
1

2

THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

Unit – I

1.Propositions and Compound Propositions

A proposition (or statement) is a declarative statement which is true or false, but not
both. Consider, for example, the following six sentences. .

 Ice floats in water.
 China is in Europe.
 2 + 2 = 4
 2 + 2 = 5
 Where are you going?
 Do your homework.

The first four are propositions, the last two are not. Also, (i) and (iii) are true, but (ii)
and (iv) are false.

Compound Propositions

Many propositions are composite, that is, composed of sub propositions and various
connectives discussed subsequently. Such composite propositions are called compound
propositions. Aproposition is said to be primitive if it cannot be broken down into simpler
propositions, that is, if it is not composite.

For example, the above propositions (i) through (iv) are primitive propositions. On the
other hand, the following two propositions are composite:

“Roses are red and violets are blue.” and “John is smart or he studies every night.”

2. Logical Operations

 The three basic logical operations of conjunction, disjunction, and negation which
correspond, respectively, to the English words “and,” “or,” and “not.”

Conjunction, p ∧q

Any two propositions can be combined by the word “and” to form a compound

proposition called the conjunction of the original propositions. Symbolically,

p ∧q

read “p and q,” denotes the conjunction of p and q. Since p ∧q is a proposition it has a truth
value, and this truth value depends only on the truth values of p and q. Specifically:

 If p and q are true, then p ∧q is true; otherwise p ∧q is false.

3

Disjunction, p ∨q

Any two propositions can be combined by the word “or” to form a compound

proposition called the disjunction of the original propositions. Symbolically,

p ∨q

read “p or q,” denotes the disjunction of p and q. The truth value of p ∨q depends only on the
truth values of p and q as follows.

If p and q are false, then p ∨q is false; otherwise p ∨q is true.

Negation, ¬p

Given any proposition p, another proposition, called the negation of p, can be formed
by writing “It is not true that ...” or “It is false that ...” before p or, if possible, by inserting in
p the word “not.” Symbolically, the negation of p, read “not p,” is denoted by

¬p

The truth value of ¬p depends on the truth value of p as follows:

If p is true, then ¬p is false; and if p is false, then ¬p is true.

3. Truth Tables

Let P(p,q,...) denote an expression constructed from logical variables p,q,..., which take on
the valueTRUE (T) or FALSE (F), and the logical connectives ∧, ∨, and ¬ (and others
discussed subsequently). Such an expression P(p,q,...) will be called a proposition.

The main property of a proposition P(p,q,...) is that its truth value depends exclusively
upon the truth values of its variables, that is, the truth value of a proposition is known once
the truth value of each of its variables is known. A simple concise way to show this
relationship is through a truth table. We describe a way to obtain such a truth table below.

Consider, for example, the proposition ¬(p ∧¬q). Figure 4-2(a) indicates how the truth table
of ¬(p ∧¬q) is constructed

4

4. Tautologies and Contradictions

Some propositions P(p,q,...) contain only T in the last column of their truth tables or,
in other words, they are true for any truth values of their variables. Such propositions are
called tautologies.Analogously, a proposition P(p,q,...) is called a contradiction if it contains
only F in the last column of its truth table or, in other words, if it is false for any truth values
of its variables. For example, the proposition “p or not p,” that is, p ∨ ¬p, is a tautology, and
the proposition “p and not p,” that is, p∧¬p, is a contradiction. This is verified by looking at
their truth tables in Fig. 4-5. (The truth tables have only two rows since each proposition has
only the one variable p.)

5. Logical Equivalence

Two propositions P(p,q,...) and Q(p,q,...) are said to be logically equivalent, or simply
equivalent or equal, denoted by

P(p, q, ...) ≡ Q(p, q, ...)

if they have identical truth tables. Consider, for example, the truth tables of ¬(p ∧q) and ¬p
∨¬q appearing in Fig. 4-6. Observe that both truth tables are the same, that is, both
propositions are false in the first case and true in the other three cases. Accordingly, we can
write

¬(p ∧q) ≡ ¬p ∨ ¬q

Let p be “Roses are red” and q be “Violets are blue.” Let Sbe the statement:

“It is not true that roses are red and violets are blue.”

Then S can be written in the form ¬(p ∧q). However, as noted above, ¬(p ∧q) ≡ ¬p ∨ ¬q.
Accordingly, S has the same meaning as the statement:

“Roses are not red, or violets are not blue.”

5

6. Algebra of Propositions

Propositions satisfy various laws which are listed in Table 4-1. (In this table, T and F
are restricted to the truth values “True” and “False,” respectively.) We state this result

formally

Table1. Laws of the algebra of propositions

Idempotent
laws:

(1a) p ∨p ≡ p (1b) p ∧p ≡ p

Associative
laws:

(2a) (p ∨q) ∨r ≡ p ∨(q ∨r) (2b) (p ∧q) ∧r ≡ p ∧(q ∧r)

Commutative
laws:

(3a) p ∨q ≡ q ∨p (3b) p ∧q ≡ q ∧p

Distributive
laws:

(4a) p ∨(q ∧r) ≡ (p ∨q) ∧(p ∨r) (4b) p ∧(q ∨r) ≡ (p ∧q) ∨(p ∧r)

Identity laws: (5a) p ∨F ≡ p (5b) p ∧T ≡ p
 (6a) p ∨T ≡ T (6b) p ∧F ≡ F

Involution law: (7) ¬¬p ≡ p

Complement
laws:

(8a) p ∨ ¬p ≡ T (8b) p ∧ ¬p ≡ T

 (9a) ¬T ≡ F (9b) ¬F ≡ T

DeMorgan’s

laws:
(10a) (p q) p q (10b) (p q) p q

6

7. Conditional and Biconditional Statements

Many statements, particularly in mathematics, are of the form “If p then q.” Such

statements are called conditional statements and are denoted by
p → q

The conditional p → q is frequently read “p implies q” or “p only if q.”

Another common statement is of the form “p if and only if q.” Such statements are

called biconditionalstatements and are denoted by
p ↔ q

The truth values of p → q and p ↔ q are defined by the tables in Fig. 4-7(a) and (b). Observe
that:

(a) The conditional p → q is false only when the first part p is true and the second part q is
false.Accordingly, when p is false, the conditional p → q is true regardless of the truth
value of q.

(b) The biconditional p ↔ q is true whenever p and q have the same truth values and false
otherwise.

The truth table of ¬p∧q appears in Fig. 4-7(c). Note that the truth table of ¬p∨q and

 p → q are identical, that is, they are both false only in the second case. Accordingly, p → q
is logically equivalent to ¬p ∨q; that is,

p → q ≡ ¬p ∨q

In other words, the conditional statement “If p then q” is logically equivalent to the

statement “Not p or q” which only involves the connectives ∨and ¬ and thus was already a
part of our language. We may regard p → q as an abbreviation for an oft-recurring statement.

8. Arguments

An argument is an assertion that a given set of propositions P1,P2,...,Pn, called
premises, yields (has a consequence) another proposition Q, called the conclusion. Such an
argument is denoted by

P1, P2, ..., Pn$ Q

7

An argument P1, P2, ..., Pn$ Q is said to be valid if Q is true whenever all the premises
P1,P2,...,Pnare true.An argument which is not valid is called fallacy.

9. Quantifiers

Universal Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 (∀x ∈A)p(x) or ∀x p(x)

which reads “For every x in A, p(x) is a true statement” or, simply, “For all x,
p(x).”

The symbol ∀which reads “for all” or “for every” is called the universal quantifier. The
statement (4.1) is equivalent to the statement
 Tp= {x |x ∈A, p(x)} = A

that is, that the truth set of p(x) is the entire set A.

The expression p(x) by itself is an open sentence or condition and therefore has no truth
value. However, ∀x p(x), that is p(x) preceded by the quantifier ∀, does have a truth value
which follows from the equivalence of (4.1) and (4.2). Specifically:

Q1: If {x|x∈A, p(x)} = A then ∀x p(x) is true; otherwise, ∀x p(x) is false.

