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E-CONTENT- COMPUTER GRAPHICS BY A.JEROME ROBINSON
UNIT 1:
INTRODUCTION TO COMPUTER GRAPHICS

The power and utility of computer graphics is widely recognized,and a
broad range of graphics hardware and softwaresystems is now available for
applications in virtuallyall fields. Graphics capabilities for both two-
dimensional and three dimensionalapplications are now common, even on
general-purposecomputers and handheld calculators. With personal
computers, wecan use a variety of interactive input devices and graphics
softwarepackages. For higher-quality applications, we can choose from a
numberof sophisticated special-purpose graphics hardware systems and
technologies. In this chapter, we explore the basic features of
graphicshardware components and graphics software packages.
VIDEO DISPLAY DEVICES

Typically, the primary output device in a graphics system is a video
monitor.Historically, the operation of most video monitors was based on the
standardcathode-ray tube (CRT) design, but several other technologies
exist. In recentyears, flat-panel displays have become significantly more
popular due to theirreduced power consumption and thinner designs.
Refresh Cathode-Ray Tubes

Figure 1 illustrates the basic operation of a CRT. A beam of electrons
(cathoderays), emitted by an electron gun, passes through focusing and
deflection systemsthat direct the beam toward specified positions on the
phosphor-coated screen.The phosphor then emits a small spot of light at
each position contacted by theelectron beam. Because the light emitted by
the phosphor fades very rapidly,some method is needed for maintaining the
screen picture. One way to do thisis to store the picture information as a
charge distribution within the CRT. Thischarge distribution can then be
used to keep the phosphors activated. However,the most common method
now employed for maintaining phosphor glow is toredraw the picture
repeatedly by quickly directing the electron beam back over thesame screen
points. This type of display is called a refreshCRT, and the frequencyat
which a picture is redrawn on the screen is referred to as the refresh
rate.The primary components of an electron gun in a CRT are the heated
metalcathode and a control grid (Fig. 2). Heat is supplied to the cathode by
directinga current through a coil of wire, called the filament, inside the
cylindrical cathodestructure. This causes electrons to be “boiled off” the hot
cathode surface.




Inthe vacuum inside the CRT envelope, the free, negatively charged
electrons are then accelerated toward the phosphor coating by a high
positive voltage. The accelerating voltage can be generated with a positively
charged metal coating on the inside of the CRT envelope near the phosphor
screen, or an accelerating
anode, as in Figure 2, can be used to provide the positive voltage.
Sometimes the electron gun is designed so that the accelerating anode and
focusing system are within the same unit.

Intensity of the electron beam is controlled by the voltage at the
control grid, which is a metal cylinder that fits over the cathode. A high
negative voltage applied to the control grid will shut off the beam by
repelling electrons and stopping them from passing through the small hole
at the end of the controlgrid structure. A smaller negative voltage on the
control grid simply decreases the number of electrons passing through.
Since the amount of light emitted by the phosphor coating depends on the
number of electrons striking the screen, the brightness of a display point is
controlled by varying the voltage on the control grid. This brightness, or
intensity level, is specified for individual screen positions with graphics
software commands. The focusing system in a CRT forces the electron beam
to converge to a small cross section as it strikes the phosphor. Otherwise,
the electrons would repel each other, and the beam would spread out as it
approaches the screen. Focusing is accomplished with either electric or
magnetic fields. With electrostatic focusing, the electron beam is passed
through a positively charged metal cylinder so that electrons along the
center line of the cylinder are in an equilibrium position. This arrangement
forms an electrostatic lens, as shown in Figure 2, and the electron beam is
focused at the center of the screen in the same way that an optical lens
focuses a beam of light at a particular focal distance. Similar lens focusing
effects can be accomplished with a magnetic field set up by a coil mounted
around the outside of the CRT envelope, and magnetic lens focusing usually
produces the smallest spot size on the screen.

Additional focusing hardware is used in high-precision systems to
keep the beam in focus at all screen positions. The distance that the
electron beam must travel to different points on the screen varies because
the radius of curvature for most CRTs is greater than the distance from the
focusing system to the screen center. Therefore, the electron beam will be
focused properly only at the center of the screen. As the beam moves to the
outer edges of the screen, displayed images become blurred. To compensate
for this, the system can adjust the focusing according to the screen position
of the beam.

As with focusing, deflection of the electron beam can be controlled
with either electric or magnetic fields. Cathode-ray tubes are now commonly
constructed with magnetic-deflection coils mounted on the outside of the
CRT envelope, as illustrated in Figure 1. Two pairs of coils are used for this
purpose. One pair is mounted on the top and bottom of the CRT neck, and
the other pair is mounted on opposite sides of the neck. The magnetic field
produced by each pair of coils results in a transverse deflection force that is
perpendicular to both the direction of the magnetic field and the direction of




travel of the

electron

beam.

Horizontal

deflection is

accomplished

with one pair

of coils, and

vertical

deflection with the other pair. The proper deflection amounts are attained by
adjusting the current through the coils. When electrostatic deflection is
used, two pairs of parallel plates are mounted inside the CRT envelope. One
pair of plates is mounted horizontally to control vertical deflection, and the
other pair is mounted vertically to control horizontal deflection (Fig. 3).

Spots of light are produced on the screen by the transfer of the CRT
beam energy to the phosphor. When the electrons in the beam collide with
the phosphor coating, they are stopped and their kinetic energy is absorbed
by the phosphor.

Part of the beam energy is converted by friction into heat energy, and
the remainder
causes electrons in the phosphor atoms to move up to higher quantum-
energy levels. After a short time, the “excited” phosphor electrons begin
dropping back to their stable ground state, giving up their extra energy as
small quantums of light energy called photons. What we see on the screen is
the combined effect of all the electron light emissions: a glowing spot that
quickly fades after all the excited phosphor electrons have returned to their
ground energy level. The frequency (or color) of the light emitted by the
phosphor is in proportion to the energy difference between the excited
quantum state and the ground state.

Different kinds of phosphors are available for use in CRTs. Besides
color, a major difference between phosphors is their persistence: how long
they continue to emit light (that is, how long it is before all excited electrons
have returned to the ground state) after the CRT beam is removed.
Persistence is defined as the time that it takes the emitted light from the
screen to decay to one-tenth of its original intensity. Lower-persistence
phosphors require higher refresh rates to maintain a picture on the screen
without flicker. A phosphor with low persistence can be useful for
animation, while high-persistence phosphors are better suited for displaying
highly complex, static pictures. Although some phosphors have
persistence values greater than 1 second, general-purpose graphics
monitors are usually constructed with persistence in the range from 10 to
60 microseconds.

Figure 4 shows the intensity distribution of a spot on the screen. The
intensity is greatest at the center of the spot, and it decreases with a
Gaussian distribution out to the edges of the spot. This distribution
corresponds to the cross-sectional electron density distribution of the CRT
beam. The maximum number of points that can be displayed without
overlap on a CRT is referred to as the resolution. A more precise definition
of resolution is the number of points per centimeter that can be plotted




horizontally and vertically, although it is often simply stated as the total
number of points in each direction. Spot intensity has a Gaussian
distribution (Fig. 4), so two adjacent spots will appear distinct as long as
their separation is greater than the diameter at which each spot has an
intensity of about 60 percent of that at the center of the spot. This overlap
position is illustrated in Figure 5. Spot size also depends on intensity. As
more electrons are accelerated toward the phosphor per second, the
diameters of the CRT beam and the illuminated spot increase. In addition,
the increased excitation energy tends to spread to neighboring phosphor
atoms not directly in the path of the beam, which further increases the spot
diameter.

Thus, resolution of a CRT is dependent on the type =
of phosphor, the intensity to be displayed, and the / \
focusing and deflection systems. Typical resolution on (-
high-quality systems is 1280 by 1024, with higher  [.0055 o aniumises
resolutions available on many systems. High-resolution s oma (e :
systems are often referred to as high-definition systems. ‘

The physical size of a graphics monitor, on the
other hand, is given as the length of the screen diagonal, ~
with sizes varying from about 12 inches to 27 inches or / \-.,_x’f \\ :
more. FT&URE 5 :

A CRT monitor can be attached to a variety of [
computer systems, so the number of screen points that
can actually be plotted also depends on the capabilities
of the system to which it is attached.

Raster-Scan Displays

The most common type of graphics monitor employing a CRT is the
raster-scan display, based on television technology. In a raster-scan
system, the electron beam is swept across the screen, one row at a time,
from top to bottom. Each row is referred to as a scan line. As the electron
beam moves across a scan line, the beam intensity is turned on and off (or
set to some intermediate value) to create a pattern of illuminated spots.
Picture definition is stored in a memory area called the refresh buffer or
frame buffer, where the term frame refers to the total screen area.

This memory area holds the set of color values for the screen points.
These stored color values are then retrieved from the refresh buffer and used
to control the intensity of the electron beam as it moves fromspot to spot
across the screen. In this way, the picture is “painted” on the screen one
scan line at a time, as demonstrated in Figure 6. Each screen spot that can
be illuminated by the electron beam is referred to as a pixel or pel
(shortened forms of picture element). Since the refresh buffer is used to
store the set of screen color values, it is also sometimes called a color
buffer. Also, other kinds of pixel information, besides color, are stored in
buffer locations, so all the different buffer areas are sometimes referred to
collectively as the “frame buffer.” The capability of a raster-scan system to
store color information for each screen point makes it well suited for the
realistic display of scenes containing subtle shading and color patterns.
Home television sets and printers are examples of other systems using
raster-scan methods.




Raster

systems are
commonly
characterized
by their
resolution,
which is the
number of

pixel positions
that can be
plotted.
Another
property of
video
monitors is
aspect ratio, which is now often defined as the number of pixel columns
divided by the number of scan lines that can be displayed by the system.
(Sometimes this term is used to refer to the number of scan lines divided by
the number of pixel columns.) Aspect ratio can also be described as the
number of horizontal points to vertical points (or vice versa) necessary to
produce equal-length lines in both directions on the screen. Thus, an aspect
ratio of 4/3, for example, means that a horizontal line plotted with four
points has the same length as a vertical line plotted with three points, where
line length is measured in some physical units such as centimeters.
Similarly, the aspect ratio of any rectangle (including the total screen area)
can be defined to be the width of the rectangle divided by its height. The
range of colors or shades of gray that can be displayed on a raster system
depends on both the types of phosphor used in the CRT and the number of
bits per pixel available in the frame buffer. For a simple black-and-white
system, each screen point is either on or off, so only one bit per pixel is
needed to control the intensity of screen positions. A bit value of 1, for
example, indicates that the electron beam is to be turned on at that
position, and a value of O turns the beam off. Additional bits allow the
intensity of the electron beam to be varied over a range of values between
“on” and “off.” Up to 24 bits per pixel are included in high-quality systems,
which can require several megabytes of storage for the frame bulffer,
depending on the resolution of the system. For example, a system with 24
bits per pixel and a screen resolution of 1024 by 1024 requires 3 MB of
storage for the refresh buffer. The number of bits per pixel in a frame buffer
is sometimes referred to as either the depth of the buffer area or the
number of bit planes. A frame buffer with one bit per pixel is commonly
called a bitmap, and a frame buffer with multiple bits per pixel is a pixmap,
but these terms are also used to describe other rectangular arrays, where a
bitmap is any pattern of binary values and a pixmap is a multicolor pattern.
As each screen refresh takes place, we tend to see each frame as a smooth
continuation of the patterns in the previous frame, so long as the refresh
rate is not too low. Below about 24 frames per second, we can usually
perceive a gap between successive screen images, and the picture appears to
flicker. Old silent films, for example, show this effect because they were

FIGURE 6

A rasterscan system displays an objedt
as 2 setof discrete points a0oss sad
scan lie.




photographed at a rate of 16 frames per second. When sound systems were
developed in the 1920s, motionpicture film rates increased to 24 frames per
second, which removed flickering and the accompanying jerky movements of
the actors. Early raster-scan computer systems were designed with a refresh
rate of about 30 frames per second. This produces reasonably good results,
but picture quality is improved, up to a point, with higher refresh rates on a
video monitor because the display technology on the monitor is basically
different from that of film. A film projector can maintain the continuous
display of a film frame until the next frame is brought into view. But on a
video monitor, a phosphor spot begins to decay as soon as it is illuminated.
Therefore, current raster-scan displays perform refreshing at the rate of 60
to 80 frames per second, although some systems now have refresh rates of
up to 120 frames per second. And some graphics systems have been
designed with a variable refresh rate. For example, a higher refresh rate
could be selected for a stereoscopic application so that two views of a scene
(one from each eye position) can be alternately displayed without flicker. But
other methods, such as multiple frame buffers, are typically used for such
applications.

Sometimes, refresh rates are described in units of cycles per second,
or hertz (Hz), where a cycle corresponds to one frame. Using these units, we
would describe a refresh rate of 60 frames per second as simply 60 Hz. At
the end of each scan line, the electron beam returns to the left side of the
screen to begin displaying the next scan line. The return to the left of the
screen, after refreshing each scan line, is called the horizontal retrace of
the electron beam. And at the end of each frame (displayed in 1 80 to 1 60 of
a second), the electron beam returns to the upper-left corner of the screen
(vertical retrace) to begin the next frame.

On some raster-scan
systems and TV sets, each
frame is displayed in two
passes using an interlaced
refresh procedure. In the first
pass, the beam sweeps across
every other scan line from top
to bottom. After the vertical
retrace, the beam then sweeps out the remaining scan lines (Fig. 7).
Interlacing of the scan lines in this way allows us to see the entire screen
displayed in half the time that it would have taken to sweep across all the
lines at once from top to bottom.

This technique is primarily used with slower refresh rates. On an
older, 30 frameper- second, non-interlaced display, for instance, some
flicker is noticeable. But with interlacing, each of the two passes can be
accomplished in 1 60 of a second, which brings the refresh rate nearer to 60
frames per second. This is an effective technique for avoiding flicker—
provided that adjacent scan lines contain similar display information.
Random-Scan Displays




When
operated as a
random-scan
display unit, a
CRT has the
electron beam
directed only to
those parts of
the screen
where a
picture is to be
displayed.

Pictures are

generated as

line drawings, with the electron beam tracing out the component lines one
after the other. For this reason, random-scan monitors are also referred to
as vector displays (or stroke-writing displays or calligraphic displays).
The component lines of a picture can be drawn and refreshed by a random-
scan system in any specified order (Fig. 8). A pen plotter operates in a
similar way and is an example of a random-scan, hard-copy device.

Refresh rate on a random-scan system depends on the number of
lines to be displayed on that system. Picture definition is now stored as a set
of line-drawing commandsin an area ofmemoryreferred to as the display
list, refresh display file, vector file, or display program. To display a
specified picture, the system cycles through the set of commands in the
display file, drawing each component line in turn. After all line-drawing
commands have been processed, the system cycles back to the first line
command in the list. Random-scan displays are designed to draw all the
component lines of a picture 30 to 60 times each second, with up to 100,000
“short” lines in the display list. When a small set of lines is to be displayed,
each refresh cycle is delayed to avoid very high refresh rates, which could
burn out the phosphor.

Random-scan systems were designed for line-drawing applications,
such as architectural and engineering layouts, and they cannot display
realistic shaded scenes. Since picture definition is stored as a set of line-
drawing instructions rather than as a set of intensity values for all screen
points, vector displays generally have higher resolutions than raster
systems. Also, vector displays produce smooth linedrawings because the
CRT beam directly follows the line path.Araster system, by contrast,
produces jagged lines that are plotted as discrete point sets. However, the
greater flexibility and improved line-drawing capabilities of raster systems
have resulted in the abandonment of vector technology.

Color CRT Monitors

A CRT monitor displays color pictures by using a combination of
phosphors that emit different-colored light. The emitted light from the
different phosphors merges to form a single perceived color, which depends
on the particular set of phosphors that have been excited.

One way to display color pictures is to coat the screen with layers of
differentcolored




phosphors. The emitted color depends on how far the electron beam
penetrates into the phosphor layers. This approach, called the beam-
penetration method, typically used only two phosphor layers: red and
green. A beam of slow electrons excites only the outer red layer, but a beam
of very fast electrons penetrates the red layer and excites the inner green
layer. At intermediate beam speeds, combinations of red and green light are
emitted to show two additional colors: orange and yellow. The speed of the
electrons, and hence the screen color at any point, is controlled by the beam
acceleration voltage. Beam penetration has been an inexpensive way to
produce color, but only a limited number of colors are possible, and picture
quality is not as good as with other methods.

Shadow-mask methods are commonly used in raster-scan systems
(includingcolor TV) because they produce a much wider range of colors than
the beampenetrationmethod. This approach is based on the way that we
seem to perceivecolors as combinations of red, green, and blue components,
called the RGB colormodel. Thus, a shadow-mask CRT uses three
phosphor color dots at each pixelposition. One phosphor dot emits a red
light, another emits a green light, and thethird emits a blue light. This type
of CRT has
three electron
guns, one for
eachcolor dot,
and a shadow-
mask grid just
behind the
phosphor-
coated screen.

The light

emitted from

the three phosphors results in a small spot of color at each pixelposition,
since our eyes tend to merge the light emitted from the three dots intoone
composite color. Figure 9 illustrates the delta-delta shadow-mask
method,commonly used in color CRT systems. The three electron beams are
deflectedand focused as a group onto the shadow mask, which contains a
series of holesaligned with the phosphor-dot patterns. When the three
beams pass through ahole in the shadow mask, they activate a dot triangle,
which appears as a smallcolor spot on the screen. The phosphor dots in the
triangles are arranged so thateach electron beam can activate only its
corresponding color dot when it passesthrough the shadow mask. Another
configuration for the three electron guns is anin-line arrangement in which
the three electron guns, and the corresponding RGBcolor dots on the screen,
are aligned along one scan line instead of in a triangularpattern. This in-line
arrangement of electron guns is easier to keep in alignmentand is commonly
used in high-resolution color CRTs.

We obtain color variations in a shadow-mask CRT by varying the
intensitylevels of the three electron beams. By turning off two of the three
guns, we getonly the color coming from the single activated phosphor (red,
green, or blue).When all three dots are activated with equal beam intensities,
we see a whitecolor. Yellow is produced with equal intensities from the green
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and red dots only,magenta is produced with equal blue and red intensities,
and cyan shows upwhen blue and green are activated equally. In an
inexpensive system, each of thethree electron beams might be restricted to
either on or off, limiting displays toeight colors. More sophisticated systems
can allow intermediate intensity levelsto be set for the electron beams, so
that several million colors are possible.

Color graphics systems can be used with several types ofCRT display
devices.Some inexpensive home-computer systems and video games have
been designedfor use with a color TV set and a radio-frequency (RF)
modulator. The purpose ofthe RF modulator is to simulate the signal froma
broadcast TV station. This meansthat the color and intensity information of
the picture must be combined andsuperimposed on the broadcast-frequency
carrier signal that the TV requires asinput. Then the circuitry in theTVtakes
this signal fromthe RF modulator, extractsthe picture information, and
paints it on the screen. As we might expect, thisextra handling of the picture
information by the RF modulator and TV circuitrydecreases the quality of
displayed images.

Composite monitors are adaptations ofTVsets that allow bypass of
the broadcastcircuitry. These display devices still require that the picture
information becombined, but no carrier signal is needed. Since picture
information is combinedinto a composite signal and then separated by the
monitor, the resulting picturequality is still not the best attainable.

Color CRTs in graphics systems are designed as RGB monitors.
These monitorsuse shadow-mask methods and take the intensity level for
each electron gun(red, green, and blue) directly from the computer system
without any intermediateprocessing. High-quality raster-graphics systems
have 24 bits per pixel inthe frame buffer, allowing 256 voltage settings for
each electron gun and nearly17 million color choices for each pixel. An RGB
color system with 24 bits of storageper pixel is generally referred to as a full-
color system or a true-color system.

Flat-Panel Displays

Although most graphics monitors are still constructed with CRTs,
other technologies
are emerging that may soon replace CRT monitors. The term flat-
paneldisplay refers to a class of video devices that have reduced volume,
weight, andpower requirements compared to a CRT. A significant feature of
flat-panel displaysis that they are thinner than CRTs, and we can hang
them on walls or wearthem on our wrists. Since we can even write on some
flat-panel displays, theyare also available as pocket notepads. Some
additional uses for flat-panel displaysare as small TV monitors, calculator
screens, pocket video-game screens,
laptop computer screens, armrest movie-viewing stations on airlines,
advertisementboards in elevators, and graphics displays in applications
requiring rugged,portable monitors.

We can separate flat-panel displays into two categories: emissive
displaysand nonemissive displays. The emissive displays (or emitters) are
devices thatconvert electrical energy into light. Plasma panels, thin-film
electroluminescentdisplays, and light-emitting diodes are examples of
emissive displays. Flat CRTshave also been devised, in which electron beams
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are accelerated parallel to thescreenandthen deflected 90 onto the screen.
But flatCRTs have not proved to be assuccessful as other emissive devices.
Nonemissive displays (or nonemitters) useoptical effects to convert sunlight
or light from some other source into graphicspatterns. The most important
example of a nonemissive flat-panel display is aliquid-crystal device.

Plasma panels, also called gas-discharge displays, are constructed
by fillingthe
region between

two glass
plates with a
mixture of
gases that
usually
includesneon.
A series of
vertical
conducting
ribbons is

placed on one
glass panel, and aset of horizontal conducting ribbons is built into the other
glass panel (Fig. 10).

Firingvoltages applied to an intersecting pair of horizontal and vertical
conductorscause the gas at the intersection of the two conductors to break
down intoa glowing plasma of electrons and ions. Picture definition is stored
in a refreshbuffer, and the firing voltages are applied to refresh the pixel
positions (at theintersections of the conductors) 60 times per second.
Alternating-current methodsare used to provide faster application of the
firing voltages and, thus, brighter displays.

Separation between pixels is provided by the electric field of the
conductors.One disadvantage of plasma panels has been that they were
strictly monochromaticdevices, but systems are now available with
multicolor capabilities.

Thin-film electroluminescent displays are
similar in construction to plasmapanels. The difference is
that the region between the glass plates is filled with
aphosphor, such as zinc sulfide doped with manganese,
instead of a gas (Fig. 11).

When a sufficiently high voltage is applied to a pair
of crossing electrodes, the phosphor becomes a
conductor in the area of the intersection of the two
electrodes.

Electrical energy is absorbed by the manganese
atoms, which then release theenergy as a spot of light
similar to the glowing plasma effect in a plasma panel.

Electroluminescent displays require more power flsure iz
than plasma panels, and goodcolor displays are harder to o (Covegof s
achieve.

Athird type of emissive device is the light-emitting diode
(LED).Amatrix ofdiodes is arranged to form the pixel positions in the display,
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and picture definitionis stored in a refresh buffer. As in scan-line refreshing
of a CRT, information isread from the refresh buffer and converted to voltage
levels that are applied tothe diodes to produce the light patterns in the
display.

Liquid-crystal displays (LCDs) are commonly used in small systems,
such aslaptop computers and calculators (Fig. 12). These nonemissive
devices producea picture by passing polarized light from the surroundings
or from an internallight source through a liquid-crystal material that can be
aligned to either blockor transmit the light.

The term liquid crystal refers to the fact that these compounds have a
crystallinearrangement of molecules, yet they flow like a liquid. Flat-panel
displayscommonly use nematic (threadlike) liquid-crystal compounds that
tend to keepthe long axes of the rod-shaped molecules aligned. A flat-panel
display can thenbe constructed with a nematic liquid crystal, as
demonstrated in Figure 13. Twoglass plates, each containing a light
polarizer that is aligned at a right angle to theother plate, sandwich the
liquid-crystal
material.
Rows of
horizontal,

Nematin
_ Liguid Crystal
——

!
hm Staie Pranspuirem

FIGURE 13 Polarizer — &8 N )
The light-twistirg, shutter effect tsed OMT State " Transarent
inthe dezion of mos LCD deyices - Conductor

transparentconductors are built into one glass plate, and columns of vertical
conductorsare put into the other plate. The intersection of two conductors
defines a pixel
position. Normally, the molecules are aligned as shown in the “on state” of
Figure
13. Polarized light passing through the material is twisted so that it will pass
through the opposite polarizer. The light is then reflected back to the viewer.
Toturn off the pixel,weapply a voltage to the two intersecting conductors to
align themolecules so that the light is not twisted. This type of flat-panel
device is referredto as a passive-matrix LCD. Picture definitions are stored
in a refresh buffer, andthe screen is refreshed at the rate of 60 frames per
second, as in the emissive devices. Backlighting is also commonly applied
using solid-state electronicdevices, so that the system is not completely
dependent on outside light sources.

Colors can be displayed by using different materials or dyes and by
placing a triad
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of color pixels at each screen location. Another method for constructing
LCDs isto place a transistor at each pixel location, using thin-film transistor
technology.The transistors are used to control the voltage at pixel locations
and to preventcharge from gradually leaking out of the liquid-crystal cells.
These devices arecalled active-matrix displays.
Three-Dimensional Viewing Devices

Graphics monitors for the display of three-dimensional scenes have
been devisedusing a technique that reflects a CRT image from a vibrating,
flexible
mirror(Fig.
14). As the
varifocal
mirror
vibrates, it
changes
focal
length.
These

vibrationsare synchronized with the display of an object on a CRT so that
each pointon the object is reflected from the mirror into a spatial position
correspondingto the distance of that point from a specified viewing location.
This allows us towalk around an object or scene and view it from different
sides.

In addition to displaying three-dimensional images, these systems areoften
capable of displaying two-dimensional cross-sectional “slices” of
objectsselected at different depths, such as in medical applications to
analyze datafrom ultrasonography and CAT scan devices, in geological
applications toanalyze topological and seismic data, in design applications
involving solidobjects, and in three-dimensional simulations of systems,
such as molecules andterrain.

Stereoscopic and Virtual-Reality Systems

Another technique for representing a three-dimensional object is to
displaystereoscopic views of the object. This method does not produce true
threedimensionalimages, but it does provide a three-dimensional effect by
presentinga different view to each eye of an observer so that scenes do
appear to havedepth.

To obtain a stereoscopic projection, we must obtain two views of a
scenegenerated with viewing directions along the lines from the position of
each eye(left and right) to the scene.We can construct the two views as
computer-generatedscenes with different viewing positions, or we can use a
stereo camera pair tophotograph an object or scene. When we
simultaneously look at the left viewwith the left eye and the right view with
the right eye, the two views merge intoa single image and we perceive a
scene with depth.
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One way to produce a stereoscopic effect on a raster system is to
display eachof the two views on alternate refresh cycles. The screen is
viewed through glasses,with each lens designed to act as a rapidly
alternating shutter that is synchronizedto block out one of the views. One
such design (Figure 15) uses liquid-crystalshutters and an infrared emitter
that synchronizes the glasses with the views onthe screen.

Stereoscopic viewing is also a component in virtual-reality systems,
whereusers can step into a scene and interact with the environment. A
headset containingan optical system to generate the stereoscopic views can
be used in conjunctionwith interactive input devices to locate and
manipulate objects in the scene.

A sensing system in the headset keeps track of the viewer’s position,
so that thefront and back of objects can be seen as the viewer “walks
through” and interactswith the display. Another method for creating a
virtual-reality environmentis to use projectors to generate a scene within an
arrangement of walls, where aviewer interacts with a virtual display using
stereoscopic glasses and data gloves(Section 4).

Lower-cost, interactive virtual-reality environments can be set up
using agraphics monitor, stereoscopic glasses, and a head-tracking device.
The trackingdevice is placed above the video monitor and is used to record
head movements,so that the viewing position for a scene can be changed as
head positionchanges.

RASTER SCAN SYSTEMS

Interactive raster-graphics systems typically employ several
processingunits. Inaddition to the central processing unit (CPU), a special-
purpose processor, calledthe video controller or display controller, is used
to control the operation of thedisplay device. Organization of a simple raster
system is shown in Figure 16.

Here, the frame buffer can be anywhere in the system memory, and
the videocontroller accesses the frame buffer to refresh the screen. In
addition to the videocontroller, more sophisticated raster systems employ
other processors as coprocessorsand accelerators to implement various
graphics operations.

Video Controller

Figure 17 shows a commonly used organization for raster systems. A
fixed areaof the system memory is reserved for the frame buffer, and the
video controller isgiven direct access to the frame-buffer memory.
Frame-buffer
locations, and

the
corresponding
screen
positions, are

referencedin
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Cartesiancoordinates. In an application program, we use the
commandswithin a graphics software package to set coordinate positions for
displayedobjects relative to the origin of the Cartesian reference frame.
Often, the coordinateorigin is referenced at the lower-left corner of a screen
display area by thesoftware commands, although we can typically set the
origin at any convenientlocation for a particular application. Figure 18
shows a two-dimensional Cartesianreference frame with the origin at the
lower-left screen corner. The screensurface is then represented as the first
quadrant of a two-dimensional system,with positive x values increasing from
left to right and positive y values increasingfrom the bottom of the screen to
the top. Pixel positions are then assignedinteger x values that range from O
to xmax across the screen, left to right, and integery values that vary from O
to ymax, bottom to top. However, hardware processessuch as screen
refreshing, as well as some software systems, reference the pixelpositions
from the top-left corner of the screen.

In Figure 19,
the basic refresh
operations of the
video controller are
diagrammed.Two
registers are used to
store the coordinate
values for the
screenpixels. Initially,
the x register is set to
O and the y register is
set to the value forthe
top scan line. The
contents of the frame
buffer at this pixel position are thenretrieved and used to set the intensity of
the CRT beam. Then the x register isincremented by 1, and the process is
repeated for the next pixel on the top scanline. This procedure continues for
each pixel along the top scan line. After thelast pixel on the top scan line
has been processed, the x register is reset to O andthe y register is set to the
value for the next scan line down from the top of thescreen. Pixels along this
scan line are then processed in turn, and the procedure isrepeated for each
successive scan line. After cycling through all pixels along thebottom scan
line, the video controller resets the registers to the first pixel position
on the top scan line and the refresh process starts over.

Since the screen must be refreshed at a rate of at least 60 frames per
second,the simple procedure illustrated in Figure 19 may not be
accommodated bytypical RAM chips if the cycle time is too slow. To speed
up pixel processing, video controllers can retrieve multiple pixel values from
the refresh buffer oneach pass. The multiple pixel intensities are then stored
in a separate register andused to control the CRT beam intensity for a group
of adjacent pixels. When thatgroup of pixels has been processed, the next
block of pixel values is retrieved fromthe frame buffer.

A video controller can be designed to perform a number of other
operations.For various applications, the video controller can retrieve pixel
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values from differentmemory areas on different refresh
cycles. In some systems, for example,multiple frame
buffers are often provided so that one buffer can be used
forrefreshing while pixel values are being loaded into the
other buffers. Then thecurrent refresh buffer can switch
roles with one of the other buffers. This providesa fast
mechanism for generating real-time animations, for
example, sincedifferent views of moving objects can be
successively loaded into a buffer withoutinterrupting a
refresh cycle. Another video-controller task is the
transformationof blocks of pixels, so that screen areas
can be enlarged, reduced, or moved fromone location to
another during the refresh cycles. In addition, the video
controlleroften contains a lookup table, so that pixel
values in the frame buffer are usedto access the lookup
table instead of controlling the CRT beam intensity
directly.
This provides a fast method for changing screen
intensity values. Finally, somesystems are designed to allow the video
controller to mix the frame-bufferimage with an input image from a
television camera or other input device.
Raster-Scan Display Processor
Figure 20 shows one way to organize the components of a raster
system thatcontains a separate display processor, sometimes referred to as
a graphics
controlleror a
display
coprocessor.
The purpose of
the display
processor is to
freethe CPU

from the
graphics
chores. In

addition to the system memory, a separatedisplay-processor memory area
can be provided.

A major task of the display processor is digitizing a picture definition
givenin an application program into a set of pixel values for storage in the
framebuffer. This digitization process is called scan conversion. Graphics
commands
specifying straight lines and other geometric objects are scan converted into
aset of discrete points, corresponding to screen pixel positions. Scan
convertinga straight-line segment, for example, means that we have to locate
the pixelpositions closest to the line path and store the color for each
position in the frame buffer. Similar methods are used for scan converting
other objects in a picturedefinition. Characters can be defined with
rectangular pixel grids, as inFigure 21, or they can be defined with outline
shapes, as in Figure 22. Thearray size for character grids can vary from
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about 5 by 7 to 9 by 12 or more forhigher-quality displays. A character grid
is displayed by superimposing the rectangulargrid pattern into the frame
buffer at a specified coordinate position. Forcharacters that are defined as
outlines, the shapes are scan-converted into theframe buffer by locating the
pixel positions closest to the outline.

Display processors are also designed to perform a number of
additional operations.

These functions include generating various line styles (dashed, dotted,
orsolid), displaying color areas, and applying transformations to the objects
in ascene. Also, display processors are typically designed to interface with
interactiveinput devices, such as a mouse.

In an effort to reduce memory requirements in raster systems,
methods havebeen devised for organizing the frame buffer as a linked list
and encoding thecolor information. One organization scheme is to store each
scan line as a set ofnumber pairs. The first number in each pair can be a
reference to a color value, andthe second number can specify the number of
adjacent pixels on the scan line thatare to be displayed in that color. This
technique, called run-length encoding, canresult in a considerable saving
in storage space if a picture is to be constructedmostly with long runs of a
single color each. A similar approach can be takenwhen pixel colors change
linearly. Another approach is to encode the raster as aset of rectangular
areas (cell encoding). The disadvantages of encoding runs arethat color
changes are difficult to record and storage requirements increase as
thelengths of the runs decrease. In addition, it is difficult for the display
controller toprocess the raster when many short runs are involved.
Moreover, the size of theframe buffer is no longer a major concern, because
of sharp declines in memorycosts. Nevertheless, encoding methods can be
useful in the digital storage andtransmission of picture information.
RANDOM SCAN SYSTEMS
Random-Scan Displays

When
operated as a
random-scan
display unit, a
CRT has the
electron beam
directed only to
those parts of
the screen
where a
picture is to be
displayed.

Pictures are
generated as
line drawings, with the electron beam tracing out the component lines one
after the other. For this reason, random-scan monitors are also referred to
as vector displays (or stroke-writing displays or calligraphic displays).
The component lines of a picture can be drawn and refreshed by a random-
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scan system in any specified order (Fig. 8). A pen plotter operates in a
similar way and is an example of a random-scan, hard-copy device.

Refresh rate on a random-scan system depends on the number of
lines to be displayed on that system. Picture definition is now stored as a set
of line-drawing commandsin an area ofmemoryreferred to as the display
list, refresh display file, vector file, or display program. To display a
specified picture, the system cycles through the set of commands in the
display file, drawing each component line in turn. After all line-drawing
commands have been processed, the system cycles back to the first line
command in the list. Random-scan displays are designed to draw all the
component lines of a picture 30 to 60 times each second, with up to 100,000
“short” lines in the display list. When a small set of lines is to be displayed,
each refresh cycle is delayed to avoid very high refresh rates, which could
burn out the phosphor.

Random-scan systems were designed for line-drawing applications, such as
architectural and engineering layouts, and they cannot display realistic
shaded scenes. Since picture definition is stored as a set of line-drawing
instructions rather than as a set of intensity values for all screen points,
vector displays generally have higher resolutions than raster systems. Also,
vector displays produce smooth line drawings because the CRT beam
directly follows the line path.Araster system, by contrast, produces jagged
lines that are plotted as discrete point sets. However, the greater flexibility
and improved line-drawing capabilities of raster systems have resulted in
the abandonment of vector technology.

INTERACTIVE INPUT DEVICES

Graphics workstations can make use of various devices for data input.
Most systemshave a keyboard and one or more additional devices
specifically designed forinteractive input. These include a mouse, trackball,
spaceball, and joystick. Someother input devices used in particular
applications are digitizers, dials, buttonboxes, data gloves, touch panels,
image scanners, and voice systems.

Keyboards, Button Boxes, and Dials

An alphanumeric keyboard on a graphics system is used primarily as
a device forentering text strings, issuing certain commands, and selecting
menu options. Thekeyboard is an efficient device for inputting such
nongraphic data as picture labelsassociated with a graphics display.
Keyboards can also be provided with featuresto facilitate entry of screen
coordinates, menu selections, or graphics functions.

Cursor-control keys and function keys are common features on
generalpurposekeyboards. Function keys allow users to select frequently
accessed operationswith a single keystroke, and cursor-control keys are
convenient for selectinga displayed object or a location by positioning the
screen cursor. A keyboardcan also contain other types of cursor-positioning
devices, such as a trackball orjoystick, along with a numeric keypad for fast
entry of numeric data. In additionto these features, some keyboards have an
ergonomic design that providesadjustments for relieving operator fatigue.

For specialized tasks, input to a graphics application may come from a
set ofbuttons, dials, or switches that select data values or customized
graphics operations.
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Buttons and switches are often used to input predefined functions,
anddials are common devices for entering scalar values. Numerical values
withinsome defined range are selected for input with dial rotations. A
potentiometeris used to measure dial rotation, which is then converted to
the correspondingnumerical value.

Mouse Devices

A mouse is a small
handheld unit that is usually
moved around on a flat
surfaceto position the screen
cursor. One or more buttons
on the top of the mouse
providea mechanism for
communicating selection
information to the computer; wheelsor rollers on the bottom of the mouse
can be used to record the amount anddirection of movement. Another
method for detecting mouse motion is with anoptical sensor. For some
optical systems, the mouse is moved over a special mousepad that has a
grid of horizontal and vertical lines. The optical sensor detectsmovement
across the lines in the grid. Other optical mouse systems can operate on any
surface. Some mouse systems are cordless, communicating with computer
processors using digital radio technology.

Since a mouse can be picked up and put down at another position
without change in cursor movement, it is used for making relative changes
in the position of the screen cursor. One, two, three, or four buttons are
included on the top of the mouse for signaling the execution of operations,
such as recording cursor position or invoking a function. Most general-
purpose graphics systems now include a mouse and a keyboard as the
primary input devices.

Additional features can be included in the basic mouse design to
increase the number of allowable input parameters and the functionality of
the mouse.

The Logitech G700 wireless gaming mouse in Figure 23 features 13
separately programmable control inputs. Each input can be configured to
perform a wide range of actions, from traditional single-click inputs to macro
operations containing multiple key strongs, mouse events, and pre-
programmed delays between operations. The laser-based optical sensor can
be configured to control the degree of sensitivity to motion, allowing the
mouse to be used in situations requiring different levels of control over
cursor movement. In addition, the mouse can hold up to five different
configuration profiles to allow the configuration to be switched easily when
changing applications.

Trackballs and Space balls

A trackball is a ball device that can be rotated with the fingers or
palm of the hand to produce screen-cursor movement. Potentiometers,
connected to the ball, measure the amount and direction of rotation. Laptop
keyboards are often equipped with a trackball to eliminate the extra space
required by a mouse. A trackball also can be mounted on other devices, or it
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can be obtained as a separate add-on unit that contains two or three control
buttons.

