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Digital Image Processing Syllabus 

UNIT I 

Introduction – steps in image processing, Image acquisition, representation, sampling and 

quantization, relationship between pixels. – color models – basics of color image processing. 

UNIT II 

Image enhancement in spatial domain – some basic gray level transformations – histogram 

processing – enhancement using arithmetic , logic operations – basics of spatial filtering and 

smoothing. 

UNIT III 

Image enhancement in Frequency domain – Introduction to Fourier transform: 1- D, 2 –D DFT 

and its inverse transform, smoothing and sharpening filters. 

UNIT IV 

Image restoration: Model of degradation and restoration process – noise models – restoration in 

the presence of noise- periodic noise reduction.. Image segmentation: Thresholding and region 

based segmentation. 

UNIT V 

Image compression: Fundamentals – models – information theory – error free compression –Lossy 

compression: predictive and transform coding. JPEG standard. 
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Digital Image Processing 

UNIT I 
 

Fundamental steps in Digital Image Processing : 

1. Image Acquisition 

This is the first step or process of the fundamental steps of digital image processing. Image 

acquisition could be as simple as being given an image that is already in digital form. Generally, 

the image acquisition stage involves preprocessing, such as scaling etc. 

2. Image Enhancement 

Image enhancement is among the simplest and most appealing areas of digital image processing. 

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or 

simply to highlight certain features of interest in an image. Such as, changing brightness & 

contrast etc. 

3. Image Restoration 

Image restoration is an area that also deals with improving the appearance of an image. 

However, unlike enhancement, which is subjective, image restoration is objective, in the sense 

that restoration techniques tend to be based on mathematical or probabilistic models of image 

degradation. 
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4. Color Image Processing 

Color image processing is an area that has been gaining its importance because of the significant 

increase in the use of digital images over the Internet. This may include color modeling and 

processing in a digital domain etc. 

5. Wavelets and Multiresolution Processing 

Wavelets are the foundation for representing images in various degrees of resolution. Images 

subdivision successively into smaller regions for data compression and for pyramidal 

representation. 

6. Compression 

Compression deals with techniques for reducing the storage required to save an image or the 

bandwidth to transmit it. Particularly in the uses of internet it is very much necessary to 

compress data. 

7. Morphological Processing 

Morphological processing deals with tools for extracting image components that are useful in the 

representation and description of shape. 

8. Segmentation 

Segmentation procedures partition an image into its constituent parts or objects. In general, 

autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged 

segmentation procedure brings the process a long way toward successful solution of imaging 

problems that require objects to be identified individually. 

9. Representation and Description 

Representation and description almost always follow the output of a segmentation stage, which 

usually is raw pixel data, constituting either the boundary of a region or all the points in the 

region itself. Choosing a representation is only part of the solution for transforming raw data into 

a form suitable for subsequent computer processing. Description deals with extracting attributes 

that result in some quantitative information of interest or are basic for differentiating one class of 

objects from another. 
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10. Object recognition 

Recognition is the process that assigns a label, such as, “vehicle” to an object based on its 

descriptors. 

11. Knowledge Base: 

Knowledge may be as simple as detailing regions of an image where the information of interest 

is known to be located, thus limiting the search that has to be conducted in seeking that 

information. The knowledge base also can be quite complex, such as an interrelated list of all 

major possible defects in a materials inspection problem or an image database containing high-

resolution satellite images of a region in connection with change-detection applications. 

Image Acquisition 

Before any video or image processing can commence an image must be captured by a camera 

and converted into a manageable entity. This is the process known as image acquisition. The 

image acquisition process consists of three steps; energy reflected from the object of interest, an 

optical system which focuses the energy and finally a sensor which measures the amount of 

energy. In Fig. 2.1 the three steps are shown for the case of an ordinary camera with the sun as 

the energy source. In this topic each of these three steps are described in more detail. 

Energy 

In order to capture an image a camera requires some sort of measurable energy. The energy 

of interest in this context is light or more generally electromagnetic waves. An electromagnetic 

(EM) wave can be described as massless entity, a photon, whose electric and magnetic fields 

vary sinusoidally, hence the name wave. The photon belongs to the group of fundamental 

particles and can be described in three different ways: 

•    A photon can be described by its energy E, which is measured in electronvolts [eV] 

•    A photon can be described by its frequency f, which is measured in Hertz [Hz]. A 

frequency is the number of cycles or wave-tops in one second 

•    A photon can be described by its wavelength λ, which is measured in meters [m]. A 

wavelength is the distance between two wave-tops 
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The three different notations are connected through the speed of light c and Planck’s 
constant h: 

 

An EM wave can have different wavelengths (or different energy levels or different frequencies). 

When we talk about all possible wavelengths we denote this as the EM spectrum, see Fig. 2.2. 

 
Fig. 2.1 Overview of the typical image acquisition process, with the sun as light source, a 

tree as object and a digital camera to capture the image. An analog camera would use a 

film where the digital camera uses a sensor. 

In order to make the definitions and equations above more understandable, the EM spectrum is 

often described using the names of the applications where they are used in practice. For example, 

when you listen to FM-radio the music is transmitted through the air using EM waves around 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc3_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc4_thumb.png
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100 · 106 Hz, hence this part of the EM spectrum is often denoted “radio”. Other well-known 

applications are also included in the figure. 

The range from approximately 400-700 nm (nm = nanometer = 10-9) is denoted the visual 

spectrum. The EM waves within this range are those your eye (and most cameras) can detect. 

This means that the light from the sun (or a lamp) in principle is the same as the signal used for 

transmitting TV, radio or for mobile phones etc. The only difference, in this context, is the fact 

that the human eye can sense EM waves in this range and not the waves used for e.g., radio. Or 

in other words, if our eyes were sensitive to EM waves with a frequency around 2 · 109 Hz, then 

your mobile phone would work as a flash light, and big antennas would be perceived as “small 

suns”. Evolution has (of course) not made the human eye sensitive to such frequencies but rather 

to the frequencies of the waves coming from the sun, hence visible light. 

Illumination 

To capture an image we need some kind of energy source to illuminate the scene. In Fig. 2.1 

the sun acts as the energy source. Most often we apply visual light, but other frequencies can also 

be applied, see Sect. 2.5. 

 
Fig. 2.2 A large part of the electromagnetic spectrum showing the energy of one photon, the 

frequency, wavelength and typical applications of the different areas of the spectrum 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc54.png
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Fig. 2.3 The effect of illuminating a face from four different directions 

If you are processing images captured by others there is nothing much to do about the 

illumination (although a few methods will be presented in later topics) which was probably the 

sun and/or some artificial lighting. When you, however, are in charge of the capturing process 

yourselves, it is of great importance to carefully think about how the scene should be lit. In fact, 

for the field of Machine Vision it is a rule-of-thumb that illumination is 2/3 of the entire system 

design and software only 1 /3. To stress this point have a look at Fig. 2.3. The figure shows four 

images of the same person facing the camera. The only difference between the four images is the 

direction of the light source (a lamp) when the images were captured! 

 

Another issue regarding the direction of the illumination is that care must be taken when 

pointing the illumination directly toward the camera. The reason being that this might result in 

too bright an image or a nonuniform illumination, e.g., a bright circle in the image. If, however, 

the outline of the object is the only information of interest, then this way of illumination—

denoted backlighting—can be an optimal solution, see Fig. 2.4. 

 
Fig. 2.4 Backlighting. The light source is behind the object of interest, which makes the 

object stand out as a black silhouette. Note that the details inside the object are lost  

Even when the illumination is not directed toward the camera overly bright spots in the image 

might still occur. These are known as highlights and are often a result of a shiny object surface, 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc6_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc7_thumb.png
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which reflects most of the illumination (similar to the effect of a mirror). A solution to such 

problems is often to use some kind of diffuse illumination either in the form of a high number of 

less-powerful light sources or by illuminating a rough surface which then reflects the light 

(randomly) toward the object. 

Even though this text is about visual light as the energy form, it should be mentioned that 

infrared illumination is sometimes useful. For example, when tracking the movements of human 

body parts, e.g. for use in animations in motion pictures, infrared illumination is often applied. 

The idea is to add infrared reflecting markers to the human body parts, e.g., in the form of small 

balls. When the scene is illuminated by infrared light, these markers will stand out and can 

therefore easily be detected by image processing. A practical example of using infrared 

illumination is given in Chap. 12. 

The Optical System 

After having illuminated the object of interest, the light reflected from the object now has to 

be captured by the camera. If a material sensitive to the reflected light is placed close to the 

object, an image of the object will be captured. However, as illustrated in Fig. 2.5, light from 

different points on the object will mix—resulting in a useless image. To make matters worse, 

light from the surroundings will also be captured resulting in even worse results. The solution is, 

as illustrated in the figure, to place some kind of barrier between the object of interest and the 

sensing material. Note that the consequence is that the image is upside-down. The hardware and 

software used to capture the image normally rearranges the image so that you never notice this. 

The concept of a barrier is a sound idea, but results in too little light entering the sensor. To 

handle this situation the hole is replaced by an optical system. This section describes the basics 

behind such an optical system. To put it into perspective, the famous space-telescope—the 

Hubble telescope—basically operates like a camera, i.e., an optical system directs the incoming 

energy toward a sensor. Imagine how many man-hours were used to design and implement the 

Hubble telescope. And still, NASA had to send astronauts into space in order to fix the optical 

system due to an incorrect design. Building optical systems is indeed a complex science! We 

shall not dwell on all the fine details and the following is therefore not accurate to the last micro-

meter, but the description will suffice and be correct for most usages. 
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Fig. 2.5 Before introducing a barrier, the rays of light from different points on the tree hit 

multiple points on the sensor and in some cases even the same points. Introducing a barrier 

with a small hole significantly reduces these problems 

The Lens 

One of the main ingredients in the optical system is the lens. A lens is basically a piece of glass 

which focuses the incoming light onto the sensor, as illustrated in Fig. 2.6. A high number of 

light rays with slightly different incident angles collide with each point on the object’s surface 

and some of these are reflected toward the optics. In the figure, three light rays are illustrated for 

two different points. All three rays for a particular point intersect in a point to the right of the 

lens. Focusing such rays is exactly the purpose of the lens. This means that an image of the 

object is formed to the right of the lens and it is this image the camera captures by placing a 

sensor at exactly this position. Note that parallel rays intersect in a point, F, denoted the Focal 

Point. The distance from the center of the lens, the optical center O, to the plane where all 

parallel rays intersect is denoted the Focal Lengthf. The line on which O and F lie is the optical 

axis. 

 

Let us define the distance from the object to the lens as, g, and the distance from the lens to 

where the rays intersect as, b. It can then be shown via similar triangles,  that 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc8_thumb.png
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f and b are typically in the range [1 mm, 100 mm]. This means that when the object is a few 

meters away from the camera (lens), then g has virtually no effect on the equation, i.e., b = f. 

What this tells us is that the image inside the camera is formed at a distance very close to the 

focal point. Equation 2.2 is also called the thin lens equation. 

 
Fig. 2.6 The figure shows how the rays from an object, here a light bulb, are focused via the 

lens. The real light bulb is to the left and the image formed by the lens is to the right 

Another interesting aspect of the lens is that the size of the object in the image, B, increases as 

f increased. This is known as optical zoom. In practice f is changed by rearranging the optics, 

e.g., the distance between one or more lenses inside the optical system.1 In Fig. 2.7 we show 

how optical zoom is achieved by changing the focal length. When looking at Fig. 2.7 it can be 

shown via similar triangles that 

 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc9_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc10_thumb.png
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where G is the real height of the object. This can for example be used to compute how much a 

physical object will fill on the imaging censor chip, when the camera is placed at a given 

distance away from the object. 

Let us assume that we do not have a zoom-lens, i.e., f is constant. When we change the 

distance from the object to the camera (lens), g, Eq. 2.2 shows us that b should also be increased, 

meaning that the sensor has to be moved slightly further away from the lens since the image will 

be formed there. In Fig. 2.8 the effect of not changing b is shown. Such an image is said to be out 

of focus. So when you adjust focus on your camera you are in fact changing b until the sensor is 

located at the position where the image is formed. 

The reason for an unfocused image is illustrated in Fig. 2.9. The sensor consists of pixels, as will 

be described in the next section, and each pixel has a certain size. As long as the rays from one 

point stay inside one particular pixel, this pixel will be focused. If rays from other points also 

intersect the pixel in question, then the pixel will receive light from more points and the resulting 

pixel value will be a mixture of light from different points, i.e., it is unfocused. 

Referring to Fig. 2.9 an object can be moved a distance of gi further away from the lens or a 

distance of gr closer to the lens and remain in focus. The sum of gi and gr defines the total range 

an object can be moved while remaining in focus. This range is denoted as the depth-of-field. 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc11_thumb.png
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Fig. 2.7 Different focal lengths results in optical zoom 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc12_thumb.png
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Fig. 2.8 A focused image (left) and an unfocused image (right). The difference between the 

two images is different values of b 

A smaller depth-of-field can be achieved by increasing the focal length. However, this has the 

consequence that the area of the world observable to the camera is reduced. The observable area 

is expressed by the angle V in Fig. 2.10 and denoted the field-of-view of the camera. The field-

of-view depends, besides the focal length, also on the physical size of the image sensor. Often 

the sensor is rectangular rather than square and from this follows that a camera has a field-of-

view in both the horizontal and vertical direction denoted FOVx and FOVy, respectively. Based 

on right-angled triangles, these are calculated as 

 
where the focal length, f, and width and height are measured in mm. 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc13_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc14_thumb.png


15 

 

 
Fig. 2.9 Depth-of-field. The solid lines illustrate two light rays from an object (a point) on 

the optical axis and their paths through the lens and to the sensor where they intersect 

within the same pixel (illustrated as a black rectangle). The dashed and dotted lines 

illustrate light rays from two other objects (points) on the optical axis. These objects are 

characterized by being the most extreme locations where the light rays still enter the same 

pixel 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc15_thumb.png
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Fig. 2.10 The field-of-view of two cameras with different focal lengths. The field-of-view is 

an angle, V, which represents the part of the world observable to the camera. As the focal 

length increases so does the distance from the lens to the sensor. This in turn results in a 

smaller field-of-view. Note that both a horizontal field-of-view and a vertical field-of-view 

exist. If the sensor has equal height and width these two fields-of-view are the same, 

otherwise they are different 

So, if we have a physical sensor with width = 14 mm, height = 10 mm and a focal length = 5 

mm, then the fields-of-view will be 

 

 

Another parameter influencing the depth-of-field is the aperture. The aperture corresponds 

to the human iris, which controls the amount of light entering the human eye. Similarly, the 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc16_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc17_thumb.png
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aperture is a flat circular object with a hole in the center with adjustable radius. The aperture is 

located in front of the lens and used to control the amount of incoming light. In the extreme case, 

the aperture only allows rays through the optical center, resulting in an infinite depth-of-field. 

The downside is that the more light blocked by the aperture, the lower shutter speed (explained 

below) is required in order to ensure enough light to create an image. From this it follows that 

objects in motion can result in blurry images. 

 
Fig. 2.11 Three different camera settings resulting in three different depth-of-fields 

To sum up, the following interconnected issues must be considered: distance to object, motion 

of object, zoom, focus, depth-of-field, focal length, shutter, aperture, and sensor. In Figs. 2.11 

and 2.12 some of these issues are illustrated. With this knowledge you might be able to 

appreciate why a professional photographer can capture better images than you can! 

 

Image Acquisition in Digital Image Processing – Buzztech 

In image processing, it is defined as the action of retrieving an image from some source, usually 

a hardware-based source for processing. It is the first step in the workflow sequence because, 

without an image, no processing is possible. The image that is acquired is completely 

unprocessed. 

Now the incoming energy is transformed into a voltage by the combination of input electrical 

power and sensor material that is responsive to a particular type of energy being detected. The 

output voltage waveform is the response of the sensor(s) and a digital quantity is obtained from 

each sensor by digitizing its response. 

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc18_thumb.png
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Fig: 

Single image sensor

Fig:  

Line sensor Fig: Array sensor 

Image Acquisition using a single sensor: 

Example of a single sensor is a photodiode. Now to obtain a two-dimensional image using a 

single sensor, the motion should be in both x and y directions. 
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Fig: 

Combining a single sensor with motion to generate a 2D image 

This is an inexpensive method and we can obtain high-resolution images with high precision 

control. But the downside of this method is that it is slow. 

Image Acquisition using a line sensor (sensor strips): 

Fig: 

Linear sensor strip 
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Image Acquisition using an array sensor: 

In this, individual sensors are arranged in the form of a 2-D array. This type of arrangement is 

found in digital cameras. e.g. CCD array 

In this, the response of each sensor is proportional to the integral of the light energy projected 

onto the surface of the sensor. Noise reduction is achieved by letting the sensor integrate the 

input light signal over minutes or ever hours. 

Advantage: Since sensor array is 2D, a complete image can be obtained by focusing the energy 

pattern onto the surface of the array. 

 

Fig: An example of digital image acquisition using array sensor 

The sensor array is coincident with the focal plane, it produces an output proportional to the 

integral of light received at each sensor. 

Digital and analog circuitry sweep these outputs and convert them to a video signal which is then 

digitized by another section of the imaging system. The output is a digital image. 
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Need of Sampling and Quantization in Digital Image Processing: 

Mostly the output of image sensors is in the form of analog signal. Now the problem is that we 

cannot apply digital image processing and its techniques on analog signals. 

This is due to the fact that we cannot store the output of image sensors which are in the form of 

analog signals because it requires infinite memory to store a signal that can have infinite values. 

So we have to convert this analog signal into digital signal. 

To create a digital image, we need to convert the continuous data into digital form. This 

conversion from analog to digital involves two processes: sampling and quantization. 

 

Fig: Analog to Digital Conversion 

Sampling -> digitization of coordinate values 

Quantization -> digitization of amplitude values 

Sampling in Digital Image Processing: 

 For e.g. if y = sinx, it is done on x variable. 
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Total number of pixels = Total number of rows X Total number of columns 

 For a CCD array, if the number of sensors on a CCD array is equal to the number of 

pixels and number of pixels is equal to the number of samples taken, therefore we can say 

that number of samples taken is equal to the number of sensors on a CCD array. 

No. of sensors on a CCD array = No. of pixels = No. of samples taken 

Quantization in Digital Image Processing: 

 

Relation of Quantization and gray level resolution: 

Number of quantas (partitions) = Number of gray levels 
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Where, 

L = gray level resolution 

k = gray level 

Gray level = number of bits per pixel (BPP) = number of levels per pixel 

Basic Relationships Between  

Pixels 

• Neighborhood 

• Adjacency 

• Connectivity 

• Paths  

• Regions and boundaries 

 

Neighbors of a Pixel 

• Any pixel p(x, y) has two vertical and two  

horizontal neighbors, given by 

(x+1, y), (x-1, y), (x, y+1), (x, y-1) 

• This set of pixels are called the 4-neighbors of  

P, and is denoted by N4(P). 

• Each of them are at a unit distance from P. 

An image is denoted by f(x,y) and p,q are used to represent individual pixels of the image. 
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Neighbours of a pixel 

A pixel p at (x,y) has 4-horizontal/vertical neighbours at (x+1,y), (x-1,y), (x,y+1) and (x,y-1). 

These are called the 4-neighbours of p : N4(p). 

A pixel p at (x,y) has 4 diagonal neighbours at (x+1,y+1), (x+1,y-1), (x-1,y+1) and (x-1,y-1). 

These are called the diagonal-neighbours of p : ND(p). 

The 4-neighbours and the diagonal neighbours of p are called 8-neighbours of p : N8(p). 

Adjacency between pixels 

Let V be the set of intensity values used to define adjacency. 

In a binary image, V ={1} if we are referring to adjacency of pixels with value 1. In a gray-scale 

image, the idea is the same, but set V typically contains more elements. 

For example, in the adjacency of pixels with a range of possible intensity values 0 to 255, set V 

could be any subset of these 256 values. 

We consider three types of adjacency: 

a) 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N4(p). 

b) 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N8(p). 

c) m-adjacency(mixed adjacency): Two pixels p and q with values from V are m-adjacent if 

1. q is in N4(p), or 

2. 2) q is in ND(p) and the set N4(p)∩N4(q) has no pixels whose values are from V. 

Connectivity between pixels 

It is an important concept in digital image processing. 
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It is used for establishing boundaries of objects and components of regions in an image. 

Two pixels are said to be connected: 

 if they are adjacent in some sense(neighbour pixels,4/8/m-adjacency) 

 if their gray levels satisfy a specified criterion of similarity(equal intensity level) 

There are three types of connectivity on the basis of adjacency. They are: 

a) 4-connectivity: Two or more pixels are said to be 4-connected if they are 4-adjacent with each 

others. 

b) 8-connectivity: Two or more pixels are said to be 8-connected if they are 8-adjacent with each 

others. 

c) m-connectivity: Two or more pixels are said to be m-connected if they are m-adjacent with 

each others. 

 

 

Color Models 

The purpose of a color model is to facilitate the specification of colors in some standard 

generally accepted way. In essence, a color model is a specification of a 3-D coordinate system 

and a subspace within that system where each color is represented by a single point. 
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Each industry that uses color employs the most suitable color model. For example, the RGB 

color model is used in computer graphics, YUV or YCbCr are used in video systems, 

PhotoYCC* is used in PhotoCD* production and so on. Transferring color information from one 

industry to another requires transformation from one set of values to another. Intel IPP provides a 

wide number of functions to convert different color spaces to RGB and vice versa. 

 

RGB Color Model 

In the RGB model, each color appears as a combination of red, green, and blue. This model is 

called additive, and the colors are called primary colors. The primary colors can be added to 

produce the secondary colors of light (see Figure "Primary and Secondary Colors for RGB and 

CMYK Models") - magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). 

