which allow many BNF production rules to be combined into a single rule in the

new notation. The symbols which are generally introduced are [], {}, and (). Square brackets

enclose optional constructs, curly brackets enclose constructs which may be repeated zero or

more times, and parentheses group alternatives.

Notations such as this are commonly called extended BNF or EBNF notations; this one derives

from a merger of BNF with the form of definition used originally for COBOL, in which

vertical groupings of symbols indicated alternatives, and the different kinds of brackets were

used as they are here. Figure 2.9 gives the definition of the example assembly language in this

notation.

<program> ::= <line> { <line> } <end of file>

 -- a program is a line followed by zero or more lines

<line> ::= (<definition> | <statement>) [;<text>] <line end>

 -- a line is a definition or statement with an optional comment

<definition> ::= <identifier> = <operand>

<statement> ::= [<identifier> :] [(B | W) <operand>]

<operand> ::= <identifier> | <number>

Figure 2.9. An Extended BNF grammar for the example language.

The difficulty with the definition given in Figure 2.9 is that, by omitting nonterminal symbols

such as <comment> and <label>, less of the meaning of the grammar has been conveyed by

this definition of the syntax. Of course, if meaningless symbols such as <a> and had been

substituted for <comment> and <label> in the original BNF grammar, the same difficulty

would have arisen. This illustrates that, by carefully naming nonterminal symbols in a

grammar, the grammar can be made to informally describe the meaning of a language at the

same time that it formally describes the syntax.

A third notation for the formal definition of the syntax of a language is known as RTN

(Recursive Transition Network) notation. Definitions in this form are also frequently

called syntax diagrams or railroad charts, and are frequently used for the definition of

languages descended from Pascal. The syntax diagrams for the example assembly language are

given in Figure 2.10.

program ------

 ---------| line |-------(end of file)----

 / ------ \

 ______________/

 --| definition |--

line / ------------ \

 ---- -------------------------(line end)--

 \ ----------- / \ --------- /

 --| statement |--- -(;)-| comment |-

 ----------- ---------

definition ------------ ---------

 --------| identifier |---(=)---| operand |----------

 ------------ ---------

statement

 --

 \ ------------ / \ /

 -| identifier |--(:)- \ --(B)-- --------- /

 ------------ \ --| operand |-

 -(W)-- ---------

Figure 2.10. RTN notation for the example language.

In RTN notation, nonterminal symbols are boxed, while terminal symbols (those which appear

in the language) are circled. These syntax diagrams are essentially translations of the Extended

BNF grammar given previously. The term "railroad chart" comes from the similarity of these

diagrams to the schematic descriptions of railroad networks frequently used in railroad control

towers and dispatching centers. As with flowcharts, poorly structured syntax diagrams are

possible which are not easily translated to a structured form such as Extended BNF.

RTN notation has an important property: The RTN diagrams for a language are isomorphic to

the flowchart of a program which reads input in that language! Such a program is called

a parser. The same observations can be made about Extended BNF notation. In that case, the

relation to be noted is that there are operations for selection between alternatives (a|b is like if ?

then a else b), for repetition ({a} is like while ? do a), and for conditional inclusion ([a] is like

if ? then a). Additionally, in both Extended BNF and RTN notation, the inclusion of a

nonterminal symbol in the definition is equivalent to a procedure or function call in a program

(hence the R in RTN).

There is a problem with the relationship between language definitions and programs which

process that language. This problem is hinted at by the question marks in the parenthetic

remarks in the last paragraph. The problem is that, although the form of the parsing program is

specified by the language definition, the conditions to be tested at each branch in the flowchart

are not specified. This is the crux of the parsing problem.

Before discussing some solutions to the parsing problem, it is interesting to consider the

reverse problem, that of writing a program which generates programs in the language being

defined. In that case, each terminal symbol in the language definition maps to a write

statement. A simple program generator for random programs would request a new random

number to be used as the basis of each branch in the program. For example, if "random" is a

function returning a random boolean value each time it is called, the random generator for lines

of assembly code would have the form given in Figure 2.11.

procedure line; void line()

begin {

 if random then begin if (random()) {

 if random if (random())

 then definition definition();

 else statement; else

 end; statement();

 if random then begin }

 write(';'); if (random()) {

 text; putchar(';')

 end text();

end {line}; }

 } /* line */

Figure 2.11. A random program generator in Pascal and C.

Most of the "computer poetry" which is the subject of occasional jokes is produced using

essentially this technique, except that the basic grammar is that of a language such as English,

and variables are added to control such things as rhyme and meter. In artificial intelligence

work, an RTN grammar with added variables is referred to as an ATN or Augmented

Transition Network grammar. The use of ATN grammars is at the center of much work with

natural language understanding.

Parsing

A program (or part of a program) which reads text in an input language and classifies its

components according to their grammatic derivation is called a parser. In this section, we will

deal only with parsers and not with the problem of what to do with the output of the parser. A

language processing program where the parser directs the translation process is said to be

a syntax directed translator; later sections will describe these. As has already been mentioned,

the flowchart of a parser can be derived from the grammar of a language; there are other forms

of parsers, for example, table driven ones, but these will not be discussed here.

The parsers discussed here are sometimes called top-down parsers because they begin with the

assumption that the input will be a program and they operate by trying to decide which of the

ways of constructing a program matches the input. An alternative, bottom-up parsing, involves

putting pieces of the input together to see what they make, hoping eventually to reduce the

entire input to a single object and then making sure that the result is a program. The differences

between these two approaches are most apparent in the context of expression analysis, where

they will be discussed in more detail. An important property of both techniques, however, is

that parsing is accomplished as the input text is read; computer programming languages are

designed so that a parser can operate by reading only a few lexemes at a time, without any need

to hold the entire text in memory at once.

The basic problem faced in a top-down parser is that of differentiating between the various

alternate forms that may be substituted for some nonterminal symbol. The example given in

Figure 2.12 demonstrates this problem in the context of the nonterminal symbol <line> from

the extended BNF grammar given in Figure 2.9:

B = 5

B : B 5

B 5

W 5

Figure 2.12. A parsing problem for the nonterminal <line>.

The first line in Figure 2.12 is a <definition> while the others are <statement>s. Clearly, these

cannot be distinguished by their first lexeme, but the second lexeme does the job. The first

lexemes of the second and third lines are the same, but they serve different purposes; again, the

second lexeme distinguishes between these purposes. Only in the last two lines is the first

lexeme sufficient to distinguish between the forms. These examples suggest (correctly) that the

example assembly language can be parsed by reading one lexeme at a time, from left to right,

with the added ability to peek ahead at the next lexeme from time to time when that is needed

to distinguish between forms which do not differ in their first lexeme.

This process of 'peeking ahead' at the next lexeme is conventionally called looking ahead,

or looking right in the input. The number of lexemes ahead of the current lexeme which must

be examined in order to parse a language is commonly used as a measure of the complexity of

the grammar for that language. Thus, a grammar which allows a language to be parsed without

looking ahead is the simplest; such grammars are called LL0 grammars (for Left-to-right

parsing, Leftmost reduction first, looking right 0 places'). The example assembly language is in

the class LL1 because it requires one symbol look-ahead. It is interesting to speculate about

how far ahead one must look in order to parse English; is English an LL6 language?

Most grammars for English appear to require infinite look-ahead, but example sentences

illustrating the need for more than a few words of look-ahead are very hard for real people to

follow even though they may be correct under the commonplace grammars people use to

describe natural languages. It may be that the human capacity for look-ahead is limited by the

fact that human short-term memory can hold about 'seven plus or minus two' things at any

time; if this is the case, it becomes reasonable to speculate that a grammar requiring

somewhere between 5 and 9 symbols of lookahead might be adequate to describe English as it

is actually used.

For the example assembly language, the main body of the parser is easy to propose. This is

simply a loop which processes lines until the end of a file. Prior to the 1970's, of course, most

parsers were written in assembly language or even machine language, but today, it is common

to write language processors in decent high-level languages. Figure 2.13 shows how this might

look in Pascal and C.

procedure program; void program()

begin {

 repeat do {

 line; line();

 until eof(input); } while (!feof(stdin));

end {program}; }

Figure 2.13. The main body of a parser in Pascal and C.

The predicates "eof(input)" or "feof(stdin)" can be formally treated as asking if the current

lexeme is a special, invisible, "end of file" lexeme, although it would probably be implemented

as a simple test for end of file. Note that the parser given in Figure 2.13 has not been coded to

anticipate an empty input file; thus, it may well produce unexpected results for an empty file.

Processing a line is more complex, since there must be some way to examine the current and

next lexeme. To allow this, we will use two variables, "lex.this" and "lex.next"; the variable

"lex.this" always holds the current lexeme, while the variable "lex.next" always holds the

lexeme that comes next after the current one. Thus, examining the contents of "lex.next"

corresponds to looking ahead in the input. The procedure "lex.scan" will be used to advance

the state of the lexical analyzer.

Formally, the lexical analyzer is an object with two read-only public variables, "lex.this" and

"lex.next", and one public procedure, "lex.scan". In a language that doesn't support objects, we

can simply make these variables global, naming them "lex_this" and "lex_next", with no loss

of utility, because we have no intention of ever introducing multiple instances of the lexical

analyzer. In fact, if our programming environment requires that we name the lexical analyzer

class and then instantiate it, our environment is forcing us to do something inappropriate by

suggesting the possibility of multiple instances of this class.

For now, we will assume that the values of "lex.next" and "lex.this" are strings, although this

would rarely be the case in a production parser; instead, in production, these really ought to be

values of type "lexeme", where values of type lexeme carry compact encodings of the

attributes of the lexeme as they are computed.

Using the extended BNF grammar of the example assembly language as a basis, a procedure to

parse one line can be written as shown in Figure 2.14.

procedure line; void line()

begin {

 if lex.next = "=" if (!strcmp(lex.next,"="))

 then definition definition();

 else statement; else

skipline; statement();

end {line}; skipline();

 }

Figure 2.14. A parser for lines in Pascal and C.

Note that the inclusion of a comment after the body of the definition or statement has been

ignored! Whatever follows the definition or statement up to the end of line has simply been

skipped over by the call to "skipline". Detection of errors significantly complicates this code;

as is illustrated in Figure 2.15.

procedure line {with error detection};

begin

 if is_identifier(lex.this) then

 if lex.next = "="

 then definition

 else statement;

 if (lex.this = ";") or is_eol(lex.this) then begin

 skipline;

 end else begin

 error("comment expected, something else found");

 skipline;

 end;

end {line};

Figure 2.15. A parser with error detection.

Here, the predicate "is_identifier" has been used to check that the line begins with a valid

identifier, since all legal nonblank lines start with a valid identifier. Similarly, the predicate

"iseol" has been used to check to see if the current lexeme is an end-of-line marker. In the

remainder of this discussion of parsing, this extra code to handle errors will be ignored, but it

should be kept in mind that this code frequently dominates the structure of production-quality

parsers because users demand good error detection and reporting.

The procedures for parsing definitions and statements which were called from the above

routines can easily be written as shown in Figure 2.16.

void definition ()

{

lex_scan(); /* skip over identifier */

lex_scan(); /* skip over equals sign */

 operand;

} /* definition */

void statement ()

{

 if (!strcmp(lex.next,":")) {

lex_scan(); /* skip over identifier */

lex_scan(); /* skip over colon */

 }

 if (!strcmp(lex.this,"B")) {

lex_scan(); /* skip over B */

 operand();

 } else if (!strcmp(lex.this,"W")) {

lex_scan(); /* skip over W */

 operand;

 }

} /* statement */

Figure 2.16. Parsers for definitions and statements.

It is interesting to note that these versions of definition and statement would require no

additional error checking code if called from the error checking version of line given in Figure

2.12, assuming that the operand procedure performs appropriate checks for malformed

operands.

A Syntax Directed Assembler

The parser given in the previous section provides a convenient scaffolding on which to build

the rest of an assembler. In order to do this, there must be a place to store the assembled code;

here, this will "M", standing for memory, an array of bytes.

It should be noted that most production assemblers do not directly store assembled code in

memory, but store it in special files called object files; these will be discussed in detail in

Chapter 7. When assembly is directly into memory, it becomes necessary to violate the "sane

usage" constraints on pointers, perhaps by using a small assembly language routine that

directly interprets an integer memory address as a pointer. A classic name for this routine

would be "poke", after the common name for the built-in procedure in many early

microcomputer BASIC implementations that did this. Typically, "poke(b,a)" has the effect of

"M[a]:=b".

We also need a mechanism to store the association of symbols with values in the symbol table.