An extension of the two-dimensional trackball concept is the
spaceball, which provides six degrees of freedom. Unlike the trackball, a
spaceball does not actually move. Strain gauges measure the amount of
pressure applied to the spaceball to provide input for spatial positioning and
orientation as the ball is pushed or pulled in various directions. Spaceballs
are used for three-dimensional positioning and selection operations in
virtual-reality systems, modeling, animation, CAD, and other applications.
Joysticks

Another positioning device is the joystick, which consists of a small,
vertical lever (called the stick) mounted on a base.We use the joystick to
steer the screen cursor around. Most joysticks select screen positions with
actual stick movement; othersrespond to pressure on the stick. Some
joysticks are mounted on a keyboard, and some are designed as stand-alone
units.

The distance that the stick is moved in any direction from its center
position corresponds to the relative screen-cursor movement in that
direction.

Potentiometers mounted at the base of the joystick measure the
amount of movement, and springs return the stick to the center position
when it is released. One or more buttons can be programmed to act as input
switches to signal actions that are to be executed once a screen position has
been selected.

In another type of movable joystick, the stick is used to activate
switches that cause the screen cursor to move at a constant rate in the
direction selected. Eight switches, arranged in a circle, are sometimes
provided so that the stick can select any one of eight directions for cursor
movement. Pressure-sensitive joysticks, also called isometric joysticks, have
a non-movable stick. A push or pull on the stick is measured with strain
gauges and converted to movement of the screen cursor in the direction of
the applied pressure.

Data Gloves

A data glove is a device that fits over the user’s hand and can be used
to grasp a “virtual object.” The glove is constructed with a series of sensors
that detect hand and finger motions. Electromagnetic coupling between
transmitting antennas and receiving antennas are used to provide
information about the position and orientation of the hand. The transmitting
and receiving antennas can each be structured as a set of three mutually
perpendicular coils, forming a three dimensional Cartesian reference
system. Input from the glove is used to position or manipulate objects in a
virtual scene. A two-dimensional projection of the scene can be viewed on a
video monitor, or a three-dimensional projection can be viewed with a
headset.

Digitizers

A common device for drawing, painting, or interactively selecting
positions is a digitizer. These devices can be designed to input coordinate
values in either a two-dimensional or a three-dimensional space. In
engineering or architectural applications, a digitizer is often used to scan a
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drawing or object and to input a set of discrete coordinate positions. The
input positions are then joined with straight-line segments to generate an
approximation of a curve or surface shape.

One type of digitizer is the graphics tablet (also referred to as a data
tablet), which is used to input two-dimensional coordinates by activating a
hand cursor or stylus at selected positions on a flat surface. A hand cursor
contains crosshairs for sighting positions, while a stylus is a pencil-shaped
device that is pointed at positions on the tablet. The tablet size varies from
12 by 12 inches for desktop models to 44 by 60 inches or larger for floor
models. Graphics tablets provide a highly accurate method for selecting
coordinate positions, with an accuracy that varies from about 0.2 mm on
desktop models to about 0.05 mm or less on larger
models.

Many graphics tablets are constructed with a rectangular grid of wires
embedded in the tablet surface. Electromagnetic pulses are generated in
sequence along the wires, and an electric signal is induced in a wire coil in
an activated stylus or hand-cursor to record a tablet position. Depending on
the technology, signal strength, coded pulses, or phase shifts can be used to
determine the position on the tablet.

An acoustic (or sonic) tablet uses sound waves to detect a stylus
position. Either strip microphones or point microphones can be employed to
detect the soundemitted by an electrical spark from a stylus tip. The
position of the stylus is calculated by timing the arrival of the generated
sound at the different microphonepositions. An advantage of two-
dimensional acoustic tablets is that the microphones can be placed on any
surface to form the “tablet” work area. For example, the microphones could
be placed on a book page while a figure on that page is digitized.

Three-dimensional  digitizers use sonic or electromagnetic
transmissions to record positions. One electromagnetic transmission
method is similar to that employed in the data glove: A coupling between the
transmitter and receiver is used to compute the location of a stylus as it
moves over an object surface. As the points are selected on a nonmetallic
object, a wire-frame outline of the surface is displayed on the computer
screen. Once the surface outline is constructed, it can be rendered using
lighting effects to produce a realistic display of the object.

Image Scanners

Drawings, graphs, photographs, or text can be stored for computer
processing with an image scanner by passing an optical scanning
mechanism over the information to be stored. The gradations of grayscale or
color are then recorded and stored in an array. Once we have the internal
representation of a picture, we can apply transformations to rotate, scale, or
crop the picture to a particular screen area. We can also apply various
image-processing methods to modify the array representation of the picture.
For scanned text input, various editing operations can be performed on the
stored documents. Scanners are available in a variety of sizes and
capabilities, including small handheld models, drum scanners, and flatbed
scanners.




22

Touch Panels

As the name implies, touch panels allow displayed objects or screen
positions tobe selected with the touch of a finger. A typical application of
touch panels is forthe selection of processing options that are represented as
a menu of graphicalicons. Some monitors are designed with touch screens.
Other systems can beadapted for touch input by fitting a transparent device
containing a touch-sensingmechanism over the video monitor screen. Touch
input can be recorded usingoptical, electrical, or acoustical methods.

Optical touch panels employ a line of infrared light-emitting diodes
(LEDs)along one vertical edge and along one horizontal edge of the frame.
Light detectorsare placed along the opposite vertical and horizontal edges.
These detectorsare used to record which beams are interrupted when the
panel is touched. Thetwo crossing beams that are interrupted identify the
horizontal and vertical coordinatesof the screen position selected. Positions
can be selected with an accuracyof about 1/4 inch.With closely spaced
LEDs, it is possible to break two horizontalor two vertical beams
simultaneously. In this case, an average position betweenthe two
interrupted beams is recorded. The LEDs operate at infrared frequencies
so that the light is not visible to a user.

Anelectrical touch panel is constructed with two transparent plates
separatedby a small distance. One of the plates is coated with a conducting
material, andthe other plate is coated with a resistive material. When the
outer plate is touched,it is forced into contact with the inner plate. This
contact creates a voltage dropacross the resistive plate that is converted to
the coordinate values of the selectedscreen position.

In acoustical touch panels, high-frequency sound waves are generated
inhorizontal and vertical directions across a glass plate. Touching the screen
causespart of each wave to be reflected fromthe finger to the emitters. The
screen positionat the point of contact is calculated from a measurement of
the time intervalbetween the transmission of each wave and its reflection to
the emitter.

Light Pens

Light pens are pencil-shaped devices are used to select screen
positions by detectingthe light coming from points on the CRT screen. They
are sensitive to the shortburst of light emitted from the phosphor coating at
the instant the electron beamstrikes a particular point. Other light sources,
such as the background light in theroom, are usually not detected by a light
pen. An activated light pen, pointed at aspot on the screen as the electron
beam lights up that spot, generates an electricalpulse that causes the
coordinate position of the electron beam to be recorded. Aswith cursor-
positioning devices, recorded light-pen coordinates can be used toposition
an object or to select a processing option.

Although light pens are still with us, they are not as popular as they
once werebecause they have several disadvantages compared to other input
devices thathave been developed. For example, when a light pen is pointed
at the screen, partof the screen image is obscured by the hand and pen. In
addition, prolonged use ofthe light pen can causearmfatigue, and light pens
require special implementationsfor some applications because they cannot
detect positions within black areas. Tobe able to select positions in any
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screen area with a light pen, we must have somenonzero light intensity
emitted from each pixel within that area. In addition, lightpens sometimes
give false readings due to background lighting in a room.

Voice Systems

Speech recognizers are used with some graphics workstations as
input devicesfor voice commands. The voice system input can be used to
initiate graphicsoperations or to enter data. These systems operate by
matching an input againsta predefined dictionary of words and phrases.

A dictionary is set up by speaking the command words several times.
Thesystem then analyzes each word and establishes a dictionary of word
frequencypatterns, along with the corresponding functions that are to be
performed.

Later, when a voice command is given, the system searches the
dictionary fora frequency-pattern match. A separate dictionary is needed for
each operatorusing the system. Input for a voice system is typically spoken
into a microphonemounted on a headset; the microphone is designed to
minimize input of backgroundsounds. Voice systems have some advantage
over other input devicesbecause the attention of the operator need not
switch from one device to anotherto enter a command.

HARD COPY DEVICES

We can obtain
hard-copy output for
our images in several
formats. For
presentationsor
archiving, we can
send image files to
devices or service
bureaus thatwill
produce overhead
transparencies, 35mm slides, or film. Also, we can put ourpictures on paper
by directing graphics output to a printer or plotter.

The quality of the pictures obtained from an output device depends on
dotsize and the number of dots per inch, or lines per inch, that can be
displayed.

To produce smooth patterns, higher-quality printers shift dot
positions so thatadjacent dots overlap.

Printers produce output by either impact or nonimpact methods.
Impact printerspress formed character faces against an inked ribbon onto
the paper. A lineprinter is an example of an impact device, with the
typefaces mounted on bands,chains, drums, or wheels. Nonimpact printers
and plotters use laser techniques,ink-jet sprays, electrostatic methods, and
electrothermal methods to get imagesonto paper.

Character impact printers often have a dot-matrix print head
containing a rectangulararray of protruding wire pins, with the number of
pins varying dependingupon the quality of the printer. Individual characters
or graphics patterns areobtained by retracting certain pins so that the
remaining pins form the pattern tobe printed. Figure 24 shows a picture
printed on a dot-matrix printer.

FIGURE 24
A plictuire ad on a dot-matrix
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In a laser device, a laser beam creates a charge distribution on a
rotating drumcoated with a photoelectric material, such as selenium. Toner
is applied to thedrum and then transferred to paper. Ink-jet methods
produce output by squirtingink in horizontal rows across a roll of paper
wrapped on a drum. The electricallycharged ink stream is deflected by an
electric field to produce dot-matrix patterns.

An electrostatic device places a negative charge on the paper, one
complete rowat atime across the sheet. Then the paper is exposed to a
positively charged toner. Thiscauses the toner to be attracted to the
negatively charged areas, where it adheresto produce the specified output.
Another output technology is the electrothermalprinter. With these systems,
heat is applied to a dot-matrix print head to outputpatterns on heat-
sensitive paper.

We can get limited color output on some impact printers by using
differentcoloredribbons. Nonimpact devices use various techniques to
combine threedifferent color pigments (cyan, magenta, and yellow) to
produce a range of colorpatterns. Laser and electrostatic devices deposit the
three pigments on separatepasses; ink-jet methods shoot the three colors
simultaneously on a single passalong each print line.

Drafting layouts and other drawings are typically generated with ink-
jet orpen plotters. A pen plotter has one or more pens mounted on a
carriage, or crossbar,that spans a sheet of paper. Pens with varying colors
and widths are used toproduce a variety of shadings and line styles.Wet-ink,
ballpoint, and felt-tip pensare all possible choices for use with a pen plotter.
Plotter paper can lie flat or itcan be rolled onto a drum or belt. Crossbars
can be either movable or stationary,while the pen moves back and forth
along the bar. The paper is held in positionusing clamps, a vacuum, or an
electrostatic charge.

GRAPHICS SOFTWARE

So far, we have mainly considered graphics applications on an isolated
systemwith a single user. However, multiuser environments and computer
networks arenow common elements in many graphics applications. Various
resources, such asprocessors, printers, plotters, and data files, can be
distributed on a network andshared by multiple users.

A graphics monitor on a network is generally referred to as a graphics
server,or simply a server. Often, the monitor includes standard input
devices such as akeyboard and a mouse or trackball. In that case, the
system can provide input, aswell as being an output server. The computer
on the network that is executing agraphics application program is called the
client, and the output of the program isdisplayed on a server.Aworkstation
that includes processors, as well as a monitorand input devices, can
function as both a server and a client.

When operating on a network, a client computer transmits the
instructionsfor displaying a picture to the monitor (server). Typically, this is
accomplished bycollecting the instructions into packets before transmission
instead of sending theindividual graphics instructions one at a time over the
network. Thus, graphicssoftware packages often contain commands that
affect packet transmission, aswell as the commands for creating pictures.
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AREA FILL ATTRIBUTES

Mostgraphics packages limit fill areas to polygons because they are
described withlinear equations. A further restriction requires fill areas to be
convex polygons,so that scan lines do not intersect more than two boundary
edges. However, ingeneral, we can f{ill any specified regions, including
circles, ellipses, and other objectswith curved boundaries. Also, application
systems, such as paint programs,provide fill options for arbitrarily shaped
regions.

Fill Styles

A basic fill-area attribute provided by a general graphics library is the
displaystyle of the interior. We can display a region with a single color, a
specified fillpattern, or in a “hollow” style by showing only the boundary of
the region. Thesethree fill styles are illustrated in Figure 5. We can also fill
selected regions of ascene using various brush styles, color-blending
combinations, or textures. Otheroptions include specifications for the
display of the boundaries of a fill area.

For polygons, we could show the edges in different colors, widths, and
styles;and we can select different display attributes for the front and back
faces of aregion.

Fill patterns can be defined in rectangular color arrays that list
different colorsfor different positions in the array. Alternatively, a fill pattern
could be specifiedas a bit array that indicates which relative positions are to
be displayed in a singleselected color. An array specifying a fill pattern is a
mask that is to be appliedto the display area. Some graphics systems
provide an option for selecting anarbitrary initial position for overlaying the
mask. From this starting position, themask is replicated in the horizontal
and vertical directions until the display areais filled with nonoverlapping
copies of the pattern. Where the pattern overlapsspecified fill areas, the
array pattern indicates which pixels should be displayedin a particular
color. This process of filling an area with a rectangular pattern iscalled
tiling, and a rectangular fill pattern is sometimes referred to as a
tilingpattern. Sometimes, predefined fill patterns are available in a system,
such as thehatch fill patterns shown in Figure 6.

Color-Blended Fill Regions

It is also possible to combine a fill pattern with background colors in
various ways.A pattern could be combined with background colors using a
transparency factorthat determines how much of the background should be
mixed with the objectcolor.

Some fill methods

usin blended colors SNy S LT

havegbeen referred to as // X / / / /K.’/f/;'/a/f ’pr )

soft-fill ortint-fill Faten i Crossbmnch A W —
algorithms.Oneuse  for

these fill methods is to soften the fill colors at object

borders that have been blurred to antialias the edges. Another application of
asoft-fill algorithm is to allow repainting of a color area that was originally
filledwith a semitransparent brush, where the current color is then a
mixture of thebrush color and the background colors “behind” the area. In
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either case, we wantthe new fill color to have the same variations over the
area as the current fill color.
CHARACTER ATTRIBUTES

We control the appearance of displayed characters with attributes
such as font,size, color, and orientation. In many packages, attributes can
be set both for entirecharacter strings (text) and for individual characters
that can be used for specialpurposes such as plotting a data graph.

There are a great many possible text-display options. First, there is
the choiceof font (or typeface), which is a set of characters with a particular
design stylesuch as New York, Courier, Helvetica, London, Times Roman,
and various specialsymbol groups. The characters in a selected font can also
be displayed withassorted underlining styles (solid, -d-o-t-t-e-d-, double), in
boldface, in italic, and inOUTLINE or shadow styles.

Color settings for displayed text can be stored in the system attribute
list andused by the procedures that generate character definitions in the
frame buffer.

When a character string is to be displayed, the current color is used to
set pixelvalues in the frame buffer corresponding to the character shapes
and positions.

We could adjust text size by scaling the overall dimensions (height and
width) of characters or by
scaling only the height or
the width. Character
size(height) is specified by
printers and compositors
in points, where 1 point is
about0.035146
centimeters (or 0.013837 inch, which is approximately 172 inch). For
example,the characters in this book are set in a 10-point font. Point
measurementsspecify the size of the body of a character (Figure 11), but
different fonts withthe same point specifications can have different character
sizes, depending onthe design of the typeface. The distance between the
bottomline and the topline ofthe character body is the same for all characters
in a particular size and typeface,but the body width may vary. Proportionally
spaced fonts assign a smaller bodywidth to narrow characters such as i, j, [,
and f compared to broad characters such asWor M. Character height is
defined as the distance between the baseline andthe capline of characters.
Kerned characters, such as fand jin Figure 11, typicallyextend beyond the
character body limits, and letters with descenders (g, j, p, q, yJextend below
the baseline. Each character is positioned within the character bodyby a
font designer in such a way that suitable spacing is attained along
andbetween print lines when text is displayed with character bodies
touching.

Sometimes, text size is adjusted without changing the width-to-height
ratioof characters. Figure 12 shows a character string displayed with three
differentcharacter heights, while maintaining the ratio of width to height.
Examples of textdisplayed with a constant height and varying widths are
given in Figure 13.
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Spacing between characters is another attribute that can often be
assignedto a character string. Figure 14 shows a character string displayed
with threedifferent settings for the intercharacter spacing.

The orientation for a character string can be set according to the
direction ofa character up vector. Text is then displayed so that the
orientation of charactersfrom baseline to capline is in the direction of the up
vector. For example, with thedirection of the up vector at 45°, text would be
displayed as shown in Figure 15.

A
procedure
orienting
could rotate
characters SO
that the sides of
characterbodies,
from baseline to
capline, are

for
text

aligned with the up vector. The rotatedcharacter shapes are then scan
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converted into the frame buffer.

It is useful in many applications to be able to
arrange character stringsvertically or horizontally.
Examples of this are given in Figure 16. We couldalso
arrange the characters in a text string so that the
string is displayed forwardor backward. Examples of
text displayed with these options are shown inFigure
17. A procedure for implementing text-path
orientation adjusts theposition of the individual
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characters in the frame buffer according to the optionselected.

Character strings could also be oriented using a combination of up-
vector andtext-path specifications to produce slanted text. Figure 18 shows
the directions of character strings generated by various text path settings for
a 45° up vector.

Examples of character strings generated for text-path values down
and right withthis up vector are illustrated in Figure 19.

Another possible attribute for character strings is alignment. This
attributespecifies how text is to be displayed with respect to a reference
position. For example,individual characters could be aligned according to
the base lines or thecharacter centers. Figure 20 illustrates typical character
positions for horizontaland vertical alignments. String alignments are also
possible, and Figure 21shows common alignment positions for horizontal
and vertical text labels.In some graphics packages, a text-precision attribute
is also available. Thisparameter specifies the amount of detail and the
particular processing optionsthat are to be used with a text string. For a
low-precision text string, many attributeselections, such as text path, are
ignored, and faster procedures are usedfor processing the characters
through the viewing pipeline.

Finally, a library of text-processing routines often supplies a set of
special characters,such as a small circle or cross, which are useful in
various applications. Most often these characters are used as marker
symbols in network layouts or in graphingdata sets. The attributes for these
marker symbols are typically color and size.

We have two methods for displaying characters with the OpenGL
package. Eitherwe can design a font set using the bitmap functions in the
core library, or wecan invoke the GLUT character-generation routines. The
GLUT library containsfunctions for displaying predefined bitmap and stroke
character sets. Therefore,the character attributes we can set are those that
apply to either bitmaps or linesegments.

For either bitmap or outline fonts, the display color is determined by
thecurrent color state. In general, the spacing and size of characters is
determinedby the font designation, such as GLUT BITMAP 9 BY 15 and
GLUTSTROKE MONO ROMAN. However, we can also set the line width and
line type forthe outline fonts.We specify the width for a line with the
glLineWidth function,and we select a line type with the glLineStipple
function. The GLUT strokefonts will then be displayed using the current
values we specified for the OpenGLline-width and line-type attributes.

We can accomplish some other text-display characteristics using
transformationfunctions. The transformation routines allow us to scale,
position, and rotatethe GLUT stroke characters in either two-dimensional
space or three-dimensionalspace. In addition, the three-dimensional viewing
transformations can be usedto generate other display effects.

INQUIRY FUNCTION

We can retrieve current values for any of the state parameters,
including attributesettings, using OpenGL query functions. These
functions copy specified statevalues into an array, which we can save for
later reuse or to check the currentstate of the system if an error occurs.
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For current attribute values we use an appropriate “glGet” function,
such as
glGetBooleanv ()
glGetFloatv ()
glGetIntegerv ()
glGetDoublev ()

In each of the preceding functions, we specify two arguments. The first
argumentis an OpenGL symbolic constant that identifies an attribute or
other state parameter.

The second argument is a pointer to an array of the data type
indicated bythe function name. For instance, we can retrieve the current
RGBA floating-pointcolor settings with
glGetFloatv (GL_CURRENT_COLOR, colorValues);

The current color components are then passed to the array
colorValues. Toobtain the integer values for the current color components,
we invoke the glGet-Integerv function. In some cases, a type conversion
may be necessary to returnthe specified data type.

Other OpenGL constants, such as GL POINT SIZE, GL LINE WIDTH,
andGL CURRENT RASTER POSITION, can be used in these functions to
returncurrent state values. Also, we could check the range of point sizes or
linewidths that are supported using the constants GL POINT SIZE RANGE
andGL LINE WIDTH RANGE.

Although we can retrieve and reuse settings for a single attribute with
theglGetfunctions,OpenGLprovides other functions for saving groups of
attributesand reusing their values.We consider the use of these functions for
saving currentattribute settings in the next section.

There are many other state and system parameters that are often
useful toquery. For instance, to determine how many bits per pixel are
provided in theframe buffer on a particular system, we can ask the system
how many bits areavailable for each individual color component, such as
glGetintegerv (GL_RED_BITS, redBitSize);

Here, array redBitSize is assigned the number of red bits available in
each ofthe buffers (frame buffer, depth buffer, accumulation buffer, and
stencil buffer).

Similarly, we can make an inquiry for the other color bits using GL
GREEN BITS,GL BLUE BITS, GL ALPHA BITS, or GL INDEX BITS.

We can also find out whether edge flags have been set, whether a
polygonface was tagged as a front face or a back face, and whether the
system supportsdouble buffering. In addition, we can inquire whether
certain routines, such ascolor blending, line stippling or antialiasing, have
been enabled or disabled.

OUTPUT PRIMITIVES

A general software package for graphics  applications,
sometimesreferred to as a computer-graphics application
programminginterface (CG API), provides a library of functionsthat we can
use within a programming language such as C++ to create pictures. The set
of library functions can be subdivided into severalcategories. One of the first
things we need to do when creating a pictureis to describe the component
parts of the scene to be displayed.
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Picture components could be trees and terrain, furniture and
walls,storefronts and street scenes, automobiles and billboards, atoms
andmolecules, or stars and galaxies. For each type of scene, we need
todescribe the structure of the individual objects and their coordinate
locationswithin the scene. Those functions in a graphics package that weuse
to describe the various picture components are called the graphicsoutput
primitives, or simply primitives. The output primitives describingthe
geometry of objects are typically referred to as geometricprimitives. Point
positions and straight-line segments are the simplestgeometric primitives.
Additional geometric primitives that can be available in a graphicspackage
include circles and other conic sections, quadric surfaces, spline curves and
surfaces,and polygon color areas. Also, most graphics systems provide some
functions fordisplaying character strings. After the geometry of a picture has
been specified withina selected coordinate reference frame, the output
primitives are projected to a twodimensionalplane, corresponding to the
display area of an output device, and scan convertedinto integer pixel
positions within the frame buffer.

In this chapter, we introduce the output primitives available in
OpenGL, and discusstheir use.

Coordinate Reference Frames

To describe a picture, we first decide upon a convenient Cartesian
coordinatesystem, called the world-coordinate reference frame, which could
be either twodimensionalor three-dimensional.We then describe the objects
in our picture bygiving their geometric specifications in terms of positions in
world coordinates.

For instance, we define a straight-line segment with two endpoint
positions, anda polygon is specified with a set of positions for its vertices.
These coordinatepositions are stored in the scene description along with
other information aboutthe objects, such as their color and their coordinate
extents, which are the minimumand maximum x, y, and z values for each
object. A set of coordinate extentsis also described as a bounding box for an
object. For a two-dimensional figure,the coordinate extents are sometimes
called an object’s bounding rectangle.

Objects are then displayed by passing the scene information to the
viewing routines,which identify visible surfaces and ultimately map the
objects to positionson the video monitor. The scan-conversion process stores
information about thescene, such as color values,
at the appropriate locations in the frame buffer,
andthe objects in the scene are displayed on the
output device.

Screen Coordinates

Locations on a video monitor are referenced
in integer screen coordinates, whichcorrespond
to the pixel positions in the frame buffer. Pixel
coordinate values givethe scan line number (the y !
value) and the column number (the x value along a ;
scan line). Hardware processes, such as screen
refreshing, typically address pixelpositions with FIGURE 1
respect to the top-left corner of the screen. Scan e it ket it respecs
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lines are thenreferenced from O, at the top of the screen, to some integer
value, ymax, at thebottom of the screen, and pixel positions along each scan
line are numbered fromO to xmax, left to right. However, with software
commands, we can set up anyconvenient reference frame for screen
positions. For example, we could specifyan integer range for screen positions
with the coordinate origin at the lower-leftof a screen area (Figure 1), or we
could use noninteger Cartesian values for apicture description. The
coordinate values we use to describe the geometry of ascene are then
converted by the viewing routines to integer pixel positions withinthe frame
buffer.

Scan-line algorithms for the graphics primitives use the defining
coordinatedescriptions to determine the locations of pixels that are to be
displayed. Forexample, given the endpoint coordinates for a line segment, a
display algorithmmust calculate the positions for those pixels that lie along
the line path betweenthe endpoints. Since a pixel position occupies a finite
area of the screen, thefinite size of a pixel must be taken into account by the
implementation algorithms.

For the present, we assume that each integer screen position
referencesthe center of a pixel area.

Once pixel positions have been identified for an object, the appropriate
colorvalues must be stored in the frame buffer. For this purpose, we will
assume thatwe have available a low-level procedure of the form
setPixel (x, y);

This procedure stores the current color setting into the frame buffer at
integerposition (x, y), relative to the selected position of the screen-
coordinate origin.Wesometimes also will want to be able to retrieve the
current frame-buffer setting fora pixel location. So we will assume that we
have the following low-level functionfor obtaining a frame-buffer color value:
getPixel (x, y, color);

In this function, parameter color receives an integer value
corresponding to thecombined red, green, and blue (RGB) bit codes stored
for the specified pixel atposition (x, y).

Although we need only specify color values at (x, y) positions for a
twodimensionalpicture, additional screen-coordinate information is needed
for
three-dimensional scenes. In this case, screen coordinates are stored as
threedimensionalvalues, where the third dimension references the depth of
objectpositions relative to a viewing position. For a two-dimensional scene,
all depthvalues are O.

Absolute and Relative Coordinate Specifications

So far, the coordinate references that we have discussed are stated as
absolutecoordinate values. This means that the values specified are the
actual positionswithin the coordinate system in use.

However, some graphics packages also allow positions to be
specifiedusing relative coordinates. This method is useful for various
graphics applications,such as producing drawings with pen plotters, artist’s
drawing and paintingsystems, and graphics packages for publishing and
printing applications. Takingthis approach, we can specify a coordinate
position as an offset from the lastposition that was referenced (called the
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current position). For example, if location(3, 8) is the last position that has
been referenced in an application program,a relative coordinate specification
of (2, —1) corresponds to an absolute positionof (5, 7). An additional function
is then used to set a current position before anycoordinates for primitive
functions are specified. To describe an object, such as aseries of connected
line segments, we then need to give only a sequence of relativecoordinates
(offsets), once a starting position has been established. Options can
beprovided in a graphics system to allow the specification of locations using
eitherrelative or absolute coordinates. In the following discussions, we will
assumethat all coordinates are specified as absolute references unless
explicitly statedotherwise.

Specifying A Two-DimensionalWorld-Coordinate Reference Framein
OpenGL

The gluOrtho2D command is a function we can use to set up any
twodimensionalCartesian reference frame. The arguments for this function
are thefour values defining the x and y coordinate limits for the picture we
want to display.

Since the gluOrtho2D function specifies an orthogonal projection, we
need also to be sure that the coordinate values are placed in the OpenGL
projectionmatrix. In addition, we could assign the identity matrix as the
projectionmatrix before defining the world-coordinate range. This would
ensure that thecoordinate values were not accumulated with any values we
may have previouslyset for the projection matrix. Thus, for our initial two-
dimensional examples, wecan define the coordinate frame for the screen
display window with the followingstatements:
glMatrixMode (GL_PROJECTION);
glLoadldentity ( );
gluOrtho2D (xmin, xmax, ymin, ymax);

The display window will then be referenced by coordinates (xmin,
ymin) at thelower-left corner and by coordinates (xmax, ymax) at the
upper-right corner, asshown in Figure 2.

We can then
designate one or more
graphics primitives
for display using
thecoordinate
reference specified in
the gluOrtho2D
statement. If the
coordinateextents of a
primitive are within
the coordinate range
of the display window, allof the primitive will be displayed. Otherwise, only
those parts of the primitivewithin the display-window coordinate limits will
be shown. Also, when we set upthe geometry describing a picture, all
positions for the OpenGL primitives mustbe given in absolute coordinates,
with respect to the reference frame defined inthe gluOrtho2D function.
OpenGL Point Functions




33

To specify the geometry of a point, we simply give a coordinate
position in theworld reference frame. Then this coordinate position, along
with other geometricdescriptions we may have in our scene, is passed to the
viewing routines. Unlesswe specify other attribute values, OpenGL primitives
are displayed with a defaultsize and color. The default color for primitives is
white, and the default point sizeis equal to the size of a single screen pixel.

We use the following OpenGL function to state the coordinate values
for asingle position:
glVertex* ( );
where the asterisk (*) indicates that suffix codes are required for this
function.

These suffix codes are used to identify the spatial dimension, the
numerical datatype to be used for the coordinate values, and a possible
vector form for thecoordinate specification. Calls to glVertex functions must
be placed between aglBegin function and a glEnd function. The argument of
the glBegin functionis used to identify the kind of output primitive that is to
be displayed, and glEndtakes no arguments. For point plotting, the
argument of the glBegin function isthe symbolic constant GL POINTS.
Thus, the form for an OpenGL specificationof a point position is
glBegin (GL_POINTS);
glVertex* ( );
glEnd ( );

Although the term vertex strictly refers to a “corner” point of a
polygon, thepoint of intersection of the sides of an angle, a point of
intersection of anellipse with its major axis, or other similar coordinate
positions on geometricstructures, the glVertex function is used in OpenGL
to specify coordinates forany point position. In this way, a single function is
used for point, line, and polygonspecifications—and, most often, polygon
patches are used to describe theobjects in a scene.

Coordinate positions in OpenGL can be given in two, three, or four
dimensions.

We use a suffix value of 2, 3, or 4 on the glVertex function to indicate
the dimensionality of a coordinate position. A four-dimensional specification
indicates a homogeneous-coordinate representation, where the homogeneous
parameter h (the fourth coordinate) is a scaling factor for the Cartesian-
coordinatevalues. Homogeneous-coordinate representations are useful for
expressing transformation operations in matrix form. Because OpenGL
treats two-dimensionsas a special case of three dimensions, any (x, y)
coordinate specification isequivalent to a three-dimensional specification of
(x, y, 0). Furthermore, OpenGLrepresents vertices internally in four
dimensions, so each of these specificationsare equivalent to the four-
dimensional specification (x, y, 0, 1).

We also need to state which data type is to be used for the
numericalvaluespecifications of the coordinates. This is accomplished with a
secondsuffix code on the glVertex function. Suffix codes for specifying a
numericaldata type are i (integer), s (short), f (float), and d (double). Finally,
thecoordinate values can be listed explicitly in the glVertex function, or a
singleargument can be used that references a coordinate position as an
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array. If weuse an array specification for a coordinate position, we need to
append v (for“vector”) as a third suffix code.
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Im thes following exampls, three equally spaced points are plotted along o twio-
dimmsional, stradght-lime path with a slopeof 2 (see Figure 3). Coordinates are
gFiven as inteper pairs:

gliapin |GL_POINTE) |
gl¥artaxdd (3D, 100%;
gl¥eccaxXi (75, 15011
glVervex?d (100, 2008

giEad [ 13

Alternatively, we could speniy the coordinate values tor the preceding points in
arrays such as

it podntl] [ ] = (30, 1000
ot poleed [ ] — I7S.. 350);
int podned [ ] = 1100, 200}

and cull the OpenGL functions for pledting the thres points as

glBapim L POGIHTE) ;
gl¥ectexdiv {pozntily
ElVercexiiv (peincd};
glV¥ertardiv {poznt3 )
glind | };

In addition, hers is an example of spadfying two point positions in a three
dimensionsl worlid seference frame. In this case, we give the coondinates as
explicit fimating-point values

glBagin [CL_POINTSI;
glVartaxl® (-TE.OK, SOF.TI. 14,601
ElVartax3f (241 %1, -5100.47, 1E§.33);
glEngE [ 13

We coild also define a C+4+ dass or structure (ot rugt] for specifying point
pusttinns in varous dimensione. For sample,

gleas weF=I0 |
ikl 4

wlflest-x, ¥
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Using this class definition, we could specify a two-dimensional, world-
coordinatepoint position with the statements
wcPt2D pointPos;
pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);
glVertex2f (pointPos.x, pointPos.y);
glEnd ( );

Also, we can use the OpenGL point-plotting functions within a C++
procedureto implement the setPixel command.

OpenGL Line Functions

Graphics packages typically provide a function for specifying one or
morestraight-line segments, where each line segment is defined by two
endpointcoordinate positions. In OpenGL, we select a single endpoint
coordinate positionusing the glVertex function, just as we did for a point
position. And we enclosea list of glVertex functions between the
glBegin/glEnd pair. But now we usea symbolic constant as the argument
for the glBegin function that interprets alist of positions as the endpoint
coordinates for line segments. There are threesymbolic constants in OpenGL
that we can use to specify how a list of endpointpositions should be
connected to form a set of straight-line segments. By default,each symbolic
constant displays solid, white lines.

A set of straight-line segments between each successive pair of
endpoints in alist is generated using the primitive line constant GL LINES.
In general, this willresult in a set of unconnected lines unless some
coordinate positions are repeated,because OpenGL considers lines to be
connected only if they share a vertex; linesthat cross but do not share a
vertex are still considered to be unconnected. Nothingis displayed if only one
endpoint is specified, and the last endpoint is not processedif the number of
endpoints listed is odd. For example, if we have five coordinatepositions,
labeled p1 through pS, and each is represented as a two-dimensionalarray,
then the following code could generate the display shown in Figure 4(a):
glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glEnd ();

Thus, we obtain one line segment between the first and second
coordinatepositions and another line segment between the third and fourth
positions. Inthis case, the number of specified endpoints is odd, so the last
coordinate positionis ignored.

With the OpenGL primitive constant GL LINE STRIP ,we obtain a
polyline.

In this case, the display is a sequence of connected line segments
between the firstendpoint in the list and the last endpoint. The first line
segment in the polyline isdisplayed between the first endpoint and the
second endpoint; the second linesegment is between the second and third
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endpoints; and so forth, up to the last lineendpoint.

Nothing is displayed if

we do not list at least two coordinate positions.
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pasitionz relative to the sxtomsion line of any sdge. I soms vertices aTe on one
aide of the exfnsion line mnd some vertioes an o the other sids. the polygin s

COMCAVE

splitting Concave Polygons
Once we have identifisd a concave polvgon, we can split i into & ==t of omen
polygons. This can be accompiished wsing edpe voctnrs amd Ediﬁmm‘dm
i, Wb G sE vistes s rielative fo an edge aklension tir deterimine
which verfices are on one side of this Tine and which are o the othir. Foe the
flbowring elygorithmes, we assume that all polygone ans in the oy plans. Of coirse,
the riginal pasition of & polygon deseribed in worlid coondinastes may mot bein
the xy plane, bul we o always move It into that plang,

With the vector mathod ful:_pirtnngimnr_m'upuhgun win first need to form

this edjge vesrtors. Given two oonesnitive vortes postions, Ve and Vi, we delfine
the odee vecior betwesn them as

B=¥i,—V

Meaxt wo maleulnte the cress-products of suctessive sdge vedors in onder aroomd
the pitlvgon M the = component of some cross-products bs positive
while ther cross- wets have a negative = component, the polygon is conoave.
therwise, the i oomviex. This assimes that no semes of three successive
wirtires am cil . inwhich rmss the oss-prodnct of the two edge visciors for
thess yertices would be zero, I all vertices are collinesir, we have a degemerite
polygon {(a straight line). We canapply the vector method by processing edge voc-
tors in counterclockie s onben L any aossprodust hasa Vi 2 podnponent
(@5 in Figure W), the polyson-is concave and we car split italmg the fine of the
first IIiBP wectin in the cross-product pair The following Lvu:mpii- ilfusiratioyg this
methed for splitting = concne polypon

EXAMPLE 1 The vector Method for Splitting Concave Polygons
F[ﬁu:ng 10 shows 3 conpave polvgon with slx sdges. BEdee vectors for this
pulvgsn con be sqpressed zs
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Lising the same fve coordinate positons as in the previous ssample, we obiin
the display in Figure-4/b) with the code

gliagzn (L LIHE_STRIF) @
glVartexEivw (pll:
gaTertaxiiy [pdl:
il VarcexEiw (p3]:
gaTarcaxiiy Lp&] :
RIVartexlivy (2311
gliod [ };

“Thie third Cpenil. line primitiveds GL_LINE_LOOP, which produces a dosed
polyline. Lines are drawn as with 0L_LINE_STRIP, but an additional lino is
drmwn 1o connect the last covrdinate position and the fmt coondinate position.
Figure4{c}shows the display of our endpaint Hst when wesslect this line option,
using the code

glBapin (FLCLTNE _LOGT} ;
RIVartexliv (pil:
glVarvexiiy [Flfl;
RIVartexlivw (p3)1
glVarcexiiy [Fl.:l;
RIVartexlivs (2311
glied | k;

Ax noted eartier;, picture components are described in-a world-cosrdinate
reference frme that s oventually mapped o the coordinate reference for the
output device. Then the geomue fric informaticn abont the pictureis scan-convoerted

to pixel positions

5 OpenGL Curve Functions

Koutines for genemating basic corves, such as drcles and ellipses, ame oot in-
cluded a= primitive funclions in the OpenGL come library. But this lbrary does
contain functions for 'displaying Béder splines, which ame polynomials that am
defined with a discrets point set: And the OpenGl. Utility (GLU) library bas mou-
tines for three-dimensional qoadrics. such ae spheres and cylindors, 3= well as
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routines for producing mtional B-splines, which are 3 general class of splines
thal includs the simpler Bérier curves. Using rational B-splines, we can display
circles, sllipsss. and other twn-dimensionsl quadries. naddition, thens are ma-
tinex in the OpenGL Utility Toalkiy (GLUT) that we can use to display some
thresdimensional quadrics. such as spheres and cones and some other shapes.
Huowsver, gl the=e romfines are more imvilved them the: biedc- primitives we-n-
trositiace in this chepter

Another method we can use o generate a display of a simple curve is 1o
approaimate it using o polyline. We st need o locate a s2t of points along the
curve path and connet the peints with straight-line seements Thae muwe line
snctioms i Include in the polviine, the smoather this appearmes of the ome. As
an pxample. Tipum 7 ilstrates various polyline displays that could beused (o
2 drlesegmani

i third aliemanve s o wriEourown curyve-generntion functons basad on the
algorithms presentod in following chaptens.