The combination of red, green, and blue at full intensities makes white. 

Primary and Secondary Colors for RGB and CMYK Models 

 

 

 

 

The color subspace of interest is a cube shown in Figure "RGB and CMY Color Models" (RGB 

values are normalized to 0..1), in which RGB values are at three corners; cyan, magenta, and 

yellow are the three other corners, black is at their origin; and white is at the corner farthest from 

the origin. 

The gray scale extends from black to white along the diagonal joining these two points. The 

colors are the points on or inside the cube, defined by vectors extending from the origin. 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-3
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Thus, images in the RGB color model consist of three independent image planes, one for each 

primary color. 

As a rule, the Intel IPP color conversion functions operate with non-linear gamma-

corrected images R'G'B'. 

The importance of the RGB color model is that it relates very closely to the way that the human 

eye perceives color. RGB is a basic color model for computer graphics because color displays 

use red, green, and blue to create the desired color. Therefore, the choice of the RGB color space 

simplifies the architecture and design of the system. Besides, a system that is designed using the 

RGB color space can take advantage of a large number of existing software routines, because 

this color space has been around for a number of years. 

RGB and CMY Color Models 

 

 

 

 

However, RGB is not very efficient when dealing with real-world images. To generate any color 

within the RGB color cube, all three RGB components need to be of equal pixel depth and 

display resolution. Also, any modification of the image requires modification of all three planes. 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_gamma_correction.htm#ch6_gamma_correction
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_gamma_correction.htm#ch6_gamma_correction
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CMYK Color Model 

The CMYK color model is a subset of the RGB model and is primarily used in color print 

production. CMYK is an acronym for cyan, magenta, and yellow along with black (noted as K). 

The CMYK color space is subtractive, meaning that cyan, magenta yellow, and black pigments 

or inks are applied to a white surface to subtract some color from white surface to create the final 

color. For example (see Figure "Primary and Secondary Colors for RGB and CMYK Models"), 

cyan is white minus red, magenta is white minus green, and yellow is white minus blue. 

Subtracting all colors by combining the CMY at full saturation should, in theory, render black. 

However, impurities in the existing CMY inks make full and equal saturation impossible, and 

some RGB light does filter through, rendering a muddy brown color. Therefore, the black ink is 

added to CMY. The CMY cube is shown in Figure "RGB and CMY Color Models", in which 

CMY values are at three corners; red, green, and blue are the three other corners, white is at the 

origin; and black is at the corner farthest from the origin. 

YUV Color Model 

The YUV color model is the basic color model used in analogue color TV broadcasting. Initially 

YUV is the re-coding of RGB for transmission efficiency (minimizing bandwidth) and for 

downward compatibility with black-and white television. The YUV color space is “derived” 

from the RGB space. It comprises the luminance (Y) and two color difference (U, V) 

components. The luminance can be computed as a weighted sum of red, green and blue 

components; the color difference, or chrominance, components are formed by subtracting 

luminance from blue and from red. 

The principal advantage of the YUV model in image processing is decoupling of luminance and 

color information. The importance of this decoupling is that the luminance component of an 

image can be processed without affecting its color component. For example, the histogram 

equalization of the color image in the YUV format may be performed simply by applying 

histogram equalization to its Y component. 

There are many combinations of YUV values from nominal ranges that result in invalid RGB 

values, because the possible RGB colors occupy only part of the YUV space limited by these 

ranges. Figure "RGB Colors Cube in the YUV Color Space" shows the valid color block in the 

YUV space that corresponds to the RGB color cube RGB values that are normalized to [0..1]). 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-2
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-3
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-4
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The Y'U'V' notation means that the components are derived from gamma-corrected R'G'B'. 

Weighted sum of these non-linear components forms a signal representative of luminance that is 

called luma Y'. (Luma is often loosely referred to as luminance, so you need to be careful to 

determine whether a particular author assigns a linear or non-linear interpretation to the 

term luminance). 

The Intel IPP functions use the following basic equation ([Jack01]) to convert between gamma-

corrected R'G'B' and Y'U'V' models: 

Y'= 0.299*R' + 0.587*G' + 0.114*B' 

U'= -0.147*R' - 0.289*G' + 0.436*B' = 0.492*(B'- Y') 

V'= 0.615*R' - 0.515*G' - 0.100*B' = 0.877*(R'- Y') 

R' = Y' + 1.140*V' 

G' = Y' - 0.394*U' - 0.581*V' 

B' = Y' + 2.032*U' 

RGB Colors Cube in the YUV Color Space 

 

 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
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There are several YUV sampling formats such as 4:4:4, 4:2:2, and 4:2:0 that are supported by the 

Intel IPP color conversion functions and are described in Image Downsampling. 

YCbCr and YCCK Color Models 

The YCbCr color space is used for component digital video and was developed as part of the 

ITU-R BT.601 Recommendation. YCbCr is a scaled and offset version of the YUV color space. 

The Intel IPP functions use the following basic equations [Jack01] to convert between R'G'B' in 

the range 0-255 and Y'Cb'Cr' (this notation means that all components are derived from gamma-

corrected R'G'B'): 

Y' = 0.257*R' + 0.504*G' + 0.098*B' + 16 

Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128 

Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128 

R' = 1.164*(Y'-16) + 1.596*(Cr'-128) 

G' = 1.164*(Y'-16) - 0.813*(Cr'-128) - 0.392*(Cb'-128) 

B' = 1.164*(Y'-16) + 2.017*(Cb'-128) 

The Intel IPP color conversion functions specific for the JPEG codec use different equations: 

Y = 0.299*R + 0.587*G + 0.114*B 

Cb = -0.16874*R - 0.33126*G + 0.5*B + 128 

Cr = 0.5*R - 0.41869*G - 0.08131*B + 128 

R = Y + 1.402*Cr - 179,456 

G = Y - 0.34414*Cb - 0.71414*Cr + 135.45984 

B = Y + 1.772*Cb - 226.816 

YCCK model is specific for the JPEG image compression. It is a variant of the YCbCr model 

containing an additional K channel (black). The fact is that JPEG codec performs more 

effectively if the luminance and color information are decoupled. Therefore, a CMYK image 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_image_downsampling.htm#ch6_image_downsampling
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
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must be converted to YCCK before JPEG compression (see description of the 

function ippiCMYKToYCCK_JPEG for more details). 

Possible RGB colors occupy only part of the YCbCr color space (see Figure "RGB Colors Cube 

in the YCbCr Space") limited by the nominal ranges, therefore there are many YCbCr 

combinations that result in invalid RGB values. 

There are several YCbCr sampling formats such as 4:4:4, 4:2:2, 4:1:1, and 4:2:0, which are 

supported by the Intel IPP color conversion functions and are described in Image Downsampling. 

RGB Colors Cube in the YCbCr Space 

 

 

 

 

PhotoYCC Color Model 

The Kodak* PhotoYCC* was developed for encoding Photo CD* image data. It is based on both 

the ITU Recommendations 601 and 709, using luminance-chrominance representation of color 

like in BT.601 YCbCr and BT.709 ([ITU709]). This model comprises luminance (Y) and two 

color difference, or chrominance (C1, C2) components. The PhotoYCC is optimized for the color 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch15/functn_CMYKToYCCK_JPEG.htm#functn_CMYKToYCCK_JPEG
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-5
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-5
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_image_downsampling.htm#ch6_image_downsampling
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709
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photographic material, and provides a color gamut that is greater than the one that can currently 

be displayed. 

The Intel IPP functions use the following basic equations [Jack01] to convert non-linear gamma-

corrected R'G'B' to Y'C'C': 

Y' = 0.213*R' + 0.419*G' + 0.081*B' 

C1' = -0.131*R' - 0.256*G' + 0.387*B'+ 0.612 

C2' = 0.373*R' - 0.312*R' - 0.061*B' + 0.537 

The equations above are given on the assumption that R',G', and B' values are normalized to the 

range [0..1]. 

Since the PhotoYCC model attempts to preserve the dynamic range of film, decoding PhotoYCC 

images requires selection of a color space and range appropriate for the output device. Thus, the 

decoding equations are not always the exact inverse of the encoding equations. The following 

equations [Jack01] are used in Intel IPP to generate R'G'B' values for driving a CRT display and 

require a unity relationship between the luma in the encoded image and the displayed image: 

R' = 0.981 * Y + 1.315 * (C2 - 0.537) 

G' = 0.981 * Y - 0.311 * (C1 - 0.612)- 0.669 * (C2 - 0.537) 

B' = 0.981 * Y + 1.601 * (C1 - 0.612) 

The equations above are given on the assumption that source Y, C1 and C2 values are 

normalized to the range [0..1], and the display primaries have the chromaticity values in 

accordance with [ITU709] specifications. 

The possible RGB colors occupy only part of the YCC color space (see Figure  "RGB Colors in 

the YCC Color Space") limited by the nominal ranges, therefore there are many YCC 

combinations that result in invalid RGB values. 

RGB Colors in the YCC Color Space 

 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709
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YCoCg Color Models 

The YCoCg color model was developed to increase the effectiveness of the image 

compression [Malvar03]. This color model comprises the luminance (Y) and two color 

difference components (Co - offset orange, Cg - offset green). 

The Intel IPP functions use the following simple basic equations [Malvar03] to convert 

between RGB and YCoCg: 

Y = R/4 + G/2 + B/4 

Co = R/2 - B/2 

Cg = -R/4 + G/2 - B/4 

R = Y + Co - Cg 

G = Y + Cg 

B = Y - Co - Cg 

A variation of this color space which is called YCoCg-R, enables transformation reversibility 

with a smaller dynamic range requirements than does YCoCg [Malvar03-1]. 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03-1
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The possible RGB colors occupy only part of the YCoCg color space (see Figure "RGB Color 

Cube in the YCoCg Color Space") limited by the nominal ranges, therfore there are many 

YCoCg combinations that result in invalid RGB values. 

RGB Color Cube in the YCoCg Color Space 

 

 

 

 

HSV, and HLS Color Models 

The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were 

developed to be more “intuitive” in manipulating with color and were designed to approximate 

the way humans perceive and interpret color. 

Hue defines the color itself. The values for the hue axis vary from 0 to 360 beginning and ending 

with red and running through green, blue and all intermediary colors. 

Saturation indicates the degree to which the hue differs from a neutral gray. The values run from 

0, which means no color saturation, to 1, which is the fullest saturation of a given hue at a given 

illumination. 
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Intensity component - lightness (HLS) or value (HSV), indicates the illumination level. Both 

vary from 0 (black, no light) to 1 (white, full illumination). The difference between the two is 

that maximum saturation of hue (S=1) is at value V=1 (full illumination) in the HSV color 

model, and at lightness L=0.5 in the HLS color model. 

The HSV color space is essentially a cylinder, but usually it is represented as a cone or 

hexagonal cone (hexcone) as shown in the Figure "HSV Solid", because the hexcone defines the 

subset of the HSV space with valid RGB values. The value V is the vertical axis, and the vertex 

V=0 corresponds to black color. Similarly, a color solid, or 3D-representation, of the HLS model 

is a double hexcone (Figure "HSV Solid") with lightness as the axis, and the vertex of the second 

hexcone corresponding to white. 

Both color models have intensity component decoupled from the color information. The HSV 

color space yields a greater dynamic range of saturation. Conversions 

from RGBToHSV/RGBToHSV and vice-versa in Intel IPP are performed in accordance with the 

respective pseudocode algorithms [Rogers85] given in the descriptions of corresponding 

conversion functions. 

HSV Solid 

 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-8
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-9
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/functn_RGBToHSV.htm#functn_RGBToHSV
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/functn_RGBToHLS.htm#functn_RGBToHLS
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85
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HLS Solid 
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CIE XYZ Color Model 

The XYZ color space is an international standard developed by the CIE (Commission 

Internationale de l'Eclairage). This model is based on three hypothetical primaries, XYZ, and all 

visible colors can be represented by using only positive values of X, Y, and Z. The CIE XYZ 

primaries are hypothetical because they do not correspond to any real light wavelengths. The Y 

primary is intentionally defined to match closely to luminance, while X and Z primaries give 

color information. The main advantage of the CIE XYZ space (and any color space based on it) 
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is that this space is completely device-independent. The chromaticity diagram 

in Figure "CIE xyY Chromaticity Diagram and Color Gamut" is in fact a two-dimensional 

projection of the CIE XYZ sub-space. Note that arbitrarily combining X, Y, and Z values within 

nominal ranges can easily lead to a "color" outside of the visible color spectrum. 

The position of the block of RGB-representable colors in the XYZ space is shown in 

Figure "RGB Colors Cube in the XYZ Color Space". 

RGB Colors Cube in the XYZ Color Space 

 

 

 

 

Intel IPP functions use the following basic equations [Rogers85], to convert between gamma-

corrected R'G'B' and CIE XYZ models: 

X = 0.412453*R' + 0.35758 *G' + 0.180423*B' 

Y = 0.212671*R' + 0.71516 *G' + 0.072169*B' 

Z = 0.019334*R' + 0.119193*G' + 0.950227*B' 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_cie_diagram.htm#fig6-1
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85
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The equations for X,Y,Z calculation are given on the assumption that R',G', and B' values are 

normalized to the range [0..1]. 

R' = 3.240479 * X - 1.53715 * Y - 0.498535 * Z 

G' = -0.969256 * X + 1.875991 * Y + 0.041556 * Z 

B' = 0.055648 * X - 0.204043 * Y + 1.057311 * Z 

The equations for R',G', and B' calculation are given on the assumption that X,Y, and Z values 

are in the range [0..1]. 

CIE LUV and CIE Lab Color Models 

The CIE LUV and CIE Lab color models are considered to be perceptually uniform and are 

referred to as uniform color models. Both are uniform derivations from the standard CIE XYZ 

space. “Perceptually uniform” means that two colors that are equally distant in the color space 

are equally distant perceptually. To accomplish this approach, a uniform chromaticity scale 

(UCS) diagram was proposed by CIE (Figure "CIE u',v' Uniform Chromaticity Scale Diagram"). 

The UCS diagram uses a mathematical formula to transform the XYZ values or x, y coordinates 

(Figure "CIE xyY Chromaticity Diagram and Color Gamut"), to a new set of values that present a 

visually more accurate two-dimensional model. The Y lightness scale is replaced with a new 

scale called L that is approximately uniformly spaced but is more indicative of the actual visual 

differences. Chrominance components are U and V for CIE LUV, and a and b (referred to also 

respectively as red/blue and yellow/blue chrominances) in CIE Lab. Both color spaces are 

derived from the CIE XYZ color space. 

CIE u',v' Uniform Chromaticity Scale Diagram 

 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-11
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_cie_diagram.htm#fig6-1
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The CIE LUV color space is derived from CIE XYZ as follows ([Rogers85]), 

L = 116. * (Y/Yn)
1/3. - 16. 

U = 13. * L * (u - un) 

V = 13. * L * (v - vn) 

where 

u = 4.*X / (X + 15.*Y + 3.*Z) 

v = 9.*Y / (X + 15.*Y + 3.*Z) 

un = 4.*xn / ( -2.*xn + 12.*yn + 3. ) 

vn = 9.*yn / ( -2.*xn + 12.*yn + 3. ) 

Inverse conversion is performed in accordance with equations: 

Y = Yn * ((L + 16.) / 116.)3. 

X = -9.* Y * u / ((u - 4.)* v - u * v ) 

Z = (9.* Y - 15*v*Y - v*X) / 3. * v 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85
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where 

u = U / (13.* L) + un 

v = V / (13.* L) + vn 

and un, vn are defined above. 

Here xn = 0.312713, yn = 0.329016 are the CIE chromaticity coordinates of the D65 white point 

([ITU709]), and Yn = 1.0 is the luminance of the D65 white point. The values of the L 

component are in the range [0..100], U component in the range [-134..220], and V component in 

the range [-140..122]. 

The RGB-representable colors occupy only part of the LUV color space (see Figure "RGB Color 

Cube in the CIE LUV Color Space") limited by the nominal ranges, therefore there are many 

LUV combinations that result in invalid RGB values. 

RGB Color Cube in the CIE LUV Color Space 

 

 

 

 

The CIE Lab color space is derived from CIE XYZ as follows: 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709
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L = 116. * (Y/Yn)
1/3. - 16 for Y/Yn > 0.008856 

L = 903.3 * (Y/Yn)
1/3. for Y/Yn⩽ 0.008856 

a = 500. * [f(X/Xn)-f(Y/Yn)] 

b = 200. * [f(Y/Yn)-f(Z/Zn)] 

where 

f(t) = t1/3. - 16 for t > 0.008856 

f(t) = 7.787*t + 16/116 for t ⩽ 0.008856 

Here Yn = 1.0 is the luminance, and Xn = 0.950455, Zn = 1.088753 are the chrominances for 

the D65 white point. 

The values of the L component are in the range [0..100], a and b component values are in the 

range [-128..127]. 

Inverse conversion is performed in accordance with equations: 

Y = Yn * P3. 

X = Xn * (P + a/500.)3. 

Z = Zn * (P - b/200.)3. 

where 

P = (L +16)/116. 

UNIT II 

 

Image enhancement 

The aim of image enhancement is to improve the interpretability or perception of information in 

images for human viewers, or to provide `better' input for other automated image processing 

techniques. 

Image enhancement techniques can be divided into two broad categories: 

1.Spatial domain methods, which operate directly on pixels, and 
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2.frequency domain methods, which operate on the Fourier transform of an image. 

Unfortunately, there is no general theory for determining what is `good' image enhancement 

when it comes to human perception. If it looks good, it is good! However, when image 

enhancement techniques are used as pre-processing tools for other image processing techniques, 

then quantitative measures can determine which techniques are most appropriate. 

Spatial domain methods 

The value of a pixel with coordinates (x,y) in the enhanced image  is the result of performing 

some operation on the pixels in the neighbourhood of (x,y) in the input image, F. 

Neighbourhoods can be any shape, but usually they are rectangular. 

Grey scale manipulation 

The simplest form of operation is when the operator T only acts on a  pixel 

neighbourhood in the input image, that is  only depends on the value of F at (x,y). This 

is a grey scale transformation or mapping. 

The simplest case is thresholding where the intensity profile is replaced by a step function, active 

at a chosen threshold value. In this case any pixel with a grey level below the threshold in the 

input image gets mapped to 0 in the output image. Other pixels are mapped to 255. 

Other grey scale transformations are outlined in figure 1 below. 

Figure 1: Tone-scale adjustments. 
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Histogram Equalization 

Histogram equalization is a common technique for enhancing the appearance of images. Suppose 

we have an image which is predominantly dark. Then its histogram would be skewed towards the 

lower end of the grey scale and all the image detail is compressed into the dark end of the 

histogram. If we could `stretch out' the grey levels at the dark end to produce a more uniformly 

distributed histogram then the image would become much clearer. 

 

  

Figure 2: The original image and its histogram, and the equalized versions. Both images are 

quantized to 64 grey levels. 
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Histogram equalization involves finding a grey scale transformation function that creates an 

output image with a uniform histogram (or nearly so). 

How do we determine this grey scale transformation function? Assume our grey levels are 

continuous and have been normalized to lie between 0 and 1. 

We must find a transformation T that maps grey values r in the input image F to grey 

values s = T(r) in the transformed image . 

It is assumed that 

 T is single valued and monotonically increasing, and 

  for . 
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The inverse transformation from s to r is given by 

r = T-1(s). 

If one takes the histogram for the input image and normalizes it so that the area under the 

histogram is 1, we have a probability distribution for grey levels in the input image Pr(r). 

If we transform the input image to get s = T(r) what is the probability distribution Ps(s) ? 

From probability theory it turns out that 

 

where r = T-1(s). 

Consider the transformation 

 

This is the cumulative distribution function of r. Using this definition of T we see that the 

derivative of s with respect to r is 

 

Substituting this back into the expression for Ps, we get 

 

for all .Thus, Ps(s) is now a uniform distribution function, which is what 

we want. 
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Discrete Formulation 

We first need to determine the probability distribution of grey levels in the input image. Now 

 

where nk is the number of pixels having grey level k, and N is the total number of pixels in the 

image. 

The transformation now becomes 

 

Note that , the index ,and . 

The values of sk will have to be scaled up by 255 and rounded to the nearest integer so that the 

output values of this transformation will range from 0 to 255. Thus the discretization and 

rounding of sk to the nearest integer will mean that the transformed image will not have a 

perfectly uniform histogram. 

Image Smoothing 

The aim of image smoothing is to diminish the effects of camera noise, spurious pixel values, 

missing pixel values etc. There are many different techniques for image smoothing; we will 

consider neighbourhood averaging and edge-preserving smoothing. 
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Neighbourhood Averaging 

Each point in the smoothed image,  is obtained from the average pixel value in a 

neighbourhood of (x,y) in the input image. 

For example, if we use a  neighbourhood around each pixel we would use the mask 

  

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

Each pixel value is multiplied by , summed, and then the result placed in the output image. 

This mask is successively moved across the image until every pixel has been covered. That is, 

the image is convolved with this smoothing mask (also known as a spatial filter or kernel). 

However, one usually expects the value of a pixel to be more closely related to the values of 

pixels close to it than to those further away. This is because most points in an image are spatially 

coherent with their neighbours; indeed it is generally only at edge or feature points where this 

hypothesis is not valid. Accordingly it is usual to weight the pixels near the centre of the mask 

more strongly than those at the edge. 

Some common weighting functions include the rectangular weighting function above (which just 

takes the average over the window), a triangular weighting function, or a Gaussian. 