Logically, the symboltable is an object, perhaps named "st", with two access routines,

"st.define" and "st.lookup"; the former defines (or redefines) a symbol by associating a value

with it, while the latter returns the value associated with a symbol. Appropriate

implementations for these routines will not be discussed until the next chapter, but it is worth

noting that, again, the object-oriented paradigm poses minor problems. We don't really want to

create a symbol-table class, with the suggestion that there might be multiple coexisting symbol

tables in our assembler; rather, we want a guarantee that there will always be exactly one

object, the symbol table, that is the only instance of thisr class. Furthermore, with only one

instance, the need to prefix each use of an access routine for that instance with the instance

name becomes annoying.

We can now rewrite the procedures "definition" and "statement" as shown in Figure 2.17 for

use in a real assembler.

procedure definition;

begin

 s := lex.this {save the symbol to be st_defined};

lex_scan {skip that symbol};

lex_scan {skip the equals sign};

 v := operand;

st_define(s,v);

end {definition};

procedure statement;

begin

 if lex.next = ":" then begin

 s := lex.this {save symbol used as label};

lex_scan {skip label};

lex_scan {skip colon};

st_define(s,location);

 end;

 if lex.this = "B" then begin

lex_scan {skip B};

 M[location] := operand;

 location := location + 1;

 end else if lex.this = "W" then begin

lex_scan {skip W};

 o := operand

 M[location] := first_byte_of(o);

 M[location + 1] := second_byte_of(o);

 location := location + 2;

 end;

end {statement};

Figure 2.17. The heart of an assembler.

To paraphrase the actions taken by these procedures, when a definition is found, the identifier

is set equal to the associated operand. In a statement, when a label is found, it is set equal to the

current location. The opcode B causes the operand to be stored in the current location, after

which the current location is incremented by one. The opcode W causes the operand to be

stored in the current and next location (taken as a 16 bit word), after which the current location

is incremented by two.

The variable called "location" above is an important component of any assembler. It is

commonly called the location counter in the assembler, by analogy with the program counter

maintained by the computer when it runs a program. The assembler uses the location counter to

determine where to place assembled instructions in memory during the assembly process,

while the computer uses the program counter to determine where to fetch instructions from in

memory when it runs a program.

Lexical Analysis

Before the shortcomings of the above basic assembler are examined, We will examine the

implementation of the lexical analysis package, with the access procedure "lex.scan" and the

variables "lex.this" and "lex.next". The "lex.scan" procedure identifies lexemes (words, tokens,

or other logical units) from the lexicon (vocabulary) of a language. Although the syntactic

structures (grammars) of computer languages differ greatly, their lexical structures are very

similar to each other and to the written forms of natural languages which use the same

alphabet. Thus, spaces serve to delimit lexemes, as do punctuation marks, which are

themselves lexemes. It is important to note that the process of lexical analysis never depends

on the meaning of the language or on syntactic issues such as whether or not some lexeme is

allowed in a particular context.

The lexical structure of the example assembly language can be summarized as follows: All

lexemes are either symbolic names, numbers, or punctuation marks. B and W are simply

symbolic names. A symbolic name is a letter followed by zero or more letters or digits. A

number is either a string of digits or a pound sign followed by a string of hexadecimal digits.

The allowed punctuation marks are the equals sign, colon, semicolon, line-end and end-of-file.

Any number of spaces may be inserted between lexemes without changing the lexical structure

of a string, but at least one space must initially separate successive symbolic names or

numbers. The extended BNF grammar given in Figure 2.18 describes the lexical level of the

example assembly language in more detail than that in Figure 2.8.

<program> ::= <lexeme> { <lexeme> }

 -- a program is a string of one or more lexemes

<lexeme> ::= { <blank> } (<identifier> | <number> | <punctuation>)

 -- any lexeme may be preceded by blanks

<identifier> ::= <letter> { <letter> | <digit> }

<number> ::= # <hexdigit> { <hexdigit> } | <digit> { <digit> }

<punctuation> ::= : | ; | = | <line end> | <end of file>

Figure 2.18. Lexical details in EBNF.

This definition of the lexical level does not include the rule that consecutive identifiers or

decimal numbers must be separated by spaces; thus, it is ambiguous. This does not cause a

problem in lexical analysis, but programmers must be aware that the string "B12" will be

interpreted as one identifier, even though the above rules would allow it to be interpreted as

starting with the identifiers "B" or "B1" followed by the numbers "12" or "2". The reason this

causes no problem in lexical analysis is that, for both parsers and lexical analyzers, a so called

greedy approach is commonly used. That is, we assume that the parser or lexical analyzer will

construct the largest identifier or number it can by following the rules for <identifier> or

<number> before it returns to the level where it looks for the start of the next lexeme.

An alternate way of formalizing the description of the lexical level of a language rests on the

use of finite state transition diagrams or simple state transition networks. In such a definition,

state changes are caused by the processing of successive input characters, and some state

changes also signal the completion of the analysis of some lexeme. The notation used is very

similar to RTN notation, and is shown in Figure 2.19.

 __

 / \

start \ identifier /|

 -------->----------(letter)-------->-------------------- |

 / \ \ / \ |

 \ / | |\ /| |

 (blank) | | -(letter)- | |

 | \ / |

 | -(digit)-- |

 |\ number /|

 | (#)----(hexdigit)---->--------------- |

 | / \ |

 | ____________/ |

 |\ number /|

 | ----(digit)---------->--------------- |

 | / \ |

 | _________/ |

 |\ punctuation /|

 |\ ---------(:)--------->--------------- /|

 |\ -----(;)----------------------------- /|

 \ --------------(line end)------------- /

 -(end of file)-----------------------

Figure 2.19. Finite state description of the lexical level.

None of the rules given up to this point mention anything about a maximum length for

identifiers, maximum value for numbers, maximum number of characters in a line, or

maximum program size. These are frequently considered to be outside of the realm of formal

definition, and may even vary from one implementation of a language to another. Typically,

the informal part of the language specification will include minimum values for the line length,

number of significant characters in an identifier, and the maximum number of digits allowed in

a number.

A typical lexical analyzer will contain, as a private component, a line buffer which holds one

line of input (a string variable or an array of characters). With this buffer is associated a

variable which points to or indexes the first character in the buffer which has not yet been

processed at the lexical level. Because of the need for look-ahead, processing at the lexical

level will generally be a few lexemes ahead of processing at the syntactic level. We will use

the variable "pos" to serve this purpose.

In addition, we need a more sophisticated way to represent the current lexemes than simple

character strings! Instead, we will represent lexemes with a record or structure that contains

information about the lexeme. Figure 2.20 illustrates appropriate type definitions:

type lextypes = (identifier, number, punctuation);

type lexeme = record

 start: integer { index of start of lexeme on line };

 stop: integer { index of end of lexeme on line };

typ: lextypes;

 end;

enumlextypes { identifier, number, punctuation };

struct lexeme {

int start; /* index of start of lexeme on line */

int stop; /* index of end of lexeme on line */

lextypestyp; /* index of end of lexeme on line */

}

Figure 2.20. Type definitions for lexeme types in Pascal and C.

A programming language such as Ada allows a clear definition of the interface between the

lexical analyzer and the rest of the world, as shown in Figure 2.21.

package lex is

 type lextype is (identifier, number, punctuation);

 type lexeme is

 record

 start: integer; -- starting position of lexeme on line

 stop: integer; -- ending position of lexeme on line

typ: lextype; -- nature of this lexeme

 end record;

 this: lexeme; -- the current lexeme

 next: lexeme; -- the lexeme following the current one

 procedure init; -- called to start the lexical analyzer

 procedure nextline; -- called to advance to the next line

 -- after a call to either of the above, this and next will

 -- be the first and second lexeme on the current line

 procedure scan; -- called to advance to the next lexeme on the line

 -- after a call to next, this and next will advance one lexeme

 -- within the current line

end lex;

Figure 2.21: An Ada interface to the Lexical Analyzer

As with C++ and Java, the Ada language allows interface specificiations to be given separately

from the implementation of an abstraction. All of the definitions in an Ada package declaration

are publically available to the rest of the program, including type definitions, variables and

functions. Unlike C++ and Java, however, Ada packages are objects, not classes; Ada does

include something called a generic package that corresponds to classes, but the purpose of this

discussion is not to teach all of Ada.

It is fair to ask, why didn't we add a string field to the lexeme structure to hold the text of the

current lexeme? The answer to this is that we are interested in writing efficient software, and

copying strings is something that should be avoided if it is not necessary. Therefore, what we

want in the lexeme data structure is not the text of the lexeme, but rather, the numerical value

of numeric lexemes, some equally concise indication of what identifer is represented, and in

the case of punctuation, a quick and easy way to determine what mark is involved. We will

deal with these issues later.

Given an interface specification, we can go on to define the functions and private variables of

the lexical analyzer as shown in Figure 2.22:

package body lex is

 line: array (0 .. linelen) of char;

pos: integer; -- current position in line

 ... -- we omit a few details (initialization etc)

 procedure scan is

 begin

 this := next;

 while line(pos) = ' ' loop

pos := pos + 1;

endloop

next.start := pos; -- mark start of lexeme

 if line(pos) in 'A' .. 'Z' then

next.typ := identifier;

 loop

 pos := pos + 1;

 exit when (line(pos) not in 'A' .. 'Z')

 and then (line(pos) not in '0' .. '9');

endloop;

elsif line(pos) in '0' .. '9' then

next.typ := number;

 repeat pos := pos + 1;

 loop

 pos := pos + 1;

 exit when line(pos) not in '0' .. '9';

endloop;

elsiflinebuf[pos] = '#' then

next.typ := number;

 loop

 pos := pos + 1;

 exit when (line(pos) not in '0' .. '9')

 and then (line(pos) not in 'A' .. 'F');

endloop;

 else

 -- we treat everything else as punctuation

next.typ := punctuation;

pos := pos + 1;

endif;

next.stop := pos - 1 {remember where lexeme ends};

 end scan;

end lex;

Figure 2.22. A lexical analyzer.

Note that important details have been ignored in this version of "lex.scan" such as

initialization, checking for the end of a line, or handling of invalid characters; furthermore,

we've provided no way for the user to inspect the current lexeme to determine if it is a

particular identifier or a particular punctuation mark!

The version of "lex.scan" given in Figure 2.22 makes it clear that the cost of one lexeme look-

ahead is a single assignment statement per lexeme processed, plus an extra variable to store the

value of one lexeme. In fact, the assignment statement is not free, since it actually involves

copying an entire record that is several words long, but we can afford this.

The fact that the cost of look-ahead is low was not understood in the design of some early

programming, where the need for look-ahead was eliminated by having a leading keyword on

each line to identify the type of that line. For example, all early versions of BASIC required the

keyword "LET" at the start of each assignment statement.

It is common to make the lexical analyzer responsible for skipping comments; thus, semicolon

would not be considered a lexeme type in the example assembly language; rather, the end of

line lexeme would be considered to include the comments leading up to the end of line. In

languages such as Pascal and PL/I, where comments may be interspersed between any

lexemes, the lexical analyzer would identify and skip comments as part of the code responsible

for skipping spaces between lexemes.

It is also common to integrate the production of a listing with the lexical analyzer. Thus, the

routine to print a line is typically called from within the lexical analyzer as a consequence of

finishing the analysis of the previous line, and error message formatting is tied to the lexical

analyzer so that error messages can be printed under the lexeme to which they apply.

Alternatives

The assembler presented up to this point is incomplete, since it lacks any symbol table

mechanism, and even if that were provided, it would not be able to handle identifiers which are

defined after their first use. These problems will be solved in the next two chapters, but before

solving them, it is useful to look at the alternatives which have been avoided in this

presentation of parsing techniques.

A natural objection to the above presentation is that it avoids using powerful high level

language features; specifically, it makes little use of string operations which are supposed to

greatly simplify text processing. In fact, the extensive use of string operations can lead to

trouble, as the following example illustrates:

Consider an assembler which, after reading a line in as a string, searches the line, using a string

search operator, for any semicolon and uses substring operations to remove that and all

following characters (the comment) from the line. The next step might be to use a search

operation for an equals sign in order to distinguish between statements and definitions. For

statements, a second search operation could be used to see if there is a colon, and if there is,

substring operations could be used to remove the colon from the line and process it. Although

there is no doubt that a working assembler could be written this way, this approach is also

computationally expensive: Each substring operation is typically implemented by a loop which

copies one character at a time, and string searches are typically implemented by sequentially

testing successive characters. Even if these are done by hardware, the above approach leads to

testing each character on a line many times, requiring many memory cycles where the lexical

analyzer given requires only one.

Actually, there is an appropriate way to use string functions in the lexical analysis routine

presented above. The key is to use the string function to do exactly the same processing as is

explicitly indicated in the code given above; for example:

while linebuf[pos] = ' ' do pos := pos + 1;

can be replaced by

pos := (pos-1) + verify(substr(linebuf,pos),' ');

assuming the PL/I string functions "verify" and "substr", which return the position of some

character in a string and take a substring, respectively. Unfortunately, unless a good optimizing

compiler is used, the "substr" operation will involve making an unnecessary copy of part of the

line buffer, and it is not much harder to write explicit code for the operation in the first place.