6 Fill-Area Primitives

Anpther usetul constroct, besides points straipht-line seomaints, snd curves, for
desrrihing components of 2 pictue (san area that bs flled seith somes salid coloror
pattern; A pictun: component of this type is typically refermad 6 25 2 @11 areaora
Alled area. Most often, Gl aress sre gsad (o desibe sufaes of =0lid objes bl
they are al=o useful in a vadety of other applications. Adso, fil] nesions s aesoaliy
planar surfares nﬁhly;ﬂygnnaﬂumymaiﬂmmmpmﬂb!ﬂﬂm
For & region in a pichure that we might wish to {1l with 3 color option. | &
Mustrates 3 fow possible (ill-ares Far the pressnl, we asoame that afl
fill areas arm 1o be displaved with a specifiad solid mloe
Although any fill-amea shape is podsible, graphics lbraries generally donot
pmﬁu.hnm’-fnrarhnzr_lr HlT shigpess hiost library moeotines redguite that
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ez polygons than obhuer !.I; il shapes bocauss pni}gn\:n buundndalﬂ;;
described with finsar equations. Monsover, most curved surfaces can be appro-
imated reasonably well with 2 set of polygon patches, just as a corved line can
be approcimabed with a set of stralght-ine segments. In addition, when lght-
ireg offects and surface-shading procedunes are applied, an spproximasted curved
surface IJ]IlhEi!.-IEPl.E'FEL:I-E[LEﬂ.I! roatistically Appronimating & corved surace with
polygon facets s sometimes refernad 10 as surface tessellation, or fitting the sur-
e with o pelygan mesy. Figune 7 shows the side snd top surfaces of o metal
cylinder approramated mn an cutline form as a polygon mesh. Bisplays of such
figures can be generated quickly as wire-frmme views, showing anly the polygmm
vilpes to give 3 genem] indication of the sidface stnichore. Then the wire-frome
mioded could be shadod (o generate s display of o natuml-lsoking matorial surface.
Chiects described with 3 set of polygon strface patches are vsnally mferred to as
standard graphics objects, -m']!.'l.l-t!!’l]‘.lhfﬁ ohjects.

In general, we can create fill araas with any boundary specification_such asa
circly or connectod setof spline curve sections, And some of the palygon mathads
illsmmsad in the newt section can be adapted 1o display fill areas with a nonlinesr
bonfee

ek

7 Polygon Fill Areas

Mathematically defined. & poly i a plane figure spucfiad by a set of thiee
or mume coordina ke positions, oertices, [hal are commected m =equemcs by

#tradghl—llm!ﬂﬁnm cilled the slges or sides of the polypon. Purther, in basic
pemmetry, it i requimed thal the paly gon adges have no common paint other than
thesir endpeints. Thies, by definition, a polygon must have all = vertioss within
a single plane and thers amn be no edpe aossings. Examples of polygons inclnde
triangles, rectangles, iotagons, and decapons. Semetimes, any plane Agume with
a do=ed-polyling houmdary is alluded 10 2s a polygon, and one with mnnaams

i3 i referred b as a stimdond pelyyer or & smiple polugon. Inoan effort o @i
milgmm ohject references, we mﬁ“ ther form polyeen to mefer only o 'those

planir shapes that kave a closed-polyiine boundary and no edge rossings.

For & compuiergrephics application, it &= possible thet 5 desigrated sob of
polygon verfioes do not all fin exactly in one plans. This can be dus o poimd-
off error in the miculation of numericel valuss, tp erroms in salecting coordinate
positions for this vertices, or, more typically, b approximating o curved surface
with aset of palygonal palches, One way terectfy this problem i= simply o divide
thir specifisd sirface mesh into triangles. Bub in some cases_ thens may by reasns
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21 petin the originad shape of the mesh pairhes, so methods hove bean devised

for approvimating a nonplanar polygomal with & plans Hgre. We disrnss
hine thess plane approvdimstions ane in the section on pline spuidons:

Polygon Classifications

An Interfor angle of & polygon i an angle inside the polygen boundary that is
forrmed by two adjicent adges. IF all mtonor angles of a polygon ams Je=s tham
or equal to 180, the polypon i conves. An equivalent tEon of & convien
{u]".'gnn i= that it= interior les completely on one side of the mfinite sxtension
ine-of any one of lsadpes. Also, If we seloct any two points in o interior of §
crmvex polygon, the line =ement joining the tvo points b alss in the interjor. 4
polypon that i= not conves is called s concave polvgon. Fipure 8 gives exnmpies
of conver and conmave palygons.

Thie-term degenerale polygon i= often used o desiribe 3 set of vertices that
are culfinuer or that huve repeatsd conrdinate positions, Collinsar vertices pener-
At = fines sepminl. Ke vmpaﬁ:ﬂm:mn#nﬂn!;:ptﬂvgxmshnpnwﬂh
Extransoy |ins, iver adpes orodges that havea edquial i 0 Some-
timies e fTm EIE'E:I’.'I'H‘!BIE'_E.‘EJ"}'EJ]‘].I‘HEJ‘EH applicd @ vu'fﬁlll.u that contains
Tevrer thin thres coordinate positiens

T b ot a praphics paclsge cold mijeo depenerate or nonplanar vertes
sty Fut this requines sira processing o (dentify thess problems, so graphics
systoms mmally leave such comsiderations to the prigrammes

Comzzve polygons also present problims, Inplementatiens ﬂFEﬂliHlI‘ilh‘l‘EE
ind other prophics mutines sre more complicated for conmye polygons, =0 itis

e etficient o E{n comeave palygon inte a sit of conves prlygons
oreprocessing. Aswithi polygﬂn prqrrmwnga] n:nmvnpuh
gon splitting i= often not imduded ina graphics
including Opendil . ruguire all Gl polygons o 1:||:| conven. 5wlf.-mn
nuxpluuhtdmpp.ﬂuﬂlmwhthgm&ﬁvﬂmrphﬁemvnﬂhrdqizy
algnoitiyms,

Identilying Concave Polygons
Aummne vgon hus at lest one interior angle greater than 18 Also, the
snme pdpes of & concave polvgon will intersact gther edpes. and some
ﬂ_ﬂmuf Interior pomts will produce a line ségment that Intersechs the pulygon
. Thesefore: we cm use any one-of thess charecerstics af a2 concave
Fl.“liﬂ:tﬂl'! as & basis for comstructing an identification algomithm.
1Ewe 2ot up avector for sach polygon edge, then we con 1se the crpss- product
of sdjacent adpes 16 test for concavity. All such vector produochs will be of thirsamae
sign (positive or negative] for a convex pulypon. Thevedore, If some cross-prodiacts
vield & positivevalue and some: a nesstive value, we hivie s concave polvgon. Fig-
ure 4 il e the Ed.‘ﬁE—'i‘EEI'IrT‘, cross-product method for identlfying concave
polyguns

FIRURE B
A conver pehgan Ll 3503 concrs
pdygmn dl:
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wham thez t iz 0, snce- gl edpes srem thex . The croms-
prnduet B, = hﬁMMWﬂtﬁmsbnwnJrﬂprMM

the xy plane with = component equal o £ 1Py = Era Ly

= Ep={00,1) E-= By =0,0 2
B x Ei =i} 0,3 Ea = B ={0,0,86)
Bz o Ee={0, (), &) Es = Er =0, L 2}

%ﬂ&umﬁuﬁuﬂﬁ1ﬁhﬁimﬁw4 cotnpanent, we split the
polygon alomg the line of vector By The equation for this edge has &
alope of 1 and & ¥ interwept of — L “'Eﬂ!mdﬂlﬂm&!‘hﬂi‘fﬂﬁmnfﬂﬂﬁ
lime- with the other polvgon edges 1o =plit the polypon mio twn picces. N

iether sdue omss-products ane pegative, =0 the tee new polvgons are bath
COHTVEL

W can alse split a conmve polvgen msing a miational mithod. Prscesding
eonmitsrcjockwise amund the polvgn edges, we shifi the position of thepulyg
=0 that each verlex ¥, in tm'ia?ﬂl:i at the coondimite udﬂ-ll.f:_“'.ll'l'm we rsfm!:ﬁ
polyppon about the origin in a clockwise divection so that the nect veres V) 15
on the = ais 1 the following vertox, V2, b below the = avis the polypen is
amcavie We then split the polygon afong the x axis @ form two now palygons.
amd i repet the coreavis test for sach of the heo new polvgens. Thess stops am
repaated until we have testid all vertices in the palygon list, Figure 11 Qlustrates
the rotational methed for splilting 2 amcave polygon.

Splitting a Convex Polygon Into a Set of Triangles

Cnice we hove a vertex list for a comven polygon, we coold transform (1 nlo @
=t of trangles. This can be accomplished by first defining any sequence of three
eommacutive vertices in be a new polygon {s triangle}. The middle rangle vertex
i= then delsted from the ooginal verfex fist. Then the same procedum s applied m
this mindified vertos st 1o sirip off another mangle. Wo continue forming triangles
in this manner until the original polygon is reduced to fust three vertces, which
Uafinie the last triangls n 'the =t A conove polygon cm also be divided into
nstof tromgles this approach; a lﬂ]nlﬁc;ﬂmmnﬂ!:ﬂtalﬂnﬂutﬂmm
illagonnfedpe rjoimimg thie firstand sloctig vertices dossnot omes
the: cuncave partion of the pelvgon; and thit the thrwe s=lacted vertices at sach
stp fiorm an interior angle that §= lessthan 180¢ (2 “conves ™ angli.

Inside-Duiside Tesis

Various graphiis processes ofisn need to ldentify intsricr nigions of objecs. Tden-
tilying the interior of a simple object, sorch a= @ comvex polygon, @ cimcle, ar
3 sphere, = generally a straightiorwand proces=. But somefimes we s dhieal
writh T mn'rpieiul‘qucn.rwﬂ.mple we may want to speciéy a complex fill
region with intersectine eidees, a3 in Figure |2 For such shapes, it s not .liwn'_',"-
chmr which regions of the xy plane we should call “imterior” and wihich mogions
Hasl‘muh.fdul.gnaltm “exteror” o the object boundariss. Teen commmonly s
itiimes for jden interior areas of a nre e the odd-even ok

W apply ﬁfndd-nm rule, also called the add-party rulr or the rpor-pad
rule, by first concmptually drmwing g ling from any position P o a distant point

w, A

. had
T, v T
‘V

FIGWRE 1%
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hiofow tha § qk 5z we st te
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FITURE 12
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puside the coardinate extents=of the dosed polvline, Then we comnt the numbser of
linesagment crossings along this line If the number of segments crosssd by this
lime = odd, then P is considered to bean mterior point Otharwise, P s an exterior
point. To obiain an aouride cognl of the sspment cosEings, we mus! be sune
that the lino path we choose does not intersect any Hne—aeg:rmtzmipmnm Fig-
e 12{a} shows the interior and exterior regions obtrdned using thi odd -svem
rula for aseli-intersecting dosed polyline. We can use this procedure, for example,
o il the interior region betwesn twaconcmirie crcles of iwoconceniric poly gons
with & specifisd molar

Another method fordsfining interior regions is the nonzero winding-number
mule, which counts the nmber of fimes that the boondary of an object “winds™
arounid a partioulsr pointin the counterdodowise direction. This count s omllisd
the winding number, and the infanor point= of a two-timensional object com be
Uefined i be those that Have s nomiosro value Tor the winding monber. We apply
the monzers winding niimbsr mis by initlalizing ﬂmwin:f.mg niunber b 0 @nd

-again imagining = line drawn from apy position P (o 3 distant point beyond the

cvordinats sybenty of the objact. The line we chise must net pass through oy
endtpoint coordinates. As we move slong the line from position P o the distant
puiinl, we count the mumber of objzct ine segments that cnss the relEence line
im esch dimection. We add 1 o the winding nomber every tims we interssct a
segment that orossas the lind in the diedion from dght to lefs and we subtmst 1
Every Hme we intersect 3 segmenl that crosses from left o risht The final walue of
the winding mumber, after all boundary cossings have bean counted, delermines
the rulative position of P. Il the winding mumbor i2 noneom, P & considered m
bet &n int=rior point. Otfhierwize, P s taken o be an sxtedorpeinl, Figuare 1200)
showe the mienor il extorior regions defined by the nomaem winsding-number
rule for a self-intersecting. chosad polyiine. For=smple objects, such as polygens
imid cirdes, the nonrem windng-nmnber mle and - the odd-oven mule give the
same resnits. Mot for maore comples shapes. the o methods may vield diffemsnt
intprior and exteror reeions. as in the example of Fooe 12

Ume way o determine directional boundary crossings 5 10 sel up vectons
along the chjoct adges {or boundary lines) and along the reference fine. Than
we compuie the vector cross-product of the vector u, along the line from P to
& distant point, with an objact edze vertor E for each edge that crosses the lne.
Assuming that we have a two-dimensional object in the 1y plane, the direction of
gach vector cress-product will be sither in the = diection or in the — direropn
1f the = ofa uct o = E fura partirulsr emssing s positive,
St ot et g g el o bamaic 2o i
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{therwise, the segmen| misses from [eft to nght and we subtract 1 from the
winding numbér.

A somewhal stmpler way W compute directional boundary cossings s
use vectorduot s instead of oosspmducts To do this, we st op a vectar
&miam r o vector wand that has & right-to-lefi direction @ we look

from P in the direction of u, If the components of u are denoted

ns-{un ), then the vector that is perpendicular © w has compenenis (—uy, ugh

ﬁwdnlpnﬁﬂufﬂﬂs irular vector and a bomndary-fine vector

IHPEI'H!IF{' that crossing is from ttnh:flauimm‘ldlh:th&umﬂmgnmﬂ:ﬂt

Otherwise the binmdary orosses oo melemence line from Jeft o dght, and woe sob-
tract 1 from the winding number:

Thurmnmwunﬂngqnmbumlulmi&ludﬁﬁji}'aﬁmmm
that the ndd-pven mule daems to be exterior, and it can be more versstile in soome
applications. In general, plane figures can be defined with mul -u.l,disjntntmm-
ponents, and the direction specified for each setof digoint can be wsed
by desigrate the interior and sxierior reglons. Examples indude characters (such
a= letters ol the atphabet and ponormmtion symbolsh, nested polygoms, and ooneen-
tric circies or elllpses. For corved Hines. the odd-even rule isapplied by caloolating
intersections with the corve paths. Similarly, with the nonzero -omher
rule we neesd to calouiate tangemit voctors to ths corves al the cossover infersec-
ton points with the méermoe Ine from position P.

Variaticns of the noneem winding-numbermls cm be asad to detine interjor
regions in ot wavs. For sxampls, we could defire & point (o be intorior if s
winding number i= posifive-or if it is negative; or we coulkd use sy other rule
generate a varisty of fill shapes. Scnsetimes, Boolsn operations are ussd o specfy
a-ﬁﬂama.mammhmnﬂmiafhuuﬂghnt[huwn it imrptement Bookasn opera-

klimmgivﬂiilmnﬂ[d:fbaihwﬁldmgﬂmhnmlnl'ﬂhmmm

fine a simple. nonintersacting boundary for each of two wgions. Than

it wet ermsider the diredtion for sach boundary to be connterclocowiss, the union
of two mgions wonld consist of thise points whose winding mmmber i@ posithoe
(Figume 13) Similardy, the intersection of two replons with cmntercloekwis
bnmidaries wonld contain those points whise winding number s greater than
|, as Mustrated in Figone 14 To set ap a Gl ares that i the differences of two
regicns (=ay, A — B, we can snclose regim A with a coomterdockwise border and
B with a clockwise border: Then the difference reginn (Fizure 15) is the sist of all

pomte whose winding number = positive.
;r"-|
[ L o
llJ 'h .,-"
L] L

y

FIGURE 13 FIGURE 14
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FIGEORE 18
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Polygon Tahles

Typically, the dbjocts in 3 scene are duscribed 25 sets of palygon snrfao facst,
In fact, praphics packages o ide functons for deEm:ng a surlace shape
s o mesh of polypon pabches. Tﬂc:aﬂ‘l-pﬂm for aach object includes coordi-
natp information specifying the grometry for the pplygon facets and other sur-
fac parameters such s colar, transparency, and lght-meflection properties. As
information for each polygon is inpot, the dists are placed into teblps that are (o
be used in the subsequent processing, display, and manipulation of the ohjects in
the scene. These poly pon dats tables can be prgamired into wo groarps: geomatric
tables and attribule tables. Geometric data tables contain vertex coordinates and
meters to ideniify the spatial odentation of the polygen surfaces . Attibute
Ef-r-;rnatl-:m i an ul:qec't includes parametars spedfying the degres of frans
parency of the object and its surface reflectivity and texture chamcteristics:
Cymetric data for the objects in o soene o mrmnged conveniently in thrneoe
lists: a vertex table, an edpe table and 3 srfacefacee table. Coordinate yalees for
each vertex in the object are stored in the voriey ble. The sdge table contains
pointars back into the vertes table toidently the vertices for sach polygom-edge.
And the surface-facol table contains pointers back into the sdge mble 10 iden-
fify the edge= [or sach pulypon. This «cheme i= lhetrated in Figure 16 for two
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adyacen| polygon ficets on an object surface. In addition, individual objeces and
their component polvison fdees @n be ssigned object and fadel identifiers for
Listing the geomuetricdita in three ebles, asin Flgune 16, provides 4 conve-
mient rederence (o the individual = {vertices, edees.and surface ook}
Inraadlcbjed_ﬂhu,ﬂwuﬁu:tmgdq}hmdeﬁl ¥ by msing dota from
tha edge table toidentify polygon houndaries, Mdmnmmgmmﬂm!n
s fust o tablisss o vertes fable and o sarface-facul table. Bot this scheme is
lpss convenient, and some edges comld get drawn twice ina wire-frame dis-
play. Anu&u!pumhm}'ummumﬁ} asurfaceface! tahle, but this dupli-
cates coordinate information, since explicit coordinate valoes are listed for each
verten in each polvgon famel. Also the relatiorship berwesn edges and facsts
mﬂ have in be recomstructed mom the vermex listings in the surfsce-facet
We can add extra infrmation to the data: tables of Fgore 16 for faster
infurmstion extraction. For instanoe, we could expand the édpe Bble (o include
forward printers into the sarface-facet tabls so that a common adge bebwesn
polyponscould bo fdentified more rapidly (Figumse 17). This {5 particulardy usaful
tor rendermg procedires Thdtmlm'wn?mhmﬂm:lh g smncthly acoss the
edges from one polvgon lo the not: Simitachy the serea tablie could b expandad
to Teferenor cormespond ing edges, for faster mbormation retrieval
Additional geomatric information that = usnally stored in the data tables
includes the dope for sach sdge and the mondinate extents for polygon edges.
polygon facety, and each ohject Ina soene. A= virtices ane inpul, we cin cilculate
edge slopes, ind e mn scan the oordinale values to |dentify the miniommm and
maximomm T, ¥, and = values for individual Enes and polygons. Tdge slopes and
beunding-box information ane needed nsubssguent processing, such as sufacs
rmendering and visible-surfnces identification alpocithnms.
mm#mum:dmuhlumlymum extimsive listings (of vertices
and edges for complecobjocts and scenes. itis importan) that the dats be checked
for consistency and completeness. When vertey, sdos. and polygon deliniticns
are-zpecified, it i possible, particularly in interactive applications, that cortain
inipt errors coltld be made that would diston the display of the objects, The
miore infrrmation moleded i te et ables; the easior it s 1o dhock for emors.
Therefre, ermo checking is easier when thiree dats tables (vertex, adge, and sur-
fooe facm) are used - since this scheme provides the most information. Seme of
the tests that conld be performed by a graphics package sre (1) that every visrtes
is listod as an endpoint for at least two edges. (2) that svery edge is part of at
laast ane polygorn; (3) that every polypon is dosed, (43 'I‘J:mtua:hpuh'gunhual
Ipast one shansd edpge and Iﬂlhatiﬁl'medgﬂnhlumnm pointers fo polypons,
evary edge referenced by a polygon painier has a reciprocal pointer back to the
palygon.

Mane Equations

To proxduce a display of a three-dimensional scene, a graphics system

the input data through several procodures. These procedures inclisde ransfor-
mation of the modeling and world-coordinate descriptions through the viswing
pipetine, Jdentificotion of visihls surfscs; and (he spplication of rendedng mo-
fines to the individual sodface facess For scmp H}T:'E processes, information

nbout the spatial drientation of the surface components of objecs = needed, This

informaticn = obtained from the vortex coordinate salues and the squations that
deecribe the palvgon surfeces.

I‘r .I"J.\r:'.j[
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melativi g the foont and back faces of & polygon & a basic @k in mﬂn}'ﬁﬁiﬂﬂﬁ
algorithms, ag, for example, h'l.ﬂ!l.l!'l.'l:l'lil'll!‘lE-Lﬂ!'r!{'f wiEibilify: Every polvjiom tsoomn-
minadwuhmmm.ﬁmtep'lﬂrlethai space into twp regions. Any paint
that l=mol ma the anal thait b visthle to' the fromt face of @ polygon sirdface
=ecfion i= said fo'be o frovet of (o eutside) the and, thus oufsde the obiec
And any puint that iz visible fo the back face of the polygon = befumd (e pside)
the plane. A point that ks behind {Inside) ull poly gon surface planes & insids the
object. Wa naad o koep in-mind that this inside/ outside dassification is relative
fia fhe plang contuining the polvigon, whemnas our previous inside/ vutsids tests
using the windinp-mmbsr or odid-oven nuils were in meference &0 the intorior of
:.nnwrwu—d.'lmmshmnlbmmda:}'

PMane ein be wsed o jdentify the position of spatial point relative
lia e polygon Goet of an objec. Furn'anmlﬂ: ¥, =)ot on a plane with
parameters A, B, C, D, we have

Ard Hy+Cz4 DEd
Thos, we can idenfify the paint as either behind or in front of a polygon sur-
fece contamed within that plane according 1o the sign (negative or positive) of
A By $C14 D
f Az+By+4Cz4+ D=0, thepaint iy, i, 2 lsbehind the plans
Il Ar+ By +Ex4+ D0, the point {x, ¥, 2} lsin front of tha plane

These maguality tosts ame valid in o right-handed Cartesion svetom, provided
the plans pammeters A, 8, C, and 17 were caloulated tsing coordinate positions
selectzd e strctly counterdockwise order whon viowing the surface along a
Fromt-fo-back direction. For example, in Figore 18, any paint outside {in front of |
the plane of the shadaed ﬂﬂl}'ﬂqﬂhnﬂeﬁﬂt inequality x — 1 = {}, whileany point
iresicdee {in hack of) the plane mr—mnﬂ:l.lnn!euimlﬁdﬂn].

Chientabion of a polygon surface inspace can be described with. the normat
wector for the plane containing that polygon, = shown in Figlrs 19 This sor-
e mormal wector is parpendicudar o the plane and his Cartesian componants
{A 8, Cy, whore paramélers A, 8, lﬂEmﬂthm-mEkwEﬁlmlnmdm
Equutions 4. The normal vector points in & dinection from ingide the plane to
i pntsitte thist is, froan (he bak face of the polypgon 1o the front sce,

As an example-of calculating the components of the nermal vector for s poly-
g, which also gives oz the it parameters, we chorse thres of the vertices
of the shaded face of e onit cobe in Figore 16, These points ame selectad
a countercliackwize ordering as we view the cubs frem outsids looking wward
the orgm. Coordinates for these virtices, in the order selected, are then used in
Equations 4 to obtain the plane coalficients; A= 1, 8 =0,0 =0, 0= —1.Thus,
ther mormal vector for this plane @ W = (1, 0,0, wiich iz in the direction of the
powitive ¥ axiz. That is, the normal vecior is pointing from inside the cube wo the
puside and is porpendicular o the planpsr = 1.

The elsments of a nomnal vectur cin also be obtained msing o et ooss
product caleulation. Assuming we have 3 conyex-polygon surface facet and a
right-honded Cartesian system, we agisin select any thres vertes positions, ¥, Vy,
and ¥y, taken in counterclockwise order whon viewing fom cutside the ohject
oward the irside. Forming two vecturs, one from ¥ 10 Ve and the sacond from
Voo Wy, we enleolate N as the yeoor cooss-produact:

=|_‘|’-—1u’|:|1-r|"h"5_—'ﬂ-|,] [5]

This penarptes values for the hnel:rammm A B, and © Wi can: then ohtiin the
\'dmfurpﬂnnm{erﬂhy i thase varlues and the coordinates for one af
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ther polygon vertices into Eguation 1 and solving for 1. The plane oquation can
be expressed in vector form osing the normal N and the position P of my point
n the plano as

MNaP= -0} I'E]

For a comvex polygon, we coald sso obtain the plane paameters using the
CTosE- uct of twn successive edge vectors. And with a concave polygen, we

il the thiree vertices so that the two vootors for the omes-prodoct form an
anggle less than 1800, Otherwise, we can lake the negative of thelr ooss-prodoct

1 et the corect nomal mmrdtmrﬁun for the polvgon surfsre.

8 OpenGL Polygon Fill-Area Functions

With one exception, the OpenGl procedumes for specifyving G polyione are sim-
flar to thoss |or describing a pomt or a polviine. A g1ver tex function s ised
o Enprut the coordinates for a snple polygon virtex, and & mmpliﬂa. pulygon is
describwd with @ list of vertices placed bebwesny 4 gi1Bagin/ imnd pair. How-
evar, there i one addifional fimction that we om s for displaying = nctangle
thiat hne an entirely o Ferent format

By defmlt, & p-l:dfgun intericr i= displayed ina sobid color, determined by
the eurrent eolor settines. As pptionz, we mn Bl s polygon with s and we
can display polypon edges as line borders armmd the nterior Thiere ane: six
different symbolic constants thal we on wse a5 the srpument in the g1R=gin
ﬁmctnnmdemﬁmpn}].rgm Al areas ﬁﬁ&unprm‘nhﬁ‘:mnmtlnﬂnw 1B iD
display a single fll polvgon, a set of imeonnecied Hll palygons, cr 2 set of con-
macted fill podvgons

InCrpeniGL o Gl aresmust bespecifisg as a convex polygon. Thus,_ o vertex lisi
[or a kil polygon must contmin st least thres vortices, there tan beng crossing ad pos,
andall interivr angles for ths polygon must be less than 1807 And asingle polygan
fill area can be dafined withonly one vertex list, which preciued s any specifications
that contsin holes in the polypon intsror, soch as that shown in Fipure 20, We
cold describe such 3 figure u.-un two owerla m-gnm‘.'m: polygons.

Each polvgon that we has= 'lh'u a back face andd a feont Face
in OpenGL &l color and other atiribites can be set for each face sepamtely,
and back/fromt [dentifcation |5 neadad In both two-dimimsional and thres-
dmmn:ﬂcm.nl vigwing mutines. Theretore, polygon vertices shonld be specified
i a counterclochwise orderas we view the polypon from “outside.” This kdenti-
fies the front face of that polygon.

FIRURE XD
A pokoee w5 bomply. et Tanmo be opee fed stk w
gl yeney il
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e FIGURE 21
5 foly Ha X The= diiplay of & squee il am9 oorg 88 g 1 Recs fonclim

Because graphios displays often include rectangular fll areas, CpeniSL pro-
vides a spocial rectangle function that directly accepts vertex speciications in the

xy plane. In some implementations of CpeniCL, the follivwing routine can be mone
afficient than gpeneraling & fill rectangle using g1 vertex specifications:

giEact” (=i, ¥l El. wil(

One somer of this roctangle s al coordinate position (21, y1), and the opposiie
comner of the rectangle s at pesition (52, 43} Suffix coxdis for glReet spoedify
the coordinate data'type and whsther coondinates am to be expresest as amay
elpmemitz. Thess codi= ans £ {fiw intoper), & lor shont), © {for float), 4 (for dow-
ble), and v (for vector). The rectangle = displaved with edges parallel w the 1y
coanrlinate axes. Az anexample, the fol lowing statement defines the square shown
m Figure-21:

sct s LUH L @Wy i H
1 i (200 DO 59, I5Q)

L we put the coordinate values for this rectungle into arrays, we can generate the
samie square with the following codas

tot vartaw! [ ] = (300, 007z
tet vartan® ! | = L5, 3O}

glBs=tiv [vartewmi. vartew?®) |

When o mictangle s penerated with inction gliser the polypon edpes awe
tormed betwaen the vertices in the order {21, y10, (22, y1), (22, 25, (x1, 42), and
then back w {x1, vl). Thus, mrlurﬂ.amptn we produced a vertes list with a
clockwise nldﬂ-rmg_ In many two-dimensicnal applications, the detsrmunation
of front and back faces i unimportand. But If we do want w sssign different

o the front and back faces of the _then we should everss the
mﬁu twi vertices in this oxample m[fm obtain a counveclockwisa
nrdermg of the vertioes.

Bach of the other six Openti. polygon il primitives is spedfiod with & svm-
bolic constant n the gl18agin hincton, along with a a list of g1Vertex com-
mands. With the OpenGL primitive constanl GL_POLYGON, we can display a
single polygon kil arsa soch as that shown in Figare 32Ha), For this example,

mnmﬂmudlﬂhﬂhﬁnallﬂutﬂtpm-m,lnhﬂﬂdpl through pb, spedfyving
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FIGURE 23
Dﬁ.d:‘pkgpdggmhlmm:htdﬂmmlutnmmmwlllmmm
= primdiee forstl i Foraroon, ] e orooneded ranges devenied with g2, ToEARD

i) Hour rormectsd wingles gemrated with or. TRrAwCrE et e ld) ot connd ttimgles qeveci
withcL_ TEIAMCLE FAN

two-dimensional polygon vertes positions in & counteErcoeckwise ondermyg. Bach
of the points = represented as anamay of (x,y) coordmate vl oes:

ElRapiz (CL FOLYGN) |
EiVerzexIiv (all:
glVarsasdiv [p2})
EiVearzwmelsvw (pi];
aiVartoaliv (nd):
EdVarzweliv L[p5);
giVertmaliv (phl:

HiERg | D1
A polvgon vertes Ust must contain at least (hree vertices. Otherwise, nothing &
displayed

Itwie reorder the vertes: list and change the primitive constant in the previous
code sxample o 9L_TRTANOLES, we obtun the two separated tnangls fill sreas
in Figurs 22¢h)-

plfegin (GL, TEIAHGLES) ;
glVarzee®iv {all;
EiVarzealivw (pdl;
glVarzeeliv {pdl;
EiVarzealivw (pik;
glVarzeeliv {(pdl;
EiVarzealaw (pik;

gIE=d 33
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b this case, the first three coondinate poins define the vertices focone miangle, the
nexd thres points define the next rangle, and =0 lorth Fnreadthumgl&ﬂ%] AIER,
we specify the vertes positions in = ounterclodowise ondee Awetn-fmmmmﬂﬂd

mmﬂ.ghs'lsd:m:p Hiwrl:h lh.[:sprn:ﬂhuummnammiamu vt coamriraties -

e repeted, if we do not list a1 least three vertices; aned i
Iﬂ:tnumbu'r.llwmmss b=t & multiple of 3, dlEﬂnnlmemhw\'mu
are not used.

By reordering the vertex list once more and dhanging the primitive constant
b OL TRIANOLE STETF, we cin display the set ol connected trhiangles shown
in Flgoms 23{c)-

flBapEo (GL TEIANGLE STEIF]
giVartoxiin (pl]]
giVertoxliw (pdll
gIVarvexlivw {pbhl
giVertexliw [
EiVertexliv §p%):
giVertaxliv (4l

gliEnA [ )2

Assuming that no coondinate positons are paated na e ol N vertioes wie
obiain N — 2 triangles in the strip. Clearly, we must have N > 3 or nothing b=

dlsqz'l.a'_llred.hthhmamph,ﬁ:ﬁandweubtamfumuimrglm_EHﬁmﬂ:ﬂmtm
h'ng;lﬁ!hanauadEuhidlﬂmpmﬁwdyiﬂtnuiEEnglu s the ordering of
the werto list moet be sat up o onsume o consistent display, One mangls is defined
for sach vertea tion fsted alter the frst two vertices. Thos, the first three ver-
bces should be in cpunterclockwise order, when viewing the froni (outside )
ﬁ.u'f.ﬂnl'ﬂutl:rmrhgle Adter thasl, the set of three vertices for each subsequent

in - mun.mrdu:kmse prder within the pol tabls. This
L-fﬂ..cm'sq:l MEﬂm_hp_ﬁﬁmﬂmﬁE\LﬂEiﬁhllmuﬁm'naL

=2 ... 0=N- *"nnd:u::m Etl'm-r-r:lm‘nft.hecmm‘rudh‘tg st ok thres
\-m‘ﬂ-caicmxdmgluhﬁu&m.ﬁlhmmﬁnmﬂhrurnnmnmﬂxcﬂﬂkﬂ:ld
ﬂiepﬂj'gcmlahhlfsﬂnﬁfrwﬂmmﬁeaerﬂn&Ehﬂmmdﬁn H4lu+2 Hn
i=-ev'on; the triangle vertices are llsted in the order i+ 1w, 42 In ithe preceding
exnmple, our frst mongle (m= 1) would be listed 2% having vertices (pl, p2. pa).

Thesarond triangle {n = 2) would have the vertex ondering (p6, p2, p3). Vertex or-

bor the third trangle (1 = 33 would be ) h e fonarth I
(rr = 4) would be lstad lﬁﬂmpﬂhgmhhﬁaﬁiﬂlnrdm;{;ﬁ F:]FDPJ;?
Anpther way o genetate 3 =o| of comnected hﬂ:ﬂtghﬁhlnuzllm*fm'

approach illustrated in Figune 234d), where all triangles share 8 common:

vortay. W obiin this amangeament uof triangles using the primitve constant
OL_TRTANGLE_FAN and the original ordering of our six vertices:

giBegin (Bl THETANTGTE FAN) ;
giVertaxicw {pllii
glVarsaxdds (pl3k;
giVertaxdiv {pdis
ElVartoxddy {pdl;
piVareardiv [pE)
ElVarsaxddv {ph);

g1Bnad (')}

For & vertices. we again obtain N - Eu:ing.lu nnwrm:cpmtr.mum
repeatid, and wie mst $an at least thres vertices In Elﬁ itiom,- tha vertices must
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The Hmt four coordinate points define the vertices for one guodrilateral, the nest
foir paoints dafine the neat guadrilateral, and so on. For each quadiilatesa] fill
i, we specify the vertex positions in a counterciisckwiss oder TF o vertex
oordinates are repeited, we display & st of unconnested four-sidesd A1] aress. We
st st atleagt four vertices with l.ﬁu rimitive. Otherwise, nothing i= displaved.
Alu:iif:lwnmntarrﬂvmﬂn!spimﬁ!dhrmlnmidﬂ;ﬂudi tha sxtra vertes
positicns are ignored.