In practice one doesn't notice much difference between different weighting functions, although 

Gaussian smoothing is the most commonly used. Gaussian smoothing has the attribute that the 

frequency components of the image are modified in a smooth manner. 
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Smoothing reduces or attenuates the higher frequencies in the image. Mask shapes other than the 

Gaussian can do odd things to the frequency spectrum, but as far as the appearance of the image 

is concerned we usually don't notice much. 

Edge preserving smoothing 

Neighbourhood averaging or Gaussian smoothing will tend to blur edges because the high 

frequencies in the image are attenuated. An alternative approach is to use median filtering. Here 

we set the grey level to be the median of the pixel values in the neighbourhood of that pixel.  

The median m of a set of values is such that half the values in the set are less than m and half are 

greater. For example, suppose the pixel values in a  neighbourhood are (10, 20, 20, 15, 20, 

20, 20, 25, 100). If we sort the values we get (10, 15, 20, 20, |20|, 20, 20, 25, 100) and the 

median here is 20. 

The outcome of median filtering is that pixels with outlying values are forced to become more 

like their neighbours, but at the same time edges are preserved. Of course, median filters are non-

linear. 

Median filtering is in fact a morphological operation. When we erode an image, pixel values are 

replaced with the smallest value in the neighbourhood. Dilating an image corresponds to 

replacing pixel values with the largest value in the neighbourhood. Median filtering replaces 

pixels with the median value in the neighbourhood. It is the rank of the value of the pixel used in 

the neighbourhood that determines the type of morphological operation. 

 

  

Figure 3: Image of Genevieve; with salt and pepper noise; the result of averaging; and the result 

of median filtering. 
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Image sharpening 

The main aim in image sharpening is to highlight fine detail in the image, or to enhance detail 

that has been blurred (perhaps due to noise or other effects, such as motion). With image 

sharpening, we want to enhance the high-frequency components; this implies a spatial filter 

shape that has a high positive component at the centre (see figure 4 below). 

 

  

Figure 4: Frequency domain filters (top) and their corresponding spatial domain counterparts 

(bottom). 
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A simple spatial filter that achieves image sharpening is given by 

  

-1/9 -1/9 -1/9 

-1/9 8/9 -1/9 

-1/9 -1/9 -1/9 

Since the sum of all the weights is zero, the resulting signal will have a zero DC value (that is, 

the average signal value, or the coefficient of the zero frequency term in the Fourier expansion). 

For display purposes, we might want to add an offset to keep the result in the  range. 

High boost filtering 

We can think of high pass filtering in terms of subtracting a low pass image from the original 

image, that is, 

High pass = Original - Low pass. 

However, in many cases where a high pass image is required, we also want to retain some of the 

low frequency components to aid in the interpretation of the image. Thus, if we multiply the 
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original image by an amplification factor A before subtracting the low pass image, we will get 

a high boost or high frequency emphasis filter. Thus, 

 

Now, if A = 1 we have a simple high pass filter. When A > 1 part of the original image is retained 

in the output. 

A simple filter for high boost filtering is given by 

-1/9 -1/9 -1/9 

-1/9 /9 -1/9 

-1/9 -1/9 -1/9 

 

. 

Gray level transformation 

There are three basic gray level transformation. 

 Linear 

 Logarithmic 

 Power – law 

The overall graph of these transitions has been shown below. 
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Linear transformation 

First we will look at the linear transformation. Linear transformation includes simple identity 

and negative transformation. Identity transformation has been discussed in our tutorial of image 

transformation, but a brief description of this transformation has been given here. 

Identity transition is shown by a straight line. In this transition, each value of the input image is 

directly mapped to each other value of output image. That results in the same input image and 

output image. And hence is called identity transformation. It has been shown below: 
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Negative transformation 

The second linear transformation is negative transformation, which is invert of identity 

transformation. In negative transformation, each value of the input image is subtracted from the 

L-1 and mapped onto the output image. 

The result is somewhat like this. 

Input Image 

 

Output Image 

 

In this case the following transition has been done. 

s = (L – 1) – r 

since the input image of Einstein is an 8 bpp image, so the number of levels in this image are 

256. Putting 256 in the equation, we get this 

s = 255 – r 

So each value is subtracted by 255 and the result image has been shown above. So what 

happens is that, the lighter pixels become dark and the darker picture becomes light. And it 

results in image negative. 
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It has been shown in the graph below. 

 

Logarithmic transformations 

Logarithmic transformation further contains two type of transformation. Log transformation and 

inverse log transformation. 

Log transformation 

The log transformations can be defined by this formula 

s = c log(r + 1). 

Where s and r are the pixel values of the output and the input image and c is a constant. The 

value 1 is added to each of the pixel value of the input image because if there is a pixel intensity 

of 0 in the image, then log (0) is equal to infinity. So 1 is added, to make the minimum value at 

least 1. 

During log transformation, the dark pixels in an image are expanded as compare to the higher 

pixel values. The higher pixel values are kind of compressed in log transformation. This result 

in following image enhancement. 

The value of c in the log transform adjust the kind of enhancement you are looking for. 
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Input Image 

 

Log Tranform Image 

 

The inverse log transform is opposite to log transform. 

Power – Law transformations 

There are further two transformation is power law transformations, that include nth power and 

nth root transformation. These transformations can be given by the expression: 

s=cr^γ 

This symbol γ is called gamma, due to which this transformation is also known as gamma 

transformation. 

Variation in the value of γ varies the enhancement of the images. Different display devices / 

monitors have their own gamma correction, that’s why they display their image at different 

intensity. 

This type of transformation is used for enhancing images for different type of display devices. 

The gamma of different display devices is different. For example Gamma of CRT lies in 

between of 1.8 to 2.5, that means the image displayed on CRT is dark. 
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Correcting gamma. 

s=cr^γ 

s=cr^(1/2.5) 

The same image but with different gamma values has been shown here. 

For example 

Gamma = 10 

 

Gamma = 8 

 

Gamma = 6 
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Histograms 

A histogram is a graph. A graph that shows frequency of anything. Usually histogram have bars 

that represent frequency of occurring of data in the whole data set. 

A Histogram has two axis the x axis and the y axis. 

The x axis contains event whose frequency you have to count. 

The y axis contains frequency. 

The different heights of bar shows different frequency of occurrence of data. 

Usually a histogram looks like this. 

 

Now we will see an example of this histogram is build 

Example 

Consider a class of programming students and you are teaching python to them. 

At the end of the semester, you got this result that is shown in table. But it is very messy and 

does not show your overall result of class. So you have to make a histogram of your result, 

showing the overall frequency of occurrence of grades in your class. Here how you are going to 

do it. 
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Result sheet 

Name Grade 

John A 

Jack D 

Carter B 

Tommy A 

Lisa C+ 

Derek A- 

Tom B+ 

Histogram of result sheet 

Now what you are going to do is, that you have to find what comes on the x and the y axis. 

There is one thing to be sure, that y axis contains the frequency, so what comes on the x axis. X 

axis contains the event whose frequency has to be calculated. In this case x axis contains grades. 
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Now we will how do we use a histogram in an image. 

Histogram of an image 

Histogram of an image, like other histograms also shows frequency. But an image histogram, 

shows frequency of pixels intensity values. In an image histogram, the x axis shows the gray 

level intensities and the y axis shows the frequency of these intensities. 

For example 

 

The histogram of the above picture of the Einstein would be something like this 
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The x axis of the histogram shows the range of pixel values. Since its an 8 bpp image, that 

means it has 256 levels of gray or shades of gray in it. Thats why the range of x axis starts from 

0 and end at 255 with a gap of 50. Whereas on the y axis, is the count of these intensities. 

As you can see from the graph, that most of the bars that have high frequency lies in the first 

half portion which is the darker portion. That means that the image we have got is darker. And 

this can be proved from the image too. 

Applications of Histograms 

Histograms has many uses in image processing. The first use as it has also been discussed above 

is the analysis of the image. We can predict about an image by just looking at its histogram. Its 

like looking an x ray of a bone of a body. 

The second use of histogram is for brightness purposes. The histograms has wide application in 

image brightness. Not only in brightness, but histograms are also used in adjusting contrast of 

an image. 

Another important use of histogram is to equalize an image. 
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And last but not the least, histogram has wide use in thresholding. This is mostly used in 

computer vision. 

Brightness 

Brightness is a relative term. It depends on your visual perception. Since brightness is a relative 

term, so brightness can be defined as the amount of energy output by a source of light relative to 

the source we are comparing it to. In some cases we can easily say that the image is bright, and 

in some cases, its not easy to perceive. 

For example 

Just have a look at both of these images, and compare which one is brighter. 

 

We can easily see, that the image on the right side is brighter as compared to the image on the 

left. 

But if the image on the right is made more darker then the first one, then we can say that the 

image on the left is more brighter then the left. 

How to make an image brighter. 

Brightness can be simply increased or decreased by simple addition or subtraction, to the image 

matrix. 

Consider this black image of 5 rows and 5 columns 
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Since we already know, that each image has a matrix at its behind that contains the pixel values. 

This image matrix is given below. 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Since the whole matrix is filled with zero, and the image is very much darker. 

Now we will compare it with another same black image to see this image got brighter or not. 
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Still both the images are same, now we will perform some operations on image1 , due to which 

it becomes brighter then the second one. 

What we will do is, that we will simply add a value of 1 to each of the matrix value of image 1. 

After adding the image 1 would something like this. 

 

Now we will again compare it with image 2, and see any difference. 

 

We see, that still we cannot tell which image is brighter as both images looks the same. 

Now what we will do, is that we will add 50 to each of the matrix value of the image 1 and see 

what the image has become. 

The output is given below. 

 

Now again, we will compare it with image 2. 
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Now you can see that the image 1 is slightly brighter then the image 2. We go on, and add 

another 45 value to its matrix of image 1, and this time we compare again both images. 

 

Now when you compare it, you can see that this image1 is clearly brighter then the image 2. 

Even it is brighter then the old image1. At this point the matrix of the image1 contains 100 at 

each index as first add 5, then 50, then 45. So 5 + 50 + 45 = 100. 

Contrast 

Contrast can be simply explained as the difference between maximum and minimum pixel 

intensity in an image. 

For example. 

Consider the final image1 in brightness. 
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The matrix of this image is: 

100 100 100 100 100 

100 100 100 100 100 

100 100 100 100 100 

100 100 100 100 100 

100 100 100 100 100 

The maximum value in this matrix is 100. 

The minimum value in this matrix is 100. 

Contrast = maximum pixel intensity(subtracted by) minimum pixel intensity 

= 100 (subtracted by) 100 

= 0 

0 means that this image has 0 contrast. 

Histogram sliding 

In histogram sliding, we just simply shift a complete histogram rightwards or leftwards. Due to 

shifting or sliding of histogram towards right or left, a clear change can be seen in the image.In 

this tutorial we are going to use histogram sliding for manipulating brightness. 
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The term i-e: Brightness has been discussed in our tutorial of introduction to brightness and 

contrast. But we are going to briefly define here. 

Brightness 

Brightness is a relative term. Brightness can be defined as intensity of light emit by a particular 

light source. 

Contrast 

Contrast can be defined as the difference between maximum and minimum pixel intensity in an 

image. 

Sliding Histograms 

Increasing brightness using histogram sliding 

 

Histogram of this image has been shown below. 

 

On the y axis of this histogram are the frequency or count. And on the x axis, we have gray 

level values. As you can see from the above histogram, that those gray level intensities whose 



68 

 

count is more then 700, lies in the first half portion, means towards blacker portion. Thats why 

we got an image that is a bit darker. 

In order to bright it, we will slide its histogram towards right, or towards whiter portion. In 

order to do we need to add atleast a value of 50 to this image. Because we can see from the 

histogram above, that this image also has 0 pixel intensities, that are pure black. So if we add 0 

to 50, we will shift all the values lies at 0 intensity to 50 intensity and all the rest of the values 

will be shifted accordingly. 

Lets do it. 

Here what we got after adding 50 to each pixel intensity. 

The image has been shown below. 

 

And its histogram has been shown below. 

 

Lets compare these two images and their histograms to see that what change have to got. 
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Conclusion 

As we can clearly see from the new histogram that all the pixels values has been shifted towards 

right and its effect can be seen in the new image. 

Decreasing brightness using histogram sliding 

Now if we were to decrease brightness of this new image to such an extent that the old image 

look brighter, we got to subtract some value from all the matrix of the new image. The value 

which we are going to subtract is 80. Because we already add 50 to the original image and we 

got a new brighter image, now if we want to make it darker, we have to subtract at least more 

than 50 from it. 

And this what we got after subtracting 80 from the new image. 
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Conclusion 

It is clear from the histogram of the new image, that all the pixel values has been shifted 

towards right and thus, it can be validated from the image that new image is darker and now the 

original image look brighter as compare to this new image. 

 

Histogram Equalization 

Histogram equalization is used to enhance contrast. It is not necessary that contrast will always 

be increase in this. There may be some cases were histogram equalization can be worse. In that 

cases the contrast is decreased. 

Lets start histogram equalization by taking this image below as a simple image. 

Image 
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Histogram of this image 

The histogram of this image has been shown below. 

 

Now we will perform histogram equalization to it. 

PMF 

First we have to calculate the PMF (probability mass function) of all the pixels in this image. If 

you donot know how to calculate PMF, please visit our tutorial of PMF calculation. 
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CDF 

Our next step involves calculation of CDF (cumulative distributive function). Again if you 

donot know how to calculate CDF , please visit our tutorial of CDF calculation. 

Calculate CDF according to gray levels 

Lets for instance consider this , that the CDF calculated in the second step looks like this. 

Gray 

Level 

Value 

CDF 

0 0.11 

1 0.22 

2 0.55 

3 0.66 

4 0.77 

5 0.88 

6 0.99 

7 1 

Then in this step you will multiply the CDF value with (Gray levels (minus) 1) . 

Considering we have an 3 bpp image. Then number of levels we have are 8. And 1 subtracts 8 is 

7. So we multiply CDF by 7. Here what we got after multiplying. 
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Gray 

Level 

Value 

CDF CDF * (Levels-1) 

0 0.11 0 

1 0.22 1 

2 0.55 3 

3 0.66 4 

4 0.77 5 

5 0.88 6 

6 0.99 6 

7 1 7 

Now we have is the last step, in which we have to map the new gray level values into number of 

pixels. 

Lets assume our old gray levels values has these number of pixels. 

Gray 

Level 

Value 

Frequency 

0 2 
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1 4 

2 6 

3 8 

4 10 

5 12 

6 14 

7 16 

Now if we map our new values to , then this is what we got. 

Gray 

Level 

Value 

New Gray Level Value Frequency 

0 0 2 

1 1 4 

2 3 6 

3 4 8 

4 5 10 
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5 6 12 

6 6 14 

7 7 16 

Now map these new values you are onto histogram, and you are done. 

Lets apply this technique to our original image. After applying we got the following image and 

its following histogram. 

Histogram Equalization Image 

 

Cumulative Distributive function of this image 
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Histogram Equalization histogram 

 



77 

 

Comparing both the histograms and images 

Conclusion 

As you can clearly see from the images that the new image contrast has been enhanced and its 

histogram has also been equalized. There is also one important thing to be note here that during 



78 

 

histogram equalization the overall shape of the histogram changes, where as in histogram 

stretching the overall shape of histogram remains same. 

Image Enhancement Using Arithmetic And Logic Operations  

Pixel Addition 

 
Common Names: Pixel Add, Sum, Offset 

Brief Description 

In its most straightforward implementation, this operator takes as input two identically sized 

images and produces as output a third image of the same size as the first two, in which each pixel 

value is the sum of the values of the corresponding pixel from each of the two input images. 

More sophisticated versions allow more than two images to be combined with a single operation. 

A common variant of the operator simply allows a specified constant to be added to every pixel. 

How It Works 

The addition of two images is performed straightforwardly in a single pass. The output pixel 

values are given by: 

 

Or if it is simply desired to add a constant value C to a single image then: 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
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If the pixel values in the input images are actually vectors rather than scalar values (e.g. for color 

images) then the individual components (e.g. red, blue and green components) are simply added 

separately to produce the output value. 

If the image format being used only supports, say 8-bit integer pixel values, then it is very easy 

for the result of the addition to be greater than the maximum allowed pixel value. The effect of 

this depends upon the particular implementation. The overflowing pixel values might just be set 

to the maximum allowed value, an effect known as saturation. Alternatively the pixel values 

might wrap around from zero again. If the image format supports pixel values with a much larger 

range, e.g. 32-bit integers or floating point numbers, then this problem does not occur so much. 

 

Guidelines for Use 

Image addition crops up most commonly as a sub-step in some more complicated process rather 

than as a useful operator in its own right. As an example we show how addition can be used to 

overlay the output from an edge detector on top of the original image after suitable masking has 

been carried out. 

The image 

 

shows a simple flat dark object against a light background. Applying the Canny edge detector to 

this image, we obtain 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/edgdetct.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2can1.gif
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Suppose that our task is to overlay this edge data on top of the original image. The image 

 

is the result of straightforwardly adding the two images. Since the sum of the edge pixels and the 

underlying values in the original is greater than the maximum possible pixel value, these pixels 

are (in this implementation) wrapped around. Therefore these pixels have a rather low pixel 

value and it is hard to distinguish them from the surrounding pixels. In order to avoid the pixel 

overflow we need to replace pixels in the original image with the corresponding edge data 

pixels, at every place where the edge data pixels are non-zero. The way to do this is to mask off a 

region of the original image before we do any addition. 

The mask is made by thresholding the edge data at a pixel value of 128 in order to produce 

 

This mask is then inverted and subsequently ANDed with the original image to produce 

 

Finally, the masked image is added to the unthresholded edge data to produce 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/and.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2add2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2add1.gif
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This image now clearly shows that the Canny edge detector has done an extremely good job of 

localizing the edges of the original object accurately. It also shows how the response of the edge 

detector drops off at the fuzzier left hand edge of the object. 

Other uses of addition include adding a constant offset to all pixels in an image so as to brighten 

that image. For example, adding a constant value of 50 to 

 

yields 

 

It is important to realize that if the input images are already quite bright, then straight addition 

may produce a pixel value overflow. Image 

 

shows the results of adding 100 to the above image. Most of the background pixels are greater 

than the possible maximum (255) and therefore are (with this implementation of 

addition) wrapped around from zero. If we implement the operator in such a way that pixel 

values exceeding the maximum value are set to 255 (i.e. using a hard limit) we obtain 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add2.gif


82 

 

 

This image looks more natural than the wrapped around one. However, due to the saturation, we 

lose a certain amount of information, since all the values exceeding the maximum value are set 

to the same graylevel. 

In this case, the pixel values should be scaled down before addition. The image 

 

is the result of scaling the original with 0.8 and adding a constant value of 100. Although the 

image is brighter than the original, it has lost contrast due to the scaling. In most 

cases, scaling the image with a factor larger than 1 without using addition at all provides a better 

way to brighten an image, as it increases the image contrast. For comparison, 

 

is the original image multiplied with 1.3. 

Blending provides a slightly more sophisticated way of merging two images which ensures that 

saturation cannot happen. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/blend.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1sca1.gif
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When adding color images it is important to consider how the color information has been 

encoded. The section on 8-bit color images describes the issues to be aware of when adding such 

images. 

Interactive Experimentation 

You can interactively experiment with this operator by clicking here 

Pixel Subtraction 

 

Since we already know, that each image has a matrix at its behind that contains the pixel values. 

This image matrix is given below. 

0 0 0 0 0 

0 0 0 0 0 

 

shows some text which has been badly illuminated during capture so that there is a strong 

illumination gradient across the image. If we wish to separate out the foreground text from the 

background page, then the obvious method for black on white text is simply to threshold the 

image on the basis of intensity. However, simple thresholding fails here due to the illumination 

gradient. A typical failed attempt looks like 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/8bitcol.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/adddemo.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1.gif
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Now it may be that we cannot adjust the illumination, but we can put different things in the 

scene. This is often the case with microscope imaging, for instance. So we replace the text with a 

sheet of white paper and without changing anything else we capture a new image, as shown in 

 

This image is the lightfield. Now we can subtract the lightfield image from the original image to 

attempt to eliminate variation in the background intensity. Before doing that an offset of 100 

is added to the first image to in order avoid getting negative numbers and we also use 32-bit 

integer pixel values to avoid overflow problems. The result of the subtraction is shown in 

 

Note that the background intensity of the image is much more uniform than before, although the 

contrast in the lower part of the image is still poor. Straightforward thresholding can now achieve 

better results than before, as shown in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub1.gif
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which is the result of thresholding at a pixel value of 80. Note that the results are still not ideal, 

since in the poorly lit areas of the image the contrast (i.e. difference between foreground and 

background intensity) is much lower than in the brightly lit areas, making a suitable threshold 

difficult or impossible to find. Compare these results with the example described under pixel 

division. 

Absolute image differencing is also used for change detection. If the absolute difference between 

two frames of a sequence of images is formed, and there is nothing moving in the scene, then the 

output will mostly consist of zero value pixels. If however, there is movement going on, then 

pixels in regions of the image where the intensity changes spatially, will exhibit significant 

absolute differences between the two frames. 

As an example of such change detection, consider 

 

which shows an image of a collection of screws and bolts. The image 

 

shows a similar scene with one or two differences. If we calculate the absolute difference 

between the frames as shown in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr2.gif
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then the regions that have changed become clear. The last image here has been contrast-

stretched in order to improve clarity. 

Subtraction can also be used to estimate the temporal derivative of intensity at each point in a 

sequence of images. Such information can be used, for instance, in optical flow calculations. 

Simple subtraction of a constant from an image can be used to darken an image, 

although scaling is normally a better way of doing this. 