TWO PASS ASSEMBLER

Assembler is a program for converting instructions written in low-level assembly code into

relocatable machine code and generating along information for the loader.

It generates instructions by evaluating the mnemonics (symbols) in operation field and find the

value of symbol and literals to produce machine code. Now, if assembler do all this work in

one scan then it is called single pass assembler, otherwise if it does in multiple scans then

called multiple pass assembler. Here assembler divide these tasks in two passes:

 Pass-1:

1. Define symbols and literals and remember them in symbol table and literal table

respectively.

2. Keep track of location counter

3. Process pseudo-operations

 Pass-2:

1. Generate object code by converting symbolic op-code into respective numeric op-code

2. Generate data for literals and look for values of symbols

Firstly, We will take a small assembly language program to understand the working in their

respective passes. Assembly language statement format:

[Label] [Opcode] [operand]

Example: M ADD R1, ='3'

where, M - Label; ADD - symbolic opcode;

R1 - symbolic register operand; (='3') - Literal

Assembly Program:

Label Op-code operand LC value(Location counter)

JOHN START 200

 MOVER R1, ='3' 200

 MOVEM R1, X 201

L1 MOVER R2, ='2' 202

 LTORG 203

X DS 1 204

 END 205

Let’s take a look on how this program is working:

1. START: This instruction starts the execution of program from location 200 and label with

START provides name for the program.(JOHN is name for program)

2. MOVER: It moves the content of literal(=’3′) into register operand R1.

3. MOVEM: It moves the content of register into memory operand(X).

4. MOVER: It again moves the content of literal(=’2′) into register operand R2 and its label

is specified as L1.

5. LTORG: It assigns address to literals(current LC value).

6. DS(Data Space): It assigns a data space of 1 to Symbol X.

7. END: It finishes the program execution.

Working of Pass-1: Define Symbol and literal table with their addresses.

Note: Literal address is specified by LTORG or END.

Step-1: START 200 (here no symbol or literal is found so both table would be empty)

Step-2: MOVER R1, =’3′ 200 (=’3′ is a literal so literal table is made)

Literal Address

Literal Address

=’3′ – – –

Step-3: MOVEM R1, X 201

X is a symbol referred prior to its declaration so it is stored in symbol table with blank address

field.

Symbol Address

X – – –

ADVERTISING

Step-4: L1 MOVER R2, =’2′ 202

L1 is a label and =’2′ is a literal so store them in respective tables

Symbol Address

X – – –

L1 202

Literal Address

=’3′ – – –

=’2′ – – –

Step-5: LTORG 203

Assign address to first literal specified by LC value, i.e., 203

Literal Address

=’3′ 203

=’2′ – – –

Step-6: X DS 1 204

It is a data declaration statement i.e X is assigned data space of 1. But X is a symbol which was

referred earlier in step 3 and defined in step 6.This condition is called Forward Reference

Problem where variable is referred prior to its declaration and can be solved by back-patching.

So now assembler will assign X the address specified by LC value of current step.

Symbol Address

X 204

L1 202

Step-7: END 205

Program finishes execution and remaining literal will get address specified by LC value of

END instruction. Here is the complete symbol and literal table made by pass 1 of assembler.

Symbol Address

X 204

L1 202

Literal Address

=’3′ 203

=’2′ 205

Now tables generated by pass 1 along with their LC value will go to pass-2 of assembler for

further processing of pseudo-opcodes and machine op-codes.

Working of Pass-2:

Pass-2 of assembler generates machine code by converting symbolic machine-opcodes into

their respective bit configuration(machine understandable form). It stores all machine-opcodes

in MOT table (op-code table) with symbolic code, their length and their bit configuration. It

will also process pseudo-ops and will store them in POT table(pseudo-op table).

Various Data bases required by pass-2:

1. MOT table(machine opcode table)

2. POT table(pseudo opcode table)

3. Base table(storing value of base register)

4. LC (location counter)

Take a look at flowchart to understand:

As a whole assembler works as:

A Single pass ASSEMBLER for IBM PC

A Single Pass Assembler for IBM PC Single pass assembler for the Intel 8088 processor

used in IBM PC. Focuses on the design features for handling the forward reference problem

in an environment using segment-based addressing. 1. Architecture of Intel 8088. 2. Intel 8088

Instructions. 3. Assembly Language of Intel 8088. 4. Problems of Single pass assembly 5.

Design of the Assembler.

1. The Architecture of Intel 8088

 Supports 8 and 16 bit arithmetic. Provides special instructions for string manipulation.

The CPU contains following features – 1. Data registers AX, BX, CX and DX 2. Index

registers SI and DI 3. Stack pointer registers BP and SP 4. Segment registers Code, Stack, Data

and Extra.

a)

AH BH CH DH

AL BL CL DL

b)

BP SP

c)

https://www.geeksforgeeks.org/language-processors-assembler-compiler-and-interpreter/
https://www.geeksforgeeks.org/language-processors-assembler-compiler-and-interpreter/

SI DI

d)

Code Stack Data Extra

AX BX CX DX

Fig:- a) Data b) Base c) Index d) Segment registers

 Each data register is 16 bits in size, split into upper and lower halves. Either half can be

used for 8 bit arithmetic, while the two halves together constitute the data register for 16 bit

arithmetic. Architecture supports stacks for storing subroutine and interrupt return addresses,

parameters and other data. The index registers SI and DI are used to index the source and

destination addresses in string manipulation instructions. Two stack pointer registers called

SP and BP are provided to address the stack. Push and Pop instructions are provided.

 The Intel 8088 provides addressing capability for 1 MB of primary memory. The memory

is used to store three components of program, Program code, Data and Stack. The Code,

Stack and Data segment registers are used to contain the start addresses of these three

components. The Extra segment register points to another memory area which can be used to

store data. The size of each segment is limited to 216 i.e 64 K bytes.

 The 8088 architecture provides 24 addressing modes. In the Immediate addressing mode,

the instruction itself contains the data that is to participate in the instruction. This data can be 8

or 16 bits in length. In the Direct addressing mode, the instruction contains 16 bit number

which is taken to be displacement from the segment base contained in segment register. In

the Indexed mode, contents of the index register indicated in the instruction (SI or DI) are

added to the 8 or 16 bit displacement contained in the instruction.

 In the Based mode, contents of the base register are added to the displacement. The based-

and-indexed with displacement mode combines the effect of the based and indexed modes.

Addressing mode

Example

Remarks

Immediate

MOV SUM, 1234H

Data= 1234H

Register

MOV SUM, AX

AX contains the data

Direct

MOV SUM, [1234H]

Data disp.= 1234H

Register indirect

MOV SUM, [BX]

Data disp.= (BX)

Based

MOV SUM, 12H [BX]

Indexed

MOV SUM, 34H [SI]

Data disp.= 12H+ (BX) Data disp.= 34H+ (SI)

Based & Indexed MOV SUM, 56H [SI] [BX] Data disp.= 56H+ (SI) + (BX) Addressing

modes of 8088

2. Intel 8088 Instructions Arithmetic Instructions Operands can be in one of the four 16 bit

registers or in memory location designated by one of the 24 addressing modes. Three

instruction formats are as shown in figure. The mod and r/m fields specify first operand,

which can be in register or in memory. The reg field describes the second operand, which is

always a register. The instruction opcode indicates which instruction format is applicable.

 The direction field (d) indicates which operand is the destination operand. If d=0, the

register/memory operand is the destination, else the register operand indicated by reg is the

destination. The width field (w) indicates whether 8 or 16 bit arithmetic is to be used.

a) Register/Memory to Register opcode d

w

mod reg r/m

b) Immediate to Register/Memory opcode d

w

mod reg r/m

data

c) Immediate to Accumulator opcode w

data

data

data

r/m

mod= 00

mod= 01

mod= 10

mod= 11 w=0 w=1

000

(BX)+(SI)

(BX)+(SI)+ d8

Note 2

AL

AX

001

(BX)+(DI)

(BX)+(DI)+d8

Note 2

CL

CX

010

(BP)+(SI)

(BP)+(SI)+ d8

Note 2

DL

DX

011

(BP)+(DI)

(BP)+(DI)+ d8

Note 2

BL

BX

100

(SI)

(SI) + d8

Note 2

AH

SP

101

(DI)

(DI) + d8

Note 2

CH

BP

110

Note 1

(BP) + d8

Note 2

DH

SI

111

(BX)

(BX) + d8

Note 2

BH

DI

Note 1: (BP)+ DISP for indirect addressing, d16 for direct Note 2: Same as previous column,

except d16 instead of d8 reg

Register 8 bit (w=0)

16 bit (w=1)

000

AL

AX

001

CL

CX

010

DL

DX

011

BL

BX

100

AH

SP

101

CH

BP

110

DH

SI

111

BH

DI

Control Transfer Instructions Two groups of control transfer instructions are supported. 1.

Calls, jumps and returns 2. Iteration control instructions Calls, jumps and returns can occur

within the same segment or can cross segment boundaries. Intra-segment transfers are

preferably assembled using a self-relative displacement. The longer form of intra-segment

transfers uses a 16 bit logical address within the segment. Inter-segment transfers indicate a

new segment base and an offset.

 Control transfers can be both direct and indirect. Their instruction formats are :a) Intra-

segment Opcode

Disp. low

Disp. high

b) Inter-segment Opcode

Offset

Offset

Segment

Base

c) Indirect

Opcode

mod 100 r/m

Disp. low

Disp. high

Formats of Control Transfer Instruction

 Iteration control operations perform looping decisions in string operations. Example:-

Consider the program MOV MOVMOV CLD REP

SI, 100H DI, 200H CX, 50H

MOVSB

; Source address ; Destination address ; No. of bytes ; Clear direction flag ; Move 80 bytes

3. The Assembly Language of Intel 8088 1) Statement Format [Label:] opcode operand(s) ;

comment string 2) Assembler Directives a) Declarations - Declaration of constants and

reservation of storage are both achieved in the same direction A DB 25 ; Reserve byte &

initialize B DW ? ; Reserve word, no initialization C DD 6DUP(0) ; 6 Double words, all 0’s

b) EQU and PURGE EQU defines symbolic names to represent values PURGE undefined

the symbolic names. That name can be reused for other purpose later in the program.

Example:XYZ DB ? ABC EQU XYZ ; ABC represents name XYZ PURGE ABC ; ABC no

longer XYZ ABC EQU 25 ; ABC now stands for ‘25’

UNIT III

MACROS and MACRO PROCESSORS

Macro Processor

 Last Updated : 06 Oct, 2020

A Macro instruction is the notational convenience for the programmer. For every occurrence of

macro the whole macro body or macro block of statements gets expanded in the main source

code. Thus Macro instructions make writing code more convenient.

Salient features of Macro Processor:

 Macro represents a group of commonly used statements in the source programming

language.

 Macro Processor replaces each macro instruction with the corresponding group of source

language statements. This is known as the expansion of macros.

 Using Macro instructions programmer can leave the mechanical details to be handled by

the macro processor.

 Macro Processor designs are not directly related to the computer architecture on which it

runs.

 Macro Processor involves definition, invocation, and expansion.

Macro Definition and Expansion:

Line Label Opcode Operand

5 COPY START 0

10 RDBUFF MACRO &INDEV, &BUFADR

15

.

.

90

95 MEND

 Line 10:

RDBUFF (Read Buffer) in the Label part is the name of the Macro or definition of the

Macro. &INDEV and &BUFADR are the parameters present in the Operand part. Each

parameter begins with the character &.

 Line 15 – Line 90:

From Line 15 to Line 90 Macro Body is present. Macro directives are the statements that

make up the body of the macro definition.

 Line 95:

MEND is the assembler directive that means the end of the macro definition.

Macro Invocation:

Line Label Opcode Operand

180 FIRST STL RETADR

190 CLOOP RDBUFF F1, BUFFER

15

.

.

255 END FIRST

Line 190:

RDBUFF is the Macro invocation or Macro Call that gives the name of the macro instruction

being invoked and F1, BUFFER are the arguments to be used in expanding the macro. The

statement that form the expansion of a macro are generated each time the macro is invoked.

Nesting macro instruction definitions

A nested macro instruction definition is a macro instruction definition you can specify as a set

of model statements in the body of an enclosing macro definition. This lets you create a macro

definition by expanding the outer macro that contains the nested definition.

All nested inner macro definitions are effectively "black boxes": there is no visibility to the

outermost macro definition of any variable symbol or sequence symbol within any of the

nested macro definitions. This means that you cannot use an enclosing macro definition to

tailor or parameterize the contents of a nested inner macro definition.