Existential Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 (∃x ∈A)p(x) or ∃x, p(x)

which reads “There exists an x in A such that p(x) is a true statement” or, simply, “For some

x, p(x).” The symbol ∃
which reads “there exists” or “for some” or “for at least one” is called the existential
quantifier. Statement (4.3) is equivalent to the statement

Tp= {x |x ∈A, p(x)} = (4.4)

 i.e., that the truth set of p(x) is not empty. Accordingly, ∃x p(x), that is, p(x) preceded by the
quantifier ∃, does have a truth value. Specifically:

Q2: If {x |p(x)} = then∃x p(x) is true; otherwise, ∃x p(x) is false.

8

10. Negation of Quantified Statements

Consider the statement: “All math majors are male.” Its negation reads:

“It is not the case that all math majors are male” or, equivalently, “There exists at least

one math major who is a female (not male)”

Symbolically, using M to denote the set of math majors, the above can be written as

¬(∀x ∈M)(x is male) ≡ (∃x ∈M) (x is not male)

or, when p(x) denotes “x is male,”

 ¬(∀x ∈M)p(x) ≡ (∃x ∈M)¬p(x) or¬∀xp(x) ≡ ∃x¬p(x)

The above is true for any proposition p(x).

 (DeMorgan): ¬(∀x ∈A)p(x) ≡ (∃x ∈A)¬p(x).

In other words, the following two statements are equivalent:
(1) It is not true that, for all a ∈A, p(a) is true. (2) There exists an a ∈A such that p(a) is false.

There is an analogous theorem for the negation of a proposition which contains the
existential quantifier.

 (DeMorgan): ¬(∃x ∈A)p(x) ≡ (∀x ∈A)¬p(x).

That is, the following two statements are equivalent:
(1) It is not true that for some a ∈A, p(a) is true. (2) For all a ∈A, p(a) is false.

11. Basic Counting Principles

There are two basic counting principles used throughout this chapter. The first one
involves addition and the second one multiplication.

Sum Rule Principle:

Suppose some event E can occur in m ways and a second event F can occur in n ways, and
suppose both events cannot occur simultaneously. Then E or F can occur in m + n ways.

Product Rule Principle:

Suppose there is an event E which can occur in m ways and, independent of this event,
there is a second event F which can occur in n ways. Then combinations of E and F can
occur in mn ways.

9

The above principles can be extended to three or more events. That is, suppose an
event E1 can occur in n1 ways, a second event E2 can occur in n2 ways, and, following E2; a
third event E3 can occur in n3 ways, and so on. Then:

Sum Rule:

 If no two events can occur at the same time, then one of the events can occur in:

n1 + n2 + n3 + ··· ways.

Product Rule:

If the events occur one after the other, then all the events can occur in the order indicated in:

n1 · n2 · n3 · ... ways.

12. Factorial

The product of the positive integers from 1 to ninclusive is denoted by n!, read “n
factorial.” Namely:

n! = 1 · 2 · 3 · ... · (n−2)(n−1)n = n(n−1)(n−2) · ... · 3 · 2 · 1

Accordingly, 1! = 1 and n! = n(n − l)!. It is also convenient to define 0! = 1.

13. Binomial Coefficient

The symbol , read “nCr” or “n Choose r,” where r and n are positive integers with
r ≤ n, is defined asfollows:

 or equivalently

Note that n − (n − r) = r. This yields the following important relation.

 or equivalently,

where a + b = n.Motivated by that fact that we defined 0! = 1, we define:

 1 and

10

14. Permutation

Any arrangement of a set of n objects in a given order is called a permutation of the
object (taken all at a time).
Any arrangement of any r ≤ n of these objects in a given order is called an “r-permutation” or

“a permutation of the n objects taken r at a time.” Consider, for example, the set of letters A,
B, C, D. Then:

(i) BDCA, DCBA, and ACDB are permutations of the four letters (taken all at a
time).
(ii) BAD, ACB, DBC are permutations of the four letters taken three at a time.
(iii) AD, BC, CA are permutations of the four letters taken two at a time.

We usually are interested in the number of such permutations
without listing them. The number of permutations of n objects taken r at a
time will be denoted by

 P(n,r) (other texts may use nPr, Pn,r, or (n)r).

The following theorem applies.

We emphasize that there are r factors in n(n − 1)(n − 2)···(n − r + 1).

15. Combinations
Let Sbe a set with n elements. A combination of these n elements taken r at a time is

any selection of r of the elements where order does not count. Such a selection is called an r-
combination; it is simply a subset of S with r elements. The number of such combinations
will be denoted by

C(n,r) (other texts may use

Before we give the general formula for C(n, r), we consider a special case.

16. Pigeonhole Principle

Many results in combinational theory come from the following almost obvious
statement.

Pigeonhole Principle:

If n pigeonholes are occupied by n + 1 or more pigeons, then at least one pigeonhole
is occupied by more than one pigeon.

This principle can be applied to many problems where we want to show that a
given situation can occur.

11

EXAMPLE

Suppose a department contains 13 professors, then two of the professors (pigeons) were born
in the same month (pigeonholes).

(a) Find the minimum number of elements that one needs to take from the set S = {1, 2, 3,...,
9} to be sure that two of the numbers add up to 10.
Here the pigeonholes are the five sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Thus any choice
of six elements (pigeons) of S will guarantee that two of the numbers add up to ten.

The Pigeonhole Principle is generalized as follows.

Generalized Pigeonhole Principle:

If n pigeonholes are occupied by kn+ 1 or more pigeons, where k is a positive integer,
then at least one pigeonhole is occupied by k + 1 or more pigeons.

17. Ordered and Unordered Partitions.

Suppose a set has 7 elements. We want to find the number m of ordered partitions of S
into three cells, say [A

1
,A

2
,A

3], so they contain 2, 3, and 2 elements, respectively.
Since S has 7 elements, there are C(7, 2) ways of choosing the first two elements for

A1. Following this, there are C(5, 3) ways of choosing the 3 elements for A2. Lastly, there are
C(2, 2) ways of choosing the 2 elements for A3 (or, the last 2 elements form the cell A3).
Thus:

Observe that

since each numerator after the first is cancelled by a term in the denominator

of the previous factor. The above discussion can be shown to be true in general.
Namely:

Theorem

 The number m of ordered partitions of a set S with n elements into r cells [A1,A2,...,Ar]
where, for each i, n(Ai) = ni, follows:

12

Unordered Partitions

Frequently, we want to partition a set S into cellswhere the cells
are now unordered. The number m of such unordered partitions is obtained
from the number of ordered partitions by dividing m by each k! where k of the cells
have the same number of element.

EXAMPLE

Find the number m of ways to partition 10 students into four teams [A1,A2,A3,A4] so
that two teams contain 3 students and two teams contain 2 students.

By Theorem 6.2, there are m= 10!/(3!3!2!2!) = 25 200 such ordered partitions.
Since the teams form an unordered partition, we divide m by 2! because of the two cells
with 3 elements each and 2! because of the two cells with 2 elements each. Thus m = 25
200/(2!2!) = 6300.

Unit – II

1.Order and Inequalities

 An inequality is a mathematical statement which shows that two values are not equal.

a ≠ b means that a is not equal to b. It means that either a is less or greater than b.

There are special symbols that show how things are not equal.

 a < b means that a is less than b
 a > b means that a is greater than b
 a ≤ b means that a is less than or equal to b
 a ≥ b means that a is greater than or equal to b

Example

 To compare two numbers, we use the symbols, or =.

 Use <, >, or = to compare the numbers given below

18

21

72

38

13

109

163

Solution

 Step 1:Since 18 is less than 21 we write 18 < 21

 Step 2:As 72 is greater than 38, we write 72 > 38

 Step 3: As 109 is less than 163, we write 109 < 163

2. Mathematical Induction

 Mathematical induction, is a technique for proving results or establishing statements
for natural numbers. This part illustrates the method through a variety of examples.

Definition

 Mathematical Induction is a mathematical technique which is used to prove a
statement, a formula or a theorem is true for every natural number.

The technique involves two steps to prove a statement, as stated below −

Step 1(Base step):It proves that a statement is true for the initial value.

Step 2(Inductive step): It proves that if the statement is true for the nth iteration (or
number n), then it is also true for (n+1)th iteration (or number n+1).

How to Do It

Step 1: Consider an initial value for which the statement is true. It is to be shown that the
statement is true for n = initial value.

