
1

2

Digital Image Processing Syllabus

UNIT I

Introduction – steps in image processing, Image acquisition, representation, sampling and

quantization, relationship between pixels. – color models – basics of color image processing.

UNIT II

Image enhancement in spatial domain – some basic gray level transformations – histogram

processing – enhancement using arithmetic , logic operations – basics of spatial filtering and

smoothing.

UNIT III

Image enhancement in Frequency domain – Introduction to Fourier transform: 1- D, 2 –D DFT

and its inverse transform, smoothing and sharpening filters.

UNIT IV

Image restoration: Model of degradation and restoration process – noise models – restoration in

the presence of noise- periodic noise reduction.. Image segmentation: Thresholding and region

based segmentation.

UNIT V

Image compression: Fundamentals – models – information theory – error free compression –Lossy

compression: predictive and transform coding. JPEG standard.

3

Digital Image Processing

UNIT I

Fundamental steps in Digital Image Processing :

1. Image Acquisition

This is the first step or process of the fundamental steps of digital image processing. Image

acquisition could be as simple as being given an image that is already in digital form. Generally,

the image acquisition stage involves preprocessing, such as scaling etc.

2. Image Enhancement

Image enhancement is among the simplest and most appealing areas of digital image processing.

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or

simply to highlight certain features of interest in an image. Such as, changing brightness &

contrast etc.

3. Image Restoration

Image restoration is an area that also deals with improving the appearance of an image.

However, unlike enhancement, which is subjective, image restoration is objective, in the sense

that restoration techniques tend to be based on mathematical or probabilistic models of image

degradation.

4

4. Color Image Processing

Color image processing is an area that has been gaining its importance because of the significant

increase in the use of digital images over the Internet. This may include color modeling and

processing in a digital domain etc.

5. Wavelets and Multiresolution Processing

Wavelets are the foundation for representing images in various degrees of resolution. Images

subdivision successively into smaller regions for data compression and for pyramidal

representation.

6. Compression

Compression deals with techniques for reducing the storage required to save an image or the

bandwidth to transmit it. Particularly in the uses of internet it is very much necessary to

compress data.

7. Morphological Processing

Morphological processing deals with tools for extracting image components that are useful in the

representation and description of shape.

8. Segmentation

Segmentation procedures partition an image into its constituent parts or objects. In general,

autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged

segmentation procedure brings the process a long way toward successful solution of imaging

problems that require objects to be identified individually.

9. Representation and Description

Representation and description almost always follow the output of a segmentation stage, which

usually is raw pixel data, constituting either the boundary of a region or all the points in the

region itself. Choosing a representation is only part of the solution for transforming raw data into

a form suitable for subsequent computer processing. Description deals with extracting attributes

that result in some quantitative information of interest or are basic for differentiating one class of

objects from another.

5

10. Object recognition

Recognition is the process that assigns a label, such as, “vehicle” to an object based on its

descriptors.

11. Knowledge Base:

Knowledge may be as simple as detailing regions of an image where the information of interest

is known to be located, thus limiting the search that has to be conducted in seeking that

information. The knowledge base also can be quite complex, such as an interrelated list of all

major possible defects in a materials inspection problem or an image database containing high-

resolution satellite images of a region in connection with change-detection applications.

Image Acquisition

Before any video or image processing can commence an image must be captured by a camera

and converted into a manageable entity. This is the process known as image acquisition. The

image acquisition process consists of three steps; energy reflected from the object of interest, an

optical system which focuses the energy and finally a sensor which measures the amount of

energy. In Fig. 2.1 the three steps are shown for the case of an ordinary camera with the sun as

the energy source. In this topic each of these three steps are described in more detail.

Energy

In order to capture an image a camera requires some sort of measurable energy. The energy

of interest in this context is light or more generally electromagnetic waves. An electromagnetic

(EM) wave can be described as massless entity, a photon, whose electric and magnetic fields

vary sinusoidally, hence the name wave. The photon belongs to the group of fundamental

particles and can be described in three different ways:

• A photon can be described by its energy E, which is measured in electronvolts [eV]

• A photon can be described by its frequency f, which is measured in Hertz [Hz]. A

frequency is the number of cycles or wave-tops in one second

• A photon can be described by its wavelength λ, which is measured in meters [m]. A

wavelength is the distance between two wave-tops

6

The three different notations are connected through the speed of light c and Planck’s
constant h:

An EM wave can have different wavelengths (or different energy levels or different frequencies).

When we talk about all possible wavelengths we denote this as the EM spectrum, see Fig. 2.2.

Fig. 2.1 Overview of the typical image acquisition process, with the sun as light source, a

tree as object and a digital camera to capture the image. An analog camera would use a

film where the digital camera uses a sensor.

In order to make the definitions and equations above more understandable, the EM spectrum is

often described using the names of the applications where they are used in practice. For example,

when you listen to FM-radio the music is transmitted through the air using EM waves around

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc3_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc4_thumb.png

7

100 · 106 Hz, hence this part of the EM spectrum is often denoted “radio”. Other well-known

applications are also included in the figure.

The range from approximately 400-700 nm (nm = nanometer = 10-9) is denoted the visual

spectrum. The EM waves within this range are those your eye (and most cameras) can detect.

This means that the light from the sun (or a lamp) in principle is the same as the signal used for

transmitting TV, radio or for mobile phones etc. The only difference, in this context, is the fact

that the human eye can sense EM waves in this range and not the waves used for e.g., radio. Or

in other words, if our eyes were sensitive to EM waves with a frequency around 2 · 109 Hz, then

your mobile phone would work as a flash light, and big antennas would be perceived as “small

suns”. Evolution has (of course) not made the human eye sensitive to such frequencies but rather

to the frequencies of the waves coming from the sun, hence visible light.

Illumination

To capture an image we need some kind of energy source to illuminate the scene. In Fig. 2.1

the sun acts as the energy source. Most often we apply visual light, but other frequencies can also

be applied, see Sect. 2.5.

Fig. 2.2 A large part of the electromagnetic spectrum showing the energy of one photon, the

frequency, wavelength and typical applications of the different areas of the spectrum

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc54.png

8

Fig. 2.3 The effect of illuminating a face from four different directions

If you are processing images captured by others there is nothing much to do about the

illumination (although a few methods will be presented in later topics) which was probably the

sun and/or some artificial lighting. When you, however, are in charge of the capturing process

yourselves, it is of great importance to carefully think about how the scene should be lit. In fact,

for the field of Machine Vision it is a rule-of-thumb that illumination is 2/3 of the entire system

design and software only 1 /3. To stress this point have a look at Fig. 2.3. The figure shows four

images of the same person facing the camera. The only difference between the four images is the

direction of the light source (a lamp) when the images were captured!

Another issue regarding the direction of the illumination is that care must be taken when

pointing the illumination directly toward the camera. The reason being that this might result in

too bright an image or a nonuniform illumination, e.g., a bright circle in the image. If, however,

the outline of the object is the only information of interest, then this way of illumination—

denoted backlighting—can be an optimal solution, see Fig. 2.4.

Fig. 2.4 Backlighting. The light source is behind the object of interest, which makes the

object stand out as a black silhouette. Note that the details inside the object are lost

Even when the illumination is not directed toward the camera overly bright spots in the image

might still occur. These are known as highlights and are often a result of a shiny object surface,

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc6_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc7_thumb.png

9

which reflects most of the illumination (similar to the effect of a mirror). A solution to such

problems is often to use some kind of diffuse illumination either in the form of a high number of

less-powerful light sources or by illuminating a rough surface which then reflects the light

(randomly) toward the object.

Even though this text is about visual light as the energy form, it should be mentioned that

infrared illumination is sometimes useful. For example, when tracking the movements of human

body parts, e.g. for use in animations in motion pictures, infrared illumination is often applied.

The idea is to add infrared reflecting markers to the human body parts, e.g., in the form of small

balls. When the scene is illuminated by infrared light, these markers will stand out and can

therefore easily be detected by image processing. A practical example of using infrared

illumination is given in Chap. 12.

The Optical System

After having illuminated the object of interest, the light reflected from the object now has to

be captured by the camera. If a material sensitive to the reflected light is placed close to the

object, an image of the object will be captured. However, as illustrated in Fig. 2.5, light from

different points on the object will mix—resulting in a useless image. To make matters worse,

light from the surroundings will also be captured resulting in even worse results. The solution is,

as illustrated in the figure, to place some kind of barrier between the object of interest and the

sensing material. Note that the consequence is that the image is upside-down. The hardware and

software used to capture the image normally rearranges the image so that you never notice this.

The concept of a barrier is a sound idea, but results in too little light entering the sensor. To

handle this situation the hole is replaced by an optical system. This section describes the basics

behind such an optical system. To put it into perspective, the famous space-telescope—the

Hubble telescope—basically operates like a camera, i.e., an optical system directs the incoming

energy toward a sensor. Imagine how many man-hours were used to design and implement the

Hubble telescope. And still, NASA had to send astronauts into space in order to fix the optical

system due to an incorrect design. Building optical systems is indeed a complex science! We

shall not dwell on all the fine details and the following is therefore not accurate to the last micro-

meter, but the description will suffice and be correct for most usages.

10

Fig. 2.5 Before introducing a barrier, the rays of light from different points on the tree hit

multiple points on the sensor and in some cases even the same points. Introducing a barrier

with a small hole significantly reduces these problems

The Lens

One of the main ingredients in the optical system is the lens. A lens is basically a piece of glass

which focuses the incoming light onto the sensor, as illustrated in Fig. 2.6. A high number of

light rays with slightly different incident angles collide with each point on the object’s surface

and some of these are reflected toward the optics. In the figure, three light rays are illustrated for

two different points. All three rays for a particular point intersect in a point to the right of the

lens. Focusing such rays is exactly the purpose of the lens. This means that an image of the

object is formed to the right of the lens and it is this image the camera captures by placing a

sensor at exactly this position. Note that parallel rays intersect in a point, F, denoted the Focal

Point. The distance from the center of the lens, the optical center O, to the plane where all

parallel rays intersect is denoted the Focal Lengthf. The line on which O and F lie is the optical

axis.

Let us define the distance from the object to the lens as, g, and the distance from the lens to

where the rays intersect as, b. It can then be shown via similar triangles, that

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc8_thumb.png

11

f and b are typically in the range [1 mm, 100 mm]. This means that when the object is a few

meters away from the camera (lens), then g has virtually no effect on the equation, i.e., b = f.

What this tells us is that the image inside the camera is formed at a distance very close to the

focal point. Equation 2.2 is also called the thin lens equation.

Fig. 2.6 The figure shows how the rays from an object, here a light bulb, are focused via the

lens. The real light bulb is to the left and the image formed by the lens is to the right

Another interesting aspect of the lens is that the size of the object in the image, B, increases as

f increased. This is known as optical zoom. In practice f is changed by rearranging the optics,

e.g., the distance between one or more lenses inside the optical system.1 In Fig. 2.7 we show

how optical zoom is achieved by changing the focal length. When looking at Fig. 2.7 it can be

shown via similar triangles that

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc9_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc10_thumb.png

12

where G is the real height of the object. This can for example be used to compute how much a

physical object will fill on the imaging censor chip, when the camera is placed at a given

distance away from the object.

Let us assume that we do not have a zoom-lens, i.e., f is constant. When we change the

distance from the object to the camera (lens), g, Eq. 2.2 shows us that b should also be increased,

meaning that the sensor has to be moved slightly further away from the lens since the image will

be formed there. In Fig. 2.8 the effect of not changing b is shown. Such an image is said to be out

of focus. So when you adjust focus on your camera you are in fact changing b until the sensor is

located at the position where the image is formed.

The reason for an unfocused image is illustrated in Fig. 2.9. The sensor consists of pixels, as will

be described in the next section, and each pixel has a certain size. As long as the rays from one

point stay inside one particular pixel, this pixel will be focused. If rays from other points also

intersect the pixel in question, then the pixel will receive light from more points and the resulting

pixel value will be a mixture of light from different points, i.e., it is unfocused.

Referring to Fig. 2.9 an object can be moved a distance of gi further away from the lens or a

distance of gr closer to the lens and remain in focus. The sum of gi and gr defines the total range

an object can be moved while remaining in focus. This range is denoted as the depth-of-field.

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc11_thumb.png

13

Fig. 2.7 Different focal lengths results in optical zoom

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc12_thumb.png

14

Fig. 2.8 A focused image (left) and an unfocused image (right). The difference between the

two images is different values of b

A smaller depth-of-field can be achieved by increasing the focal length. However, this has the

consequence that the area of the world observable to the camera is reduced. The observable area

is expressed by the angle V in Fig. 2.10 and denoted the field-of-view of the camera. The field-

of-view depends, besides the focal length, also on the physical size of the image sensor. Often

the sensor is rectangular rather than square and from this follows that a camera has a field-of-

view in both the horizontal and vertical direction denoted FOVx and FOVy, respectively. Based

on right-angled triangles, these are calculated as

where the focal length, f, and width and height are measured in mm.

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc13_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc14_thumb.png

15

Fig. 2.9 Depth-of-field. The solid lines illustrate two light rays from an object (a point) on

the optical axis and their paths through the lens and to the sensor where they intersect

within the same pixel (illustrated as a black rectangle). The dashed and dotted lines

illustrate light rays from two other objects (points) on the optical axis. These objects are

characterized by being the most extreme locations where the light rays still enter the same

pixel

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc15_thumb.png

16

Fig. 2.10 The field-of-view of two cameras with different focal lengths. The field-of-view is

an angle, V, which represents the part of the world observable to the camera. As the focal

length increases so does the distance from the lens to the sensor. This in turn results in a

smaller field-of-view. Note that both a horizontal field-of-view and a vertical field-of-view

exist. If the sensor has equal height and width these two fields-of-view are the same,

otherwise they are different

So, if we have a physical sensor with width = 14 mm, height = 10 mm and a focal length = 5

mm, then the fields-of-view will be

Another parameter influencing the depth-of-field is the aperture. The aperture corresponds

to the human iris, which controls the amount of light entering the human eye. Similarly, the

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc16_thumb.png
http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc17_thumb.png

17

aperture is a flat circular object with a hole in the center with adjustable radius. The aperture is

located in front of the lens and used to control the amount of incoming light. In the extreme case,

the aperture only allows rays through the optical center, resulting in an infinite depth-of-field.

The downside is that the more light blocked by the aperture, the lower shutter speed (explained

below) is required in order to ensure enough light to create an image. From this it follows that

objects in motion can result in blurry images.

Fig. 2.11 Three different camera settings resulting in three different depth-of-fields

To sum up, the following interconnected issues must be considered: distance to object, motion

of object, zoom, focus, depth-of-field, focal length, shutter, aperture, and sensor. In Figs. 2.11

and 2.12 some of these issues are illustrated. With this knowledge you might be able to

appreciate why a professional photographer can capture better images than you can!

Image Acquisition in Digital Image Processing – Buzztech

In image processing, it is defined as the action of retrieving an image from some source, usually

a hardware-based source for processing. It is the first step in the workflow sequence because,

without an image, no processing is possible. The image that is acquired is completely

unprocessed.

Now the incoming energy is transformed into a voltage by the combination of input electrical

power and sensor material that is responsive to a particular type of energy being detected. The

output voltage waveform is the response of the sensor(s) and a digital quantity is obtained from

each sensor by digitizing its response.

http://what-when-how.com/wp-content/uploads/2012/07/tmp26dc18_thumb.png

18

Fig:

Single image sensor

Fig:

Line sensor Fig: Array sensor

Image Acquisition using a single sensor:

Example of a single sensor is a photodiode. Now to obtain a two-dimensional image using a

single sensor, the motion should be in both x and y directions.

19

Fig:

Combining a single sensor with motion to generate a 2D image

This is an inexpensive method and we can obtain high-resolution images with high precision

control. But the downside of this method is that it is slow.

Image Acquisition using a line sensor (sensor strips):

Fig:

Linear sensor strip

20

Image Acquisition using an array sensor:

In this, individual sensors are arranged in the form of a 2-D array. This type of arrangement is

found in digital cameras. e.g. CCD array

In this, the response of each sensor is proportional to the integral of the light energy projected

onto the surface of the sensor. Noise reduction is achieved by letting the sensor integrate the

input light signal over minutes or ever hours.

Advantage: Since sensor array is 2D, a complete image can be obtained by focusing the energy

pattern onto the surface of the array.

Fig: An example of digital image acquisition using array sensor

The sensor array is coincident with the focal plane, it produces an output proportional to the

integral of light received at each sensor.

Digital and analog circuitry sweep these outputs and convert them to a video signal which is then

digitized by another section of the imaging system. The output is a digital image.

21

Need of Sampling and Quantization in Digital Image Processing:

Mostly the output of image sensors is in the form of analog signal. Now the problem is that we

cannot apply digital image processing and its techniques on analog signals.

This is due to the fact that we cannot store the output of image sensors which are in the form of

analog signals because it requires infinite memory to store a signal that can have infinite values.

So we have to convert this analog signal into digital signal.

To create a digital image, we need to convert the continuous data into digital form. This

conversion from analog to digital involves two processes: sampling and quantization.

Fig: Analog to Digital Conversion

Sampling -> digitization of coordinate values

Quantization -> digitization of amplitude values

Sampling in Digital Image Processing:

 For e.g. if y = sinx, it is done on x variable.

22

Total number of pixels = Total number of rows X Total number of columns

 For a CCD array, if the number of sensors on a CCD array is equal to the number of

pixels and number of pixels is equal to the number of samples taken, therefore we can say

that number of samples taken is equal to the number of sensors on a CCD array.

No. of sensors on a CCD array = No. of pixels = No. of samples taken

Quantization in Digital Image Processing:

Relation of Quantization and gray level resolution:

Number of quantas (partitions) = Number of gray levels

23

Where,

L = gray level resolution

k = gray level

Gray level = number of bits per pixel (BPP) = number of levels per pixel

Basic Relationships Between

Pixels

• Neighborhood

• Adjacency

• Connectivity

• Paths

• Regions and boundaries

Neighbors of a Pixel

• Any pixel p(x, y) has two vertical and two

horizontal neighbors, given by

(x+1, y), (x-1, y), (x, y+1), (x, y-1)

• This set of pixels are called the 4-neighbors of

P, and is denoted by N4(P).

• Each of them are at a unit distance from P.

An image is denoted by f(x,y) and p,q are used to represent individual pixels of the image.

24

Neighbours of a pixel

A pixel p at (x,y) has 4-horizontal/vertical neighbours at (x+1,y), (x-1,y), (x,y+1) and (x,y-1).

These are called the 4-neighbours of p : N4(p).

A pixel p at (x,y) has 4 diagonal neighbours at (x+1,y+1), (x+1,y-1), (x-1,y+1) and (x-1,y-1).

These are called the diagonal-neighbours of p : ND(p).

The 4-neighbours and the diagonal neighbours of p are called 8-neighbours of p : N8(p).

Adjacency between pixels

Let V be the set of intensity values used to define adjacency.

In a binary image, V ={1} if we are referring to adjacency of pixels with value 1. In a gray-scale

image, the idea is the same, but set V typically contains more elements.

For example, in the adjacency of pixels with a range of possible intensity values 0 to 255, set V

could be any subset of these 256 values.

We consider three types of adjacency:

a) 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N4(p).

b) 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N8(p).

c) m-adjacency(mixed adjacency): Two pixels p and q with values from V are m-adjacent if

1. q is in N4(p), or

2. 2) q is in ND(p) and the set N4(p)∩N4(q) has no pixels whose values are from V.

Connectivity between pixels

It is an important concept in digital image processing.

25

It is used for establishing boundaries of objects and components of regions in an image.

Two pixels are said to be connected:

 if they are adjacent in some sense(neighbour pixels,4/8/m-adjacency)

 if their gray levels satisfy a specified criterion of similarity(equal intensity level)

There are three types of connectivity on the basis of adjacency. They are:

a) 4-connectivity: Two or more pixels are said to be 4-connected if they are 4-adjacent with each

others.

b) 8-connectivity: Two or more pixels are said to be 8-connected if they are 8-adjacent with each

others.

c) m-connectivity: Two or more pixels are said to be m-connected if they are m-adjacent with

each others.

Color Models

The purpose of a color model is to facilitate the specification of colors in some standard

generally accepted way. In essence, a color model is a specification of a 3-D coordinate system

and a subspace within that system where each color is represented by a single point.

26

Each industry that uses color employs the most suitable color model. For example, the RGB

color model is used in computer graphics, YUV or YCbCr are used in video systems,

PhotoYCC* is used in PhotoCD* production and so on. Transferring color information from one

industry to another requires transformation from one set of values to another. Intel IPP provides a

wide number of functions to convert different color spaces to RGB and vice versa.

RGB Color Model

In the RGB model, each color appears as a combination of red, green, and blue. This model is

called additive, and the colors are called primary colors. The primary colors can be added to

produce the secondary colors of light (see Figure "Primary and Secondary Colors for RGB and

CMYK Models") - magenta (red plus blue), cyan (green plus blue), and yellow (red plus green).

The combination of red, green, and blue at full intensities makes white.

Primary and Secondary Colors for RGB and CMYK Models

The color subspace of interest is a cube shown in Figure "RGB and CMY Color Models" (RGB

values are normalized to 0..1), in which RGB values are at three corners; cyan, magenta, and

yellow are the three other corners, black is at their origin; and white is at the corner farthest from

the origin.