High Level Assembler allows both inner macro instructions and inner macro definitions. The

inner macro definition is not edited until the outer macro is generated as the result of a macro

instruction calling it, and then only if the inner macro definition is encountered during the

generation of the outer macro. If the outer macro is not called, or if the inner macro is not

encountered in the generation of the outer macro, the inner macro definition is never

edited. Figure 1 shows the editing of inner macro definitions.

Figure 1. Editing inner macro definitions

┌─────────────┐

│ MACRO │

│ MAC1 ├─────────────────────────────────────┐

│ • │ │

└─────────────┘ │

┌─────────────┐ │

│ MACRO │ │

│ MAC2 ├──────────────────┐ │

│ • │ │ │

└─────────────┘ │ │

┌─────────────┐ │ │

│ MACRO │ │ │

│ MAC3 │ │ │

│ • │ Edited when │ Edited when │ Edited when

│ • ├── MAC2 is called ├── MAC1 is called ├── definition first

│ • │ and generated │ and generated │ encountered

│ • │ │ │

│ MEND │ │ │

└─────────────┘ │ │

┌─────────────┐ │ │

│ • ├──────────────────┘ │

│ MEND │ │

└─────────────┘ │

┌─────────────┐ │

│ • ├─────────────────────────────────────┘

│ MEND │

https://www.ibm.com/docs/en/zos/2.2.0?topic=SSLTBW_2.2.0/com.ibm.zos.v2r2.asma400/nestmac.htm#nestmac__fgmac

└─────────────┘

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called, MAC2 is edited

(unless its definition is bypassed by an AIF or AGO branch); when MAC2 is called, MAC3 is

edited. No macro can be called until it has been edited.

There is no limit to the number of nestings allowed for inner macro definitions.

The lack of parameterization can be overcome in some cases by using the AINSERT

statement. This lets you generate a macro definition from within another macro generation. A

simple example is shown at Where to define a macro in a source module. In Figure 2,

macro ainsert_test_macro generates the macro mac1 using a combination of AINSERT and

AREAD instructions. The mac1 macro is then called with a list of seven parameters.

NESTED MACRO CALLS :-

https://www.ibm.com/docs/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.asma400/wheredf.htm#wheredf
https://www.ibm.com/docs/en/zos/2.2.0?topic=SSLTBW_2.2.0/com.ibm.zos.v2r2.asma400/nestmac.htm#nestmac__dup0011

Advanced macro facilities are aimed at supporting semantic expansion. These facilities can be

grouped into :

a) Facilities for alteration of flow of control during expansion

b) Expansion Time Variables

c) Attributes of parameters.

d) Facilities for alteration of flow of control during expansion.

a) Facilities for alteration of flow of control during expansion

Expansion with statements AIF, AGO and ANOP.

A sequencing symbol (SS) has the syntax

 < ordinary String >

As SS is defined by putting it in the field ‘ LABEL’ of a statement in the macro body. This

LABEL field will act as target address on which control is transferred for conditional as well as

unconditional way. It never appear in the expanded form of a model statement.

Syntax of AIF :- conditional jump

 AIF (< expression >) < LABEL sequential symbol >

Where < expression > is formal parameters and their attributes like T, L,S (Type , Length and

size). If expression is true, control is transferred to LABEL or sequential symbol

 Syntax of AGO Unconditional jump

 AGO < sequential symbol >

Without checking condition control is transferred to LABEL.

An ANOT statement is written as

 < Sequential symbol > ANOP.

Which will simply act as LABEL.

Example of altering flow of control during expansion :-

 MACRO

 EVAL & X, & Y

AIF (& Y EQ & X) AGAIN

 AGO NEXT

AGAI N : ANOP

 MOVER AREG, BREG

NEXT : ANOP

 MEND

1. AIF (& Y EQ & X) AGAIN If value of X = Y then it will jump on label again

 i.e conditional jump.

2. AGO NEXT Unconditionally it will go on NEXT

3. Every label is having first statement as ANOP.

b) Expansion Time Variables :-

EV are used during expansion of macros A local EV is created for use inside a particular

MACRO. A global EV exists across all macro calls. Syntax for local and global EV’s

 LCL < EV specification >

 GBL < EV specification >

Where < EV specification > has the syntax &< EV Name >

Where < EV Name > is an ordinary string.

 Values of EV’s can be manipulated by SET statement . A SET statement is written as

 < EV Specification > SET < SET – expression >

Here < EV specification > appears in the label field and SET in mnemonic field . A SET

statement assigns the value of < SET- expression > to the < EV specification.

e.g. MACRO

 CALC

 LAL & A, & B

 & A SET 1

 & B SET 5

 MEND

A call on macro CALC is expanded by creating two local EV A & B . The first SET statement

assigns value ‘1’ to A and second SET statement assigns value ‘s’ to B.

c) Attributes of formal parameters:-

An attribute is written using the syntax

 < attribute name >’ < formal parameter > and represents information about the value of

the formal parameter. These attributes are type, length and size have the names T, L and S

e.g MACRO

 CALC & B

 AIF (L’ & A EQ 1) NEXT

 NEXT :

 MEND

Here expression control is transferred to NEXT only if Length of A. is equal to 1.

A general-purpose macro processor or general purpose preprocessor is a macro processor

that is not tied to or integrated with a particular language or piece of software.

A macro processor is a program that copies a stream of text from one place to another, making

a systematic set of replacements as it does so. Macro processors are often embedded in other

programs, such as assemblers and compilers. Sometimes they are standalone programs that can

be used to process any kind of text.

Macro processors have been used for language expansion (defining new language constructs

that can be expressed in terms of existing language components), for systematic text

replacements that require decision making, and for text reformatting

UNIT IV

COMPILERS AND INTERPRETERS

Principles of Compilers

Introduction

The word compilation is used to denote the task of translating high level language (HLL)

programs into machine language programs. Though the objective of this task of translation is

similar to that of an assembler, the problem of compilation is much more complex than that of

an assembler. A compiler is a program that does the compilation task. A compiler recognises

programs in a particular HLL and produces equivalent output programs appropriate for some

particular computer configuration (hardware and OS). Thus, an HLL program is to a great

extent independent of the configuration of the machine it will eventually run on, as long as it is

ensured that the program is compiled by a compiler that recognises that HLL and produces

output for the required machine configuration. It is common for a machine to have compilers

that would translate programs to produce executables for that machine (hosts). But there also

are compilers that runs on one type of machine but the output of which are programs that shall

run on some other machine configuration, such as generating an MS-DOS executable program

by compiling an HLL program in UNIX. Such a compiler is called a cross compiler. Another

kind of translator that accepts programs in HLL are known as interpreters. An interpreter

https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Macro_(computer_science)

translates an input HLL program and also runs the program on the same machine. Hence the

output of running an interpreter is actually the output of the program that it translates.

Important phases in Compilation

The following is a typical breakdown of the overall task of a compiler in an approximate

sequence -

Lexical analysis, Syntax analysis, Intermediate code generation, Code optimisation, Code

generation.

Like an assembler, a compiler usually performs the above tasks by making multiple passes

over the input or some intermediate representation of the same. The compilation task calls for

intensive processing of information extracted from the input programs, and hence data

structures for representing such information needs to be carefully selected. During the process

of translation a compiler also detects certain kinds of errors in the input, and may try to take

some recovery steps for these.

Lexical Analysis

Lexical analysis in a compiler can be performed in the same way as in an assembler. Generally

in an HLL there are more number of tokens to be recognised - various keywords (such as, for,

while, if, else, etc.), punctuation symbols (such as, comma, semi-colon, braces, etc.), operators

(such as arithmatic operators, logical operators, etc.), identifiers, etc. Tools like lex or flex are

used to create lexcical analysers.

Syntax Analysis

Syntax analysis deals with recognising the structure of input programs according to known set

of syntax rules defined for the HLL. This is the most important aspect in which HLLs are

significantly different from lower level languages such as assembly language. In assembly

languages the syntax rules are simple which roughly requires that a program should be a

sequence of statements, and each statement should esentially contain a mnemonic followed by

zero or more operands depending on the mnemonic. Optionally, there can be also be an

identifier preceding the mnemonic. In case of HLLs, the syntax rules are much more

complicated. In most HLLs the notion of a statement itself is very flexible, and often

allows recursion, making nested constructs valid. These languages usually support multiple

data types and often allow programmers to define abstruct data types to be used in the

programs. These and many other such features make the process of creating software easier

and less error prone compared to assembly language programming. But, on the other hand,

these features make the process of compilation complicated.

The non-trivial syntax rules of HLLs need to be cleverly specified using some suitable

notation, so that these can be encoded in the compiler program. One commonly used formalism

for this purpose is the Context Free Grammar (CFG). CFG is a formalism that is more

powerful than regular grammars (used to write regular expressions to describe tokens in a

lexical analyser). Recursion, which is a common feature in most constructs of HLLs, can be

defined using a CFG in a concise way, whereas a regular grammar is incapable of doing so. It

needs to be noted that there are certain constructs that cannot be adequately described using

CFG, and may require other more powerful formalisms, such as Context Sensitive Grammars

(CSG). A common notation used to write the rules of CFG or CSG is the BNF (Backus Naur

Form).

During syntax analysis, the compiler tries to apply the rules of the grammar of the input HLL

given using BNF, to recognise the structure of the input program. This is called parsing and the

module that performs this task is called a parser. From a somewhat abstract point of view, the

output of this phase is a parse tree that depicts how various rules of the grammar can be

repetitively applied to recognise the input program. If the parser cannot create a parse tree for

some given input program, then the input program is not valid according to the syntax of the

HLL.

The soundness of the CFG formalism and the BNF notation makes it possible to create

different types of efficient parsers to recognise input according to a given language. These

parsers can be broadly classified as top-down parsers and bottom-up parsers. Recursive

descent parsers and Predictive parsers are two examples of top-down parsers. SLR

parsers and LALR parser are two examples of bottom-up parsers. For certain simple context

free languages (languages that can be defined using CFG) simpler bottom-up parsers can be

written. For example, for recognising mathematical expressions, an operator precedence

parser can be created.

In creating a compiler, a parser is often built using tools such as yacc and bison. To do so the

CFG of the input language is written in BNF notation, and given as input to the tool (along

with other details).

Intermediate Code Generation

Having recognised a given input program as valid, a compiler tries to create the equivalent

program in the language of the target environment. In case of an assembler this translation was

somewhat simpler since the operation implied by the mnemonic opcode in each statement in

the input program, there is some equivalent machine opcode. The number of operands

applicable for each operation in the machine language is the same as allowed for the

corresponding assembly language mnemonic opcodes. Thus for the assembly language the

translation for each statement can be done for each statement almost independently of the rest

of the program. But, in case of an HLL, it is futile to try to associate a single machine opcode

for each statement of the input language. One of the reasons for this is, as stated above, the

extent of a statement is not always fixed and may contain recursion. Moreover, data references

in HLL programs can assume significant levels of abstractions in comparision to what the

target execution environment may directly support. The task of associating meanings (in terms

of primitive operations that can be supported by a machine) to programs or segments of a

program is called semantic processing.

Syntax Directed Translation

Though it is not entirely straightforward to associate target language operations to statements

in the HLL programs, the CFG for the HLL allows one to associate semantic actions (or

implications) for the various syntactic rules. Hence in the broad task of translation, when the

input program is parsed, a compiler also tries to perform certain semantic actions

corresponding to the various syntactic rules that are eventually applied. However, most HLLs

contain certain syntactic features for which the semantic actions are to be determined using

some additional information, such as the contents of the symbol table. Hence, building and

usage of data-structures such as the symbol table are an important part of the semantic action

that are performed by the compiler.

Upon carrying out the semantic processing a more manageable equivalent form of the input

program is obtained. This is stored (represented) using some Intermediate code representation

that makes further processing easy. In this representation, the compiler often has to introduce

several temporary variables to store intermediate results of various operations. The language

used for the intermediate code is generally not any particular machine language, but is such

which can be efficiently converted to a required machine language (some form of assembly

language can be considered for such use).

Code Optimisation

The programs represented in the intermediate code form usually contains much scope for

optimisation both in terms of storage space as well as run time efficiency of the intended

output program. Sometimes the input program itself contains such scope. Besides that, the

process of generating the intermediate code representation usually leaves much room for such

optimisation. Hence, compilers usually implement explicit steps to optimise the intermediate

code.

Code Generation

Finally, the compiler converts the (optimised) program in the intermediate code representation

to the required machine language. It needs to be noted that if the program being translated by

the compiler actually has dependencies on some external modules, then linking has to be

performed to the output of the compiler. These activities are independent of whether the input

program was in HLL or assembly language.

http://www.tezu.ernet.in/~utpal/course_mat/sdt.txt

Run-time Storage Administration

One of the important aspects of the semantic actions of a compiler is to ensure an efficient and

error free run-time storage

model to the output

program. Most modern programming languages

allows some extent of block-structuring, nesting of

constructs, and recursion of subroutines. All these calls for an efficient modelling of data

storage that is dynamic, and it turns out that a stack meets much of the criteria. Thus allocation

and access of storage for program variables, subroutine parameters, and compiler generated

internal variables on the stack is an important part of the task of a compiler.