Step 2: Assume the statement is true for any value of n = k. Then prove the statement is true
for n = k+1. We actually break n = k+1 into two parts, one part is n = k (which is already
proved) and try to prove the other part.

Problem 1

 3n−13n−1 is a multiple of 2 for n = 1, 2, ...

Solution

Step 1: For n=1,31−1=3−1=2n=1,31−1=3−1=2 which is a multiple of 2

Step 2: Let us assume 3n−13n−1 is true for n=kn=k, Hence, 3k−13k−1 is true (It is an
assumption)

We have to prove that 3k+1−13k+1−1 is also a multiple of 2

 3k+1−1=3×3k−1=(2×3k)+(3k−1)3k+1−1=3×3k−1=(2×3k)+(3k−1)

14

The first part (2×3k)(2×3k) is certain to be a multiple of 2 and the second
part (3k−1)(3k−1) is also true as our previous assumption.

Hence, 3k+1–13k+1–1 is a multiple of 2.

So, it is proved that 3n–13n–1 is a multiple of 2.

3. Division Algorithm

 The following fundamental property of arithmetic is essentially a restatement of the
result of long division.

Theorem

 Let a and b be integers with b = 0.
 Then there exists integers q and r such that a = bq + r and 0 ≤ r < |b|.
 Also, the integers q and r are unique.
 The number q in the above theorem is called the quotient, and r is called the remainder.
 We stress the fact that r must be non-negative.
 The theorem also states that r = a − bq
 This equation will be used subsequently If a and b are positive, then q is non negative.
 If b is positive, then Fig. 11-2 gives a geometrical interpretation of this theorem.
 That is, the positive and negative multiples of b will be evenly distributed throughout the

number line R, and a will fall between some multiples qb and (q + 1)b.
 The distance between qb and a is then the remainder r.

4. DIVISIBILITY

 Let a and b be integers with a ≠ 0. Suppose ac = b for some integer c. We then say
that a divides b or b is divisible by a, and we denote this by writing a | b

 We also say that b is a multiple of a or that a is a factor or divisor of b. If a does not
divide b, we will write a ≠ | b.

 EXAMPLE

 (a) Clearly, 3 | 6 since 3 · 2 = 6, and −4 | 28 since (−4)(−7) = 28.

 (b) The divisors of 4 are ±1, ±2, ±4 and the divisors of 9 are ±1, ±3, ±9.

15

 (c) If a = 0, then a | 0 since a · 0 = 0.

 (d) Every integer a is divisible by ±1 and ±a. These are sometimes called the trivial
divisors of a. The basic properties of divisibility is stated in the next theorem

Theorem

 Suppose a, b, c are integers.

(i) If a | b and b | c, then a | c.

(ii) If a | b then, for any integer x, a | bx.

(iii) If a | b and a | c, then a |(b + c) and a|(b − c).

(iv) If a | b and b = 0, then a = ±b or |a| < |b|.

(v) If a | b and b | a, then |a|=|b|, i.e., a = ±b.

(vi) If a | 1 , then a = ±1

Putting (ii) and (iii) together, we obtain the following important result.

Note: Suppose a | b and a | c. Then, for any integers x and y, a |(bx + cy). The expression bx
+ cy will be called a linear combination of b and c. Primes A positive integer p > 1 is called a
prime number or a prime if its only divisors are ±1 and ±p, that is, if p only has trivial
divisors. If n > 1 is not prime, then n is said to be composite. We note (Problem 11.13) that if
n > 1 is composite then n = ab where 1 < a, b < n.

5. Euclidean Algorithm

 Let a and b be integers, and let d = gcd(a, b). One can always find d by listing all the
divisors of a and then all the divisors of b and then choosing the largest common divisor. The
complexity of such an algorithm is f (n) = 0(√n) where n = |a|+|b|. Also, we have given no

method to find the integers x and y such that d = ax + by.

 This subsection gives a very efficient algorithm, called the Euclidean algorithm, with
complexity f (n) = O(log n), for finding d = gcd(a, b) by applying the division algorithm to a
and b and then repeatedly applying it to each new quotient and remainder until obtaining a
nonzero remainder. The last nonzero remainder is d = gcd(a, b).

 Then we give an “unraveling” algorithm which reverses the steps in the Euclidean

algorithm to find the integers x and y such that d = xa + yb.

 We illustrate the algorithms with an example.

Example

 Let a = 540 and b = 168. We apply the Euclidean algorithm to a and b. These steps,
which repeatedly apply the division algorithm to each quotient and remainder until obtaining
a zero remainder, are pictured using long division and also where the arrows indicate the
quotient and remainder in the next step. The last nonzero remainder is 12.

Thus 12 = gcd(540, 168)

16

 This follows from the fact that

gcd(540, 168) = gcd(168, 36) = gcd(36, 24) = gcd(24, 12) = 12

Next we find x and y such that 12 = 540x+168y by “unraveling” the above steps in the

Euclidean algorithm. Specifically, the first three quotients in Fig. 11-3 yield the following
equations:

(1) 36 = 540 − 3(168)

(2) 24 = 168 − 4(36)

(3) 12 = 36 − 1(24)

 Equation (3) tells us that d = gcd(a, b) = 12 is a linear combination of 36 and 24. Now
we use the preceding equations in reverse order to eliminate the other remainders. That is,
first we use equation (2) to replace 24 in equation (3) so we can write 12 as a linear
combination of 168 and 36 as follows:

 (4) 12 = 36 − 1[168 − 4(36)] = 36 − 1(168) + 4(36) = 5(36) − 1(168)

Next we use equation (1) to replace 36 in (4) so we can write 12 as a linear combination of
168 and 540 as follows:

 12 = 5[540 − 3(168)] − 1(168) = 5(54) − 15(168) − 1(168) = 5(540) − 16(168)

This is our desired linear combination. In other words, x = 5 and y = −16.

6. CONGRUENCE RELATION

 Let m be a positive integer. We say that a is congruent to b modulo m. written a ≡ b

(modulo m) or simply a ≡ b (mod m) if m divides the difference a −b .

 The integer m is called the modulus. The negation of a ≡ b (mod m) is written a ≡ b

(mod m).

Example

 (i)87 ≡ 23 (mod 4) since 4 divides 87 − 23 = 64.

 (ii) 67 ≡ 1 (mod 6) since 6 divides 67 − 1 = 66.

 (iii) 72 ≡ −5 (mod 7) since 7 divides 72 − (−5) = 77.

17

7. Congruence Equations

 A polynomial congruence equation or, simply, a congruence equation (in one
unknown x) is an equation of the form

 anxn + an−1xn−1 + ... + a1x + a0 ≡ 0 (mod m)

 Such an equation is said to be of degree n if a ≡ 0 (mod m). Suppose s ≡ t (mod m).

Then s is a solution of (11.2) if and only if t is a solution of (11.2). Thus the number of
solutions of (11.2) is defined to be the number of incongruent solutions or, equivalently, the
number of solutions in the set

{0, 1, 2,...,m − 1}

Of course, these solutions can always be found by testing, that is, by substituting each of the
m numbers into equation to see if it does indeed satisfy the equation.

 The complete set of solutions of the equation is a maximum set of incongruent
solutions whereas the general solution of (11.2) is the set of all integral solutions of the
general solution of the equation can be found by adding all the multiples of the modulus m to
any complete set of solutions.

8. Semi-groups

 Let S be a nonempty set with an operation. Then S is called a semigroup if the
operation is associative. If the operation also has an identity element, then S is called a
monoid.

Example

 (a) Consider the positive integers N. Then (N, +) and (N, ×) are semigroups since
addition and multiplication on N are associative. In particular, (N, ×) is a monoid since it has
the identity element 1. However, (N, +) is not a monoid since addition in N has no zero
element. (b) Let S be a finite set, and let F (S) be the collection of all functions f : S →

S under the operation of composition of functions. Since the composition of functions is
associative, F (S) is a semigroup. In fact, F (S) is a monoid since the identity function is an
identity element for F (S).

 (c) Let S = {a, b, c, d}. The multiplication tables in Fig. B-1 define operations ∗ and ·
on S. Note that ∗ can be defined by the formula x ∗ y = x for any x and y in S. Hence

(x ∗ y) ∗ z = x ∗ z = x and x ∗ (y ∗ z) = x ∗ y = x

Therefore, ∗ is associative and hence (S, ∗) is a semigroup. On the other hand, · is not
associative since, for example,

(b · c) · c = a · c = c but b · (c · c) = b · a = b

Thus (S, ·) is not a semi-group.