The gray scale extends from black to white along the diagonal joining these two points. The

colors are the points on or inside the cube, defined by vectors extending from the origin.

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-3

27

Thus, images in the RGB color model consist of three independent image planes, one for each

primary color.

As a rule, the Intel IPP color conversion functions operate with non-linear gamma-

corrected images R'G'B'.

The importance of the RGB color model is that it relates very closely to the way that the human

eye perceives color. RGB is a basic color model for computer graphics because color displays

use red, green, and blue to create the desired color. Therefore, the choice of the RGB color space

simplifies the architecture and design of the system. Besides, a system that is designed using the

RGB color space can take advantage of a large number of existing software routines, because

this color space has been around for a number of years.

RGB and CMY Color Models

However, RGB is not very efficient when dealing with real-world images. To generate any color

within the RGB color cube, all three RGB components need to be of equal pixel depth and

display resolution. Also, any modification of the image requires modification of all three planes.

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_gamma_correction.htm#ch6_gamma_correction
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_gamma_correction.htm#ch6_gamma_correction

28

CMYK Color Model

The CMYK color model is a subset of the RGB model and is primarily used in color print

production. CMYK is an acronym for cyan, magenta, and yellow along with black (noted as K).

The CMYK color space is subtractive, meaning that cyan, magenta yellow, and black pigments

or inks are applied to a white surface to subtract some color from white surface to create the final

color. For example (see Figure "Primary and Secondary Colors for RGB and CMYK Models"),

cyan is white minus red, magenta is white minus green, and yellow is white minus blue.

Subtracting all colors by combining the CMY at full saturation should, in theory, render black.

However, impurities in the existing CMY inks make full and equal saturation impossible, and

some RGB light does filter through, rendering a muddy brown color. Therefore, the black ink is

added to CMY. The CMY cube is shown in Figure "RGB and CMY Color Models", in which

CMY values are at three corners; red, green, and blue are the three other corners, white is at the

origin; and black is at the corner farthest from the origin.

YUV Color Model

The YUV color model is the basic color model used in analogue color TV broadcasting. Initially

YUV is the re-coding of RGB for transmission efficiency (minimizing bandwidth) and for

downward compatibility with black-and white television. The YUV color space is “derived”

from the RGB space. It comprises the luminance (Y) and two color difference (U, V)

components. The luminance can be computed as a weighted sum of red, green and blue

components; the color difference, or chrominance, components are formed by subtracting

luminance from blue and from red.

The principal advantage of the YUV model in image processing is decoupling of luminance and

color information. The importance of this decoupling is that the luminance component of an

image can be processed without affecting its color component. For example, the histogram

equalization of the color image in the YUV format may be performed simply by applying

histogram equalization to its Y component.

There are many combinations of YUV values from nominal ranges that result in invalid RGB

values, because the possible RGB colors occupy only part of the YUV space limited by these

ranges. Figure "RGB Colors Cube in the YUV Color Space" shows the valid color block in the

YUV space that corresponds to the RGB color cube RGB values that are normalized to [0..1]).

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-2
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-3
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-4

29

The Y'U'V' notation means that the components are derived from gamma-corrected R'G'B'.

Weighted sum of these non-linear components forms a signal representative of luminance that is

called luma Y'. (Luma is often loosely referred to as luminance, so you need to be careful to

determine whether a particular author assigns a linear or non-linear interpretation to the

term luminance).

The Intel IPP functions use the following basic equation ([Jack01]) to convert between gamma-

corrected R'G'B' and Y'U'V' models:

Y'= 0.299*R' + 0.587*G' + 0.114*B'

U'= -0.147*R' - 0.289*G' + 0.436*B' = 0.492*(B'- Y')

V'= 0.615*R' - 0.515*G' - 0.100*B' = 0.877*(R'- Y')

R' = Y' + 1.140*V'

G' = Y' - 0.394*U' - 0.581*V'

B' = Y' + 2.032*U'

RGB Colors Cube in the YUV Color Space

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96

30

There are several YUV sampling formats such as 4:4:4, 4:2:2, and 4:2:0 that are supported by the

Intel IPP color conversion functions and are described in Image Downsampling.

YCbCr and YCCK Color Models

The YCbCr color space is used for component digital video and was developed as part of the

ITU-R BT.601 Recommendation. YCbCr is a scaled and offset version of the YUV color space.

The Intel IPP functions use the following basic equations [Jack01] to convert between R'G'B' in

the range 0-255 and Y'Cb'Cr' (this notation means that all components are derived from gamma-

corrected R'G'B'):

Y' = 0.257*R' + 0.504*G' + 0.098*B' + 16

Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128

Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128

R' = 1.164*(Y'-16) + 1.596*(Cr'-128)

G' = 1.164*(Y'-16) - 0.813*(Cr'-128) - 0.392*(Cb'-128)

B' = 1.164*(Y'-16) + 2.017*(Cb'-128)

The Intel IPP color conversion functions specific for the JPEG codec use different equations:

Y = 0.299*R + 0.587*G + 0.114*B

Cb = -0.16874*R - 0.33126*G + 0.5*B + 128

Cr = 0.5*R - 0.41869*G - 0.08131*B + 128

R = Y + 1.402*Cr - 179,456

G = Y - 0.34414*Cb - 0.71414*Cr + 135.45984

B = Y + 1.772*Cb - 226.816

YCCK model is specific for the JPEG image compression. It is a variant of the YCbCr model

containing an additional K channel (black). The fact is that JPEG codec performs more

effectively if the luminance and color information are decoupled. Therefore, a CMYK image

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_image_downsampling.htm#ch6_image_downsampling
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96

31

must be converted to YCCK before JPEG compression (see description of the

function ippiCMYKToYCCK_JPEG for more details).

Possible RGB colors occupy only part of the YCbCr color space (see Figure "RGB Colors Cube

in the YCbCr Space") limited by the nominal ranges, therefore there are many YCbCr

combinations that result in invalid RGB values.

There are several YCbCr sampling formats such as 4:4:4, 4:2:2, 4:1:1, and 4:2:0, which are

supported by the Intel IPP color conversion functions and are described in Image Downsampling.

RGB Colors Cube in the YCbCr Space

PhotoYCC Color Model

The Kodak* PhotoYCC* was developed for encoding Photo CD* image data. It is based on both

the ITU Recommendations 601 and 709, using luminance-chrominance representation of color

like in BT.601 YCbCr and BT.709 ([ITU709]). This model comprises luminance (Y) and two

color difference, or chrominance (C1, C2) components. The PhotoYCC is optimized for the color

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch15/functn_CMYKToYCCK_JPEG.htm#functn_CMYKToYCCK_JPEG
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-5
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-5
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_image_downsampling.htm#ch6_image_downsampling
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709

32

photographic material, and provides a color gamut that is greater than the one that can currently

be displayed.

The Intel IPP functions use the following basic equations [Jack01] to convert non-linear gamma-

corrected R'G'B' to Y'C'C':

Y' = 0.213*R' + 0.419*G' + 0.081*B'

C1' = -0.131*R' - 0.256*G' + 0.387*B'+ 0.612

C2' = 0.373*R' - 0.312*R' - 0.061*B' + 0.537

The equations above are given on the assumption that R',G', and B' values are normalized to the

range [0..1].

Since the PhotoYCC model attempts to preserve the dynamic range of film, decoding PhotoYCC

images requires selection of a color space and range appropriate for the output device. Thus, the

decoding equations are not always the exact inverse of the encoding equations. The following

equations [Jack01] are used in Intel IPP to generate R'G'B' values for driving a CRT display and

require a unity relationship between the luma in the encoded image and the displayed image:

R' = 0.981 * Y + 1.315 * (C2 - 0.537)

G' = 0.981 * Y - 0.311 * (C1 - 0.612)- 0.669 * (C2 - 0.537)

B' = 0.981 * Y + 1.601 * (C1 - 0.612)

The equations above are given on the assumption that source Y, C1 and C2 values are

normalized to the range [0..1], and the display primaries have the chromaticity values in

accordance with [ITU709] specifications.

The possible RGB colors occupy only part of the YCC color space (see Figure "RGB Colors in

the YCC Color Space") limited by the nominal ranges, therefore there are many YCC

combinations that result in invalid RGB values.

RGB Colors in the YCC Color Space

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Keith96
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709

33

YCoCg Color Models

The YCoCg color model was developed to increase the effectiveness of the image

compression [Malvar03]. This color model comprises the luminance (Y) and two color

difference components (Co - offset orange, Cg - offset green).

The Intel IPP functions use the following simple basic equations [Malvar03] to convert

between RGB and YCoCg:

Y = R/4 + G/2 + B/4

Co = R/2 - B/2

Cg = -R/4 + G/2 - B/4

R = Y + Co - Cg

G = Y + Cg

B = Y - Co - Cg

A variation of this color space which is called YCoCg-R, enables transformation reversibility

with a smaller dynamic range requirements than does YCoCg [Malvar03-1].

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Malvar03-1

34

The possible RGB colors occupy only part of the YCoCg color space (see Figure "RGB Color

Cube in the YCoCg Color Space") limited by the nominal ranges, therfore there are many

YCoCg combinations that result in invalid RGB values.

RGB Color Cube in the YCoCg Color Space

HSV, and HLS Color Models

The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were

developed to be more “intuitive” in manipulating with color and were designed to approximate

the way humans perceive and interpret color.

Hue defines the color itself. The values for the hue axis vary from 0 to 360 beginning and ending

with red and running through green, blue and all intermediary colors.

Saturation indicates the degree to which the hue differs from a neutral gray. The values run from

0, which means no color saturation, to 1, which is the fullest saturation of a given hue at a given

illumination.

35

Intensity component - lightness (HLS) or value (HSV), indicates the illumination level. Both

vary from 0 (black, no light) to 1 (white, full illumination). The difference between the two is

that maximum saturation of hue (S=1) is at value V=1 (full illumination) in the HSV color

model, and at lightness L=0.5 in the HLS color model.

The HSV color space is essentially a cylinder, but usually it is represented as a cone or

hexagonal cone (hexcone) as shown in the Figure "HSV Solid", because the hexcone defines the

subset of the HSV space with valid RGB values. The value V is the vertical axis, and the vertex

V=0 corresponds to black color. Similarly, a color solid, or 3D-representation, of the HLS model

is a double hexcone (Figure "HSV Solid") with lightness as the axis, and the vertex of the second

hexcone corresponding to white.

Both color models have intensity component decoupled from the color information. The HSV

color space yields a greater dynamic range of saturation. Conversions

from RGBToHSV/RGBToHSV and vice-versa in Intel IPP are performed in accordance with the

respective pseudocode algorithms [Rogers85] given in the descriptions of corresponding

conversion functions.

HSV Solid

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-8
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-9
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/functn_RGBToHSV.htm#functn_RGBToHSV
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/functn_RGBToHLS.htm#functn_RGBToHLS
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85

36

HLS Solid

37

CIE XYZ Color Model

The XYZ color space is an international standard developed by the CIE (Commission

Internationale de l'Eclairage). This model is based on three hypothetical primaries, XYZ, and all

visible colors can be represented by using only positive values of X, Y, and Z. The CIE XYZ

primaries are hypothetical because they do not correspond to any real light wavelengths. The Y

primary is intentionally defined to match closely to luminance, while X and Z primaries give

color information. The main advantage of the CIE XYZ space (and any color space based on it)

38

is that this space is completely device-independent. The chromaticity diagram

in Figure "CIE xyY Chromaticity Diagram and Color Gamut" is in fact a two-dimensional

projection of the CIE XYZ sub-space. Note that arbitrarily combining X, Y, and Z values within

nominal ranges can easily lead to a "color" outside of the visible color spectrum.

The position of the block of RGB-representable colors in the XYZ space is shown in

Figure "RGB Colors Cube in the XYZ Color Space".

RGB Colors Cube in the XYZ Color Space

Intel IPP functions use the following basic equations [Rogers85], to convert between gamma-

corrected R'G'B' and CIE XYZ models:

X = 0.412453*R' + 0.35758 *G' + 0.180423*B'

Y = 0.212671*R' + 0.71516 *G' + 0.072169*B'

Z = 0.019334*R' + 0.119193*G' + 0.950227*B'

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_cie_diagram.htm#fig6-1
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85

39

The equations for X,Y,Z calculation are given on the assumption that R',G', and B' values are

normalized to the range [0..1].

R' = 3.240479 * X - 1.53715 * Y - 0.498535 * Z

G' = -0.969256 * X + 1.875991 * Y + 0.041556 * Z

B' = 0.055648 * X - 0.204043 * Y + 1.057311 * Z

The equations for R',G', and B' calculation are given on the assumption that X,Y, and Z values

are in the range [0..1].

CIE LUV and CIE Lab Color Models

The CIE LUV and CIE Lab color models are considered to be perceptually uniform and are

referred to as uniform color models. Both are uniform derivations from the standard CIE XYZ

space. “Perceptually uniform” means that two colors that are equally distant in the color space

are equally distant perceptually. To accomplish this approach, a uniform chromaticity scale

(UCS) diagram was proposed by CIE (Figure "CIE u',v' Uniform Chromaticity Scale Diagram").

The UCS diagram uses a mathematical formula to transform the XYZ values or x, y coordinates

(Figure "CIE xyY Chromaticity Diagram and Color Gamut"), to a new set of values that present a

visually more accurate two-dimensional model. The Y lightness scale is replaced with a new

scale called L that is approximately uniformly spaced but is more indicative of the actual visual

differences. Chrominance components are U and V for CIE LUV, and a and b (referred to also

respectively as red/blue and yellow/blue chrominances) in CIE Lab. Both color spaces are

derived from the CIE XYZ color space.

CIE u',v' Uniform Chromaticity Scale Diagram

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_color_models.htm#fig6-11
https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_ch6/ch6_cie_diagram.htm#fig6-1

40

The CIE LUV color space is derived from CIE XYZ as follows ([Rogers85]),

L = 116. * (Y/Yn)
1/3. - 16.

U = 13. * L * (u - un)

V = 13. * L * (v - vn)

where

u = 4.*X / (X + 15.*Y + 3.*Z)

v = 9.*Y / (X + 15.*Y + 3.*Z)

un = 4.*xn / (-2.*xn + 12.*yn + 3.)

vn = 9.*yn / (-2.*xn + 12.*yn + 3.)

Inverse conversion is performed in accordance with equations:

Y = Yn * ((L + 16.) / 116.)3.

X = -9.* Y * u / ((u - 4.)* v - u * v)

Z = (9.* Y - 15*v*Y - v*X) / 3. * v

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#Rogers85

41

where

u = U / (13.* L) + un

v = V / (13.* L) + vn

and un, vn are defined above.

Here xn = 0.312713, yn = 0.329016 are the CIE chromaticity coordinates of the D65 white point

([ITU709]), and Yn = 1.0 is the luminance of the D65 white point. The values of the L

component are in the range [0..100], U component in the range [-134..220], and V component in

the range [-140..122].

The RGB-representable colors occupy only part of the LUV color space (see Figure "RGB Color

Cube in the CIE LUV Color Space") limited by the nominal ranges, therefore there are many

LUV combinations that result in invalid RGB values.

RGB Color Cube in the CIE LUV Color Space

The CIE Lab color space is derived from CIE XYZ as follows:

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_backmatter/ippi_biblio.htm#ITU709

42

L = 116. * (Y/Yn)
1/3. - 16 for Y/Yn > 0.008856

L = 903.3 * (Y/Yn)
1/3. for Y/Yn⩽ 0.008856

a = 500. * [f(X/Xn)-f(Y/Yn)]

b = 200. * [f(Y/Yn)-f(Z/Zn)]

where

f(t) = t1/3. - 16 for t > 0.008856

f(t) = 7.787*t + 16/116 for t ⩽ 0.008856

Here Yn = 1.0 is the luminance, and Xn = 0.950455, Zn = 1.088753 are the chrominances for

the D65 white point.

The values of the L component are in the range [0..100], a and b component values are in the

range [-128..127].

Inverse conversion is performed in accordance with equations:

Y = Yn * P3.

X = Xn * (P + a/500.)3.

Z = Zn * (P - b/200.)3.

where

P = (L +16)/116.

UNIT II

Image enhancement

The aim of image enhancement is to improve the interpretability or perception of information in

images for human viewers, or to provide `better' input for other automated image processing

techniques.

Image enhancement techniques can be divided into two broad categories:

1.Spatial domain methods, which operate directly on pixels, and

43

2.frequency domain methods, which operate on the Fourier transform of an image.

Unfortunately, there is no general theory for determining what is `good' image enhancement

when it comes to human perception. If it looks good, it is good! However, when image

enhancement techniques are used as pre-processing tools for other image processing techniques,

then quantitative measures can determine which techniques are most appropriate.

Spatial domain methods

The value of a pixel with coordinates (x,y) in the enhanced image is the result of performing

some operation on the pixels in the neighbourhood of (x,y) in the input image, F.

Neighbourhoods can be any shape, but usually they are rectangular.

Grey scale manipulation

The simplest form of operation is when the operator T only acts on a pixel

neighbourhood in the input image, that is only depends on the value of F at (x,y). This

is a grey scale transformation or mapping.

The simplest case is thresholding where the intensity profile is replaced by a step function, active

at a chosen threshold value. In this case any pixel with a grey level below the threshold in the

input image gets mapped to 0 in the output image. Other pixels are mapped to 255.

Other grey scale transformations are outlined in figure 1 below.

Figure 1: Tone-scale adjustments.

44

Histogram Equalization

Histogram equalization is a common technique for enhancing the appearance of images. Suppose

we have an image which is predominantly dark. Then its histogram would be skewed towards the

lower end of the grey scale and all the image detail is compressed into the dark end of the

histogram. If we could `stretch out' the grey levels at the dark end to produce a more uniformly

distributed histogram then the image would become much clearer.

Figure 2: The original image and its histogram, and the equalized versions. Both images are

quantized to 64 grey levels.

45

Histogram equalization involves finding a grey scale transformation function that creates an

output image with a uniform histogram (or nearly so).

How do we determine this grey scale transformation function? Assume our grey levels are

continuous and have been normalized to lie between 0 and 1.

We must find a transformation T that maps grey values r in the input image F to grey

values s = T(r) in the transformed image .

It is assumed that

 T is single valued and monotonically increasing, and

 for .

46

The inverse transformation from s to r is given by

r = T-1(s).

If one takes the histogram for the input image and normalizes it so that the area under the

histogram is 1, we have a probability distribution for grey levels in the input image Pr(r).

If we transform the input image to get s = T(r) what is the probability distribution Ps(s) ?

From probability theory it turns out that

where r = T-1(s).

Consider the transformation

This is the cumulative distribution function of r. Using this definition of T we see that the

derivative of s with respect to r is

Substituting this back into the expression for Ps, we get

for all .Thus, Ps(s) is now a uniform distribution function, which is what

we want.

47

Discrete Formulation

We first need to determine the probability distribution of grey levels in the input image. Now

where nk is the number of pixels having grey level k, and N is the total number of pixels in the

image.

The transformation now becomes

Note that , the index ,and .

The values of sk will have to be scaled up by 255 and rounded to the nearest integer so that the

output values of this transformation will range from 0 to 255. Thus the discretization and

rounding of sk to the nearest integer will mean that the transformed image will not have a

perfectly uniform histogram.

Image Smoothing

The aim of image smoothing is to diminish the effects of camera noise, spurious pixel values,

missing pixel values etc. There are many different techniques for image smoothing; we will

consider neighbourhood averaging and edge-preserving smoothing.

48

Neighbourhood Averaging

Each point in the smoothed image, is obtained from the average pixel value in a

neighbourhood of (x,y) in the input image.

For example, if we use a neighbourhood around each pixel we would use the mask

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Each pixel value is multiplied by , summed, and then the result placed in the output image.

This mask is successively moved across the image until every pixel has been covered. That is,

the image is convolved with this smoothing mask (also known as a spatial filter or kernel).

However, one usually expects the value of a pixel to be more closely related to the values of

pixels close to it than to those further away. This is because most points in an image are spatially

coherent with their neighbours; indeed it is generally only at edge or feature points where this

hypothesis is not valid. Accordingly it is usual to weight the pixels near the centre of the mask

more strongly than those at the edge.

Some common weighting functions include the rectangular weighting function above (which just

takes the average over the window), a triangular weighting function, or a Gaussian.

In practice one doesn't notice much difference between different weighting functions, although

Gaussian smoothing is the most commonly used. Gaussian smoothing has the attribute that the

frequency components of the image are modified in a smooth manner.

49

Smoothing reduces or attenuates the higher frequencies in the image. Mask shapes other than the

Gaussian can do odd things to the frequency spectrum, but as far as the appearance of the image

is concerned we usually don't notice much.

Edge preserving smoothing

Neighbourhood averaging or Gaussian smoothing will tend to blur edges because the high

frequencies in the image are attenuated. An alternative approach is to use median filtering. Here

we set the grey level to be the median of the pixel values in the neighbourhood of that pixel.

The median m of a set of values is such that half the values in the set are less than m and half are

greater. For example, suppose the pixel values in a neighbourhood are (10, 20, 20, 15, 20,

20, 20, 25, 100). If we sort the values we get (10, 15, 20, 20, |20|, 20, 20, 25, 100) and the

median here is 20.

The outcome of median filtering is that pixels with outlying values are forced to become more

like their neighbours, but at the same time edges are preserved. Of course, median filters are non-

linear.