Memory allocation is primarily a computer hardware operation but is managed through

operating system and software applications. ... Once the program has finished its operation or

is idle, the memory is released and allocated to another program or merged within the

primary memory.

There are two types of memory allocation. 1) Static memory allocation -- allocated by the

compiler. Exact size and type of memory must be known at compile time. 2)

Dynamic memory allocation -- memory allocated during run time.

Memory allocation is the process of assigning blocks of memory on request. Typically the

allocator receives memory from the operating system in a small number of large blocks that it

must divide up to satisfy the requests for smaller blocks. It must also make any returned blocks

available for reuse.

A partition allocation method is considered better if it avoids internal fragmentation. When it

is time to load a process into the main memory and if there is more than one free block

of memory of sufficient size then the OS decides which free block to allocate. 1.06-Nov-2020

emory Allocation

appropriately. It affects execution efficiency of the target program.
about the relevant binding during its execution and use it to access the entity
findinformation
compilation time. Sothecompilerhastogenerateageneralpurposecodethatwould

• However,suchtailoringisnotpossibleifthebindingisperformedlaterthan
was performed before or during compilation time.

• A compiler can tailor the code generated to access an entity if a relevant binding
language processor can handle use of the entity in the program.

• The binding time of an entity's attributes determines the manner in which a
Importance of binding times

UNIT-IV (COMPILERS AND INTERPRETERS)

19:

{
Procedure C

}
Inta,b

{
e B
ur
ed
oc
Pr
,z
x,y
int

{
example Procedure A

• To understand local and non-local variable consider the following
2. Non localvariable
1. Local variable

• Therearetwotypesofvariablesituated in theblockstructuredlanguage
2. Variable X is accessed by any statement in block B2 and block B2 is situated in block B1.

situated in blockB1.
1. Variable X is accessed within the block B1 if it can be accessed by any statement

• Following are the rulesusedtodetermine the scope of the variable:
• Findingthescopeofthevariablemeanscheckingthevisibilitywithintheblock
• A block structured language usesdynamicmemoryallocation.

for ex: block B2 can be completely defined within the block B1.
• The delimiters mark the beginning and the end of the block. There can be nested blocks

}
…..
Statements

{
A

 Ex:
are enclosed within thedelimiters.

• The block is a sequence of statements containing the local data and declarations which

Memory Allocation in block structured language

time.

UNIT-IV (COMPILERS AND INTERPRETERS)

20:

• Access to non local variable is implemented using the second reserved pointer in AR.
Static pointer

• Followingexampleshowsmemoryallocationforprogramgivenbelow.
• The dynamic pointer is used for de-allocating an AR.

parent. This is called dynamicpointerand hastheaddress0 (ARB).
• The first reserved pointer in block’s AR points to the activation record of its dynamic

Dynamic pointer

call an activation record(AR).
• Each stack record accommodates the variable for one activation of a block, which we
• Each record in the stackhastworeserved pointers instead of one.
• Automaticdynamicallocationisimplementedusingtheextendedstackmodel.

within theseblocks.
C because these variable are not defined locally within the block B and C but are accessible

• Variables x, y and z are local variables to procedure A but those are non-local to block B and
m,n x,y,z C

B a,b x,y,z
A x,y,z
Procedure Local variables Nonlocalvariables

}
}

Intm,n

UNIT-IV (COMPILERS AND INTERPRETERS)

21:

• Addressabilitycode:Takesthevalues'M'(operandisinmemory),and'R'(operandis
two subfields

2. Addressability: Specifies where the operand is located, and how it can be accessed. It has
1. Attributes:Containsthesubfieldstype,lengthandmiscellaneousinformation

An operand descriptor has the following fields:
Operand Descriptor

Compilation of Expression

Return values:Thisfieldisusedtostoretheresultofa function call. 7.

parameters. Theseactualparametersarepassedtothe called procedure.
Actualparameters:Thisfieldholdstheinformationabouttheactual 6.

other activation record. This field is also called static link field.
Access link: This field is also optional. It refers to the non local data in 5.

calling procedure. This link is also called dynamic link.
Control link: Thisfieldisoptional. Itpointstotheactivation record ofthe 4.

registers and program counter.
of machine just before the procedure is called. This field contains the
Saved machine registers: This field holds the information regarding the status 3.

is stored in this field of activation record.
Localvariables:Thelocaldataisadatathatislocaltotheexecutionprocedure 2.

record.
of expressions. Such variables are stored in the temporary field of activation
Temporary values: The temporary variables are needed during the evaluation 1.

Temporaries

Local variables

Saved M/c status

Access link

Control link

Actual parameter

Return value

bya single execution of a procedure.
• Theactivationrecordisablockofmemoryusedformanaginginformationneeded

Activation record

This pointer which hastheaddress 1 (ARB) is calledthestaticpointer.

UNIT-IV (COMPILERS AND INTERPRETERS)

22:

• Wherea,b or c are theoperandsthat can benames, constants.
statement. The generalformofthreeaddresscoderepresentation is -a:=bopc

• In three address code form at the most three addresses are used to represent
2) Three address code

a*bwillbe x a –b * a-b*+=
• thepostfixnotationofx=-a*b+-
• italistofnodesofthetreeinwhichanodeappearsimmediatelyafteritschildren
• Postfix notation is a linearized representation of a syntax tree.

1) Postfix notation
Three addresscode. 2.

Postfix notation 1.

There are two types of intermediate representation
Intermediate code for expression

• ThisindicatesthatregisterAREGcontainstheoperanddescribedbydescriptor#3.
Occupied #3

be
• InaboveExampletheregisterdescriptorforAREGaftergeneratingcodefora*bwould

register descriptor exists for each CPU register.
• Register descriptors are stored in an array called Register_descriptor. One

operand contained in theregister.
2. Operand descriptor #: If status = occupied, this field contains the descriptor for the
1. Status: Containsthecodefreeoroccupiedtoindicateregisterstatus.

A register descriptor has two fields
Register descriptors

(int, 1) Address(AREG)
(int, 1) Address(b)
(int, 1) Address(a)
Attribute Addressability

occupying 1 memory word, these are:
Three operand descriptors are used during code generation. Assuming a, b to be integers
AREG, B
A MULT
MOVER AREG,

• Ex: a*b
• Address:Address of a CPU register or memory word.

memory ('AM'), are alsopossible,
in register). Other addressability codes, e.g. address in register ('AR') and address in

UNIT-IV (COMPILERS AND INTERPRETERS)

• Theindirecttriplerepresentationthelistingoftriplesisbeendone.Andlisting
Indirect Triples

(5) := X (4)
(4) + (1) (3)

(2) b * (3)
(2) uminus a

(0) b * (1)
(0) uminus a

Number Op Arg1 Arg2
• theexpression x : = - a * b + - a * b thetriple representation isasgivenbelow

the pointers in the symbol table.
• The triple representation the use of temporary variables is avoided by referring

Triples

5 x= t (5) := t5 X
5 2 4 t := t + t (4) + t2 t4 t5
4 3 t := t * b (3) * t3 b t4

t = - a (2) uminus a t3 3

2 t := t1 * b (1) * t1 b t2

t1=uminus a (0) uminus a t1

Op Arg1 Arg2 result

• Consider the input statement x:= -a*b + -a*b
of an expression.
arg2 represent the two operands used and result field is used to store the result

• The op field is used to represent the internal code for operator, the arg1 and
• Thequadrupleisastructurewithatthemosttourfieldssuchasop,arg1,arg2andresult.

Quadruple representation

indirect triples.
• There are three representations used for three code such as quadruples, triples and

addressesallowed.Hence,thisrepresentationisthree-addresscode. three
• Heret1andt arethetemporarynamesgeneratedbythecompiler.Therearemost 2

t2=t1+d
will be t1=b+c

• For the expression like a = b+c+d the three address code

UNIT-IV (COMPILERS AND INTERPRETERS)

24:

t4 = 4 * i
t3 = 4 * j
t2 = a[t1]

Example: t1 = 4 * i

such sub expression isused instead of recomputing it each time
• Theniftheoperandsofthissubexpressiondonotgetchangedatallthenresultof

which is computedpreviously.
• The common sub expression is an expression appearing repeatedly in the program

II. Common Sub Expression Elimination

then computation of 3.14 * 5 * 5 is done during compilation.
• Hereatthecompilationtimethevalueofpiisreplacedby3.14andrby5

Area=pi*r*r
example:pi=3.14;r=5;

expression is done at the compilation time.
• In this technique the value of variable is replaced and computation of an
2. Constant propagation
• Here foldingis implied byperformingthe computation of22/7at compiletime

example : length = (22/7) * d
instead of runtime.

• Inthefoldingtechniquethecomputationofconstantisdoneatcompiletime
Folding 1.

• Therearetwomethodsused to obtain the compile time evaluation.
• Compiletimeevaluationmeansshiftingofcomputationsfromruntimetocompilation.

I. Compile Time Evaluation

Code Optimization

(5) (16)
(5) := X (15)

(4) (15)
(4) + (12) (14)

(3) (14)
(13) b * (3)

(2) (13)
(2) uminus a

(1) (12)
(11) b * (1)

(0) (11)
(0) uminus a

Number Op Arg1 Arg2 Statement
pointers are used instead of using statements.

UNIT-IV (COMPILERS AND INTERPRETERS)

25:

• For instance strength of * is higher than +.

• Strength of certain operators is higher than others.
IV. Strength Reduction

}
sum=sum+a[i];
{
While(i<=N)
a N=max-1;
optimized as
Can be
}

sum=sum+a[i];
{
-1)

<=max

while(i

ple:

• Exam

• This method is also called code motion.
the loop and placing it just before entering in the loop.

• Loop invariant optimization can be obtained by moving some amount of code outside
III. Loop invariant computation (Frequency reduction)

}
and value of i is not been changed from definition to use.

• Thecommonsubexpressiont4:=4*iiseliminatedasitscomputationisalreadyint1
t6=b[t1]+t5
t5=n
t3=4*j
t2=a[t1]
t1=4*i

• The above code can be optimized using common sub expression elimination
t6 = b[t4]+t5
t5 = n

UNIT-IV (COMPILERS AND INTERPRETERS)

26:

statement can be eliminated and optimization can be done.
statement is a dead code as this condition will never get satisfied hence, • if

}
a=x+5;

{
if(i==1)
i=0;

• Example :
suchadeadcode.
supposed to be adeadcode.Andanoptimizationcanbeperformedbyeliminating
value contained into it is never been used. The code containing such a variable

• On the other hand, the variable is said to be dead at a point in a program if the
• Avariableissaidtobeliveinaprogramifthevaluecontainedintoissubsequently.

V. Dead Code Elimination
}

7;
temp+
=
temp
temp;
=
count

{
for(i=l;i<=50;i++)
follows temp=7

• This code can be replaced by using strength reduction as
• Here we get the count values as7,14,21and soonuptolessthan 50.

}
count = i x 7;

{
for(i=1;i<=50;i++)

• Example:
strength operators.

• In this technique the higher strength operators can be replaced by lower

UNIT-IV (COMPILERS AND INTERPRETERS)

27:

and execution-time of compiled statement, respectively.
i e , t , and t be the interpretation-time statement, compilation-time statement, c • Let t

the averageCPUtimecostfordifferentkindsofprocessingofa statement.
• Comparative performance of a compiler and an interpreter can be realized by inspecting

Comparing the Performance of Compilers and Interpreters

machine and cannot be ported. in higher level language.
Compilers are bound to a specific target Canbemadeportablebycarefullycodingthem
environment. development environment.
Compilers are suitable for production Interpreters are suited for program
modification in the source program. program each time during execution.
output program in target language after each modification issues as it processes the source
Need recompilation for generating a fresh The interpreter is independent of program
source program statements.
execution if there is any error in any of the an error is found.
Do not generate the output program for Can evaluate and execute program statement until
memory. program to be interpreted.
doesnotneedthepresenceofcompilerinthe interpretation, i.e. it coexists with the source
Target program executes independently and The interpreter exists in the memory during
entire output program is produced. basis.
compilation and performed only after the and performed on a statement by statement
Program execution is separated from Program execution is a part of interpretation
Language.
the source program written in Source for execution.
output, which can be run independently from theyevaluatethesourceprogramateachtime
Generate a target output program as an Do not generate any output program; rather
loading model.
based on the language translation-linking- based on the interpretation model.
Compilers are language processors that are Interpreters are a class of language processors
Compilers Interpreters

Comparison between Compilers and Interpreters

executing it.
interpreter takes the program, one statement at a time, and translates each line before
low-level one, but it differs from compilers. Interpretation is a real-time activity where an
An interpreter is system software that translates a given High-Level Language (HLL) program into a

Interpreter
Overview of Interpretation OR Write a note on

UNIT-IV (COMPILERS AND INTERPRETERS)

28:

a source language program into the Java bytecode, which is a program in the machine
• Figure 8.1 shows a schematic of the Java language environment. The Java compiler converts

o AnoptionalJavajust-in-time(JIT)compiler,whichprovidesefficientexecution.
programandthe operating system.
dynamically loadedprogrammodulesdonotinterferewiththeoperationofthe

o A Java bytecode verifier, which provides security by ensuring that
interpretation.
capability for inclusion of program modules dynamically, i.e., during

o An impure interpretive scheme, whose flexibility is exploited to provide a
o TheJavavirtualmachine(JVM),whichprovidesportabilityofJavaprograms.