18

9. Groups

 Let G be a nonempty set with a binary operation (denoted by juxtaposition). Then G is
called a group if the following axioms hold:

[G1] Associative Law: For any a, b, c in G, we have (ab)c = a(bc).

[G2] Identity element: There exists an element e in G such that ae = ea = a for every a in G.
[G3] Inverses: For each a in G, there exists an element a−1 in G (the inverse of a) such that

 aa−1 = a−1a = e

 A group G is said to be abelian (or commutative) if ab = ba for every a, b ∈ G, that is,
if G satisfies the Commutative Law.

 When the binary operation is denoted by juxtaposition as above, the group G is said to
be written multiplicatively. Sometimes, when G is abelian, the binary operation is denoted by
+ and G is said to be written additively. In such a case the identity element is denoted by 0
and it is called the zero element; and the inverse is denoted by −a and it is called the negative

of a.

 The number of elements in a group G, denoted by |G|, is called the order of G. In
particular, G is called a finite group if its order is finite.

 Suppose A and B are subsets of a group G. Then we write:

AB = {ab | a ∈ A, b ∈ B} or A + B = {a + b | a ∈ A, b ∈ B}

10. Sub Groups

 Let H be a subset of a group G. Then H is called a subgroup of G if H itself is a group
under the operation of G. Simple criteria to determine subgroups follow.

Proposition: A subset H of a group G is a subgroup of G if:

(i) The identity element e ∈ H.

(ii) H is closed under the operation of G, i.e. if a, b ∈ H, then ab ∈ H.

(iii) H is closed under inverses, that is, if a ∈ H, then a−1 ∈ H.

Every group G has the subgroups {e} and G itself. Any other subgroup of G is called a
nontrivial subgroup.

Cosets

 Suppose H is a subgroup of G and a ∈ G. Then the set H a = {ha | h ∈ H} is called a
right coset of H.

Theorem: Let H be a subgroup of a group G. Then the right cosets H a form a partition of G.
Theorem: Let H be a subgroup of a finite group G. Then the order of H divides the order of
G.

 The number of right cosets of H in G, called the index of H in G, is equal to the
number of left cosets of H in G; and both numbers are equal to |G| divided by |H|.

19

11. Normal Subgroups

 Definition: A subgroup H of G is a normal subgroup if a−1H a ⊆ H, for every a ∈ G,
or, equivalently, if aH = H a, i.e., if the right and left cosets coincide.

Note that every subgroup of an abelian group is normal.

The importance of normal subgroups comes from the following result

Theorem: Let H be a normal subgroup of a group G. Then the cosets of H form a group
under coset multiplication:

(aH)(bH) = abH

This group is called the quotient group and is denoted by G/H.

 Suppose the operation in G is addition or, in other words, G is written additively.
Then the cosets of a subgroup H of G are of the form a + H. Moreover, if H is a normal
subgroup of G, then the cosets form a group under coset addition, that is,

(a + H) + (b + H) = (a + b) + H.

12. Homomorphisms

 A mapping f from a group G into a group G is called a homomorphism if, for every a,
b ∈ G,

f (ab) = f (a)f (b)

 In addition, if f is one-to-one and onto, then f is called an isomorphism; and G and G
are said to be isomorphic, written G ∼= G .

 If f : G → G is a homomorphism, then the kernel of f , written Ker f , is the set of

elements whose image is the identity element e of G ; that is,

Ker f = {a ∈ G | f (a) = e }

 Recall that the image of f , written f (G) or Im f , consists of the images of the
elements under f ; that is,

Im f = {b ∈ G | there exists a ∈ G for which f (a) = b} .

The following theorem is fundamental to group theory

 Theorem : Suppose f : G → G is a homomorphism with kernel K. Then K is a normal

subgroup of G, and the quotient group G/K is isomorphic to f (G).

 Example:

 (a) Let G be the group of real numbers under addition, and let G be the group of
positive real numbers under multiplication. The mapping f : G → G defined by f (a) = 2a is a

homomorphism because

f (a + b) = 2a+b = 2a2b = f (a)f (b)

20

 In fact, f is also one-to-one and onto; hence G and G are isomorphic.

 (b) Let a be any element in a group G. The function f : Z → G defined by f (n) = an is
a homomorphism since

f (m + n) = am+n = am · an = f (m) · f (n)

The image of f is gp(a), the cyclic subgroup generated,

gp(a) ∼= Z/K

where K is the kernel of f. If K = {0}, then gp(a) = Z. On the other hand, if m is the order of
a, then K ={multiples of m}, and so gp(a) ∼= Zm. In other words, any cyclic group is
isomorphic to either the integers Z under addition, or to Zm, the integers under addition
modulo m.

13. Graph Theory

GRAPHS AND MULTIGRAPHS

 A graph G consists of two things:

 (i) A set V = V (G) whose elements are called vertices, points, or nodes of G.

 (ii) A set E = E(G) of unordered pairs of distinct vertices called edges of G.

 We denote such a graph by G(V , E) when we want to emphasize the two parts of G.
Vertices u and v are said to be adjacent or neighbors if there is an edge e = {u, v}. In such a
case, u and v are called the endpoints of e, and e is said to connect u and v. Also, the edge e is
said to be incident on each of its endpoints u and v. Graphs are pictured by diagrams in the
plane in a natural way. Specifically, each vertex v in V is represented by a dot (or small
circle), and each edge e = {v1, v2} is represented by a curve which connects its endpoints v1
and v2 For example, The Fig below represents the graph G(V , E) where:

(i) V consists of vertices A, B, C, D.

 (ii) E consists of edges e1 = {A, B}, e2 = {B,C}, e3 = {C, D}, e4 = {A, C}, e5 = {B,D}.

 In fact, we will usually denote a graph by drawing its diagram rather than explicitly
listing its vertices and edges.

21

Multigraphs:

 Consider the above diagram. The edges e4 and e5 are called multiple edges since they
connect the same endpoints, and the edge e6 is called a loop since its endpoints are the same
vertex. Such a diagram is called a multigraph; the formal definition of a graph permits neither
multiple edges nor loops. Thus a graph may be defined to be a multigraph without multiple
edges or loops.

PATHS, CONNECTIVITY

 A path in a multigraph G consists of an alternating sequence of vertices and edges of
the form

v0, e1, v1, e2, v2, ..., en−1, vn−1, en, vn

where each edge ei contains the vertices vi−1 and vi (which appear on the sides of ei in the

sequence). The number n of edges is called the length of the path. When there is no
ambiguity, we denote a path by its sequence of vertices (v0, v1,...,vn). The path is said to be
closed if v0 = vn. Otherwise, we say the path is from v0, to vn or between v0 and vn, or
connects v0 to vn.

 A simple path is a path in which all vertices are distinct. (A path in which all edges
are distinct will be called a trail.) A cycle is a closed path of length 3 or more in which all
vertices are distinct except v0 = vn. A cycle of length k is called a k-cycle.

EXAMPLE

 Consider the graph G given above.

 Consider the following sequences:

α = (P4, P1, P2, P5, P1, P2, P3, P6), β = (P4, P1, P5, P2, P6),

γ = (P4, P1, P5, P2, P3, P5, P6), δ = (P4, P1, P5, P3, P6).

The sequence α is a path from P4 to P6; but it is not a trail since the edge {P1, P2} is used

twice. The sequence β is not a path since there is no edge {P2, P6}. The sequence γ is a trail

since no edge is used twice; but it is not a simple path since the vertex P5 is used twice. The
sequence δ is a simple path from P4 to P6; but it is not the shortest path (with respect to

22

length) from P4 to P6. The shortest path from P4 to P6 is the simple path (P4, P5, P6) which
has length 2.

 By eliminating unnecessary edges, it is not difficult to see that any path from a vertex
u to a vertex v can be replaced by a simple path from u to v. We state this result formally.

 Unit- IV

1. Properties of Regular sets

 Any set that represents the value of the Regular Expression is called a Regular Set.

Properties of Regular Sets

Property 1

 The union of two regular set is regular.