Median filtering is in fact a morphological operation. When we erode an image, pixel values are

replaced with the smallest value in the neighbourhood. Dilating an image corresponds to

replacing pixel values with the largest value in the neighbourhood. Median filtering replaces

pixels with the median value in the neighbourhood. It is the rank of the value of the pixel used in

the neighbourhood that determines the type of morphological operation.

Figure 3: Image of Genevieve; with salt and pepper noise; the result of averaging; and the result

of median filtering.

50

Image sharpening

The main aim in image sharpening is to highlight fine detail in the image, or to enhance detail

that has been blurred (perhaps due to noise or other effects, such as motion). With image

sharpening, we want to enhance the high-frequency components; this implies a spatial filter

shape that has a high positive component at the centre (see figure 4 below).

Figure 4: Frequency domain filters (top) and their corresponding spatial domain counterparts

(bottom).

51

A simple spatial filter that achieves image sharpening is given by

-1/9 -1/9 -1/9

-1/9 8/9 -1/9

-1/9 -1/9 -1/9

Since the sum of all the weights is zero, the resulting signal will have a zero DC value (that is,

the average signal value, or the coefficient of the zero frequency term in the Fourier expansion).

For display purposes, we might want to add an offset to keep the result in the range.

High boost filtering

We can think of high pass filtering in terms of subtracting a low pass image from the original

image, that is,

High pass = Original - Low pass.

However, in many cases where a high pass image is required, we also want to retain some of the

low frequency components to aid in the interpretation of the image. Thus, if we multiply the

52

original image by an amplification factor A before subtracting the low pass image, we will get

a high boost or high frequency emphasis filter. Thus,

Now, if A = 1 we have a simple high pass filter. When A > 1 part of the original image is retained

in the output.

A simple filter for high boost filtering is given by

-1/9 -1/9 -1/9

-1/9 /9 -1/9

-1/9 -1/9 -1/9

.

Gray level transformation

There are three basic gray level transformation.

 Linear

 Logarithmic

 Power – law

The overall graph of these transitions has been shown below.

53

Linear transformation

First we will look at the linear transformation. Linear transformation includes simple identity

and negative transformation. Identity transformation has been discussed in our tutorial of image

transformation, but a brief description of this transformation has been given here.

Identity transition is shown by a straight line. In this transition, each value of the input image is

directly mapped to each other value of output image. That results in the same input image and

output image. And hence is called identity transformation. It has been shown below:

54

Negative transformation

The second linear transformation is negative transformation, which is invert of identity

transformation. In negative transformation, each value of the input image is subtracted from the

L-1 and mapped onto the output image.

The result is somewhat like this.

Input Image

Output Image

In this case the following transition has been done.

s = (L – 1) – r

since the input image of Einstein is an 8 bpp image, so the number of levels in this image are

256. Putting 256 in the equation, we get this

s = 255 – r

So each value is subtracted by 255 and the result image has been shown above. So what

happens is that, the lighter pixels become dark and the darker picture becomes light. And it

results in image negative.

55

It has been shown in the graph below.

Logarithmic transformations

Logarithmic transformation further contains two type of transformation. Log transformation and

inverse log transformation.

Log transformation

The log transformations can be defined by this formula

s = c log(r + 1).

Where s and r are the pixel values of the output and the input image and c is a constant. The

value 1 is added to each of the pixel value of the input image because if there is a pixel intensity

of 0 in the image, then log (0) is equal to infinity. So 1 is added, to make the minimum value at

least 1.

During log transformation, the dark pixels in an image are expanded as compare to the higher

pixel values. The higher pixel values are kind of compressed in log transformation. This result

in following image enhancement.

The value of c in the log transform adjust the kind of enhancement you are looking for.

56

Input Image

Log Tranform Image

The inverse log transform is opposite to log transform.

Power – Law transformations

There are further two transformation is power law transformations, that include nth power and

nth root transformation. These transformations can be given by the expression:

s=cr^γ

This symbol γ is called gamma, due to which this transformation is also known as gamma

transformation.

Variation in the value of γ varies the enhancement of the images. Different display devices /

monitors have their own gamma correction, that’s why they display their image at different

intensity.

This type of transformation is used for enhancing images for different type of display devices.

The gamma of different display devices is different. For example Gamma of CRT lies in

between of 1.8 to 2.5, that means the image displayed on CRT is dark.

57

Correcting gamma.

s=cr^γ

s=cr^(1/2.5)

The same image but with different gamma values has been shown here.

For example

Gamma = 10

Gamma = 8

Gamma = 6

58

Histograms

A histogram is a graph. A graph that shows frequency of anything. Usually histogram have bars

that represent frequency of occurring of data in the whole data set.

A Histogram has two axis the x axis and the y axis.

The x axis contains event whose frequency you have to count.

The y axis contains frequency.

The different heights of bar shows different frequency of occurrence of data.

Usually a histogram looks like this.

Now we will see an example of this histogram is build

Example

Consider a class of programming students and you are teaching python to them.

At the end of the semester, you got this result that is shown in table. But it is very messy and

does not show your overall result of class. So you have to make a histogram of your result,

showing the overall frequency of occurrence of grades in your class. Here how you are going to

do it.

59

Result sheet

Name Grade

John A

Jack D

Carter B

Tommy A

Lisa C+

Derek A-

Tom B+

Histogram of result sheet

Now what you are going to do is, that you have to find what comes on the x and the y axis.

There is one thing to be sure, that y axis contains the frequency, so what comes on the x axis. X

axis contains the event whose frequency has to be calculated. In this case x axis contains grades.

60

Now we will how do we use a histogram in an image.

Histogram of an image

Histogram of an image, like other histograms also shows frequency. But an image histogram,

shows frequency of pixels intensity values. In an image histogram, the x axis shows the gray

level intensities and the y axis shows the frequency of these intensities.

For example

The histogram of the above picture of the Einstein would be something like this

61

The x axis of the histogram shows the range of pixel values. Since its an 8 bpp image, that

means it has 256 levels of gray or shades of gray in it. Thats why the range of x axis starts from

0 and end at 255 with a gap of 50. Whereas on the y axis, is the count of these intensities.

As you can see from the graph, that most of the bars that have high frequency lies in the first

half portion which is the darker portion. That means that the image we have got is darker. And

this can be proved from the image too.

Applications of Histograms

Histograms has many uses in image processing. The first use as it has also been discussed above

is the analysis of the image. We can predict about an image by just looking at its histogram. Its

like looking an x ray of a bone of a body.

The second use of histogram is for brightness purposes. The histograms has wide application in

image brightness. Not only in brightness, but histograms are also used in adjusting contrast of

an image.

Another important use of histogram is to equalize an image.

62

And last but not the least, histogram has wide use in thresholding. This is mostly used in

computer vision.

Brightness

Brightness is a relative term. It depends on your visual perception. Since brightness is a relative

term, so brightness can be defined as the amount of energy output by a source of light relative to

the source we are comparing it to. In some cases we can easily say that the image is bright, and

in some cases, its not easy to perceive.

For example

Just have a look at both of these images, and compare which one is brighter.

We can easily see, that the image on the right side is brighter as compared to the image on the

left.

But if the image on the right is made more darker then the first one, then we can say that the

image on the left is more brighter then the left.

How to make an image brighter.

Brightness can be simply increased or decreased by simple addition or subtraction, to the image

matrix.

Consider this black image of 5 rows and 5 columns

63

Since we already know, that each image has a matrix at its behind that contains the pixel values.

This image matrix is given below.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Since the whole matrix is filled with zero, and the image is very much darker.

Now we will compare it with another same black image to see this image got brighter or not.

64

Still both the images are same, now we will perform some operations on image1 , due to which

it becomes brighter then the second one.

What we will do is, that we will simply add a value of 1 to each of the matrix value of image 1.

After adding the image 1 would something like this.

Now we will again compare it with image 2, and see any difference.

We see, that still we cannot tell which image is brighter as both images looks the same.

Now what we will do, is that we will add 50 to each of the matrix value of the image 1 and see

what the image has become.

The output is given below.

Now again, we will compare it with image 2.

65

Now you can see that the image 1 is slightly brighter then the image 2. We go on, and add

another 45 value to its matrix of image 1, and this time we compare again both images.

Now when you compare it, you can see that this image1 is clearly brighter then the image 2.

Even it is brighter then the old image1. At this point the matrix of the image1 contains 100 at

each index as first add 5, then 50, then 45. So 5 + 50 + 45 = 100.

Contrast

Contrast can be simply explained as the difference between maximum and minimum pixel

intensity in an image.

For example.

Consider the final image1 in brightness.

66

The matrix of this image is:

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

The maximum value in this matrix is 100.

The minimum value in this matrix is 100.

Contrast = maximum pixel intensity(subtracted by) minimum pixel intensity

= 100 (subtracted by) 100

= 0

0 means that this image has 0 contrast.

Histogram sliding

In histogram sliding, we just simply shift a complete histogram rightwards or leftwards. Due to

shifting or sliding of histogram towards right or left, a clear change can be seen in the image.In

this tutorial we are going to use histogram sliding for manipulating brightness.

67

The term i-e: Brightness has been discussed in our tutorial of introduction to brightness and

contrast. But we are going to briefly define here.

Brightness

Brightness is a relative term. Brightness can be defined as intensity of light emit by a particular

light source.

Contrast

Contrast can be defined as the difference between maximum and minimum pixel intensity in an

image.

Sliding Histograms

Increasing brightness using histogram sliding

Histogram of this image has been shown below.

On the y axis of this histogram are the frequency or count. And on the x axis, we have gray

level values. As you can see from the above histogram, that those gray level intensities whose

68

count is more then 700, lies in the first half portion, means towards blacker portion. Thats why

we got an image that is a bit darker.

In order to bright it, we will slide its histogram towards right, or towards whiter portion. In

order to do we need to add atleast a value of 50 to this image. Because we can see from the

histogram above, that this image also has 0 pixel intensities, that are pure black. So if we add 0

to 50, we will shift all the values lies at 0 intensity to 50 intensity and all the rest of the values

will be shifted accordingly.

Lets do it.

Here what we got after adding 50 to each pixel intensity.

The image has been shown below.

And its histogram has been shown below.

Lets compare these two images and their histograms to see that what change have to got.

69

Conclusion

As we can clearly see from the new histogram that all the pixels values has been shifted towards

right and its effect can be seen in the new image.

Decreasing brightness using histogram sliding

Now if we were to decrease brightness of this new image to such an extent that the old image

look brighter, we got to subtract some value from all the matrix of the new image. The value

which we are going to subtract is 80. Because we already add 50 to the original image and we

got a new brighter image, now if we want to make it darker, we have to subtract at least more

than 50 from it.

And this what we got after subtracting 80 from the new image.

70

Conclusion

It is clear from the histogram of the new image, that all the pixel values has been shifted

towards right and thus, it can be validated from the image that new image is darker and now the

original image look brighter as compare to this new image.

Histogram Equalization

Histogram equalization is used to enhance contrast. It is not necessary that contrast will always

be increase in this. There may be some cases were histogram equalization can be worse. In that

cases the contrast is decreased.

Lets start histogram equalization by taking this image below as a simple image.

Image

71

Histogram of this image

The histogram of this image has been shown below.

Now we will perform histogram equalization to it.

PMF

First we have to calculate the PMF (probability mass function) of all the pixels in this image. If

you donot know how to calculate PMF, please visit our tutorial of PMF calculation.

72

CDF

Our next step involves calculation of CDF (cumulative distributive function). Again if you

donot know how to calculate CDF , please visit our tutorial of CDF calculation.

Calculate CDF according to gray levels

Lets for instance consider this , that the CDF calculated in the second step looks like this.

Gray

Level

Value

CDF

0 0.11

1 0.22

2 0.55

3 0.66

4 0.77

5 0.88

6 0.99

7 1

Then in this step you will multiply the CDF value with (Gray levels (minus) 1) .

Considering we have an 3 bpp image. Then number of levels we have are 8. And 1 subtracts 8 is

7. So we multiply CDF by 7. Here what we got after multiplying.

73

Gray

Level

Value

CDF CDF * (Levels-1)

0 0.11 0

1 0.22 1

2 0.55 3

3 0.66 4

4 0.77 5

5 0.88 6

6 0.99 6

7 1 7

Now we have is the last step, in which we have to map the new gray level values into number of

pixels.

Lets assume our old gray levels values has these number of pixels.

Gray

Level

Value

Frequency

0 2

74

1 4

2 6

3 8

4 10

5 12

6 14

7 16

Now if we map our new values to , then this is what we got.

Gray

Level

Value

New Gray Level Value Frequency

0 0 2

1 1 4

2 3 6

3 4 8

4 5 10

75

5 6 12

6 6 14

7 7 16

Now map these new values you are onto histogram, and you are done.

Lets apply this technique to our original image. After applying we got the following image and

its following histogram.

Histogram Equalization Image

Cumulative Distributive function of this image

76

Histogram Equalization histogram

77

Comparing both the histograms and images

Conclusion

As you can clearly see from the images that the new image contrast has been enhanced and its

histogram has also been equalized. There is also one important thing to be note here that during

78

histogram equalization the overall shape of the histogram changes, where as in histogram

stretching the overall shape of histogram remains same.

Image Enhancement Using Arithmetic And Logic Operations

Pixel Addition

Common Names: Pixel Add, Sum, Offset

Brief Description

In its most straightforward implementation, this operator takes as input two identically sized

images and produces as output a third image of the same size as the first two, in which each pixel

value is the sum of the values of the corresponding pixel from each of the two input images.

More sophisticated versions allow more than two images to be combined with a single operation.

A common variant of the operator simply allows a specified constant to be added to every pixel.

How It Works

The addition of two images is performed straightforwardly in a single pass. The output pixel

values are given by:

Or if it is simply desired to add a constant value C to a single image then:

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm

79

If the pixel values in the input images are actually vectors rather than scalar values (e.g. for color

images) then the individual components (e.g. red, blue and green components) are simply added

separately to produce the output value.

If the image format being used only supports, say 8-bit integer pixel values, then it is very easy

for the result of the addition to be greater than the maximum allowed pixel value. The effect of

this depends upon the particular implementation. The overflowing pixel values might just be set

to the maximum allowed value, an effect known as saturation. Alternatively the pixel values

might wrap around from zero again. If the image format supports pixel values with a much larger

range, e.g. 32-bit integers or floating point numbers, then this problem does not occur so much.

Guidelines for Use

Image addition crops up most commonly as a sub-step in some more complicated process rather

than as a useful operator in its own right. As an example we show how addition can be used to

overlay the output from an edge detector on top of the original image after suitable masking has

been carried out.

The image

shows a simple flat dark object against a light background. Applying the Canny edge detector to

this image, we obtain

https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/edgdetct.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2can1.gif

80

Suppose that our task is to overlay this edge data on top of the original image. The image

is the result of straightforwardly adding the two images. Since the sum of the edge pixels and the

underlying values in the original is greater than the maximum possible pixel value, these pixels

are (in this implementation) wrapped around. Therefore these pixels have a rather low pixel

value and it is hard to distinguish them from the surrounding pixels. In order to avoid the pixel

overflow we need to replace pixels in the original image with the corresponding edge data

pixels, at every place where the edge data pixels are non-zero. The way to do this is to mask off a

region of the original image before we do any addition.

The mask is made by thresholding the edge data at a pixel value of 128 in order to produce

This mask is then inverted and subsequently ANDed with the original image to produce

Finally, the masked image is added to the unthresholded edge data to produce

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/and.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2add2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2add1.gif

81

This image now clearly shows that the Canny edge detector has done an extremely good job of

localizing the edges of the original object accurately. It also shows how the response of the edge

detector drops off at the fuzzier left hand edge of the object.

Other uses of addition include adding a constant offset to all pixels in an image so as to brighten

that image. For example, adding a constant value of 50 to

yields

It is important to realize that if the input images are already quite bright, then straight addition

may produce a pixel value overflow. Image

shows the results of adding 100 to the above image. Most of the background pixels are greater

than the possible maximum (255) and therefore are (with this implementation of

addition) wrapped around from zero. If we implement the operator in such a way that pixel

values exceeding the maximum value are set to 255 (i.e. using a hard limit) we obtain

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add2.gif

82

This image looks more natural than the wrapped around one. However, due to the saturation, we

lose a certain amount of information, since all the values exceeding the maximum value are set

to the same graylevel.

In this case, the pixel values should be scaled down before addition. The image

is the result of scaling the original with 0.8 and adding a constant value of 100. Although the

image is brighter than the original, it has lost contrast due to the scaling. In most

cases, scaling the image with a factor larger than 1 without using addition at all provides a better

way to brighten an image, as it increases the image contrast. For comparison,

is the original image multiplied with 1.3.

Blending provides a slightly more sophisticated way of merging two images which ensures that

saturation cannot happen.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/blend.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1add3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/egg1sca1.gif

83

When adding color images it is important to consider how the color information has been

encoded. The section on 8-bit color images describes the issues to be aware of when adding such

images.

Interactive Experimentation

You can interactively experiment with this operator by clicking here

Pixel Subtraction

Since we already know, that each image has a matrix at its behind that contains the pixel values.

This image matrix is given below.

0 0 0 0 0

0 0 0 0 0

shows some text which has been badly illuminated during capture so that there is a strong

illumination gradient across the image. If we wish to separate out the foreground text from the

background page, then the obvious method for black on white text is simply to threshold the

image on the basis of intensity. However, simple thresholding fails here due to the illumination

gradient. A typical failed attempt looks like

https://homepages.inf.ed.ac.uk/rbf/HIPR2/8bitcol.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/adddemo.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1.gif

84

Now it may be that we cannot adjust the illumination, but we can put different things in the

scene. This is often the case with microscope imaging, for instance. So we replace the text with a

sheet of white paper and without changing anything else we capture a new image, as shown in

This image is the lightfield. Now we can subtract the lightfield image from the original image to

attempt to eliminate variation in the background intensity. Before doing that an offset of 100

is added to the first image to in order avoid getting negative numbers and we also use 32-bit

integer pixel values to avoid overflow problems. The result of the subtraction is shown in

Note that the background intensity of the image is much more uniform than before, although the

contrast in the lower part of the image is still poor. Straightforward thresholding can now achieve

better results than before, as shown in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub1.gif

85

which is the result of thresholding at a pixel value of 80. Note that the results are still not ideal,

since in the poorly lit areas of the image the contrast (i.e. difference between foreground and

background intensity) is much lower than in the brightly lit areas, making a suitable threshold

difficult or impossible to find. Compare these results with the example described under pixel

division.

Absolute image differencing is also used for change detection. If the absolute difference between

two frames of a sequence of images is formed, and there is nothing moving in the scene, then the

output will mostly consist of zero value pixels. If however, there is movement going on, then

pixels in regions of the image where the intensity changes spatially, will exhibit significant

absolute differences between the two frames.

As an example of such change detection, consider

which shows an image of a collection of screws and bolts. The image

shows a similar scene with one or two differences. If we calculate the absolute difference

between the frames as shown in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr2.gif

86

then the regions that have changed become clear. The last image here has been contrast-

stretched in order to improve clarity.

Subtraction can also be used to estimate the temporal derivative of intensity at each point in a

sequence of images. Such information can be used, for instance, in optical flow calculations.

Simple subtraction of a constant from an image can be used to darken an image,

although scaling is normally a better way of doing this.

It is important to think about whether negative output pixel values can occur as a result of the

subtraction, and how the software will treat pixels that do have negative values. An example of

what may happen can be seen in

which is the above lightfield directly subtracted from the text images. In the implementation

of pixel subtraction which was used, negative values are wrapped around starting from the

maximum value. Since we don't have exactly the same reflectance of the paper when taking the

images of the lightfield and the text, the difference of pixels belonging to background is either

slightly above or slightly below zero. Therefore the wrapping results in background pixels with

either very small or very high values, thus making the image unsuitable for further processing

(for example, thresholding). If we alternatively set all negative values to zero, the image would

become completely black, because subtracting the pixels in the lightfield from the pixels

representing characters in the text image yields negative results, as well.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1sub1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub2.gif

87

In this application, a suitable way to deal with negative values is to use absolute differences, as

can be seen in

or as a gamma corrected version in

Thresholding this image yields similar good results as the earlier example.

If negative values are to be avoided then it may be possible to first add an offset to the first input

image. It is also often useful if possible to convert the pixel value type to something with a

sufficiently large range to avoid overflow, e.g. 32-bit integers or floating point numbers.

Pixel Multiplication and Scaling

Common Names: Pixel Multiplication, Graylevel scale

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixexp.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1sub4.gif

88

Brief Description

Like other image arithmetic operators, multiplication comes in two main forms. The first form

takes two input images and produces an output image in which the pixel values are just those of

the first image, multiplied by the values of the corresponding values in the second image. The

second form takes a single input image and produces output in which each pixel value is

multiplied by a specified constant. This latter form is probably the more widely used and is

generally called scaling.

This graylevel scaling should not be confused with geometric scaling.

How It Works

The multiplication of two images is performed in the obvious way in a single pass using the

formula:

Scaling by a constant is performed using:

Note that the constant is often a floating point number, and may be less than one, which will

reduce the image intensities. It may even be negative if the image format supports that.

If the pixel values are actually vectors rather than scalar values (e.g. for color images) then the

individual components (e.g. ref{rgb}{red, blue and green components}) are simply multiplied

separately to produce the output value.