• Java language environment has four key features:

Java Language Environment

• Suitedfordebuggingofthecodeandfacilitatesinteractivecodedevelopment.
means alteration of code can be performed dynamically.

• Suited for development environment where a program is modified frequently. This
• Ensuresportabilitysinceitdoesnotproducemachinelanguageprogram.
• Handles certain language featuresthat cannot be compiled.

be performed in a single stage without theneed of acompilation stage.
Intermediate Code (IC) and immediately executes it. The process of execution can

• Executes the source code directly. It translates the source code into some efficient
The distinguished benefits of interpretation are as follows:

Benefits of Interpretation

program development environment.
point of view of the CPU time cost, interpreters are a better choice at least for the
executionof400 statements duringtheexecution.This clearly indicates thatfromthe
will be cheaper, which means that using interpreter is advantageous up to the
if more than 400 statements are to be executed, compilation followed by execution

c *t = 80 *t . This shows that the interpretation will be cheaper in such cases. However, i

oftheprogram is80
e execution of the programis400*t +80*t ,whilethetotalCPUtimeininterpretation c

visited during the test run, the total CPU time in compilation followed by the
• If a 400-statement program is executed on a test data with only 80 statements being

as the effort involved in the interpretation of the statement.
effort for a statement performed by the compiler is of the same order of magnitude
and semantic analyses of the source statement. In addition, the code generation

c i Itisassumedthatt ≈t sinceboththecompilersandinterpretersinvolvelexical,syntax,

UNIT-IV (COMPILERS AND INTERPRETERS)

29:

a Java program. The Java virtual machine loads one or more class files and executes
• AJavacompilerproducesabinaryfilecalledaclassfilewhichcontainsthebytecodefor

Java Virtual Machine

cannot provide any of the benefits of interpretation or just-in- time compilation.
computer. This scheme provides fast execution of the Java program; however, it
partof. It simply compiles the complete Java program into the machine language of a
The other compilation option uses the Java native code compiler shown in the lower

machineusesamixed- mode executionapproach.
remainder of the program still exists in the bytecode form. Hence the Java virtual
the Java source program has been converted into the machine language while the

• Afterthe just-in-time compiler has compiled some part of the program, some parts of
implemented using the schemeof dynamic compilation.
machine language of the computer to improve their execution efficiency. It is
bytecode that are consuming a significant fraction of the execution time into the
lower half of Figure 8.1. The Java Just-In-Time compiler compiles parts of the Java

• The Java language environment provides the two compilation schemes shown in the
o Theprogrammayhavestackoverflowsorunderflowsduringexecution.

manner.
o The program has type-mismatches whereby it may access data in an invalid
o Theprogramviolatesaccessrestrictions,e.g.,byaccessingprivatedata.

performing branches to invalid locations.
o The program forges pointers, thereby potentially accessing invalid data or

• The Java bytecode verifier checks whether
verifier.
program.TheclassloaderlocatesthedesiredclassfileandpassesittotheJavabytecode

• The class loader is invoked whenever a new class file is to be dynamically included in
program modules calledJavaclassfilesduringinterpretationofaJavaprogram.
during interpretation. This feature is exploited to provide a capability for including

• Use of an interpretive scheme allows certain elements of a program to be specified
scheme.
Java compilerandtheJavavirtualmachinethusimplementtheimpureinterpretation

• The Java virtual machine essentially interprets the bytecode form of a program. The
machine.
theJava bytecodecanbe'executed'onanycomputerthatimplementstheJavavirtual
itself calledtheJavavirtualmachineforsimplicity.Thisschemeprovidesportabilityas

• The Java virtual machine is implemented by a software layer on a computer, which is
language of the Java virtual machine.

UNIT-IV (COMPILERS AND INTERPRETERS)

30:

Example 1: Missing punctuation-
• LetusseethesyntaxerrorswithJavalanguageinthefollowingexamples.

to proceed for code generation.
Syntaxerrorsaredetectedearlyduringthecompilationprocessandrestrictthecompiler

writinga program.
• Thesearegenerallyprogrammerinducedduetomistakesandnegligencewhile

constitute syntax errors.
• The errors in token formation, missing operators, unbalanced parenthesis, etc.,

not followed.
• Syntax errors occur due to the fact that the syntax of the programming language is

Syntax Error

Types of Errors

be stored in memory—they can be simply left on the stack.
• A stack machine can evaluate expressions very efficiently because partial results need not

operates on values contained in the top two entries of the stack, etc.
only on the value contained in the top entry of the stack, a binary operation
result, if any, in the top entry of the stack. Thus, a unary operation operates
entriesof the stack, deletes the top n entries from the stack, and leaves the

o n-ary operation: This operation operates on the values existing in the top n
memory location and also deletes that entry from the stack.
value contained in the entry that is at the top of the stack into the specified
its operand. It performs the converse of the push operation—it copies the

o Pop operation: This operation also has the address of a memory location as
thisentry.
and copies the value that is contained in the specified memory location into
memory location. The operation creates a new entry at the top of the stack

o Push operation: This operation has one operand, which is the address of a
• The stackmachine has the following three kinds of operations:

themandshould take their results from the stack.
values on which it wishes to operate on the stack before performing operations on
their results on the stack. This arrangement requires that a program should load the
computationsbyusingthe values existinginthetop few entrieson a stack and leaving

• The Java virtual machine is a stack machine. By contrast, a stack machine performs
execution ofthe bytecode would not cause any breaches of security.
loader,which locates a required class file, and abytecodeverifier,which ensures that
programs contained in them. To achieve it, the JVM requires the support of the class

UNIT-IV (COMPILERS AND INTERPRETERS)

31:

program, the program needs to be debugged.
• Wheneverthereisagapbetweenanexpectedoutputandanactualoutputofa

Debugging Procedures

these errors remain undetected unlesstheresultsare analyzed carefully.
• Logical errors may causeundesirable effect andprogram behaviors. Sometimes,

} // the loop in the code did not terminate
System.out.println(str);

while (str != null) {
str=br.readLine();
terminating loops String
Example : Non-
requiresto multiply twointegers
//thismethodreturnstheincorrectvaluewithrespecttothespecificationthat
}

return a + b ;
b){
staticintmul(inta,int
computation public
Example : Errors in

• Let us look into some logical errors with Java language.
executed error free, the desired results are not obtained.
while writing the program. Although the program is successfully compiled and

• Logical errors occur due to the fact that the software specification is not followed
Logical Error

intmsg="hello"; //note the types String and int are incompatible
Example: Type incompatibility between operands

• Semantic errors are mentioned in the following examples.
incompatible arguments to function or procedures, etc.

• They include operands whose types are incompatible, undeclared variables,
• Semanticerrorsoccurduetoimproperuseofprogramminglanguagestatements.

Semantic Error

x=(30-15; // note the missing closing parenthesis ")"
Errorsinexpressionsyntax
here semicolon is missing Example2:
"semicolon" intage=50 // note

UNIT-IV (COMPILERS AND INTERPRETERS)

32:

• Staticdebuggingdetectserrorsbeforethe actual execution.
due to truncation. This type of analysis fallsunderstaticdebugging.
var1; then, there is a possibility that it may not get correctly assigned to the variable
an integer,andthetypeofvar2isafloat.Now,theprogramassignsthevalueofvar2to

• Inacertainprogram,supposetherearetwovariables:var1andvar2.Thetypeofvar1is
• Static debugging focuses on semantic analysis.

Static Debugging

Classification of Debuggers

execution program halts.
true, nothing happens. But if it is realized that the statement is false, the
associated with Boolean conditions. If an assert() statement is evaluated to be
statement. Assertions are the statements used in programs, which are always
erroneous results. For this, a programmer can make use of an assert
assumptions went wrong during the execution of the program, it may lead to
assumptions are made about the data involved in computation. If these
before the execution of a program. Sometimes, while programming, some
Assertions are mechanisms used by a debugger to catch the errors at a stage

o Assertions:
usedinaprogramandtheiraddresses.
information,generatesatablethatstorestheinformationaboutthevariables
compiletheprogramwiththedebug option first. This option, along with other
(person). In order to initiate the process of debugging, a programmer must
execution process, depending upon the actions carried out by a debugger
reports the state of a program during its execution. It may interfere in the
A debug monitor is a program that monitors the execution of a program and

o Debug Monitors:
• Types of debugging procedures:

at any instant and, if required, offers an opportunity toupdatetheprogram.
• Itgivesachancetoexaminethevaluesassignedtothevariablespresentintheprogram

by inserting abreakpoint.
• Thedebuggerprovidesthefacilitytoexecuteaprogramuptothespecifiedinstruction

are in the hands of the debugger.
• Inthedebugmode,activitiessuchasstartingtheexecutionandstoppingtheexecution

• Duringdebugging,theexecutionofaprogramcanbemonitoredateverystep.
• Debugging involves executingtheprogramina controlled fashion.

errors present in theprogram.
• Anerrorinaprogramiscalledbug,anddebuggingmeansfindingandremovingthe

UNIT-IV (COMPILERS AND INTERPRETERS)

33:

o Removing branchinstructions
o Eliminating unnecessarystatements
o Merging similarloops
o Removing invariant expressions from a loop

followingissues:
debugging process, a debugger may use an optimizing compiler that deals with the
optimized code. Debugging of such statements can betricky. However, to simplify the

• Optimization: Sometimes, to make a program efficient, programmers may use an
differentuser environments and applicationssystems.
the debugging is done. Generally, different programming languages involve

• Multilingual capability: The debugging system must also consider the language in which
debugged must be made visible onthe screen along with the linenumbers.

• Program-display capabilities: While debugging is in progress, the program being
current statement in the program was reached.
utility uses stack data structure. Traceback utility should show the path by which the

• Traceback: This gives a user the chance to traceback over the functions, and the traceback
program.
can be implemented by adding a breakpoint at the last executable statement in a
"step over"debuggingthat can be executed atthelevelofprocedureorfunction.This
in aprogram.Theothernameforthisprocessis"stepinto".Anotherpossiblevariationis

• Tracing: Tracing monitors step by step the execution of all executable statements present
been met in the program duringexecution.
assertions, can be used to check whether some pre-condition or post-condition has
that certain conditions are reached in the program. These statements, known as

• Conditional expressions: A debugger can include statements in a program to ensure
theuser to verify the contents of variables declared in the program.
gets executedwithoutdisturbance.Oncethecontrolreachessuchaposition,itallows

• Breakpoints:Breakpointsspecifytheposition within aprogramtillwhichtheprogram
instructionsare executed.
program execution. For example, the program may be halted after a fixed number of

• Execution sequencing: It is nothing but observation and control of the flow of
A dynamic debugging system should provide the following facilities:

provides programmerswithfacilitiesthataidintestinganddebuggingprogramsinteractively.
Dynamic analysis is carried out during program execution. An interactive debugging system
Dynamic/Interactive Debugger

o Presence of unreachablecode
o Redeclarationofvariables
o Truncation of value due to wrong assignment
o Dereferencing of variable before assigning a value to it

• Static code analysis may include detection of the following situations:

UNIT-IV (COMPILERS AND INTERPRETERS)

UNIT V

LINKERS

Linker is a program in a system which helps to link a object modules of program into a single

object file. It performs the process of linking. Linker are also called link editors. Linking is

process of collecting and maintaining piece of code and data into a single file. Linker also

link a particular module into system library. It takes object modules from assembler as input

and forms an executable file as output for loader.

Linking is performed at both compile time, when the source code is translated into machine

code and load time, when the program is loaded into memory by the loader. Linking is

performed at the last step in compiling a program.

Source code -> compiler -> Assembler -> Object code -> Linker -> Executable file ->

Loader

Linking is of two types:

1. Static Linking –

It is performed during the compilation of source program. Linking is performed before

execution in static linking. It takes collection of relocatable object file and command-line

argument and generate fully linked object file that can be loaded and run.