Proof:

 Let us take two regular expressions
 RE1 = a (aa)* and RE2 = (aa)*
 So, L1 = {a, aaa, aaaaa,.....} (Strings of odd length excluding Null)

and L2 ={ ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
 L1 ∪ L2 = { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,.......}
 (Strings of all possible lengths including Null)
 RE (L1 ∪ L2) = a* (which is a regular expression itself)
 Hence, proved.

Property 2

 The intersection of two regular set is regular.

Proof:

 Let us take two regular expressions
 RE1 = a(a*) and RE2 = (aa)*
 So, L1 = { a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)
 L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
 L1 ∩ L2 = { aa, aaaa, aaaaaa,.......} (Strings of even length excluding Null)
 RE (L1 ∩ L2) = aa(aa)* which is a regular expression itself.
 Hence, proved.

Property 3

 The complement of a regular set is regular.

Proof:

 Let us take a regular expression
 RE = (aa)*

23

 So, L = {ε, aa, aaaa, aaaaaa,} (Strings of even length including Null)
 Complement of L is all the strings that is not in L.
 So, L’ = {a, aaa, aaaaa,} (Strings of odd length excluding Null)
 RE (L’) = a(aa)* which is a regular expression itself.
 Hence, proved.

Property 4

 The difference of two regular set is regular.

Proof:

 Let us take two regular expressions.
 RE1 = a (a*) and RE2 = (aa)*
 So, L1 = {a, aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)
 L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
 L1 – L2 = {a, aaa, aaaaa, aaaaaaa,}
 (Strings of all odd lengths excluding Null)
 RE (L1 – L2) = a (aa)* which is a regular expression.
 Hence, proved.

Property 5

 The reversal of a regular set is regular.

Proof:

 We have to prove LR is also regular if L is a regular set.
 Let, L = {01, 10, 11, 10}
 RE (L) = 01 + 10 + 11 + 10
 LR = {10, 01, 11, 01}
 RE (LR) = 01 + 10 + 11 + 10 which is regular
 Hence, proved.

Property 6

 The closure of a regular set is regular.

Proof:

 If L = {a, aaa, aaaaa,} (Strings of odd length excluding Null)
 i.e., RE (L) = a (aa)*
 L* = {a, aa, aaa, aaaa , aaaaa,……………} (Strings of all lengths excluding

Null)
 RE (L*) = a (a)*
 Hence, proved.

Property 7

 The concatenation of two regular sets is regular.

24

Proof:

 Let RE1 = (0+1)*0 and RE2 = 01(0+1)*
 Here, L1 = {0, 00, 10, 000, 010,} (Set of strings ending in 0)

and L2 = {01, 010,011,.....} (Set of strings beginning with 01)
 Then, L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,.............}
 Set of strings containing 001 as a substring which can be represented by an

RE − (0 + 1)*001(0 + 1)*
 Hence, proved.

Identities Related to Regular Expressions

Given R, P, L, Q as regular expressions, the following identities hold −

 ∅* = ε
 ε* = ε
 RR* = R*R
 R*R* = R*
 (R*)* = R*
 RR* = R*R
 (PQ)*P =P(QP)*
 (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)*
 R + ∅ = ∅ + R = R (The identity for union)
 R ε = ε R = R (The identity for concatenation)
 ∅ L = L ∅ = ∅ (The annihilator for concatenation)
 R + R = R (Idempotent law)
 L (M + N) = LM + LN (Left distributive law)
 (M + N) L = ML + NL (Right distributive law)
 ε + RR* = ε + R*R = R*

2. Pumping lemma

Theorem

 Let L be a regular language. Then there exists a constant ‘c’ such that for
every string w in L.

 |w| ≥ c

We can break w into three strings, w = xyz, such that

 |y| > 0
 |xy| ≤ c
 For all k ≥ 0, the string xykz is also in L.

25

Applications of Pumping Lemma

 Pumping Lemma is to be applied to show that certain languages are not
regular. It should never be used to show a language is regular.

 If L is regular, it satisfies Pumping Lemma.
 If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular

 At first, we have to assume that L is regular.
 So, the pumping lemma should hold for L.
 Use the pumping lemma to obtain a contradiction

 Select w such that |w| ≥ c
 Select y such that |y| ≥ 1
 Select x such that |xy| ≤ c
 Assign the remaining string to z.
 Select k such that the resulting string is not in L.
 Hence L is not regular.

Problem

 Prove that L = {aibi | i ≥ 0} is not regular.

Solution

 At first, we assume that L is regular and n is the number of states.
 Let w = anbn. Thus |w| = 2n ≥ n.
 By pumping lemma, let w = xyz, where |xy| ≤ n.
 Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus

|y| ≠ 0.
 Let k = 2. Then xy2z = apa2qarbn.
 Number of as = (p + 2q + r) = (p + q + r) + q = n + q
 Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn.
 Thus, xy2z is not in L. Hence L is not regular.

3.Closure Properties

 Closure properties on regular languages are defined as certain operations on regular
language which are guaranteed to produce regular language. Closure refers to some operation
on a language, resulting in a new language that is of same “type” as originally operated on

i.e., regular.

Regular languages are closed under following operations.

26

Consider L and M are regular languages:

1.KleenClosure:
 RS is a regular expression whose language is L, M. R* is a regular expression whose
language is L*.

2.Positive closure:
 RS is a regular expression whose language is L, M. R+ is a regular expression whose
language is L+.

3. Complement:
 The complement of a language L (with respect to an alphabet E such that E* contains
L) is E*–L. Since E* is surely regular, the complement of a regular language is always
regular.

4. Reverse Operator:
 Given language L, LR is the set of strings whose reversal is in L.
Example:

 L = {0, 01, 100};
 ={0, 10, 001}.
Proof:

 Let E be a regular expression for L. We show how to reverse E, to provide a regular
expression ER for LR.

5. Union:
 Let L and M be the languages of regular expressions R and S, respectively. Then R+S
is a regular expression whose language is(L U M).

6. Intersection:
 Let L and M be the languages of regular expressions R and S, respectively then it a
regular expression whose language is L intersection M.
Proof:

 Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the
product automaton of A and B make the final states of C be the pairs consisting of final states
of both A and B.

7. Set Difference operator:
 If L and M are regular languages, then so is L – M = strings in L but not M.

Proof:

 Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the

product automaton of A and B make the final states of C be the pairs, where A-state is final
but B-state is not.

27

8.Homomorphism:
 A homomorphism on an alphabet is a function that gives a string for each symbol in
that alphabet.

Example:

o h(0) = ab; h(1) = E. Extend to strings by h(a1…an) =h(a1)…h(an).
o h(01010) = ababab.

 If L is a regular language, and h is a homomorphism on its alphabet, then h(L)= {h(w)
| w is in L} is also a regular language.
Proof:

 Let E be a regular expression for L. Apply h to each symbol in E. Language of
resulting R, E is h(L).

10. Inverse Homomorphism:

 Let h be a homomorphism and L a language whose alphabet is the output language of
h. h-1 (L) = {w | h(w) is in L}.

Note: There are few more properties like symmetric difference operator, prefix operator,
substitution which are closed under closure properties of regular language.

4.DecisionProperties
 Approximately all the properties are decidable in case of finite automaton.

(i) Emptiness

(ii) Non-emptiness

(iii) Finiteness

(iv) Infiniteness

(v) Membership

(vi) Equality

These are explained as following below.

(i) Emptiness and Non-emptiness:

 Step-1: Select the state that cannot be reached from the initial states & delete them
(remove unreachable states).

 Step 2: If the resulting machine contains at least one final states, so then the finite
automata accepts the non-empty language.

 Step 3: If the resulting machine is free from final state, then finite automata accepts
empty language.

28

(ii) Finiteness and Infiniteness:

 Step-1: Select the state that cannot be reached from the initial state & delete them
(remove unreachable states).

 Step-2: Select the state from which we cannot reach the final state & delete them
(remove dead states).

 Step-3: If the resulting machine contains loops or cycles then the finite automata
accepts infinite language.

 Step-4: If the resulting machine do not contain loops or cycles then the finite
automata accepts infinite language.

(iii)Membership:
 Membership is a property to verify an arbitrary string is accepted by a finite
automaton or not i.e. it is a member of the language or not.