If the output values are calculated to be larger than the maximum allowed pixel value, then they

may either be truncated at that maximum value, or they can `wrap around' and continue upwards

from the minimum allowed number again.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/scale.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm

89

Guidelines for Use

There are many specialist uses for scaling. In general though, given a scaling factor greater than

one, scaling will brighten an image. Given a factor less than one, it will darken the image.

Scaling generally produces a much more natural brightening/darkening effect than

simply adding an offset to the pixels, since it preserves the relative contrast of the image better.

For instance,

shows a picture of model robot that was taken under low lighting conditions. Simply scaling

every pixel by a factor of 3, we obtain

which is much clearer. However, when using pixel multiplication, we should make sure that the

calculated pixel values don't exceed the maximum possible value. If we, for example, scale the

above image by a factor of 5 using a 8-bit representation, we obtain

All the pixels which, in the original image, have a value greater than 51 exceed the maximum

value and are (in this implementation) wrapped around from 255 back to 0.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1dim1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1mul2.gif

90

The last example shows that it is important to be aware of what will happen if the multiplications

result in pixel values outside the range that can be represented by the image format being used. It

is also very easy to generate very large numbers with pixel-by-pixel multiplication. If the image

processing software supports it, it is often safest to change to an image format with a large

range, e.g. floating point, before attempting this sort of calculation.

Scaling is also often useful prior to other image arithmetic in order to prevent pixel values going

out of range, or to prevent integer quantization ruining the results (as in integer image division).

Pixel-by-pixel multiplication is generally less useful, although sometimes a binary image can be

used to multiply another image in order to act as a mask. The idea is to multiply by 1 those pixels

that are to be preserved, and multiply by zero those that are not. However for integer format

images it is often easier and faster to use the logical operator AND instead.

Another use for pixel by pixel multiplication is to filter images in the frequency domain. We

illustrate the idea using the example of

First, we obtain

by applying the Fourier transform to the original image, and then we use pixel multiplication to

attenuate certain frequencies in the Fourier domain. In this example we use a simple lowpass

filter which (as a scaled version) can be seen in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/and.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fou1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1msk3.gif

91

The result of the multiplication is shown in

Finally, an inverse Fourier transform is performed to return to the spatial domain. The final result

shows the smoothing effect of a lowpass filter. More details and examples are given in the

worksheets dealing with frequency filtering.

Interactive Experimentation

You can interactively experiment with this operator by clicking here.

Exercises

1. Overlay

and its skeleton

using pixel addition (the skeleton was derived from

https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/multdemo.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fou2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/hse1fil1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl1.gif

92

which was produced by thresholding the input image at 110). Use image multiplication to

scale the images prior to the addition in order to avoid the pixel values being out of range.

What effect does this have on the contrast of the input images.

2. Use thresholding to segment the simple image

into foreground and background. Use scaling to set the foreground pixel value to 2, and

the background pixel value to 0. Then use pixel-by-pixel multiplication to multiply this

image with the original image. What has this process achieved and why might it be

useful?

Pixel Division

Common Names: Pixel Division, Ratioing

Brief Description

The image division operator normally takes two images as input and produces a third whose

pixel values are just the pixel values of the first image divided by the corresponding pixel values

of the second image. Many implementations can also be used with just a single input image, in

which case every pixel value in that image is divided by a specified constant.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg4.gif

93

How It Works

The division of two images is performed in the obvious way in a single pass using the formula:

Division by a constant is performed using:

If the pixel values are actually vectors rather than scalar values (e.g. for color images) than the

individual components (e.g. red, blue and green components) are simply divided separately to

produce the output value.

The division operator may only implement integer division, or it may also be able to handle

floating point division. If only integer division is performed, then results are typically rounded

down to the next lowest integer for output. The ability to use images with pixel value types other

than simply 8-bit integers comes in very handy when doing division.

Guidelines for Use

One of the most important uses of division is in change detection, in a similar way to the use

of subtraction for the same thing. Instead of giving the absolute change for each pixel from one

frame to the next, however, division gives the fractional change or ratio between corresponding

pixel values (hence the common alternative name of ratioing). The images

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1.gif

94

are of the same scene except two objects have been slightly moved between the exposures.

Dividing the former by the latter using a floating point pixel type and then contrast stretching the

resulting image yields

After the division, pixels which didn't change between the exposures have a value of 1, whereas

if the pixel value increased after the first exposure the result of the division is clustered between

0 and 1, otherwise it is between 1 and 255 (provided the pixel value in the second image is not

smaller than 1). That is the reason why we can only see the new position of the moved part in the

contrast-stretched image. The old position can be visualized by histogram equalizing the division

output, as shown in

Here, high values correspond to the new position, low values correspond to the old position,

assuming that the intensity of the moved object is lower than the background intensity.

Intermediate graylevels in the equalized image correspond to areas of no change. Due to noise,

the image also shows the position of objects which were not moved.

For comparison, the absolute difference between the two images, as shown in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/histeq.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div2.gif

95

produces approximately the same pixel values at the old and the new position of a moved part.

Another application for pixel division is to separate the actual reflectance of an object from the

unwanted influence of illumination. This image

shows a poorly illuminated piece of text. There is a strong illumination gradient across the image

which makes conventional foreground/background segmentation using

standard thresholding impossible. The image

shows the result of straightforward intensity thresholding at a pixel value of 128. There is no

global threshold value that works over the whole of the image.

Suppose that we cannot change the lighting conditions, but that we can take several images with

different items in the viewfield. This situation arises quite a lot in microscopy, for instance. We

choose to take a picture of a blank sheet of white paper which should allow us to capture the

incident illumination variation. This lightfield image is shown in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1sub1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr1.gif

96

Now, assuming that we are dealing with a flat scene here, with points on the surface of the scene

described by coordinates x and y, then the reflected light intensity B(x,y) depends upon the

reflectance R(x,y) of the scene at that point and also on the incident illumination I(x,y) such that:

Using subscripts to distinguish the blank (lightfield) image and the original image, we can write:

But since I(x,y) is the same for both images, and assuming the reflectance of the blank paper to

be uniform over its surface, then:

Therefore the division should allow us to segment the letters out nicely. In image

we see the result of dividing the original image by the lightfield image. Note that floating point

format images were used in the division, which were then normalized to 8-bit integers for

display. Virtually all the illumination gradient has been removed. The image

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1div1.gif

97

shows the result of thresholding this image at a pixel value of 160. While not fantastic, with a

little work using morphological operations, the text could become quite legible. Compare the

result with that obtained using subtraction.

As with other image arithmetic operations, it is important to be aware of whether the

implementation being used does integer or floating point arithmetic. Dividing two similar

images, as done in the above examples, results mostly in very small pixel values, seldom greater

than 4 or 5. To display the result, the image has to be normalized to 8-bit integers. However, if

the division is performed in an integer format the result is quantized before the normalization,

hence a lot of information is lost. Image

shows the result of the above change detection if the division is performed in integer format. The

maximum result of the division was less than 3, therefore the integer image contains only three

different values, i.e. 0, 1 and 2 before the normalization. One solution is to multiply the first

image (the numerator image) by a scaling factor before performing the division. Of course this is

not generally possible with 8-bit integer images since significant scaling will simply saturate all

the pixels in the image. The best method is, as was done in the above examples, to switch to a

non-byte image type, and preferably to a floating point format. The effect is that the image is not

quantized until the normalization and therefore the result does contain more graylevels. If

floating point cannot be used, then use, say, 32-bit integers, and scale up the numerator image

before dividing.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/matmorph.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/arthops.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/son1thr2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr1div3.gif

98

Logical AND/NAND

Common Names: AND, NAND

Brief Description

AND and NAND are examples of logical operators having the truth-tables shown in Figure 1.

Figure 1 Truth-tables for AND and NAND.

As can be seen, the output values of NAND are simply the inverse of the corresponding output

values of AND.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm

99

The AND (and similarly the NAND) operator typically takes two binary or integer graylevel

images as input, and outputs a third image whose pixel values are just those of the first image,

ANDed with the corresponding pixels from the second. A variation of this operator takes just a

single input image and ANDs each pixel with a specified constant value in order to produce the

output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them or unexpected things may

happen. Where the pixel values in the input images are not simple 1-bit numbers, the AND

operation is normally (but not always) carried out individually on each corresponding bit in the

pixel values, in bitwise fashion.

Guidelines for Use

The most obvious application of AND is to compute the intersection of two images. We illustrate

this with an example where we want to detect those objects in a scene which did not move

between two images, i.e. which are at the same pixel positions in the first and the second image.

We illustrate this example using

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif

100

If we simply AND the two graylevel images in a bitwise fashion we obtain

Although we wanted the moved object to disappear from the resulting image, it appears twice, at

its old and at its new position. The reason is that the object has rather low pixel values (similar to

a logical 0) whereas the background has a high values (similar to a logical 1). However, we

normally associate an object with logical 1 and the background with logical 0, therefore we

actually ANDed the negatives of two images, which is equivalent to NOR them. To obtain the

desired result we have to invert the images before ANDing them, as it was done in

Now, only the object which has the same position in both images is highlighted. However,

ANDing two graylevel images might still cause problems, as it is not guaranteed that ANDing

two high pixel values in a bitwise fashion yields a high output value (for example, 128 AND 127

yields 0). To avoid these problems, it is best to produce a binary versions from the grayscale

images using thresholding.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and2.gif

101

and

are the thresholded versions of the above images and

is the result of ANDing their negatives.

Although ANDing worked well for the above example, it runs into problems in a scene like

Here, we have two objects with the average intensity of one being higher than the background

and the other being lower. Hence, we can't produce a binary image containing both objects using

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3and3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1.gif

102

simple thresholding. As can be seen in the following images, ANDing the grayscale images is

not successful either. If in the second scene the light part was moved, as in

then the result of ANDing the two images is

It shows the desired effect of attenuating the moved object. However, if the second scene is

somehow like

where the dark object was moved, we obtain

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1and2.gif

103

Here, the old and the new positions of the dark object are visible.

In general, applying the AND operator (or other logical operators) to two images in order to

detect differences or similarities between them is most appropriate if they are binary or can be

converted into binary format using thresholding.

As with other logical operators, AND and NAND are often used as sub-components of more

complex image processing tasks. One of the common uses for AND is for masking. For example,

suppose we wish to selectively brighten a small region of

to highlight a particular car. There are many ways of doing this and we illustrate just one. First

a paint program is used to identify the region to be highlighted. In this case we set the region to

black as shown in

This image can then be thresholded to just select the black region, producing the mask shown in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1msk1.gif

104

The mask image has a pixel value of 255 (11111111 binary) in the region that we are interested

in, and zero pixels (00000000 binary) elsewhere. This mask is then bitwise ANDed with the

original image to just select out the region that will be highlighted. This produces

Finally, we brighten this image by scaling it by a factor of 1.1, dim the original image using a

scale factor of 0.8, and then add the two images together to produce

AND can also be used to perform so called bit-slicing on an 8-bit image. To determine the

influence of one particular bit on an image, it is ANDed in a bitwise fashion with a constant

number, where the relevant bit is set to 1 and the remaining 7 bits are set to 0. For example, to

obtain the bit-plane 8 (corresponding to the most significant bit) of

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1and1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/car1add1.gif

105

we AND the image with 128 (10000000 binary) and threshold the output at a pixel value of 1.

The result, shown in

is equivalent to thresholding the image at a value of 128. Images

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and8.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and7.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and6.gif

106

correspond to bit-planes 7, 6 and 4. The images show that most image information is contained

in the higher (more significant) bits, whereas the less significant bits contain some of the finer

details and noise. The image

shows bit-plane 1.

Logical OR/NOR

Common Names: OR, NOR

Brief Description

OR and NOR are examples of logical operators having the truth-tables shown in Figure 1.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/ape1and1.gif

107

Figure 1 Truth-tables for OR and NOR.

As can be seen, the output values of NOR are simply the inverses of the corresponding output

values of OR.

The OR (and similarly the NOR) operator typically takes two binary or graylevel images as

input, and outputs a third image whose pixel values are just those of the first image, ORed with

the corresponding pixels from the second. A variation of this operator takes just a single input

image and ORs each pixel with a specified constant value in order to produce the output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them or unexpected things may

happen. Where the pixel values in the input images are not simple 1-bit numbers, the OR

operation is normally (but not always) carried out individually on each corresponding bit in the

pixel values, in bitwise fashion.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise

108

Guidelines for Use

We can illustrate the function of the OR operator using

and

The images show a scene with two objects, one of which was moved between the exposures. We

can use OR to compute the union of the images, i.e. highlighting all pixels which represent an

object either in the first or in the second image. First, we threshold the images, since the process

is simplified by use binary input. If we OR the resulting images

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif

109

we obtain

This image shows only the position of the object which was at the same location in both input

images. The reason is that the objects are represented with logically 0 and the background is

logically 1. Hence, we actually OR the background which is equivalent to NANDing the objects.

To get the desired result, we first have to invert the input images before ORing them. Then, we

obtain

Now, the output shows the position of the stationary object as well as that of the moved object.

As with other logical operators, OR and NOR are often used as sub-components of more

complex image processing tasks. OR is often used to merge two images together. Suppose we

want to overlay

https://homepages.inf.ed.ac.uk/rbf/HIPR2/invert.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3or2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3or1.gif

110

with its histogram, shown in

First, an image editor is used to enlarge the histogram image until it is the same size as the

grayscale image as shown in

Then, simply ORing the two gives

The performance in this example is quite good, because the images contain very distinct

graylevels. If we proceed in the same way with

https://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2or1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1.gif

111

we obtain

Now, it is difficult to see the characters of the histogram (which have high pixel values) at places

where the original image has high values, as well. Compare the result with that described

under XOR.

Note that there is no problem of overflowing pixel values with the OR operator, as there is with

the addition operator.

ORing is usually safest when at least one of the images is binary, i.e. the pixel values are 0000...

and 1111... only. The problem with ORing other combinations of integers is that the output result

can fluctuate wildly with a small change in input values. For instance 127 ORed with 128 gives

255, whereas 127 ORed with 126 gives 127.

Logical XOR/XNOR

Common Names: XOR, XNOR, EOR, ENOR

Brief Description

XOR and XNOR are examples of logical operators having the truth-tables shown in Figure 1.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/xor.htm#guidelines
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1or1.gif

112

Figure 1 Truth-tables for XOR and XNOR.

The XOR function is only true if just one (and only one) of the input values is true, and false

otherwise. XOR stands for eXclusive OR. As can be seen, the output values of XNOR are simply

the inverse of the corresponding output values of XOR.

The XOR (and similarly the XNOR) operator typically takes two binary or graylevel images as

input, and outputs a third image whose pixel values are just those of the first image, XORed with

the corresponding pixels from the second. A variation of this operator takes a single input image

and XORs each pixel with a specified constant value in order to produce the output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them, or unexpected things may

happen. Where the pixel values in the input images are not simple 1-bit numbers, the XOR

operation is normally (but not always) carried out individually on each corresponding bit in the

pixel values, in bitwise fashion.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm#bitwise

113

Guidelines for Use

We illustrate the function of XOR using

and

Since logical operators work more reliably with binary input we first threshold the two images,

thus obtaining

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3thr1.gif

114

Now, we can use XOR to detect changes in the images, since pixels which didn't change output 0

and pixels which did change result in 1. The image

shows the result of XORing the thresholded images. We can see the old and the new position of

the moved object, whereas the stationary object almost disappeared from the image. Due to the

effects of noise, we can still see some pixels around the boundary of the stationary

object, i.e. pixels whose values in the original image were close to the threshold.

In a scene like

it is not possible to apply a threshold in order to obtain a binary image, since one of the objects is

lighter than the background whereas the other one is darker. However, we can combine two

grayscale images by XORing them in a bitwise fashion.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr4thr1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/scr3xor1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1.gif

115

shows a scene where the dark object was moved and in

the light object changed its position. XORing each of them with the initial image yields

and

respectively. In both cases, the moved part appears at the old as well as at the new location and

the stationary object almost disappears. This technique is based on the assumption that XORing

two similar grayvalues produces a low output, whereas two distinct inputs yield a high output.

However, this is not always true, e.g. XORing 127 and 128 yields 255. These effects can be seen

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1xor1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pap1xor2.gif

116

at the boundary of the stationary object, where the pixels have an intermediate graylevel and

might, due to noise, differ slightly between two of the images. Hence, we can see a line with high

values around the stationary object. A similar problem is that the output for the moved pen is

much higher than the output for the moved piece of paper, although the contrast between their

intensities and that of the background value is roughly the same. Because of these problems it is

often better to use image subtraction or image division for change detection.

As with other logical operators, XOR and XNOR are often used as sub-components of more

complex image processing tasks. XOR has the interesting property that if we XOR A with B to

get Q, then the bits of Q are the same as A where the corresponding bit from B is zero, but they

are of the opposite value where the corresponding bit from B is one. So for instance using binary

notation, 1010 XORed with 1100 gives 0110. For this reason, B could be thought of as a bit-

reversal mask. Since the operator is symmetric, we could just as well have treated A as the mask

and B as the original.

Extending this idea to images, it is common to see an 8-bit XOR image mask containing only the

pixel values 0 (00000000 binary) and 255 (11111111 binary). When this is XORed pixel-by-

pixel with an original image it reverses the bits of pixels values where the mask is 255, and

leaves them as they are where the mask is zero. The pixels with reversed bits normally `stand

out' against their original color and so this technique is often used to produce a cursor that is

visible against an arbitrary colored background. The other advantage of using XOR like this is

that to undo the process (for instance when the cursor moves away), it is only necessary to repeat

the XOR using the same mask and all the flipped pixels will become unflipped. Therefore it is

not necessary to explicitly store the original colors of the pixels affected by the mask. Note that

the flipped pixels are not always visible against their unflipped color --- light pixels become dark

pixels and dark pixels become light pixels, but middling gray pixels become middling gray

pixels!

The image

https://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixsub.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mask.htm

117

shows a simple graylevel image. Suppose that we wish to overlay this image with

its histogram shown in

so that the two can be compared easily. One way is to use XOR. We first use an image editor to

enlarge the histogram until it is the same size as the first image. The result is shown in

To perform the overlay we simply XOR this image with the first image in bitwise fashion to

produce

Here, the text is quite easy to read, because the original image consists of large and rather light or

rather dark areas. If we proceed in the same way with

https://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/imagedit.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2hst2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/wdg2xor1.gif

118

we obtain

Note how the writing is dark against light backgrounds and light against dark backgrounds and

hardly visible against gray backgrounds. Compare the result with that described under OR. In

fact XORing is not particularly good for producing easy to read text on gray backgrounds --- we

might do better just to add a constant offset to the image pixels that we wish to highlight

(assuming wraparound under addition overflow) --- but it is often used to quickly produce

highlighted pixels where the background is just black and white or where legibility is not too

important.

Invert/Logical NOT

Common Names: Logical NOT, invert, photographic negative

https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm#guidelines
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/bld1xor1.gif

119

Brief Description

Logical NOT or invert is an operator which takes a binary or graylevel image as input and

produces its photographic negative, i.e. dark areas in the input image become light and light

areas become dark.

How It Works

To produce the photographic negative of a binary image we can employ the logical NOT

operator. Its truth-table is shown in Figure 1.

Figure 1 Truth-table for logical NOT.

Each pixel in the input image having a logical 1 (often referred to as foreground) has a logical 0

(associated with the background in the output image and vice versa. Hence, applying logical

NOT to a binary image changes its polarity.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm

120

The logical NOT can also be used for a graylevel image being stored in byte pixel format by

applying it in a bitwise fashion. The resulting value for each pixel is the input value subtracted

from 255:

Some applications of invert also support integer or float pixel format. In this case, we can't use

the logical NOT operator, therefore the pixel values of the inverted image are simply given by

If this output image is normalized for an 8-bit display, we again obtain the photographic negative

of the original input image.

Guidelines for Use

When processing a binary image with a logical or morphological operator, its polarity is often

important. Hence, the logical NOT operator is often used to change the polarity of a binary

image as a part of some larger process. For example, if we OR

and

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/logic.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2neg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir3neg1.gif

121

the resulting image,

shows the union of the background, because it is represented with a logical 1. However, if we

OR

and

which are the inverted versions of the above image we obtain

Now, the result contains the union of the two circles.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2or2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir3.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cir2or1.gif

122

We illustrate another example of the importance of the polarity of a binary image using

the dilation operator. Dilation expands all white areas in a binary image. Hence, if we dilate

the object, being represented with a logical 1, grows and the holes in the object shrink. We obtain

If we dilate

which was obtained by applying logical NOT to the original image, we get

Here, the background is expanded and the object became smaller.

Invert can be used for the same purpose on grayscale images, if they are processed with a

morphological or logical operator.

Invert is also used to print the photographic negative of an image or to make the features in an

image appear clearer to a human observer. This can, for example, be useful for medical images,

where the objects often appear in black on a white background. Inverting the image makes the

https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4dil1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4neg1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/art4dil2.gif

123

objects appear in white on a dark background, which is often more suitable for the human eye.

From the original image

of a tissue slice, we obtain the photographic negative

Bitshift Operators

Common Names: Bitshifting

Brief Description

The bitshift operator works on images represented in byte or integer pixel format, where each

pixel value is stored as a binary number with a fixed amount of bits. Bitshifting shifts the binary

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cel7.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/cel7neg1.gif

124

representation of each pixel to the left or to the right by a pre-defined number of positions.

Shifting a binary number by one bit is equivalent to multiplying (when shifting to the left)

or dividing (when shifting to the right) the number by 2.