Static linker perform two major task:

 Symbol resolution – It associates each symbol reference with exactly one symbol

definition .Every symbol have predefined task.

 Relocation – It relocate code and data section and modify symbol references to the

relocated memory location.

The linker copy all library routines used in the program into executable image. As a result, it

require more memory space. As it does not require the presence of library on the system

when it is run . so, it is faster and more portable. No failure chance and less error chance.

2. Dynamic linking – Dynamic linking is performed during the run time. This linking is

accomplished by placing the name of a shareable library in the executable image. There is

more chances of error and failure chances. It require less memory space as multiple program

can share a single copy of the library.

Here we can perform code sharing. it means we are using a same object a number of times in

the program. Instead of linking same object again and again into the library, each module

share information of a object with other module having same object. The shared library

needed in the linking is stored in virtual memory to save RAM. In this linking we can also

relocate the code for the smooth running of code but all the code is not relocatable.It fixes the

address at run time.

Design of a linker

Relocation and linking requirements in segmented addressing

The relocation requirements of a program are influenced by the addressing structure of the

computer system on which it is to execute. Use of the segmented addressing structure reduces

the relocation requirements of program.

A Linker for MS-DOS

Example : Consider the program of written in the assembly language of intel 8088. The

ASSUME statement declares the segment registers CS and DS to the available for memory

addressing. Hence all memory addressing is performed by using suitable displacements from

their contents. Translation time address o A is 0196. In statement 16, a reference to A is

assembled as a displacement of 196 from the contents of the CS register. This avoids the use

of an absolute address, hence the instruction is not address sensitive. Now no relocation is

needed if segment SAMPLE is to be loaded with address 2000 by a calling program (or by

the OS). The effective operand address would be calculated as <CS>+0196, which is the

correct address 2196. A similar situation exists with the reference to B in statement 17. The

reference to B is assembled as a displacement of 0002 from the contents of the DS register.

Since the DS register would be loaded with the execution time address of DATA_HERE, the

reference to B would be automatically relocated to the correct address.

Though use of segment register reduces the relocation requirements, it does not completely

eliminate the need for relocation. Consider statement 14 .

MOV AX, DATA_HERE

Which loads the segment base of DATA_HERE into the AX register preparatory to its

transfer into the DS register . Since the assembler knows DATA_HERE to be a segment, it

makes provision to load the higher order 16 bits of the address of DATA_HERE into the AX

register. However it does not know the link time address of DATA_HERE, hence it

assembles the MOV instruction in the immediate operand format and puts zeroes in the

operand field. It also makes an entry for this instruction in RELOCTAB so that the linker

would put the appropriate address in the operand field. Inter-segment calls and jumps are

handled in a similar way.

Relocation is somewhat more involved in the case of intra-segment jumps assembled in the

FAR format. For example, consider the following program :

FAR_LAB EQU THIS FAR ; FAR_LAB is a FAR label

JMP FAR_LAB ; A FAR jump

Here the displacement and the segment base of FAR_LAB are to be put in the JMP

instruction itself. The assembler puts the displacement of FAR_LAB in the first two operand

bytes of the instruction , and makes a RELOCTAB entry for the third and fourth operand

bytes which are to hold the segment base address. A segment like

ADDR_A DW OFFSET A

(which is an ‘address constant’) does not need any relocation since the assemble can itself put

the required offset in the bytes. In summary, the only RELOCATAB entries that must exist

for a program using segmented memory addressing are for the bytes that contain a segment

base address.

For linking, however both segment base address and offset of the external symbol must be

computed by the linker. Hence there is no reduction in the linking requirements.

Self-relocation is similar to the relocation process employed by the linker-loader when a

program is copied from external storage into main memory; the difference is that it is the

loaded program itself rather than the loader in the operating system or shell that performs the

relocation.

One form of self-relocation occurs when a program copies the code of its instructions from

one sequence of locations to another sequence of locations within the main memory of a

single computer, and then transfers processor control from the instructions found at the

source locations of memory to the instructions found at the destination locations of memory.

As such, the data operated upon by the algorithm of the program is the sequence of bytes

which define the program.

Self-relocation typically happens at load-time (after the operating system has loaded the

software and passed control to it, but still before its initialization has finished), sometimes

also when changing the program's configuration at a later stage during runtime.[3][4]

Examples[edit]

Boot loaders[edit]

As an example, self-relocation is often employed in the early stages of bootstrapping

operating systems on architectures like IBM PC compatibles, where lower-level chain boot

loaders (like the master boot record (MBR), volume boot record (VBR) and initial boot

stages of operating systems such as DOS) move themselves out of place in order to load the

next stage into memory.

x86 DOS drivers[edit]

Under DOS, self-relocation is sometimes also used by more

advanced drivers and RSXs/TSRs loading themselves "high" into upper memory more

effectively than possible for externally provided "high"-loaders

(like LOADHIGH/HILOAD, INSTALLHIGH/HIINSTALL or DEVICEHIGH/HIDEVICE et

c.[5] since DOS 5) in order to maximize the memory available for applications. This is down

to the fact that the operating system has no knowledge of the inner workings of a driver to be

loaded and thus has to load it into a free memory area large enough to hold the whole driver

as a block including its initialization code, even if that would be freed after the initialization.

For TSRs, the operating system also has to allocate a Program Segment Prefix (PSP) and

an environment segment.[6] This might cause the driver not to be loaded into the most suitable

https://en.wikipedia.org/wiki/Relocation_(computer_science)
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Load-time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_1997_FreeKEYB-3
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2006_FreeKEYB-4
https://en.wikipedia.org/w/index.php?title=Self-relocation&action=edit§ion=2
https://en.wikipedia.org/w/index.php?title=Self-relocation&action=edit§ion=3
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/Boot_loader
https://en.wikipedia.org/wiki/Boot_loader
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Volume_boot_record
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/w/index.php?title=Self-relocation&action=edit§ion=4
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Resident_system_extension
https://en.wikipedia.org/wiki/Terminate_and_stay_resident_program
https://en.wikipedia.org/wiki/Upper_memory
https://en.wikipedia.org/wiki/LOADHIGH
https://en.wikipedia.org/wiki/HILOAD
https://en.wikipedia.org/wiki/INSTALLHIGH
https://en.wikipedia.org/wiki/HIINSTALL
https://en.wikipedia.org/wiki/DEVICEHIGH
https://en.wikipedia.org/wiki/HIDEVICE
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Caldera_1998_DRDOS702-5
https://en.wikipedia.org/wiki/Program_Segment_Prefix
https://en.wikipedia.org/wiki/Environment_segment
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_CTMOUSE-6

free memory area or even prevent it from being loaded high at all. In contrast to this, a self-

relocating driver can be loaded anywhere (including into conventional memory) and then

relocate only its (typically much smaller) resident portion into a suitable free memory area in

upper memory. In addition, advanced self-relocating TSRs (even if already loaded into upper

memory by the operating system) can relocate over most of their own PSP segment and

command line buffer and free their environment segment in order to further reduce the

resulting memory footprint and avoid fragmentation. Some self-relocating TSRs can also

dynamically change their "nature" and morph into device drivers even if originally loaded as

TSRs, thereby typically also freeing some memory.[4] Finally, it is technically impossible for

an external loader to relocate drivers into expanded memory (EMS), the high memory

area (HMA) or extended memory (via DPMS or CLOAKING), because these methods

require small driver-specific stubs to remain in conventional or upper memory in order to

coordinate the access to the relocation target area,[7][nb 1][nb 2] and in the case of device drivers

also because the driver's header must always remain in the first megabyte.[7][6] In order to

achieve this, the drivers must be specially designed to support self-relocation into these

areas.[7]

Some advanced DOS drivers also contain both a device driver (which would be loaded at

offset +0000h by the operating system) and TSR (loaded at offset +0100h) sharing a common

code portion internally as fat binary.[6] If the shared code is not designed to be position-

independent, it requires some form of internal address fix-up similar to what would otherwise

have been carried out by a relocating loader already; this is similar to the fix-up stage of self-

relocation but with the code already being loaded at the target location by the operating

system's loader (instead of done by the driver itself).

LOADERS

A loader is a major component of an operating system that ensures all necessary programs

and libraries are loaded, which is essential during the startup phase of running a program. It

places the libraries and programs into the main memory in order to prepare them for

execution. Loading involves reading the contents of the executable file that contains the

instructions of the program and then doing other preparatory tasks that are required in order

to prepare the executable for running, all of which takes anywhere from a few seconds to

minutes depending on the size of the program that needs to run.

Advertisement

https://en.wikipedia.org/wiki/Conventional_memory
https://en.wikipedia.org/wiki/Memory_fragmentation
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2006_FreeKEYB-4
https://en.wikipedia.org/wiki/Expanded_memory
https://en.wikipedia.org/wiki/High_memory_area
https://en.wikipedia.org/wiki/High_memory_area
https://en.wikipedia.org/wiki/Extended_memory
https://en.wikipedia.org/wiki/DOS_Protected_Mode_Services
https://en.wikipedia.org/wiki/CLOAKING_(DOS_extender)
https://en.wikipedia.org/wiki/DOS_memory_stub
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Self-relocation#cite_note-NB_Exception_EMSUMB-8
https://en.wikipedia.org/wiki/Self-relocation#cite_note-NB_Exception_HMA-9
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_CTMOUSE-6
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_Drivers-7
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Self-relocation#cite_note-Paul_2002_CTMOUSE-6
https://en.wikipedia.org/wiki/Position-independent
https://en.wikipedia.org/wiki/Position-independent
https://en.wikipedia.org/wiki/Relocating_loader

Techopedia Explains Loader

The loader is a component of an operating system that carries out the task of preparing a

program or application for execution by the OS. It does this by reading the contents of the

executable file and then storing these instructions into the RAM, as well as any library

elements that are required to be in memory for the program to execute. This is the reason a

splash screen appears right before most programs start, often showing what is happening in

the background, which is what the loader is currently loading into the memory. When all of

that is done, the program is ready to execute. For small programs, this process is almost

instantaneous, but for large and complex applications with large libraries required for

execution, such as games as well as 3D and CAD software, this could take longer. The

loading speed is also dependent on the speed of the CPU and RAM.

Not all code and libraries are loaded at program startup, only the ones required for actually

running the program. Other libraries are loaded as the program runs, or only as required. This

is especially true for applications such as games that only need assets loaded for the current

level or location that the player is in.

Though loaders in different operating systems might have their own nuances and specialized

functions native to that particular operating system, they still serve basically the same

function. The following are the responsibilities of a loader:

1. Validate the program for memory requirements, permissions, etc.

2. Copy necessary files, such as the program image or required libraries, from the disk

into the memory

3. Copy required command-line arguments into the stack

4. Link the starting point of the program and link any other required library

5. Initialize the registers

6. Jump to the program starting point in memory

SOFTWARE TOOLS FOR PROGRAM DEVELOPMENT

A programming tool or software development tool is a program or application that software

developers use to create, debug, maintain, or otherwise support other programs and

applications. The term usually refers to relatively simple programs that can be combined

together to accomplish a task, much as one might use multiple hand tools to fix a physical

object.

 The history of software tools began with the first computers in the early 1950s that used

linkers, loaders, and control programs. Tools became famous with Unix in the early 1970s

with tools like grep, awk and make that were meant to be combined flexibly with pipes. The

term "software tools" came from the book of the same name by Brian Kernighan and P. J.

Plauger.

 Tools were originally simple and light weight. As some tools have been maintained, they

have been integrated into more powerful integrated development environments (IDEs). These

environments consolidate functionality into one place, sometimes increasing simplicity and

productivity, other times sacrificing flexibility and extensibility. The workflow of IDEs is

routinely contrasted with alternative approaches, such as the use of Unix shell tools with text

editors like Vim and Emacs

Software development tools can be roughly divided into the following categories:

1) Performance analysis tools

2) Debugging tools

3) Static analysis and formal verification tools

4) Correctness checking tools

5) Memory usage tools

6) Application build tools

7) Integrated development environment

 Software Development Tools also called Programming Tools, Integrated Development

Tools, Software Development Kits, Software Developer's Kits, Design Tools, Application

Development Software, Application Deployment Tools, Application Development Tools,

SDK, Development Tools, Tools, Software Engineering Tools, Applications Frameworks,

Development Kits, Program Development Tools, IT Tools, Frameworks, Software Tools, and

Information Technology Tools .

A software developer's kit (SDK) is a set of programs used by a computer programmer to

write application programs. Typically, an SDK includes a visual screen builder, an editor, a

compiler, a linker, and sometimes other facilities. The term is used by Microsoft, Sun

Microsystems, and a number of other companies.This term is sometimes seen as software

development kit.