Rearranging the vertex lgt in the previous goadrlaters] code example and
clanging the primitive constant 1o dL_QUAD _ITRIT, we can obiain the set of
comnacted quadriliterals shinwn in Fgore 20

ii0ugin (E._ QOAD ETETE)
giVortexiv {FII:
glVurtexFiv [pFiy
glVarzexdiv Epll:
glVurtexkiyv {033
glVortaxdiw EFEI:
glVurtexkiv [D€1]
glVortaxdiw EFHI:
glVurtexEiv [odli

giEme | 131

A quadritateral Is set up for sach pair of vertices specified aftor the first two ver-
Hees in the list, and we nead to list the vertices so that we generate a correct
countirciockwise vortox ordoring for each polvgon. Fora list of N vertices, we
obtain ¥ — | quadrilaterals, providing that ¥ > 4 If N & not a multiple of 4,
muh:nﬁﬂrdimtupmdmﬁmﬂwlhtammtt&d_ﬁimnmmemﬂm
and the vertices lted ssn = |, n=2 ..., 0 = & — L Then poli-
will list the vertices for quadrilaters] t int the vertex order number
—] Do, B+ I, 24 L For this example, N = 8§ and we have 3 quadrilater-
.I.].l-mﬂ:l.l.'-ld:l:!.]!- Thus, aor fmt quadrilateral (1 = 1) i letod 2= having a vertex
ordering of (pl, P2, p3. p4). The ssoond quadrilateral (r= 2} s the verted omnder-
ing {p4, p3, p6, p3), and the vectex ardering for the thind quadrilateral (=13} i=
{p5. 6, p7, pB)
Mot display curved surfaces az = st O
plana E&f%ﬁm}nﬂﬁi F'Jmi:;u wipuatons are [Inear, and awmmﬂ
ear.:-qn.atnnanmdlqn:ﬂmﬂunpammgqumin:mn url}'panfrm'e
equistines So OpanGGL and other packages provide polvson primitives o fadl-
mate the appmyimatiom of & curvisd surfsce. Ohjects are midaeled with polypon
mueshes, and & datahase of geometricand attmibuteinfonmation ls=st up o fadlists
the promessing of he polvgon faoets. n OpenGL, primitives that we on use for
this purprse are the triangle strip, the tramale fan, and the guad strip. Fast hard wan-
lemented poly pon renderers are incorporated it high-guali hice sys-
muﬁﬂmmpmty for displaying rrllion Mal‘md&lpnl‘,wﬁrwmiﬂ
{usually trinngles), indeding the application of surtface xtune and special lighs-
inp affects:
: Althnugh the Opentl, core library allows only convex polygons, the GILU
hmcﬁmu‘-ﬁur&a&]]ng with concave polygons and other ponoon-
vex gbjects with linesr boundaries A sat of GLU p'.rf tessellation Toutings is
nﬂd:lufurmrmﬂmgﬂmhdm[msmm:ﬂln[ trizngle meshes, trian-
fans, and straighi-line segments. Onoe such objects have been decomposad,
oy can be processed with barlc OpenGl. functions.
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yoid guad {ELint nj, Sdnt nE, GLint nd, GAnt nd)
[
glaegin (GQE_QUADS):
glvartexsiv (pe [ni)d:
glvertex3diy (pt [m2]¥:
glvertexFiv (pt [m3]):
glvertaxiiv {pt [md]l:
giZod { ):
)
vold cube [ )
|

guad (&, .2, 3, T}:
guad. (5. 1. 0, &);
qusd (7. 3, 1, %):
quad {4, 0. 2. &);
quimd’ (2. 0, 1, 3}
quad (7, 5. 4. 63;
}
Tham, the specification for each face six Cipen(i L. functions, and we

have-six [aces to speciiv. When we add oolor spedfications and other pamme-
farrs, nurdiq:hjrpmﬁra:tn for the robi conld sastly contain 100 ur:ru.'rmtl'_:hpmﬂL
funetinn mlls. And scemes with many complex objects mn msguire muoch o,

As wa man s from the proceding cubpesample. a complete seone discr
comiled regpnire hundreds or thousands of mordinate specifications. In addition,
tharme ane various attribute and viewing parametors that must be sst for individual
objects. Thus, object and scenedesriptions could rzqulmmmnmhtnf
function calls, which pots a demand on systom resoorces and cin slow sxecution
i the i A further lemm wilth ermples displays is that object
Em'i:.':E: Eﬂd}ﬂ&ﬁfﬂh&_m Flgmﬁumuﬂ}‘ have vortex L’v:lu:di:;]fﬁ.
Uszimge the methods we have discmssed up b now, these sharsd . positions may
need ho b specfind mulkipls tmee

Toalleviate :heepmh-]mmﬂpﬂlﬁLmeiu amechanism for mducing the
number oof function alls needed in processing coordinate information. Using a
VETIER ATTAY, we can arrange the information for desonbing & soene =0 thit we
need only a very fow functiom mlls The stepr myolved am

L Invokeths function gl¥nabhlecliantState (GL VEERTEX AHRAY) to
activat the vertex-amay fatmre of OpenGL

1 Use the hunction glvartaxpointer o specfy the location and dats
formuf for the vertey cormfingtes
3. Display the scene using d routine such as g 1orewk i emente, which man
process mnltple primitives with very few function oalls.
Using the pt armay previously defined for the cube, wi implement these three
steps in the following code example:

glinablecliantstats (CL_VERTEX ARBAY):
glvertexPointer {3, CL_INT, 0. pt};

Glubyte vertindex | | = {6, T, 3, T, 5. 1. 9. 4, 7. 3. 1. 3,
R B By ol T oLy X T Ny g E)2

plorawElsments (GL_QUADE, I&, OL_UNSIGHED BYTE, vartIndex):
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With the fimst command, glEnabieciisntStete (0L VERTEX ARRAY),
e Artividhs &Gpal:uﬁqf (i this e, 3 vertey arrav) on the client side of & client-
‘sorver svelem. Becanse the dient lfl:hr.-nmﬂ‘m that i nmning the main program)
retains the dats foe a pictone, the verte srray must be thare glso. The server {our
workstatiomn, v example 1= commandes and vy the o
cotarsa, o single m&dne;lﬁgmmimtmdml‘ﬁr@hm-ammm uil
Opend Lﬁnﬂiv&l&dwﬂl the commansd

gloicahlaclientStats (Gl _VEHTEX ABRAY):

We mit givee thie location dnd format of the roordinates for the object vertices
I the fonddion gl Vertexfointar, The first parsmste=rin gIVertsxfointer
(3 in thi= exampls) spocifies the number of coontingtes wed in wch vertes
desription, Data type for the vertex coondinates is desipnated using an
Cpen(GL symibolic constant as the second parameter in this funcion. For oor
vrample, thedats typeis ST INT, Other dsta bypes are-specified with thesymbaolic
constants CLOBYTH, OL _SHORT, CL_FLOAT, and GL DOUBLE With the third
parameler, wi give the brte offset betwen consscitive vertives. The purpose of
Hmm'gmmnrﬂin:uﬂﬂw varous kinds of date, such as coordinates and colors,
b b packed together in one army. Bemss we are giving only the coondinatis
data, we assign a value of 0 o the offset parmmeter. The las! parometer in the
gl¥VertexPointer hincion refeenos the vertes armay, which omtains
the coordinate valuss

Al the indices for the cobe vertices are stored in armoy vert Index. Hach of
these indicps ix the subscrpt for army pr cwresponding o the coondinete val-
ues for that vertex. This index list is nderenced s the luse parameter value n
function giTrawEl smente and = then used by the priminive o6_quang, which
in the Hrst paremetes, o display Iﬂ::aelufqnaﬂrﬂa!m!ﬂniumfurlhumbn
The second parameter specifies the number of elements in amay vertindax
Bocause a quadrilateral requires just 4 vertices amd we' spedfied 24, the
glorowElements function cmtinues to display another cobe face after each
succestive sof of 4 vertices until all 24 have been processed Thus we
accomplish I&hﬂldﬁph?ﬂ!ﬂﬂhﬂ:dﬂﬁﬂhﬂiﬂ:&d&i—mgleﬁnm
ton wall. The thind pammeter in function. gInrawElesants pives the type
for the index vahies Becanss our indices are small integers, we spedified a
type of GL_UNS1GRED_BYTL. The two other index typds that can be isad are
OL_ NS IGHNED . SHORT and G1_UNSISNED_INT,

Addditional information can bem-mhmgdwlﬂuﬂwmurdmilh-?ﬂu&mme
virrtin armavs o facilitate the processing of a stene description. We @n
enlor yabues and other attribuies for objicts in arravs that can be meferenced by the
glorswEl ements function. Also, we can inlerlice the various armays for graater
sfficionoy

10 Pixel-Array Primitives

tn addition o straight lines, polygang droles, and pther primitives, hics -
api= often supply mmnes f:lfi}isp'lny shapes that are :IEI'mEd mrhgrtpﬂdmﬁr
armay of mlor valuss, We con obtain the mctangular grid pattern by digitiring
{scanning} a photograph or otler picture orby generating & shape with a gmph-
1G}'l1ﬂglﬂm.Fjd'lEﬂlﬂTi']hlEtnﬂ'hEilﬂfEﬂ1EEEﬁpﬂﬁi by e T TOOTE SCTeEn
pixe Fu:u:ll:lh‘a_ A piuel array of colorvalues s t].FFl?nI[}' refermed (o 85 & piomme.
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b A S rewn

T Trmaa b

Paramistes for 3 pined amoy can incfode  pointer to the color matris, i siee
of the matris, and the position and size of the soreen ams w ha affzcted by the
cofor valuss: Figure 26 ghées an csumple of mapping s pitel-oolor array onto &
ST ATER,

Anither mathiod for mplementing @ pixel amy i= W assipn sither e b
walue O oo the bitvalue 1 to pach element of the matrix. In this cse, te amayis
sy @ Wit wivich i sometimes called a sk, thot indicoies whsther a pixeol
I= b b assignad (or combinesd with) o preset aclor

11 OpenGL Pixel-Array Functions

Thom o twi functions in CponGL that-we can 182 (o define a shape or pattern
epecified with a rectengular armay, One function defines 3 bitmap patiem, and
the other & pixmap paitem: Also. CpanCiL provides several matines for saving,
coprying, and mantpulating arrays of pieel valuss

OpenGL Bitmap Function
A binary grmy pattern s dofined with the hanction

FiGURE I8
Seareingan i by o ool aey o g
ceighn ol the somes conndnate:

glBitman (width, haight, =0, yO, z0ffser, yifTcei, bitShape);

Pamametrs width and halght in this fundion give the number of colorms and
mumber of mws, espectively, inthearmy bitshepe Fachelomentof bitshaps
haﬁﬁl dmﬂmalwaﬂhxaﬂunuﬂhﬂ;mtuthmdmmrrapundmg I=
E:phynd in a prevdonshy defined oolon Otherwiss, the plel i= mﬂ:ﬂ:‘tﬂ

I:rln ther bitmrp. (A= an opton, we oould uss & valus of 1 toindicte that & spedfied
onar s oo e wiith the color value stored tn the refresh boffer at that
;:lr.dll:m':l Parnmoters 20 und y0 define the position that s 1o be considorid the
“origin” of the metangular array, This origin positon t= specibied relative o the
lvwer-ledt comer of bdtshepe, and values for x0 and y0 can be posiive or
magative: In addition, we need to designate 2 lomtion in the frame buffer whess
the pattem-is o be applied. This lostion s @lled the corrent mster positon,
and the bitmup is displayed by positioming i orgin, (x0, yo), at the cument
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rester position. Values assipnad fo pommetes x0T Tcet and yOrsoet am used
as covrdina b pffsets to update thi frame-buffer oorment raster position aier the

bitmap is displayed.
Coordinate valoe {or x6, 70, abrreet, and yorroet, as well as the carenl
raster posttion, are mainiained as foati inl values. OF course, bitrmsps will

be applicd af integer pixel positions. Bul doating -point coordinades allow & sl of
bitmaps to be spaced at arbitrary intervals, which s useful in some applications,
stich as firming duractor sirings with bitmap palterms.

Wir e the following romtine to st the coordimates for the current mster
P Hion:

glEastecfoa* [ )

Parmmeters pnd =uffiv codes am the same a= thess for the givertar funciion
Ths, & cument raster position is given in world coordinates, and it s trarsformed
i pereen enordingtes by the viewing mansformations. For our wo-dimensional
examples, we can speclly conndinates for the corment meeter positinn dinscdy
integer screen coordinates. The default value for the crment master position is the
worid-soordinaes origin (0. 0, ).

The color for 4 bitmap is the color that i ineffect ot e toe that e
511“;: tarfos command s imwoked. Any subsequent mlor chisnges do not affect

£ fitmp.

I*a:hf':mwn‘ a rectingulor bit array = stomed inomuoltiples of 8 bits, whemne the
bmary data i= armanged a= 3 set of B-bil unsigned charoctens. Bt we can describe
i shape using anv convinlent grd size. For sxamypls, Fisare 37 shows 2 bit
pattem defined on @ 10-mow by 9column grid, where the binary dists is specified
with 16 bits foe sach mw, When this pattem is applied 1 the pikels in e frame
buffer, all bt values beyond the ninth colbumn are i

We apply the bii pattemn of Figurs 27 (o & {frame-buffer locatiin with the
illowing code saction:

ClLubyte bitshape [20] = I
gxic, OXO0, Oxlc, 0x00, Oxle, Ox00, Oxie, ©X00, Oxic, CEQO,
Oxfr, OxEQ, 0x7r, ax00, 0xSe, 0x00, Oxle, Ox00, O0XO08, OEDO):

girizeigtore: (CL (NPACE KiijgEMswT 1): /f Set pixel storsge mode.

plRacterFos2d (30, 40):
glettmep f&, 10, 0.0, 0.0, 2G.0, 15.0, bitShapa};

FIGURE I7¥
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Array values for b3 t8hape are spedfied row by mow, starting at the bottom of
the rectaneulargrid pattem. Next we st the storaps nude for the bitmap with
the OpenGL routine girixeistored The parameter value of T im thi= fonc-
timn Inficstes that the dat »ﬂue.mmbeaﬂglwdunlwi& beimalaries With

giRagterfos, weset the coment meler position: o (30, 40). Finally, fimction
16 | tmnp specifies that the bit pettem s imarmy bitshape, and that Hiis

amay haz 9 columns and 10 rows. The coord inates for the origin of this patten are
(0.0, 0.0), which is the lower-left oomer of the grid Weillosiraie s coordinate offset
with the values 3000, 1500, although we do not use the offset in this exampls.

OpenGl Plemap Function

A pattern dofined as an amav. of color valoes i= spplied oo block-of frome-buffer
pivad pasitions with the function

plorowrizels {(width, height, dotsFormat. detaTyps, pizMap) :

width and height give the colomm and row dimensons;
Ii':EF-I!'I:IIlu ely, of the smy pixMap. Pammeter dataFormat is assigned an
Opans]. constant that indimies how the values aris tor the array. For
example, wa could specify a singlo blue color for all pixels with the constant
SL_BLUE, or we could spediy thres color components in the order blue, grean,
rod with the constant GL_BSE. A number of other color specifications are possi-
qu..AnL‘Ime!_mm:lm,sudIEGL_El‘m EL__INT, or GI__FLOAT, & dssipned
i ter da o the da1a for the oolor valies in the amay,
mm-iuh muﬁfr-’rgf ﬂ:iad:m is ma:;pud.w o the curment rastor position,
as set by the gliscterfos hmotion. As an example, the following statament
displays & pivmap defined in & 128 « 128 mray of RGH color values:

plorowfivefg (128, 128 GL RGH, GL UMSICHED BYTE colorshape]:

Boomuse Openiil. provides several buffers, we can paste an amay of
valoes inte a parthcular buffer by, selecting thal buffer-as the target of the
gibrawpPizels routine. Some bulfers store color values and some store other
kinds of pisel data. A depth buffer, for instunce. is used to store object distances
{dopths) frimn the: viewing position, and a stemcl kilfer i= ossd w0 st bound -
iy patterns for a scene. W select one of these two buffers by setting parameter
dataformat in the glorawPizsls routine () either G1. DEFTH COMPONENT
or GL_STENCIL_TIMDEX. For these buflers, wo woudd nead (o sot up the pixel
amay using slther depth values or stend] information

There are four oolor hffors availabla in OpenCl. that can be used (or scresn
refreshing Two of the color buffers constituts 4 lefi-right scene pair for display-
mp steTececpic views. Farsach of the sterecscopic bufters, there 3= a fromt-back
pair for double-bulfersd snimation displave. In a partioular implamentation of
Opentil, sither sterepsoopic viewing or double butfering, or both, might not be
supportad. I neither sterepsropic affects nor double bulfering is suppoerted, then
thare is only a single mitesh buffer, which is desipnated a5 the front-lefi color
buffar. This i the d-e:'nuhmiruh butferwihen double bulferng is not available or
oot inalfect, If double buffering &= ineffect, the defaull = sither the back-left md
back-right buffers or only the -L:flhuﬂe:,d-q:md]nﬂlmdm:mrmlsﬁluuf
sterposcopic viewing. Also, a nunbor of ussr-defined, aualiary oolor buffers ame

that can be usad Iururwrurrre&ahpmpcﬁ auich a8 saving a picture
that is to be copied lster into & refresh bulfer for display.
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We select a single color or suxilisry botter or 8 combmatiem of oolor buftfers
for stiering & pixmap with the following commard:

plirawBulfes [(buffsf):

A variety of OpenGl. symbolic constants o be spsignad to parmmaster butrar
fas :!.Elgrl.ul.t e or mkEe Tdraw® buffers. For instance, we mn pick 3 single
iffer with either CL_FRONT_LEFT, GI,_FRONT.__BICHT, Gi_BACK_LEFT. or
OL_BACE_RIGHT. We can selegt both frent buffers with on_rrom?, and we
can-select both back buffers with oL_RACK, This i= assoming that sterevscopic
viewing |s in effect Otherwise, the previous two symbelic comstants dusignatea
single buffer. Similary, we can desianate sither the left or right buffer pairs with
OL_LEFT or 6L 1GHT, and we can select all the avallable color bffers with
OL_FRORT_AND_BACK. Anauxiliary bubferischospn with the constant GL_ AUXik,
whime i is an integer value from 0 to 3, although more than fowr suiliary boffers
may be availsble in some implomoentations of OponiGL

OpenGL Raster Operations
In sdditirm to string sn armay of pivel vaioes ina buffer; we on retrieve a block
of vailues from 3 butfer or copy the block into another: butfer area, and we can
pertorm 4 varety of other operations on o pixel armay. In general, the term raster
upj!ntlunnrmtﬂ'npm usad to duscribe any function that procasses 3 pleel array
i s we raster operation thatmoves an array of pixel values from ene
b another n.lm reforred i as a black imnsfer of phel values On a bilevel sys-
tem, these sperations are cafled bitbit transfers {bit-block transfems), particulardy
whim the functions am hardware-aplemented . On a multilevel systam; the torm
plablt Is somatimes ussd torblodk transfirs.

We wse the iollowing function to select a rectangnlar block of phel valuss in
a designated set of buffemns:

ElmendFixelic (zmify, ymin, width, height.
dgxtaFormot, dstaType, acrayvh:

The lowerleft comer of the rectangular blodk to be etrieved 5 o soresn-
mondinate position (xmin; ymin). Fammeters width, height, dataFormat,
and dsteType are the same 3= In the plDrawFizale moutine. The type of
data o be saved In parameter srcay depends on the sdected buffer. We @n
choose pither the depth buffer or the stencil buffer by assigning sither the
vitlie GL_DEPTH COMPONENRT or the vals GL_ STENCIL _INDEX to parsmester
datEFormat.

A pariicular combination of color bulters or an suxiliary buffer & silected for
the applicution of the g 1ResdP i xals moutine with the function

glResdRurter (buffer);

Symbolic comstants for specifving one or mere buffers are the same o= in the
plDeswEurrer rmtine excopt that we cannot salect all four of the color buffers:
The default buffer ssiection bs the front leli-rizht pair or just the front-ldt buffer,
deponding on the status of stereosoopic viewing.

Wit can alsos 1bh1-:'i|.1-f vl dats from one locetion fo another within
the =&t of OpenGlL ool lovwrngs: rontinse

glCopyFixels (zmif; ymin, width, height. pimelivelu=s];
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The lowor-ledt cornor of the bleck i= at screen-coondinsto location {(x=dn, ymin),
and parameit=rs widthand height are assipned positive integer valuss (o deule-
nite the number of cofumnes and rows, respectively, that e © be copied. Param-
st=r pix=1Velvag isassigned either G1__COLOR, GL_HPTH, or GL_STENCIL D
indirate the kind of datu we want e copy: lor values, depth values, or stendl
valws, In sddition, the block of pixel values is copied from a source baffer 1 2
destimation buffer, with its lower-laft comer mapped to the curment mster position.
We selart the source buffer with the glzesadBurrer command, and we ssloct
the destimation buffer with the ginrsvBurrsr command. Both the region o be
eorpind and the destination area sheuld le completely within the beunds of the
scTEEn cooTdinates.

Toachieve different effects as a block efpivel valus is placed into s buller with
ﬁ]rlﬂ:ﬁlei: or gl CopyPizels we mn oombine the meoming valuss with

old buffer values in vatoos wave. As on example, “:ﬂul-il:jiia' logizal
pperations, such as ad, or, 2nd exclusioy or, to combine the two b of pixal

vl LuLTPErE:J_.WIudn'tﬂ:thhe logical operation for combining incomming
and destination picel color valyes with the functions

EiEmable (OL COLOR_LDOTC OF):
giLsgichop (logicopl:

A variety of symbolic constants can be- assignod (0 parameter 1ogicop,
including c1._AND, GL_0%, and GL_ xR In addition, sither the incoming bit val-
mmﬂmd&&mﬂmhilm%mh&h}\m&ﬂnmdw%ﬂm 1 valnes],
Wit u= the comstant GL__COFY_ INVHRETED b invert the ncoming color bit values
and then replace the destination vifues with the inverted incoming vilues: and
wie el ﬂmp-h-' invert the destination bl values withiout ra'pli:r:u:rﬁ them with
the inmoming values osing L INVERT The various invert operations can also
be membined with the luﬂ:b-l.llﬂ.f or, andd exxlusine or cpemtions. Other options
include ciearing all the destination bits to the vahs 0 (2L CLEAR), or setting all
the destiration bits oo the value 1 (6L S2T). The defaiilt value for the g1 Log LoDg
routine is gL COPY, which simply replaces the dostinatiom valtes with the incom-
img valies

Adddiricnal OpeniEL routines are availabie for manipulatng picel arrays pro-
cessei] by the plneswpixele plResdrivele and plcopyPizels functions.
Tior e lo, he glpixaiTransrar and giPixalMap roatines can be used in
shift ar adjost color values depth valoes, orstenal valves, W returm o pise] opiec-
ations in later chapters as we axplome other feoets of computer-graphics packages.

12 character Primitives

Graphio lays often include \extum] miormation; such = labels on hs
.|1.1:|4_'l||:|!1;|.1-t|1dj:HJI Fﬂnhﬂilim:giﬁrﬂﬂﬂ.ﬂdi and maﬂﬂmﬂfpngﬂn&ﬁm
tor simulation and visushzabon applications. Routines tor generating charactor
primitives ame ayvailable in most grephics packages. Some systams provide an
extensive set-of character functions, whils other systoms offer only minimal sup-
port lor character peneration.

Lettars, numbaers, and other charactors can be displayed in & variety of sizss
and styles. The vverall design styls for 4 st {or family) of characters s called &
Ivpeface. Tc:d.uz thore are dwma.m!syﬁ?'pdm available for computer appli-

catione. Ex of a few common typedaces are Courier, Helvetica, New York,
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with OpentL {4th ad ) [Haarn, Baker & Carithars 20131 adi - Adobe Raader =
Fie Edt Mew Document Tools Window Hep *

- -40-[ Biofa1g) & & [65% =R uJ |c||_rp|_rr:'mr-‘rr.'u' = S L L E:

Palatmo. asd Zapi Chancery. Originally. the term font referrsd 1o 2 sat of cast
metal character lorms 's I-I-p.\'u:r
Ftadic o 12-point Palatr

‘ompter Graphi
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recali Wanan increass o darmase fhosiza of @ charaster hitmap only in intagar
rrnltipton of the i siza T dowhly fho 22 o 2 chasctor, wa ] 1o bl
the namies of preel ia the bitmap. This fustinoeses the mpped sppearinoe
ltmadaes

In condrast & bitmag font; Gutiine fons n be increased in siz without
iy the charscter shuoes. And cotling fonte reguine les somes becais
yanaton doss not mguiss a distinct font ache We cn produce boldbsce,
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m.mdiﬂamtalush}'nunipufnﬂrqgmﬂmdmm fur the character
outlines Hut it does take mom dme 0 process the ootline fons borause they must
be scon-onverted into the frame boffer.

Ther is 8 variply of possibls unctions for implementing cherscior d.lspdﬂ}'.i..
ﬁmgmphbmpa:kngmpmﬂdznhutﬂunlhﬂm@dsmvdﬂmﬂ&ﬂmp;mi
&&mrm—huﬁnrnmmigpmtbmfﬂthﬁsrhlg.ﬂrm&mrr}mﬂihmhduﬁip

character &t ona or more seledied positions. Since this daracier routing
15 uspful for showing markers in a network [ayoul orin a ot of
a discrede dinta I-E-I.'Hli-ﬂ dl!]?:.‘hE‘l’d]!]’.‘h‘.l.}Ed !:n:r this mundnJ-:th}Mmﬂrmd
o @= a marker Igmuﬂrrmimln-gywtﬂlipnlﬂhmprmﬂ.ﬂ"rﬂh
odditiom o=t rﬂl:h.:n'nr_lnn spocial shepes such as dots, dles, and orosses
are aften available as marker symbols. Pigume 28 shows a plnl of o discrete data
st using an asterisk as @ marker symbol

Crenmetric descriptions for chamcters ame given n world coondinates, just as
thev ame for other primitives, and this information is mappod (o soreen coord i tes
h?'l:l'ﬂ-mmm transtormations. A bitmap characer s desoribed with a rectan-
gular prid ufhmmtywhusandagddm[empmhmﬁ&mfempﬁmm
Iz then mapped toa specified location in the frame buffer. An outlineg character is
defined by a3 set of coordinate positions that am o be conneded with 4 sedes of
unmmulimkg;hl—ﬂnuimmmﬁmdimfﬂmﬁﬁﬂmﬂmhmhmﬂpﬁd
b a given frame-buffer location. The reference position can be specified olither for
a single ouiline character or for a string of characters. In geneml, character pow-
tines can allow the construction of both two-dimensicnal and three dimensinnal

13 OpenGL Character Functions

Only low-lovel suppert is proviided by the hasie OpeniGL libmary for displaving
individual chamcters and lext sirings. We can Erpi:u:l.ﬂw define any chamcter as
& hitmap, as in the example shape shown in Figune 37, and we can stone 2 sef
of bitmap characters as 4 font lEl-I. A jext siring = then dlsp-hynd by mapplng S

nluﬂe:imqmnﬁ::ﬂnupfmm!hufmﬂbtmlnndp:mipmﬂtuum
bufier,

However, some predofined character sets are availablie in the GLUT bbrary,
=0 we do not need b oreate onr own fonts as bitmap shapes unless wo want i
dizq:iln} a fonl that is not available in GLUT, The GLUT library contairs ootines
for displa gﬂbe-tb bitmapped and putline fonts. Kimapped GLUT fonts are men-
damesd vsing the CpenGL g 151 tﬂphmcﬂml.antl the cutline fontsare genorsted
with polviine {oL_LIME_=THIF) boundaries.

Wiz can display & bitmap GLUT character with

flutiitmaptharacter (font, charcactac);
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whare parameter Tont is assigned 3 symbolic GLUT constant identifying a par-
ticular set of tvpefams, mnd perometér character is assipned either the ASCT]
code or the specific character we wish w display. Thus, to display the upper-
case lotter “A." we can either use the ASCH value 65 or the designation *A*.
Simmilarly, & cods value of 66 18 equivalent o *87, code U7 oo tpy B fow-
ercasa ltter *a ', code 98 corresponds o b imdmﬂrrﬂ! Bath foced-widlth frmits
and proporfimmally spaced fonts are -'.I.":'EJ].DHE-. We an selict a fived-width font
by assipning either GLUT BITMAY 8 BY 13 or GLUT BITMAT 3 BY 15 .to
parmmeter Tont. And we cm select 3 10-point, proportionally spaced font with
cither GLITT, STTMAP TIMES ROMAN 10 or GLUT BITMAP HELVETICA_10.
A 12-point Times-Romum font i= also available, as well as 12-paint and 18-point
Huhel'ln ﬁ:mtl-.

by glutBitmapcharecter is displayed so that
ﬂ.‘I:EEI.'[-ElII Mower-lelt comer) of the bitmap is al the current raster position. Aflter
the character bitmap i= logded into the refresh buffern, an offset equal to the width
of the character is added (o the ¥ coondinate for the curment raster position. As an
example, we artd displiay a fex string comtaining 36 bittmap characters with the
following, code:

glEssterfooitionZi {(x, ¥Ji:
for (k. =0: &k € 38:; k)
Elumi.tlnpﬂh.i.ri:tar (EUT BITHMAR % BY I3, t=xt [k]):

Charscters an'displayed in the color thal was specified befure the sxecution of
the piutBitmepCharacter mction.
A outling d‘[ﬂ.‘l’?l.l‘.‘l-l!‘!‘ls-dETFEﬂ}'EEE with the following function call:

glutStrokacharscter (font. character);

For this hmetion, we an assipn pamameer Tont either the value GnoT
STROKE ROMAN, which displaysa proportionally spaced font, or the value oluT

STROEE MORG_ROMAN, which displaysa font with constant spacing. We comtrol
the size and position of If'HEE charzciers by spedifying transformation cpemtions
befom: evecuting the plucSeeokeCharacter outine Afwr each character is
displayed, & coondinate offset i= autematically so that the position for
the noxl character is to aif I]'Ii.'LLlr!’EllEhﬂ.r:ll:-lEETui!tl‘m:j?
H"]ﬂ'.ll:l‘i.lﬂ.hJ.EfImEiIEFﬂﬂl‘l the geomestric descripton for a two-
dimensitmal or three-dimensional scme becmse they sre constnicted with line
segments, This, they can be viewed fronrvarniows directions. and we can shink or
them withomt distortion. or tmnsform them in other wavs, But they are

stower o render, compared to bitmapped fonts

T4 Picture Partitioning
phics libraries inciude mutines for describing a picture as & collection of
nmf sertions and for manipulating the mdividinsl sections of @ picure, Uring

thees functions, we-can create, edit, delete, or move & part of & pictun indepen-
dantiv of the other picture components. In addibion, we can use this featore of 3

graphice package for hismrchical modeling, mw‘[‘lldlmuheﬂdﬂﬁmpﬂm i=
given as @ tree stctus composed of 3 aumber of levels specifying the abjen
subpart=

Vardirus names= gre used for the subsections o @ picture. Soms graphles pack-
ages refer o them as structures, whils other packages @il them cegmente




65

ar phjecte Also, the allowable subsection operatims yary greatly from one
packaze o another. Modeling packepes frr mosmple, Frmndr & wide range of
aperations thal can be urad W describe and manipudate pictum elements. On
the ether kand, lor any praphies library, we can alwave stmctore snd - manags
the component= of & pictore wing procedural element availsble in o high-level
langiinge such as Cos.

15 OpenGL Display Lists

Often 1 cen be conveniant or more efficiont to stvre an abject description (or any
other s=i of Open(il. commemnds) as 4 named E-EEILIEI.'I.[EDE!{H.I.I.'I]]E'ltl. We an
dn&tﬁmf‘plmr_nl_ using a strurture called a display list. Cmee a display list
has been created, we can reference the list multiple times with different di=play
operitions, On a network, a display st d escribing 2 scene &= stored on the server
machine, which aliminates the 10 brarismil the commeandsin the list each tme
the scome &= to be displayed. We can also st up a display list so that it ls saved
for lnter execution, or-wie can ify thai the commands in the list be mcuied
mmmediately. And display Bists are pardoulardy nseful for hierarchic! modaling,
wharre & comnples. objuct cun be described with s st of smpler subparts.

Creating and Naming an OpenGLl Display List

A st of OpenGL commands 15 formsd into-o display lise by enclosmg the com-
rands within the giNewlist/ginndLizt pair of functene, For example,

glNawlist (ligtID, licstModej;

glEndiict § ):

This strocture forma a display lst with a positive inieger valoe assipnod
I perameter 1igTID as the name for the list, Parameter ligiMods |s
aszigned an OpenGl symbolic constant that can be either 1._coMPILE or
Gl COMPILE AND FXECUTE {f wewan! to save the list for latersecution, we
use GL_ COMPILE. Otherwise, the commands are executed as ey are placed inio
the li=t, i addition to allvwing us to axecute the Lt again ata later time,

J'l;l.l display. list i= covated, expressinne nvolyving parnmeters soch as eoar-
dinate pisitions and ealor componemis are svalusted o that only the param-
etor values are shored in the izt Any su nent changes o these parameters
have no effect on the list, Becaiees ﬂ:[riFJa:_', 1=t values cannit be dhanped, we
canmot include certain OpenGL commande, sich a2 vortex-list poimters, in a
dhimplay list.

hhmmua:rmhruiﬁnphyﬂm,mﬂmmmm&pim rlistol
commmands with 2 call 1o its identifier. Further, one display list can be ombedded
within another display st But if 3 list = az=igned an identifier that has almeady
been wsed . (the new (=t mplices the ious st that had been assigned that
identifier. Therefoms, I::nm.nﬁi losing a Erh accidentally reusing |15 identifier, we
can Jut OpenGL genermte an identifier for us. as follows:

l4gtTh = glgenlicts (1);
This statement retrns one (1) unussd positive Inteper identiffer to the variable

lixl'_tﬂ-_nlhmnﬁﬂnlunnﬁﬂd' er list idontifiers is obtained i we change tho
argument of glGenLists from value 1 to some other positive infeger. For
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mstance, if woinvoke gigenlinte (5), thenasequence of =it contiguous posi-
tiveintegervalies isreserve] and the first value in this listef identiflers tsrotumed
Io thie variabhe Tzt Th A value of 0 & oomaed by the gloenticte functon i
am e eocur= or i thee svstem omnl generale the mnge of contisions intsgsers
Tiomibore, bafire using an identifior obtaired mm the glgentizte
rotitini, wi could chiscll bo be sure that [t i not i
Although unusad list identifiers cun be gonerated with the gicealisc
function, we can independently query the system to determine whether a
specific integer valuo has been used as 3 list pame. The function to accomplish
ihis i=

girsnist (1ierIm):
A value of 0L_TEUE is returnad if the value of 11gt1D is an integer that has

ul:E.d.j-' baan usad as a display-list name. If the integer valis has not been used
a5 @ lisl mome, the g1 ToList himction mturns the valne 01 FALAE

Executing OpenGL Display Lists
Weaxerule & single display st with the statemont

gicallitdet {IdisEIm);

Tha following eods sepment illustrates the creation and sxecution of adisplay lise
W first set up a display Het that contains the description for a regular hesagom,
dﬂlﬂnm!ml.'ﬂu plang using & el of sl equally spaced vertices armimd the

o of a clrcle. whose conter coondinates are 200, 200} and whese
rld-llﬂﬂ]ﬂﬂ'lﬂlﬂEbhﬂEﬂ-ﬂﬂlﬂ function gicel1tiat, which displays the

haxagan
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Several disploy Hsts cun be executed using the following two statements:
glLictRace (offsetVelus) !
plcalindiste (nLigte, arcoyCeteType, listIDArzayli

The Inteper number of lists that we want 0 sxeoute i= assigned (0 paramester
nLists, ind pammeter gt IDArcay isan of -list identfiers. In
Em'n! ligtl DA ray.Cin contain any mlmhuiucﬂhmmdt?i.tgﬂ invalid display-
identifiers are ignomed. Also, the alements in 1istMAreay can be spect-

fied In & variety of dats formats, and parmmeter ErceyDETaTyYpe 5 wsed o
indirate a data type. such a= L. BYTE GL__INT, L FLOAT, GL_3_BYTEE, or

OL_&_BYTES: A display-list identifier is cairulated by adding the value in an
elenumy of 1istIDACray o the inteier value of orrestValoe that is given in
the gitdctEsce function. The defaul value for orfeetvalusis

This mechanism {or specifying 3 sequence of display lists that are o be
execried allows o= o set ap groups of elated Loy lists, whese identifiors
are [rrmiad from symbolicnames orodes. A ypical sample is s font =6t when
each display-list entifier i= the ASCH valoe of 3 chamcter. When sevaral font
=etsare defined, we u= parameter orreatvalue in the glruistisce fundion
iy opmin = particular font described within the army {igtIDArrey

Deleting OpenGL Display Lists
We eliminate o contiguous s=t of display lists with the furiction call
gloeleteligte (startih, nkigte):

Parameter etart 1T gives the nitial display-list identifier, and parameteroliicte
spocifies the number of lists that are o be deleted. For ex thy statoment

glbeletabliptes (5. &);

eliminatue thes four display Lists with idinfifiers 5, 6, 7, and & An identifier valoe
that references a nonexisten) display listis ignomed.

16 OpenGL Display-Window
Reshape Function

Alter the generation of ourpictiere. we often want W ose the mogse peinter to
drug the display window o another soeen location or o change it sire
Changing the size of a display window conld change s zspart ritlo and cause
ohbjects 1o be distoried from l;ﬁmn:lngu'lal shiapes,

T allonw us o oormpemaate for & dhanpe in display-window dimenzions, the
GLLUT library pmnvides the following matine:

plutfeshapaFine [winHeshapeTon):

We can include this function in the ne {n procedune in our Eogm L alerng with the
athor GLUT routines, and it will be activated wheniver the display-window size

s altvnst The argmment for this GLUT fundion is the name of 4 procediors thal
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i5 1o recoive thenaw diapimf—wiu.ddwmhithindhdghtﬁhmﬂim:me ths

dimensions to reset te pr ﬁﬂmnn} nther cpormtinns,
sl as changing H'mdiﬂpl[if—wh'l wc-:dnrh! tion, we could save tha new

width and height values so that they could be msed by other procedures in our

R
s an eample, the following progmm illustrates hew we might strocture the
winkechapefon procedure. The g1 Laad Idsntd t y command isinclmded in lhe
funcﬂmmﬂnrmypmﬂnusﬁim&ftrrdm jection parmmeters will

niot affect thenew project Ihn:rE lar hisa
dllim:ﬂul:llnqleﬂkm 15, AI ikﬂ&nﬂ;ﬂnmlﬂilﬂx Erfnfﬂ:nmﬁ
oenter} in thi= emple i Eutﬂnuuiﬂm&lpln}'windmpmmemu
ﬂwpmd.lunafthui‘mgunhunaﬂ::mi any chanpes in the sieeof the display
window. This is bacause the hexagon s within & display list, and only
the priginal center cocrdinates are stored in the list 1 wi want the position of the
hexagon o change when the display, window s nsized, wonesd 10 dofine thae
hexagon in another wirl o alter the coond inate refereanes for the display window,
The outprt froom this propram is shown in Figom 30
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LINE FUNCTION

Graphics packages typically provide a function for specifying one or
morestraight-line segments, where each line segment is defined by two
endpointcoordinate positions. In OpenGL, we select a single endpoint
coordinate positionusing the glVertex function, just as we did for a point
position. And we enclosea list of glVertex functions between the
glBegin /glEnd pair. But now we usea symbolic constant as the argument
for the glBegin function that interprets alist of positions as the endpoint
coordinates for line segments. There are threesymbolic constants in OpenGL
that we can use to specify how a list of endpointpositions should be
connected to form a set of straight-line segments. By default,each symbolic
constant displays solid, white lines.

A set of straight-line segments between each successive pair of
endpoints in alist is generated using the primitive line constant GL LINES.
In general, this willresult in a set of unconnected lines unless some
coordinate positions are repeated,because OpenGL considers lines to be
connected only if they share a vertex; linesthat cross but do not share a
vertex are still considered to be unconnected. Nothingis displayed if only one
endpoint is specified, and the last endpoint is not processedif the number of
endpoints listed is odd. For example, if we have five coordinatepositions,
labeled p1 through p5, and each is represented as a two-dimensionalarray,
then the following code could generate the display shown in Figure 4(a):
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glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glEnd ( );

Thus, we obtain one line segment between the first and second
coordinatepositions and another line segment between the third and fourth
positions. Inthis case, the number of specified endpoints is odd, so the last
coordinate positionis ignored.