It is important to think about whether negative output pixel values can occur as a result of the 

subtraction, and how the software will treat pixels that do have negative values. An example of 

what may happen can be seen in 

 

which is the above lightfield directly subtracted from the text images. In the implementation 

of pixel subtraction which was used, negative values are wrapped around starting from the 

maximum value. Since we don't have exactly the same reflectance of the paper when taking the 

images of the lightfield and the text, the difference of pixels belonging to background is either 

slightly above or slightly below zero. Therefore the wrapping results in background pixels with 

either very small or very high values, thus making the image unsuitable for further processing 

(for example, thresholding). If we alternatively set all negative values to zero, the image would 

become completely black, because subtracting the pixels in the lightfield from the pixels 

representing characters in the text image yields negative results, as well. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1sub1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub2.gif
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In this application, a suitable way to deal with negative values is to use absolute differences, as 

can be seen in 

 

or as a gamma corrected version in 

 

Thresholding this image yields similar good results as the earlier example. 

If negative values are to be avoided then it may be possible to first add an offset to the first input 

image. It is also often useful if possible to convert the pixel value type to something with a 

sufficiently large range to avoid overflow, e.g. 32-bit integers or floating point numbers. 

Pixel Multiplication and Scaling 

 

Common Names: Pixel Multiplication, Graylevel scale 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixexp.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub4.gif
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Brief Description 

Like other image arithmetic operators, multiplication comes in two main forms. The first form 

takes two input images and produces an output image in which the pixel values are just those of 

the first image, multiplied by the values of the corresponding values in the second image. The 

second form takes a single input image and produces output in which each pixel value is 

multiplied by a specified constant. This latter form is probably the more widely used and is 

generally called scaling. 

This graylevel scaling should not be confused with geometric scaling. 

How It Works 

The multiplication of two images is performed in the obvious way in a single pass using the 

formula: 

 

Scaling by a constant is performed using: 

 

Note that the constant is often a floating point number, and may be less than one, which will 

reduce the image intensities. It may even be negative if the image format supports that. 

If the pixel values are actually vectors rather than scalar values (e.g. for color images) then the 

individual components (e.g. ref{rgb}{red, blue and green components}) are simply multiplied 

separately to produce the output value. 

If the output values are calculated to be larger than the maximum allowed pixel value, then they 

may either be truncated at that maximum value, or they can `wrap around' and continue upwards 

from the minimum allowed number again. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/scale.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
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Guidelines for Use 

There are many specialist uses for scaling. In general though, given a scaling factor greater than 

one, scaling will brighten an image. Given a factor less than one, it will darken the image. 

Scaling generally produces a much more natural brightening/darkening effect than 

simply adding an offset to the pixels, since it preserves the relative contrast of the image better. 

For instance, 

 

shows a picture of model robot that was taken under low lighting conditions. Simply scaling 

every pixel by a factor of 3, we obtain 

 

which is much clearer. However, when using pixel multiplication, we should make sure that the 

calculated pixel values don't exceed the maximum possible value. If we, for example, scale the 

above image by a factor of 5 using a 8-bit representation, we obtain 

 

All the pixels which, in the original image, have a value greater than 51 exceed the maximum 

value and are (in this implementation) wrapped around from 255 back to 0. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1dim1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul2.gif


90 

 

The last example shows that it is important to be aware of what will happen if the multiplications 

result in pixel values outside the range that can be represented by the image format being used. It 

is also very easy to generate very large numbers with pixel-by-pixel multiplication. If the image 

processing software supports it, it is often safest to change to an image format with a large 

range, e.g. floating point, before attempting this sort of calculation. 

Scaling is also often useful prior to other image arithmetic in order to prevent pixel values going 

out of range, or to prevent integer quantization ruining the results (as in integer image division). 

Pixel-by-pixel multiplication is generally less useful, although sometimes a binary image can be 

used to multiply another image in order to act as a mask. The idea is to multiply by 1 those pixels 

that are to be preserved, and multiply by zero those that are not. However for integer format 

images it is often easier and faster to use the logical operator AND instead. 

Another use for pixel by pixel multiplication is to filter images in the frequency domain. We 

illustrate the idea using the example of 

 

First, we obtain 

 

by applying the Fourier transform to the original image, and then we use pixel multiplication to 

attenuate certain frequencies in the Fourier domain. In this example we use a simple lowpass 

filter which (as a scaled version) can be seen in 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/and.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fou1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1msk3.gif
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The result of the multiplication is shown in 

 

Finally, an inverse Fourier transform is performed to return to the spatial domain. The final result  

 

shows the smoothing effect of a lowpass filter. More details and examples are given in the 

worksheets dealing with frequency filtering. 

Interactive Experimentation 

You can interactively experiment with this operator by clicking here. 

Exercises 

1. Overlay 

 

and its skeleton 

 

using pixel addition (the skeleton was derived from 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/multdemo.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fou2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fil1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl1.gif
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which was produced by thresholding the input image at 110). Use image multiplication to 

scale the images prior to the addition in order to avoid the pixel values being out of range. 

What effect does this have on the contrast of the input images. 

2. Use thresholding to segment the simple image 

 

into foreground and background. Use scaling to set the foreground pixel value to 2, and 

the background pixel value to 0. Then use pixel-by-pixel multiplication to multiply this 

image with the original image. What has this process achieved and why might it be 

useful? 

Pixel Division 

 

Common Names: Pixel Division, Ratioing 

Brief Description 

The image division operator normally takes two images as input and produces a third whose 

pixel values are just the pixel values of the first image divided by the corresponding pixel values 

of the second image. Many implementations can also be used with just a single input image, in 

which case every pixel value in that image is divided by a specified constant. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg4.gif
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How It Works 

The division of two images is performed in the obvious way in a single pass using the formula: 

 

Division by a constant is performed using: 

 

If the pixel values are actually vectors rather than scalar values (e.g. for color images) than the 

individual components (e.g. red, blue and green components) are simply divided separately to 

produce the output value. 

The division operator may only implement integer division, or it may also be able to handle 

floating point division. If only integer division is performed, then results are typically rounded 

down to the next lowest integer for output. The ability to use images with pixel value types other 

than simply 8-bit integers comes in very handy when doing division. 

Guidelines for Use 

One of the most important uses of division is in change detection, in a similar way to the use 

of subtraction for the same thing. Instead of giving the absolute change for each pixel from one 

frame to the next, however, division gives the fractional change or ratio between corresponding 

pixel values (hence the common alternative name of ratioing). The images 

 

and 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1.gif


94 

 

 

are of the same scene except two objects have been slightly moved between the exposures. 

Dividing the former by the latter using a floating point pixel type and then contrast stretching the 

resulting image yields 

 

After the division, pixels which didn't change between the exposures have a value of 1, whereas 

if the pixel value increased after the first exposure the result of the division is clustered between 

0 and 1, otherwise it is between 1 and 255 (provided the pixel value in the second image is not 

smaller than 1). That is the reason why we can only see the new position of the moved part in the 

contrast-stretched image. The old position can be visualized by histogram equalizing the division 

output, as shown in 

 

Here, high values correspond to the new position, low values correspond to the old position, 

assuming that the intensity of the moved object is lower than the background intensity. 

Intermediate graylevels in the equalized image correspond to areas of no change. Due to noise, 

the image also shows the position of objects which were not moved. 

For comparison, the absolute difference between the two images, as shown in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/histeq.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div2.gif


95 

 

 

produces approximately the same pixel values at the old and the new position of a moved part. 

Another application for pixel division is to separate the actual reflectance of an object from the 

unwanted influence of illumination. This image 

 

shows a poorly illuminated piece of text. There is a strong illumination gradient across the image 

which makes conventional foreground/background segmentation using 

standard thresholding impossible. The image 

 

shows the result of straightforward intensity thresholding at a pixel value of 128. There is no 

global threshold value that works over the whole of the image. 

Suppose that we cannot change the lighting conditions, but that we can take several images with 

different items in the viewfield. This situation arises quite a lot in microscopy, for instance. We 

choose to take a picture of a blank sheet of white paper which should allow us to capture the 

incident illumination variation. This lightfield image is shown in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1sub1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr1.gif
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Now, assuming that we are dealing with a flat scene here, with points on the surface of the scene 

described by coordinates x and y, then the reflected light intensity B(x,y) depends upon the 

reflectance R(x,y) of the scene at that point and also on the incident illumination I(x,y) such that: 

 

Using subscripts to distinguish the blank (lightfield) image and the original image, we can write: 

 

But since I(x,y) is the same for both images, and assuming the reflectance of the blank paper to 

be uniform over its surface, then: 

 

Therefore the division should allow us to segment the letters out nicely. In image 

 

we see the result of dividing the original image by the lightfield image. Note that floating point 

format images were used in the division, which were then normalized to 8-bit integers for 

display. Virtually all the illumination gradient has been removed. The image 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1div1.gif
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shows the result of thresholding this image at a pixel value of 160. While not fantastic, with a 

little work using morphological operations, the text could become quite legible. Compare the 

result with that obtained using subtraction. 

As with other image arithmetic operations, it is important to be aware of whether the 

implementation being used does integer or floating point arithmetic. Dividing two similar 

images, as done in the above examples, results mostly in very small pixel values, seldom greater 

than 4 or 5. To display the result, the image has to be normalized to 8-bit integers. However, if 

the division is performed in an integer format the result is quantized before the normalization, 

hence a lot of information is lost. Image 

 

shows the result of the above change detection if the division is performed in integer format. The 

maximum result of the division was less than 3, therefore the integer image contains only three 

different values, i.e. 0, 1 and 2 before the normalization. One solution is to multiply the first 

image (the numerator image) by a scaling factor before performing the division. Of course this is 

not generally possible with 8-bit integer images since significant scaling will simply saturate all 

the pixels in the image. The best method is, as was done in the above examples, to switch to a 

non-byte image type, and preferably to a floating point format. The effect is that the image is not 

quantized until the normalization and therefore the result does contain more graylevels. If 

floating point cannot be used, then use, say, 32-bit integers, and scale up the numerator image 

before dividing. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/matmorph.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/arthops.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div3.gif
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Logical AND/NAND 

 

Common Names: AND, NAND 

Brief Description 

AND and NAND are examples of logical operators having the truth-tables shown in Figure 1. 

 

 

 

 

Figure 1 Truth-tables for AND and NAND. 

 

 

As can be seen, the output values of NAND are simply the inverse of the corresponding output 

values of AND. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
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The AND (and similarly the NAND) operator typically takes two binary or integer graylevel 

images as input, and outputs a third image whose pixel values are just those of the first image, 

ANDed with the corresponding pixels from the second. A variation of this operator takes just a 

single input image and ANDs each pixel with a specified constant value in order to produce the 

output. 

How It Works 

The operation is performed straightforwardly in a single pass. It is important that all the input 

pixel values being operated on have the same number of bits in them or unexpected things may 

happen. Where the pixel values in the input images are not simple 1-bit numbers, the AND 

operation is normally (but not always) carried out individually on each corresponding bit in the 

pixel values, in bitwise fashion. 

 

Guidelines for Use 

The most obvious application of AND is to compute the intersection of two images. We illustrate 

this with an example where we want to detect those objects in a scene which did not move 

between two images, i.e. which are at the same pixel positions in the first and the second image. 

We illustrate this example using 

 

and 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif
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If we simply AND the two graylevel images in a bitwise fashion we obtain 

 

Although we wanted the moved object to disappear from the resulting image, it appears twice, at 

its old and at its new position. The reason is that the object has rather low pixel values (similar to 

a logical 0) whereas the background has a high values (similar to a logical 1). However, we 

normally associate an object with logical 1 and the background with logical 0, therefore we 

actually ANDed the negatives of two images, which is equivalent to NOR them. To obtain the 

desired result we have to invert the images before ANDing them, as it was done in 

 

Now, only the object which has the same position in both images is highlighted. However, 

ANDing two graylevel images might still cause problems, as it is not guaranteed that ANDing 

two high pixel values in a bitwise fashion yields a high output value (for example, 128 AND 127 

yields 0). To avoid these problems, it is best to produce a binary versions from the grayscale 

images using thresholding. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and2.gif
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and 

 

are the thresholded versions of the above images and 

 

is the result of ANDing their negatives. 

Although ANDing worked well for the above example, it runs into problems in a scene like 

 

Here, we have two objects with the average intensity of one being higher than the background 

and the other being lower. Hence, we can't produce a binary image containing both objects using 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1.gif
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simple thresholding. As can be seen in the following images, ANDing the grayscale images is 

not successful either. If in the second scene the light part was moved, as in 

 

then the result of ANDing the two images is 

 

It shows the desired effect of attenuating the moved object. However, if the second scene is 

somehow like 

 

where the dark object was moved, we obtain 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1and2.gif
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Here, the old and the new positions of the dark object are visible. 

In general, applying the AND operator (or other logical operators) to two images in order to 

detect differences or similarities between them is most appropriate if they are binary or can be 

converted into binary format using thresholding. 

As with other logical operators, AND and NAND are often used as sub-components of more 

complex image processing tasks. One of the common uses for AND is for masking. For example, 

suppose we wish to selectively brighten a small region of 

 

to highlight a particular car. There are many ways of doing this and we illustrate just one. First 

a paint program is used to identify the region to be highlighted. In this case we set the region to 

black as shown in 

 

This image can then be thresholded to just select the black region, producing the mask shown in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1msk1.gif
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The mask image has a pixel value of 255 (11111111 binary) in the region that we are interested 

in, and zero pixels (00000000 binary) elsewhere. This mask is then bitwise ANDed with the 

original image to just select out the region that will be highlighted. This produces 

 

Finally, we brighten this image by scaling it by a factor of 1.1, dim the original image using a 

scale factor of 0.8, and then add the two images together to produce 

 

AND can also be used to perform so called bit-slicing on an 8-bit image. To determine the 

influence of one particular bit on an image, it is ANDed in a bitwise fashion with a constant 

number, where the relevant bit is set to 1 and the remaining 7 bits are set to 0. For example, to 

obtain the bit-plane 8 (corresponding to the most significant bit) of 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1add1.gif
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we AND the image with 128 (10000000 binary) and threshold the output at a pixel value of 1. 

The result, shown in 

 

is equivalent to thresholding the image at a value of 128. Images 

 

 

and 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and8.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and7.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and6.gif
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correspond to bit-planes 7, 6 and 4. The images show that most image information is contained 

in the higher (more significant) bits, whereas the less significant bits contain some of the finer 

details and noise. The image 

 

shows bit-plane 1. 

 

Logical OR/NOR 

 

Common Names: OR, NOR 

Brief Description 

OR and NOR are examples of logical operators having the truth-tables shown in Figure 1. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and1.gif


107 

 

 

 

 

 

Figure 1 Truth-tables for OR and NOR. 

 

 

As can be seen, the output values of NOR are simply the inverses of the corresponding output 

values of OR. 

The OR (and similarly the NOR) operator typically takes two binary or graylevel images as 

input, and outputs a third image whose pixel values are just those of the first image, ORed with 

the corresponding pixels from the second. A variation of this operator takes just a single input 

image and ORs each pixel with a specified constant value in order to produce the output. 

How It Works 

The operation is performed straightforwardly in a single pass. It is important that all the input 

pixel values being operated on have the same number of bits in them or unexpected things may 

happen. Where the pixel values in the input images are not simple 1-bit numbers, the OR 

operation is normally (but not always) carried out individually on each corresponding bit in the 

pixel values, in bitwise fashion. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise
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Guidelines for Use 

We can illustrate the function of the OR operator using 

 

and 

 

The images show a scene with two objects, one of which was moved between the exposures. We 

can use OR to compute the union of the images, i.e. highlighting all pixels which represent an 

object either in the first or in the second image. First, we threshold the images, since the process 

is simplified by use binary input. If we OR the resulting images 

 

and 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif
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we obtain 

 

This image shows only the position of the object which was at the same location in both input 

images. The reason is that the objects are represented with logically 0 and the background is 

logically 1. Hence, we actually OR the background which is equivalent to NANDing the objects. 

To get the desired result, we first have to invert the input images before ORing them. Then, we 

obtain 

 

Now, the output shows the position of the stationary object as well as that of the moved object. 

As with other logical operators, OR and NOR are often used as sub-components of more 

complex image processing tasks. OR is often used to merge two images together. Suppose we 

want to overlay 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3or2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3or1.gif
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with its histogram, shown in 

 

First, an image editor is used to enlarge the histogram image until it is the same size as the 

grayscale image as shown in 

 

Then, simply ORing the two gives 

 

The performance in this example is quite good, because the images contain very distinct 

graylevels. If we proceed in the same way with 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2or1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1.gif
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we obtain 

 

Now, it is difficult to see the characters of the histogram (which have high pixel values) at places 

where the original image has high values, as well. Compare the result with that described 

under XOR. 

Note that there is no problem of overflowing pixel values with the OR operator, as there is with 

the addition operator. 

ORing is usually safest when at least one of the images is binary, i.e. the pixel values are 0000... 

and 1111... only. The problem with ORing other combinations of integers is that the output result 

can fluctuate wildly with a small change in input values. For instance 127 ORed with 128 gives 

255, whereas 127 ORed with 126 gives 127. 

Logical XOR/XNOR 

 

Common Names: XOR, XNOR, EOR, ENOR 

Brief Description 

XOR and XNOR are examples of logical operators having the truth-tables shown in Figure 1. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/xor.htm#guidelines
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1or1.gif
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Figure 1 Truth-tables for XOR and XNOR. 

 

 

The XOR function is only true if just one (and only one) of the input values is true, and false 

otherwise. XOR stands for eXclusive OR. As can be seen, the output values of XNOR are simply 

the inverse of the corresponding output values of XOR. 

The XOR (and similarly the XNOR) operator typically takes two binary or graylevel images as 

input, and outputs a third image whose pixel values are just those of the first image, XORed with 

the corresponding pixels from the second. A variation of this operator takes a single input image 

and XORs each pixel with a specified constant value in order to produce the output. 

How It Works 

The operation is performed straightforwardly in a single pass. It is important that all the input 

pixel values being operated on have the same number of bits in them, or unexpected things may 

happen. Where the pixel values in the input images are not simple 1-bit numbers, the XOR 

operation is normally (but not always) carried out individually on each corresponding bit in the 

pixel values, in bitwise fashion. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise
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Guidelines for Use 

We illustrate the function of XOR using 

 

and 

 

Since logical operators work more reliably with binary input we first threshold the two images, 

thus obtaining 

 

and 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif
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Now, we can use XOR to detect changes in the images, since pixels which didn't change output 0 

and pixels which did change result in 1. The image 

 

shows the result of XORing the thresholded images. We can see the old and the new position of 

the moved object, whereas the stationary object almost disappeared from the image. Due to the 

effects of noise, we can still see some pixels around the boundary of the stationary 

object, i.e. pixels whose values in the original image were close to the threshold. 

In a scene like 

 

it is not possible to apply a threshold in order to obtain a binary image, since one of the objects is 

lighter than the background whereas the other one is darker. However, we can combine two 

grayscale images by XORing them in a bitwise fashion. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3xor1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1.gif
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shows a scene where the dark object was moved and in 

 

the light object changed its position. XORing each of them with the initial image yields 

 

and 

 

respectively. In both cases, the moved part appears at the old as well as at the new location and 

the stationary object almost disappears. This technique is based on the assumption that XORing 

two similar grayvalues produces a low output, whereas two distinct inputs yield a high output. 

However, this is not always true, e.g. XORing 127 and 128 yields 255. These effects can be seen 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1xor1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1xor2.gif
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at the boundary of the stationary object, where the pixels have an intermediate graylevel and 

might, due to noise, differ slightly between two of the images. Hence, we can see a line with high 

values around the stationary object. A similar problem is that the output for the moved pen is 

much higher than the output for the moved piece of paper, although the contrast between their 

intensities and that of the background value is roughly the same. Because of these problems it is 

often better to use image subtraction or image division for change detection. 

As with other logical operators, XOR and XNOR are often used as sub-components of more 

complex image processing tasks. XOR has the interesting property that if we XOR A with B to 

get Q, then the bits of Q are the same as A where the corresponding bit from B is zero, but they 

are of the opposite value where the corresponding bit from B is one. So for instance using binary 

notation, 1010 XORed with 1100 gives 0110. For this reason, B could be thought of as a bit-

reversal mask. Since the operator is symmetric, we could just as well have treated A as the mask 

and B as the original. 

Extending this idea to images, it is common to see an 8-bit XOR image mask containing only the 

pixel values 0 (00000000 binary) and 255 (11111111 binary). When this is XORed pixel-by-

pixel with an original image it reverses the bits of pixels values where the mask is 255, and 

leaves them as they are where the mask is zero. The pixels with reversed bits normally `stand 

out' against their original color and so this technique is often used to produce a cursor that is 

visible against an arbitrary colored background. The other advantage of using XOR like this is 

that to undo the process (for instance when the cursor moves away), it is only necessary to repeat 

the XOR using the same mask and all the flipped pixels will become unflipped. Therefore it is 

not necessary to explicitly store the original colors of the pixels affected by the mask. Note that 

the flipped pixels are not always visible against their unflipped color --- light pixels become dark 

pixels and dark pixels become light pixels, but middling gray pixels become middling gray 

pixels! 

The image 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
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shows a simple graylevel image. Suppose that we wish to overlay this image with 

its histogram shown in 

 

so that the two can be compared easily. One way is to use XOR. We first use an image editor to 

enlarge the histogram until it is the same size as the first image. The result is shown in 

 

To perform the overlay we simply XOR this image with the first image in bitwise fashion to 

produce 

 

Here, the text is quite easy to read, because the original image consists of large and rather light or 

rather dark areas. If we proceed in the same way with 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2xor1.gif
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we obtain 

 

Note how the writing is dark against light backgrounds and light against dark backgrounds and 

hardly visible against gray backgrounds. Compare the result with that described under OR. In 

fact XORing is not particularly good for producing easy to read text on gray backgrounds --- we 

might do better just to add a constant offset to the image pixels that we wish to highlight 

(assuming wraparound under addition overflow) --- but it is often used to quickly produce 

highlighted pixels where the background is just black and white or where legibility is not too 

important. 