How It Works

The operation is performed straightforwardly in a single pass. If the binary representation of a

number is shifted in one direction, we obtain an empty position on the opposite side. There are

generally three possibilities of how to fill in this empty position: we can pad the empty bits with

a 0 or a 1 or we can wrap around the bits which are shifted out of the binary representation of the

number on the other side. The last possibility is equivalent to rotating the binary number.

The choice of technique used depends on the implementation of the operator and on the

application. In most cases, bitshifting is used to implement a fast multiplication or division. In

order to obtain the right results for this application, we have to pad the empty bits with a 0. Only

in the case of dividing a negative number by a power of 2, do we need to fill the left bits with

a 1, because a negative number is represented as the two's-complement of the positive

number, i.e. the sign bit is a 1. The result of applying bitshifting in this way is illustrated in the

following formula:

An example is shown in Figure 1.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm

125

Figure 1 Examples for using bitshifting for multiplication and division. Note that

the bottom example uses a signed-byte convention where a byte represents a

number between -128 and +127

If bitshifting is used for multiplication, it might happen that the result exceeds the maximum

possible pixel value. This is the case when a 1 is shifted out of the binary representation of the

pixel value. This information is lost and the effect is that the value is wrapped around from zero.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm

126

Guidelines for Use

The main application for the bitshift operator is to divide or multiply an image by a power of 2.

The advantage over the normal pixel division and pixel multiplication operators is that bitshifting

is computationally less expensive.

For example, if we want to add two images we can use bitshifting to make sure that the result

will not exceed the maximum pixel value. We illustrate this example using

and

where the latter is the skeleton gained from the thresholded version of the former. To better

visualize the result of the skeletonization we might want to overlay these two images. However,

if we add them straightforwardly we obtain pixel values greater than the maximum value. First

shifting both images to the right by one bit yields

and

which then can be added without causing any overflow problems. The result can be seen in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixmult.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/pixadd.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1shi1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1skl2.gif

127

Here, we can see that shifting a pixel to the right does, as a normal pixel division, decrease the

contrast in the image.

On the other hand, shifting the binary representation of a pixel to the left increases the image

contrast, like the pixel multiplication. For example,

is an image taken under poor lighting conditions. Shifting each pixel in the image to the left by

one bit, which is identical to multiplying it with 2, yields

Although the operator worked well in this example, we have to be aware that the result of the

multiplication might exceed the maximum pixel value. Then, the effect for the pixel value is that

it is wrapped around from 0. For example, if we shift each pixel in the above image by two bits,

at some pixels a 1 is shifted out of the binary representation of the image, resulting in a loss of

information. This can be seen in

https://homepages.inf.ed.ac.uk/rbf/HIPR2/wrap.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/tol1add1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1dim1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1shi1.gif
https://homepages.inf.ed.ac.uk/rbf/HIPR2/images/pum1shi2.gif

128

In general, we should make sure that the values in the input image are sufficiently small or we

have to be careful when we interpret the resulting image. Alternatively, we can change the pixel

value format prior to applying the bitshift operator, e.g. change from byte format

to integer format.

Although multiplication and division are the main applications for bitshifting it might also be

used for other, often very specialized, purposes. For example, we can store two 4-bit images in a

byte array if we shift one of the two images by 4 bits and mask out the unused bits. Using

the logical OR operator we can combine the two images into one without losing any information.

Sometimes it might also be useful to rotate the binary representation of each bit, apply some

other operator to the image and finally rotate the pixels back to the initial order.

Spatial Filtering and its Type

Spatial Filtering technique is used directly on pixels of an image. Mask is usually considered to

be added in size so that it has specific center pixel. This mask is moved on the image such that

the center of the mask traverses all image pixels.

Classification on the basis of linearity:

There are two types:

1. Linear Spatial Filter

2. Non-linear Spatial Filter

General Classification:

Smoothing Spatial Filter: Smoothing filter is used for blurring and noise reduction in the

image. Blurring is pre-processing steps for removal of small details and Noise Reduction is

accomplished by blurring.

Types of Smoothing Spatial Filter:

1. Linear Filter (Mean Filter)

2. Order Statistics (Non-linear) filter

These are explained as following below.

1. Mean Filter:

Linear spatial filter is simply the average of the pixels contained in the neighborhood of the

https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/or.htm

129

filter mask. The idea is replacing the value of every pixel in an image by the average of the

grey levels in the neighborhood define by the filter mask.

Types of Mean filter:

 (i) Averaging filter: It is used in reduction of the detail in image. All coefficients are

equal.

 (ii) Weighted averaging filter: In this, pixels are multiplied by different coefficients.

Center pixel is multiplied by a higher value than average filter.

2. Order Statistics Filter:

It is based on the ordering the pixels contained in the image area encompassed by the filter. It

replaces the value of the center pixel with the value determined by the ranking result. Edges

are better preserved in this filtering.

Types of Order statistics filter:

 (i) Minimum filter: 0th percentile filter is the minimum filter. The value of the center is

replaced by the smallest value in the window.

 (ii) Maximum filter: 100th percentile filter is the maximum filter. The value of the

center is replaced by the largest value in the window.

 (iii) Median filter: Each pixel in the image is considered. First neighboring pixels are

sorted and original values of the pixel is replaced by the median of the list.

Sharpening Spatial Filter: It is also known as derivative filter. The purpose of the sharpening

spatial filter is just the opposite of the smoothing spatial filter. Its main focus in on the removal

of blurring and highlight the edges. It is based on the first and second order derivative.

First order derivative:

 Must be zero in flat segments.

 Must be non zero at the onset of a grey level step.

 Must be non zero along ramps.

First order derivative in 1-D is given by:

f' = f(x+1) - f(x)

Second order derivative:

 Must be zero in flat areas.

130

 Must be zero at the onset and end of a ramp.

 Must be zero along ramps.

Second order derivative in 1-D is given by:

f'' = f(x+1) + f(x-1) - 2f(x)

Smoothing Images

Goals

Learn to:

 Blur images with various low pass filters

 Apply custom-made filters to images (2D convolution)

2D Convolution (Image Filtering)

As in one-dimensional signals, images also can be filtered with various low-pass filters (LPF),

high-pass filters (HPF), etc. LPF helps in removing noise, blurring images, etc. HPF filters help

in finding edges in images.

OpenCV provides a function cv.filter2D() to convolve a kernel with an image. As an example,

we will try an averaging filter on an image. A 5x5 averaging filter kernel will look like the

below:

K=125⎡ ⎣ ⎢ ⎢

The operation works like this: keep this kernel above a pixel, add all the 25 pixels below this

kernel, take the average, and replace the central pixel with the new average value. This operation

is continued for all the pixels in the image. Try this code and check the result:

import numpy as np

import cv2 as cv

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04

131

from matplotlib import pyplot as plt

img = cv.imread('opencv_logo.png')

kernel = np.ones((5,5),np.float32)/25

dst = cv.filter2D(img,-1,kernel)

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(dst),plt.title('Averaging')

plt.xticks([]), plt.yticks([])

plt.show()

Result:

image

Image Blurring (Image Smoothing)

Image blurring is achieved by convolving the image with a low-pass filter kernel. It is useful for

removing noise. It actually removes high frequency content (eg: noise, edges) from the image.

https://docs.opencv.org/master/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04

132

So edges are blurred a little bit in this operation (there are also blurring techniques which don't

blur the edges). OpenCV provides four main types of blurring techniques.

1. Averaging

This is done by convolving an image with a normalized box filter. It simply takes the average of

all the pixels under the kernel area and replaces the central element. This is done by the

function cv.blur() or cv.boxFilter(). Check the docs for more details about the kernel. We

should specify the width and height of the kernel. A 3x3 normalized box filter would look like

the below:

K=19⎡ ⎣ ⎢ 111111111⎤ ⎦ ⎥

Note

If you don't want to use a normalized box filter, use cv.boxFilter(). Pass an argument

normalize=False to the function.

Check a sample demo below with a kernel of 5x5 size:

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

img = cv.imread('opencv-logo-white.png')

blur = cv.blur(img,(5,5))

plt.subplot(121),plt.imshow(img),plt.title('Original')

plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(blur),plt.title('Blurred')

plt.xticks([]), plt.yticks([])

plt.show()

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
https://docs.opencv.org/master/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37

133

Result:

image

2. Gaussian Blurring

In this method, instead of a box filter, a Gaussian kernel is used. It is done with the

function, cv.GaussianBlur(). We should specify the width and height of the kernel which should

be positive and odd. We also should specify the standard deviation in the X and Y directions,

sigmaX and sigmaY respectively. If only sigmaX is specified, sigmaY is taken as the same as

sigmaX. If both are given as zeros, they are calculated from the kernel size. Gaussian blurring is

highly effective in removing Gaussian noise from an image.

If you want, you can create a Gaussian kernel with the function, cv.getGaussianKernel().

The above code can be modified for Gaussian blurring:

blur = cv.GaussianBlur(img,(5,5),0)

Result:

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1

134

image

3. Median Blurring

Here, the function cv.medianBlur() takes the median of all the pixels under the kernel area and

the central element is replaced with this median value. This is highly effective against salt-and-

pepper noise in an image. Interestingly, in the above filters, the central element is a newly

calculated value which may be a pixel value in the image or a new value. But in median blurring,

the central element is always replaced by some pixel value in the image. It reduces the noise

effectively. Its kernel size should be a positive odd integer.

In this demo, I added a 50% noise to our original image and applied median blurring. Check the

result:

median = cv.medianBlur(img,5)

Result:

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9

135

image

4. Bilateral Filtering

cv.bilateralFilter() is highly effective in noise removal while keeping edges sharp. But the

operation is slower compared to other filters. We already saw that a Gaussian filter takes the

neighbourhood around the pixel and finds its Gaussian weighted average. This Gaussian filter is

a function of space alone, that is, nearby pixels are considered while filtering. It doesn't consider

whether pixels have almost the same intensity. It doesn't consider whether a pixel is an edge

pixel or not. So it blurs the edges also, which we don't want to do.

Bilateral filtering also takes a Gaussian filter in space, but one more Gaussian filter which is a

function of pixel difference. The Gaussian function of space makes sure that only nearby pixels

are considered for blurring, while the Gaussian function of intensity difference makes sure that

only those pixels with similar intensities to the central pixel are considered for blurring. So it

preserves the edges since pixels at edges will have large intensity variation.

The below sample shows use of a bilateral filter (For details on arguments, visit docs).

blur = cv.bilateralFilter(img,9,75,75)

https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed

136

Result:

image

See, the texture on the surface is gone, but the edges are still preserved.

UNIT III

I

mage enhancement in Frequency domain

Frequency domain analysis

Till now, all the domains in which we have analyzed a signal , we analyze it with respect to

time. But in frequency domain we don’t analyze signal with respect to time, but with respect of

frequency.

Difference between spatial domain and frequency domain

In spatial domain, we deal with images as it is. The value of the pixels of the image change with

respect to scene. Whereas in frequency domain, we deal with the rate at which the pixel values

are changing in spatial domain.

For simplicity, Let’s put it this way.

137

Spatial domain

In simple spatial domain, we directly deal with the image matrix. Whereas in frequency domain,

we deal an image like this.

Frequency Domain

We first transform the image to its frequency distribution. Then our black box system perform

what ever processing it has to performed, and the output of the black box in this case is not an

image, but a transformation. After performing inverse transformation, it is converted into an

image which is then viewed in spatial domain.

It can be pictorially viewed as

Here we have used the word transformation. What does it actually mean?

138

Transformation

A signal can be converted from time domain into frequency domain using mathematical

operators called transforms. There are many kind of transformation that does this. Some of them

are given below.

 Fourier Series

 Fourier transformation

 Laplace transform

 Z transform

Out of all these, we will thoroughly discuss Fourier series and Fourier transformation in our

next tutorial.

Frequency components

Any image in spatial domain can be represented in a frequency domain. But what do this

frequencies actually mean.

We will divide frequency components into two major components.

High frequency components

High frequency components correspond to edges in an image.

Low frequency components

Low frequency components in an image correspond to smooth regions.

Fourier

Fourier was a mathematician in 1822. He give Fourier series and Fourier transform to convert a

signal into frequency domain.

Fourier Series

Fourier series simply states that, periodic signals can be represented into sum of sines and

cosines when multiplied with a certain weight.It further states that periodic signals can be

broken down into further signals with the following properties.

139

 The signals are sines and cosines

 The signals are harmonics of each other

It can be pictorially viewed as

In the above signal, the last signal is actually the sum of all the above signals. This was the idea

of the Fourier.

How it is calculated

Since as we have seen in the frequency domain, that in order to process an image in frequency

domain, we need to first convert it using into frequency domain and we have to take inverse of

the output to convert it back into spatial domain. That’s why both Fourier series and Fourier

transform has two formulas. One for conversion and one converting it back to the spatial

domain.

Fourier series

The Fourier series can be denoted by this formula.

The inverse can be calculated by this formula.

140

Fourier transform

The Fourier transform simply states that that the non periodic signals whose area under the

curve is finite can also be represented into integrals of the sines and cosines after being

multiplied by a certain weight.

The Fourier transform has many wide applications that include, image compression (e.g JPEG

compression), filtering and image analysis.

Difference between Fourier series and transform

Although both Fourier series and Fourier transform are given by Fourier , but the difference

between them is Fourier series is applied on periodic signals and Fourier transform is applied

for non periodic signals

Which one is applied on images

Now the question is that which one is applied on the images , the Fourier series or the Fourier

transform. Well, the answer to this question lies in the fact that what images are. Images are non

– periodic. And since the images are non periodic, so Fourier transform is used to convert them

into frequency domain.

Discrete fourier transform

Since we are dealing with images, and in fact digital images, so for digital images we will be

working on discrete fourier transform

Consider the above Fourier term of a sinusoid. It include three things.

141

 Spatial Frequency

 Magnitude

 Phase

The spatial frequency directly relates with the brightness of the image. The magnitude of the

sinusoid directly relates with the contrast. Contrast is the difference between maximum and

minimum pixel intensity. Phase contains the color information.

The formula for 2 dimensional discrete Fourier transform is given below.

The discrete Fourier transform is actually the sampled Fourier transform, so it contains some

samples that denotes an image. In the above formula f(x,y) denotes the image, and F(u,v)

denotes the discrete Fourier transform. The formula for 2 dimensional inverse discrete Fourier

transform is given below.

The inverse discrete Fourier transform converts the Fourier transform back to the image

Consider this signal

Now we will see an image, whose we will calculate FFT magnitude spectrum and then shifted

FFT magnitude spectrum and then we will take Log of that shifted spectrum.

142

Original Image

The Fourier transform magnitude spectrum

The Shifted Fourier transform

143

The Shifted Magnitude Spectrum

For example

Consider this example.

The same image in the frequency domain can be represented as.

144

Now what’s the relationship between image or spatial domain and frequency domain. This

relationship can be explained by a theorem which is called as Convolution theorem.

Convolution Theorem

The relationship between the spatial domain and the frequency domain can be established by

convolution theorem.

The convolution theorem can be represented as.

It can be stated as the convolution in spatial domain is equal to filtering in frequency domain

and vice versa.

The filtering in frequency domain can be represented as following:

145

The steps in filtering are given below.

 At first step we have to do some pre – processing an image in spatial domain, means

increase its contrast or brightness

 Then we will take discrete Fourier transform of the image

 Then we will center the discrete Fourier transform, as we will bring the discrete Fourier

transform in center from corners

 Then we will apply filtering, means we will multiply the Fourier transform by a filter

function

 Then we will again shift the DFT from center to the corners

 Last step would be take to inverse discrete Fourier transform, to bring the result back

from frequency domain to spatial domain

 And this step of post processing is optional, just like pre processing , in which we just

increase the appearance of image.

Filters

The concept of filter in frequency domain is same as the concept of a mask in convolution.

After converting an image to frequency domain, some filters are applied in filtering process to

perform different kind of processing on an image. The processing include blurring an image,

sharpening an image e.t.c.

The common type of filters for these purposes are:

146

 Ideal high pass filter

 Ideal low pass filter

 Gaussian high pass filter

 Gaussian low pass filter

In the next tutorial, we will discuss about filter in detail.

Blurring masks vs derivative masks

We are going to perform a comparison between blurring masks and derivative masks.

Blurring masks

A blurring mask has the following properties.

 All the values in blurring masks are positive

 The sum of all the values is equal to 1

 The edge content is reduced by using a blurring mask

 As the size of the mask grow, more smoothing effect will take place

Derivative masks

A derivative mask has the following properties.

 A derivative mask have positive and as well as negative values

 The sum of all the values in a derivative mask is equal to zero

 The edge content is increased by a derivative mask

 As the size of the mask grows , more edge content is increased

Relationship between blurring mask and derivative mask with high pass filters and low

pass filters.

The relationship between blurring mask and derivative mask with a high pass filter and low pass

filter can be defined simply as.

 Blurring masks are also called as low pass filter

 Derivative masks are also called as high pass filter

147

High pass frequency components and Low pass frequency components

The high pass frequency components denotes edges whereas the low pass frequency

components denotes smooth regions.

Ideal low pass and Ideal High pass filters

This is the common example of low pass filter.

When one is placed inside and the zero is placed outside , we got a blurred image. Now as we

increase the size of 1, blurring would be increased and the edge content would be reduced.

This is a common example of high pass filter.

When 0 is placed inside, we get edges, which gives us a sketched image. An ideal low pass

filter in frequency domain is given below.

148

The ideal low pass filter can be graphically represented as

Now let’s apply this filter to an actual image and let’s see what we got.

Sample image

149

Image in frequency domain

Applying filter over this image

Resultant Image

With the same way, an ideal high pass filter can be applied on an image. But obviously the

results would be different as, the low pass reduces the edged content and the high pass increase

it.

150

Gaussian Low pass and Gaussian High pass filter

Gaussian low pass and Gaussian high pass filter minimize the problem that occur in ideal low

pass and high pass filter.

This problem is known as ringing effect. This is due to reason because at some points transition

between one color to the other cannot be defined precisely, due to which the ringing effect

appears at that point.

Have a look at this graph.

This is the representation of ideal low pass filter. Now at the exact point of Do, you cannot tell

that the value would be 0 or 1. Due to which the ringing effect appears at that point.

So in order to reduce the effect that appears is ideal low pass and ideal high pass filter, the

following Gaussian low pass filter and Gaussian high pass filter is introduced.

Gaussian Low pass filter

The concept of filtering and low pass remains the same, but only the transition becomes

different and become more smooth.

The Gaussian low pass filter can be represented as

151

Note the smooth curve transition, due to which at each point, the value of Do, can be exactly

defined.

Gaussian high pass filter

Gaussian high pass filter has the same concept as ideal high pass filter, but again the transition

is more smooth as compared to the ideal one.

Continuous 1D Fourier Transform

The Fourier Series previously considered is intended for use with periodic signals. More general

signals may exhibit some locally periodic components, but are not, in general, periodic. The

Fourier transform and the inverse Fourier transform allow for the conversion of any signal to the

frequency domain and back again to either the time or spatial domain.

We consider one dimensional signals only as steps towards the 2-D Fourier transform of images.

One dimensional continuous and discrete signals provide simpler cases for learning some of the

important properties of frequency domain data.

Fourier Transform

http://faculty.salina.k-state.edu/tim/mVision/freq-domain/fourier.html#fourier

152

Where is a continuous frequency in radians/sec.

Inverse Fourier Transform

Properties

 is continuous and may be complex.

 is complex and continuous.

 is complex, but if was real, then .

 Although it is a bit hard to think about negative frequencies, they are a

mathematical necessity. This is because of the cyclical nature of the complex

exponential. The values of the complex exponential over the range are

the same as for the equivalent range .

 Common Fourier Transform Pairs

Below are some common frequency and time domain pairs. These results will be

useful to us for explaining other properties later.

153

154

The Complex Exponential Basis Function

Note

Recall that a complex number is one containing a real component and an imaginary component.

Imaginary numbers are multiplied by the imaginary number, .

Mathematicians usually use the variable as the imaginary number. Engineers, however, prefer

to use the variable . Equations involving complex numbers often involve variables representing

voltage and current in a circuit. In electrical circuits, is always current, so to avoid confusion,

the variable is used for the imaginary number.

As we saw, the Fourier Series generates a periodic signal as a sum of weighted sinusoidal

signals. The Fourier transform extends the Fourier series to convert any continuously integrable

signals into the frequency domain. The coefficients in the frequency domain are complex

numbers to quantify both the magnitude and phase of the spectrum over a range of frequencies.

In both the Fourier transform (FT) and inverse Fourier transform (IFT), we use the complex

exponential basis function for the sinusoidal foundation of the transforms. The coefficients are

calculated as a sum of products between the signal and the set of complex, sinusoidal basis

functions. The complex exponential basis function is defined by what is called Euler’s formula.

http://faculty.salina.k-state.edu/tim/mVision/freq-domain/fourier.html#fourier
http://faculty.salina.k-state.edu/tim/mVision/glossary.html#term-basis-function

155

Leonhard Euler (1707 - 1783)

Euler What?!

Most people find Euler’s formula quite puzzling when they first see it. We know that is the

imaginary number , but what is and what does it have to do with the and ?

The number

Like the number , the number is a constant irrational number with a

significant influence on the mathematics of how things work. The value of is defined in terms

of a limit.