With the OpenGL primitive constant GL LINE STRIP,we obtain a
polyline.In this case, the display is a sequence of connected line segments
between the firstendpoint in the list and the last endpoint. The first line
segment in the polyline isdisplayed between the first endpoint and the
second endpoint; the second linesegment is between the second and third
endpoints; and so forth, up to the last lineendpoint. Nothing is displayed if
we do not list at least two coordinate positions.
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glisgin (G5 T.TNH: TEETRE] ;
jpIVerzaxFiv Cpll:
giVercerlzsv (pklj
plVarceriite (p3)4

glVarzexiiv (R
i

LA d

plVarcoxliy

As nied esrlier, pichare componmmis an-desmibed in 3 word-coordinale
reference frame thal = svenhaally mapped o the cocrdimale refemenes for dhe
otpul dovice Then the geomesine infonmation about the prchure s scan-tonverisd
by phie] posiions

LINE DRAWING ALGORITHMS
A straight-line segment in a scene is defined by the coordinate
positions for theendpoints of the segment. To display the line on a raster
monitor, the graphics systemmust first project the endpoints to integer
screen coordinates and determinethe nearest pixel positions along the line
path between the two endpoints. Then theline color is loaded into the frame
buffer at the corresponding pixel coordinates.Reading from the frame buffer,
the video controller plots the screen pixels. Thisprocess digitizes the line into
a set of discrete integer positions that, in general,only approximates the
actual line path. A computed line position of (10.48, 20.51),for example, is
converted to pixel position (10, 21). This rounding of coordinatevalues to
integers causes all but horizontal and vertical lines to be displayed witha
stair-step appearance (known as “the jaggies”), as represented in Figure 1.
Thecharacteristic stair-step shape of raster lines is particularly noticeable
on systemswith low resolution, and we can improve their appearance
somewhat by displayingthem on high-resolution systems. More effective
techniques for smoothinga raster line are based on adjusting pixel
intensities along the line path.
INITIALIZING LINES
We determine pixel positions along a straight-line path from the
geometric propertiesof the line. The Cartesian slope-intercept equation for a
straight line is
y=m *x+b (1)
withmas the slope of the line and b as the y intercept. Given that the two
endpointsof a line segment are specified at positions (x0, yO) and (xend,
yend), as shown inFigure 2, we can determine values for the slope m and y
intercept b with thefollowing calculations:
m = yend - yO0
xend— x0 (2)
b=y0-m - x0 (3)
Algorithms for displaying straight lines are based on Equation 1 and
the calculationsgiven in Equations 2 and 3.
For any given x interval 6x along a line, we can compute the
correspondingy interval, 8y, from Equation 2 as
oy=m * 6x (4)
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Similarly, we can obtain the x interval 6x corresponding to a specified
Oyasbx = 6ym (5)

These equations form the basis for
determining deflection voltages in analog
displays,such as a vector-scan system, where
arbitrarily small changes in deflectionvoltage are
possible. For lines with slope magnitudes | m|<1,
6x can be set proportionalto a small horizontal
deflection voltage, and the corresponding
verticaldeflection is then set proportional to 6y as
calculated from Equation 4. For lineswhose slopes
have magnitudes |m|>1, 6y can be set
proportional to a small verticaldeflection voltage
with the corresponding horizontal deflection
voltage  setproportional to  6x, calculated
fromEquation 5. For lineswithm = 1, 6x = dyandthe horizontal and vertical
deflections voltages are equal. In each case, a smoothline with slope m is
generated between the specified endpoints.

Onraster systems, lines are plotted with pixels, and step sizes in the
horizontaland vertical directions are constrained by pixel separations. That
is, we must“sample” a line at discrete positions and determine the nearest
pixel to the line ateach sampled position. This scan-conversion process for
straight lines is illustratedin Figure 3 with discrete sample positions along
the x axis.

DDA Algorithm

The digital differential analyzer (DDA) is a scan-conversion line
algorithm based oncalculating either dyor 6x, using Equation 4 or Equation
5. A line is sampledat unit intervals in one coordinate and the corresponding
integer values nearestthe line path are determined for the other coordinate.

We consider first a linewith positive slope, as shown in Figure 2. If the
slopeis less than or equal to 1, we sample at unit x intervals (6x = 1) and
computesuccessive y values as

yk+tl =yk+ m (6)

Subscript k takes integer values starting from O, for the first point,
and increasesby 1 until the final endpoint is reached. Because m can be any
real numberbetween 0.0 and 1.0, each calculated y value must be rounded
to the nearest integercorresponding to a screen pixel position in the x
column that we are processing.

For lines with a positive slope greater than 1.0, we reverse the roles of
x and y.

That is,wesample at unit y intervals (6y = 1) and calculate consecutive
xvalues as

xk+tl=xk+ 1m (7)

In this case, each computed x value is rounded to the nearest pixel
position alongthe current y scan line.

Equations 6 and 7 are based on the assumption that lines are to be
processedfromthe left endpoint to the right endpoint (Figure 2). If this
processing isreversed, so that the starting endpoint is at the right, then
either we have 6x=—-1and
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yktl =yk-m (8)
or
(when the slope is greater than 1) we have 6y = -1 with
xktl=xk-1m (9)

Similar calculations are carried out using Equations 6 through 9 to
determinepixel positions along a line with negative slope. Thus, if the
absolute valueof the slope is less than 1 and the starting endpoint is at the
left, we set 6x = 1 andcalculate y values with Equation 6. When the starting
endpoint is at the right(for the same slope), we set 6x = -1 and obtain y
positions using Equation 8.For a negative slope with absolute value greater
than 1, we use 6y= -1 andEquation 9, or we use 6y = 1 and Equation 7.This
algorithm is summarized in the following procedure, which accepts asinput
two integer screen positions for the endpoints of a line segment.
Horizontaland vertical differences between the endpoint positions are
assigned to parametersdx and dy. The difference with the greater magnitude
determines the value ofparameter steps. This value is the number of pixels
that must be drawn beyondthe starting pixel; from it, we calculate the x and
y increments needed to generate the next pixel position at each step along
the line path.We draw the starting pixelat position (%0, y0), and then draw
the remaining pixels iteratively, adjusting xand y at each step to obtain the
next pixel’s position before drawing it. If the magnitudeof dx is greater than
the magnitude of dyand x0 is less than xEnd, the valuesfor the increments
in the x and y directions are 1 and m, respectively. If the greaterchange is in
the x direction, but x0 is greater than xEnd, then the decrements —land -m
are used to generate each new point on the line. Otherwise, we use a
unitincrement (or decrement) in the y directionandan x increment (or
decrement) of 1/ m.
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ebrmiphi-line sapampnis ans fo0 be drawn. The verbeal axes show - scam-Tme pose
ticre, und Lhe horizenist ates ideniiy pivel columas. Sompling o0 unitx intereais
in these axamples. we need (o decide which of twa pessiblo paxel poditions =
closer i the fine path at esch semple skp. Sarking from the loft end poind shown
mn Pigure 4, wo need 1o determine at the net sample ion whisther t pli
thu-pixelat position (L1, 11} or S one at (11 17 Similardy, Figure 5 shiows a
negativeslope line path starting from the laf endpoin 3t pixel positon (50, 50)
In ghiz ane; do we selict ther nexy prxel position 3= (51, 30 or as (31, 497 Theee
Guestirms are anssered] wit)) Besenham’s line algoeihm by testing the sizn of
an-iniecer parametor whoss value is proportional o the difference hotwesn the
voriiral Hhisews ol this wo positions from e aciual line pad

To illustrate Bresanham's approach, we fisst oonsider the son-conversiom

rocess for lines with positive = lisss tham 100 Pixg] positons o a ting

|I:ilh e then detsrmined thg M}El:j?;u it unit 5 intrvile thﬂﬂ.m B .ﬁ"wlhf Listt
encdpoint (4, W) oF 3 given Bne, we step W0 sach soecessive colomn (¥ posiBon)
dnif phot the pitel whose szan-fine i valne is closesi o the line F@ith Fpuee &
demonstrates thie ki step in this process. 2 ing thatve have determined thay
this pineed at (xg, ) B tbe displayed. we nea nesd o decade whde piael eo plot
in coliumen X =3+ 1. Sr choces aee the picels atpesitions (1, w)and
Ly 41, + 1)

Ap smpling T + 1, we labed vertiml poml separations firom the
murthemnatcal line paiy a8 i e A0 dye (Figune 7). The y coordinate on the
niathermatial line at pived cobomn position &+ 1 5 calenlabed as

y=mn+1i+b i
Them
o = I - W
=miti+1+b— {1
arul
dupme = (1 + 1) — ¥
=m+1—miz+1) =k 03

Tin dlstormiine which of the swo Fﬁxﬂsildasmt 10 ghe fine-path, wo can sek up an
pifickint (o=l et s basad om e differemre betveen tha o pivel SEPRTAH TS 7%
Fallinas:

i — e = Mg + 1) — iy +20 =1 ]

A decksion pararmelsy py B bhe ki step s the Bne abisori b cam be obusbeed

by mearmanging Huabon 13 so0 thai o mvohyes only imteger calculations. W

accomplish this by substituting m = A/ Ax, where Ay and Ay ame the verical

andd horizomia] separitions of the endpoint pesitions, and difining the decision
parnmeier as

i = Axifowe — s
=JAy-T—JAT g +C fay

The =ign of py 14 ihe same as fhe sien ufdm,—..lur:}m.]:n.-:hu.l- Ax= 0 for our
ermple Parameter ¢ o constant and has thevalee 28+ Aridb— 1), which &
indepisndisni af ihe piel position el will b sliminsied o e recursive ceioats-
m[—nrdp...lfl:hnplmlal]nh'dmr"mHjh!lm!pi!hﬁl.u.nﬂnpu.telmp+t
Lt i, e = S, thien diecision parameier fy i negakive. In that case, we

Ty Mgy Tgoa Sgan

FIGUEE &

& wation of &= nmm aries
Inaame 5 orEr e ) et e
b piiwtieed syt panih o @ i
.':H;'TH'H g L

FIGURE T

‘Tl dastm e SeTseen poe
[t anif the b ) oEEEE
sapieg pistion K 4 |

plot the lower ; otherwise, we plot the ppper pixel.
S ITLELE TH @ LIRS T 4 - - —
et tgm Ina some ks 1 b rithm, devalopad by Sresanham, that uses incremental integer calculstions.
mﬂhﬁmﬂﬁl In additiom, Bresenhom’s Hne ithm can be adapted to display circles and
eikamm S0 an scan bne 0. other eurves. Figures 4 and 5 [[ustrate:sections of & display screen: whiers
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Conrdinain changes akng the line occur i anit steps i elther the 1 o §
dirsction. Thenefiwe, we can obtain the valiws of socceseive decisson parsnusess
using rcremental intoger cleulatone. At step & + |, the decision paramester &
evaluated from FEquation 14as

Pt =280 2 —IAX- I +T
Subtractng Fquanon B from the preceding equation, we- e
P — i =2A% 1 — a)—2Ax(m. — W)
However thi: =X +-1. 50 thitd
Pl =+ A — AT — ) (15

wharz the torm w1 — W s edther 0 or |, deoending on the sien of paramesss py.

This recurssve maktulation of decsion paramesters = performad at sach mibsger
T posihon, slrang at Hm_]eﬂmnnﬁn&!n-m-:ﬁ:inturﬂuliﬂs.ﬁ‘m first paramester,
Pir, {8 evaloated from Equaton 1421 the starting plael position {2, i) and with
m-evalusbed as Ay Axas follows: )

jo =2AF - Ax (VE]

We nummarize Bresenham line drawing for a line with a positive slope |=ss
tha 1 in the hﬂwmgmﬂﬂur&ilpﬂmﬁemﬂiymilby—
2A7 e calcilated once for each Hne o be scan-renvensd - se e arithmetic
mvalves only inieosr sddinm and subbracnon of these ten constants, Skep 4 of

the adgerithm will be perfiormaed a hotal of Ax times

EXAMPLE 1 Bresenham Line Drawing
T illustrae the algorithm, we digitre ty lne with eadpoinis: (20, 10) snd
(30, 18), Thi= Ine has a siope of (1.8, with
Ar= [ f.l.].ltﬂ-
The inttal (levision paramesr has e value
po=2Ay— Ar
=&
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and the incroments for calrulating successive dicision paramealire are
Ay =15, Ay —2Ax = —4

We plat the manal k= 3:,] _11'1] 10, and determine successive. pixed

Fumﬂmgutlg:u discision pammeter is follosws:

ko P 03k %) LT, WL R

il it 3, 5 fa 0,15

1 2 (L. 1x) i E {27, 16)

2| 13 (., 17 7| -2 28,16

3| 4 (=4, 13) S e (29,17}

i w (5. 74) gl 1o fu 1wy

A plet of the pomls ponoraed aloog e line path s shown in P 8

FIEIIIE |

: ] xF prunons sng te e patt betwes

o g T T mhmmh:l 10 Tl (30, 104 plivtre wath
X = Sy e Akt

An jmplemontabon uiBrumhnmLmudmwughrTm m!rmlg
U< m <11 is given in the following procedaus, Enidpoins pixal poszions for
linsz are passéd 4o this proceduorn, H'udpth.ulqmp{nllad.l'mm thr Jefit endpoing o
tle righi endpoint.
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fresonhom's algomihm &= generlized o lines with arbibmany slops by consid-
ering the symmetry betwoen the various ocmnis and guadrants of gw xy phme.
Fnr:llm-ﬂﬂipﬂhwahpeymﬂﬂ:ﬂnw we interchange the miles of thex

and g directions. That i3, we step slong the y directon o ol steps and mloulae
sscessive X valiuss naansi the line path. Alse, we could revise the program b
plot pixels strtng from cither-eadpoemt. I the inbal positon for s lre with pos-
tive slope s this right endpoint. both 1 and ¥ decrease as we step From right 1o
ledi To prsare that the same pxels ae plotted egandless of the starking endpoind,
we alw sy chooss the upper or the lower) of the two tandidaie pieks wheneves
Ehiss twvvs vertienl separanons from thie line pah are squitl (e = g For neg-
ativeslopes, the procedeines are similar, except that now onpooendnaie decnsses
line= { Ay = 0, vertical lnes (Ax = 0), md dingonal imes {fAx| = [Ay]) mn &ch
be loaded direriiv mio the frmmes bufiee without procesging them thmough e
lire-plottng algorihm

Displaying Polylines

Hom of Hrus ure f= scoomplished by invo a lins-
mu:gm:ﬂﬁen—lﬁgnm" Fﬁmmsﬂﬂﬂﬂﬁlﬁ.ﬂidﬂ
succmssive il passes the toordmate par nested 1o the nexi kine sechion,
Mﬂuﬁmsﬂ;dmﬁﬂﬂmm;ﬂlriﬁﬂl ast iencpoint of te previ-
o= sarton. Unce the color values for pixel positons l.’cuﬁu-tl'me.-q;mmu
have been st i the frams buffer, wid process suibsegquent =S starng
with thes nent pied positicon m{hrrmgﬂmﬁmgdpmhﬁntﬂegumlﬂﬂﬁs
way, we can avoid s=iting the color of some endpoints wice. We discuss methnds

for avpiding the pvedap of displayed objecs in more detadl in Secuon &

2 Parallel Line Algorithms

The linegenerating abrorihms we have discussd s far determine poosd po-
sitions sequuentially. Using parallel processing, wo can cilirulate multpde pocel
pmﬂmnkmqﬂwpnm:mﬂmnmmljh}pmﬂﬂtﬂqﬂmmmpuwﬂuns
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mqﬁemnmmnvﬂi&h&ﬂmwmﬂrm&mpﬁ

lem is to adop an existing saquential aleorthm o @ke sdvanteee of mulbpie
procesrors. Alternatively, we can ook for other ways b se up ie prcesang s
that pixsd F-DE-II:I.TI'!.! imn bo-mmiculaied uﬂ!'u:m:ll_','m paralid. An mmportant conssd-
eraton i deving & parallal alponihm s i balance the p:mgln&:tmng,
the availabla processide.

Civen np processurs; we can st up a paralbd Besenham [ine algorithm by
subdividing the line path into K, partitions and simullanecusly generating Lme
segments tn each of the subiniervils. Por a line with slopo 0 < m < L0 and lef
endpomnt coordindte positon (I, W), W partibon the boe alom; the positive 3
directicn. The distance between heginning 1 positions of adiacent parthons (an
e cnilevizmsd a5

Ax,= M_TI'__I "
r
where AT &5 tho width of the line, and the valoe for partioon wdth ATy &5 com-
prdted using integor division. Numbering the partidons, ind the processars, as 0,
1, 1 up sy — 1, we calenliste S starting 1 coorimates for the bih partdtion a=

n=-2 +kA¥Xy )

For mampte, f we have mp = 4 pocossors, with Ax = 15 the widih of the
partitions is 4 and e stanng 1 values for the peritons are 1, o +4 5 + 4,
anct 15+ 12 With this parsd oning schems, the width of the Last (nghemost) sub-
interval will be smaller than the others incsome casss. In addibon, o the Hinp
H.'I.dP'L':ﬂ'I‘l'_'- arE A TS, freerabom srrors can resi s varable-width prartidines
along, the length af the Ima,

Toapply Bresinham’s alpoatlum rver the pattitions, we nesd the immal vahie
for the ¥ coordinate pnd ths imdtsal value for the decesion parameterin sach pars-
ien. The change Ay, i the y direciion ovoer sach parison s caloulated foom e

line slope m and partition width Az,
Ayp = MATp (e
At the kth partition, the saning ¥ coodinats is thin
%= Vo + mound{kAyy) =

T Ameviiad dudﬂmpmamlﬂﬁﬁr!mﬂnﬂﬂl algorithm at the star of the b
subinteryal = obaimed from Bguanon 14-

pe = (LAY 2AY) — moundiL A TAY) + JAY ~ Az [

Each proceseor thom calculalbes pixel positions over 5 assimned sobimerval
usany the prreceding starting decision paramearvis de and the starting coontiniies
(3. yi). Floating-pomt cilculations can be reduced o inleger antlmetic in th
ompuidtons for startme values y and py by subshituting m — AyfAx and
rammg:np;imns.%mnnhmd E!'Epu:ﬂﬂﬂ-m&un‘lnm algorithm 1o a L
with slope greatoer than 1.0 by partidoning the line in the y direcsos and caben.
lmmghegmm_g:nhu&hrhha;nrﬂmﬂi Far negative slopes, we norsmsot
g it b wakies inone dirvton amd dememenl in e othes

Another way bmuppu;ﬂhﬂ:lg&dlhmimmtathmﬂgnm
proCEssOr {08 pirbcular group of soreen puials. With a sufficient nuniber of pro-
mmmm@ﬂp@hﬂpﬂﬂmmm@mm
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approach can be adapwod 10 a hne display by asmigring one processor o sach of
thar poeeds within e limits of the codrdinate exbents of de line and caleulating
posel distances fom the hne path. The number of preeks withun the boundmg box
ofalmeis Ax- Ay (= illusimied in Figiee %), Perpendicular distance s from the
lirse tm Flgure U o @ poed witkh coondimakes {z, ¥ @ obdamec with the caloalaton

d=Ar+Hy+C (]
whars
_ —ay
~ linekangih Yok |
Ax .I'I‘ I
~ lmalenpth / l
LAY~ AT npeo ot
~ linelength

with B e
FIGURE %

sl — o 7 = Brmchng bow lor ) s el soyme:
linatenpih = o Ax* + Av s sep b

L e .

Ulnce the constants- A, I and C have bden evaluaiod for the Hng, gsch processos
must perfonm two mulipbeanons and two addibons to compate the pixed das-
wEnce . A prical 5 plotied iFd s lesa than o epecifed lne thicknsss pammetoer
inssead of pariboning the soreen inig single piels we can assign o gach
processar sither 5 scan Bne or poolumn of pixels dispendimg on rJ'u=hh1|L--IL11L Fach
pioceszor then calculates the mtersschon of the lme with the horcontal row or
verdcal column of preels sssipned o ot processor. Fora imewithskpe (mi < 1.0
each provessof simply solvies the lne aguaton foe v, given an o oodoom value,
For a line with slppe magnitide greawse thin 1 [, the ine sguation = sodved for x
by each processor, peven 4 soan ne ¢ vidoe Soch direo methods, although slow
on sequentiil machines, can be pedormed efficently wsing milbple processors.

CIRCLE GENERATING ALGORITHMS

Because the circle is a frequently used component in pictures and graphs, 2 proce-
dure {or generating etther full circles or circilar ares is included in many graphics
packages. In addition, sometimes a general function is available in a graphics
library for displaying various kinds of curves, including circles and ellipses.

Properties of Circles

A circle (Figure 11) is defined as the set of points that are all ata given distancer FIGURE 11
from a center position {x., ). For any circle point {x, y), this distance relationship ¢ 1 oln 0L 5l
is axpressed by the Pythagorean theorem in Cartesian coordinates as and madius £

x—x) -y =r {26)
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Wa could use this equation to calculate the position of paints on g circle circumfer-
ence by stepping along the x axis in unit steps from x, — 7 to x; +r and calculating

the correspending y values at each position as

Y=YV — (% —x¥

However, this is not the best method for generating a circle. Cne problem with
this approach is that it involves considerabls computation at each step, Moreover,
the spacing between plotted pixel positions is not wniform, as demonstrated in
Figure 12. We ¢ould adjust the spacing by interchanging x and y {stepping
through ¥ values and calculating x values) whenaver the absolute value of the
slope of the circle is greater than 1; but this simply increases the computation and

(27}

-J- h-

. . . FIGURE 12

processing required by e algorithm. Upper Falf of a cicle plotted
Another way to eliminate the unequal spacing shown in Figure 12 i5 10 wif Eguztion 27 and with

calailate points along the circular bogndary using polar coordinases r and 8 tr., y)=10,2).

px)| Ixx)
- -
. A
klf ,-"'j: yiryi
. r*\. I —5
|
¥, <) Lt
FIGURE 13

3yrmmany.of 5 o Colridmion of 2
oicEpoint 4, g i oo ocant el
S L pty Shene fion APe e
AVER) THCERT

(Figure 1), Expressing thée circle squation in parnmetric palar form viclds the
piir of equations

L= X +rcsd
T (28}
Y= W 4Tl

When a display Is generated with these equations using a foeed angular step sine
a circle is plotted with equally spaced points along, the cinoomberenee. To redioce
calculations, we can uss a larpe angnlar separation befween points along this cir-
cumfrrence and connect the points with strmight-line segments 0 approvimate
the dircular path. For @ more continmous boundary on 4 rester display, we can
set the anpular step size at L. This plots pixel pasitions thal are approdmately one
umit gpart. Although polsr eoordinates provide equal peint spacing, the trigono-
myetric calrulations ar still Gme-consuming

For any ol th previcus arols-genersting methods, we can reduce complits-
tions by considering the symmetry of circles. The shape of the cirede i= similor
ench quadrant, Theredore, if we dotermine the corve positions In the fret gusd-
rant, we om gemerate the cinde sectitn i he secomd goadrant of the oy plane
by mesting that tha i drcle sections ame symmetric with mespeel to the y axis
Alse, circhi sections in the third and fourth quadrantz 2an be obtained from see.
tiomes i thee first and second quadrants by considedng symmetryabont the = axds
We con tako this one step further and note that there is shio symmetry betwnm
ectants. Cincle ssvtions in adpcent octants within ome quadrant are symmetric
with respect to the 45 line dividing the two octanis. These symmeiry conditipns
are (llstrated in Figure 13, where 5 point at position (x, ¥} on & ene-cighth
circle sector is mapped into the seven cirdle points in the other octants of the
ay plone. Taking advantage of the drdeé symmetry in this weay;, we cn genemic
all pixel positons ardund @ cirde by miculating endy the painits within the s
tor from x=0 tn ==y The slope of the corve in this octant has 8 magndtude
less than or equal to LO. At x=(}, the circle slope |50, and at x=1, the'slope
i — L4

Determining plvel positions along a drele cirmmiferemor using symmetry and
either Equation 26 or Equation 28 still requires a good deal of computation,
The Cortesian oguation 26 imvolves multiplicstions and square-root calonls-
fons, while the parametric equations contnin muliplications and ngonometric
calculations. Mo efficient circle algorithms are based on incremental aloolation
of decikism parameter, as in the Bresenbam line algoritim, which imwalbas only
simple integer operatioms,

Bresenham's line algonthm for mster displays s adapted b dircde generation
by =eiling up decison parameitves for nding the clisest pivel o the cimumierenes
gl each sampling gtep, The drele equation 26, hovwarver, is-nonlinesr:so thin
square-iol svaluations would be requined to compute pivel distances from a
vitcudar paih; Bresenbam’s cirde alpocithm aveids these squane-root oo latinns
by connparing the sguares of the pivel spration distences

Hirwever, it is posaibde o perform 2 direct distanoe comparisen without a
sqaring vperation. Thi basic fdea in dhis approach b= o ts1 the halfway position
botween nwo piols to dotormine 3f this midpoint s inside or ooside the drcl
boundary. This method is applied more easily 1o ether conics; and for an integer
circle redivs, the midpoint approach genmarates the same piael positions as the
Bresenmham circle algorithm. For a straight-line segment, the midpoint methed is
equivilend to the Bresenham line algorithm. Also, the emor invelved in locating
pixel posinoms along any conic section using, the midpoint test is imited to hatf
the pixel separation.
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Midpoint Circle Algorithm

Az in the roster line algorithm, wie sample at ondl intervals and determine the
closest pixel position to the spedified circle path a4t cach step, For a given radius
¢ ind soreen conler position (L, &), we can first set up oor algerittem b calodate
pixel prsitions around a drde path centered af the coordinate ongin {0, 0 Then
nai.’hﬁﬂmlhludpnﬂﬁulu,y}lsm'aimihprupampﬁiﬁmhyi[dmgx,
io ¥ and w oy, Along the dircle section from x =1t 3 =  in the first quadrant,
the slope of the curve varies from [ bo — 10 Therefons, we can take unit steps in
the positive ¢ direction over this pctant and gse a decision parameter to debermine
which of the two possible pivel positions in any dolmon is vertically closer o
cinche path. Pessitions in tho-other seven octants are thim shtained by symmetry:
T apply the midpoint method, we dofine & ciicle fundtion 3=

[ty =0 5§ —9* (29}
Any point (x, yhon the boundsry of the cirde with radius r satisfies the ajeation
Fardx, v) = 0, 1 the point i o the interies of the drce, the cdrde function i
miegative: and If the point i=s cutside the Srele, the direle functon s positive. To
summarize, the relative position of any point (x, yhoan be determined by checking
the sigen isf the cirele fonction == felliws:

<), il yi sinsde the cirede bosmdary

el w14 =1, Uix, ¥iison the drde boundary &1
=0, Uir, yiisouside the cincde boundary

Tha tosts in Hhare performied for the mid pesitions between pioels near the circle
path at each sampling step. Thus, the circle function is the decision parameler
in the midpoint algorithm, mnd wo cancset ap incremaental caleulations for this
himetion aswe did i thi line

Figure 14 shows the midpoint between the two candidate pivels atsampling
pesition i + 1. Asstming that we Bave just plotted the pise] ot (g, @), we ne
nieed (o determine whother toe pixel at position (g -+ 1, o) or the o 8t pesition
(x4 1, 1 — 1) Is eliser tos the arcle. Dur discisitin parameder &= the cincle unction
2 maliiated at the midpoint bebwern these two pixels

m=_|'m(_'ra+ Lo~ %)

» 1AY==
=1n+1]‘+(;t—;) -r 31
It @ = 1, this midpeint s mside the circde and the pixel on soan lne g, is chser
v the circle !!EFLII!II[.EI’!.' Oitherrwrize, the m].chEJHEn iz imptside or om thae eincle
boundary, and we selact the pixel o sean fine 1w — L
SII:IﬁE[T\.d.Eﬂ.E]ﬂT‘I parmmtens are obtaimed using troemental @lontations,
e obiaina mrursive expirassion for the-nowt decision parmmetr i:n; evaluating
the gircle hmdion il =mmpling poston 5, + 1 =5+ 2
|
Pl i3 =.fm-(1h: LE L_‘fhl = E)

=lm+ L+ + (;‘!m - %)‘-—r:

Pres = pe+2m + 1+ (3, — ) — (ma - + 1 (m
where ., is gither y or w — 1, depending on the sign of py.

I

5 jela 4l
FIGURE 14

il hetewe i EnGitEIE =y 3
sETRing postiion o -+ | olng 2
Buzanlirig e od
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Increvients har obtining py, ., afe either 25 + | (if py bs negative) orleg  +

-2 , 1. Evalustion of the torms 15 3 and 2w . ¢ canslo be doneinerementally as:

h;'l=1n:+2
Iwmpn—=1m -2
At the start position {[, r), these two terms have the values (Land 3r, respectively,
Each succrssive value for the 2y term is abdained by mﬂd.h:ﬁfh:ﬂmpm'imu
value, and sach successive value for the 2w berm is obtained by subtracting 2
from tI'EF'n!vI.umlrahle.
The mitial decisicn parameter (= obtained h].ri.fu:ih':al:'u'lg the oircle fimction at
the start position (5, wl= (0, r)

= f.m(!.r - %}

., Er-—i)i 2

p.,:%—r 331
I thie md s+ hq]ﬂ&dnmmmlunwm'&imﬁ}rm;hm
m=1-r (for ¢ anintegor)

ecaues all Incremimits are inte

Asin Beesenham's line algorithm, the mid point method calenlates pixed posi-
tions alimyg the dronmiference nfaﬁmh@ghmgﬂaddimmﬂiﬂmnﬁmm,
assuming that the drcle parameters are specifivd in integer soreen covrdinates.
We can sammarize the steps in the midpeint drele algorithm as fallows:
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A,

—_— bd - =

EXAMPLE 2 Midpaint Crcle Drawing,

Caven a circle radiss r = 1), we demonstrate the midpoint arde algorithm by
determining positicns along the drcly octont in the hutquad:mlh’um.t =
tex = . The initial value of the degsion pammeter iz

fa=1=F=—-0

Fer the cirele eentired on the comrdinate arigin, the nitial point is (3, w) =
(%, 1, and mitial increment termes for caloniating the decsion: paromeeters
=re

=0, 2p=20

Successive midpoint decision parsmeter valees and the cormesponding coondi-
nabe positions along the orele path are listed in th Tollewing table

L S O ) e e
nl| -9 {1, 1 2 20
1 ~efa {21 4 20
| i3, 1 L 2
3 I (4.7 8 18
4] -3 {5 W e A
5 B (i, S 2 16
rr 3 7. N |4 |4

A plot of the grmerated picel positions in the first qumdrant is shovwm in
Figure 15

Fd
I L
Il
W
+ K_
5 ||I|-
] FIGUWARE 15
o fl | Prael vt (sl enrlesl @ong 3 argle pa
F fl enimmd o Eeorigh ane with R8s r - i
4 - e racutsed by the mdperes e socathn:
¢ . (g T hellow”) dides show the ssmmetny
o TVFE R TR ¥ im0 the frid guadmn.

The following code segment lustrates procedures that could be used to

implement the midpoint cdrcle algorithm. Valiss for a drclie redios and for the
centor coordingtes of the drcle ane passed to procedume ¢ LreleMidpoint A
pixel posinon along the circular path in the first octant is then computed and

by procedure circlePlotPoints. This procedun: sets the drcle color
the frame buffer for all oncle symmetry positions. with repeated calls to the

setPixel routingg which is lmplemented with the OpenGl. point-plotting
[unctions
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ELLIPSE GENERATING ALGORITHMS

Loosely stated, an ellipse is an elongated circle. We can also describe an ellipse
as a modified circle whose radins vares from a maximum value in one direc-
tion to 8 minimum value in the perpendicular direction. The straight-line seg-
ments through the interlor of the ellipse in thess two permendicular dirdctipns ame
teferred to as the migjor and miner axes of the ellipse.

Properties of Elfipses

A precise definition of an ellipse can be given in terms of the distances from any
perint on the ellipse to two fixed positions, called the fodi of the ellipse, The sum
of these two distances is the same value for all points on the ellipse {Figure 16),
If the distanees to the two focus positions from any point P = (x, 1) on the sllipse
are labaled dy and d;, then the general equation of an ellipse can be stated a5

dy + d> = constant 34y

Expressing distancas ¢4 and 4 in terms of the focal coordinates F; = (x, 1y and
¥y = (X3, 1), we have

Vi —mP 4 tr— w2+ Vix— n)* +iy— w) = constant (35}

By squaring this equation, isolating the remaining radical, and squaring again,
we can rewrlte the genera! ellipse equation in the form

A4 By 1+ Cxy+Dx 4 Ey+F=0 (36)

P=(xp}

FIGURE 146
Eillpse generated about fodk Fy and F.

I
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wharte the oeeffidents A 8, C, D, E, and F are evalimtied in Erms of the focal
courdinates and the dimensions of the majer and minor axes of the ellipss. The
magor s s the strajght-line segment ewtending from e sideof the ellipse to the
other throogh the foct. The minor ais spans the shorter dimension of the cllipse,

cularky bisecting thie major axt=s at the halhway position (ellipse conter]
bebwioen the two foct

An interactiee method for sperifyng on ellipse m an arbitrary oommetion is to
input the two foci@nd a point on the ellipse boundary. With these three coordinate
positions, we can evaluate the constant in Eguation 35, Then, the values for the
oo tHcienits in Equation 3 con be computed and used to generate plyels along,
the elliptical path.

Ellipsir eqpuations are greatly simplified if the major and minbr aves are ark-
enied i align with the coordinate axes. In Figure 17, we show an ellipse in
“standard psition,” with major and minos aes ofenbed p&[:i[hﬂ to ithe r and
¥ anes. Paramter e for this cample bbeds the somimagoer avis, and parometer
ry labels the semimings axis. The squation for the ollipse shown in Figume 17
can bewritten jn lerms of the ellipse conter coondinates and paramistors r; and

Py s
{r—-ﬂ:}z 1 (F_i}:= i
T T_-
Usng pelar coondinates roand 6, we can also describe the elllpse in standard
positivn-with the parametric equations

an

I=X+I r!:nﬂ o
¥ =1y +r 5
Angle @, called the soceminic emgle of the ellipse, s messored smound the
perimeter of-a bounding circde 1§ re > ry, the radius of the bounding drcle s
r =rg (Figune 18), Oibhenwise, thie bounding dnide hes mdiver =y,

A= with the circle algorithm; svmmetry considerations con bo msed o redoce
comipritativne. An ellipse i standard position: & symmietric tebween quadrants,
bat, wnlike a circle, it |s Aot symmettic between the two octants of & quadont.
Thus, wy must caloulate pivel preibons alomg the clliptial arc throughout one
guadrand, thim wse symmetry 1o obtain oo positions n the remalning thee
quadmants { Figure 151

Midpoint Ellipse Algorithm
Dur approach here is similar 1o that used in displaying a raster drele. Given
parameteTsTy, fy, and (%, kb, we determine curve positions (x, y) for an ellipesin
standand position contemed on the then we shift all the uming a fixed
oifset 2o that the ellipse ts contered at (=, y.). I we wish zlso o display the ellip=s
in nopstandard position, we conld rolae the ellipse abow s conter coondinales
ter reorient the major and minor axes in the desired directions, Far the present,
we consider vnly the display of ellipses in standard position

intwo

parts. Figure M shivws the division of the first quadrant according to the slope
of an withrs < ry. Wa this quadrant by taking unit steps in the
x direction where the slope of J‘mamﬂgrdh]inlemt}mllﬂaﬂﬂ'm

E:nkzmﬁtuh:pihl the ¥ dimection where the slope has a magnitode greater
Lo
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Regiors 1 and 2 {Figure 200 ¢an be processed in varioos ways. We can starl
at position i, r,) and step clockwise along the elliptical path in the first quadrant,
shifting from wenit steps in 4o mit steps in i when the slope becomes less than
— LI Alternatively, we conld start at {re, (1) and selict points ina counterdockwise
orler, whifting frem unil steps in oy o unli steps inx when e slope baomes
-ggrester tham — 1.0, With o} provezsom, wie conld calcolate pie| positions in
the two reglins simultarsously. As an vsample of a sequentlal implementation
of the mid pont algorithum, wie take the start position st (0, ry) and step along the
ellipse path n dockwise onder throwghoot the Gt guadant.

W define an-effipse hunction from: Eguation 37 withily @ =100 a=

Fotip{%. Y} =130 4030 = rprs i)
whiciy has the fallowing proporiies:
< [, ifix, y)i= insfdy theellipse boundary
Fettigal 7, ¥ £ =10, I {2, y)is om the ellipse boundary (an}

=0, if{x y}is ouwside the ﬂ.Ti]J!t biiimitary

This, the clllpse function fises(x, ¥} serves as the dedsion parameter in the
midpaintalgerithm, At each sampling positicn, we select the next pixel along the
ellipss path according to the sign of the dlipse hnction evaluwsted a1 the midpoint
betwesm the two candidate pivels

Starting at (), r,), we take unit steps in the 1 direction until we redch the
bowmdary betwem mogion | and regiom 2 (Figore 2U). Then we switch to anit
steps in the y direction over the remainder of the curve in the st quadrant. At
wach stop we nieed o tesl the valoe of the slops of the corve, The elfipse stope s
caliulaled Fom Equation 3 s
iz
dr Iy

A the boundary between mgion | and region 2, dv/dx = — | fand
Ta=2y

Therefore, we move oof of reglm 1 whenever
x>y

141y

L

Figure 21 shows the midpomni between the two candidate povels atsampling
position 5 + | in the fist region. Assuming position (5. W} kas beenselected in the

proviousstep, we detrrmine the next position alpng the «llipse path byevalisting
the dycision paramivter (thot ks, the elilpse function 391 at this nidpoant-

Fli= .fmq-(-n +him —%)

=r;fn*lj=+r§(3k—é) —r;t (L]
1 pli <0, thr midpoin js inside the eltipse and the pixel oo scan vy is closer
1o the ellipse boumdary. Otherwise, the midposition is outside or on the ellipse
boundary, ind we select thar pinel on soom ling w — 1

o -
ﬂ-:"‘n
\) |

FIGURE 28

1 lims o s Shes TEginn
I the magniutde ol 1t slipae drge
B =2 B | 0] pverscron 7 the
e il the sive A gt
thm 18

| A

Xy M|

FIGURE 21

Middpim ey Tantity s =
g positioh ¥y 4+ | ke an
#lliextical math
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T determing the relationship between sucomsive desision parameters in -
gion 2, we pvaluate the ellipse function 3t the next sampling step oy o — 1 =9 - 2:

P =f-ﬂpl(ﬂql.+%._bl..l—l:l

1y: :
=pg(x.+. J’i} b e (i~ 19— 1 — 2rd (a8}

e 3%
F‘E-tn—F‘EI El.il—11+r‘+r[[qﬂ+ ) _{;14.3)‘] (50
with 3, set efther o 35 o o 3 + 1, depending on the sign of #2y.
Whamn weenter rogion 2, the initial position {1, i) is tuken as the last position
selected m region | and the initial dedsiom parmmeter in negion 2 s then

F3|:=-J'-up-(=n+?1_.—_'-!-l:- ’:l

-
&

| i Ay
= Ty [I-n +E) T T:[yqr— Iy - Frlfy 151

Tosimplify the cdralation of pg, we could select pivel positions in counterclock-
wise order starting &t (ry, Ul Unlt steps wonld then be taken in the positive v
direction up to the last position selectied in negion |

This midpoint can be adapted o gencrate an ellipse in nonstandarnd
position wsing the oilipse funchion bguation 36 and calg pixel posiions
over the entine elliptical path. Alternatively, we could reorient the ellipse axes to
standard position, apply the midpein ellipse algonthm o determine curve posi-
tiotis, and then comvent caleubsed pluel positions ke path peosifions along e
criginiil ellipse orientaticn.