Invert/Logical NOT 

 

Common Names: Logical NOT, invert, photographic negative 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm#guidelines
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1xor1.gif
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Brief Description 

Logical NOT or invert is an operator which takes a binary or graylevel image as input and 

produces its photographic negative, i.e. dark areas in the input image become light and light 

areas become dark. 

 

How It Works 

To produce the photographic negative of a binary image we can employ the logical NOT 

operator. Its truth-table is shown in Figure 1. 

 

 

 

 

Figure 1 Truth-table for logical NOT. 

 

 

Each pixel in the input image having a logical 1 (often referred to as foreground) has a logical 0 

(associated with the background in the output image and vice versa. Hence, applying logical 

NOT to a binary image changes its polarity. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
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The logical NOT can also be used for a graylevel image being stored in byte pixel format by 

applying it in a bitwise fashion. The resulting value for each pixel is the input value subtracted 

from 255: 

 

Some applications of invert also support integer or float pixel format. In this case, we can't use 

the logical NOT operator, therefore the pixel values of the inverted image are simply given by 

 

If this output image is normalized for an 8-bit display, we again obtain the photographic negative 

of the original input image. 

 

Guidelines for Use 

When processing a binary image with a logical or morphological operator, its polarity is often 

important. Hence, the logical NOT operator is often used to change the polarity of a binary 

image as a part of some larger process. For example, if we OR 

 

and 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2neg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir3neg1.gif


121 

 

the resulting image, 

 

shows the union of the background, because it is represented with a logical 1. However, if we 

OR 

 

and 

 

which are the inverted versions of the above image we obtain 

 

Now, the result contains the union of the two circles. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2or2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2or1.gif
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We illustrate another example of the importance of the polarity of a binary image using 

the dilation operator. Dilation expands all white areas in a binary image. Hence, if we dilate 

 

the object, being represented with a logical 1, grows and the holes in the object shrink. We obtain 

 

If we dilate 

 

which was obtained by applying logical NOT to the original image, we get 

 

Here, the background is expanded and the object became smaller. 

Invert can be used for the same purpose on grayscale images, if they are processed with a 

morphological or logical operator. 

Invert is also used to print the photographic negative of an image or to make the features in an 

image appear clearer to a human observer. This can, for example, be useful for medical images, 

where the objects often appear in black on a white background. Inverting the image makes the 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4dil1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4neg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4dil2.gif
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objects appear in white on a dark background, which is often more suitable for the human eye. 

From the original image 

 

of a tissue slice, we obtain the photographic negative 

 

Bitshift Operators 

 
Common Names: Bitshifting 

Brief Description 

The bitshift operator works on images represented in byte or integer pixel format, where each 

pixel value is stored as a binary number with a fixed amount of bits. Bitshifting shifts the binary 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cel7.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cel7neg1.gif
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representation of each pixel to the left or to the right by a pre-defined number of positions. 

Shifting a binary number by one bit is equivalent to multiplying (when shifting to the left) 

or dividing (when shifting to the right) the number by 2. 

 

How It Works 

The operation is performed straightforwardly in a single pass. If the binary representation of a 

number is shifted in one direction, we obtain an empty position on the opposite side. There are 

generally three possibilities of how to fill in this empty position: we can pad the empty bits with 

a 0 or a 1 or we can wrap around the bits which are shifted out of the binary representation of the 

number on the other side. The last possibility is equivalent to rotating the binary number. 

The choice of technique used depends on the implementation of the operator and on the 

application. In most cases, bitshifting is used to implement a fast multiplication or division. In 

order to obtain the right results for this application, we have to pad the empty bits with a 0. Only 

in the case of dividing a negative number by a power of 2, do we need to fill the left bits with 

a 1, because a negative number is represented as the two's-complement of the positive 

number, i.e. the sign bit is a 1. The result of applying bitshifting in this way is illustrated in the 

following formula: 

 

An example is shown in Figure 1. 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
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Figure 1 Examples for using bitshifting for multiplication and division. Note that 

the bottom example uses a signed-byte convention where a byte represents a 

number between -128 and +127 

 

 

If bitshifting is used for multiplication, it might happen that the result exceeds the maximum 

possible pixel value. This is the case when a 1 is shifted out of the binary representation of the 

pixel value. This information is lost and the effect is that the value is wrapped around from zero. 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
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Guidelines for Use 

The main application for the bitshift operator is to divide or multiply an image by a power of 2. 

The advantage over the normal pixel division and pixel multiplication operators is that bitshifting 

is computationally less expensive. 

For example, if we want to add two images we can use bitshifting to make sure that the result 

will not exceed the maximum pixel value. We illustrate this example using 

 

and 

 

where the latter is the skeleton gained from the thresholded version of the former. To better 

visualize the result of the skeletonization we might want to overlay these two images. However, 

if we add them straightforwardly we obtain pixel values greater than the maximum value. First 

shifting both images to the right by one bit yields 

 

and 

 

which then can be added without causing any overflow problems. The result can be seen in 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1shi1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl2.gif
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Here, we can see that shifting a pixel to the right does, as a normal pixel division, decrease the 

contrast in the image. 

On the other hand, shifting the binary representation of a pixel to the left increases the image 

contrast, like the pixel multiplication. For example, 

 

is an image taken under poor lighting conditions. Shifting each pixel in the image to the left by 

one bit, which is identical to multiplying it with 2, yields 

 

Although the operator worked well in this example, we have to be aware that the result of the 

multiplication might exceed the maximum pixel value. Then, the effect for the pixel value is that 

it is wrapped around from 0. For example, if we shift each pixel in the above image by two bits, 

at some pixels a 1 is shifted out of the binary representation of the image, resulting in a loss of 

information. This can be seen in 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1add1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1dim1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1shi1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1shi2.gif
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In general, we should make sure that the values in the input image are sufficiently small or we 

have to be careful when we interpret the resulting image. Alternatively, we can change the pixel 

value format prior to applying the bitshift operator, e.g. change from byte format 

to integer format. 

Although multiplication and division are the main applications for bitshifting it might also be 

used for other, often very specialized, purposes. For example, we can store two 4-bit images in a 

byte array if we shift one of the two images by 4 bits and mask out the unused bits. Using 

the logical OR operator we can combine the two images into one without losing any information. 

Sometimes it might also be useful to rotate the binary representation of each bit, apply some 

other operator to the image and finally rotate the pixels back to the initial order. 

Spatial Filtering and its Type 

Spatial Filtering technique is used directly on pixels of an image. Mask is usually considered to 

be added in size so that it has specific center pixel. This mask is moved on the image such that 

the center of the mask traverses all image pixels. 

Classification on the basis of linearity: 

There are two types: 

1. Linear Spatial Filter 

2. Non-linear Spatial Filter  

General Classification: 

Smoothing Spatial Filter: Smoothing filter is used for blurring and noise reduction in the 

image. Blurring is pre-processing steps for removal of small details and Noise Reduction is 

accomplished by blurring. 

Types of Smoothing Spatial Filter: 

1. Linear Filter (Mean Filter) 

2. Order Statistics (Non-linear) filter  

These are explained as following below. 

1. Mean Filter: 

Linear spatial filter is simply the average of the pixels contained in the neighborhood of the 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm
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filter mask. The idea is replacing the value of every pixel in an image by the average of the 

grey levels in the neighborhood define by the filter mask. 

Types of Mean filter: 

 (i) Averaging filter: It is used in reduction of the detail in image. All coefficients are 

equal. 

 (ii) Weighted averaging filter: In this, pixels are multiplied by different coefficients. 

Center pixel is multiplied by a higher value than average filter. 

 

2. Order Statistics Filter: 

It is based on the ordering the pixels contained in the image area encompassed by the filter. It 

replaces the value of the center pixel with the value determined by the ranking result. Edges 

are better preserved in this filtering. 

Types of Order statistics filter: 

 (i) Minimum filter: 0th percentile filter is the minimum filter. The value of the center is 

replaced by the smallest value in the window. 

 (ii) Maximum filter: 100th percentile filter is the maximum filter. The value of the 

center is replaced by the largest value in the window. 

 (iii) Median filter: Each pixel in the image is considered. First neighboring pixels are 

sorted and original values of the pixel is replaced by the median of the list. 

Sharpening Spatial Filter: It is also known as derivative filter. The purpose of the sharpening 

spatial filter is just the opposite of the smoothing spatial filter. Its main focus in on the removal 

of blurring and highlight the edges. It is based on the first and second order derivative. 

First order derivative: 

 Must be zero in flat segments. 

 Must be non zero at the onset of a grey level step. 

 Must be non zero along ramps. 

First order derivative in 1-D is given by: 

f' = f(x+1) - f(x) 

Second order derivative: 

 Must be zero in flat areas. 
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 Must be zero at the onset and end of a ramp. 

 Must be zero along ramps. 

Second order derivative in 1-D is given by: 

f'' = f(x+1) + f(x-1) - 2f(x) 

 

Smoothing Images 

Goals 

Learn to: 

 Blur images with various low pass filters 

 Apply custom-made filters to images (2D convolution) 

2D Convolution ( Image Filtering ) 

As in one-dimensional signals, images also can be filtered with various low-pass filters (LPF), 

high-pass filters (HPF), etc. LPF helps in removing noise, blurring images, etc. HPF filters help 

in finding edges in images. 

OpenCV provides a function cv.filter2D() to convolve a kernel with an image. As an example, 

we will try an averaging filter on an image. A 5x5 averaging filter kernel will look like the 

below: 

K=125⎡ ⎣ ⎢ ⎢  

The operation works like this: keep this kernel above a pixel, add all the 25 pixels below this 

kernel, take the average, and replace the central pixel with the new average value. This operation 

is continued for all the pixels in the image. Try this code and check the result: 

import numpy as np 

import cv2 as cv 

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
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from matplotlib import pyplot as plt 

img = cv.imread('opencv_logo.png') 

kernel = np.ones((5,5),np.float32)/25 

dst = cv.filter2D(img,-1,kernel) 

plt.subplot(121),plt.imshow(img),plt.title('Original') 

plt.xticks([]), plt.yticks([]) 

plt.subplot(122),plt.imshow(dst),plt.title('Averaging') 

plt.xticks([]), plt.yticks([]) 

plt.show() 

Result: 

 

image 

Image Blurring (Image Smoothing) 

Image blurring is achieved by convolving the image with a low-pass filter kernel. It is useful for 

removing noise. It actually removes high frequency content (eg: noise, edges) from the image. 

https://docs.opencv.org/master/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
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So edges are blurred a little bit in this operation (there are also blurring techniques which don't 

blur the edges). OpenCV provides four main types of blurring techniques. 

1. Averaging 

This is done by convolving an image with a normalized box filter. It simply takes the average of 

all the pixels under the kernel area and replaces the central element. This is done by the 

function cv.blur() or cv.boxFilter(). Check the docs for more details about the kernel. We 

should specify the width and height of the kernel. A 3x3 normalized box filter would look like 

the below: 

K=19⎡ ⎣ ⎢ 111111111⎤ ⎦ ⎥  

Note 

If you don't want to use a normalized box filter, use cv.boxFilter(). Pass an argument 

normalize=False to the function. 

Check a sample demo below with a kernel of 5x5 size: 

import cv2 as cv 

import numpy as np 

from matplotlib import pyplot as plt 

img = cv.imread('opencv-logo-white.png') 

blur = cv.blur(img,(5,5)) 

plt.subplot(121),plt.imshow(img),plt.title('Original') 

plt.xticks([]), plt.yticks([]) 

plt.subplot(122),plt.imshow(blur),plt.title('Blurred') 

plt.xticks([]), plt.yticks([]) 

plt.show() 

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
https://docs.opencv.org/master/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
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Result: 

 

image 

2. Gaussian Blurring 

In this method, instead of a box filter, a Gaussian kernel is used. It is done with the 

function, cv.GaussianBlur(). We should specify the width and height of the kernel which should 

be positive and odd. We also should specify the standard deviation in the X and Y directions, 

sigmaX and sigmaY respectively. If only sigmaX is specified, sigmaY is taken as the same as 

sigmaX. If both are given as zeros, they are calculated from the kernel size. Gaussian blurring is 

highly effective in removing Gaussian noise from an image. 

If you want, you can create a Gaussian kernel with the function, cv.getGaussianKernel(). 

The above code can be modified for Gaussian blurring: 

blur = cv.GaussianBlur(img,(5,5),0) 

Result: 

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
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image 

3. Median Blurring 

Here, the function cv.medianBlur() takes the median of all the pixels under the kernel area and 

the central element is replaced with this median value. This is highly effective against salt-and-

pepper noise in an image. Interestingly, in the above filters, the central element is a newly 

calculated value which may be a pixel value in the image or a new value. But in median blurring, 

the central element is always replaced by some pixel value in the image. It reduces the noise 

effectively. Its kernel size should be a positive odd integer. 

In this demo, I added a 50% noise to our original image and applied median blurring. Check the 

result: 

median = cv.medianBlur(img,5) 

Result: 

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9
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image 

4. Bilateral Filtering 

cv.bilateralFilter() is highly effective in noise removal while keeping edges sharp. But the 

operation is slower compared to other filters. We already saw that a Gaussian filter takes the 

neighbourhood around the pixel and finds its Gaussian weighted average. This Gaussian filter is 

a function of space alone, that is, nearby pixels are considered while filtering. It doesn't consider 

whether pixels have almost the same intensity. It doesn't consider whether a pixel is an edge 

pixel or not. So it blurs the edges also, which we don't want to do. 

Bilateral filtering also takes a Gaussian filter in space, but one more Gaussian filter which is a 

function of pixel difference. The Gaussian function of space makes sure that only nearby pixels 

are considered for blurring, while the Gaussian function of intensity difference makes sure that 

only those pixels with similar intensities to the central pixel are considered for blurring. So it 

preserves the edges since pixels at edges will have large intensity variation. 

The below sample shows use of a bilateral filter (For details on arguments, visit docs). 

blur = cv.bilateralFilter(img,9,75,75) 

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
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Result: 

 

image 

See, the texture on the surface is gone, but the edges are still preserved. 

 

UNIT III 

I 

mage enhancement in Frequency domain 

 

Frequency domain analysis 

Till now, all the domains in which we have analyzed a signal , we analyze it with respect to 

time. But in frequency domain we don’t analyze signal with respect to time, but with respect of 

frequency. 

Difference between spatial domain and frequency domain 

In spatial domain, we deal with images as it is. The value of the pixels of the image change with 

respect to scene. Whereas in frequency domain, we deal with the rate at which the pixel values 

are changing in spatial domain. 

For simplicity, Let’s put it this way. 
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Spatial domain 

 

In simple spatial domain, we directly deal with the image matrix. Whereas in frequency domain, 

we deal an image like this. 

Frequency Domain 

We first transform the image to its frequency distribution. Then our black box system perform 

what ever processing it has to performed, and the output of the black box in this case is not an 

image, but a transformation. After performing inverse transformation, it is converted into an 

image which is then viewed in spatial domain. 

It can be pictorially viewed as 

 

Here we have used the word transformation. What does it actually mean? 
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Transformation 

A signal can be converted from time domain into frequency domain using mathematical 

operators called transforms. There are many kind of transformation that does this. Some of them 

are given below. 

 Fourier Series 

 Fourier transformation 

 Laplace transform 

 Z transform 

Out of all these, we will thoroughly discuss Fourier series and Fourier transformation in our 

next tutorial. 

Frequency components 

Any image in spatial domain can be represented in a frequency domain. But what do this 

frequencies actually mean. 

We will divide frequency components into two major components. 

High frequency components 

High frequency components correspond to edges in an image. 

Low frequency components 

Low frequency components in an image correspond to smooth regions. 

Fourier 

Fourier was a mathematician in 1822. He give Fourier series and Fourier transform to convert a 

signal into frequency domain. 

Fourier Series 

Fourier series simply states that, periodic signals can be represented into sum of sines and 

cosines when multiplied with a certain weight.It further states that periodic signals can be 

broken down into further signals with the following properties. 
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 The signals are sines and cosines 

 The signals are harmonics of each other 

It can be pictorially viewed as 

 

In the above signal, the last signal is actually the sum of all the above signals. This was the idea 

of the Fourier. 

How it is calculated 

Since as we have seen in the frequency domain, that in order to process an image in frequency 

domain, we need to first convert it using into frequency domain and we have to take inverse of 

the output to convert it back into spatial domain. That’s why both Fourier series and Fourier 

transform has two formulas. One for conversion and one converting it back to the spatial 

domain. 

Fourier series 

The Fourier series can be denoted by this formula. 

 

The inverse can be calculated by this formula. 
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Fourier transform 

The Fourier transform simply states that that the non periodic signals whose area under the 

curve is finite can also be represented into integrals of the sines and cosines after being 

multiplied by a certain weight. 

The Fourier transform has many wide applications that include, image compression (e.g JPEG 

compression), filtering and image analysis. 

Difference between Fourier series and transform 

Although both Fourier series and Fourier transform are given by Fourier , but the difference 

between them is Fourier series is applied on periodic signals and Fourier transform is applied 

for non periodic signals 

Which one is applied on images 

Now the question is that which one is applied on the images , the Fourier series or the Fourier 

transform. Well, the answer to this question lies in the fact that what images are. Images are non 

– periodic. And since the images are non periodic, so Fourier transform is used to convert them 

into frequency domain. 

Discrete fourier transform 

Since we are dealing with images, and in fact digital images, so for digital images we will be 

working on discrete fourier transform 

 

Consider the above Fourier term of a sinusoid. It include three things. 
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 Spatial Frequency 

 Magnitude 

 Phase 

The spatial frequency directly relates with the brightness of the image. The magnitude of the 

sinusoid directly relates with the contrast. Contrast is the difference between maximum and 

minimum pixel intensity. Phase contains the color information. 

The formula for 2 dimensional discrete Fourier transform is given below. 

 

The discrete Fourier transform is actually the sampled Fourier transform, so it contains some 

samples that denotes an image. In the above formula f(x,y) denotes the image, and F(u,v) 

denotes the discrete Fourier transform. The formula for 2 dimensional inverse discrete Fourier 

transform is given below. 

 

The inverse discrete Fourier transform converts the Fourier transform back to the image 

Consider this signal 

Now we will see an image, whose we will calculate FFT magnitude spectrum and then shifted 

FFT magnitude spectrum and then we will take Log of that shifted spectrum. 
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Original Image 

 

The Fourier transform magnitude spectrum 

 

The Shifted Fourier transform 
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The Shifted Magnitude Spectrum 

 

For example 

Consider this example. 

 

The same image in the frequency domain can be represented as. 
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Now what’s the relationship between image or spatial domain and frequency domain. This 

relationship can be explained by a theorem which is called as Convolution theorem. 

Convolution Theorem 

The relationship between the spatial domain and the frequency domain can be established by 

convolution theorem. 

The convolution theorem can be represented as. 

 

It can be stated as the convolution in spatial domain is equal to filtering in frequency domain 

and vice versa. 

The filtering in frequency domain can be represented as following: 
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The steps in filtering are given below. 

 At first step we have to do some pre – processing an image in spatial domain, means 

increase its contrast or brightness 

 Then we will take discrete Fourier transform of the image 

 Then we will center the discrete Fourier transform, as we will bring the discrete Fourier 

transform in center from corners 

 Then we will apply filtering, means we will multiply the Fourier transform by a filter 

function 

 Then we will again shift the DFT from center to the corners 

 Last step would be take to inverse discrete Fourier transform, to bring the result back 

from frequency domain to spatial domain 

 And this step of post processing is optional, just like pre processing , in which we just 

increase the appearance of image. 

Filters 

The concept of filter in frequency domain is same as the concept of a mask in convolution. 

After converting an image to frequency domain, some filters are applied in filtering process to 

perform different kind of processing on an image. The processing include blurring an image, 

sharpening an image e.t.c. 

The common type of filters for these purposes are: 
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 Ideal high pass filter 

 Ideal low pass filter 

 Gaussian high pass filter 

 Gaussian low pass filter 

In the next tutorial, we will discuss about filter in detail. 

Blurring masks vs derivative masks 

We are going to perform a comparison between blurring masks and derivative masks. 

Blurring masks 

A blurring mask has the following properties. 

 All the values in blurring masks are positive 

 The sum of all the values is equal to 1 

 The edge content is reduced by using a blurring mask 

 As the size of the mask grow, more smoothing effect will take place 

Derivative masks 

A derivative mask has the following properties. 

 A derivative mask have positive and as well as negative values 

 The sum of all the values in a derivative mask is equal to zero 

 The edge content is increased by a derivative mask 

 As the size of the mask grows , more edge content is increased 

Relationship between blurring mask and derivative mask with high pass filters and low 

pass filters. 

The relationship between blurring mask and derivative mask with a high pass filter and low pass 

filter can be defined simply as. 

 Blurring masks are also called as low pass filter 

 Derivative masks are also called as high pass filter 
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High pass frequency components and Low pass frequency components 

The high pass frequency components denotes edges whereas the low pass frequency 

components denotes smooth regions. 

Ideal low pass and Ideal High pass filters 

This is the common example of low pass filter. 

 

When one is placed inside and the zero is placed outside , we got a blurred image. Now as we 

increase the size of 1, blurring would be increased and the edge content would be reduced. 

This is a common example of high pass filter. 