Here are the limits of exponentials that we already know about and also the limits defining the

number and also .

http://faculty.salina.k-state.edu/tim/mVision/_images/Leonhard_Euler.jpg

156

The function has a couple properties that make it special.

 is the only known function that the derivative of the function is itself. This

causes to be in the solution to many differential equation problems. Some examples

where you will find are: the voltage on a capacitor as a function of time, the decay of

radioactivity of the nucleus of an unstable atom, and the probability density function of a

Gaussian random variable.

 Euler’s formula, which we will tackle next.

Derivation of Euler’s Formula

We can see how relates to the and functions by looking at the MacLaurin

series for these functions. A MacLaurin series is a Taylor series expansion about at the point

zero.

If you are like I was as an undergraduate, Taylor and MacLaurin series expansions where among

my least favorite parts of calculus class. However, they have two important virtues.

1. They are useful for numeric calculations. Many years ago, before the days of computers

and calculators, tables were used to find the value of many math functions. The people

with the jobs of computing these tables often used Taylor and MacLaurin series to

calculate the values in the tables. Calculators and computers might also use these series

for internally calculating the values of some functions.

2. There are some mathematical properties of functions that can only be observed by

considering these series. This is the case with Euler’s formula for complex exponentials.

157

The needed MacLaurin series are:

Now replace in the equations for with . Remember that .

Numerical Proof

Okay, if the derivation from the MacLaurin series didn’t convince you, we can try some

numerical analysis to show that complex exponentials can actually produce complex, sinusoidal

functions?

We can use MATLAB and the definition of from a limit and verify if Euler knew what he was

talking about or not. In the following MATLAB script, we just assign to be a fairly large

number. Since the definition uses a limit as goes to infinity, the results become more accurate

when larger value for are used.

% let n = some big number

n=100000;

z=linspace(0,2*pi);% test 100 numbers between 0 and 2*pi

158

% Now show that e^jz = cos(z) + j*sin(z)

% Begin with definition of value of e^z.

% e^z = lim(n = infinity) (1 + z/n)^n

eulerValues=complex(1,z/n).^n;

% This should plot a unit circle, just like

% figure, plot(cos(z), sin(z));

figure,plot(real(eulerValues),imag(eulerValues));

Points along a complex unit circle - Numerical proof of Euler’s formula

Note

159

One might reasonably suspect that MATLAB, being aware of Euler’s formula, cheated on

calculating the complex exponential. That is, it probably converted the complex number to polar

coordinates before doing the exponential calculation.

To complete the numerical proof, we can write a MATLAB function to do the complex

exponential calculation by brute force. We will do this as a class activity and we will see the

same result, which demonstrates the numerical validity of Euler’s formula.

Two-Dimensional Fourier Transform

Fourier transform can be generalized to higher dimensions. For example, many

signals are functions of 2D space defined over an x-y plane. Two-dimensional Fourier

transform also has four different forms depending on whether the 2D signal is periodic and

discrete.

 Aperiodic, continuous signal, continuous, aperiodic spectrum

160

where and are spatial frequencies in and directions, respectively,

and is the 2D spectrum of .

 Aperiodic, discrete signal, continuous, periodic spectrum

where and are the spatial intervals between consecutive signal samples in

the and directions, respectively, and and are sampling

rates in the two directions, and they are also the periods of the spectrum .

 Periodic, continuous signal, discrete, aperiodic spectrum

161

where and are periods of the signal in and directions, respectively,

and and are the intervals between consecutive samples in the

spectrum .

 Periodic, discrete signal, discrete and periodic spectrum

162

where and are the numbers of samples

in and directions in both spatial and spatial frequency domains, respectively,

and is the 2D discrete spectrum of . Both and can

be considered as elements of two by matrices and , respectively.

Physical Meaning of 2DFT

Consider the Fourier transform of continuous, aperiodic signal (the result is easily generalized to

other cases):

The inverse transform represents the spatial function as a linear combination

of complex exponentials with complex weights .

 The Complex weight can be represented in polar form as

163

in terms of its amplitude and phase :

 The Complex exponential can be represented as

where , and

o is the unit vector along direction ,

o is a vector along the direction in the 2D spatial domain.

The inner product represents the projection of a spatial point onto

the direction of . As all points on a straight line perpendicular to the direction

of have the same projection, represents a planar sinusoid

in the x-y plane along the direction (i.e.)

with frequency .

164

165

In the function on top, (2 cycles per unit

distance in x) and and (3 cycles per unit distance in y), while in the

function at bottom, (3 cycles per unit distance

in x) and (2 cycles per unit distance in y). But along their individual

directions (and respectively), their spatial

frequencies are the same .

166

Now the 2DFT of a signal can be written as:

which represents a signal as a linear combination (integration) of infinite 2D spatial

planar sinusoids of

 ,

 ,

The 2D function shown below contains three frequency components (2D sinusoidal waves) of

different frequencies and directions:

167

Matrix Form of 2D DFT

Consider the 2D DFT:

where, as defined before

We further define

168

and rewrite the 2D transform as

The above two equations are the two steps for a 2D transform:

1. Column Transform:

First consider the expression for . As the summation is with respect to the row

index of , the column index can be treated as a parameter, and the

expression is the 1D Fourier transform of the nth column vector of , which can be

written in column vector (vertical) form for the nth column:

or more concisely

169

i.e., the nth column of is the 1D FT of the nth column of . Putting all columns

together, we have

or more concisely

where is a by Fourier transform matrix.

2. Row Transform:

Now we reconsider the 2DFT expression above

As the summation is with respective to the column index n of , the row

index can be treated as a parameter, and the expression is the 1D Fourier transform of

the kth row vector of , which can be written in row vector (horizontal) form for the

kth row:

170

or more concisely

i.e., the kth row of is the 1D FT of the kth row of . Putting all rows together,

we have

or more concisely

But as , we finally have

This expression indicates that 2D DFT can be carried out by 1D transforming all the rows of the

2D signal and then 1D transforming all the columns of the resulting matrix. The order of the

steps is not important. The transform can also be carried out by the column transform followed

by the row transform.

Similarly, the inverse 2D DFT can be written as

171

It is obvious that the complexity of 2D DFT is (assuming), which can be

reduced to if FFT is used.

A 2D DFT Example

Consider a real 2D signal:

The imaginary part . The 2D Fourier spectrum of this signal can be found by 2D

DFT. The real part of the spectrum is:

and the imaginary part of the spectrum is:

172

Pay close attention to the even and odd symmetry of the spectrum.

Frequency Domain Filters are used for smoothing and sharpening of image by removal of

high or low frequency components. Sometimes it is possible of removal of very high and very

low frequency. Frequency domain filters are different from spatial domain filters as it basically

focuses on the frequency of the images. It is basically done for two basic operation i.e.,

Smoothing and Sharpening.

These are of 3 types:

1. Low pass filter:

Low pass filter removes the high frequency components that means it keeps low frequency

components. It is used for smoothing the image. It is used to smoothen the image by

173

attenuating high frequency components and preserving low frequency components.

Mechanism of low pass filtering in frequency domain is given by:

G(u, v) = H(u, v) . F(u, v)

where F(u, v) is the Fourier Transform of original image

and H(u, v) is the Fourier Transform of filtering mask

2. High pass filter:

High pass filter removes the low frequency components that means it keeps high frequency

components. It is used for sharpening the image. It is used to sharpen the image by attenuating

low frequency components and preserving high frequency components.

Mechanism of high pass filtering in frequency domain is given by:

H(u, v) = 1 - H'(u, v)

where H(u, v) is the Fourier Transform of high pass filtering

and H'(u, v) is the Fourier Transform of low pass filtering

3. Band pass filter:

Band pass filter removes the very low frequency and very high frequency components that

means it keeps the moderate range band of frequencies. Band pass filtering is used to enhance

edges while reducing the noise at the same time.

 Sign In

 Home

 Courses

o Algorithms

o Data Structures

o Languages

o Interview Corner

o GATE

o CS Subjects

https://auth.geeksforgeeks.org/?to=https://www.geeksforgeeks.org/types-of-restoration-filters/
https://www.geeksforgeeks.org/?ref=ghm
https://practice.geeksforgeeks.org/?ref=ghm

174

o Web Technologies

o School Learning

o Student

o Jobs

 GBlog

 Puzzles

 What's New ?

Select

LanguageAfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosn

ianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese

(Traditional)CorsicanCroatianCzechDanishDutchEsperantoEstonianFilipinoFinnishFrenchFrisia

nGalicianGeorgianGermanGreekGujaratiHaitian

CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapane

seJavaneseKannadaKazakhKhmerKinyarwandaKoreanKurdish

(Kurmanji)KyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalay

alamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianOdia

(Oriya)PashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScots

GaelicSerbianSesothoShonaSindhiSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwe

dishTajikTamilTatarTeluguThaiTurkishTurkmenUkrainianUrduUyghurUzbekVietnameseWelsh

XhosaYiddishYorubaZulu

Powered by Translate

Change Language

Related Articles

▲

Types of Restoration Filters

 Last Updated : 06 Dec, 2019

https://www.geeksforgeeks.org/category/guestblogs/?ref=ghm
https://www.geeksforgeeks.org/puzzles/?ref=ghm
https://www.geeksforgeeks.org/geeks-classes-geeksforgeeks/?ref=ghm
https://translate.google.com/

175

Restoration Filters are the type of filters that are used for operation of noisy image and

estimating the clean and original image. It may consists of processes that are used for blurring

or the reverse processes that are used for inverse of blur. Filter used in restoration is different

from the filter used in enhancement process.

Types of Restoration Filters:

There are three types of Restoration Filters: Inverse Filter, Pseudo Inverse Filter, and Wiener

Filter. These are explained as following below.

1. Inverse Filter:

Inverse Filtering is the process of receiving the input of a system from its output. It is the

simplest approach to restore the original image once the degradation function is known.

It can be define as:

H'(u, v) = 1 / H(u, v)

Let,

F'(u, v) -> Fourier transform of the restored image

G(u, v) -> Fourier transform of the degraded image

H(u, v) -> Estimated or derived or known degradation function

then F'(u, v) = G(u, v)/H(u, v)

where, G(u, v) = F(u, v).H(u, v) + N(u, v)

and F'(u, v) = f(u, v) - N(u, v)/H(u, v)

Note: Inverse filtering is not regularly used in its original form.

2. Pseudo Inverse Filter:

Pseudo inverse filter is the modified version of the inverse filter and stabilized inverse filter.

Pseudo inverse filtering gives more better result than inverse filtering but both inverse and

pseudo inverse are sensitive to noise.

Pseudo inverse filtering is defined as:

176

H'(u, v) = 1/H(u, v), H(u, v)!=0

H'(u, v) = 0, otherwise

3. Wiener Filter:

(Minimum Mean Square Error Filter). Wiener filter executes and optimal trade off between

filtering and noise smoothing. IT removes the addition noise and inputs in the blurring

simultaneously. Weiner filter is real and even.

It minimizes the overall mean square error by:

e^2 = F{(f-f')^2}

where, f -> original image

f' -> restored image

E{.} -> mean value of arguments

H(u, v) = H'(u, v)/(|H(u, v)|^2 + (Sn(u, v)/Sf(u, v))

where H(u, v) -> Transform of degradation function

Sn(u, v) -> Power spectrum of the noise

Sf(u, v) -> Power spectrum of the undergraded original image

Butterworth Lowpass Filter (BLPF)

In the field of Image Processing, Butterworth Lowpass Filter (BLPF) is used for image

smoothing in the frequency domain. It removes high-frequency noise from a digital image

and preserves low-frequency components. The transfer function of BLPF of order is

defined as-

Where,

 is a positive constant. BLPF passes all the frequencies less than value without

attenuation and cuts off all the frequencies greater than it.

177

 This is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed

as cutoff frequency. But instead of making a sharp cut-off (like,Ideal Lowpass Filter

(ILPF)), it introduces a smooth transition from 1 to 0 to reduce ringing artifacts.

 s the Euclidean Distance from any point (u, v) to the origin of the frequency

plane, i.e,

Gaussian Low pass filter

Gaussian Smoothing

Common Names: Gaussian smoothing

Brief Description

The Gaussian smoothing operator is a 2-D convolution operator that is used to `blur' images

and remove detail and noise. In this sense it is similar to the mean filter, but it uses a

different kernel that represents the shape of a Gaussian (`bell-shaped') hump. This kernel has

some special properties which are detailed below.

How It Works

The Gaussian distribution in 1-D has the form:

https://www.geeksforgeeks.org/matlab-ideal-lowpass-filter-in-image-processing/
https://www.geeksforgeeks.org/matlab-ideal-lowpass-filter-in-image-processing/
https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm

178

where is the standard deviation of the distribution. We have also assumed that the

distribution has a mean of zero (i.e. it is centered on the line x=0). The distribution is

illustrated in Figure 1.

Figure 1 1-D Gaussian distribution with mean 0 and =1

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:

This distribution is shown in Figure 2.

179

Figure 2 2-D Gaussian distribution with mean (0,0) and =1

The idea of Gaussian smoothing is to use this 2-D distribution as a `point-spread' function,

and this is achieved by convolution. Since the image is stored as a collection of discrete pixels

we need to produce a discrete approximation to the Gaussian function before we can perform

the convolution. In theory, the Gaussian distribution is non-zero everywhere, which would

require an infinitely large convolution kernel, but in practice it is effectively zero more than

about three standard deviations from the mean, and so we can truncate the kernel at this point.

Figure 3 shows a suitable integer-valued convolution kernel that approximates a Gaussian

with a of 1.0. It is not obvious how to pick the values of the mask to approximate a

Gaussian. One could use the value of the Gaussian at the centre of a pixel in the mask, but this

is not accurate because the value of the Gaussian varies non-linearly across the pixel. We

integrated the value of the Gaussian over the whole pixel (by summing the Gaussian at 0.001

increments). The integrals are not integers: we rescaled the array so that the corners had the

value 1. Finally, the 273 is the sum of all the values in the mask.

180

Figure 3 Discrete approximation to Gaussian function with =1.0

Once a suitable kernel has been calculated, then the Gaussian smoothing can be performed

using standard convolution methods. The convolution can in fact be performed fairly quickly

since the equation for the 2-D isotropic Gaussian shown above is separable

into x and y components. Thus the 2-D convolution can be performed by first convolving with

a 1-D Gaussian in the x direction, and then convolving with another 1-D Gaussian in

the y direction. (The Gaussian is in fact the only completely circularly symmetric operator

which can be decomposed in such a way.) Figure 4 shows the 1-D x component kernel that

would be used to produce the full kernel shown in Figure 3 (after scaling by 273, rounding

and truncating one row of pixels around the boundary because they mostly have the value 0.

This reduces the 7x7 matrix to the 5x5 shown above.). The y component is exactly the same

but is oriented vertically.

Figure 4 One of the pair of 1-D convolution kernels used to calculate the full

kernel shown in Figure 3 more quickly.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm

181

A further way to compute a Gaussian smoothing with a large standard deviation is to

convolve an image several times with a smaller Gaussian. While this is computationally

complex, it can have applicability if the processing is carried out using a hardware pipeline.

The Gaussian filter not only has utility in engineering applications. It is also attracting

attention from computational biologists because it has been attributed with some amount of

biological plausibility, e.g. some cells in the visual pathways of the brain often have an

approximately Gaussian response.

Guidelines for Use

The effect of Gaussian smoothing is to blur an image, in a similar fashion to the mean filter.

The degree of smoothing is determined by the standard deviation of the Gaussian. (Larger

standard deviation Gaussians, of course, require larger convolution kernels in order to be

accurately represented.)

The Gaussian outputs a `weighted average' of each pixel's neighborhood, with the average

weighted more towards the value of the central pixels. This is in contrast to the mean filter's

uniformly weighted average. Because of this, a Gaussian provides gentler smoothing and

preserves edges better than a similarly sized mean filter.

One of the principle justifications for using the Gaussian as a smoothing filter is due to its

frequency response. Most convolution-based smoothing filters act as lowpass frequency

filters. This means that their effect is to remove high spatial frequency components from an

image. The frequency response of a convolution filter, i.e. its effect on different spatial

frequencies, can be seen by taking the Fourier transform of the filter. Figure 5 shows the

frequency responses of a 1-D mean filter with width 5 and also of a Gaussian filter with =

3.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm

182

Figure 5 Frequency responses of Box (i.e. mean) filter (width 5 pixels) and

Gaussian filter (= 3 pixels). The spatial frequency axis is marked in cycles

per pixel, and hence no value above 0.5 has a real meaning.

Both filters attenuate high frequencies more than low frequencies, but the mean filter exhibits

oscillations in its frequency response. The Gaussian on the other hand shows no oscillations. In fact,

the shape of the frequency response curve is itself (half a) Gaussian. So by choosing an appropriately

sized Gaussian filter we can be fairly confident about what range of spatial frequencies are still

present in the image after filtering, which is not the case of the mean filter. This has consequences

for some edge detection techniques, as mentioned in the section on zero crossings. (The Gaussian

filter also turns out to be very similar to the optimal smoothing filter for edge detection under the

criteria used to derive the Canny edge detector.)

Ideal High pass filter

In the field of Image Processing, Ideal Highpass Filter (IHPF) is used for image

sharpening in the frequency domain. Image Sharpening is a technique to enhance the fine

details and highlight the edges in a digital image. It removes low-frequency components

from an image and preserves high-frequency components.

This ideal highpass filter is the reverse operation of the ideal lowpass filter. It can be

determined using the following relation-

https://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

183

where, is the transfer function of the highpass filter

and is the transfer function of the corresponding lowpass filter.

The transfer function of the IHPF can be specified by the function-

Where,

 is a positive constant. IHPF passes all the frequencies outside of a circle of

radius from the origin without attenuation and cuts off all the frequencies within

the circle.

 This is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed

as cutoff frequency.

 is the Euclidean Distance from any point (u, v) to the origin of the

frequency plane, i.e,

In the field of Image Processing, Butterworth Highpass Filter (BHPF) is used for image

sharpening in the frequency domain. Image Sharpening is a technique to enhance the fine

details and highlight the edges in a digital image. It removes low-frequency components

from an image and preserves high-frequency components.

184

This Butterworth highpass filter is the reverse operation of the Butterworth lowpass filter. It

can be determined using the relation-

 where, is the transfer

function of the highpass filter and is the transfer function of the

corresponding lowpass filter.

The transfer function of BHPF of order is defined as-

Where,

 is a positive constant. BHPF passes all the frequencies greater than value

without attenuation and cuts off all the frequencies less than it.

 This is the transition point between H(u, v) = 1 and H(u, v) = 0, so this is termed

as cutoff frequency. But instead of making a sharp cut-off (like,Ideal Highpass Filter

(IHPF)), it introduces a smooth transition from 0 to 1 to reduce ringing artifacts.

 is the Euclidean Distance from any point (u, v) to the origin of the

frequency plane,.

UNIT IV

Image Restoration :

Image restoration is performed by reversing the process that blurred theimage and such is

performed by imaging a point source and use the point source image, which is called

the Point Spread Function (PSF) to restorethe image information lost to the blurring

process

Mean Filters

In this section we discuss briefly the noise-reduction spatial filters introduced in Section 3.6

and develop several other filters whose performance is in many cases superior to the filters

discussed in that section.

https://www.geeksforgeeks.org/matlab-ideal-highpass-filter-in-image-processing/
https://www.geeksforgeeks.org/matlab-ideal-highpass-filter-in-image-processing/

185

Arithmetic mean filter

This is the simplest of the mean filters. Let Sxv represent the set of coordinates in a

rectangular subimage window of size m X n, centered at point (x, y).The arithmetic mean

filtering process computes the average value of the corrupted image g(x, y) in the area defined

by Sxy.The value of the restored image at any point (x, y) is simply the arithmetic mean

computed using the pixels in the region defined by S. In other words.

This operation can be implemented using a convolution mask in which ail coefficients have

value 1/mn. As discussed in Section 3.6.1, a mean filter simply smoothes local variations in

an image. Noise is reduced as a result of blurring.

Geometric mean filter

An image restored using a geometric mean filter is given by the expression

Here, each restored pixel is given by the product of the pixels in the subimage window, raised

to the power 1/mn. As shown in Example 52, a geometric mean filter achieves smoothing

comparable to the arithmetic mean filter, but it tends to lose less image detail in the process.

Harmonic mean filter

The harmonic mean filtering operation is given by the expression

186

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does well

also with other types of noise tike Gaussian noise.

Contraharmonic mean filter

The contraharmonic mean filtering operation yields a restored image based on the expression

where Q is called the order of the filter. This filter is well suited for reducing or virtually

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter eliminates

pepper noise. For negative values of Q it eliminates salt noise. It cannot do both

simultaneously. Note that the contraharmonic filter reduces to the arithmetic mean filter if Q

= 0, and to the harmonic mean filter if Q = - 1

5.3.2 Order-Statistics Filters

Order-statistics filters were introduced in Section 3.6.2. We now expand the dis¬cussion in

that section and introduce some additional order-statistics filters. As noted in Section 3.6.2,

order-statistics filters are spatial filters whose response is based on ordering (ranking) the

pixels contained in the image area encom¬passed by the filter. The response of the filter at

any point is determined by the ranking result

Median filter

The best-known order-statistics filter is the median filter, which, as its name implies, replaces

the value of a pixel by the median of the gray levels in the neighborhood of that pixel:

187

The original value of the pixel is included in the computation of the median. Median filters

are quite popular because, for certain types of random noise, they provide excellent noise-

reduction capabilities, with considerably less blurring than linear smoothing filters of similar

size. Median filters are particularly effective in the presence of both bipolar and unipolar

impulse noise. In fact, as Ex¬ample 5.3 shows, the median filter yields excellent results for

images corrupted by this type of noise. Computation of the median and implementation of this

filter are discussed in detail in Section 3.6.2.