Assumingr,, r,, and the ellipse center are given ininteger screen cordinates,
weneed only incremenital integer calonlations to determine values for the decision
parameters in the mridpont effipee alporithm. The increments 12, ry. 2 and a3
are evaluated voce 3t the beginning of the procedune. In the {uﬂuﬂ.{ﬁg SLTLTATY,
wi lit the stops for displaying an ellipss using the midpoint algorithm:
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the mid

JECE

=1

Fot pegion 1, the initial

ry

EXAMPLE 3 Midpoint Eipse Drawing
Given input ellipse paramcters r; =8 and ry==56, we lllustrate the steps in

point ellipse algonithm Erl.rdeﬂ:nnhmlgmn:r positions along the of-
hFEtFEthJJ‘H‘hEﬂI‘!Lq:.ﬂd.EnL Initia] values and ncrements for the decision
Parumeter i
{with increment 1r;= 72

[with increment — 27 = —115)

peint for the elipse cenlered an the origin is

{x, o) = (1, &), and the initial decision paramaeter valo is
j?lrr = |"'T:|' ‘:'-"t = —3%7

Surcrssive midpoint dﬂ:r.m:l'l-pammhrr witl oes amd tha, I’_"-EI.‘EI positions along

the elfipse are listed in the fa.lhw'mﬁ tahle

E| Pl | meinmin | i | Ziwa

] =33 (1.4 T2 TiH

| | -4 a4 144 T

2 -44 {3, & g | 1 TiH

3 L) {4, 50 el i

L (5.5 A aadiy

3| == it b 432 3 Il

&) U 7.0 =1 1) 188
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ATTRIBUTES OF OUTPUT PRIMITIVES

In general, a parameter that affects the way a primitive isto be
displayed is referred to as an attribute parameter.Some attribute
parameters, such as color and size, determinethe fundamental
characteristics of a primitive. Other attributesspecify how the primitive is to
be displayed under special conditions.

Examples of special-condition attributes are the options such as
visibilityor detectability within an interactive object-selection program.These
special-condition attributes are explored in later chapters. Here,we treat
only those attributes that control the basic display propertiesof graphics
primitives, without regard for special situations. For example,lines can be
dotted or dashed, fat or thin, and blue or orange.Areas might be filled with
one color or with a multicolor pattern. Textcan appear reading from left to
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right, slanted diagonally across thescreen, or in vertical columns. Individual
characters can be displayedin different fonts, colors, and sizes. And we can
apply intensity variationsat the edges of objects to smooth out the raster
stair-step effect One way to incorporate attribute options into a graphics
package is to extend theparameter list associated with each graphics-
primitive function to include the appropriateattribute values. A line-drawing
function, for example, could contain additionalparameters to set the color,
width, and other properties of a line. Another approach is tomaintain a
system list of current attribute values. Separate functions are then
includedin the graphics package for setting the current values in the
attribute list. To generate aprimitive, the system checks the relevant
attributes and invokes the display routine forthat primitive using the
current attribute settings. Some graphics packages use a combination

of methods for setting attribute values, and other libraries, including
OpenGL,assign attributes using separate functions that update a system
attribute list.

A graphics system that maintains a list for the current values of
attributes and otherparameters is referred to as a state system or state
machine. Attributes of outputprimitives and some other parameters, such
as the current frame-buffer position, arereferred to as state variables or
state parameters. When we assign a value to one ormore state parameters,
we put the system into a particular state, and that state remainsin effect
until we change the value of a state parameter.

LINE ATTRIBUTES

A straight-line segment can be displayed with three basic attributes:
color, width,and style. Line color is typically set with the same function for
all graphics primitives,while line width and line style are selected with
separate line functions. Inaddition, lines may be generated with other
effects, such as pen and brush strokes.

Line Width

Implementation of line-width options depends on the capabilities of
the outputdevice. A heavy line could be displayed on a video monitor as
adjacent parallellines, while a pen plotter might require pen changes to draw a
thick line.

For raster implementations, a standard-width line is generated with
singlepixels at each sample position, as in the Bresenham algorithm.
Thicker lines aredisplayed as positive integer multiples of the standard line
by plotting additionalpixels along adjacent parallel line paths.

Line Style

Possible selections for the line-style attribute include solid lines,
dashed lines, anddotted lines.We modify a line-drawing algorithm to
generate such lines by settingthe length and spacing of displayed solid
sections along the line path.With manygraphics packages, we can select the
length of both the dashes and the inter-dash
spacing.
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Pen and Brush Options

With some packages, particularly painting and drawing systems, we
can selecte different pen and brush styles directly. Options in this category
include shape, size, and pattern for the pen or brush. Some example pen
and brush shapes aregiven in Figure 2.

COLOR AND GRAYSCALE STYLE.

A basic attribute for all primitives is color. Various color options can
be madeavailable to a user, depending on the capabilities and design
objectives of a particularsystem. Color options can be specified numerically
or selected from menusor displayed slider scales. For a video monitor, these
color codes are then convertedto intensity-level settings for the electron
beams. With color plotters, thecodes might control ink-jet deposits or pen
selections.

RGB Color Components

In a color raster system, the number of color choices available
depends on theamount of storage provided per pixel in the frame buffer. Also,
color information can be stored in the frame buffer in two ways: We can store
red, green, and blue(RGB) color codes directly in the frame buffer, or we can




96

The eight REB coler codes tor a 3-bit-per-pixal frame buffer

Stored Color Valoes
in Frame Buffer

Cplor Code HED CREEN HLUE Displaved Color

il il i 1 1-Flu

1 i { | e

2 0 | i {irecn

g Lr | | Lyan

i I 1] [ Hid

3 I { I Magpeta

fi I i 0 Yiolboy

7 I I I WWhile=

put the color codes intoa separate table and use the pixel locations to store
index values referencing thecolor-table entries. With the direct storage
scheme, whenever a particular colorcode is specified in an application
program, that color information is placed in theframe buffer at the location
of each component pixel in the output primitives tobe displayed in that
color. A minimum number of colors can be provided in thisscheme with 3
bits of storage per pixel, as shown in Table 1. Each of the threebit positions
is used to control the intensity level (either on or off, in this case) ofthe
corresponding electron gun in an RGB monitor. The leftmost bit controls the
red gun, the middle bit controls the green gun, and the rightmost bit
controls theblue gun. Adding more bits per pixel to the frame buffer
increases the numberof color choices that we have. With 6 bits per pixel, 2
bits can be used for eachgun. This allows four different intensity settings for
each of the three color guns,and a total of 64 color options are available for
each screen pixel. As more coloroptions are provided, the storage required
for the frame buffer also increases.

With a resolution of 1024 x 1024, a full-color (24-bit per pixel) RGB
system needs3 MB of storage for the frame buffer.

Color tables are an alternate means for providing extended color
capabilitiesto a user without requiring large frame buffers. At one time, this
was an importantconsideration; but today, hardware costs have decreased
dramatically andextended color capabilities are fairly common, even in low-
end personal computersystems. So most of our examples will simply assume
that RGB color codesare stored directly in the frame buffer.

Color Tables
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Figure 1 illustrates a possible scheme for storing color values in a
color lookuptable (or color map). Sometimes a color table is referred to as
a video lookuptable. Values stored in the frame buffer are now used as
indices into the colortable. In this example, each pixel can reference any of
the 256 table positions, andeach entry in the table uses 24 bits to specify an
RGB color. For the hexadecimalcolor code 0x0821, a combination green-blue
color is displayed for pixel location(x, y). Systems employing this particular
lookup table allow a user to select any256 colors for simultaneous display from
a palette of nearly 17 million colors.

Compared to a full-color system, this scheme reduces the number of
simultaneouscolors that can be displayed, but it also reduces the frame-
buffer storagerequirement to 1 MB. Multiple color tables are sometimes
available for handlingspecialized rendering applications, such as
antialiasing, and they are used withsystems that contain more than one
color output device.

A color table can be useful in a number of applications, and it can
providea “reasonable” number of simultaneous colors without requiring
large framebuffers. For most applications, 256 or 512 different colors are
sufficient for a singlepicture. Also, table entries can be changed at any time,
allowing a user to beable to experiment easily with different color
combinations in a design, scene,or graph without changing the attribute
settings for the graphics data structure.

When a color value is changed in the color table, all pixels with that
color indeximmediately change to the new color. Without a color table, we
can change thecolor of a pixel only by storing the new color at that frame-
buffer location. Similarly,data-visualization applications can store values for
some physical quantity,such as energy, in the frame buffer and use a lookup
table to experiment withvarious color combinations without changing the
pixel values. Also, in visualizationand image-processing applications, color
tables are a convenient meansfor setting color thresholds so that all pixel
values above or below a specifiedthreshold can be set to the same color. For
these reasons, some systems provideboth capabilities for storing color
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information. A user can then elect either to usecolor tables or to store color
codes directly in the frame buffer.
Grayscale

Because color capabilities are now common in computer-graphics
systems, weuse RGB color functions to set shades of gray, or grayscale, in
an applicationprogram. When an RGB color setting specifies an equal
amount of red, green, andblue, the result is some shade of gray. Values
close to O for the color componentsproduce dark gray, and higher values
near 1.0 produce light gray. Applicationsfor grayscale display methods
include enhancing black-and-white photographsand generating visualization
effects.
Other Color Parameters

In addition to an RGB specification, other three-component color
representationsare useful in computer-graphics applications. For example,
color output on printersis described with cyan, magenta, and yellow color
components, and colorinterfaces sometimes use parameters such as
lightness and darkness to choose acolor. Also, color, and light in general,
are complex subjects, and many terms andconcepts have been devised in
the fields of optics, radiometry, and psychologyto describe the various
aspects of light sources and lighting effects. Physically,we can describe a
color as electromagnetic radiation with a particular frequencyrange and
energy distribution, but then there are also the characteristics of
ourperception of the color. Thus, we use the physical term intensity to
quantify theamount of light energy radiating in a particular direction over a
period of time,and we use the psychological term luminance to characterize
the perceived brightnessof the light.We discuss these terms and other color
concepts in greater detail when we consider methods for modeling lighting
effects and the various models for describing color.

UNIT 2:
TWO DIMENSIONAL TRANSFORMATION

So far, we have seen how we can describe a scene interms of graphics
primitives, such as line segments and fillareas, and the attributes associated
with these primitives.

Also, we have explored the scan-line algorithms for displaying output
primitives on a raster device. Now, we take a look at
transformationoperations that we can apply to objects to reposition or resize
them.These operations are also used in the viewing routines that convert
aworld-coordinate scene description to a display for an output device.

In addition, they are used in a variety of other applications, such
ascomputer-aided design (CAD) and computer animation. An architect,for
example, creates a layout by arranging the orientation and size ofthe
component parts of a design, and a computer animator developsa video
sequence by moving the “camera” position or the objectsin a scene along
specified paths. Operations that are applied to thegeometric description of
an object to change its position, orientation,or size are called geometric
transformations.

Sometimes geometric transformations are also referred to asmodeling
transformations, but some graphics packages make a distinction between
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the two. In general, modeling transformations are used to constructa scene
or to give the hierarchical description of a complex object that is composed
of several parts, which in turn could be composed of simpler parts, and so
forth. For example, an aircraft consists of wings, tail, fuselage, engine, and
other components,each of which can be specified in terms of second-level
components, andso on, down the hierarchy of component parts. Thus, the
aircraft can be describedin terms of these components and an associated
“modeling” transformation for eachone that describes how that component is
to be fitted into the overall aircraft design.

Geometric transformations, on the other hand, can be used to
describe how objectsmight move around in a scene during an animation
sequence or simply to view themfrom another angle. Therefore, some
graphics packages provide two sets of transformationroutines, while other
packages have a single set of functions that can be used forboth geometric
transformations and modeling transformations.

BASIC TRANSFORMATION

The geometric-transformation functions that are available in all
graphics packages are those for translation, rotation, and scaling. Other
useful transformation routines that are sometimes included in a package are
reflection and shearing operations. To introduce the general concepts
associated with geometric transformations, we first consider operations in
two dimensions. Once we understand the basic concepts, we can easily write
routines to perform geometric transformationson objects in a two-
dimensional scene.

Two-Dimensional Translation

v We perform a translation on a single coordinate point by adding offsets to its
coordinates 50 as to generate a new epondinate positon. In effect, we are moving
the criginal point positon along a straighi-line path to its new locaton. Simi-
tarly, a ranslation is applied to an object that is defined with multiple coordinate

. positions, such as a quadrilateral, by relocating all the coondinate positions by the
same displacement along parallel paths. Then the complete object is displayed at
/'T the new location.

- To translate a two-dimensional position, we add translation distances i; and

iy to the original coorlinates («, y) to obtain the new cocrdinate position (x', )

+ asshown in Figume 1.

FIGURE 1 X=X+ ¥=y+l n

T';“}:_'““? a pait from mﬁﬁ?“bﬁ P10 The translation distance pair {1, t,) is called a translation vecter or shift vector.
fm;fq- 3G a transianon We can express Equations 1 as a single matrix equation by using tha follow-
ing column vectors to represent cooridinate posidons and the translation vectorn:

ofoef) el

This allows us to write the two-dimensional translation equations in the matrix
form

P="4+T 3
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J FIGURE I
i 5 i L5 E F pyiving - polyon fom posten (3} o pesitrn ) we the
s} imskadiee wertrr 4 65, 6L

Trarslation |=s & rigid-body I:'maﬁum!um that moves objects withou defor-
mation. That iz, every point on the object iz ranslated by the: same ammmt
A sivaight-line segment is tramslated by applving Equation 3 1o each of the
o line endpoints and redrawing the line betwien the mew’ imdpoing positions.
A polygon 15 trarslated similarty We add a cranalation vestor o the asordinate
pusition of sach vertex and thin regenierate the polyion osing the new set of
virtex coordinates, Figure T illustratey the application of & speciiied trarslation
voctor to move an object from ane position @ another,

Th!uﬂammmmtikuhﬂsﬂwtrﬂhﬂmwmﬂmhnmﬁumh-

Iﬂm‘Eﬂ'ﬂ'ﬂi‘ﬂﬁEufiPﬂ?ﬁEﬂ from ene world-coordinate
p-rm!:lmtnmm&lﬂ' :lnd.[lpm[-lrrru.tnmaretsnd o regenerate the translated
polygem.

I war want to delete the original polygon, we could display it in the back-
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areavallable insomegraphics packages. Also, 1bwe want tosave the original poly-
gon positicn, we can stong the translated positions in a different array.

Similar methrds ane used to transiote othor objects. To change the pesition of
a dncle o eltipee. wie translate the cenber coordinates and edraw the fgumne in the
niew Jocation, Fora spline curve, w tramsiase thee points that define the curve path
and then reconstriect the comve sectivns between the new coordinate peeitions.

' Two-Dimensional Rotation

J We generate a retation transformation of an object by specifyving & rotation axis
£ anda rotationangle All pointsol the objectare then ransbrmed tonew positions
] by rotuting the points through the specifisd anglis about the rotation awdis:

e ljl-——"‘ A nwo-dimensional retation of an object is obtained By nepositioning the object
along a drealsr peth in the xy plane. In this case, wnin_mmtmgll'u.rhectahom
i rolition meds thist bs perpendicular w the oy plane (Emllel o the coordinate
L, = ais). Parmietirs for the two-dimemsional motation are the rotation angle 6 and
a pesition Lz, i), called the mtation point (or pivol peint), .uh{rut which the
”G":,rin !rh!:r"‘mummmzs object is 1o be rotated (Figune 33 The pivor point is !.E: 15i Hom
sthoat the vl poam (x;, p, ol the miation avis with the =y plars. A pmdﬁvuwhﬂﬁwﬂwmlu efines a
eonnterciockwise rutation about the pivol point, as in Figure 3, and a negative

value mytates obects in the dockwise direston.

To simplify the itim of the basicmethod, wo first determine the trane-
formation: equations rtation of @ point position B when the pivot poing s
at thie coondinate origing The angulir and ecordinate relationships of the oy
mial and transfornsed point positions are shown in Figues 4 In thi= gure, s
the constant distance of the point ffom the origin, angle ¢ s the original ange-
lar pesition of the paint om the hprizontal, and @ b= the mtation angle. Using
‘standard triponmnetric demtites we can express the transformed cobndinates in
F terms of angles f ond ¢ as

F (=¥ ' =rosid + 0 =r e d s — ruindsind
Vi =raEnid+ U = rooadsing 4 Fsin g oosd

(=3}

]
<

The original coordinabes of the point in-polar coordinates an
FIGURE & I=roasd, y=rziné I5

& uﬂt:f;mﬁ % e EH;E:I Substituting expressions 5 into 4, wie obtain this transformation equations for

r!l:rﬂl;‘.‘:'lh!mmﬂnutemgh. e rolaling & pointat position (x, ¥ throtgh anangle & aboul the origne
e Fos Ssmemed of e a :
prlit Fom e s b g = xeosd — ysind

W=xsinf 4+ ¥oosd ®

With the column-vector representations 2 for cocrdinate positions, we can writi
th rofation equaticns in the matrix form

F=R.P m
whiere the rotsfion matriv s
- [DEU —s'mul -
sl ocosl

A molumn-vector wepresentstion for 4 coomdinale position P, as in Eqos-
tions 2, is standard mathematical notation. Howeves, early graphics sysiems
sometimes nsed & row-vector represenistion for point positions. This changes the
order in which the matrix multiplication for a rotation woold be performed . Bt
now, graphics packazes stich as OpenGL, Java, PHIGS, and GKS all nllow the
standard column-vector

comvention.
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Rotation of a paint about an arbirary pivot position is illustrated in
Figure 5. Using the trigomometric relationships indicated by the two right trian-
gles in this figure, we can generalize Equations & to obtain the transformation
equations for rotation of a point about any specified rotation position (%, W)

¥ =x+(x—x)coad — (y— wsing -

¥ =+ x— m)sind + (y— wjoosd
These general rotation equations differ from Equations & by the incusion of
addifive terms, as well as the multiplicative factors on the coordinate values.
The matrix expression 7 could be modified to Include pivot coordinates by
including the matrix addition of a column vector whose elements contain the
additive {translativmal) terms in Equations 9, There are better ways, however, o
hmnlmnﬂmmmmndmﬁ&hmlmmammmt
uﬂmmﬁzremﬂrgﬂ!hmn&min

u.':p:hwlﬂnu.tda’mmﬂm.ﬂluy mcﬁkﬂkuﬁhﬂ&u@ﬂzm!

anﬁl&ﬁ.a&aighﬂhmaegmmihmhﬁdb;npplymgﬁ@ﬂﬂﬂrﬁﬂhuﬂdt&ﬂm-

two line endpoints and redrawing the hhlmﬂumudpﬂﬁpmiﬂm
Aﬁmhﬂﬂﬁmmmmﬂﬂmﬂ&m
ﬂiﬂ]:]ljrgutlnhﬁﬂtrﬂmﬂiﬁ.%mhtzum ¥
the defining points for the curve and then redrawing it A drde or
mdﬂ;ﬂm,ﬁrhﬂhmﬂ,mhmhﬂidnﬂl:mmthalﬂ'ﬂpﬁﬂhrmﬁlg
the center position through the amce that subtends the spedfied mtation angle. In
addition, we could mtate an ellipse about its center coordinates simply by rotating
the major and minor axes.

In the Iollowing code example, a polygon is rotated about a specified world-
coordinate pivot point. Parameters input to the rotaion procedure are the original
mﬂhﬁm&ﬁmmm'ﬂrmﬂmthtl
specified in radians. Following the transformation of the vertex positions, the
potygon is regenerated using OpenCL rontines.

',y

o r_# LK
e, )

FIGURE 5
AotaBng 3 point from position [, §)

i et [, p') e 2 angle @
about meatian pait {5, §
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Two-Dimensional Scaling

To.alier the size of an object, we apply 2 saling transformation: A simple twi-
dimensivnal scaling speration is perlonmed by mJ.llﬂp!:rJnj:r abyect positions (=, v
by scaling factors 2; and = o produce the mnsformed coprdinates (=, ¥

T =18z, =35 i

Seafing frctor 5 soales an obfect n the * direction, while sy scoles in-the y divec-
tinn. Tha hasic twosdtmensinmal sraling equetions 10 can also be veritten in thi
follrwing mstris form;

(L]
Sy

X

¥

L)

wheme 8 is the 2 = 2 sealing matrix in Equation 11

L] Any posifive values can be assigned to' the scaling factors s and 5. Values
FIGURE & |z than 1 riduce the size of objects: valuss greater than 1 produce
Tursng 2 st (3 g o mngie Sipewifying-a-vabue of | for both = and s; Jeaves the size of chpcts unchanged.
Eﬂ:lvdmmgh:m:, = Zan When s; and sy are assigned the same valor, 3 uniform szaling by produced,
L which maintains felative object proporticns. Uneguat values foor 1, and ay eesnll

in = differential scaling that ks olten u=ed in design applications, whene pletures
are constructed from a fiw Basic shapes thit van be adjisted by scaling-and
positioning tansfermations (Figare ). In some systems, negative valoes can
alrn be sperificd for the sealing parametors. This not only mesizes an object, i
refiects it abrut ome or more of the coordinate aves,

| &
= r} AR

v

rd Ohsects transformed with Bguation 11 ane both scaled and repastioned.

| Scaling factors wilth abeclute values less than | move objecs doser to the

J j imordinate origin, while sbsolute valus groster then | move coordinate posi-

| * & tions farther from the origin. Figame 7 illustates scaling of a line by assigning,

FICURE T the value 05 o both sy and & in Equation 11. Both the Unie length and the
A fine sinled with guaton 17 waing.  distance from the origin are reduced by a factor of 2

1y =2, = D% b rumucs] i v gnd We can control the location of o saaled object by choising a position, called the

rued cosit 00 e ComTSE 2R fuad point, that is to remain unchanged after the scaling transiormation, Coor-
dimates foe the Heed paint, (g, v, @ aften dhosen 2t seme object posifion, sach
ae iz centmid {see Appmadic &), but any other spatial position can be selécied.
Clpects are muow mestred by scaling the distances between obpect points and (he
fixed poeint (Figure ). For o coordimate position (x, vl the scoled. coprdinates.

J (z', ¢} are tien calculated froom the llowing relationships
[y
' B oar=ir—3iE. ¥y == 13
L]
4y 'ﬁ& fi We con rewrite Equotions 13 to separate the multiplicative snd additive
- tormis:as
L = zoip+ay{l -5l it
B _L*'=]||l-|'-'-i-;l.']l”—.-1'vl [
FIEHEI;;'EM o N E]‘Ll‘_“‘rl;‘.lh..l:'il.dﬁhiﬁtﬂ'ﬂls;ﬁ] — &1} and il — sy) are constants for all peints in
firs, ol The diviancd: frmm sxf rubTE"'L_ 3 .
pufsgrn veries i the fiued i b [nduding coordinates for a fiwed point n the scaling eqoations: & similar to
scsizd by Eequation 13, inclsting cocrdinates for & pivot point in the motation equations. Woe cin set up

a column vector whose elements are the constant terms in Equations 14,
thenadd this column vector to the product S - P in Equation 12. In the next
section,we discuss a matrix formulation for the transformation equations
that involvesonly matrix multiplication.
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Polygons are scaled by applying transformations 14 to each vertex,
thenregenerating the polygon using the transformed vertices. For other
objects,we apply the scaling transformation equations to the parameters
defining theobjects. To change the size of a circle, we can scale its radius
and calculate thenew coordinate positions around the circumference. And to
change the size of anellipse, we apply scaling parameters to its two axes and
then plot the new ellipsepositions about its center coordinates.

The following procedure illustrates an application of the scaling
calculationsfor a polygon. Coordinates for the polygon vertices and for the
fixed point areinput parameters, along with the scaling factors. After the
coordinate transformations,

OpenGL routines are used to generate the scaled polygon.
class wcPt2D
{public:

GLfloat x, y;
¥
void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt,
GLfloat sx, GLfloat sy)

{ wcPt2D vertsNew;
GLint k;
for (k = 0; k < nVerts; k++)
{ vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}

glBegin {GL_POLYGON};

for (k = 0; k < nVerts; k++)

glVertex2f (vertsNew [k].x, vertsNew [k].y);

glEnd ( );

}
MATRIX REPRESENTATION AND HOMOGENEOUS CO-ORDINATES

Many graphics applications involve sequences of geometric
transformations. Ananimation might require an object to be translated and
rotated at each incrementof the motion. In design and picture construction
applications, we perform translations,rotations, and scalings to fit the
picture components into their properpositions. The viewing transformations
involve sequences of translations androtations to take us from the original
scene specification to the display on an outputdevice. Here, we consider how
the matrix representations discussed in theprevious sections can be
reformulated so that such transformation sequences canbe processed
efficiently.

We have seen in Section 1 that each of the three basic two-
dimensionaltransformations (translation, rotation, and scaling) can be
expressed in the generalmatrix form

P’=M1 P +M2

with coordinate positions P and P_ represented as column vectors.
Matrix M1 isa 2 x 2 array containing multiplicative factors, and M2 is a two-
element columnmatrix containing translational terms. For translation, M1 is
the identity matrix.
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For rotation or scaling, M2 contains the translational terms associated
with thepivot point or scaling fixed point. To produce a sequence of
transformations withthese equations, such as scaling followed by rotation
and then translation, wecould calculate the transformed coordinates one
step at a time. First, coordinatepositions are scaled, then these scaled
coordinates are rotated, and finally, therotated coordinates are translated. A
more efficient approach, however, is to combinethe transformations so that
the final coordinate positions are obtained directlyfrom the initial
coordinates, without calculating intermediate coordinate values.

We can do this by reformulating Equation 15 to eliminate the matrix
additionoperation.

Homogeneous Coordinates

Multiplicative and translational terms for a two-dimensional geometric
transformationcan be combined into a single matrix if we expand the
representationsto 3 x 3 matrices. Then we can use the third column of a
transformation matrixfor the translation terms, and all transformation
equations can be expressed asmatrix multiplications. But to do so, we also
need to expand the matrix representationfor a two-dimensional coordinate
position to a three-element columnmatrix. A standard technique for
accomplishing this is to expand each twodimensionalcoordinate-position
representation (x, y) to a three-element representation(xh, yh, h), called
homogeneous coordinates, where the homogeneousparameter h is a
nonzero value such thatx = xh, y = yh

Therefore, a general two-dimensional homogeneous coordinate
representationcould also be written as (hx, hy, h). For geometric
transformations,wecan choosethe homogeneous parameter h to be any
nonzero value. Thus, each coordinatepoint (x, y) has an infinite number of
equivalent homogeneous representations.

A convenient choice is simply to set h = 1. Each two-dimensional
position is thenrepresented with homogeneous coordinates (x, y, 1). Other
values for parameterh are needed, for example, in matrix formulations of
three-dimensional viewingtransformations.

The term homogeneous coordinates is used in mathematics to refer to
the effectof this representation on Cartesian equations. When a Cartesian
point (x, y) isconverted to a homogeneous representation (xh, yh, h),
equations containing x andy, such as f (x, y) = 0, become homogeneous
equations in the three parametersxh, yh, and h. This just means that if each
of the three parameters is replaced byany value v times that parameter, the
value v can be factored out of the equations.

Expressing positions in homogeneous coordinates allows us to
represent allgeometric transformation equations as matrix multiplications,
which is the standardmethod used in graphics systems. Two-dimensional
coordinate positionsare represented with three-element column vectors, and
two-dimensional transformationoperations are expressed as 3 x 3 matrices.
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Two-Dimenslonal Translation Matrix

Lising a homegeneouscopndinate approach, we can represent the equations for a
two-timensional transiation of o coordinate position using the following matris

mulﬂplicn.'l:ln'r:
x 1 D &k i |
vl=|01 5] |¥ 17}
¥ D D1 1

This transiation operaticn can bewritien in the abbrevisted form
P = Til, &)+ P (18

writh Tlfy, fyh asthie 3 = 3 translation matrix in Equation 17, In sltostons where
there is no ambiguity about the ranslation parameters, we can simply represent

the translation makrix as T,

Two-Dimensional Rotation Matrix

Stmilarly, two-dineneional motation transformation apeatkons sbout the coordi-
naie arigin can be sxpressed in the mairix form

[.—:’] cosd  —sind [I] [1
¥|=|sind cosd (1| - [w i
L 1 ] i 1 |
B as
F=RiH-P 0]

The motation transformation operator Ri#) & the 3 « 3 matrix in Equation 19
with mtatlon parameter 6. Wi can-also write this rotation matrixsimply as L

in some graphics librarfes. 2 fwo-dimensional motation funchon generatos
only rotations aboot the coordinate origin, as in Equation 19 A rotation about
any other pivet poind must then be performed 2= 2 sequence of transformation
pperations. Analternative approsch ina graphios ];w:L:lE;r.rmlu Ade additional
parameters in the motation mutine for the pivel-pont coordinates. & rotation
rotitine that Inclodes o pivol-point parameter then sets up o general rotstion
matrix withiol the need to invoke 2 spcceselon of mansformation unchons.

Two-Dimensional Scaling Matrix

Finally, a scaling transfimmation relsbive b the coordimate arigin can now be
expressed a5 the matrix moultiplication

x = 0 0 x
M= 0 uJ.H an
1 0 01 11

F. = 5{F]', .FHF - P !H!

The scaling cperator Sie;, 2, ) s the 3« 3 matrix m Eguation 21 with parameters
sy and = And in most cases we can represent the scaling matrix simply 25 S

Bome libraries provide a scaling hunction that can generate only scaling with
respect to the coordinate vrigin, as in Equation 21, In this case, @ scaling tans-
formation relative o another reforenee position s handled as 2 siecession of
transformation operations. Howsver, other systems di inglude a general sealing
routine that can construct the homogeneous matrix for scaling with respect o a
designated fived paint.
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COMPOSITE TRANSFORMATION-MATRIX REPRESENTATION

Using matrix representations, we can set up a sequence of
transformations as acomposite transformation matrix by calculating the
product of the individualtransformations. Forming products of
transformation matrices is often referredto as a concatenation, or
composition, of matrices. Because a coordinate positionis represented with
a homogeneous column matrix, we must premultiplythe column matrix by
the matrices representing any transformation sequence.

Also, because many positions in a scene are typically transformed by
the samesequence, it is more efficient to first multiply the transformation
matrices to forma single composite matrix. Thus, if we want to apply two
transformations to pointposition P, the transformed location would be
calculated as

P’=M2 -M1-P
=M-P

The coordinate position is transformed using the composite matrixM,
rather thanapplying the individual transformations M1 and thenM2.
Composite Two-Dimensional Translations

If two successive translation vectors (tlx, tly) and (2x, t2y) are
applied to a twodimensionalcoordinate position P, the final transformed
location P_ is calculatedas

P’ =T(t2x, 2y) - {T(tlx, tly)- P}

= {T(2x, t2y) - T(tlx, tly)} - P
whereP and P_ are represented as three-element, homogeneous-coordinate
columnvectors. We can verify this result by calculating the matrix product
for thetwo associative groupings. Also, the composite transformation matrix
for thissequence of translations is

(10 &y U T [1 0y +8]
0 1 & 01 b ]=|0 1 gKy+by : {28}
0 1 0 1 1 i1 I
%4
T!-'l_:,f_'\-hl TII!I.J|H!-= Tli“- . J':,..J“_‘ - I:!J ]

which demnnstrates that fwo somressive tramsiations are additive.

Composite Two-Dimensional Rotations
Two sucorssive miations applisd © 3 point P prodoce the Fnsformed position
F =R} - [Kity) - P
= [Rith) - Bith}| - P 3
Hy multiptying the two rotation matrices, we can verity Bhal two SUCoessIve rob-
toms are additive
Rits) - Rith) = Righ + ) 31

=0t thiat thi: final rotated coordinates of a point can be calkrulated with the composits
mitation matrix as
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F=R{k+8)-P a2

Compaosite Two-Dimensional Scalings

Concatnating transformation matrices for two seoessive scaling openatime in
two dimensions produces the ollowing composite scaling matrrs

B U0 0 g O 0 S1¢ - S1g i 1]
0 w4 Q-] 0 3y Q= 0 s T 133
o o 1] lo o 1 0 o1
LA
Sd Bap. Say) « Siljp, Byl = Bl ~Fpy, Fpy -3ayl [34]

The resulting matrix in this case indiostes that sucomssive scaling operations are
multtplicative. Thatis, il wewene o triple the sive of on object twice in snccession
the final size winuld be nine times that of the onginal.
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whete Ti—x, — i) = T 'z, %) In general, & motate funciion in a graphics
libraey could bestructured to acoopl parameters for pivet-point cocedinates, ss
wil] &= the rotation angle, and o grmerste automatically the mottion maetrix of
Bgnatiom 35,

General Two-Dimensional Fxed-Polnt Scaling
Figure 10 illustrates a ransformation sequence to produce a two-dimensional
scaling with respect to a selecied fxed position (xy, yy), when we have a imction
that can scale relative to the coordinate origin only. This sequenice is
1. Translate the object so that the fixed point coincides with the axordinate
=

A

i #l ‘i" il

fl it [h ] FIGURE 10
i - : = ; - A TarsTrE = i sralng
Drrigimul Prsiion Tz (hjeg Scule Gited Trmnelatn (rhjeut .
ol Dbgect i ihut Finml Tine wiil Heped wi fhut the Fiapg 30 DESCEWITh rspec 1 3 spected
Frand Foing (2. 7} bt Cirigie = Ongia Maimi & Maturmed fored T e e S izl

it Mol Le, y . ElE, t, | ot tramhmmation 1.

1. Scale the objec with respect o the coordinate ofgn
3. Use the inverse of the translation in step (1) o wium the object jo i

Coneatendting the matrices fir these (htee ope=rations produes (he regquirsd
scaling matriv
10 x = 0O 0 1om —x5 s 0 2 {1 -5)
1w 1] By ] L =iyl=|0 By (1 —&y) 37y
[+ I | a a1 poda 1 0. o 1
o
Tixe. o | - Siep. sgh Ti-xp.— 1= Sy, Wy, 82, 85) {38

This Tansformation s generated autnmatically in systems that provide a smle
function that accepls enordinates for the fixed point.

General Two-Dimenslonal Saling Directions

Piirammmbiors s, @ s-.,u_—.ﬂeuhl.lcsalunﬁlhe r and y dimctions. We cn scals 0
an ohject in other dimctioms by, minting the object o align the desived sealing
directinns with the coordinate axes bifore applyving the scling trunsformation.
wewani i spply smling factoms with vahies specitiod by parmmeters
& aral 5; in the dimctions shown in Fgure 11 To accomplizh the scaling withoot
&mgl:ng the orimntation of the object, we firl pedonn & motation s thal the
directions for & and s; coincidi with the 5 and v aves respectivily Then fe

szaling transformintion S(zz, &2} {= applisd, followed by an opposits cotation o N_{\ =
L)

et poinds e thir criginal erentations. The oompesite matris resulting from
the product of these thres mnsformations i

sp oot il sy Sie B ine — m) Cosdsin f IZII FIGURE 11
CEL ]

!

a | _ q = | Lealg pormssters s a1 slong
RN -Sim, 520 Rig) k2 i-ri'f}‘l"—qﬁ'!dﬂ“ fp HI L—s-:mrﬂ I: articxon it debrusd

by the angubir dsplacemend &
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As an sxample of this scaling

transformesation, we fum 3 unit sousre inko 2

pamlelogram (Figure 12) by stretching, it alonyg the dingonal from (0, 0) w0 (1, 1),
We first rotate the diagonal onlo the ¥ axls using # = 45, thenwoe double ks lmpth
with the scaling values = — lands; =2 mad then we ridate agin b rehom e
disgonal b 1= original erientation,

In Fquation 39, we assumed that scaling was 10 be perdormed melative o
the arigin. Wi could take thi= scaiing opemation mne step farher and concatenste

the matrix with ranstation

operators; s thist the composite matrix wimld mclods

mnmﬁeaﬁmﬂmmuaﬂmumdamimnﬁtﬁ]mmm_

FIGURE 11

A 1) bl o e
ﬁf@mmmﬂ!m
trarsformatish mary 39, with
=1 =2 T @ = A5

M. (LTI

W, M LM E

Lf

Matrix Concatenation Properties

cotton of matrices is assodative. Far any theee matncss, My, My, and My,
the matrix product M; - M; - M; can be performed by first multiplying M, and
M or by first mltplving My and M;:

My M;  M;= (M -Ma)- My =My (Mz - M) JA0

Therefime, depending upen the order in which the transformations are specifisd,
WE N construct @ E catsy miatrix gither by multiplying from Ieft o oght
ﬁ;!mmuh.ipl}'mg} or by multtplying from nEbl 1o left (postmulipiving). Some
graphics packages require tha) fransformations be s o in the coder in which
they ane to be applisd. In that case, we would firt imvoke transiormation My,
then M, then Ms A= sach succeresive transfematon routine |s culled | i matris
& oncalensted v thi left of the previoos matris priodod. Cther graphics systems;
however, postmulbiply matricss, so that this ransformation sequence would Have
1o b invoked in the riverse order: the tast transformation iy oked {which =M,
for this swmpht) e the firit to be applied, sand the Arst tmnsformation that is
catlled 1M, in this cas=) & the last to be applisd.