Debug monitors give debugging support for a program. A debug monitor executes the

program being debugged in its own control thereby giving execution efficiency throughout

debugging. There are debug monitors which are language independent and can handle

programs written in several languages. For illustration-DEC-10.

Debug monitor give the following facilities for dynamic debugging:

1. Setting breakpoints into the program

2. Initiating a debug conversation while control reaches a breakpoint.

3. Displaying variable's values

4. Assigning new values to variables.

5. Testing in defined assertions and predicates including program variables.

Programming Environments

The term programming environment is sometimes reserved for environments containing

language specific editors and source level debugging facilities; here, the term will be used in

its broader sense to refer to all of the hardware and software in the environment used by the

programmer. All programming can therefore be properly described as takin place in a

programming environment.

Programming environments may vary considerably in complexity. An example of a simple

environment might consist of a text editor for program preparation, an assembler for

translating programs to machine language, and a simple operating system consisting of input-

output drivers and a file system. Although card input and non-interactive operation

characterized most early computer systems, such simple environments were supported on

early experimental time-sharing systems by 1963.

Although such simple programming environments are a great improvement over the bare

hardware, tremendous improvements are possible. The first improvement which comes to

mind is the use of a high level language instead of an assembly language, but this implies

other changes. Most high level languages require more complicated run-time support than

just input-output drivers and a file system. For example, most require an extensive library of

predefined procedures and functions, many require some kind of automatic storage

management, and some require support for concurrent execution of threads, tasks or

processes within the program.

Many applications require additional features, such as window managers or elaborate file

access methods. When multiple applications coexist, perhaps written by different

programmers, there is frequently a need to share files, windows or memory segments

between applications. This is typical of today's electronic mail, database, and spreadsheet

applicatons, and the programming environments that support such applications can be

extremely complex, particularly if they attempt to protect users from malicious or accidental

damage caused by program developers or other users.

A programming environment may include a number of additional features which simplify the

programmer's job. For example, library management facilities to allow programmers to

extend the set of predefined procedures and functions with their own routines. Source level

debugging facilities, when available, allow run-time errors to be interpreted in terms of the

source program instead of the machine language actually run by the hardware. As a final

example, the text editor may be language specific, with commands which operate in terms of

the syntax of the language being used, and mechanisms which allow syntax errors to be

detected without leaving the editor to compile the program.

A Unifying Framework

In all programming environments, from the most rudimentary to the most advanced, it is

possible to identify two distinct components, the program preparation component and the

program execution component. On a bare machine, the program preparation component

consists of the switches or push buttons by which programs and data may be entered into the

memory of the machine; more advanced systems supplement this with text editors, compilers,

assemblers, object library managers, linkers, and loaders. On a bare machine, the program

execution component consists of the hardware of the machine, the central processors, any

peripheral processors, and the various memory resources; more advanced systems

supplement this with operating system services, libraries of predefined procedures, functions

and objects, and interpreters of various kinds.

Within the program execution component of a programming environment, it is possible to

distinguish between those facilities needed to support a single user process, and those which

are introduced when resources are shared between processes. Among the facilities which may

be used to support a single process environment are command language interpreters, input-

output, file systems, storage allocation, and virtual memory. In a multiple process

environment, processor allocation, interprocess communication, and resource protection may

be needed. Figure 1.1 lists and classifies these components.

Editors

Compilers

Assemblers Program Preparation

Linkers

Loaders

==

Command Languages

Sequential Input/Output

Random Access Input/Output

File Systems Used by a Single Process

Window Managers

Storage Allocation

Virtual Memory

------------------------------ Program Execution Support

Process Scheduling

Interprocess Communication

Resource Sharing Used by Multiple Processes

Protection Mechanisms

Figure 1.1. Components of a programming environment.

This text is divided into three basic parts based on the distinctions illustrated in Figure 1.1.

The distinction between preparation and execution is the basis of the division between the

first and second parts, while the distinction between single process and multiple process

systems is the basis of the division between the second and third parts.

USER INTERFACE

User interface is the front-end application view to which user interacts in order to use the

software. User can manipulate and control the software as well as hardware by means of

user interface. Today, user interface is found at almost every place where digital technology

exists, right from computers, mobile phones, cars, music players, airplanes, ships etc.

User interface is part of software and is designed such a way that it is expected to provide

the user insight of the software. UI provides fundamental platform for human-computer

interaction.

UI can be graphical, text-based, audio-video based, depending upon the underlying

hardware and software combination. UI can be hardware or software or a combination of

both.

The software becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interfacing screens

UI is broadly divided into two categories:

 Command Line Interface

 Graphical User Interface

Command Line Interface (CLI)

CLI has been a great tool of interaction with computers until the video display monitors

came into existence. CLI is first choice of many technical users and programmers. CLI is

minimum interface a software can provide to its users.

CLI provides a command prompt, the place where the user types the command and feeds to

the system. The user needs to remember the syntax of command and its use. Earlier CLI

were not programmed to handle the user errors effectively.

A command is a text-based reference to set of instructions, which are expected to be

executed by the system. There are methods like macros, scripts that make it easy for the user

to operate.

CLI uses less amount of computer resource as compared to GUI.

CLI Elements

A text-based command line interface can have the following elements:

 Command Prompt - It is text-based notifier that is mostly shows the context in

which the user is working. It is generated by the software system.

 Cursor - It is a small horizontal line or a vertical bar of the height of line, to

represent position of character while typing. Cursor is mostly found in blinking state.

It moves as the user writes or deletes something.

 Command - A command is an executable instruction. It may have one or more

parameters. Output on command execution is shown inline on the screen. When

output is produced, command prompt is displayed on the next line.

Graphical User Interface

Graphical User Interface provides the user graphical means to interact with the system. GUI

can be combination of both hardware and software. Using GUI, user interprets the software.

Typically, GUI is more resource consuming than that of CLI. With advancing technology,

the programmers and designers create complex GUI designs that work with more efficiency,

accuracy and speed.

GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work with the system. A GUI system has

following elements such as:

 Window - An area where contents of application are displayed. Contents in a

window can be displayed in the form of icons or lists, if the window represents file

structure. It is easier for a user to navigate in the file system in an exploring window.

Windows can be minimized, resized or maximized to the size of screen. They can be

moved anywhere on the screen. A window may contain another window of the same

application, called child window.

 Tabs - If an application allows executing multiple instances of itself, they appear on

the screen as separate windows. Tabbed Document Interface has come up to open

multiple documents in the same window. This interface also helps in viewing

preference panel in application. All modern web-browsers use this feature.

 Menu - Menu is an array of standard commands, grouped together and placed at a

visible place (usually top) inside the application window. The menu can be

programmed to appear or hide on mouse clicks.

 Icon - An icon is small picture representing an associated application. When these

icons are clicked or double clicked, the application window is opened. Icon displays

application and programs installed on a system in the form of small pictures.

 Cursor - Interacting devices such as mouse, touch pad, digital pen are represented in

GUI as cursors. On screen cursor follows the instructions from hardware in almost

real-time. Cursors are also named pointers in GUI systems. They are used to select

menus, windows and other application features.

Application specific GUI components

A GUI of an application contains one or more of the listed GUI elements:

 Application Window - Most application windows uses the constructs supplied by

operating systems but many use their own customer created windows to contain the

contents of application.

 Dialogue Box - It is a child window that contains message for the user and request

for some action to be taken. For Example: Application generate a dialogue to get

confirmation from user to delete a file.

 Text-Box - Provides an area for user to type and enter text-based data.

 Buttons - They imitate real life buttons and are used to submit inputs to the software.

 Radio-button - Displays available options for selection. Only one can be selected

among all offered.

 Check-box - Functions similar to list-box. When an option is selected, the box is

marked as checked. Multiple options represented by check boxes can be selected.

 List-box - Provides list of available items for selection. More than one item can be

selected.

Other impressive GUI components are:

 Sliders

 Combo-box

 Data-grid

 Drop-down list

User Interface Design Activities

There are a number of activities performed for designing user interface. The process of GUI

design and implementation is alike SDLC. Any model can be used for GUI implementation

among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI specific steps.

 GUI Requirement Gathering - The designers may like to have list of all functional

and non-functional requirements of GUI. This can be taken from user and their

existing software solution.

 User Analysis - The designer studies who is going to use the software GUI. The

target audience matters as the design details change according to the knowledge and

competency level of the user. If user is technical savvy, advanced and complex GUI

can be incorporated. For a novice user, more information is included on how-to of

software.

 Task Analysis - Designers have to analyze what task is to be done by the software

solution. Here in GUI, it does not matter how it will be done. Tasks can be

represented in hierarchical manner taking one major task and dividing it further into

smaller sub-tasks. Tasks provide goals for GUI presentation. Flow of information

among sub-tasks determines the flow of GUI contents in the software.

 GUI Design & implementation - Designers after having information about

requirements, tasks and user environment, design the GUI and implements into code

and embed the GUI with working or dummy software in the background. It is then

self-tested by the developers.

 Testing - GUI testing can be done in various ways. Organization can have in-house

inspection, direct involvement of users and release of beta version are few of them.

Testing may include usability, compatibility, user acceptance etc.

GUI Implementation Tools

There are several tools available using which the designers can create entire GUI on a mouse

click. Some tools can be embedded into the software environment (IDE).

GUI implementation tools provide powerful array of GUI controls. For software

customization, designers can change the code accordingly.

There are different segments of GUI tools according to their different use and platform.

Example

Mobile GUI, Computer GUI, Touch-Screen GUI etc. Here is a list of few tools which come

handy to build GUI:

 FLUID

 AppInventor (Android)

 LucidChart

 Wavemaker

 Visual Studio

User Interface Golden rules

The following rules are mentioned to be the golden rules for GUI design, described by

Shneiderman and Plaisant in their book (Designing the User Interface).

 Strive for consistency - Consistent sequences of actions should be required in

similar situations. Identical terminology should be used in prompts, menus, and help

screens. Consistent commands should be employed throughout.

 Enable frequent users to use short-cuts - The user’s desire to reduce the number of

interactions increases with the frequency of use. Abbreviations, function keys,

hidden commands, and macro facilities are very helpful to an expert user.

 Offer informative feedback - For every operator action, there should be some

system feedback. For frequent and minor actions, the response must be modest,

while for infrequent and major actions, the response must be more substantial.

 Design dialog to yield closure - Sequences of actions should be organized into

groups with a beginning, middle, and end. The informative feedback at the

completion of a group of actions gives the operators the satisfaction of

accomplishment, a sense of relief, the signal to drop contingency plans and options

from their minds, and this indicates that the way ahead is clear to prepare for the next

group of actions.

 Offer simple error handling - As much as possible, design the system so the user

will not make a serious error. If an error is made, the system should be able to detect

it and offer simple, comprehensible mechanisms for handling the error.

 Permit easy reversal of actions - This feature relieves anxiety, since the user knows

that errors can be undone. Easy reversal of actions encourages exploration of

unfamiliar options. The units of reversibility may be a single action, a data entry, or a

complete group of actions.

 Support internal locus of control - Experienced operators strongly desire the sense

that they are in charge of the system and that the system responds to their actions.

Design the system to make users the initiators of actions rather than the responders.

 Reduce short-term memory load - The limitation of human information processing

in short-term memory requires the displays to be kept simple, multiple page displays

be consolidated, window-motion frequency be reduced, and sufficient training time

be allotted for codes, mnemonics, and sequences of actions.

	Data Structures for Language Processing
	2) HASH TABLE ORGANISATION
	8.3.1 Direct Address Tables

	8.3.2 Mapping functions
	Handling the collisions
	Chaining
	Re-hashing
	Clustering
	Quadratic Probing
	Overflow area
	Summary: Hash Table Organization

	What is Scanning
	What is Parsing
	Difference Between Scanning and Parsing
	Definition
	Performed by
	Associated Phase of the Compilation
	Occurrence
	Conclusion

	What is an Assembler?
	The Assembly Process
	A Simple Assembly Language
	Formal Definitions
	Parsing
	A Syntax Directed Assembler
	Lexical Analysis
	Alternatives
	Nesting macro instruction definitions
	a) Facilities for alteration of flow of control during expansion
	b) Expansion Time Variables :-
	c) Attributes of formal parameters:-
	Principles of Compilers
	Introduction
	Important phases in Compilation
	Lexical Analysis
	Syntax Analysis
	Intermediate Code Generation
	Code Optimisation
	Code Generation

	Run-time Storage Administration

	Examples[edit]
	Boot loaders[edit]
	x86 DOS drivers[edit]

	Techopedia Explains Loader
	Programming Environments
	A Unifying Framework
	Command Line Interface (CLI)
	CLI Elements

	Graphical User Interface
	GUI Elements
	Application specific GUI components

	User Interface Design Activities
	GUI Implementation Tools
	Example

	User Interface Golden rules