Max and min filters

Although the median filter is by far the order-statistics filter most used in image processing.it

is by no means the only one. The median represents the 50th percentile of a ranked set of

numbers, but the reader will recall from basic statis¬tics that ranking lends itself to many

other possibilities. For example, using the 100th perccntile results in the so-called max filter

given by:

This filter is useful for finding the brightest points in an image. Also, because pep¬per noise

has very low values, it is reduced by this filter as a result of the max selection process in the

subimage area S. The 0th percentile filter is the Min filter.

Adaptive Filtering

Adaptive filters are designed to address this question, and are the third and final class of

spatial image filters we shall explore. The premise behind adaptive image filtering is that by

188

varying the filtering method as the kernel slides across the image (in the same manner as the

convolution operation), they are able to tailor themselves to the local properties and structures

of an image. In essence, they can be thought of as self-adjusting digital filters. While certain

types of adaptive filters may perform better than median filters at removing impulse noise

(these are mostly variations on the basic median filtering scheme), they are most often used

for denoising non-stationary images, which tend to exhibit abrupt intensity changes. Because

the filtering operation is no longer purely uniform and instead modulated based on the local

characteristics of the image, these filters can be employed effectively when there is little a

priori knowledge of the signal being processed.

Adaptive filters find widespread use in countering the effects of so-called "speckle" noise,

which afflicts coherent imaging systems like SAR and ultrasound. With these imaging

techniques, scattered waves interfere with one another to contaminate an acquired image with

multiplicative speckle noise. Various statistical models of speckle noise exist, with one of the

more common being

where g is the corrupted image and n(x,y) is drawn from a zero-mean Gaussian distribution

with a given standard deviation. It is clear from the above model that speckle noise is

dependent on the magnitude of the signal f, and in fact this type of noise is a serious

impediment on the interpretability of image data because it degrades both spatial and contrast

resolution. This situation is shown with a real-world example in Figure 4-24, where an

ultrasound image exhibiting a fairly large amount of speckle noise is enhanced, illustrating

the utility of adaptive filtering.

http://what-when-how.com/wp-content/uploads/2011/09/tmp6239.png

189

Figure 4-24. Ultrasound speckle noise removal, (a) Unprocessed ultrasound image of

kidney anatomy, (b) Smoothed image (5×5 averaging filter), which while reducing

speckle seriously degrades spatial resolution, (c) Result of adaptive filtering, using

MATLAB wiener2 Image-Processing Toolkit function, (d) Commercial quality speckle

tioise reduction, where image is despeckled using an adaptive geometric filter and then

edge sharpened.

Adaptive filters are effective in reducing the deleterious effects of speckle noise because

they are capable of adjusting themselves based on the signal content of the image. Thus it

follows that they must use some measure of the local characteristics of the image in order to

perform their job. Many adaptive filters are predicated on the use of local pixel statistics,

primarily the mean and variance of the pixels within the current neighborhood. The local

mean is simply the average pixel intensity of the neighborhood. The local variance is

calculated in two stages from the pixels contained within the current neighborhood. First, the

mean of the sum of the squares is computed, and then the square of the local mean is

http://what-when-how.com/wp-content/uploads/2011/09/tmp6240.jpg

190

subtracted from this number yielding a statistical quantity known as the variance, very often

referred to as a2. In mathematical terms, these image statistics can be expressed as

where /is the image and each neighborhood is of size NHxNH pixels. The standard deviation

of the neighborhood is the square root of the variance, or a.

The Minimal Mean Square Error Filter

The adaptive filter we spend the majority of time on in this section is the Minimal Mean

Square Error (MMSE) filter. This filter can be used to remove both additive white noise and

speckle noise. Consider an observed image f(i,j) and a neighborhood L of size NHxNH. Let

cr2 be the noise variance, be the local mean, and <j\ be the local variance. The cr2 parameter

is the variance of a representative background area of the image containing nothing but noise

(a technique for estimating this parameter is given later). The linear MMSE filter output is

then given by26

This equation describes a linear interpolation between the observed image /and a smoothed

version off. Care should be taken to handle the case where

http://what-when-how.com/wp-content/uploads/2011/09/tmp6241.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6242.png

191

in which case a negative output pixel may result (the MMSE filter implemented later in this

section clamps the ratio The MMSE filter works as follows:

1. If the local variance is much greater than the noise variance, or if is small or zero, it

produces a value close to the input f(i,j). If this part of the image most

likely contains an edge and this filter makes the assumption that it is best to leave that portion

of the image alone.

2. If the noise variance dominates over the local variance, return the local mean.

3. If the two variance measures are more or less equal, the filter returns a mixture between the

input and local mean.

This filter is edge-preserving because of (1), and consequently should tend to retain overall

image sharpness, although noise will not be filtered from those portions of the image

containing edges. Algorithm 4-2 describes the MMSE filter in pseudo-code form.

High-Pass Filters

The concept of high-pass filtering is to remove lower frequency content while keeping higher

frequencies. With image processing, this, by it self, yields undesirable results. Particularly,

removing the overall brightness represented at position (0, 0) of the image in the frequency

domain is not desired. Thus, to preserve the low-frequency content while emphasising the

high-frequency content we alter the transfer function with a high-frequency emphasis

equation.

A value of one for both and is common.

http://what-when-how.com/wp-content/uploads/2011/09/tmp6243.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6244.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6245.png
http://what-when-how.com/wp-content/uploads/2011/09/tmp6246.png

192

ideal high-pass filter

Gaussian high-pass filter

Butterworth high-pass filter

 Band-reject Filters

Band-reject and Band-Pass filters are used less in image processing than low-pass and high-

pass filters.

Band-reject filters (also called band-stop filters) suppress frequency content within a range

between a lower and higher cutoff frequency. The parameter here is the center frequency

of the reject band.

ideal band-reject filter

Gaussian band-reject filter

Butterworth band-reject filter

193

Band-Pass Filters

A band-pass filter is the opposite of a band-reject filter. It only passes frequency content

within a range. A band-pass filter is obtained from a band-reject filter.

Notch Filter

Notch filters, also commonly referred to as band-stop or band-rejection filters, are designed to

transmit most wavelengths with little intensity loss while attenuating light within a specific

wavelength range (the stop band) to a very low level. They are essentially the inverse

of bandpass filters, which offer high in-band transmission and high out-of-band rejection so

as to only transmit light within a small wavelength range. See the Transmission

Graphs and OD Graphs tabs for the performance over the passbands and blocking region.

Notch filters are useful in applications where one needs to block light from a laser. For

instance, to obtain good signal-to-noise ratios in Raman spectroscopy experiments, it is

critical that light from the pump laser be blocked. This is achieved by placing a notch filter in

the detection channel of the setup. In addition to spectroscopy, notch filters are commonly

used in laser-based fluorescence instrumentation and biomedical laser systems.

As with all dielectric stack filters, the transmission is dependent on the angle of incidence

(AOI). The central wavelength of the blocking region will shift to shorter wavelengths as the

AOI is increased. The AOI Graphs tab shows the transmission of s- and p-polarized light as a

function of wavelength changes for different AOI.

Thorlabs' notch filters feature a dielectric coating on a polished glass substrate, which has

excellent environmental durability. The dielectric stack provides high rejection through

destructive interference and reflection in the stop band: the optical density is greater than 6.0

(corresponding to a transmission of less than 0.0001%) within the stop band. See the table

below for available stop band center wavelengths. Regardless of the filter chosen, the

transmitted beam's wavefront error for light at normal incidence will be less than λ/2 at 633

nm. These filters also have an AR coating on the back surface to ensure >90% average

transmission within the passbands.

https://www.thorlabs.com/Navigation.cfm?guide_ID=2210

194

Each filter is housed in a black anodized aluminum ring that is labeled with an arrow

indicating the design propagation direction. The ring makes handling easier and enhances the

blocking OD by limiting scattering. These filters can be mounted in our extensive line of filter

mounts and wheels. As the mounts are not threaded, Ø1" retaining rings will be required to

mount the filters in one of our internally-threaded SM1 lens tubes. We do not recommend

removing the filter from its mount as the risk of damaging the filter is very high. However,

select filters are available unmounted as well as in custom sizes; contact Tech Support for

more details.

Image Segmentation

What is the Process of Image Segmentation?

A digital image is made up of various components that need to be “analysed”, let’s use that

word for simplicity sake and the “analysis” performed on such components can reveal a lot of

hidden information from them. This information can help us address a plethora of business

problems – which is one of the many end goals that are linked with image processing.

Image Segmentation is the process by which a digital image is partitioned into various

subgroups (of pixels) called Image Objects, which can reduce the complexity of the image,

and thus analysing the image becomes simpler.

We use various image segmentation algorithms to split and group a certain set of pixels

together from the image. By doing so, we are actually assigning labels to pixels and the pixels

with the same label fall under a category where they have some or the other thing common in

them.

Using these labels, we can specify boundaries, draw lines, and separate the most required

objects in an image from the rest of the not-so-important ones. In the below example, from a

main image on the left, we try to get the major components, e.g. chair, table etc. and hence all

the chairs are colored uniformly. In the next tab, we have detected instances, which talk about

individual objects, and hence the all the chairs have different colors.

https://www.thorlabs.com/navigation.cfm?Guide_ID=77
https://www.thorlabs.com/navigation.cfm?Guide_ID=77
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1535
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3307
mailto:techsupport@thorlabs.com

195

This is how different methods of segmentation of images work in varying degrees of

complexity and yield different levels of outputs.

Image Source: stackexchange.com

From a machine learning point of view, later, these identified labels can be further used for

both supervised and unsupervised training and hence simplifying and solving a wide variety

of business problems. This is a simpler overview of segmentation in Image Processing. Let’s

try to understand the use cases, methodologies, and algorithms used in this article.

Need for Image Segmentation & Value Proposition

The concept of partitioning, dividing, fetching, and then labeling and later using that

information to train various ML models have indeed addressed numerous business problems.

In this section, let’s try to understand what problems are solved by Image Segmentation.

A facial recognition system implements image segmentation, identifying an employee and

enabling them to mark their attendance automatically. Segmentation in Image Processing is

being used in the medical industry for efficient and faster diagnosis, detecting diseases,

196

tumors, and cell and tissue patterns from various medical imagery generated from

radiography, MRI, endoscopy, thermography, ultrasonography, etc.

Satellite images are processed to identify various patterns, objects, geographical contours, soil

information etc., which can be later used for agriculture, mining, geo-sensing, etc. Image

segmentation has a massive application area in robotics, like RPA, self-driving cars, etc.

Security images can be processed to detect harmful objects, threats, people and incidents.

Image segmentation implementations in python, Matlab and other languages are extensively

employed for the process.

A very interesting case I stumbled upon was a show about a certain food processing factory

on the Television, where tomatoes on a fast-moving conveyer belt were being inspected by a

computer. It was taking high-speed images from a suitably placed camera and it was passing

instructions to a suction robot which was pick up rotten ones, unripe ones, basically, damaged

tomatoes and allowing the good ones to pass on.

This is a basic, but a pivotal and significant application of Image Classification, where the

algorithm was able to capture only the required components from an image, and those pixels

were later being classified as the good, the bad, and the ugly by the system. A rather simple

looking system was making a colossal impact on that business – eradicating human effort,

human error and increasing efficiency.

Image Segmentation is very widely implemented in Python, along with other classical

languages like Matlab, C/C++ etc. More likey so, Image segmentation in python has been the

most sought after skill in the data science stack.

Types of Image Segmentation

1. The Approach

Whenever one tries to take a bird’s eye view of the Image Segmentation tasks, one gets to

observe a crucial process that happens here – object identification. Any simple to complex

application areas, everything is based out of object detection.

197

And as we discussed earlier, detection is made possible because the image segmentation

algorithms try to – if we put it in lay man’s terms – collect similar pixels together and

separate out dissimilar pixels. This is done by following two approaches based on the image

properties:

1.1. Similarity Detection (Region Approach)

This fundamental approach relies on detecting similar pixels in an image – based on a

threshold, region growing, region spreading, and region merging. Machine learning

algorithms like clustering relies on this approach of similarity detection on an unknown set of

features, so does classification, which detects similarity based on a pre-defined (known) set of

features.

1.2. Discontinuity Detection (Boundary Approach)

This is a stark opposite of similarity detection approach where the algorithm rather searches

for discontinuity. Image Segmentation Algorithms like Edge Detection, Point Detection, Line

Detection follows this approach – where edges get detected based on various metrics of

discontinuity like intensity etc.

Image Source: scikit-image

198

2. The Types of Techniques

Based on the two approaches, there are various forms of techniques that are applied in the

design of the Image Segmentation Algorithms. These techniques are employed based on the

type of image that needs to be processed and analysed and they can be classified into three

broader categories as below:

2.1 Structural Segmentation Techniques

These sets of algorithms require us to firstly, know the structural information about the image

under the scanner. This can include the pixels, pixel density, distributions, histograms, color

distribution etc. Second, we need to have the structural information about the region that we

are about to fetch from the image – this section deals with identifying our target area, which is

highly specific to the business problem that we are trying to solve. Similarity based approach

will be followed in these sets of algorithms.

2.2 Stochastic Segmentation Techniques

In these group of algorithms, the primary information that is required for them is to know the

discrete pixel values of the full image, rather than pointing out the structure of the required

portion of the image. This proves to be advantageous in the case of a larger group of images,

where a high degree of uncertainty exists in terms of the required object within an object.

ANN and Machine Learning based algorithms that use k-means etc. make use of this

approach.

2.3 Hybrid Techniques

As the name suggests, these algorithms for image segmentation make use of a combination of

structural method and stochastic methods i.e., use both the structural information of a region

as well as the discrete pixel information of the image.

Image segmentation Techniques

Based on the image segmentation approaches and the type of processing that is needed to be

incorporated to attain a goal, we have the following techniques for image segmentation.

1. Threshold Method

https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method1

199

2. Edge Based Segmentation

3. Region Based Segmentation

4. Clustering Based Segmentation

5. Watershed Based Method

6. Artificial Neural Network Based Segmentation

1. Threshold Method

This is perhaps the most basic and yet powerful technique to identify the required objects in

an image. Based on the intensity, the pixels in an image get divided by comparing the pixel’s

intensity with a threshold value. The threshold method proves to be advantageous when the

objects in the image in question are assumed to be having more intensity than the background

(and unwanted components) of the image.

At its simpler level, the threshold value T is considered to be a constant. But that approach

may be futile considering the amount of noise (unwanted information) that the image

contains. So, we can either keep it constant or change it dynamically based on the image

properties and thus obtain better results. Based on that, thresholding is of the following types:

https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method2
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method3
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method4
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method5
https://www.analytixlabs.co.in/blog/what-is-image-segmentation#method6

200

1.1 Simple Thresholding

This technique replaces the pixels in an image with either black or white. If the intensity of a

pixel (Ii,j) at position (i,j) is less than the threshold (T), then we replace that with black and if

it is more, then we replace that pixel with white. This is a binary approach to thresholding.

1.2 Otsu’s Binarization

In global thresholding, we had used an arbitrary value for threshold value and it remains a

constant. The major question here is, how can we define and determine the correctness of the

selected threshold? A simpler but rather inept method is to trial and see the error.

But, on the contrary, let us take an image whose histogram has two peaks (bimodal image),

one for the background and one for the foreground. According to Otsu binarization, for that

image, we can approximately take a value in the middle of those peaks as the threshold value.

So in simply put, it automatically calculates a threshold value from image histogram for a

bimodal image.

The disadvantage here, however, is for images that are not bimodal, the image histogram has

multiple peaks, or one of the classes (peaks) present has high variance.

However, Otsu’s Binarization is widely used in document scans, removing unwanted colors

from a document, pattern recognition etc.

1.3 Adaptive Thresholding

A global value as threshold value may not be good in all the conditions where an image has

different background and foreground lighting conditions in different actionable areas. We

need an adaptive approach that can change the threshold for various components of the image.

In this, the algorithm divides the image into various smaller portions and calculates the

threshold for those portions of the image.

Hence, we obtain different thresholds for different regions of the same image. This in turn

gives us better results for images with varying illumination. The algorithm can automatically

calculate the threshold value. The threshold value can be the mean of neighborhood area or it

can be the weighted sum of neighborhood values where weights are a Gaussian window (a

window function to define regions).

201

2. Edge Based Segmentation

Edge detection is the process of locating edges in an image which is a very important step

towards understanding image features. It is believed that edges consist of meaningful features

and contains significant information. It significantly reduces the size of the image that will be

processed and filters out information that may be regarded as less relevant, preserving and

focusing solely on the important structural properties of an image for a business problem.

Edge-based segmentation algorithms work to detect edges in an image, based on various

discontinuities in grey level, colour, texture, brightness, saturation, contrast etc. To further

enhance the results, supplementary processing steps must follow to concatenate all the edges

into edge chains that correspond better with borders in the image.

Image Source: researchgate.net

Edge detection algorithms fall primarily into two categories – Gradient based methods and

Gray Histograms. Basic edge detection operators like sobel operator, canny, Robert’s variable

etc are used in these algorithms. These operators aid in detecting the edge discontinuities and

hence mark the edge boundaries. The end goal is to reach at least a partial segmentation using

202

this process, where we group all the local edges into a new binary image where only edge

chains that match the required existing objects or image parts are present.

3. Region Based Segmentation

The region based segmentation methods involve the algorithm creating segments by dividing

the image into various components having similar characteristics. These components, simply

put, are nothing but a set of pixels. Region-based image segmentation techniques initially

search for some seed points – either smaller parts or considerably bigger chunks in the input

image.

Next, certain approaches are employed, either to add more pixels to the seed points or further

diminish or shrink the seed point to smaller segments and merge with other smaller seed

points. Hence, there are two basic techniques based on this method.

3.1 Region Growing

It’s a bottom to up method where we begin with a smaller set of pixel and start accumulating

or iteratively merging it based on certain pre-determined similarity constraints. Region

growth algorithm starts with choosing an arbitrary seed pixel in the image and compare it

with its neighboring pixels.

If there is a match or similarity in neighboring pixels, then they are added to the initial seed

pixel, thus increasing the size of the region. When we reach the saturation and hereby, the

growth of that region cannot proceed further, the algorithm now chooses another seed pixel,

which necessarily does not belong to any region(s) that currently exists and start the process

again.

Region growing methods often achieve effective Segmentation that corresponds well to the

observed edges. But sometimes, when the algorithm lets a region grow completely before

trying other seeds, that usually biases the segmentation in favour of the regions which are

segmented first. To counter this effect, most of the algorithms begin with the user inputs of

similarities first, no single region is allowed to dominate and grow completely and multiple

regions are allowed to grow simultaneously.

203

Region growth, also a pixel based algorithm like thresholding but the major difference is

thresholding extracts a large region based out of similar pixels, from anywhere in the image

whereas region-growth extracts only the adjacent pixels. Region growing techniques are

preferable for noisy images, where it is highly difficult to detect the edges.

3.2 Region Splitting and Merging

The splitting and merging based segmentation methods use two basic techniques done

together in conjunction – region splitting and region merging – for segmenting an image.

Splitting involves iteratively dividing an image into regions having similar characteristics and

merging employs combining the adjacent regions that are somewhat similar to each other.

A region split, unlike the region growth, considers the entire input image as the area of

business interest. Then, it would try matching a known set of parameters or pre-defined

similarity constraints and picks up all the pixel areas matching the criteria. This is a divide

and conquers method as opposed to the region growth algorithm.

Now, the above process is just one half of the process, after performing the split process, we

will have many similarly marked regions scattered all across the image pixels, meaning, the

final segmentation will contain scattered clusters of neighbouring regions that have identical

or similar properties. To complete the process, we need to perform merging, which after each

split which compares adjacent regions, and if required, based on similarity degrees, it merges

them. Such algorithms are called split-merge algorithms.

4. Clustering Based Segmentation Methods

Clustering algorithms are unsupervised algorithms, unlike Classification algorithms, where

the user has no pre-defined set of features, classes, or groups. Clustering algorithms help in

fetching the underlying, hidden information from the data like, structures, clusters, and

groupings that are usually unknown from a heuristic point of view.

The clustering based techniques segment the image into clusters or disjoint groups of pixels

with similar characteristics. By the virtue of basic Data Clustering properties, the data

elements get split into clusters such that elements in same cluster are more similar to each

other as compared to other clusters. Some of the more efficient clustering algorithms such as

https://www.analytixlabs.co.in/blog/classification-in-machine-learning/

204

k-means, improved k means, fuzzy c-mean (FCM) and improved fuzzy c mean algorithm

(IFCM) are being widely used in the clustering based approaches proposed.

K means clustering is a chosen and popular method because of its simplicity and

computational efficiency. The Improved K-means algorithm can minimize the number of

iterations usually involved in a k-means algorithm. FCM algorithm allows data points, (pixels

in our case) to belong to multiple classes with varying degrees of membership. The slower

processing time of an FCM is overcome by improved FCM.

Image Source: researchgate.net

A massive value add of clustering based ML algorithms is that we can measure the quality of

the segments that get generated by using several statistical parameters such as: Silhouette

Coefficient, rand index (RI) etc.