 Let M is a finite automata that accepts some strings over an alphabet, and let ‘w’ be

any string defined over the alphabet, if there exist a transition path in M, which starts at initial
state & ends in anyone of the final state, then string ‘w’ is a member of M, otherwise ‘w’ is

not a member of M.

(iv)Equality:
 Two finite state automata M1 & M2 is said to be equal if and only if, they accept the
same language. Minimise the finite state automata and the minimal DFA will be unique.

 Attention reader! Don’t stop learning now. Get hold of all the important DSA

concepts with the DSA Self-Paced Course at a student-friendly price and become industry
ready.

6. My hill - Nerode Theorem

DFA Minimization using Myhill-Nerode Theorem Algorithm

Input: DFA

Output: Minimized DFA

 Step 1: Draw a table for all pairs of states (Qi ,Qj) not necessarily connected directly
[All are unmarked initially]

 Step 2: Consider every state pair (Qi ,Qj) in the DFA where Qi ∈ F and Qj∉ F or vice
versa and mark them. [Here F is the set of final states].

 Step 3: Repeat this step until we cannot mark anymore states − If there is an

unmarked pair (Qi ,Qj), mark it if the pair {δ(Qi , A), δ (Qi , A)} is marked for some input

alphabet.

29

 Step 4: Combine all the unmarked pair (Qi ,Qj) and make them a single state in the
reduced DFA.

Example:

 Let us use above algorithm to minimize the DFA shown below

Step 1: We draw a table for all pair of state

Step 2: We mark the state pairs

Step 3:We will try to mark the state pairs, with green colored check mark, transitively. If we
input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and ‘f’ respectively. c, f is already marked,

hence we will mark pair a, f. Now, we input 1 to state ‘b’ and ‘f’; it will go to state‘d’ and ‘f’

respectively. d, f is already marked, hence we will mark pair b, f.

30

 After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that are
unmarked.

 We can recombine {c, d} {c, e} {d, e} into {c, d, e} Hence we got two combined
states as − {a, b} and {c, d, e}.

 So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}.

7. Context Free Grammars

 Context free grammar is a formal grammar which is used to generate all possible
strings in a given formal language.

 Context free grammar G can be defined by four tuples as:

 G= (V, T, P, S)

 Where,

G - Describes the grammar

T - Describes a finite set of terminal symbols.

V - Describes a finite set of non-terminal symbols

P - Describes a set of production rules

S - Is the start symbol.

 In CFG, the start symbol is used to derive the string. You can derive the string by
repeatedly replacing a non-terminal by the right hand side of the production, until all non-
terminal have been replaced by terminal symbols.

Example:

L= {wcwR | w € (a, b)*}

31

Production rules:

S → aSa

S → bSb

S → c

Now check that abbcbba string can be derived from the given CFG.

S ⇒ aSa

S ⇒ abSba

S ⇒ abbSbba

S ⇒ abbcbba

By applying the production S → aSa, S → bSb recursively and finally applying the
production S → c, we get the string abbcbba.

Capabilities of CFG

 There are the various capabilities of CFG:

 Context free grammar is useful to describe most of the programming
languages.

 If the grammar is properly designed then an efficientparser can be constructed
automatically.

 Using the features of associatively & precedence information, suitable
grammars for expressions can be constructed.

 Context free grammar is capable of describing nested structures like: balanced
parentheses, matching begin-end, corresponding if-then-else's & so on.

Derivation

 Derivation is a sequence of production rules. It is used to get the input string through
these production rules. During parsing we have to take two decisions. These are as follows:

We have to decide the non-terminal which is to be replaced.

We have to decide the production rule by which the non-terminal will be replaced.

We have two options to decide which non-terminal to be replaced with production rule.

Left-most Derivation

 In the left most derivation, the input is scanned and replaced with the production rule
from left to right. So in left most derivatives we read the input string from left to right.

Example:

Production rules:

S = S + S

32

S = S - S

S = a | b |c

Input:

a - b + c

The left-most derivation is:

S = S + S

S = S - S + S

S = a - S + S

S = a - b + S

S = a - b + c

Right-most Derivation

 In the right most derivation, the input is scanned and replaced with the production rule
from right to left. So in right most derivatives we read the input string from right to left.

Example:

S = S + S

S = S - S

S = a | b |c

Input:

a - b + c

The right-most derivation is:

S = S - S

S = S - S + S

S = S - S + c

S = S - b + c

S = a - b + c

Parse tree

 Parse tree is the graphical representation of symbol. The symbol can be terminal or
non-terminal.

 In parsing, the string is derived using the start symbol. The root of the parse tree is
that start symbol.

 It is the graphical representation of symbol that can be terminals or non-terminals.

33

 Parse tree follows the precedence of operators. The deepest sub-tree traversed first.
So, the operator in the parent node has less precedence over the operator in the sub-tree.

The parse tree follows these points:

 All leaf nodes have to be terminals.
 All interior nodes have to be non-terminals.
 In-order traversal gives original input string.

Example:

Production rules:

T= T + T | T * T

T = a|b|c

Input:

a * b + c

Step 1:

Step 2:

Step 3:

34

Step 4:

Step 5:

Ambiguity

 A grammar is said to be ambiguous if there exists more than one leftmost derivation
or more than one rightmost derivative or more than one parse tree for the given input string.
If the grammar is not ambiguous then it is called unambiguous.

Example:

S = aSb | SS

S = ∈

For the string aabb, the above grammar generates two parse trees:

35

 If the grammar has ambiguity then it is not good for a compiler construction. No
method can automatically detect and remove the ambiguity but you can remove ambiguity by
re-writing the whole grammar without ambiguity.

Derivation Trees.

 Derivation tree is a graphical representation for the derivation of the given production
rules for a given CFG. It is the simple way to show how the derivation can be done to obtain
some string from a given set of production rules. The derivation tree is also called a parse
tree.

 Parse tree follows the precedence of operators. The deepest sub-tree traversed first.
So, the operator in the parent node has less precedence over the operator in the sub-tree.

A parse tree contains the following properties:

1. The root node is always a node indicating start symbols.
2. The derivation is read from left to right.
3. The leaf node is always terminal nodes.
4. The interior nodes are always the non-terminal nodes.

Example 1:

Production rules:

E = E + E

E = E * E

E = a | b | c

Input

a * b + c

Step 1:

36

Step 2:

Step 3:

Step 4:

37

Step 5:

Example 2:

 Draw a derivation tree for the string "bab" from the CFG given by

S → bSb | a | b

Solution:

 Now, the derivation tree for the string "bbabb" is as follows:

38

 The above tree is a derivation tree drawn for deriving a string bbabb. By simply
reading the leaf nodes, we can obtain the desired string. The same tree can also be denoted
by,

Example 3:

 Construct a derivation tree for the string aabbabba for the CFG given by,

S → aB | bA

A → a | aS | bAA

B → b | bS | aBB

Solution:

 To draw a tree, we will first try to obtain derivation for the string aabbabba

Now, the derivation tree is as follows:

39

Ambiguity in Grammar

 A grammar is said to be ambiguous if there exists more than one leftmost derivation
or more than one rightmost derivation or more than one parse tree for the given input string.
If the grammar is not ambiguous, then it is called unambiguous.

 If the grammar has ambiguity, then it is not good for compiler construction. No
method can automatically detect and remove the ambiguity, but we can remove ambiguity by
re-writing the whole grammar without ambiguity.

Example 1:

 Let us consider a grammar G with the production rule

E → I

E → E + E

E → E * E

E → (E)

I → ε | 0 | 1 | 2 | ... | 9

Solution:

 For the string "3 * 2 + 5", the above grammar can generate two parse trees by leftmost
derivation:

40

Since there are two parse trees for a single string "3 * 2 + 5", the grammar G is ambiguous.

Example 2:

 Check whether the given grammar G is ambiguous or not.

E → E + E

E → E - E

E → id

Solution:

 From the above grammar String "id + id - id" can be derived in 2 ways:

First Leftmost derivation

E → E + E

 → id + E

 → id + E - E

 → id + id - E

 → id + id- id

Second Leftmost derivation

E → E - E

 → E + E - E

 → id + E - E

 → id + id - E

 → id + id - id

41

 Since there are two leftmost derivation for a single string "id + id - id", the grammar
G is ambiguous.