 

When 0 is placed inside, we get edges, which gives us a sketched image. An ideal low pass 

filter in frequency domain is given below. 
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The ideal low pass filter can be graphically represented as 

 

Now let’s apply this filter to an actual image and let’s see what we got. 

Sample image 
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Image in frequency domain 

 

Applying filter over this image 

 

Resultant Image 

 

With the same way, an ideal high pass filter can be applied on an image. But obviously the 

results would be different as, the low pass reduces the edged content and the high pass increase 

it. 
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Gaussian Low pass and Gaussian High pass filter 

Gaussian low pass and Gaussian high pass filter minimize the problem that occur in ideal low 

pass and high pass filter. 

This problem is known as ringing effect. This is due to reason because at some points transition 

between one color to the other cannot be defined precisely, due to which the ringing effect 

appears at that point. 

Have a look at this graph. 

 

This is the representation of ideal low pass filter. Now at the exact point of Do, you cannot tell 

that the value would be 0 or 1. Due to which the ringing effect appears at that point. 

So in order to reduce the effect that appears is ideal low pass and ideal high pass filter, the 

following Gaussian low pass filter and Gaussian high pass filter is introduced. 

Gaussian Low pass filter 

The concept of filtering and low pass remains the same, but only the transition becomes 

different and become more smooth. 

The Gaussian low pass filter can be represented as 
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Note the smooth curve transition, due to which at each point, the value of Do, can be exactly 

defined. 

Gaussian high pass filter 

Gaussian high pass filter has the same concept as ideal high pass filter, but again the transition 

is more smooth as compared to the ideal one. 

Continuous 1D Fourier Transform 

The Fourier Series previously considered is intended for use with periodic signals. More general 

signals may exhibit some locally periodic components, but are not, in general, periodic. The 

Fourier transform and the inverse Fourier transform allow for the conversion of any signal to the 

frequency domain and back again to either the time or spatial domain. 

We consider one dimensional signals only as steps towards the 2-D Fourier transform of images. 

One dimensional continuous and discrete signals provide simpler cases for learning some of the 

important properties of frequency domain data. 

Fourier Transform 

 

http://faculty.salina.k-state.edu/tim/mVision/freq-domain/fourier.html#fourier
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Where  is a continuous frequency in radians/sec. 

Inverse Fourier Transform 

 

Properties 

  is continuous and may be complex. 

  is complex and continuous. 

  is complex, but if  was real, then . 

 Although it is a bit hard to think about negative frequencies, they are a 

mathematical necessity. This is because of the cyclical nature of the complex 

exponential. The values of the complex exponential over the range  are 

the same as for the equivalent range . 

 Common Fourier Transform Pairs 

Below are some common frequency and time domain pairs. These results will be 

useful to us for explaining other properties later. 
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The Complex Exponential Basis Function 

Note 

  

Recall that a complex number is one containing a real component and an imaginary component. 

Imaginary numbers are multiplied by the imaginary number, . 

 

Mathematicians usually use the variable  as the imaginary number. Engineers, however, prefer 

to use the variable . Equations involving complex numbers often involve variables representing 

voltage and current in a circuit. In electrical circuits,  is always current, so to avoid confusion, 

the variable  is used for the imaginary number. 

As we saw, the Fourier Series generates a periodic signal as a sum of weighted sinusoidal 

signals. The Fourier transform extends the Fourier series to convert any continuously integrable 

signals into the frequency domain. The coefficients in the frequency domain are complex 

numbers to quantify both the magnitude and phase of the spectrum over a range of frequencies. 

In both the Fourier transform (FT) and inverse Fourier transform (IFT), we use the complex 

exponential basis function for the sinusoidal foundation of the transforms. The coefficients are 

calculated as a sum of products between the signal and the set of complex, sinusoidal basis 

functions. The complex exponential basis function is defined by what is called Euler’s formula.  

http://faculty.salina.k-state.edu/tim/mVision/freq-domain/fourier.html#fourier
http://faculty.salina.k-state.edu/tim/mVision/glossary.html#term-basis-function
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Leonhard Euler (1707 - 1783) 

 

Euler What?! 

Most people find Euler’s formula quite puzzling when they first see it. We know that  is the 

imaginary number , but what is  and what does it have to do with the  and  ? 

The number  

Like the number , the number  is a constant irrational number with a 

significant influence on the mathematics of how things work. The value of  is defined in terms 

of a limit. 

Here are the limits of exponentials that we already know about and also the limits defining the 

number  and also . 

http://faculty.salina.k-state.edu/tim/mVision/_images/Leonhard_Euler.jpg
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The function  has a couple properties that make it special. 

  is the only known function that the derivative of the function is itself. This 

causes  to be in the solution to many differential equation problems. Some examples 

where you will find  are: the voltage on a capacitor as a function of time, the decay of 

radioactivity of the nucleus of an unstable atom, and the probability density function of a 

Gaussian random variable. 

 Euler’s formula, which we will tackle next. 

Derivation of Euler’s Formula 

We can see how  relates to the  and  functions by looking at the MacLaurin 

series for these functions. A MacLaurin series is a Taylor series expansion about at the point 

zero. 

If you are like I was as an undergraduate, Taylor and MacLaurin series expansions where among 

my least favorite parts of calculus class. However, they have two important virtues. 

1. They are useful for numeric calculations. Many years ago, before the days of computers 

and calculators, tables were used to find the value of many math functions. The people 

with the jobs of computing these tables often used Taylor and MacLaurin series to 

calculate the values in the tables. Calculators and computers might also use these series 

for internally calculating the values of some functions. 

2. There are some mathematical properties of functions that can only be observed by 

considering these series. This is the case with Euler’s formula for complex exponentials.  
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The needed MacLaurin series are: 

 

 

 

Now replace  in the equations for  with . Remember that . 

 

Numerical Proof 

Okay, if the derivation from the MacLaurin series didn’t convince you, we can try some 

numerical analysis to show that complex exponentials can actually produce complex, sinusoidal 

functions? 

We can use MATLAB and the definition of  from a limit and verify if Euler knew what he was 

talking about or not. In the following MATLAB script, we just assign  to be a fairly large 

number. Since the definition uses a limit as  goes to infinity, the results become more accurate 

when larger value for  are used. 

% let n = some big number 

n=100000; 

z=linspace(0,2*pi);% test 100 numbers between 0 and 2*pi 
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% Now show that e^jz = cos(z) + j*sin(z) 

% Begin with definition of value of e^z. 

%    e^z = lim(n = infinity) (1 + z/n)^n 

eulerValues=complex(1,z/n).^n; 

 

% This should plot a unit circle, just like 

% figure, plot( cos(z), sin(z)); 

figure,plot(real(eulerValues),imag(eulerValues)); 

 

Points along a complex unit circle - Numerical proof of Euler’s formula 

Note 
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One might reasonably suspect that MATLAB, being aware of Euler’s formula, cheated on 

calculating the complex exponential. That is, it probably converted the complex number to polar 

coordinates before doing the exponential calculation. 

 

To complete the numerical proof, we can write a MATLAB function to do the complex 

exponential calculation by brute force. We will do this as a class activity and we will see the 

same result, which demonstrates the numerical validity of Euler’s formula.  

Two-Dimensional Fourier Transform 

Fourier transform can be generalized to higher dimensions. For example, many 

signals  are functions of 2D space defined over an x-y plane. Two-dimensional Fourier 

transform also has four different forms depending on whether the 2D signal is periodic and 

discrete. 

 Aperiodic, continuous signal, continuous, aperiodic spectrum 
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where  and  are spatial frequencies in  and  directions, respectively, 

and  is the 2D spectrum of . 

 Aperiodic, discrete signal, continuous, periodic spectrum 

 

 

 

 

 

 

 

 

where  and  are the spatial intervals between consecutive signal samples in 

the  and  directions, respectively, and  and  are sampling 

rates in the two directions, and they are also the periods of the spectrum . 

 Periodic, continuous signal, discrete, aperiodic spectrum 
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where  and  are periods of the signal in  and  directions, respectively, 

and  and  are the intervals between consecutive samples in the 

spectrum . 

 Periodic, discrete signal, discrete and periodic spectrum 
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where  and  are the numbers of samples 

in  and  directions in both spatial and spatial frequency domains, respectively, 

and  is the 2D discrete spectrum of . Both  and  can 

be considered as elements of two  by  matrices  and , respectively. 

Physical Meaning of 2DFT 

Consider the Fourier transform of continuous, aperiodic signal (the result is easily generalized to 

other cases): 

 

 

 

 

 

The inverse transform represents the spatial function  as a linear combination 

of complex exponentials  with complex weights . 

 The Complex weight can be represented in polar form as 
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in terms of its amplitude  and phase : 

 

 

 The Complex exponential can be represented as 

 

 

 

where , and 

o  is the unit vector along direction , 

o  is a vector along the direction  in the 2D spatial domain. 

The inner product  represents the projection of a spatial point  onto 

the direction of . As all points  on a straight line perpendicular to the direction 

of  have the same projection,  represents a planar sinusoid 

in the x-y plane along the direction  (i.e. ) 

with frequency . 
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In the function  on top,  (2 cycles per unit 

distance in x) and and (3 cycles per unit distance in y), while in the 

function  at bottom,  (3 cycles per unit distance 

in x) and  (2 cycles per unit distance in y). But along their individual 

directions  (  and  respectively), their spatial 

frequencies are the same . 
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Now the 2DFT of a signal  can be written as: 

 

 

which represents a signal  as a linear combination (integration) of infinite 2D spatial 

planar sinusoids  of 

 , 

  

 , 

  

The 2D function shown below contains three frequency components (2D sinusoidal waves) of 

different frequencies and directions: 
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Matrix Form of 2D DFT 

Consider the 2D DFT: 

 

 

 

where, as defined before 

 

 

 

We further define 
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and rewrite the 2D transform as 

 

 

 

The above two equations are the two steps for a 2D transform: 

1. Column Transform: 

First consider the expression for . As the summation is with respect to the row 

index  of , the column index  can be treated as a parameter, and the 

expression is the 1D Fourier transform of the nth column vector of , which can be 

written in column vector (vertical) form for the nth column: 

 

 

 

or more concisely 

 

 

 



169 

 

i.e., the nth column of  is the 1D FT of the nth column of . Putting all  columns 

together, we have 

 

or more concisely 

 

where  is a  by  Fourier transform matrix. 

2. Row Transform: 

Now we reconsider the 2DFT expression above 

 

 

 

As the summation is with respective to the column index n of , the row 

index  can be treated as a parameter, and the expression is the 1D Fourier transform of 

the kth row vector of , which can be written in row vector (horizontal) form for the 

kth row: 
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or more concisely 

 

i.e., the kth row of  is the 1D FT of the kth row of . Putting all  rows together, 

we have 

 

 

or more concisely 

 

But as , we finally have 

 

This expression indicates that 2D DFT can be carried out by 1D transforming all the rows of the 

2D signal  and then 1D transforming all the columns of the resulting matrix. The order of the 

steps is not important. The transform can also be carried out by the column transform followed 

by the row transform. 

Similarly, the inverse 2D DFT can be written as 
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It is obvious that the complexity of 2D DFT is  (assuming ), which can be 

reduced to  if FFT is used. 

A 2D DFT Example 

Consider a real 2D signal: 

 

The imaginary part . The 2D Fourier spectrum  of this signal can be found by 2D 

DFT. The real part of the spectrum is: 

 

 

 

and the imaginary part of the spectrum is: 
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Pay close attention to the even and odd symmetry of the spectrum. 

Frequency Domain Filters are used for smoothing and sharpening of image by removal of 

high or low frequency components. Sometimes it is possible of removal of very high and very 

low frequency. Frequency domain filters are different from spatial domain filters as it basically 

focuses on the frequency of the images. It is basically done for two basic operation i.e., 

Smoothing and Sharpening. 

These are of 3 types: 

 

1. Low pass filter: 

Low pass filter removes the high frequency components that means it keeps low frequency 

components. It is used for smoothing the image. It is used to smoothen the image by 
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attenuating high frequency components and preserving low frequency components. 

Mechanism of low pass filtering in frequency domain is given by: 

G(u, v) = H(u, v) . F(u, v) 

where F(u, v) is the Fourier Transform of original image 

and H(u, v) is the Fourier Transform of filtering mask  

2. High pass filter: 

High pass filter removes the low frequency components that means it keeps high frequency 

components. It is used for sharpening the image. It is used to sharpen the image by attenuating 

low frequency components and preserving high frequency components. 

Mechanism of high pass filtering in frequency domain is given by: 

H(u, v) = 1 - H'(u, v) 

where H(u, v) is the Fourier Transform of high pass filtering 

and H'(u, v) is the Fourier Transform of low pass filtering  

3. Band pass filter: 

Band pass filter removes the very low frequency and very high frequency components that 

means it keeps the moderate range band of frequencies. Band pass filtering is used to enhance 

edges while reducing the noise at the same time. 
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Restoration Filters are the type of filters that are used for operation of noisy image and 

estimating the clean and original image. It may consists of processes that are used for blurring 

or the reverse processes that are used for inverse of blur. Filter used in restoration is different 

from the filter used in enhancement process. 

Types of Restoration Filters: 

There are three types of Restoration Filters: Inverse Filter, Pseudo Inverse Filter, and Wiener 

Filter. These are explained as following below. 

1. Inverse Filter: 

Inverse Filtering is the process of receiving the input of a system from its output. It is the 

simplest approach to restore the original image once the degradation function is known. 

It can be define as: 

H'(u, v) = 1 / H(u, v)  

 

Let, 

F'(u, v) -> Fourier transform of the restored image 

G(u, v) -> Fourier transform of the degraded image 

H(u, v) -> Estimated or derived or known degradation function 

then F'(u, v) = G(u, v)/H(u, v) 

where, G(u, v) = F(u, v).H(u, v) + N(u, v) 

and F'(u, v) = f(u, v) - N(u, v)/H(u, v)  

Note: Inverse filtering is not regularly used in its original form. 

2. Pseudo Inverse Filter: 

Pseudo inverse filter is the modified version of the inverse filter and stabilized inverse filter. 

Pseudo inverse filtering gives more better result than inverse filtering but both inverse and 

pseudo inverse are sensitive to noise. 

Pseudo inverse filtering is defined as: 
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H'(u, v) = 1/H(u, v), H(u, v)!=0 

H'(u, v) = 0, otherwise 

3. Wiener Filter: 

(Minimum Mean Square Error Filter). Wiener filter executes and optimal trade off between 

filtering and noise smoothing. IT removes the addition noise and inputs in the blurring 

simultaneously. Weiner filter is real and even. 

It minimizes the overall mean square error by: 

e^2 = F{(f-f')^2} 

where, f -> original image 

f' -> restored image 

E{.} -> mean value of arguments 

 

H(u, v) = H'(u, v)/(|H(u, v)|^2 + (Sn(u, v)/Sf(u, v)) 

where H(u, v) -> Transform of degradation function 

Sn(u, v) -> Power spectrum of the noise 

Sf(u, v) -> Power spectrum of the undergraded original image  

Butterworth Lowpass Filter (BLPF) 

In the field of Image Processing, Butterworth Lowpass Filter (BLPF) is used for image 

smoothing in the frequency domain. It removes high-frequency noise from a digital image 

and preserves low-frequency components. The transfer function of BLPF of order  is 

defined as- 

 

Where, 

  is a positive constant. BLPF passes all the frequencies less than  value without 

attenuation and cuts off all the frequencies greater than it. 
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 This  is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed 

as cutoff frequency. But instead of making a sharp cut-off (like,Ideal Lowpass Filter 

(ILPF)), it introduces a smooth transition from 1 to 0 to reduce ringing artifacts. 

 s the Euclidean Distance from any point (u, v) to the origin of the frequency 

plane, i.e,  

Gaussian Low pass filter 

Gaussian Smoothing 

 

Common Names: Gaussian smoothing 

Brief Description 

The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' images 

and remove detail and noise. In this sense it is similar to the mean filter, but it uses a 

different kernel that represents the shape of a Gaussian (`bell-shaped') hump. This kernel has 

some special properties which are detailed below. 

 

How It Works 

The Gaussian distribution in 1-D has the form: 

 

https://www.geeksforgeeks.org/matlab-ideal-lowpass-filter-in-image-processing/
https://www.geeksforgeeks.org/matlab-ideal-lowpass-filter-in-image-processing/
https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
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where  is the standard deviation of the distribution. We have also assumed that the 

distribution has a mean of zero (i.e. it is centered on the line x=0). The distribution is 

illustrated in Figure 1. 

 

 

 

Figure 1 1-D Gaussian distribution with mean 0 and =1 

 

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form: 

 

This distribution is shown in Figure 2. 
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Figure 2 2-D Gaussian distribution with mean (0,0) and =1 

The idea of Gaussian smoothing is to use this 2-D distribution as a `point-spread' function, 

and this is achieved by convolution. Since the image is stored as a collection of discrete pixels 

we need to produce a discrete approximation to the Gaussian function before we can perform 

the convolution. In theory, the Gaussian distribution is non-zero everywhere, which would 

require an infinitely large convolution kernel, but in practice it is effectively zero more than 

about three standard deviations from the mean, and so we can truncate the kernel at this point. 

Figure 3 shows a suitable integer-valued convolution kernel that approximates a Gaussian 

with a  of 1.0. It is not obvious how to pick the values of the mask to approximate a 

Gaussian. One could use the value of the Gaussian at the centre of a pixel in the mask, but this 

is not accurate because the value of the Gaussian varies non-linearly across the pixel. We 

integrated the value of the Gaussian over the whole pixel (by summing the Gaussian at 0.001 

increments). The integrals are not integers: we rescaled the array so that the corners had the 

value 1. Finally, the 273 is the sum of all the values in the mask. 
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Figure 3 Discrete approximation to Gaussian function with =1.0 

Once a suitable kernel has been calculated, then the Gaussian smoothing can be performed 

using standard convolution methods. The convolution can in fact be performed fairly quickly 

since the equation for the 2-D isotropic Gaussian shown above is separable 

into x and y components. Thus the 2-D convolution can be performed by first convolving with 

a 1-D Gaussian in the x direction, and then convolving with another 1-D Gaussian in 

the y direction. (The Gaussian is in fact the only completely circularly symmetric operator 

which can be decomposed in such a way.) Figure 4 shows the 1-D x component kernel that 

would be used to produce the full kernel shown in Figure 3 (after scaling by 273, rounding 

and truncating one row of pixels around the boundary because they mostly have the value 0. 

This reduces the 7x7 matrix to the 5x5 shown above.). The y component is exactly the same 

but is oriented vertically. 

 

Figure 4 One of the pair of 1-D convolution kernels used to calculate the full 

kernel shown in Figure 3 more quickly. 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
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A further way to compute a Gaussian smoothing with a large standard deviation is to 

convolve an image several times with a smaller Gaussian. While this is computationally 

complex, it can have applicability if the processing is carried out using a hardware pipeline. 

The Gaussian filter not only has utility in engineering applications. It is also attracting 

attention from computational biologists because it has been attributed with some amount of 

biological plausibility, e.g. some cells in the visual pathways of the brain often have an 

approximately Gaussian response. 

Guidelines for Use 

The effect of Gaussian smoothing is to blur an image, in a similar fashion to the mean filter. 

The degree of smoothing is determined by the standard deviation of the Gaussian. (Larger 

standard deviation Gaussians, of course, require larger convolution kernels in order to be 

accurately represented.) 

The Gaussian outputs a `weighted average' of each pixel's neighborhood, with the average 

weighted more towards the value of the central pixels. This is in contrast to the mean filter's 

uniformly weighted average. Because of this, a Gaussian provides gentler smoothing and 

preserves edges better than a similarly sized mean filter. 

One of the principle justifications for using the Gaussian as a smoothing filter is due to its 

frequency response. Most convolution-based smoothing filters act as lowpass frequency 

filters. This means that their effect is to remove high spatial frequency components from an 

image. The frequency response of a convolution filter, i.e. its effect on different spatial 

frequencies, can be seen by taking the Fourier transform of the filter. Figure 5 shows the 

frequency responses of a 1-D mean filter with width 5 and also of a Gaussian filter with  = 

3. 

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
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Figure 5 Frequency responses of Box (i.e. mean) filter (width 5 pixels) and 

Gaussian filter (  = 3 pixels). The spatial frequency axis is marked in cycles 

per pixel, and hence no value above 0.5 has a real meaning. 

 

Both filters attenuate high frequencies more than low frequencies, but the mean filter exhibits 

oscillations in its frequency response. The Gaussian on the other hand shows no oscillations. In fact, 

the shape of the frequency response curve is itself (half a) Gaussian. So by choosing an appropriately 

sized Gaussian filter we can be fairly confident about what range of spatial frequencies are still 

present in the image after filtering, which is not the case of the mean filter. This has consequences 

for some edge detection techniques, as mentioned in the section on zero crossings. (The Gaussian 

filter also turns out to be very similar to the optimal smoothing filter for edge detection under the 

criteria used to derive the Canny edge detector.) 

Ideal High pass filter 

 

In the field of Image Processing, Ideal Highpass Filter (IHPF) is used for image 

sharpening in the frequency domain. Image Sharpening is a technique to enhance the fine 

details and highlight the edges in a digital image. It removes low-frequency components 

from an image and preserves high-frequency components. 

This ideal highpass filter is the reverse operation of the ideal lowpass filter. It can be 

determined using the following relation-  

https://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm
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where,  is the transfer function of the highpass filter 

and  is the transfer function of the corresponding lowpass filter. 

The transfer function of the IHPF can be specified by the function- 

 

Where, 

  is a positive constant. IHPF passes all the frequencies outside of a circle of 

radius  from the origin without attenuation and cuts off all the frequencies within 

the circle. 