Tmnsformation prodocts, on the other hand, may not be commutative. The
mtrix prodoct Mz - My 5 notegual @ M, - Mz, in geneml This means that If we
want to ranslate and rotate an object, we must be caredil about the order in which
thet composite matrix is svaluated (Figure 13). For somie speciil cases—siich as
a seqquence of franshrmmations that ane ol of the same kind—she mmliplicmtion of
tran=formastion maetrces & commutative: A= o esampie, two secrcessive miaons
couled be performiad in sither ordar and (he final positimm svonld be the same This
commutative property holds alse for two successive translations or twosacossive
malings Anuither commutstive pairof operations is ntaton and onif o saling

fre=153)
» «

|-|I|.I.I|

R r -
| i —-—
| .

| [ | —s-

fa) b

FIGURE 13

P e oroer i weech 4 e ol faminmahes = privmed wey afect e sesireed pebon o
an phisct m (5 an b s A mansted i e s decon, then mtied oorsercocowse threh g
of 5= nihl, theobdect s firs eofaied 45 muni=ciockwise, Shan iramsbssd in the 5 dreciion,
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General Two-Dimensional Composile Transformations

and Computational Efficiency

A two-dimensional tensformation, repressnting amy combination of tanstations,
rotafions, and scalings, n be expressed as

r'] Moy Ty I75 T
Vi|=|Ep g i u 41
HREEEIR

The four elements rgp are the sl biplicative rotation-=smling terms in the ransfor-
mation, which imvolve only rotation angles amnd scaling faetors: Blemenbs s, omd
trsy are the pranslational terms, containing combinations of translation distances,

bvied-point and fixed-point coordinates, rotation angles, and scaling parsmsstsmn.
Euruampl.! If an elfsct i= o be stalnd and momted abont its cenimoid eoordi-
nates (., 4 ) and than translated, the values for the slements of the composite
transfirmation matris are

Tily III'RLI-_. W, B -, L

iyoed —ssind X (] —= coaf) + g ERR + 5
& SN l:,l,_-:u:r.ﬂ Wil — 5, 00s8) — E5, N 41y (L Ey
(1] o 1

Althowgeh Equation 41 sequires nine multiplications and siv additions_ the
expiicit calculations for the tronsfrmed coondinates aro

A =2 FEpp + § - TEG 4+ by, =72 Tag 4 ¥ Fipy + 115y (43

Thus we nesd actually perform only foos multiplicatons and four additions
to transform coordinate pesitions. This is the maximum number of computations
required fur any tenstormation sequence. onee the individual matrces have baen
concsenated and the slements of the composite matriv evaluated . Withoot con-
catenation, the individoal transformations woold be applied cneata time, and the
mumbaer of calrulstions could be increesed =i :l'lr;' An elficient mplemanta-
tion (o the transfonnation operations, therefore. is t formulate tansformation
matrioss, concHBnate any transfoomation sequence, and caloulate tenstormed o
ordinates using BEguations £3: O parallel .-.E','stenm, direct matrie multiplications
with the composite ranstormaton matny of Bquation4 1 oan beequally efficlent

Becape mtation caloulstions equite tipenomatric evaloatons and sev-
eral multiplications for each monsformed point, compuitational efficency can
becomean important consideration in rotation transformistions. In animastions and
other applications that mvolve many epeated tonsformations and small rotation
angles, we oin usa approximations and lerative aloodatons w red uee computa-
tiansin the composite transfarmation equations. When the natation angle is small,
the trigrnematric fanctons can be replaced with approsimation values based on
the first few jerms of their power series expansions. Forsmall-=nough angles (les
than 1(¥ ), oo 0 i= approximatoly 1.0and sind has-uvalur\mdulsmﬂ:mw]'unuf
i i =dians. I we-are nating [n smallangularsteps abowt the origin, forinstans,
wecansat coed to L0 and seduce transformation calonlations it sech step o two
mmultiplisativns and two sdditions e sach sel of coontimaiss o be moaed, Thess
rotation cafrmiatione ame
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FIGURE 13

The atioe, matin ok g
ooject fom pesttion (2l t ok &)
0 e T W e b o

the Uit o w AT

ful it E=kihe fi; S cripyind Atieation
Hene, orthogonal unil vector- 0 the upper-leit 2 « 2 submotrix ane (o 8, —sin i)
and [z, cos 8] and

o= —sinfl [ s 17
sin i coridl ) —sinf | = |} (51)
il 1} i | 1

Sirmifarky; unit vector [sind) cosd) s convertd by the preceding transiormation
st by the umil vector (0, 1)in the i direction.

Constructing Two-Dimensional Rotation Matrices

The orthogonal property of rotation matrices is useful for constructing
the matrixwhenweknow the final orientation of an object, rather than the
amount of angularrotation necessary to put the object into that position.
This orientation informationcould be determined by the alignment of certain
objects in a scene or by referencepositions within the coordinate system. For
example, we might want to rotate anobject to align its axis of symmetry with
the viewing (camera) direction, or wemight want to rotate one object so that
it is above another object. Figure 14 showsan object that is to be aligned
with the unit direction vectors u_ and v_. Assumingthat the original object
orientation, as shown in Figure 14(a), is aligned withthe coordinate axes, we
construct the desired transformation by assigning theelements of u_ to the
first row of the rotation matrix and the elements of v_ to thesecond row. In a
modeling application, for instance, we can use this method toobtain the
transformation matrix within an object’s local coordinate system whenwe
know what its orientation is to be within the overall world-coordinate
scene.Asimilar transformation is the conversion of object descriptions
fromone coordinatesystem to another, and we take up these methods in
more detail in Section 8.
Two-Dimensional Composite-Matrix Programming Example

An implementation example for a sequence of geometric
transformations is givenin the following program. Initially, the composite
matrix, compMatrix, is constructedas the identity matrix. For this example,
a left-to-right concatenationorder is used to construct the composite
transformation matrix, and we invokethe transformation routines in the
order that they are to be executed. As each ofthe basic transformation
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routines (scale, rotate, and translate) is invoked, a matrixis set up for that
transformation and left-concatenated with the composite matrix.

When all transformations have been specified, the composite
transformation isapplied to transform a triangle. The triangle is first scaled
with respect to its centroidposition, then the triangle is rotated about its
centroid, and, lastly, it istranslated. Figure 15 shows the original and final
positions of the triangle thatis transformed by this sequence. Routines in
OpenGL are used to dispaly theinitial and final position of the triangle.

#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>
/* Set initial display-window size. */
GLsizei winWidth = 600, winHeight = 600;
/* Set range for world coordinates. */
GLfloat xwcMin = 0.0, xwcMax = 225.0;
GLfloat ywcMin = 0.0, ywcMax = 225.0;
class wcPt2D
{ public:
GLfloat x, y;
5
typedef GLfloat Matrix3x3 [3][3];
Matrix3x3 matComposite;
const GLdouble pi = 3.14159;
void init (void)
{ /* Set color of display window to white. */
glClearColor (1.0, 1.0, 1.0, 0.0);
3
/* Construct the 3 x 3 identity matrix. */
void matrix3x3Setldentity (Matrix3x3 matIdent3x3)
{ GLint row, col;
for (row = O; row < 3; row++)
for (col = O; col < 3; col++)
matldent3x3 [row][col] = (row == col);
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/* Premultiply matrix m1 times matrix m2, store result in m2. */
void matrix3x3PreMultiply (Matrix3x3 m1, Matrix3x3 m2)
{ GLint row, col;
Matrix3x3 matTemp;
for (row = 0; row < 3; row++)
for (col = 0; col < 3 ; col++)
matTemp [row][col] = m1 [row][0] * m2 [O][col]
+ m1 [row][1] *m2 [1][col] + m1 [row][2] *
m2 [2][col];
for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)
m2 [row][col] = matTemp [row][col];
}
void translate2D (GLfloat tx, GLfloat ty)
{ Matrix3x3 matTransl;
/* Initialize translation matrix to identity. */
matrix3x3Setldentity (matTransl);
matTransl [0][2] = tx;
matTransl [1][2] = ty;
/* Concatenate matTransl with the composite matrix. */
matrix3x3PreMultiply (matTransl, matComposite);
}
void rotate2D (wcPt2D pivotPt, GLfloat theta)
{ Matrix3x3 matRot;
/* Initialize rotation matrix to identity. */
matrix3x3Setldentity (matRot);
matRot [0][0] = cos (theta);
matRot [0][1] = -sin (theta);
matRot [0][2] = pivotPt.x * (1 - cos (theta)) +
pivotPt.y * sin (theta);
matRot [1][0] = sin (theta);
matRot [1][1] = cos (theta);
matRot [1][2] = pivotPt.y * (1 - cos (theta)) -
pivotPt.x * sin (theta);
/* Concatenate matRot with the composite matrix. */
matrix3x3PreMultiply (matRot, matComposite);
}
void scale2D (GLfloat sx, GLfloat sy, wcPt2D fixedPt)
{ Matrix3x3 matScale;
/* Set geometric transformation parameters. */
wcPt2D pivPt, fixedPt;
pivPt = centroidPt;
fixedPt = centroidPt;
GLfloat tx = 0.0, ty = 100.0;
GLfloat sx = 0.5, sy = 0.5;
GLdouble theta = pi/2.0;
glClear (GL_COLOR_BUFFER_BIT); // Clear display window.
glColor3f (0.0, 0.0, 1.0); // Set initial fill color to blue.
triangle (verts); // Display blue triangle.
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/* Initialize composite matrix to identity. */
matrix3x3Setldentity (matComposite);
/* Construct composite matrix for transformation sequence. */
scale2D (sx, sy, fixedPt); // First transformation: Scale.
rotate2D (pivPt, theta); // Second transformation: Rotate
translate2D (tx, ty); // Final transformation: Translate.
/* Apply composite matrix to triangle vertices. */
transformVerts2D (nVerts, verts);
glColor3f (1.0, 0.0, 0.0); // Set color for transformed triangle.
triangle (verts); // Display red transformed triangle.
glFlush ( );
3
void winReshapeFcn (GLint newWidth, GLint newHeight)
{ glMatrixMode (GL_PROJECTION);
glLoadIdentity ( );
gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax);
glClear (GL_COLOR_BUFFER_BIT);
}
void main (int argc, char ** argv)
{ glutlnit (&argc, argv);
glutlnitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition (50, 50);
glutlnitWindowSize (winWidth, winHeight);
glutCreateWindow ("Geometric Transformation Sequence");
init ( );
glutDisplayFunc (displayFcn);
glutReshapeFunc (winReshapeFcn);
glutMainLoop ( );
}
/* Initialize scaling matrix to identity. */
matrix3x3Setldentity (matScale);
matScale [0][0] = sx;
matScale [0][2] = (1 - sx) * fixedPt.x;
matScale [1][1] = sy;
matScale [1][2] = (1 - sy) * fixedPt.y;
/* Concatenate matScale with the composite matrix. */
matrix3x3PreMultiply (matScale, matComposite);
}
/* Using the composite matrix, calculate transformed coordinates. */
void transformVerts2D (GLint nVerts, wcPt2D * verts)
{ GLint k;
GLfloat temp;
for (k = 0; k < nVerts; k++) {
temp = matComposite [0][0] * verts [k].x + matComposite [0][1] *
verts [k].y + matComposite [0][2];
verts [k].y = matComposite [1][0] * verts [k].x +
matComposite [1][1] *verts [k].y + matComposite [1][2];
verts [k].x = temp;
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3

void triangle (wcPt2D *verts)
{ GLint k;
glBegin (GL_TRIANGLES);
for (k = 0; k < 3; k++)
glVertex2f (verts [k].x, verts [k].y);

glEnd ( );
}void displayFcn (void)
{ /* Define initial position for triangle. */

GLint nVerts = 3;
wcPt2D verts [3] = { {5§0.0, 25.0}, {150.0, 25.0}, {100.0, 100.0} };
/* Calculate position of triangle centroid. */
wcPt2D centroidPt;
GLint k, xSum = 0, ySum = 0O;
for (k = O0; k < nVerts; k++) {
xSum += verts [Kk].x;
ySum += verts [k].y;}
centroidPt.x = GLfloat (xSum) / GLfloat (nVerts);
centroidPt.y = GLfloat (ySum) / GLfloat (nVerts);

OTHER TRANSFORMATIONS

5 Other Two-Dimensional Transformations

Basic transformations sudh as transiation, mtation, and scaling are standard eom-
punentE of graphic= libmEnes. Sone mEckages provide a few additicnal m=ans-
formations that are useful in certain applications. Two such transformations ame
reflectiom and shoar

Reflection

| A imansformstion that produces 8 mimor image of an objeit s called o reflection,

d For a two-dimemsiona| mfloction; this imapge = genemsted relative (o an ads of
' :I“:::I reflection by mtating the objecy 181 about the reflection axi=s. We can choose
i 5 an axis of ndflection in the xu plane or perpendicalar 1o the oy plane. When the
z j i reflection 2xas 158 fine in the oy plane, the motation path about this mas s ina plane
| perpendirular o the xy plene, For reflection pves that e perpendicilsr to the oy
| 5 plane. the mtation path is m the xy plane. Somoe reamples of common reflections
= A o follemar.
Reflection about the line y =1 (the ¥ axis) is acommplished with the transfor-
R mation matri
Fmitinn
(1 oo
| g -1 0 L]
FIGURE 16 ¢ a0 1]
Refitinn of =i ahjst abo the
¥ e This transformation miains r values, bul "lips™ the g vilues of coodinale posi-

ticins. The resulting orlmtation of an objoct aftor it has been reflected about the'x
axi= k= shown in Fgure 16, To nvision the mtation transfarmation path for this
reflection; we can think af the flat ohpect movimg out of thie o plane and otsting
I180F throagh theee-dimensional space about the v axis and back into the v plane
on the otherside of the @ axis
A meflection about the lime = 0 (e ypaxis) Bips @ coordinates whiils kooping
i eoovrdinates the-sanwe. Thematrin for this transformation is

100
1 {53
0 0 1
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MeNycicd
Timtiman
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FIGURE 17

x

Aafincon of on phier sod| e

Fans

Figum 17 illustrates the change in position of an obpect that has been mefliected
about the fine 1 = (. The equivalent rotation in this <ase i= 180 theough thnee
dimensional space abéot the 1 axs

We ftp both the rand v coordinates of @ point by reflecting relative toan ads
thatis perpendicular to the xy pismeand that passes threugh the coordinate ongin,
This mellaction i sometimes referriad o os 2 reffection relative o the coordinste
origin, and if 5 cquivalent to reflecting with nspect o both coondimate aes. The
matrin representaticon for this reflectinn &=

-1 0 @
b - 0
oo 1

An example of reBection aboul the originis shown in Figure 18 The reflection
matrn 3 = the same as the rotation matox Rid) with 0 = 186, Weam simply
rntu.tmgllmd*ﬂmﬂrqplnle half & revolution about the origin.

{5
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FIGURE 11

ssrqunon-4| Earsfmmag R i
oo 2 Efehion sboot e re
¥ = 17 A ki rotation of £
lal, 2 eefermon aboot the v o
i g et kel (etation
a8 [

first tranelste the lime so that it passes throdgh the orgin. Then we @n rotete
the lime omto one of the coondinate ases and reflecs about that axés Fmally, wo
rastore tho ling to its original positon with the imvemse m@Eton and tmnstatdon
transf o ons

Woran implement miec Hons with mspoct (o the ooardinm e ases or coordinate
origin a= scaling irenslommations with negative scaling faciers. Alsn, alemsnts of
the reffectinn matrix n be st i values other than 21, & reilerdon parmmister
with @ magniiuds greater than 1 shifts the miroe image of 8 point ferther from
the roffection s, and a paramater with moapnitnde foss than 1 brings the mirmor
Image of @ pomnt cieser s the m=loction ik, Thes, a reflerted objpcr an alic b
enlarged, mducod, or distoreed,

Shear

A trenstormation that distores the shape of an obiecs such that Sw frans
fiormmiad shiape appeirs as i the objict were ormpesed of Intemal lavers that had
been commeed ity =lide ovier ach uﬂierr&caﬂudaahail:ﬂuﬂrmmslumm
transfrmtions sm these that shift comdfimite « valoes and those that shift y
vitltes,

An r-directien shesrrelatinve o the = gvis i= prochuced with the fransformation

MaiTiy
I I‘h; (]
P10 15Ty

oog g

which transforms coominate pusitions 2=
r=xtshi-y  ¥=¥ 158

Any real number can be ssdprad (o the sl paramsler sk A awrdinate position
[z, 1) is thams shifted horimntaily by an amount proportional e it perpendionfar
dlistarice [y valus) from the raxis Seifing panumeter sfi; to the value 2 for e
ple, changis the square in Figure 23 into 3 parallelogram, Negative values for
sty =hift conmrlinats posions o the Ldi

Oaimt =~ | e 13 =1
Posiion 3 = {115
=%
in. TR : {180 | (1.6 r
im) (=]

FIGURE 22 FIGURE 23
Hefiactn with st o tha lee A una e a) 15 cmested b peslisiogram Ch] usag the o dieoon S
Fom—l TIEfE A7 WL, = &
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TWO DIMENSIONAL VIEWING

We now examine in more detail the procedures for displayingviews of a
two-dimensional picture on an output device.Typically, a graphics package
allows a user to specifywhich part of a defined picture is to be displayed and
wherethat part is to be placed on the display device. Any convenient
Cartesiancoordinate system, referred to as the world-coordinate
referenceframe, can be used to define the picture. For a two-dimensional
picture,a view is selected by specifying a region of the xy plane thatcontains
the total picture or any part of it. A user can select a singlearea for display,
or several areas could be selected for simultaneousdisplay or for an
animated panning sequence across a scene.

The picture parts within the selected areas are then mapped
ontospecified areas of the device coordinates. When multiple view areasare
selected, these areas can be placed in separate display locations,or some
areas could be inserted into other, larger display areas.Two-dimensional
viewing transformations from world to device coordinates involve
translation,rotation, and scaling operations, as well as procedures for
deleting those parts ofthe picture that are outside the limits of a selected
scene area.

WINDOW - TO- VIEWPORT CO-ORDINATE TRANSFORMATION.
Normalization and ViewportTransformations

With some graphics packages, the normalization and window-to-
viewport transformationsare combined into one operation. In this case, the
viewport coordinatesare often given in the range from O to 1 so that the
viewport is positioned withina unit square. After clipping, the unit square
containing the viewport is mappedto the output display device. In other
systems, the normalization and clippingroutines are applied before the
viewport transformation. For these systems, theviewport boundaries are
specified in screen coordinates relative to the displaywindowposition.
Mapping the Clipping Window into a Normalized Viewport

To illustrate the general procedures for the normalization and viewport
transformations,we first consider a viewport defined with normalized
coordinate valuesbetween O and 1. Object descriptions are transferred to
this normalized spaceusing a transformation that maintains the same
relative placement of a point in

I|'|||'!'I|I'|:l Winchmw I~
Pl I - ] Mnrmalerasusy
{ree. wuig Wiwpear|
| T
i I, Wy
I
| i
Fillge = *
: ; } —
| p | LA I I Max s |
FIGURE &
A ot e, i) M2 v -Coananaie Cepping wingow b mappes o viesTe oo
ok ), within G unit suixe s Sl B elwhe rostv of the e poiis i e

respective ek 3w the same
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th vimwport as it had in the dipping window. 1 a coordingte position is at the
centérof the dipplog window, forinstance, it would be mapped o the center of
ther vipwpart. Figure 6 {linstrates this window-to-siswport mapping. Posttion
(xw, viv}in the dipping window i= mapped o position (o, v i the assocdatsd
viewporh

T tranesdorm the world -coimitinate point intoe the ssme melative position within
the viswport, we redgiine that

IV —Ftmin ¥l —Tlimin
Ktpme — Tlemm  Tlim — Tl @
- ot s S Ll
Vi — Wime  Wmm — YiEme
Salving thess expressions fir the viewpor] posttion (v, gl we havae
v =gxw + @
yr =gy + I
whet thi szaling fsetors are
. _ imn — Fhies
y Wity — it
(4
S Fioman — Ve
d Wl — W

amd the ranstation owors are
X Wiy FViini — T Wi & Dy
Ty — T
T _I'!-l-ﬂ'u.'m Wlrman — WM rm B
e Wiy — Wives
Becauss we are simply mapping world-coorndinate positions into o Hiewport
that is positioned near the world origin, we @nalso dedve Equsboms 3 using
any tranaformation ssquence that converts the nectangle for the -I:T.rpp' window

into the viewport rectungle. For example. we could obtain the Fatian
from world coundinates w viewport coordinates with the following ssquence.

Il:=

(5]

1. Scale the clipping window i thi sizn of the viewport using a (ixed-point
positiog of (X ikwmn, l"l'l'l'nll.ri.'i
1 Tronzlate (1ieg,, Fum?mh“rrm: [ §

The scaling transiormation i step (1) @n be representod with the two-
dimimsinal matri
ny 0 oyl —%)
S=|0 55 Yug(l-5) 18]
g 0 ]

whare 34 and sy are the same as in Equastions 4 The two-dimensional matris
representation for the ranslation of the lower-loft comer of the dipping window
to the lower-lsft viewport cormer is
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which gives us the same result as in Equations 3.Any other clipping-
windowreferencepoint, such as the top-right corner or the window center,
could be used forthe scale-translate operations. Alternatively, we could first
translate any clippingwindowposition to the corresponding location in the
viewport, and then scalerelative to that viewport location.

The window-to-viewport transformation maintains the relative
placement ofobject descriptions. An object inside the clipping window is
mapped to a correspondingposition inside the viewport. Similarly, an object
outside the clippingwindow is outside the viewport.

Relative proportions of objects, on the other hand, are maintained
only if theaspect ratio of the viewport is the same as the aspect ratio of the
clipping window.

In other words, we keep the same object proportions if the scaling
factors sx andsy are the same. Otherwise, world objects will be stretched or
contracted in eitherthe x or y directions (or both) when displayed on the
output device.

The clipping routines can be applied using either the clipping-window
boundariesor the viewport boundaries. After clipping, the normalized
coordinates aretransformed into device coordinates. And the unit square can
be mapped onto theoutput device using the same procedures as in the
window-to-viewport transformation,with the area inside the unit square
transferred to the total display areaof the output device.

Mapping the Clipping Window into a Normalized Square

Another approach to two-dimensional viewing is to transform the
clipping windowinto a normalized square, clip in normalized coordinates,
and then transferthe scene description to a viewport specified in screen
coordinates. This transformationis illustrated in Figure 7 with normalized
coordinates in the range from-1 to 1. The clipping algorithms in this
transformation sequence are now standardizedso that objects outside the
boundaries x = *}1 and y = *}1 are detectedand removed from the scene
description. At the final step of the viewing transformation,the objects in the
viewport are positioned within the display window.

We transfer the contents of the clipping window into the normalization
squareusing the same procedures as in the window-to-viewport
transformation. Thematrix for the normalization transformation is obtained
from Equation 8 bysubstituting —1 for xvmin and yvmin and substituting +1
for xvmax and yvmax.
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will be stretched or contracted in the x or y directions. Also, the aspect ratio
of thedisplay window can affect the proportions of objects. If the viewport is
mappedto the entire area of the display window and the size of the display
window ischanged, objects may be distorted unless the aspect ratio of the
viewport is alsoadjusted.

Display of Character Strings

Character strings can be handled in one of two ways when they are
mappedthrough the viewing pipeline to a viewport. The simplest mapping
maintains aconstant character size. This method could be employed with
bitmap characterpatterns. But outline fonts could be transformed the same
as other primitives; wejust need to transform the defining positions for the
line segments in the outlinecharacter shapes. Algorithms for determining
the pixel patterns for the transformedcharacters are then applied when the
other primitives in the scene areprocessed.

Split-Screen Effects and Multiple Output Devices

By selecting different clipping windows and associated viewports for a
scene, wecan provide simultaneous display of two or more objects, multiple
picture parts,or different views of a single scene. And we can position these
views in differentparts of a single display window or in multiple display
windows on the screen.

In a design application, for example, we can display a wire-frame view
of anobject in one viewport while also displaying a fully rendered view of the
objectin another viewport. In addition, we could list other information or
menus in athird viewport.

It is also possible that two or more output devices could be operating
concurrentlyon a particular system, and we can set up a clipping-
window /viewportpair for each output device. A mapping to a selected output
device is sometimesreferred to as a workstation transformation. In this
case, viewports couldbe specified in the coordinates of a particular display
device, or each viewportcould be specified within a unit square, which is
then mapped to a chosen outputdevice. Some graphics systems provide a
pair of workstation functions for thispurpose.Onefunction is used to
designate a clippingwindowfor a selected outputdevice, identified by a
workstation number, and the other function is used to setthe associated
viewport for that device.

UNIT 3:
CLIPPING ALGORITHMS

Generally, any procedure that eliminates those portions of a picture
that are eitherinside or outside a specified region of space is referred to as a
clipping algorithmor simply clipping.Usually a clipping region is a
rectangle in standard position,although we could use any shape for a
clipping application.

The most common application of clipping is in the viewing
pipeline,where clipping is applied to extract a designated portion of a scene
(eithertwo-dimensional or three-dimensional) for display on an output
device. Clippingmethods are also used to antialias object boundaries, to
construct objectsusing solid-modeling methods, to manage a multiwindow
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environment, and toallow parts of a picture to be moved, copied, or erased in
drawing and paintingprograms.

Clipping algorithms are applied in two-dimensional viewing
procedures toidentify those parts of a picture that are within the clipping
window. Everythingoutside the clipping window is then eliminated from the
scene description thatis transferred to the output device for display. An
efficient implementation ofclipping in the viewing pipeline is to apply the
algorithms to the normalizedboundaries of the clipping window. This
reduces calculations, because all geometricand viewing transformation
matrices can be concatenated and applied toa scene description before
clipping is carried out. The clipped scene can then betransferred to screen
coordinates for final processing.

In the following sections, we explore two-dimensional algorithms for
* Point clipping

 Line clipping (straight-line segments)

* Fill-area clipping (polygons)

* Curve clipping

» Text clipping

Point, line, and polygon clipping are standard components of graphics
packages.But similar methods can be applied to other objects, particularly
conics, such ascircles, ellipses, and spheres, in addition to spline curves
and surfaces. Usually,however, objects with nonlinear boundaries are
approximated with straight-linesegments or polygon surfaces to reduce
computations.

Unless otherwise stated, we assume that the clipping region is a
rectangularwindow in standard position, with boundary edges at coordinate
positionsxwmin, xwmax, ywmin, and ywmax. These boundary edges
typically correspond to anormalized square, in which the x and y values
range either from O to 1 or from—-1 to 1.

POINT CLIPPING
For a clipping rectangle in standard position, we save a two-

dimensional pointP = (x, y) for display if the following inequalities are
satisfied:  xwmin < x < xwmax
ywmin< y £ ywmax (12)

If any of these four inequalities is not satisfied, the point is clipped
(not saved fordisplay).

Although point clipping is applied less often than line or polygon
clipping,it is useful in various situations, particularly when pictures are
modeled withparticle systems. For example, point clipping can be applied to
scenes involvingclouds, sea foam, smoke, or explosions that are modeled
with “particles,” such asthe center coordinates for small circles or spheres.
LINE CLIPPING

Figure 9 illustrates possible positions for straight-line segments in
relationshipto a standard clipping window. A line-clipping algorithm
processes each line in ascene through a series of tests and intersection
calculations to determine whetherthe entire line or any part of it is to be
saved. The expensive part of a line-clippingprocedure is in calculating the
intersection positions of a line with the windowedges. Therefore, a major
goal for any line-clipping algorithm is to minimizethe intersection
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calculations. To do this, we can first perform tests to determinewhether a
line segment is completely inside the clipping window or completelyoutside.
It is easy to determine whether a line is completely inside a clippingwindow,
but it is more difficult to identify all lines that are entirely outside
thewindow. If we are unable to identify a line as completely inside or
completely

outside a clipping rectangle, we must then perform intersection calculations
todetermine whether any part of the line crosses the window interior.

We test a line segment to determine if it is completely inside or outside
aselected clipping-window edge by applying the point-clipping tests of the
previoussection. When both endpoints of a line segment are inside all four
clippingboundaries, such as the line fromP1 to P2 in Figure 9, the line is
completely insidethe clipping window and we save it. And when both
endpoints of a line segmentare outside any one of the four boundaries (as
with line P3P4 in Figure 9), thatline is completely outside the window and it
is eliminated from the scene description.

But if both these tests fail, the line segment intersects at least one
clippingboundary and it may or may not cross into the interior of the
clipping window.

One way to formulate the equation for a straight-line segment is to
use thefollowing parametric representation, where the coordinate positions
(x0, y0) and(xend, yend) designate the two line endpoints:

x=x0 + u(xend — x0)
y=y0 + ufyend - y0)0O < u<1(13)

We can use this parametric representation to determine where a line
segmentcrosses each clipping-window edge by assigning the coordinate
value for thatedge to either x or y and solving for parameter u. For example,
the left windowboundary is at position xwmin, so we substitute this value
for x, solve for u, andcalculate the corresponding y-intersection value. If this
value of u is outside therange from O to 1, the line segment does not
intersect that window border line.
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However, if the value of u is within the range from O to 1, part of the
line is insidethat border. We can then process this inside portion of the line
segment againstthe other clipping boundaries until either we have clipped
the entire line or wefind a section that is inside the window.

Processing line segments in a scene using the simple clipping
approachdescribed in the preceding paragraph is straightforward, but not
very efficient.
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It is possible to reformulate the initial testing and the intersection
calculations toreduce processing time for a set of line segments, and a
number of faster lineclippers have been developed. Some of the algorithms
are designed explicitlyfor two-dimensional pictures and some are easily
adapted to sets of threedimensionalline
segments.

Cohen-Sutherland Line Clipping

This is one of the earliest
algorithms to be developed for fast line
clipping, andvariations of this method
are widely used. Processing time is Yiisi
reduced in theCohen-Sutherland method
by performing more tests before
proceeding to theintersection FIGUERE 1D
calculations. Initially, every line endpoint Pe=afhie mrdming if ©= tlising
) ) . . s aiiow boundaras cmTesporming o
in a picture is assigneda four-digit binary . o oo oo ten.
value, called a region code, and each bit ¢ sty endnor oo tode
position is used toindicate whether the
point is inside or outside one of the clipping-window boundaries.

We can reference the window edges in any order, and Figure 10
illustratesone possible ordering with the bit positions numbered 1 through 4
from rightto left. Thus, for this ordering, the rightmost position (bit 1)
references the leftclipping-window boundary, and the leftmost position (bit
4) references the topwindow boundary. A value of 1 (or true) in any bit
position indicates that theendpoint is outside that window border. Similarly,
a value of O (or false) in anybit position indicates that the endpoint is not
outside (it is inside or on) the correspondingwindow edge. Sometimes, a
region code is referred to as an “out” codebecause a value of 1 in any bit
position indicates that the spatial point is outsidethe corresponding clipping
boundary.

[Retioim 1 a=h

Each clipping-window edge divides two-dimensional space into an insidehalf
space and an outside half space. Together, the four window borders
createnine regions, and Figure 11 lists the value for the binary code in each
of theseregions. Thus, an endpoint that is below and to the left of the
clipping window isassigned the region code 0101, and the region-code value
for any endpoint insidethe clipping window is 0000.
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Bit values in a region code are determined by comparing the
coordinate values(x, y) of an endpoint to the clipping boundaries. Bit 1 is set
to 1 if x <xwmin, and the other three bit values are determined similarly.
Instead of using inequalitytesting, we can determine the values for a region-
code more efficiently usingbit-processing operations and the following two
steps: (1) Calculate differencesbetween endpoint coordinates and clipping
boundaries. (2) Use the resultant signbit of each difference calculation to set
the corresponding value in the region code.

For the ordering scheme shown in Figure 10, bit 1 is the sign bit of x -
xwmin;bit 2 is the sign bit of xwmax — x; bit 3 is the sign bit of y — ywmin;
and bit 4 is thesign bit of ywmax - y.

Once we have established region codes for all line endpoints, we can
quicklydetermine which lines are completely inside the clip window and
which are completelyoutside. Any lines that are completely contained within
the window edgeshave a region code of 0000 for both endpoints, and we save
these line segments.

Anyline that has a region-code value of 1 in the same bit position for
each endpointis completely outside the clipping rectangle, and we eliminate
that line segment.

As an example, a line that has a region code of 1001 for one endpoint
and a codeof 0101 for the other endpoint is completely to the left of the
clipping window, asindicated by the value of 1 in the first bit position of each
region code.

We can perform the inside-outside tests for line segments using logical
operators.

When the oroperation between two endpoint region codes for a line
segmentis false (0000), the line is inside the clipping window. Therefore, we
save the lineand proceed to test the next line in the scene description. When
the andoperationbetween the two endpoint region codes for a line is true (not
0000), the line iscompletely outside the clipping window, and we can
eliminate it from the scenedescription.

Lines that cannot be identified as being completely inside or completely

FIGUHE %2
Foa : Limess-exianiging from nne dibpeng wingom TIon i@
—_\_*_?\_- ""\-\.\5' JTHITTET May s T B H = T 1
— r. Tl --\:!I _u-l L ITII. :u‘":'-‘:‘_l'll'fl.“. e |||a
| R S el reeres ore or mine ciapmy Boaidais
I r, Wit smtermg the windim

outsidea clipping window by the region-code tests are next checked for
intersectionwith the window border lines. As shown in Figure 12, line
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segments canintersect clipping boundary lines without entering the interior
of the window.

Therefore, several intersection calculations might be necessary to clip
a line segment,depending on the order in which we process the clipping
boundaries. Aswe process each clipping-window edge, a section of the line is
clipped, and theremaining part of the line is checked against the other
window borders. We continueeliminating sections until either the line is
totally clipped or the remainingpart of the line is inside the clipping window.
For the following discussion, weassume that the window edges are
processed in the following order: left, right,bottom, top. To determine
whether a line crosses a selected clipping boundary,we can check
corresponding bit values in the two endpoint region codes. If oneof these bit
values is 1 and the other is 0, the line segment crosses that boundary.

Figure 12 illustrates two line segments that cannot be identified
immediatelyas completely inside or completely outside the clipping window.
The regioncodes for the line from P1 to P2 are 0100 and 1001. Thus, P1 is
inside the left clippingboundary and P2 is outside that boundary.We then
calculate the intersectionposition P’2, and we clip off the line section from
P2 to P’2. The remaining portionof the line is inside the right border line,
and so we next check the bottom border.Endpoint P1 is below the bottom
clipping edge and P’2 is above it, so we determinethe intersection position at
this boundary (P’1).We eliminate the line section fromP1 to P’1 and proceed
to the top window edge. There we determine the intersectionposition to be
P’2. The final step is to clip off the section above the top boundaryand save
the interior segment from P’1 to P’2. For the second line, we find that
pointP3 is outside the left boundary and P4 is inside. Thus, we calculate the
intersectionposition P’3 and eliminate the line section from P3 to P’3. By
checking region codesfor the endpoints P’3 and P4, we find that the
remainder of the line is below theclipping window and can be eliminated as
well.

It is possible, when clipping a line segment using this approach, to
calculatean intersection position at all four clipping boundaries, depending
on how theline endpoints are processed and what ordering we use for the
boundaries. Figurel3 shows the four intersection positions that could be
calculated for a line segmentthat is processed against the clipping-window
edges in the
order left, right,
bottom, top.

Therefore,
variations of this
basic approach
have been
developed inan
effort to reduce
the intersection
calculations.

To
determine a
boundary
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intersection for a line segment, we can use the slopeinterceptform of the line
equation. For a line with endpoint coordinates (x0, yO)and (xend, yend), the
y coordinate of the intersection point with a vertical clippingborder line can
be obtained with the calculation
y=y0 + m(x - x0) (14)

where the x value is set to either xwmin or xwmax, and the slope of the line
iscalculated as

m = (yend — y0)/(xend — x0).

Similarly, if we are looking for theintersection with a horizontal

border, the x coordinate can be calculated as

x=x0+(y-y0)/ m (15)
withy set either to ywmin or to ywmax.

An implementation of the two-dimensional, Cohen-Sutherland line-clipping
algorithmis given in the following procedures.
class wcPt2D
{ public:

GLfloat x, y;
I
inline GLint round (const GLfloat a) { return GLint (a + 0.5); }
/* Define a four-bit code for each of the outside regions of a
* rectangular clipping window.
*

/
const GLint winLeftBitCode = Ox1;
const GLint winRightBitCode = 0x2;
const GLint winBottomBitCode = 0x4;
const GLint winTopBitCode = 0x8;
/* A bit-mask region code is also assigned to each endpoint of an input
* line segment, according to its position relative to the four edges of
* an input rectangular clip window.
*%
An endpoint with a region-code value of 0000 is inside the clipping
* window, otherwise it is outside at least one clipping boundary. If
* the'or' operation for the two endpoint codes produces a value of
* false, the entire line defined by these two endpoints is saved
* (accepted). If the 'and' operation between two endpoint codes is
* true, the line is completely outside the clipping window, and it is
* eliminated (rejected) from further processing.
*
/

inline GLint inside (GLint code) { return GLint (!code); }
inline GLint reject (GLint codel, GLint code2)
{ return GLint (codel & code2); }
inline GLint accept (GLint codel, GLint code2)
{ return GLint (!(codel | code2)); }
GLubyte encode (wcPt2D pt, wcPt2D winMin, wcPt2D winMax)
{ GLubyte code = 0x00;

if (pt.x < winMin.x)

code = code | winLeftBitCode;
if (pt.x > winMax.x)
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code = code | winRightBitCode;
if (pt.y < winMin.y)
code = code | winBottomBitCode;
if (pt.y > winMax.y)
code = code | winTopBitCode;
return (code);
}
void swapPts (wcPt2D * p1, wcPt2D * p2)
{ wcPt2D tmp;
tmp = *pl; *pl = *p2; *p2 = tmp;
}
void swapCodes (GLubyte * c1, GLubyte * c2)
{ GLubyte tmp;
tmp = *cl; *cl1 = *c2; *c¢2 = tmp;
}
void lineClipCohSuth (wcPt2D winMin, wcPt2D winMax, wcPt2D pl,
wcPt2D p2)
{ GLubyte codel, code2;
GLint done = false, plotLine = false;
GLfloat m;
while (!done) {
codel = encode (pl, winMin, winMax);
code2 = encode (p2, winMin, winMax);
if (accept (codel, code?2))
{ done = true;
plotLine = true;
}
else
if (reject (codel, code2))
done = true;
else
{
/* Label the endpoint outside the display window as
pl. */
if (inside (codel))
{ swapPts (&p1l, &p2);
swapCodes (&codel, &code2);
3
/* Use slope m to find line-clipEdge intersection. */
if (p2.x != pl.x)
m = (p2.y - pl.y) / (p2.x - p1.x);
if (codel & winLeftBitCode)
{ pl.y += (winMin.x - pl.x) * m;
pl.x = winMin.x;
}
else
if (codel & winRightBitCode)
{ pl.y += (winMax.x - pl.x) * m;
pl.x = winMax.x;
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}
else
if (codel & winBottomBitCode)
{ /* Need to update pl.x for nonvertical
lines only. */
if (p2.x != pl.x)
pl.x += (winMin.y - pl.y) / m;
pl.y = winMin.y;
}
else
if (codel & winTopBitCode)
{ if (p2.x != pl.x)
pl.x += (winMax.y - pl.y) / m;
pl.y = winMax.y;
}
}
}
if (plotLine)

lineBres (round (p1.x), round (pl.y), round (p2.x),
round (p2.y));
}
Liang-Barsky Line Clipping
Faster line-clipping algorithms have been developed that do more line
testingbefore proceeding to the intersection calculations. One of the earliest
efforts inthis direction is an algorithm developed by Cyrus and Beck, which
is based onanalysis of the parametric line equations. Later, Liang and
Barsky independentlydevised an even faster form of the parametric line-
clipping algorithm.
For a line segment with endpoints (x0, y0) and (xend, yend), we can
describe theline with the parametric form
x=x0+ u x
y=y0+uyO=<su=s<l (16)
where_x = xend — x0 and _y = yend — y0. In the Liang-Barsky algorithm, the
parametric line equations are combined with the point-clipping conditions
12to obtain the inequalities
xwmin< x0 + u_x < xwmax

ywmins< y0 + u_y < ywmax (17)
which can be expressed as
upk<qgk,k=1,2, 3,4 (18)

where parameters p and g are defined as

pl = —_x, gl = X0 - xwmin

p2 = _x, g2 = xwmax — x0

pP3 =-_y, g3 = y0O — ywmin

p4 =_y, g4 = ywmax - y0 (19)

Any line that is parallel to one of the clipping-window edges has pk =0

for thevalue of k corresponding to that boundary, where k= 1, 2, 3, and 4
correspondto the left, right, bottom, and top boundaries, respectively. If, for
that value of k,we also find gk <O, then the line is completely outside the
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boundary and canbe eliminated from further consideration. If gk > O, the
line is inside the parallelclipping border.