4.1 k-means clustering

K-means is one of the simplest unsupervised learning algorithms which can address the

clustering problems, in general. The process follows a simple and easy way to classify a given

image through a certain number of clusters which are fixed apriori. The algorithm actually

starts at this point where the image space is divided into k pixels, representing k group

centroids. Now, each of the objects is then assigned to the group based on its distance from

the cluster. When all the pixels are assigned to all the clusters, the centroids now move and

are reassigned. These steps repeat until the centroids can no longer shift.

205

At the convergence of this algorithm, we have areas within the image, segmented into “K”

groups where the constituent pixels show some levels of similarity.

4.2 Fuzzy C Means

k-means, as discussed in the previous section, allows for dividing and grouping together the

pixels in an image that have certain degrees of similarity. One of the striking features in k-

means is that the groups and their members are completely mutually exclusive. A Fuzzy C

Means clustering technique allows the data points, in our case, the pixels to be clustered in

more than one cluster. In other words, a group of pixels can belong to more than one cluster

or group but they can have varying levels of associativity per group. The FCM algorithm has

an optimization function associated with it and the convergence of the algorithm depends on

the minimization of this function.

At the convergence of this algorithm, we have areas within the image, segmented into “C”

groups where the constituent pixels inside a group show some levels of similarity, and also

they will have a certain degree of association with other groups as well.

5. Watershed Based Methods

Watershed is a ridge approach, also a region-based method, which follows the concept of

topological interpretation. We consider the analogy of geographic landscape with ridges and

valleys for various components of an image. The slope and elevation of the said topography

are distinctly quantified by the gray values of the respective pixels – called the gradient

magnitude. Based on this 3D representation which is usually followed for Earth landscapes,

the watershed transform decomposes an image into regions that are called “catchment

basins”. For each local minimum, a catchment basin comprises all pixels whose path of

steepest descent of gray values terminates at this minimum.

206

Image Source: scikit-image

In a simple way of understanding, the algorithm considers the pixels as a “local topography”

(elevation), often initializing itself from user-defined markers. Then, the algorithm defines

something called “basins” which are the minima points and hence, basins are flooded from

the markers until basins meet on watershed lines. The watersheds that are so formed here,

they separate basins from each other. Hence the picture gets decomposed because we have

pixels assigned to each such region or watershed.

6. Artificial Neural Network Based Segmentation Method

The approach of using Image Segmentation using neural networks is often referred to as

Image Recognition. It uses AI to automatically process and identify the components of an

image like objects, faces, text, hand-written text etc. Convolutional Neural Networks are

specifically used for this process because of their design to identify and process high-

definition image data.

An image, based on the approach used, is considered either as a set of vectors (colour

annotated polygons) or a raster (a table of pixels with numerical values for colors). The vector

or raster is turned into simpler components that represent the constituent physical objects and

features in an image. Computer vision systems can logically analyze these constructs, by

207

extracting the most important sections, and then by organizing data through feature extraction

algorithms and classification algorithms.

Image Source: mathworks.com

These algorithms are widely used in a variety of industries and applications. E-commerce

industry uses it for providing relevant products to users for their search requirements and

browsing history. The manufacturing industry uses it for anomaly detection, detecting

damaged objects, ensuring worker safety etc. Image Recognition is famously used in

education and training for visually impaired, speech impaired students. Although Neural Nets

are time consuming when it comes to training the data, the end results have been very

promising and the application of these has been highly successful.

UNIT V

Image Compression

Image compression is a type of data compression applied to digital images, to reduce their

cost for storage or transmission. Algorithms may take advantage of visual perception and

the statistical properties of image data to provide superior results compared with generic data

compression methods which are used for other digital data.[1]

https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Digital_image
https://en.m.wikipedia.org/wiki/Computer_data_storage
https://en.m.wikipedia.org/wiki/Data_transmission
https://en.m.wikipedia.org/wiki/Algorithm
https://en.m.wikipedia.org/wiki/Visual_perception
https://en.m.wikipedia.org/wiki/Statistical
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Image_compression#cite_note-1

208

Image Compression Model

In the field of Image processing, the compression of images is an important step before we

start the processing of larger images or videos. The compression of images is carried out by

an encoder and output a compressed form of an image. In the processes of compression, the

mathematical transforms play a vital role. A flow chart of the process of the compression of

the image can be represented as:

In this article, we try to explain the overview of the concepts involved in the image

compression techniques. The general representation of the image in a computer is like a

vector of pixels. Each pixel is represented by a fixed number of bits. These bits determine

the intensity of the color (on greyscale if a black and white image and has three channels of

RGB if colored images.)

Why Do We Need Image Compression?

Consider a black and white image that has a resolution of 1000*1000 and each pixel uses 8

bits to represent the intensity. So the total no of bits req= 1000*1000*8 = 80,00,000 bits per

image. And consider if it is a video with 30 frames per second of the above-mentioned

https://en.m.wikipedia.org/wiki/File:Quality_comparison_jpg_vs_saveforweb.jpg

209

type images then the total bits for a video of 3 secs is: 3*(30*(8, 000, 000))=720, 000,

000 bits

As we see just to store a 3-sec video we need so many bits which is very huge. So, we need

a way to have proper representation as well to store the information about the image in a

minimum no of bits without losing the character of the image. Thus, image compression

plays an important role.

Basic steps in image compression:

 Applying the image transform

 Quantization of the levels

 Encoding the sequences.

Transforming The Image

What is a transformation(Mathematically):

It a function that maps from one domain(vector space) to another domain(other vector

space). Assume, T is a transform, f(t):X->X’ is a function then, T(f(t)) is called the

transform of the function.

In a simple sense, we can say that T changes the shape(representation) of the function as it i

s a mapping from one vector space to another (without changing basic function f(t) i.e the r

elationship between the domain and co-domain).

We generally carry out the transformation of the function from one vector space to the other

because when we do that in the newly projected vector space we infer more information

about the function.

A real life example of a transform:

210

Here we can say that the prism is a transformation function in which it splits the white light

(f(t)) into its components i.e the representation of the white light.

And we observe that we can infer more information about the light in its component

representation than the white light one. This is how transforms help in understanding the

functions in an efficient manner.

Transforms in Image Processing

The image is also a function of the location of the pixels. i.e I(x, y) where (x, y) are the

coordinates of the pixel in the image. So we generally transform an image from the spatial

domain to the frequency domain.

Why Transformation of the Image is Important:

 It becomes easy to know what all the principal components that make up the image and

help in the compressed representation.

 It makes the computations easy.

 Example: finding convolution in the time domain before the transformation:

211

Finding convolution in the frequency domain after the transformation:

 So we can see that the computation cost has reduced as we switched to the

frequency domain. We can also see that in the time domain the convolution

was equivalent to an integration operator but in the frequency domain, it

becomes equal to the simple product of terms. So, this way the cost of

computation reduces.

So this way when we transform the image from domain to the other carrying out the spatial

filtering operations becomes easier.

Quantization

The process quantization is a vital step in which the various levels of intensity are grouped

into a particular level based on the mathematical function defined on the pixels. Generally,

the newer level is determined by taking a fixed filter size of “m” and dividing each of the

“m” terms of the filter and rounding it its closest integer and again multiplying with “m”.

Basic quantization Function: [pixelvalue/m] * m

So, the closest of the pixel values approximate to a single level hence as the no of distinct

levels involved in the image becomes less. Hence we reduce the redundancy in the level of

the intensity. So thus quantization helps in reducing the distinct levels.

Eg: (m=9)

212

Thus we see in the above example both the intensity values round up to 18 thus we reduce

the number of distinct levels(characters involved) in the image specification.

Symbol Encoding

The symbol stage involves where the distinct characters involved in the image are encoded

in a way that the no. of bits required to represent a character is optimal based on the

frequency of the character’s occurrence. In simple terms, In this stage codewords are

generated for the different characters present. By doing so we aim to reduce the no. of bits

required to represent the intensity levels and represent them in an optimum number of bits.

There are many encoding algorithms. Some of the popular ones are:

 Huffman variable-length encoding.

 Run-length encoding.

In the Huffman coding scheme, we try to find the codes in such a way that none of the

codes are the prefixes to the other. And based on the probability of the occurrence of the

character the length of the code is determined. In order to have an optimum solution the

most probable character has the smallest length code.

Example:

213

We see the actual 8-bit representation as well as the new smaller length codes. The

mechanism of generation of codes is:

So we see how the storage requirement for the no of bits is decreased as:

Initial representation–average code length: 8 bits per intensity level.

After encoding–average code length: (0.6*1)+(0.3*2)+(0.06*3)+(0.02*4)+(0.01*5)+(0.01

*5)=1.56 bits per intensity level

214

Thus the no of bits required to represent the pixel intensity is drastically reduced.

Thus in this way, the mechanism of quantization helps in compression. When the images

are once compressed its easy for them to be stored on a device or to transfer them. And

based on the type of transforms used, type of quantization, and the encoding scheme the

decoders are designed based on the reversed logic of the compression so that the original

image can be re-built based on the data obtained out of the compressed images

Information Theory

Information .eory (IT) tools, widely used in many scientific fields such as engineering,

physics, genetics, neuroscience, and many others, are also useful transversal tools in image

processing. In this book, we present the basic concepts of IT and how they have been used

in the image processing areas of registration, segmentation, video processing, and

computational aesthetics. Some of the approaches presented, such as the application of

mutual information to registration, are the state of the art in the field. All techniques

presented in this book have been previously published in peer-reviewed conference

proceedings or international journals. We have stressed here their common aspects, and

presented them in an unified way, so to make clear to the reader which problems IT tools

can help to solve, which specific tools to use, and how to apply them. .e IT basics are

presented so as to be self-contained in the book. .e intended audiences are students and

practitioners of image processing and related areas such as computer graphics and

visualization. In addition, students and practitioners of IT will be interested in knowing

about these applications.

Lossy and Lossless Compression :

Data Compression refers to a technique where a large file to reduced to smaller sized file and

can be decompressed again to the large file. Lossy compression restores the large file to its

original form with loss of some data which can be considered as not-noticable while lossless

compression restores the large file to its original form without any loss of data.

Following are some of the important differences between Lossy Compression and Lossless

Compression.

215

Sr. No. Key Lossy Compression Lossless Compression

1

Data Elimination Lossy compression

eliminates those bytes which

are considered as not-

noticable.

Lossless compression keeps

even those bytes which are

not-noticable.

2

Restoration After lossy compression, a

file cannot be restored to its

original form.

After lossless compression,

a file can be restored to its

original form.

3

Quality Lossy compression leads to

compromise with quality.

No quality degradation

happens in lossless

compression.

4

Size Lossy compression reduces

the size of file to large

extent.

Lossless compression

reduces the size but less as

compared to lossy

compression.

5

Algorithm used Transform coding, Discrete

Cosine Transform, Discrete

Wavelet transform, fractal

compression etc.

Run length encoding,

Lempel-Ziv-Welch,

Huffman Coding,

Arithmetic encoding etc.

6 Uses Lossy compression is used

to compress audio, video

Lossless compression is

used to compress text,

216

Sr. No. Key Lossy Compression Lossless Compression

and images. images and sound.

7

Capacity Lossy compression

technique has high data

holding capacity.

Lossless compression has

low data holding capacity as

compared to lossy

compression.

Predictive coding

As natural signals are highly correlated, the difference between neighboring samples is

usually small. The value of a pixel x can be therefore predicted by its neighbors a, b, c, and

d with a small error:

In general, the predicted value for a pixel is a linear combination of all available

neighbors :

217

The entropy of the histogram of the error image hist(e) is much smaller than that of the

histogram of the original image hist(x), therefore Huffman coding will be much more

effective for the error image than the original one.

Optimal predictive coding

The mean square error of the predictive error is:

where

218

To find the optimal coefficients so that is minimized, we let

but as

and

we have

219

Here

is the correlation between and which can be estimated from data obtained from

multiple trials:

Now the optimal prediction above can be written as

which can be expressed in vector form:

220

where

Then the coefficients can be found as

To prevent predictive error from being accumulated, we require

so that the errors will not propagate.

Examples

221

where

Transform Coding (lossy) and JPEG Image Compression

The Joint Photographic Experts Group (JPEG) is the working group of ISO, International

Standard Organization, that defined the popular JPEG Imaging Standard for compression

used in still image applications. The counter part in moving picture is the ``Moving Picture

Experts Group" (MPEG).

JPEG compression is based on certain transform, either DCT or wavelet transform, due to the

essential properties of orthogonal transforms in general:

 Decorrelation of the signal;

 Compaction of its energy.

Check this ACM page for review of DCT vs. wavelet transform used for image compression.

http://fourier.eng.hmc.edu/e161/lectures/compression/node13.html
http://fourier.eng.hmc.edu/e161/lectures/compression/node13.html
http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html

222

Here are the steps of JPEG image compression based on DCT:

1. Divide the image to form a set of blocks and carry out 2D DCT transform of

each block. The computational complexity for 2D DCT of an image

is , while the complexity of 2D DCT of all by blocks of

image is

The larger the image size , the more saving by sub-block transform. As adjacent

http://www.cs.sfu.ca/CourseCentral/365/li/material/notes/Chap4/Chap4.2/Chap4.2.html
http://fourier.eng.hmc.edu/e161/demos/e161_demo1.html

223

pixels are highly correlated, most of energy in an 8 by 8 block is concentrated in the

low frequency region of the spectrum (upper-left corner) and the rest transform

coefficients are very close to zero.

2. Threshold all DCT coefficients smaller than a value T to zero, or alternatively, low-pass

(either ideal or smooth) filter the 2D DCT spectrum of each sub-image;

3. Quantize remaining coefficients (convert floating-point values to integers). First,

the elements in each block are divided (element-wise) by the elements in a

quantization matrix Q:

where

and each of the resulting 8 by 8 elements is rounded to the nearest integer (

224

 represents rounding to the closest integer). At the receiving end, the

coefficients are recovered by:

Two observations can be made:

o Larger causes larger error. Let , and K be an

integer as the rounding result of a pixel , then the possible value for

the pixel is in the range:

i.e., the range of rounding error is proportional to .

o Larger tends to suppress more pixels to

zero and they will not be recovered at the receiving end.

225

In general, assign smaller numbers around the top-left corner (low frequency

components) and larger ones around the lower-right corner (high frequency

components). The values are also heuristically determined according to perceptual

and psycho-visual tests.

4. Predictive code all DC components of the blocks (as the DC components are highly

correlated);

5. Scan the rest coefficients in each block in a zigzag way (for higher probability of longer

consecutive 0's) to code them by run-length encoding;

6. Huffman code the data stream;

7. Store and/or transmit the encoded image as well as the quantization matrix.

JPEG compression

JPEG stands for Joint photographic experts group. It is the first interanational standard in

image compression. It is widely used today. It could be lossy as well as lossless . But the

technique we are going to discuss here today is lossy compression technique.

How jpeg compression works

First step is to divide an image into blocks with each having dimensions of 8 x8.

226

Let’s for the record, say that this 8x8 image contains the following values.

The range of the pixels intensities now are from 0 to 255. We will change the range from -

128 to 127.

Subtracting 128 from each pixel value yields pixel value from -128 to 127. After subtracting

128 from each of the pixel value, we got the following results.

227

Now we will compute using this formula.

The result comes from this is stored in let’s say A(j,k) matrix.

There is a standard matrix that is used for computing JPEG compression, which is given by a

matrix called as Luminance matrix.

This matrix is given below

228

Applying the following formula

We got this result after applying.

229

Now we will perform the real trick which is done in JPEG compression which is ZIG-ZAG

movement. The zig zag sequence for the above matrix is shown below. You have to perform

zig zag until you find all zeroes ahead. Hence our image is now compressed.

Summarizing JPEG compression

The first step is to convert an image to Y’CbCr and just pick the Y’ channel and break into 8

x 8 blocks. Then starting from the first block, map the range from -128 to 127. After that you

have to find the discrete Fourier transform of the matrix. The result of this should be

quantized. The last step is to apply encoding in the zig zag manner and do it till you find all

zero.

Save this one dimensional array and you are done.

Note. You have to repeat this procedure for all the block of 8 x 8.

	Image Acquisition
	Energy
	Illumination

	The Optical System

	Image Acquisition in Digital Image Processing – Buzztech
	Image Acquisition using a single sensor:
	Image Acquisition using a line sensor (sensor strips):
	Image Acquisition using an array sensor:
	Need of Sampling and Quantization in Digital Image Processing:
	Sampling in Digital Image Processing:
	Quantization in Digital Image Processing:
	Relation of Quantization and gray level resolution:

	Neighbours of a pixel
	Adjacency between pixels
	Connectivity between pixels
	Color Models
	RGB Color Model
	CMYK Color Model
	YUV Color Model
	YCbCr and YCCK Color Models
	PhotoYCC Color Model
	YCoCg Color Models
	HSV, and HLS Color Models
	CIE XYZ Color Model
	CIE LUV and CIE Lab Color Models

	Image enhancement
	Spatial domain methods
	Grey scale manipulation
	Histogram Equalization
	Discrete Formulation

	Image Smoothing
	Neighbourhood Averaging
	Edge preserving smoothing

	Image sharpening
	High boost filtering
	Gray level transformation
	Linear transformation
	Negative transformation
	Input Image
	Output Image

	Logarithmic transformations
	Log transformation
	Input Image
	Log Tranform Image

	Power – Law transformations
	Correcting gamma.
	For example

	Histograms
	Example
	Result sheet
	Histogram of result sheet
	Histogram of an image
	For example

	Applications of Histograms
	Brightness
	For example

	How to make an image brighter.
	Contrast
	For example.
	Histogram sliding
	Brightness
	Contrast

	Sliding Histograms
	Increasing brightness using histogram sliding
	Here what we got after adding 50 to each pixel intensity.
	Conclusion

	Decreasing brightness using histogram sliding
	Conclusion

	Histogram Equalization
	Histogram of this image
	PMF
	CDF
	Calculate CDF according to gray levels
	Histogram Equalization Image
	Cumulative Distributive function of this image
	Histogram Equalization histogram
	Comparing both the histograms and images
	Conclusion

	Pixel Addition
	Brief Description
	How It Works
	Guidelines for Use
	Interactive Experimentation

	Pixel Subtraction
	Pixel Multiplication and Scaling
	Brief Description
	How It Works
	Guidelines for Use
	Interactive Experimentation
	Exercises

	Pixel Division
	Brief Description
	How It Works
	Guidelines for Use

	Logical AND/NAND
	Brief Description
	How It Works
	Guidelines for Use

	Logical OR/NOR
	Brief Description
	How It Works
	Guidelines for Use

	Logical XOR/XNOR
	Brief Description
	How It Works
	Guidelines for Use

	Invert/Logical NOT
	Brief Description
	How It Works
	Guidelines for Use

	Bitshift Operators
	Brief Description
	How It Works
	Guidelines for Use
	Goals
	2D Convolution (Image Filtering)
	Image Blurring (Image Smoothing)
	1. Averaging
	2. Gaussian Blurring
	3. Median Blurring
	4. Bilateral Filtering

	Frequency domain analysis
	Difference between spatial domain and frequency domain
	Spatial domain
	Frequency Domain
	Transformation
	Frequency components
	High frequency components
	Low frequency components

	Fourier
	Fourier Series
	How it is calculated
	Fourier series

	Fourier transform
	Difference between Fourier series and transform
	Which one is applied on images
	Discrete fourier transform
	Consider this signal
	Original Image
	The Fourier transform magnitude spectrum
	The Shifted Fourier transform
	The Shifted Magnitude Spectrum
	For example
	Convolution Theorem
	Filters

	Blurring masks vs derivative masks
	Blurring masks
	Derivative masks
	Relationship between blurring mask and derivative mask with high pass filters and low pass filters.
	High pass frequency components and Low pass frequency components
	Ideal low pass and Ideal High pass filters
	Sample image
	Image in frequency domain
	Applying filter over this image
	Resultant Image

	Gaussian Low pass and Gaussian High pass filter
	Gaussian Low pass filter
	Gaussian high pass filter

	Continuous 1D Fourier Transform
	Common Fourier Transform Pairs

	The Complex Exponential Basis Function
	The number
	Derivation of Euler’s Formula
	Numerical Proof

	Two-Dimensional Fourier Transform
	Gaussian Smoothing
	Brief Description
	How It Works
	Mean Filters
	Arithmetic mean filter
	Geometric mean filter
	Harmonic mean filter
	Contraharmonic mean filter

	5.3.2 Order-Statistics Filters
	Median filter
	Max and min filters

	Adaptive Filtering
	The Minimal Mean Square Error Filter
	High-Pass Filters
	Band-reject Filters
	Band-Pass Filters
	What is the Process of Image Segmentation?
	Need for Image Segmentation & Value Proposition
	Types of Image Segmentation
	1. The Approach
	2. The Types of Techniques

	Image segmentation Techniques
	1. Threshold Method
	2. Edge Based Segmentation
	3. Region Based Segmentation
	4. Clustering Based Segmentation Methods
	5. Watershed Based Methods
	6. Artificial Neural Network Based Segmentation Method
	Why Do We Need Image Compression?
	Transforming The Image
	Transforms in Image Processing
	Quantization
	Basic quantization Function: [pixelvalue/m] * m

	Symbol Encoding

	Predictive coding

	Transform Coding (lossy) and JPEG Image Compression
	JPEG compression
	How jpeg compression works
	Applying the following formula
	Summarizing JPEG compression