Unambiguous Grammar

 A grammar can be unambiguous if the grammar does not contain ambiguity that
means if it does not contain more than one leftmost derivation or more than one rightmost
derivation or more than one parse tree for the given input string.

 To convert ambiguous grammar to unambiguous grammar, we will apply the
following rules:

 1. If the left associative operators (+, -, *, /) are used in the production rule, then apply
left recursion in the production rule. Left recursion means that the leftmost symbol on the
right side is the same as the non-terminal on the left side. For example,

X → Xa

 2. If the right associative operates (^) is used in the production rule then apply right
recursion in the production rule. Right recursion means that the rightmost symbol on the left
side is the same as the non-terminal on the right side. For example,

X → aX

Example 1:

 Consider a grammar G is given as follows:

S → AB | aaB

A → a | Aa

B → b

 Determine whether the grammar G is ambiguous or not. If G is ambiguous, construct
an unambiguous grammar equivalent to G.

Solution:

Let us derive the string "aab"

42

 As there are two different parse tree for deriving the same string, the given grammar
is ambiguous.

Unambiguous grammar will be:

S → AB

A → Aa | a

B → b

Example 2:

 Show that the given grammar is ambiguous. Also, find an equivalent unambiguous
grammar.

S → ABA

A → aA | ε

B → bB | ε

Solution:

 The given grammar is ambiguous because we can derive two different parse tree for
string aa.

43

The unambiguous grammar is:

S → aXY | bYZ | ε

Z → aZ | a

X → aXY | a | ε

Y → bYZ | b | ε

Unit –V
1. Simplifying Context Free Grammars

 The definition of context free grammars (CFGs) allows us to develop a wide variety
of grammars. Most of the time, some of the productions of CFGs are not useful and are
redundant. This happens because the definition of CFGs does not restrict us from making
these redundant productions.

 By simplifying CFGs we remove all these redundant productions from a grammar ,
while keeping the transformed grammar equivalent to the original grammar. Two grammars
are called equivalent if they produce the same language. Simplifying CFGs is necessary to
later convert them into Normal forms.

 Types of redundant productions and the procedure of removing them are mentioned
below.

44

1. Useless productions
 The productions that can never take part in derivation of any string , are called
useless productions. Similarly, a variable that can never take part in derivation of any
string is called a useless variable.

For Example

S ->abS | abA | abB

A -> cd

B ->aB

C -> dc

 In the example above , production ‘C -> dc’ is useless because the variable ‘C’ will

never occur in derivation of any string. The other productions are written in such a way that
variable ‘C’ can never reached from the starting variable ‘S’.

 Production ‘B ->aB’ is also useless because there is no way it will ever terminate . If

it never terminates, then it can never produce a string. Hence the production can never take
part in any derivation.

 To remove useless productions, we first find all the variables which will never lead to
a terminal string such as variable ‘B’. We then remove all the productions in which variable

‘B’ occurs.
 So the modified grammar becomes

S ->abS | abA

A -> cd

C -> dc

 We then try to identify all the variables that can never be reached from the starting
variable such as variable ‘C’. We then remove all the productions in which variable ‘C’

occurs.
 The grammar below is now free of useless productions

S ->abS | abA

A -> cd

2. λ productions

 The productions of type ‘A -> λ’ are called λ productions (also called lambda

productions and null productions) . These productions can only be removed from those
grammars that do not generate λ (an empty string). It is possible for a grammar to contain null
productions and yet not produce an empty string.

 To remove null productions, we first have to find all the nullable variables. A variable
‘A’ is called nullable if λ can be derived from ‘A’. For all the productions of type ‘A ->λ’ ,

45

‘A’ is a nullable variable. For all the productions of type ‘B -> A1A2…An‘, where all ’Ai’s

are nullable variables, ‘B’ is also a nullable variable.

 After finding all the nullable variables, we can now start to construct the null
production free grammar. For all the productions in the original grammar, we add the original
production as well as all the combinations of the production that can be formed by replacing
the nullable variables in the production by λ. If all the variables on the RHS of the production

are nullable, then we do not add ‘A -> λ’ to the new grammar. An example will make the

point clear.

 Consider the grammar

S ->ABCd (1)

A -> BC (2)

B ->bB | λ (3)

C ->cC | λ (4)

 Let’s first find all the nullable variables. Variables ‘B’ and ‘C’ are clearly nullable

because they contain ‘λ’ on the RHS of their production. Variable ‘A’ is also nullable

because in (2), both variables on the RHS are also nullable. Similarly, variable ‘S’ is also

nullable. So variables ‘S’, ‘A’, ‘B’ and ‘C’ are nullable variables.

 Let’s create the new grammar. We start with the first production. Add the first

production as it is. Then we create all the possible combinations that can be formed by
replacing the nullable variables with λ. Therefore line (1) now becomes ‘S ->ABCd | ABd |
ACd | BCd | Ad | Bd |Cd | d ’.

 We apply the same rule to line (2) but we do not add ‘A -> λ’ even though it is a

possible combination. We remove all the productions of type ‘V -> λ’. The new grammar
now becomes

S ->ABCd | ABd | ACd | BCd | Ad |Bd |Cd | d

A -> BC | B | C

B ->bB | b

C ->cC | c

3. Unit productions

 The productions of type ‘A -> B’ are called unit productions.
To create a unit production free grammar ‘Guf’ from the original grammar ‘G’, we follow the

procedure mentioned below.

 First add all the non-unit productions of ‘G’ in ‘Guf’. Then for each variable ‘A’ in

grammar ‘G’ , find all the variables ‘B’ such that ‘A *=> B’. Now, for all variables like ‘A’

and ‘B’, add ‘A -> x1 | x2 | …xn’ to ‘Guf’ where ‘B -> x1 | x2 | …xn ‘is in ‘Guf’. None of

46

the x1, x2 … xn are single variables because we only added non-unit productions in ‘Guf’.

Hence the resultant grammar is unit production free.

 Example.

S ->Aa | B

A -> b | B

B -> A | a

Let’s add all the non-unit productions of ‘G’ in ‘Guf’. ‘Guf’ now becomes

S ->Aa

A -> b

B -> a

 Now we find all the variables that satisfy ‘X *=> Z’. These are ‘S *=>A’, ‘S*=>B’,

‘A *=> B’ and ‘B *=> A’. For ‘A *=>B’, we add ‘A -> a’ because ‘B ->a’ exists in ‘Guf’.

‘Guf’ now becomes

S ->Aa

A -> b | a

B -> a

 For ‘B *=> A’, we add ‘B -> b’ because ‘A -> b’ exists in ‘Guf’. The new grammar

becomes

S ->Aa

A -> b | a

B -> a | b

 We follow the same step for ‘S *=> A’ and ‘S*=>B’ and finally get the following
grammar

S ->Aa | b | a

A -> b | a

B -> a | b

 Now remove B ->a|b , since it doesn’t occur in the production ‘S’, then the following

grammar becomes,

S->Aa|b|a

A->b|a

47

 To remove all kinds of productions mentioned above, first remove the null
productions, then the unit productions and finally, remove the useless productions. Following
this order is very important to get the correct result.

2. Chomsky Normal Form (CNF)

 A CFG is in Chomsky Normal Form if the Productions are in the following forms

A → a

A → BC

S → ε

Where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form

 Step 1: If the start symbol S occurs on some right side, create a new start
symbol S’ and a new production S’→ S.

 Step 2: Remove Null productions. (Using the Null production removal algorithm
discussed earlier)

 Step 3: Remove unit productions. (Using the Unit production removal algorithm
discussed earlier)

 Step 4: Replace each production A → B1…Bn where n > 2 with A → B1C where C
→ B2 …Bn. Repeat this step for all productions having two or more symbols in the right

side.

 Step 5: If the right side of any production is in the form A → aB where a is a
terminal and A, B are non-terminal, then the production is replaced by A → XB and X → a.

Repeat this step for every production which is in the form A → aB.