 This  is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed 

as cutoff frequency. 

  is the Euclidean Distance from any point (u, v) to the origin of the 

frequency plane, i.e,  

 

In the field of Image Processing, Butterworth Highpass Filter (BHPF) is used for image 

sharpening in the frequency domain. Image Sharpening is a technique to enhance the fine 

details and highlight the edges in a digital image. It removes low-frequency components 

from an image and preserves high-frequency components. 
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This Butterworth highpass filter is the reverse operation of the Butterworth lowpass filter. It 

can be determined using the relation-

  where,  is the transfer 

function of the highpass filter and  is the transfer function of the 

corresponding lowpass filter. 

The transfer function of BHPF of order  is defined as- 

 

Where, 

  is a positive constant. BHPF passes all the frequencies greater than  value 

without attenuation and cuts off all the frequencies less than it. 

 This  is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed 

as cutoff frequency. But instead of making a sharp cut-off (like,Ideal Highpass Filter 

(IHPF)), it introduces a smooth transition from 0 to 1 to reduce ringing artifacts. 

  is the Euclidean Distance from any point (u, v) to the origin of the 

frequency plane,. 

UNIT IV 

 

Image Restoration : 

Image restoration is performed by reversing the process that blurred theimage and such is 

performed by imaging a point source and use the point source image, which is called 

the Point Spread Function (PSF) to restorethe image information lost to the blurring 

process 

Mean Filters 

In this section we discuss briefly the noise-reduction spatial filters introduced in Section 3.6 

and develop several other filters whose performance is in many cases superior to the filters 

discussed in that section. 

https://www.geeksforgeeks.org/matlab-ideal-highpass-filter-in-image-processing/
https://www.geeksforgeeks.org/matlab-ideal-highpass-filter-in-image-processing/
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Arithmetic mean filter 

This is the simplest of the mean filters. Let Sxv represent the set of coordinates in a 

rectangular subimage window of size m X n, centered at point (x, y).The arithmetic mean 

filtering process computes the average value of the corrupted image g(x, y) in the area defined 

by Sxy.The value of the restored image at any point (x, y) is simply the arithmetic mean 

computed using the pixels in the region defined by S. In other words. 

 

This operation can be implemented using a convolution mask in which ail coefficients have 

value 1/mn. As discussed in Section 3.6.1, a mean filter simply smoothes local variations in 

an image. Noise is reduced as a result of blurring. 

Geometric mean filter 

An image restored using a geometric mean filter is given by the expression 

 

Here, each restored pixel is given by the product of the pixels in the subimage window, raised 

to the power 1/mn. As shown in Example 52, a geometric mean filter achieves smoothing 

comparable to the arithmetic mean filter, but it tends to lose less image detail in the process. 

Harmonic mean filter 

The harmonic mean filtering operation is given by the expression 
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The harmonic mean filter works well for salt noise, but fails for pepper noise. It does well 

also with other types of noise tike Gaussian noise. 

Contraharmonic mean filter 

The contraharmonic mean filtering operation yields a restored image based on the expression 

 

where Q is called the order of the filter. This filter is well suited for reducing or virtually 

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter eliminates 

pepper noise. For negative values of Q it eliminates salt noise. It cannot do both 

simultaneously. Note that the contraharmonic filter reduces to the arithmetic mean filter if Q 

= 0, and to the harmonic mean filter if Q = - 1 

5.3.2 Order-Statistics Filters 

Order-statistics filters were introduced in Section 3.6.2. We now expand the dis¬cussion in 

that section and introduce some additional order-statistics filters. As noted in Section 3.6.2, 

order-statistics filters are spatial filters whose response is based on ordering (ranking) the 

pixels contained in the image area encom¬passed by the filter. The response of the filter at 

any point is determined by the ranking result 

Median filter 

The best-known order-statistics filter is the median filter, which, as its name implies, replaces 

the value of a pixel by the median of the gray levels in the neighborhood of that pixel: 
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The original value of the pixel is included in the computation of the median. Median filters 

are quite popular because, for certain types of random noise, they provide excellent noise-

reduction capabilities, with considerably less blurring than linear smoothing filters of similar 

size. Median filters are particularly effective in the presence of both bipolar and unipolar 

impulse noise. In fact, as Ex¬ample 5.3 shows, the median filter yields excellent results for 

images corrupted by this type of noise. Computation of the median and implementation of this 

filter are discussed in detail in Section 3.6.2. 

Max and min filters 

Although the median filter is by far the order-statistics filter most used in image processing.it 

is by no means the only one. The median represents the 50th percentile of a ranked set of 

numbers, but the reader will recall from basic statis¬tics that ranking lends itself to many 

other possibilities. For example, using the 100th perccntile results in the so-called max filter 

given by: 

 

This filter is useful for finding the brightest points in an image. Also, because pep¬per noise 

has very low values, it is reduced by this filter as a result of the max selection process in the 

subimage area S. The 0th percentile filter is the Min filter. 

 

 

 

Adaptive Filtering 

Adaptive filters are designed to address this question, and are the third and final class of 

spatial image filters we shall explore. The premise behind adaptive image filtering is that by 
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varying the filtering method as the kernel slides across the image (in the same manner as the 

convolution operation), they are able to tailor themselves to the local properties and structures 

of an image. In essence, they can be thought of as self-adjusting digital filters. While certain 

types of adaptive filters may perform better than median filters at removing impulse noise 

(these are mostly variations on the basic median filtering scheme), they are most often used 

for denoising non-stationary images, which tend to exhibit abrupt intensity changes. Because 

the filtering operation is no longer purely uniform and instead modulated based on the local 

characteristics of the image, these filters can be employed effectively when there is little a 

priori knowledge of the signal being processed. 

 

 

Adaptive filters find widespread use in countering the effects of so-called "speckle" noise, 

which afflicts coherent imaging systems like SAR and ultrasound. With these imaging 

techniques, scattered waves interfere with one another to contaminate an acquired image with 

multiplicative speckle noise. Various statistical models of speckle noise exist, with one of the 

more common being 

 

where g is the corrupted image and n(x,y) is drawn from a zero-mean Gaussian distribution 

with a given standard deviation. It is clear from the above model that speckle noise is 

dependent on the magnitude of the signal f, and in fact this type of noise is a serious 

impediment on the interpretability of image data because it degrades both spatial and contrast 

resolution. This situation is shown with a real-world example in Figure 4-24, where an 

ultrasound image exhibiting a fairly large amount of speckle noise is enhanced, illustrating 

the utility of adaptive filtering. 

http://what-when-how.com/wp-content/uploads/2011/09/tmp6239.png
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Figure 4-24. Ultrasound speckle noise removal, (a) Unprocessed ultrasound image of 

kidney anatomy, (b) Smoothed image (5×5 averaging filter), which while reducing 

speckle seriously degrades spatial resolution, (c) Result of adaptive filtering, using 

MATLAB wiener2 Image-Processing Toolkit function, (d) Commercial quality speckle 

tioise reduction, where image is despeckled using an adaptive geometric filter and then 

edge sharpened. 

Adaptive filters are effective in reducing the deleterious effects of speckle noise because 

they are capable of adjusting themselves based on the signal content of the image. Thus it 

follows that they must use some measure of the local characteristics of the image in order to 

perform their job. Many adaptive filters are predicated on the use of local pixel statistics, 

primarily the mean and variance of the pixels within the current neighborhood. The local 

mean is simply the average pixel intensity of the neighborhood. The local variance is 

calculated in two stages from the pixels contained within the current neighborhood. First, the 

mean of the sum of the squares is computed, and then the square of the local mean is 

http://what-when-how.com/wp-content/uploads/2011/09/tmp6240.jpg
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subtracted from this number yielding a statistical quantity known as the variance, very often 

referred to as a2. In mathematical terms, these image statistics can be expressed as 

 

where /is the image and each neighborhood is of size NHxNH pixels. The standard deviation 

of the neighborhood is the square root of the variance, or a. 

The Minimal Mean Square Error Filter 

The adaptive filter we spend the majority of time on in this section is the Minimal Mean 

Square Error (MMSE) filter. This filter can be used to remove both additive white noise and 

speckle noise. Consider an observed image f(i,j) and a neighborhood L of size NHxNH. Let 

cr2 be the noise variance, be the local mean, and <j\ be the local variance. The cr2 parameter 

is the variance of a representative background area of the image containing nothing but noise 

(a technique for estimating this parameter is given later). The linear MMSE filter output is 

then given by26 

 

This equation describes a linear interpolation between the observed image /and a smoothed 

version off. Care should be taken to handle the case where 

http://what-when-how.com/wp-content/uploads/2011/09/tmp6241.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6242.png
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in which case a negative output pixel may result (the MMSE filter implemented later in this 

section clamps the ratio The MMSE filter works as follows: 

1. If the local variance is much greater than the noise variance, or if is small or zero, it 

produces a value close to the input f(i,j). If this part of the image most 

likely contains an edge and this filter makes the assumption that it is best to leave that portion 

of the image alone. 

2. If the noise variance dominates over the local variance, return the local mean. 

3. If the two variance measures are more or less equal, the filter returns a mixture between the 

input and local mean. 

This filter is edge-preserving because of (1), and consequently should tend to retain overall 

image sharpness, although noise will not be filtered from those portions of the image 

containing edges. Algorithm 4-2 describes the MMSE filter in pseudo-code form. 

High-Pass Filters 

The concept of high-pass filtering is to remove lower frequency content while keeping higher 

frequencies. With image processing, this, by it self, yields undesirable results. Particularly, 

removing the overall brightness represented at position (0, 0) of the image in the frequency 

domain is not desired. Thus, to preserve the low-frequency content while emphasising the 

high-frequency content we alter the transfer function with a high-frequency emphasis 

equation. 

 

A value of one for both  and  is common. 

http://what-when-how.com/wp-content/uploads/2011/09/tmp6243.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6244.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6245.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6246.png


192 

 

ideal high-pass filter 

 

Gaussian high-pass filter 

 

Butterworth high-pass filter 

 

 Band-reject Filters 

Band-reject and Band-Pass filters are used less in image processing than low-pass and high-

pass filters. 

Band-reject filters (also called band-stop filters) suppress frequency content within a range 

between a lower and higher cutoff frequency. The parameter  here is the center frequency 

of the reject band. 

ideal band-reject filter 

 

Gaussian band-reject filter 

 

Butterworth band-reject filter 
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Band-Pass Filters 

A band-pass filter is the opposite of a band-reject filter. It only passes frequency content 

within a range. A band-pass filter is obtained from a band-reject filter. 

Notch Filter  

Notch filters, also commonly referred to as band-stop or band-rejection filters, are designed to 

transmit most wavelengths with little intensity loss while attenuating light within a specific 

wavelength range (the stop band) to a very low level. They are essentially the inverse 

of bandpass filters, which offer high in-band transmission and high out-of-band rejection so 

as to only transmit light within a small wavelength range. See the Transmission 

Graphs and OD Graphs tabs for the performance over the passbands and blocking region. 

Notch filters are useful in applications where one needs to block light from a laser. For 

instance, to obtain good signal-to-noise ratios in Raman spectroscopy experiments, it is 

critical that light from the pump laser be blocked. This is achieved by placing a notch filter in 

the detection channel of the setup. In addition to spectroscopy, notch filters are commonly 

used in laser-based fluorescence instrumentation and biomedical laser systems. 

As with all dielectric stack filters, the transmission is dependent on the angle of incidence 

(AOI). The central wavelength of the blocking region will shift to shorter wavelengths as the 

AOI is increased. The AOI Graphs tab shows the transmission of s- and p-polarized light as a 

function of wavelength changes for different AOI. 

Thorlabs' notch filters feature a dielectric coating on a polished glass substrate, which has 

excellent environmental durability. The dielectric stack provides high rejection through 

destructive interference and reflection in the stop band: the optical density is greater than 6.0 

(corresponding to a transmission of less than 0.0001%) within the stop band. See the table 

below for available stop band center wavelengths. Regardless of the filter chosen, the 

transmitted beam's wavefront error for light at normal incidence will be less than λ/2 at 633 

nm. These filters also have an AR coating on the back surface to ensure >90% average 

transmission within the passbands. 

https://www.thorlabs.com/Navigation.cfm?guide_ID=2210
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Each filter is housed in a black anodized aluminum ring that is labeled with an arrow 

indicating the design propagation direction. The ring makes handling easier and enhances the 

blocking OD by limiting scattering. These filters can be mounted in our extensive line of filter 

mounts and wheels. As the mounts are not threaded, Ø1" retaining rings will be required to 

mount the filters in one of our internally-threaded SM1 lens tubes. We do not recommend 

removing the filter from its mount as the risk of damaging the filter is very high. However, 

select filters are available unmounted as well as in custom sizes; contact Tech Support for 

more details. 

Image Segmentation  

What is the Process of Image Segmentation? 

A digital image is made up of various components that need to be “analysed”, let’s use that 

word for simplicity sake and the “analysis” performed on such components can reveal a lot of 

hidden information from them. This information can help us address a plethora of business 

problems – which is one of the many end goals that are linked with image processing. 

Image Segmentation is the process by which a digital image is partitioned into various 

subgroups (of pixels) called Image Objects, which can reduce the complexity of the image, 

and thus analysing the image becomes simpler. 

We use various image segmentation algorithms to split and group a certain set of pixels 

together from the image. By doing so, we are actually assigning labels to pixels and the pixels 

with the same label fall under a category where they have some or the other thing common in 

them. 

Using these labels, we can specify boundaries, draw lines, and separate the most required 

objects in an image from the rest of the not-so-important ones. In the below example, from a 

main image on the left, we try to get the major components, e.g. chair, table etc. and hence all 

the chairs are colored uniformly. In the next tab, we have detected instances, which talk about 

individual objects, and hence the all the chairs have different colors. 

https://www.thorlabs.com/navigation.cfm?Guide_ID=77
https://www.thorlabs.com/navigation.cfm?Guide_ID=77
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1535
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3307
mailto:techsupport@thorlabs.com
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This is how different methods of segmentation of images work in varying degrees of 

complexity and yield different levels of outputs. 

Image Source: stackexchange.com 

From a machine learning point of view, later, these identified labels can be further used for 

both supervised and unsupervised training and hence simplifying and solving a wide variety 

of business problems. This is a simpler overview of segmentation in Image Processing. Let’s 

try to understand the use cases, methodologies, and algorithms used in this article. 

Need for Image Segmentation & Value Proposition 

The concept of partitioning, dividing, fetching, and then labeling and later using that 

information to train various ML models have indeed addressed numerous business problems. 

In this section, let’s try to understand what problems are solved by Image Segmentation.  

A facial recognition system implements image segmentation, identifying an employee and 

enabling them to mark their attendance automatically. Segmentation in Image Processing is 

being used in the medical industry for efficient and faster diagnosis, detecting diseases, 
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tumors, and cell and tissue patterns from various medical imagery generated from 

radiography, MRI, endoscopy, thermography, ultrasonography, etc. 

Satellite images are processed to identify various patterns, objects, geographical contours, soil 

information etc., which can be later used for agriculture, mining, geo-sensing, etc. Image 

segmentation has a massive application area in robotics, like RPA, self-driving cars, etc. 

Security images can be processed to detect harmful objects, threats, people and incidents. 

Image segmentation implementations in python, Matlab and other languages are extensively 

employed for the process. 

A very interesting case I stumbled upon was a show about a certain food processing factory 

on the Television, where tomatoes on a fast-moving conveyer belt were being inspected by a 

computer. It was taking high-speed images from a suitably placed camera and it was passing 

instructions to a suction robot which was pick up rotten ones, unripe ones, basically, damaged 

tomatoes and allowing the good ones to pass on. 

This is a basic, but a pivotal and significant application of Image Classification, where the 

algorithm was able to capture only the required components from an image, and those pixels 

were later being classified as the good, the bad, and the ugly by the system. A rather simple 

looking system was making a colossal impact on that business – eradicating human effort, 

human error and increasing efficiency. 

Image Segmentation is very widely implemented in Python, along with other classical 

languages like Matlab, C/C++ etc. More likey so, Image segmentation in python has been the 

most sought after skill in the data science stack. 

Types of Image Segmentation 

1. The Approach 

Whenever one tries to take a bird’s eye view of the Image Segmentation tasks, one gets to 

observe a crucial process that happens here – object identification. Any simple to complex 

application areas, everything is based out of object detection. 
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And as we discussed earlier, detection is made possible because the image segmentation 

algorithms try to – if we put it in lay man’s terms – collect similar pixels together and 

separate out dissimilar pixels. This is done by following two approaches based on the image 

properties: 

1.1. Similarity Detection (Region Approach) 

This fundamental approach relies on detecting similar pixels in an image – based on a 

threshold, region growing, region spreading, and region merging. Machine learning 

algorithms like clustering relies on this approach of similarity detection on an unknown set of 

features, so does classification, which detects similarity based on a pre-defined (known) set of 

features. 

1.2. Discontinuity Detection (Boundary Approach) 

This is a stark opposite of similarity detection approach where the algorithm rather searches 

for discontinuity. Image Segmentation Algorithms like Edge Detection, Point Detection, Line 

Detection follows this approach – where edges get detected based on various metrics of 

discontinuity like intensity etc. 

Image Source: scikit-image 
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2. The Types of Techniques 

Based on the two approaches, there are various forms of techniques that are applied in the 

design of the Image Segmentation Algorithms. These techniques are employed based on the 

type of image that needs to be processed and analysed and they can be classified into three 

broader categories as below: 

2.1 Structural Segmentation Techniques 

These sets of algorithms require us to firstly, know the structural information about the image 

under the scanner. This can include the pixels, pixel density, distributions, histograms, color 

distribution etc. Second, we need to have the structural information about the region that we 

are about to fetch from the image – this section deals with identifying our target area, which is 

highly specific to the business problem that we are trying to solve. Similarity based approach 

will be followed in these sets of algorithms. 

2.2 Stochastic Segmentation Techniques 

In these group of algorithms, the primary information that is required for them is to know the 

discrete pixel values of the full image, rather than pointing out the structure of the required 

portion of the image. This proves to be advantageous in the case of a larger group of images, 

where a high degree of uncertainty exists in terms of the required object within an object. 

ANN and Machine Learning based algorithms that use k-means etc. make use of this 

approach. 

2.3 Hybrid Techniques 

As the name suggests, these algorithms for image segmentation make use of a combination of 

structural method and stochastic methods i.e., use both the structural information of a region 

as well as the discrete pixel information of the image. 

Image segmentation Techniques 

Based on the image segmentation approaches and the type of processing that is needed to be 

incorporated to attain a goal, we have the following techniques for image segmentation. 

1. Threshold Method 

https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method1
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2. Edge Based Segmentation 

3. Region Based Segmentation 

4. Clustering Based Segmentation 

5. Watershed Based Method 

 

6. Artificial Neural Network Based Segmentation 

 

1. Threshold Method 

This is perhaps the most basic and yet powerful technique to identify the required objects in 

an image. Based on the intensity, the pixels in an image get divided by comparing the pixel’s 

intensity with a threshold value. The threshold method proves to be advantageous when the 

objects in the image in question are assumed to be having more intensity than the background 

(and unwanted components) of the image. 

 

At its simpler level, the threshold value T is considered to be a constant. But that approach 

may be futile considering the amount of noise (unwanted information) that the image 

contains. So, we can either keep it constant or change it dynamically based on the image 

properties and thus obtain better results. Based on that, thresholding is of the following types: 

https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method2
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method3
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method4
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method5
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method6
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1.1 Simple Thresholding 

This technique replaces the pixels in an image with either black or white. If the intensity of a 

pixel (Ii,j) at position (i,j) is less than the threshold (T), then we replace that with black and if 

it is more, then we replace that pixel with white. This is a binary approach to thresholding. 

1.2 Otsu’s Binarization 

In global thresholding, we had used an arbitrary value for threshold value and it remains a 

constant. The major question here is, how can we define and determine the correctness of the 

selected threshold? A simpler but rather inept method is to trial and see the error. 

But, on the contrary, let us take an image whose histogram has two peaks (bimodal image), 

one for the background and one for the foreground. According to Otsu binarization, for that 

image, we can approximately take a value in the middle of those peaks as the threshold value. 

So in simply put, it automatically calculates a threshold value from image histogram for a 

bimodal image. 

The disadvantage here, however, is for images that are not bimodal, the image histogram has 

multiple peaks, or one of the classes (peaks) present has high variance. 

However, Otsu’s Binarization is widely used in document scans, removing unwanted colors 

from a document, pattern recognition etc. 

1.3 Adaptive Thresholding 

A global value as threshold value may not be good in all the conditions where an image has 

different background and foreground lighting conditions in different actionable areas. We 

need an adaptive approach that can change the threshold for various components of the image. 

In this, the algorithm divides the image into various smaller portions and calculates the 

threshold for those portions of the image. 

Hence, we obtain different thresholds for different regions of the same image. This in turn 

gives us better results for images with varying illumination. The algorithm can automatically 

calculate the threshold value. The threshold value can be the mean of neighborhood area or it 

can be the weighted sum of neighborhood values where weights are a Gaussian window (a 

window function to define regions). 
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2. Edge Based Segmentation 

Edge detection is the process of locating edges in an image which is a very important step 

towards understanding image features. It is believed that edges consist of meaningful features 

and contains significant information. It significantly reduces the size of the image that will be 

processed and filters out information that may be regarded as less relevant, preserving and 

focusing solely on the important structural properties of an image for a business problem. 

Edge-based segmentation algorithms work to detect edges in an image, based on various 

discontinuities in grey level, colour, texture, brightness, saturation, contrast etc. To further 

enhance the results, supplementary processing steps must follow to concatenate all the edges 

into edge chains that correspond better with borders in the image. 