Problem

 Convert the following CFG into CNF

S → ASA | aB, A → B | S, B → b | ε

Solution

 (1) Since S appears in R.H.S, we add a new state S0 and S0→S is added to the
production set and it becomes −

 S0→S, S→ ASA | aB, A → B | S, B → b | ∈

 (2) Now we will remove the null productions −

 B → ∈ and A → ∈

 After removing B → ε, the production set becomes −

 S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b

48

 After removing A → ∈, the production set becomes −

 S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b

(3) Now we will remove the unit productions.

 After removing S → S, the production set becomes −

 S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b

 After removing S0→ S, the production set becomes −

 S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

 A → B | S, B → b

 After removing A→ B, the production set becomes −

 S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → S | b

B → b

 After removing A→ S, the production set becomes −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → b |ASA | aB | a | AS | SA, B → b

(4) Now we will find out more than two variables in the R.H.S

Here,

 S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S.

Hence we will apply step 4 and step 5 to get the following final production set which is in
CNF

S0→ AX | aB | a | AS | SA

S→ AX | aB | a | AS | SA

A → b |AX | aB | a | AS | SA

B → b

X → SA

(5) We have to change the productions S0→ aB, S→ aB, A→ aB

And the final production set becomes

 S0→ AX | YB | a | AS | SA

S→ AX | YB | a | AS | SA

A → b A → b |AX | YB | a | AS | SA

49

B → b

X → SA

Y → a

3. Greibach Normal Form (GNF)

 A CFG is in Greibach Normal Form if the Productions are in the following forms

A → b

A → bD1…Dn

S → ε

Where

 A, D1,....,Dn are non-terminals and b is a terminal.

Algorithm to Convert a CFG into Greibach Normal Form

 Step 1:If the start symbol S occurs on some right side, create a new start
symbol S’ and a new production S’ → S.

 Step 2: Remove Null productions. (Using the Null production removal algorithm
discussed earlier)

 Step 3: Remove unit productions. (Using the Unit production removal algorithm
discussed earlier)

 Step 4: Remove all direct and indirect left-recursion.

 Step 5: Do proper substitutions of productions to convert it into the proper form of
GNF.

Problem

 Convert the following CFG into CNF

S → XY | Xn | p

X → mX | m

Y → Xn | o

Solution

 Here, S does not appear on the right side of any production and there are no unit or
null productions in the production rule set. So, we can skip Step 1 to Step 3.

Step 4

 Now after replacing

 X in S → XY | Xo | p

50

With

mX | m

We obtain

S → mXY | mY | mXo | mo | p.

And after replacing

X in Y → Xn | o

With the right side of

X → mX | m

We obtain

Y → mXn | mn | o.

 Two new productions O → o and P → p are added to the production set and then we

came to the final GNF as the following −

S → mXY | mY | mXC | mC | p

X → mX | m

Y → mXD | mD | o

O → o

P → p

4. Pushdown Automta

Basic Structure of PDA

 A pushdown automaton is a way to implement a context-free grammar in a similar
way we design DFA for a regular grammar. A DFA can remember a finite amount of
information, but a PDA can remember an infinite amount of information.

 Basically a pushdown automaton is

 "Finite state machine" + "a stack"

 A pushdown automaton has three components

An input tape,

A control unit, and

A stack with infinite size.

The stack head scans the top symbol of the stack.

A stack does two operations −

Push − a new symbol is added at the top.

51

Pop − the top symbol is read and removed.

A PDA may or may not read an input symbol, but it has to read the top of the stack in every
transition.

 A PDA can be formally described as a 7-tuple (Q, ∑, S, δ, q0, I, F) −

Q is the finite number of states

∑ is input alphabet

S is stack symbols

δ is the transition function: Q × (∑ ∪ {ε}) × S × Q × S*

q0 is the initial state (q0 ∈ Q)

I is the initial stack top symbol (I ∈ S)

F is a set of accepting states (F ∈ Q)

 The following diagram shows a transition in a PDA from a state q1 to state q2,
labeled as a,b → c −

52

 This means at state q1, if we encounter an input string ‘a’ and top symbol of the stack
is ‘b’, then we pop ‘b’, push ‘c’ on top of the stack and move to state q2.

Terminologies Related to PDA

Instantaneous Description

 The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where

q is the state

w is unconsumed input

s is the stack contents

Turnstile Notation

 The "turnstile" notation is used for connecting pairs of ID's that represent one or many
moves of a PDA. The process of transition is denoted by the turnstile symbol "⊢".

 Consider a PDA (Q, ∑, S, δ, q0, I, F). A transition can be mathematically represented

by the following turnstile notation

 (p, aw, Tβ) ⊢ (q, w, αb)

 This implies that while taking a transition from state p to state q, the input
symbol ‘a’ is consumed, and the top of the stack ‘T’ is replaced by a new string ‘α’.

Note:If we want zero or more moves of a PDA, we have to use the symbol (⊢*) for it.

There are two different ways to define PDA acceptability.

Final State Acceptability

 In final state acceptability, a PDA accepts a string when, after reading the entire
string, the PDA is in a final state. From the starting state, we can make moves that end up in a
final state with any stack values. The stack values are irrelevant as long as we end up in a
final state.

 For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the set of final states F is

 L(PDA) = {w | (q0, w, I) ⊢* (q, ε, x), q ∈ F}

 For any input stack string x.

Empty Stack Acceptability

 Here a PDA accepts a string when, after reading the entire string, the PDA has
emptied its stack.

 For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the empty stack is −

 L(PDA) = {w | (q0, w, I) ⊢* (q, ε, ε), q ∈ Q}

53

Example

 Construct a PDA that accepts L = {0n 1n | n ≥ 0}

Solution

This language accepts L = {ε, 01, 0011, 000111,,,,}

 Here, in this example, the number of ‘a’ and ‘b’ have to be same.

Initially we put a special symbol ‘$’ into the empty stack.

 Then at state q2, if we encounter input 0 and top is Null, we push 0 into stack. This
may iterate. And if we encounter input 1 and top is 0, we pop this 0.

 Then at state q3, if we encounter input 1 and top is 0, we pop this 0. This may also
iterate. And if we encounter input 1 and top is 0, we pop the top element.

 If the special symbol ‘$’ is encountered at top of the stack, it is popped out and it

finally goes to the accepting state q4.

Example

 Construct a PDA that accepts L = { wwR | w = (a+b)* }

Solution

 Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being
read. In state q3, each 0 or 1 is popped when it matches the input. If any other input is given,

54

the PDA will go to a dead state. When we reach that special symbol ‘$’, we go to the
accepting state q4.

5. Pushdown automata and context-free languages

 If a grammar G is context-free, we can build an equivalent nondeterministic PDA
which accepts the language that is produced by the context-free grammar G. A parser can be
built for the grammar G.

 Also, if P is a pushdown automaton, an equivalent context-free grammar G can be
constructed where

 L(G) = L(P)

 In the next two topics, we will discuss how to convert from PDA to CFG and vice
versa.

Algorithm to find PDA corresponding to a given CFG

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F)

 Step 1: Convert the productions of the CFG into GNF.

 Step 2: The PDA will have only one state {q}.

 Step 3: The start symbol of CFG will be the start symbol in the PDA.

 Step 4: All non-terminals of the CFG will be the stack symbols of the PDA and all
the terminals of the CFG will be the input symbols of the PDA.

 Step 5: For each production in the form A → aX where a is terminal and A, X are
combination of terminal and non-terminals, make a transition δ (q, a, A).

Problem

 Construct a PDA from the following CFG.

 G = ({S, X}, {a, b}, P, S)

Where the productions are −

 S → XS | ε , A → aXb | Ab | ab

Solution

 Let the equivalent PDA,

 P = ({q}, {a, b}, {a, b, X, S}, δ, q, S)

where δ −

δ(q, ε , S) = {(q, XS), (q, ε)}

δ(q, ε , X) = {(q, aXb), (q, Xb), (q, ab)}

55

δ(q, a, a) = {(q, ε)}

δ(q, 1, 1) = {(q, ε)}

Algorithm to find CFG corresponding to a given PDA

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) such that the non- terminals of the
grammar G will be {Xwx | w,x∈ Q} and the start state will be Aq0,F.

 Step 1: For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, m) and

(z, b, m) contains (x, ε), add the production rule Xwx → a Xyzb in grammar G.

 Step 2: For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in
grammar G.

 Step 3: For w ∈ Q, add the production rule Xww → ε in grammar G.