Image Source: researchgate.net 

Edge detection algorithms fall primarily into two categories – Gradient based methods and 

Gray Histograms. Basic edge detection operators like sobel operator, canny, Robert’s variable 

etc are used in these algorithms. These operators aid in detecting the edge discontinuities and 

hence mark the edge boundaries. The end goal is to reach at least a partial segmentation using 
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this process, where we group all the local edges into a new binary image where only edge 

chains that match the required existing objects or image parts are present. 

3. Region Based Segmentation 

The region based segmentation methods involve the algorithm creating segments by dividing 

the image into various components having similar characteristics. These components, simply 

put, are nothing but a set of pixels. Region-based image segmentation techniques initially 

search for some seed points – either smaller parts or considerably bigger chunks in the input 

image. 

Next, certain approaches are employed, either to add more pixels to the seed points or further 

diminish or shrink the seed point to smaller segments and merge with other smaller seed 

points. Hence, there are two basic techniques based on this method. 

3.1 Region Growing 

It’s a bottom to up method where we begin with a smaller set of pixel and start accumulating 

or iteratively merging it based on certain pre-determined similarity constraints. Region 

growth algorithm starts with choosing an arbitrary seed pixel in the image and compare it 

with its neighboring pixels. 

If there is a match or similarity in neighboring pixels, then they are added to the initial seed 

pixel, thus increasing the size of the region. When we reach the saturation and hereby, the 

growth of that region cannot proceed further, the algorithm now chooses another seed pixel, 

which necessarily does not belong to any region(s) that currently exists and start the process 

again. 

Region growing methods often achieve effective Segmentation that corresponds well to the 

observed edges. But sometimes, when the algorithm lets a region grow completely before 

trying other seeds, that usually biases the segmentation in favour of the regions which are 

segmented first. To counter this effect, most of the algorithms begin with the user inputs of 

similarities first, no single region is allowed to dominate and grow completely and multiple 

regions are allowed to grow simultaneously. 
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Region growth, also a pixel based algorithm like thresholding but the major difference is 

thresholding extracts a large region based out of similar pixels, from anywhere in the image 

whereas region-growth extracts only the adjacent pixels. Region growing techniques are 

preferable for noisy images, where it is highly difficult to detect the edges. 

3.2 Region Splitting and Merging 

The splitting and merging based segmentation methods use two basic techniques done 

together in conjunction – region splitting and region merging – for segmenting an image. 

Splitting involves iteratively dividing an image into regions having similar characteristics and 

merging employs combining the adjacent regions that are somewhat similar to each other. 

A region split, unlike the region growth, considers the entire input image as the area of 

business interest. Then, it would try matching a known set of parameters or pre-defined 

similarity constraints and picks up all the pixel areas matching the criteria. This is a divide 

and conquers method as opposed to the region growth algorithm. 

Now, the above process is just one half of the process, after performing the split process, we 

will have many similarly marked regions scattered all across the image pixels, meaning, the 

final segmentation will contain scattered clusters of neighbouring regions that have identical 

or similar properties. To complete the process, we need to perform merging, which after each 

split which compares adjacent regions, and if required, based on similarity degrees, it merges 

them. Such algorithms are called split-merge algorithms. 

4. Clustering Based Segmentation Methods 

Clustering algorithms are unsupervised algorithms, unlike Classification algorithms, where 

the user has no pre-defined set of features, classes, or groups. Clustering algorithms help in 

fetching the underlying, hidden information from the data like, structures, clusters, and 

groupings that are usually unknown from a heuristic point of view. 

The clustering based techniques segment the image into clusters or disjoint groups of pixels 

with similar characteristics. By the virtue of basic Data Clustering properties, the data 

elements get split into clusters such that elements in same cluster are more similar to each 

other as compared to other clusters. Some of the more efficient clustering algorithms such as 

https://www.analytixlabs.co.in/blog/classification-in-machine-learning/
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k-means, improved k means, fuzzy c-mean (FCM) and improved fuzzy c mean algorithm 

(IFCM) are being widely used in the clustering based approaches proposed. 

K means clustering is a chosen and popular method because of its simplicity and 

computational efficiency. The Improved K-means algorithm can minimize the number of 

iterations usually involved in a k-means algorithm. FCM algorithm allows data points, (pixels 

in our case) to belong to multiple classes with varying degrees of membership. The slower 

processing time of an FCM is overcome by improved FCM. 

Image Source: researchgate.net 

A massive value add of clustering based ML algorithms is that we can measure the quality of 

the segments that get generated by using several statistical parameters such as: Silhouette 

Coefficient, rand index (RI) etc. 

4.1 k-means clustering 

K-means is one of the simplest unsupervised learning algorithms which can address the 

clustering problems, in general. The process follows a simple and easy way to classify a given 

image through a certain number of clusters which are fixed apriori. The algorithm actually 

starts at this point where the image space is divided into k pixels, representing k group 

centroids. Now, each of the objects is then assigned to the group based on its distance from 

the cluster. When all the pixels are assigned to all the clusters, the centroids now move and 

are reassigned. These steps repeat until the centroids can no longer shift. 



205 

 

At the convergence of this algorithm, we have areas within the image, segmented into “K” 

groups where the constituent pixels show some levels of similarity. 

4.2 Fuzzy C Means 

k-means, as discussed in the previous section, allows for dividing and grouping together the 

pixels in an image that have certain degrees of similarity. One of the striking features in k-

means is that the groups and their members are completely mutually exclusive. A Fuzzy C 

Means clustering technique allows the data points, in our case, the pixels to be clustered in 

more than one cluster. In other words, a group of pixels can belong to more than one cluster 

or group but they can have varying levels of associativity per group. The FCM algorithm has 

an optimization function associated with it and the convergence of the algorithm depends on 

the minimization of this function. 

At the convergence of this algorithm, we have areas within the image, segmented into “C” 

groups where the constituent pixels inside a group show some levels of similarity, and also 

they will have a certain degree of association with other groups as well. 

5. Watershed Based Methods 

Watershed is a ridge approach, also a region-based method, which follows the concept of 

topological interpretation. We consider the analogy of geographic landscape with ridges and 

valleys for various components of an image. The slope and elevation of the said topography 

are distinctly quantified by the gray values of the respective pixels – called the gradient 

magnitude. Based on this 3D representation which is usually followed for Earth landscapes, 

the watershed transform decomposes an image into regions that are called “catchment 

basins”. For each local minimum, a catchment basin comprises all pixels whose path of 

steepest descent of gray values terminates at this minimum. 
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Image Source: scikit-image 

In a simple way of understanding, the algorithm considers the pixels as a “local topography” 

(elevation), often initializing itself from user-defined markers. Then, the algorithm defines 

something called “basins” which are the minima points and hence, basins are flooded from 

the markers until basins meet on watershed lines. The watersheds that are so formed here, 

they separate basins from each other. Hence the picture gets decomposed because we have 

pixels assigned to each such region or watershed. 

6. Artificial Neural Network Based Segmentation Method 

The approach of using Image Segmentation using neural networks is often referred to as 

Image Recognition. It uses AI to automatically process and identify the components of an 

image like objects, faces, text, hand-written text etc. Convolutional Neural Networks are 

specifically used for this process because of their design to identify and process high-

definition image data. 

An image, based on the approach used, is considered either as a set of vectors (colour 

annotated polygons) or a raster (a table of pixels with numerical values for colors). The vector 

or raster is turned into simpler components that represent the constituent physical objects and 

features in an image. Computer vision systems can logically analyze these constructs, by 
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extracting the most important sections, and then by organizing data through feature extraction 

algorithms and classification algorithms. 

Image Source: mathworks.com 

These algorithms are widely used in a variety of industries and applications. E-commerce 

industry uses it for providing relevant products to users for their search requirements and 

browsing history. The manufacturing industry uses it for anomaly detection, detecting 

damaged objects, ensuring worker safety etc. Image Recognition is famously used in 

education and training for visually impaired, speech impaired students. Although Neural Nets 

are time consuming when it comes to training the data, the end results have been very 

promising and the application of these has been highly successful. 

UNIT V 

Image Compression  

Image compression is a type of data compression applied to digital images, to reduce their 

cost for storage or transmission. Algorithms may take advantage of visual perception and 

the statistical properties of image data to provide superior results compared with generic data 

compression methods which are used for other digital data.[1] 

https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Digital_image
https://en.m.wikipedia.org/wiki/Computer_data_storage
https://en.m.wikipedia.org/wiki/Data_transmission
https://en.m.wikipedia.org/wiki/Algorithm
https://en.m.wikipedia.org/wiki/Visual_perception
https://en.m.wikipedia.org/wiki/Statistical
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Image_compression#cite_note-1
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Image Compression Model  

In the field of Image processing, the compression of images is an important step before we 

start the processing of larger images or videos. The compression of images is carried out by 

an encoder and output a compressed form of an image. In the processes of compression, the 

mathematical transforms play a vital role. A flow chart of the process of the compression of 

the image can be represented as: 

 

In this article, we try to explain the overview of the concepts involved in the image 

compression techniques. The general representation of the image in a computer is like a 

vector of pixels. Each pixel is represented by a fixed number of bits. These bits determine 

the intensity of the color (on greyscale if a black and white image and has three channels of 

RGB if colored images.) 

Why Do We Need Image Compression? 

Consider a black and white image that has a resolution of 1000*1000 and each pixel uses 8 

bits to represent the intensity. So the total no of bits req= 1000*1000*8 = 80,00,000 bits per 

image. And consider if it is a video with 30 frames per second of the above-mentioned 

https://en.m.wikipedia.org/wiki/File:Quality_comparison_jpg_vs_saveforweb.jpg
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type images then the total bits for a video of 3 secs is: 3*(30*(8, 000, 000))=720, 000, 

000 bits 

As we see just to store a 3-sec video we need so many bits which is very huge. So, we need 

a way to have proper representation as well to store the information about the image in a 

minimum no of bits without losing the character of the image. Thus, image compression 

plays an important role. 

Basic steps in image compression: 

 Applying the image transform 

 Quantization of the levels 

 Encoding the sequences. 

Transforming The Image 

What is a transformation(Mathematically): 

It a function that maps from one domain(vector space) to another domain(other vector 

space). Assume, T is a transform, f(t):X->X’ is a function then, T(f(t)) is called the 

transform of the function. 

In a simple sense, we can say that T changes the shape(representation) of the function as it i

s a mapping from one vector space to another (without changing basic function f(t) i.e the r

elationship between the domain and co-domain). 

We generally carry out the transformation of the function from one vector space to the other 

because when we do that in the newly projected vector space we infer more information 

about the function. 

A real life example of a transform: 
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Here we can say that the prism is a transformation function in which it splits the white light 

(f(t)) into its components i.e the representation of the white light.  

And we observe that we can infer more information about the light in its component 

representation than the white light one. This is how transforms help in understanding the 

functions in an efficient manner. 

Transforms in Image Processing 

The image is also a function of the location of the pixels. i.e I(x, y) where (x, y) are the 

coordinates of the pixel in the image. So we generally transform an image from the spatial 

domain to the frequency domain. 

Why Transformation of the Image is Important: 

 It becomes easy to know what all the principal components that make up the image and 

help in the compressed representation. 

 It makes the computations easy. 

 Example: finding convolution in the time domain before the transformation: 
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Finding convolution in the frequency domain after the transformation: 

 

 So we can see that the computation cost has reduced as we switched to the 

frequency domain. We can also see that in the time domain the convolution 

was equivalent to an integration operator but in the frequency domain, it 

becomes equal to the simple product of terms. So, this way the cost of 

computation reduces. 

So this way when we transform the image from domain to the other carrying out the spatial 

filtering operations becomes easier. 

Quantization 

The process quantization is a vital step in which the various levels of intensity are grouped 

into a particular level based on the mathematical function defined on the pixels. Generally, 

the newer level is determined by taking a fixed filter size of “m” and dividing each of the 

“m” terms of the filter and rounding it its closest integer and again multiplying with “m”.  

Basic quantization Function: [pixelvalue/m] * m 

So, the closest of the pixel values approximate to a single level hence as the no of distinct 

levels involved in the image becomes less. Hence we reduce the redundancy in the level of 

the intensity. So thus quantization helps in reducing the distinct levels. 

Eg: (m=9) 
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Thus we see in the above example both the intensity values round up to 18 thus we reduce 

the number of distinct levels(characters involved) in the image specification. 

Symbol Encoding 

The symbol stage involves where the distinct characters involved in the image are encoded 

in a way that the no. of bits required to represent a character is optimal based on the 

frequency of the character’s occurrence. In simple terms, In this stage codewords are 

generated for the different characters present. By doing so we aim to reduce the no. of bits 

required to represent the intensity levels and represent them in an optimum number of bits. 

There are many encoding algorithms. Some of the popular ones are: 

 Huffman variable-length encoding. 

 Run-length encoding. 

In the Huffman coding scheme, we try to find the codes in such a way that none of the 

codes are the prefixes to the other. And based on the probability of the occurrence of the 

character the length of the code is determined. In order to have an optimum solution the 

most probable character has the smallest length code. 

Example: 
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We see the actual 8-bit representation as well as the new smaller length codes. The 

mechanism of generation of codes is: 

 

So we see how the storage requirement for the no of bits is decreased as: 

Initial representation–average code length: 8 bits per intensity level. 

After encoding–average code length: (0.6*1)+(0.3*2)+(0.06*3)+(0.02*4)+(0.01*5)+(0.01

*5)=1.56 bits per intensity level 
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Thus the no of bits required to represent the pixel intensity is drastically reduced. 

Thus in this way, the mechanism of quantization helps in compression. When the images 

are once compressed its easy for them to be stored on a device or to transfer them. And 

based on the type of transforms used, type of quantization, and the encoding scheme the 

decoders are designed based on the reversed logic of the compression so that the original 

image can be re-built based on the data obtained out of the compressed images 

Information Theory  

Information .eory (IT) tools, widely used in many scientific fields such as engineering, 

physics, genetics, neuroscience, and many others, are also useful transversal tools in image 

processing. In this book, we present the basic concepts of IT and how they have been used 

in the image processing areas of registration, segmentation, video processing, and 

computational aesthetics. Some of the approaches presented, such as the application of 

mutual information to registration, are the state of the art in the field. All techniques 

presented in this book have been previously published in peer-reviewed conference 

proceedings or international journals. We have stressed here their common aspects, and 

presented them in an unified way, so to make clear to the reader which problems IT tools 

can help to solve, which specific tools to use, and how to apply them. .e IT basics are 

presented so as to be self-contained in the book. .e intended audiences are students and 

practitioners of image processing and related areas such as computer graphics and 

visualization. In addition, students and practitioners of IT will be interested in knowing 

about these applications. 

Lossy and Lossless Compression : 

Data Compression refers to a technique where a large file to reduced to smaller sized file and 

can be decompressed again to the large file. Lossy compression restores the large file to its 

original form with loss of some data which can be considered as not-noticable while lossless 

compression restores the large file to its original form without any loss of data. 

Following are some of the important differences between Lossy Compression and Lossless 

Compression. 
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Sr. No. Key Lossy Compression Lossless Compression 

1 

Data Elimination Lossy compression 

eliminates those bytes which 

are considered as not-

noticable. 

Lossless compression keeps 

even those bytes which are 

not-noticable. 

2 

Restoration After lossy compression, a 

file cannot be restored to its 

original form. 

After lossless compression, 

a file can be restored to its 

original form. 

3 

Quality Lossy compression leads to 

compromise with quality. 

No quality degradation 

happens in lossless 

compression. 

4 

Size Lossy compression reduces 

the size of file to large 

extent. 

Lossless compression 

reduces the size but less as 

compared to lossy 

compression. 

5 

Algorithm used Transform coding, Discrete 

Cosine Transform, Discrete 

Wavelet transform, fractal 

compression etc. 

Run length encoding, 

Lempel-Ziv-Welch, 

Huffman Coding, 

Arithmetic encoding etc. 

6 Uses Lossy compression is used 

to compress audio, video 

Lossless compression is 

used to compress text, 
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Sr. No. Key Lossy Compression Lossless Compression 

and images. images and sound. 

7 

Capacity Lossy compression 

technique has high data 

holding capacity. 

Lossless compression has 

low data holding capacity as 

compared to lossy 

compression. 

 

Predictive coding 

As natural signals are highly correlated, the difference between neighboring samples is 

usually small. The value of a pixel x can be therefore predicted by its neighbors a, b, c, and 

d with a small error: 

 

 

In general, the predicted value  for a pixel  is a linear combination of all available 

neighbors : 
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The entropy of the histogram of the error image hist(e) is much smaller than that of the 

histogram of the original image hist(x), therefore Huffman coding will be much more 

effective for the error image than the original one. 

Optimal predictive coding 

The mean square error of the predictive error is: 

 

 

 

where 
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To find the optimal coefficients  so that  is minimized, we let 

 

 

 

 

but as 

 

 

 

 

and 

 

 

 

 

we have 
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Here 

 

 

 

 

is the correlation between  and  which can be estimated from data obtained from 

multiple trials: 

 

 

 

 

Now the optimal prediction above can be written as 

 

 

 

 

which can be expressed in vector form: 
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where 

 

 

 

 

Then the coefficients can be found as 

 

 

 

 

To prevent predictive error from being accumulated, we require 

 

 

 

 

so that the errors will not propagate. 

Examples 
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where 

 

 

Transform Coding (lossy) and JPEG Image Compression 

The Joint Photographic Experts Group (JPEG) is the working group of ISO, International 

Standard Organization, that defined the popular JPEG Imaging Standard for compression 

used in still image applications. The counter part in moving picture is the ``Moving Picture 

Experts Group" (MPEG). 

 

JPEG compression is based on certain transform, either DCT or wavelet transform, due to the 

essential properties of orthogonal transforms in general: 

 Decorrelation of the signal; 

 Compaction of its energy. 

Check this ACM page for review of DCT vs. wavelet transform used for image compression. 

http://fourier.eng.hmc.edu/e161/lectures/compression/node13.html
http://fourier.eng.hmc.edu/e161/lectures/compression/node13.html
http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html
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Here are the steps of JPEG image compression based on DCT: 

1. Divide the image to form a set of  blocks and carry out 2D DCT transform of 

each block. The computational complexity for 2D DCT of an  image 

is , while the complexity of 2D DCT of all  by  blocks of 

image is 

 

 

The larger the image size , the more saving by sub-block transform. As adjacent 

http://www.cs.sfu.ca/CourseCentral/365/li/material/notes/Chap4/Chap4.2/Chap4.2.html
http://fourier.eng.hmc.edu/e161/demos/e161_demo1.html
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pixels are highly correlated, most of energy in an 8 by 8 block is concentrated in the 

low frequency region of the spectrum (upper-left corner) and the rest transform 

coefficients are very close to zero. 

2. Threshold all DCT coefficients smaller than a value T to zero, or alternatively, low-pass 

(either ideal or smooth) filter the 2D DCT spectrum of each sub-image; 

 

3. Quantize remaining coefficients (convert floating-point values to integers). First, 

the elements in each block are divided (element-wise) by the elements in a 

quantization matrix Q: 

 

where 

 

 

and each of the resulting 8 by 8 elements is rounded to the nearest integer (
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 represents rounding  to the closest integer). At the receiving end, the 

coefficients are recovered by: 

 

Two observations can be made: 

o Larger  causes larger error. Let , and K be an 

integer as the rounding result of a pixel , then the possible value for 

the pixel is in the range: 

 

i.e., the range of rounding error is proportional to . 

o Larger  tends to suppress more pixels  to 

zero and they will not be recovered at the receiving end. 
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In general, assign smaller numbers around the top-left corner (low frequency 

components) and larger ones around the lower-right corner (high frequency 

components). The values are also heuristically determined according to perceptual 

and psycho-visual tests. 

4. Predictive code all DC components of the blocks (as the DC components are highly 

correlated); 

5. Scan the rest coefficients in each block in a zigzag way (for higher probability of longer 

consecutive 0's) to code them by run-length encoding; 

 

6. Huffman code the data stream; 

7. Store and/or transmit the encoded image as well as the quantization matrix. 

JPEG compression 

JPEG stands for Joint photographic experts group. It is the first interanational standard in 

image compression. It is widely used today. It could be lossy as well as lossless . But the 

technique we are going to discuss here today is lossy compression technique. 

How jpeg compression works 

First step is to divide an image into blocks with each having dimensions of 8 x8. 
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Let’s for the record, say that this 8x8 image contains the following values. 

 

The range of the pixels intensities now are from 0 to 255. We will change the range from -

128 to 127. 

Subtracting 128 from each pixel value yields pixel value from -128 to 127. After subtracting 

128 from each of the pixel value, we got the following results. 
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Now we will compute using this formula. 

 

The result comes from this is stored in let’s say A(j,k) matrix. 

There is a standard matrix that is used for computing JPEG compression, which is given by a 

matrix called as Luminance matrix. 

This matrix is given below 
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Applying the following formula 

 

We got this result after applying. 
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Now we will perform the real trick which is done in JPEG compression which is ZIG-ZAG 

movement. The zig zag sequence for the above matrix is shown below. You have to perform 

zig zag until you find all zeroes ahead. Hence our image is now compressed. 

 

Summarizing JPEG compression 

The first step is to convert an image to Y’CbCr and just pick the Y’ channel and break into 8 

x 8 blocks. Then starting from the first block, map the range from -128 to 127. After that you 

have to find the discrete Fourier transform of the matrix. The result of this should be 

quantized. The last step is to apply encoding in the zig zag manner and do it till you find all 

zero. 

Save this one dimensional array and you are done. 

Note. You have to repeat this procedure for all the block of 8 x 8. 

***** 
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