When pk <0, the infinite extension of the line proceeds from the
outsideto the inside of the infinite extension of this particular clipping-
window edge. Ifpk >0, the line proceeds from the inside to the outside. For a
nonzero value of pk ,we can calculate the value of u that corresponds to the
point where the infinitelyextended line intersects the extension of window
edge k as

u = gk/pk(20)

For each line, we can calculate values for parameters ul and u2 that
define thatpart of the line that lies within the clip rectangle. The value of ul
is determined bylooking at the rectangle edges for which the line proceeds
from the outside to theinside (p <0). For these edges, we calculate rk = gk/pk
. The value of ul is takenas the largest of the set consisting of O and the
various values of r. Conversely,the value of u2 is determined by examining
the boundaries for which the lineproceeds from inside to outside (p >0). A
value of rk is calculated for each ofthese boundaries, and the value of u2 is
the minimum of the set consisting of 1 andthe calculated r values. If ul >u2,
the line is completely outside the clip windowand it can be rejected.
Otherwise, the endpoints of the clipped line are calculatedfrom the two
values of parameter w.

This algorithm is implemented in the following code sections. Line
intersectionparameters are initialized to the values ul = 0 and u2 = 1. For
each clippingboundary, the appropriate values for p and g are calculated
and used by thefunction clipTest to determine whether the line can be
rejected or whetherthe intersection parameters are to be adjusted. When p
<0, parameter r is usedto update ul; when p >0, parameter r is used to
update u2. If updating ul oru2 results in ul >u2, we reject the line.
Otherwise, we update the appropriate uparameter only if the new value
results in a shortening of the line. When p = 0 andg <0, we can eliminate the
line because it is parallel to and outside this boundary.

If the line has not been rejected after all four values of p and g have
been tested,the endpoints of the clipped line are determined from values of
ul and u2.
class wcPt2D
{ private:

GLfloat x, y;

public:

/* Default Constructor: initialize position as (0.0, 0.0). */

wcPt3D ()

{ x =y = 0.0;

}

setCoords (GLfloat xCoord, GLfloat yCoord)

{ x = xCoord;

y = yCoord;

}

GLfloat getx ( ) const

{ return x;

}
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GLfloat gety ( ) const
{ return y;
}
|5
inline GLint round (const GLfloat a)
{ return GLint (a + 0.5);
}
GLint clipTest (GLfloat p, GLfloat q, GLfloat * ul, GLfloat * u2)
{ GLfloat r;
GLint returnValue = true;
if (p < 0.0)
{ r=q/ p;
if (r > *u2)
returnValue = false;
else
if (r > *ul)
*ul =r;

else
if (p > 0.0)
{ r=q/ p;
if (r < *ul)
returnValue = false;
else if (r < *u2)
*u2 =r;
}
else
/* Thus p = 0 and line is parallel to clipping boundary. */
if (q < 0.0)
/* Line is outside clipping boundary. */
returnValue = false;
return (returnValue);
}
void lineClipLiangBarsk (wcPt2D winMin, wcPt2D winMax, wcPt2D pl,
wcPt2D p2)
{ GLfloat ul = 0.0, u2 = 1.0, dx = p2.getx () - pl.getx ( ), dy;
if (clipTest (-dx, pl.getx ( ) - winMin.getx ( ), &ul, &u2))
if (clipTest (dx, winMax.getx ( ) - pl.getx (), &ul, &u2))
{ dy = p2.gety () - pl.gety ();
if (clipTest (-dy, pl.gety ( ) - winMin.gety ( ), &ul, &u2))
if (clipTest (dy, winMax.gety () - pl.gety ( ), &ul, &u2)) {
if (u2 < 1.0)
{ p2.setCoords (pl.getx () + u2 * dx, pl.gety
() +u2*dy);
}
if (ul > 0.0)
{ pl.setCoords (pl.getx () + ul * dx, pl.gety () +
ul * dy);
}
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lineBres (round (pl.getx ( )), round (pl.gety ()),
round (p2.getx ( )), round (p2.gety ( )));
}
}
}

In general, the Liang-Barsky algorithm is more efficient than the
Cohen-Sutherland line-clipping algorithm. Each update of parameters ul
and u2 requiresonly one division; and window intersections of the line are
computed only once,when the final values of ul and u2 have been
computed. In contrast, the Cohenand Sutherland algorithm can calculate
intersections repeatedly along a line path,even though the line may be
completely outside the clip window. In addition, eachCohen-Sutherland
intersection calculation requires both a division and a multiplication.

The two-dimensional Liang-Barsky algorithm can be extended to clip
three-dimensional lines.

Nicholl-Lee-Nicholl Line Clipping

By creating more regions around the clipping window, the Nicholl-Lee-
Nicholl(NLN) algorithm avoids multiple line-intersection calculations. In the
Cohen-Sutherland method, for example, multiple intersections could be
calculated alongthe path of a line segment before an intersection on the
clipping rectangle islocated or the line is completely rejected. These extra
intersection calculationsare eliminated in the NLN algorithm by carrying out
more region testing beforeintersection positions are calculated. Compared to
both the Cohen-Sutherlandand the Liang-Barsky algorithms, the Nicholl-
Lee-Nicholl algorithm performsfewer comparisons and divisions. The trade-
off is that the NLN algorithm can beapplied only to two-dimensional clipping,
whereas both the Liang-Barsky andthe Cohen-Sutherland methods are
easily extended to three-dimensional scenes.

Initial testing to determine whether a line segment is completely inside
theclipping window or outside the window limits can be accomplished with
regioncodetests, as in the previous two algorithms. If a trivial acceptance or
rejection ofthe line is not possible, the NLN algorithm proceeds to set up
additional clippingregions.

For a line with endpoints PO and Pend, we first determine the position
ofpoint PO for the nine possible regions relative to the clipping window. Only
thethree regions shown in Figure 14 need be considered. If PO lies in any
one ofthe other six regions, we can move it to one of the three regions in
Figure 14using a symmetry transformation. For example, the region directly
above the clipwindow can be transformed to the region left of the window
using a reflectionabout the line y = -x, or we could use a 90
counterclockwise rotation.

Assuming that PO and Pend are not both inside the clipping window,
we nextdetermine the position ofPend relative toP0O.To do this,wecreate
somenewregionsin the plane, depending on the location of PO. Boundaries of
the new regions aresemi-infinite line segments that start at the position of
PO and pass through theclipping-window corners. If PO is inside the clipping
window, we set up the fourregions shown in Figure 15. Then, depending on
which one of the four regions(L, T, R, or B) contains Pend, we compute the
line-intersection position with thecorresponding window boundary.
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If PO is in the region to the left of the window,weset up the four
regions labeledL, LT, LR, and LB in Figure 16. These four regions again
determine a uniquePO
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Line Clipping Using Nenrectanguiar Polygon Clip Windows
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agsinst the coordinate extonts of the clipping polygon.
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clipping regions are cbtained in this case, by adding a line segment from ¥, o
¥y, Then the line is clipped in two passes: (1) Line ;7= & dipped by the con-
wist polvigem with vertiess Wy, ¥, Vi, and Vi toyvield the clipped H'E'I!IH'I‘IZF_rF:
| Fgure 18] (2 The Internal e segmani PP &5 dipped off using the conves,
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sogmont P17,

Line Clipping Using Nonlinear Clipping-Window Boundaries
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i the radius sguarsd, we can save the entire line. The renaining linss are
processed-through the intersection calmlations, which must solve simmil Gmeoos
circleine equatinne
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POLYGON CLIPPING

Graphics packages typically support only fill areas that are polygons,
and oftenonly convex polygons. To clip a polygon fill area, we cannot apply a
line-clippingmethod to the individual polygon edges directly because this
approach would not,in general, produce a closed polyline. Instead, a line
clipper would often producea disjoint set of lines with no complete
information about how we might forma closed boundary around the clipped
fill area. Figure 19 illustrates a possibleoutput from a line-clipping
procedure applied to the edges of a polygon fill area.

What we require is a procedure that will output one or more closed
polylines forthe boundaries of the clipped fill area, so that the polygons can
be scan-convertedto fill the interiors with the assigned color or pattern, as in
Figure 20.

We can process a polygon fill area against the borders of a clipping
windowusing the same general approach as in line clipping. A line segment
is defined byits two endpoints, and these endpoints are processed through a
line-clipping procedureby constructing a new set of clipped endpoints at
each clipping-windowboundary. Similarly, we need to maintain a fill area as
an entity as it is processedthrough the clipping stages. Thus, we can clip a
polygon fill area by determiningthe new shape for the polygon as each
clipping-window edge is processed, asdemonstrated in Figure 21. Of course,
the interior fill for the polygon would notbe applied until the final clipped
border had been determined.
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Just as we first tested a line segment to determine whether it could be
completelysaved or completely clipped, we can do the same with a polygon
fillarea by checking its coordinate extents. If the minimum and maximum
coordinatevalues for the fill area are inside all four clipping boundaries, the
fill area issaved for further processing. If these coordinate extents are all
outside any of theclipping-window borders, we eliminate the polygon from
the scene description(Figure 22).

When we cannot identify a fill area as being completely inside or
completelyoutside the clipping window, we then need to locate the polygon

intersectionpositions with the clipping boundaries. One way to implement
convex-polygonclipping is to create a new vertex list at each clipping
boundary, and then passthis new vertex list to the next boundary clipper.
The output of the final clippingstage is the vertex list for the clipped polygon
(Figure 23). For concave-polygonclipping, we would need to modify this basic
approach so that multiple vertexlists could be generated.
Sutherland--Hodgman Polygon Clipping

An efficient method for clipping a convex-polygon fill area, developed
by Sutherlandand Hodgman, is to send the polygon vertices through each
clipping stageso that a single clipped vertex can be immediately passed to
the next stage. Thiseliminates the need for an output set of vertices at each
clipping stage, and itallows the boundary-clipping routines to be
implemented in parallel. The finaloutput is a list of vertices that describe the
edges of the clipped polygon fill area.

Because the Sutherland-Hodgman algorithm produces only one list of
outputvertices, it cannot correctly generate the two output polygons in
Figure 20(b) thatare the result of clipping the concave polygon shown in
Figure 20(a). However,more processing steps can be added to the algorithm
to allow it to produce multipleoutput vertex lists, so that general concave-
polygon clipping could be accomodated.

And the basic Sutherland-Hodgman algorithm is able to process
concavepolygons when the clipped fill area can be described with a single
vertex list.

The general strategy in this algorithm is to send the pair of endpoints
for eachsuccessive polygon line segment through the series of clippers (left,
right, bottom,and top). As soon as a clipper completes the processing of one
pair of vertices, theclipped coordinate values, if any, for that edge are sent to
the next clipper. Thenthe first clipper processes the next pair of endpoints.
In this way, the individualboundary clippers can be operating in parallel.
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There are four possible cases that need to be considered when
processing apolygon edge against one of the clipping boundaries. One
possibility is that thefirst edge endpoint is outside the clipping boundary
and the second endpointis inside. Or, both endpoints could be inside this
clipping boundary. Anotherpossibility is that the first endpoint is inside the
clipping boundary and the secondendpoint is outside. And, finally, both
endpoints could be outside the clippingboundary.

To facilitate the passing of vertices from one clipping stage to the next,
theoutput from each clipper can be formulated as shown in Figure 24. As
eachsuccessive pair of endpoints is passed to one of the four clippers, an
output isgenerated for the next clipper according to the results of the
following tests:

1. If the first input vertex is outside this clipping-window border and

thesecond vertex is inside, both the intersection point of the polygon
edgewith the window border and the second vertex are sent to the next
clipper.

2. If both input vertices are inside this clipping-window border, only the
second vertex is sent to the next clipper.

3. If the first vertex is inside this clipping-window border and the second
vertex is outside, only the polygon edge-intersection position with
theclipping-window border is sent to the next clipper.
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4. If both input vertices are outside this clipping-window border, no vertices
are sent to the next clipper.

The last clipper in this series generates a vertex list that describes the
final clippedfill area.

Figure 25 provides an example of the Sutherland-Hodgman
polygonclippingalgorithm for a fill area defined with the vertex set {1, 2, 3.
As soon
as a clipper receives a pair of endpoints, it determines the appropriate
outputusing the tests illustrated in Figure 24. These outputs are passed in
successionfrom the left clipper to the right, bottom, and top clippers. The
output from the return (iPt);

3

void clipPoint (wcPt2D p, Boundary winEdge, wcPt2D wMin, wcPt2D
wMax,

wcPt2D * pOut, int * cnt, wcPt2D * first[], wcPt2D * s)

{

wcPt2D iPt;

/* If no previous point exists for this clipping boundary,

* save this point.

*/

if (Mfirst[winEdge])
first[winEdge] = &p;
else

/* Previous point exists. If p and previous point cross
* this clipping boundary, find intersection. Clip against
* next boundary, if any. If no more clip boundaries, add
* intersection to output list.
*

/
if (cross (p, s[winEdge], winEdge, wMin, wMax)) {
iPt = intersect (p, s[winEdge], winEdge, wMin, wMax);
if (winEdge < Top)
clipPoint (iPt, b+1, wMin, wMax, pOut, cnt, first, s);
else {
pOut[*cnt] = iPt; (*cnt)++;
}
}

/* Save p as most recent point for this clip boundary. */
s[winEdge] = p;

/* For all, if point inside, proceed to next boundary, if any. */
if (inside (p, winEdge, wMin, wMax))

if (winEdge < Top)

clipPoint (p, winEdge + 1, wMin, wMax, pOut, cnt, first, s);
else {

pOut[*cnt] = p; (*cnt)++;

}

}
void closeClip (wcPt2D wMin, wcPt2D wMax, wcPt2D * pOut,

GLint * cnt, wcPt2D * first [ ], wcPt2D * s)
{
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wcPt2D pt;

Boundary winEdge;

for (winEdge = Left; winEdge <= Top; winEdge++) {

if (cross (s[winEdge], *first[winEdge], winEdge, wMin, wMax)) {
pt = intersect (s[winEdge], *firstfwinEdge], winEdge, wMin, wMax);
if (winEdge < Top)

clipPoint (pt, winEdge + 1, wMin, wMax, pOut, cnt, first, s);
else {

pOut[*cnt] = pt; (*ent)++;

}

}

}

}
top clipper is the set of vertices defining the clipped fill area. For this

example,the output vertex listis {1_, 2,2_,2_ }.

A sequential implementation of the Sutherland-Hodgman polygon-
clippingalgorithm is demonstrated in the following set of procedures. An
input set ofvertices is converted to an output vertex list by clipping it against
the four edgesof the axis-aligned rectangular clipping region.
typedef enum { Left, Right, Bottom, Top } Boundary;
const GLint nClip = 4;

GLint inside (wcPt2D p, Boundary b, wcPt2D wMin, wcPt2D wMax)
{

switch (b) {

case Left: if (p.x < wMin.x) return (false); break;

case Right: if (p.x > wMax.x) return (false); break;

case Bottom: if (p.y < wMin.y) return (false); break;

case Top: if (p.y > wMax.y) return (false); break;

}

return (true);

}

GLint cross (wcPt2D pl, wcPt2D p2, Boundary winEdge, wcPt2D wMin,
wcPt2D wMax)

{

if (inside (pl, winEdge, wMin, wMax) == inside (p2, winEdge, wMin,
wMax))

return (false);

else return (true);

}

wcPt2D intersect (wcPt2D p1, wcPt2D p2, Boundary winEdge,

wcPt2D wMin, wcPt2D wMax)

{

wcPt2D iPt;

GLfloat m;

if (pl.x != p2.x) m = (pl.y - p2.y) / (p1l.x - p2.x);

switch (winEdge) {

case Left:

iPt.x = wMin.x;

iPt.y = p2.y + (WMin.x - p2.x) * m;
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break;
case Right:
iPt.x = wMax.x;
iPt.y = p2.y + (wMax.x - p2.x) * m;
break;
case Bottom:
iPt.y = wMin.y;
if (p1l.x != p2.x) iPt.x = p2.x + (WMin.y - p2.y) / m;
else iPt.x = p2.x;
break;
case Top:
iPt.y = wMax.y;
if (p1.x != p2.x) iPt.x = p2.x + (WMax.y - p2.y) / m;
else iPt.x = p2.x;
break;
3
GLint polygonClipSuthHodg (wcPt2D wMin, wcPt2D wMax, GLint n,
wcPt2D * pIn, wcPt2D * pOut)
{
/* Parameter "first" holds pointer to first point processed for
* a boundary; "s" holds most recent point processed for boundary.
*
/
wcPt2D * first[nClip] = { O, O, O, O }, s[nClip];
GLint k, cnt = O;
for (k = 0; k < n; k++)
clipPoint (pIn[k], Left, wMin, wMax, pOut, &cnt, first, s);
closeClip (wMin, wMax, pOut, &cnt, first, s);
return (cnt);
}

Whena concave polygon is clipped with the Sutherland-Hodgman
algorithm,extraneous lines may be displayed. An example of this effect is
demonstrated inFigure 26. This occurs when the clipped polygon should
have two or moreseparate sections. But since there is only one output vertex
list, the last vertex inthe list is always joined to the first vertex.There are
several things we can do to display clipped concave polygonscorrectly.
Weiler-Atherton Polygon Clipping

This algorithm provides a general polygon-clipping approach that can
be usedto clip a fill area that is either a convex polygon or a concave
polygon. Moreover,the method was developed as a means for identifying
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visible surfaces in a threedimensionalscene. Therefore, we could also use
this approach to clip any polygonfill area against a clipping window with any
polygon shape.

For one, we could split a concave polygon into two or more
convexpolygons and process each convex polygon separately using the
Sutherland-Hodgman algorithm. Another possibility is to modify the
Sutherland- Hodgmanmethod so that the final vertex list is checked for
multiple intersection pointsalong any clipping-window boundary. If we find
more than two vertex positionsalong any clipping boundary, we can separate
the list of vertices into two ormore lists that correctly identify the separate
sections of the clipped fill area. Thismay require extensive analysis to
determine whether some points along the clippingboundary should be
paired or whether they represent single vertex pointsthat have been
clipped.Athird possibility is to use a more general polygon clipperthat has
been designed to process concave polygons correctly.

Instead of simply clipping the fill-area edges as in the Sutherland-
Hodgmanmethod, the Weiler-Atherton algorithm traces around the
perimeter of the fillpolygon searching for the borders that enclose a clipped
fill region. In this way,multiple fill regions, as in Figure 26(b), can be
identified and displayed as separate,unconnected polygons. To find the
edges for a clipped fill area, we follow apath (either counterclockwise or
clockwise) around the fill area that detours alonga clipping-window
boundary whenever a polygon edge crosses to the outside ofthat boundary.
The direction of a detour at a clipping-window border is the sameas the
processing direction for the polygon edges.

We can wusually determine whether the processing direction is
counterclockwiseor clockwise from the ordering of the vertex list that defines
a polygon fillarea. In most cases, the vertex list is specified in a
counterclockwise order as ameans for defining the front face of the polygon.
Thus, the cross-product of twosuccessive edge vectors that form a convex
angle determines the direction for thenormal vector, which is in the direction
from the back face to the front face of thepolygon. If we do not know the
vertex ordering, we could calculate the normal vector, or we can locate the
interior of the fill area from any reference position.

Then, if we sequentially process the edges so that the polygon interior
is alwayson our left, we obtain a counterclockwise traversal. Otherwise, with
the interiorto our right, we have a clockwise traversal. For a
counterclockwise traversal of the polygon fill-area vertices, we applythe
followingWeiler-Atherton procedures:

1. Process the edges of the polygon fill area in a counterclockwise order until
an inside-outside pair of vertices is encountered for one of the
clippingboundaries; that is, the first vertex of the polygon edge is inside the
clipregion and the second vertex is outside the clip region.

2. Follow the window boundaries in a counterclockwise direction from
theexit-intersection point to another intersection point with the polygon.
Ifthis is a previously processed point, proceed to the next step. If this is
anew intersection point, continue processing polygon edges in a
counterclockwise

order until a previously processed vertex is encountered.
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3. Form the vertex list for this section of the clipped fill area.
4. Return to the exit-intersection point and continue processing the polygon
edges in a counterclockwise order.

Figure 27 illustrates the Weiler-Atherton clipping of a concave polygon

against a standard, rectangular clipping window for a counterclockwise
traversalof the polygon edges. For a clockwise edge traversal, we would use a
clockwiseclipping-window traversal.

Starting fromthe vertex labeled 1 in Figure 27(a), the next polygon
vertex toprocess in a counterclockwise order is labeled 2. Thus, this edge
exits the clippingwindow at the top boundary. We calculate this intersection
position (point 1’)and make a left turn there to process the window borders
in a counterclockwisedirection. Proceeding along the top border of the
clipping window, we do notintersect a polygon edge before reaching the left
window boundary. Therefore,we label this position as vertex 1__ and follow
the left boundary to the intersectionposition 1___ . We then follow this
polygon edge in a counterclockwise direction,which returns us to vertex 1.
This completes a circuit of the window boundariesand identifies the vertex
list{1, 1_, 1_, 1__} as a clipped region of the original fillarea. Processing of
the polygon edges is then resumed at point 1_. The edge definedby points 2
and 3 crosses to the outside of the left boundary, but points 2 and 2_are
above the top clipping-window border and points 2_ and 3 are to the left of
theclipping region. Also, the edge with endpoints 3 and 4 is outside the left
clippingboundary, but the next edge (from endpoint 4 to endpoint 5)
reenters the clippingregion and we pick up intersection point 4_. The edge
with endpoints 5 and 6exits the window at intersection position 5_, so we
detour down the left clippingboundary to obtain the closed vertex list {4_, 5,
5_}. We resume the polygon edgeprocessing at position 5_, which returns us
to the previously processed point 1___.
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At this point, all polygon vertices and edges have been processed, so
the fill areais completely clipped.

Polygon Clipping Using Nonrectangular Polygon Clip Windows

The Liang-Barsky algorithm and other parametric line-clipping
methods are particularlywell suited for processing polygon fill areas against
convex-polygonclipping windows. In this approach, we use a parametric
representation for theedges of both the fill area and the clipping window,
and both polygons are representedwith a vertex list.We first compare the
positions of the bounding rectanglesfor the fill area and the clipping polygon.
If we cannot identity the fill area as completelyoutside the clipping
polygon,wecan use inside-outside tests to process theparametric edge
equations. After completing all the region tests, we solve pairsof
simultaneous parametric line equations to determine the window
intersectionpositions.

We can also process any polygon fill area against any polygon-shaped
clippingwindow (convex or concave), as in Figure 28, using the edge-
traversalapproach of the Weiler-Atherton algorithm. In this case, we need to
maintaina vertex list for the clipping window as well as for the fill area, with
both listsarranged in a counterclockwise (or clockwise) order. In addition, we
need to apply inside-outside tests to determine whether a fill-area vertex is
inside or outside aparticular clipping-window boundary. As in the previous
examples, we followthe window boundaries whenever a fill-area edge exits a
clipping boundary. Thisclipping method can also be used when either the fill
area or the clipping windowcontains holes that are defined with polygon
borders. In addition, we can use thisbasic approach in constructive solid-
geometry applications to identify the resultof a union, intersection, or
difference operation on two polygons. In fact, locatingthe clipped region of a
fill area is equivalent to determining the intersection oftwo planar areas.
Polygon Clipping Using Nonlinear Clipping-Window Boundaries

One method for processing a clipping window with curved boundaries
is toapproximate the boundaries with straight-line sections and use one of
the algorithmsfor clipping against a general polygon-shaped -clipping
window. Alternatively,we could use the same general procedures that we
discussed for linesegments. First, we can compare the coordinate extents of
the fill area to thecoordinate extents of the clipping window. Depending on
the shape of the clippingwindow, we may also be able to perform some other
region tests based onsymmetric considerations. For fill areas that cannot be
identified as completelyinside or completely outside the clipping window, we
ultimately need to calculatethe window intersection positions with the fill

area.
CURVE CLIPPING

Areas with curved boundaries can be clipped with methods similar to
those discussedin the previous sections. If the objects are approximated
with straight-lineboundary sections, we use a polygon-clipping method.
Otherwise, the clippingprocedures involve nonlinear equations, and this
requires more processing thanfor objects with linear boundaries.
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We can first test the coordinate extents of an object against the
clipping boundariesto determine whether it is possible to accept or reject the
entire object trivially.

If not, we could check for object symmetries
that we might be able to exploit inthe initial
accept/reject tests. For example, circles have
symmetries between quadrantsand octants, so we
could check the coordinate extents of these
individualcircle regions. We cannot reject the
complete circular fill area in Figure 29 justby
checking its overall coordinate extents. But half of
the circle is outside the rightclipping border (or
outside the top border), the upper-left quadrant is
above thetop clipping border, and the remaining
two octants can be similarly eliminated.

An  intersection  calculation involves
substituting a clipping-boundary position(xwmin,
xwmax, ywmin, or ywmax) in the nonlinear
equation for the object boundaryand solving for
the other coordinate value. Once all intersection
positions havebeen evaluated, the defining
positions for the object can be stored for later use
by the scan-line fill procedures. Figure 30
illustrates circle clipping against arectangular
window. For this example, the circle radius and
the endpoints of theclipped arc can be used to fill
the clipped region, by invoking the circle algorithm
to locate positions along the arc between the
intersection endpoints.

Similar procedures can be applied when clipping a curved object
against ageneral polygon clipping region. On the first pass, we could
compare the boundingrectangle of the object with the bounding rectangle of
the clipping region. Ifthis does not save or eliminate the entire object, we
next solve the simultaneousline-curve equations to determine the clipping

intersection points.
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method depends on how charactersare generated and what requirements we
have for displaying characterstrings.

The simplest method for processing character strings relative to the
limitsof a clipping window is to use the all-or-none string-clipping strategy
shown inFigure 31. If all of the string is inside the clipping window, we
display the entirestring. Otherwise, the entire string is eliminated. This
procedure is implementedby examining the coordinate extents of the text
string. If the coordinate limits ofthis bounding rectangle are not completely
within the clipping window, the stringis rejected.

An alternative is to use the all-or-none character-clipping strategy. Here
weeliminate only those characters that are not completely inside the
clippingwindow(Figure 32). In this case, the coordinate extents of individual
characters arecompared to the window boundaries. Any character that is
not completely withinthe clipping-window boundary is eliminated.

A third approach to text clipping is to clip the components of
individualcharacters. This provides the most accurate display of clipped
character strings,but it requires the most processing.We now treat
characters in much the same waythat we treated lines or polygons. If an
individual character overlaps a clippingwindow, we clip off only the parts of
the character that are outside the window(Figure 33). Outline character
fonts defined with line segments are processed inthis way using a polygon-
clipping algorithm. Characters defined with bit mapsare clipped by
comparing the relative position of the individual pixels in thecharacter grid
patterns to the borders of the clipping region.

THREE DIMENSIONAL TRANSFORMATIONS

Methods for geometric transformations in three dimensionsare
extended from two-dimensional methods by includingconsiderations for the
z coordinate. In most cases, thisextension is relatively straighforward.
However, in some casesparticularly, rotation—the extension to three
dimensions is lessobvious.

When we discussed two-dimensional rotations in the xy plane,we
needed to consider only rotations about axes that were perpendicularto the
xy plane. In three-dimensional space, we can now selectany spatial
orientation for the rotation axis. Some graphics packageshandle three-
dimensional rotation as a composite of three rotations,one for each of the
three Cartesian axes. Alternatively, we can set upgeneral rotation equations,
given the orientation of a rotation axisand the required rotation angle.

A three-dimensional position, expressed in homogeneous coordinates,
is represented as a four-element column vector. Thus, eachgeometric
transformation operator is now a 4 x 4 matrix, which premultiplies a
coordinate column vector. In addition, as in two dimensions, any sequence
of transformations is represented as a single matrix, formed by
concatenating the matricesfor the individual transformations in the
sequence. Each successive matrix in a transformationsequence is

concatenated to the left of previous transformation matrices.
TRANSLATION
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?mi-thun]': (%, y, 2)in threedimensional space i= translated o 3 location P =
(', v, 2 by adding tramslation distances ;. 1, and & to the Canesian coondinates
of I

Y=yl =Wty ==z4h i

Figure 1 {lustrates threedimensional paint tramslation

Wie-com express thess thres-dimensional ransistion opemboms in matrx form.
Bisk niovw thie coordinate positions, Pand P are represented in homopsneous
cooriinales with four-alement column matrices and the transtation operator T
534 = 4 mamx

x 1 0 0 & X
v 1ot o gl |7
21 =loo v %] |z o
I ooa 1| |1
ur
P=T-F @

An object is translated in three dimensions by tersiorming sach of the defin-

me coordinate posiions-for the object, then reconstructing the object at the new
lcation. For an chjoct reprosented s a set of pol surfaces, wit trinslate sach
vertin for each sorface (Figome 21 and reihphgﬁr;‘lnl}rgm facete at the trans-
lated positions.

following progmam ssgment {llostrotes constroction of a tmslatdon
matrix, ghven an inputset of tmnslition parsmeters

¥ uEs §

aly' g’ xth

e | T=thtt)

FIGURE 1 /\\\
Wohveg 3 comidma petition with rrstation wsoe Tanm

T-rn.rr.rq]. :u-i'l
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An inverse

of a three-
dimensional
translation
matrix is
obtained  using
thesame

procedures that

we applied in a

two-dimensional

translation. That is,we negate the translation distances tx, ty, and tz. This
produces a translation in theoppositedirection, and the product of a
translation matrix and its inverse is theidentity matrix.

typedef GLfloat Matrix4x4 [4][4];

/* Construct the 4 x 4 identity matrix. */

void matrix4x4Setldentity (Matrix4x4 matldent4x4)

{

GLint row, col;

for (row = O; row < 4; row++)

for (col = O; col < 4 ; col++)

matldent4x4 [row][col] = (row == col);

}
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)

{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4Setldentity (matTransl3D);

matTransl3D [0][3] = tx;

matTransl3D [1][3] = ty; "
matTransl3D [2][3] = tz;

}
ROTATION

We can rotate an object about

any axis in space, but the easiest - .
rotation axes tohandle are those
that are parallel to the Cartesian-
coordinate axes. Also,wecan
usecombinations of coordinate-axis
rotations (along with appropriate
translations)to specify a rotation
about any other line in space.
Therefore, we first consider
theoperations involved in
coordinate-axis rotations, then we -—
discuss the calculationsneeded for

other rotation axes.By convention,

positive rotation angles produce [hi
counterclockwise rotationsabout a

coordinate axis, assuming that we

ful
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are looking in the negative directionalong that coordinate axis (Figure 3).
This agrees with our earlier discussion of

FIRUORE ¥

Prrtte rotatinis shout 3 condnis ans me
cunerinkete wien koking song the fostys
kaif ol the =k oward teoighn

rotatinns n twn dimensions, where posifive rotations n the oy plane ame counter-
chockwise sbout & pivot point (an axis Lhat is pamlled o the @)
Three-Dimenstonal Coordinate-Axls Rotations

The twirdimensional s-axis rotation equationa ane pasily extended W three
dimensione. as olkws:

¥ =xoosfl — wEnf
Y = rsinff + yosf 8

Paramelsr 8 specifles the rtation angle abmut the = axds, and s-oondinate val-
wesss s unchanged by this transformation. In bomogeneous-coordinets ferm, the
thresdimeasional s=xis mation squations are

x cosfi —=inf 0 P |’:

v gnd ows 00 " .
d - = t 15;

- 1 n i 0 -

| L0 0 AR | ]
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Figure 4 illustrates motation of an object abont the 2 axis
Traneformation squations for rotstions aboul the other two coordinate moes
oan be abtained with a oyclic permmitation of the coordinate parmmeters x, v, and
= in BEquations 4;
T === —=1r in
Thus, to obixin the raxds and yands mfation tmmefrmations. we oydically
repiare x with ; iy with z and = with r, as illostrated in Fgune 5.
Substituring permutations 7 into Bquations 4, we gof the squations for an
T-avis rotation
¥ = wooell —=zsinfl
= = ysind 4 oo 1:4]
=z
Ruotation of an object sround the 1 avisis demonstrated in Figure 6.
A cyclic permustatipn of coordinates in Equations 8 gives us the transforma-
ton equations for o waxis rotation:

gl — r=ips
sinf + xcosd m

£
z
v

g M

An example of y-axis rotation = shiwn in Figore 7.
An-inverse three-dimensional rotation matrix @ obmined m e same way
as the invers: natations in two dimensions. We just replace Se angle 6 with -4

K z 1
= L F

FIGURE §
Cyeie pemastation of the Corfsian- oo mees ae= 1w prode the tree soisof coommoe a0 amibo)
eqatiom.
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Negative values for rofation angles gonerate rotations in a clockwise direction,
and the Idsntity mutrix is produced when we :r:LdtI.ii: any rotation matris by Us
inverss. Hecanse only the sine function is affacted by the change in sign of the
motation angle, the inverss matrix can also be obtained by intorchanging rows and
cohiumms. That i, we can cabolate the Trverse of any motation matrix B by forming
its transpose (R~ =R, '

General Three-Dimenslonal Rotatlons

A rotation matrix for any axis that dises not coincds with & conndinate axis @n
be set up as 3 composite rapsformaticn imvolving combinations of trnsdations
and the coontimatis-anxds matlons. We st move the desigrated rotation ads onto
one of the coondinats axes Then we apply the sppropriste rottion matris, for
that conrdimate axis. The last step in the transformation sequence s o rehem the
motation axis o its origina) position

Int the special case where an object is o be rotated abowt an asis that s |
by vne of the coardinate axes, we attain the desired mtation with the fallowing
transfprmston sequEnae

1. Translate the object s» that the rottion axs coinddes with the paralisl
coordinate avis

1. Perform the spedifled rotation about that ada.

3. Translate the object =0 that the rotation axis = moved back o 1= original
positon.

The steps in this sequence are ithustrated in Fgure 8. A coordinate position, P is
transformed with the sequence shown in this bgure as

FP=T"' Rt} T P (e
wharre the compisite rotation matris for dw transformation is
Rif) =T Ry(8)-T (11

This composite matrix & of the same form as the two-dimensional transtormation
# for rotation aboul an axis that s parallel o the zaxis{a pivot point that

is not at the coardimate srigm).
When #n object is to be mfated sbout an axis that is not pamlle] to one of
the coordinate axes, we must perform some additional tmnsformations. In this
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i

Wil {di
Trunsiwie [iniatusn Az ono T A Truminie {omums
Ars ko Drgingd Pmilme

s, we-alsn need rotatons o align the mtation axis with o salected coondinate
axis and then tao bring the mtation axis beck 1o (s eriginal otentation. Given the
specifications for the motation axde and the mation angle, we mn accomplish the
rejuired rotation in five sieps

1. Transkite the object so that the motation axis passes through the coordinabie

1 Eotate the object o that the axis of mmtion comddes with one of the

coord inate aves,
3. Perfomm the specifind rotation about the seleced covrdinate axis.

& Apply mveme mtstions 1o bring the mombon axis back o ite cogmal

oriEniatiom.

S Apply thr inverse trensintion to bring the rotation ads back o s odginal
We @n tmmnsform the mtation axis onio any one of the three coordinate axes.
The z axi= iz often a convendent chaice, and we next consider & beEnsformetion

A motatiom axds can be defined with two coordinate positicns, asin Figome 10,
or with onz coordinate point and diredion angles (or direction cosines) betwean
the notation axis and two of the coordinate axes. We assume that the rotaion axis
i= defined by two points, as illustrated, and that the direction of mtation is to be
counterclockowise when Inoking along the axis from F; o P,. The componsnis of
the rotation-axis vector are then computed as

V=P
={m—x, fp— .22 —=) L
The unit rtation-axis vector o is

"=%={EJ".H 13

FIGUORE H

Sepence of tansiomations e
fatating an ohiet ol & 2k el &
sl ip P r 2
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where the compmneni=a, b and ¢ are the direction cosines for the mtation s

’ ‘ _ E—x _ B =

‘f‘, i= T b——r"ﬂ—. L= Vi H.'il
J."r 1 the rotation is to be in the opppsite direction {dlockwise when viewing from P;
o Py}, then wewonld reverse axis vector V' and wnit vecior u so that they paint

in the dirsction from Py o 1.
. The first step In the rotation ssquence is to s=t up the translation madrix
FIGURE 10 thar reppsitions the miation mas so that it passes through the coordinate on-
A3 of rotation (tashes! ne) in. Because we want a counterclockwise rotation when viewing along the axis

mﬂlluﬂhﬁfﬂﬁ?ﬂmﬂ&?ﬁ Iom Prto Py {Figurs 1Y), we move the pomt: Py to the origing (I the rofation bad
detmine by Tt spectied msen hemq}éuﬂndM&muppnﬂiEdﬁHthEWmld mirwe- Py ie tha orging) This

drertion, translation matrm =

1 00 —n
01 0 —
= loa 1 =2 s
i [ I |

which repositions the rofation 2xs and the ohject as shown in Figure 11
Nowt, we formutate the transformations that will put the rotation axds onto
= the = avis We mn pse the coordinato-aods rotations 1o acoomplish this alignmeent
in tweir steps, and there are s nmbeér of wayvs 1o perlionmn thess twio Steps. Bor this
emmple, wo fisst miate aboot the 1 ods, then romte abenit the ¥ axs. The x-mds

m{ﬁ[ﬂ‘;!ﬂmmhm Tolation ot voclor i into the 1z plane and Hm_l;—ujz.mhﬁ-unswmglummd
mm_ to the = axis. These two rotations are fllnstmated in Figure 12 for one possible

ddentation of veciorin.

Becanss mtation mlralations imolve-sine and  cosine hmctions, we can mse
‘standard vector operations th obtain'elements of the wo retation matrices.
n’nﬂ'lrd.ulpmdnctmhemed t dotormine the cosine fotm, and a vector
s produet can be used o caloulate the sine term

r ¥
n
-
4 T
.3 (3 -
i il

FIGURE T2
Uil ye=tur 5 T -t e 0 ks m ng & mi e r 7 pEane
L=k them 8 W potaied o ey ot S0 e e i 0

Wa sstablish the transformation matmy bor metaton around . the x s by '
detrrmining the values for the sine and cosine of the rotation angle necessary
to gt o into the 1= plane. This rotation u‘glebﬂumtghlwtwa;fﬁm}'w}etﬂ. -

of uin the y= plane and the positive = axis (Fgure 13), I we nepresant the prmjec- ;};E

tiom of win ther y= pline &= the vectorw’ = (0, b, 0}, then the cosines of the ndation T

angle & eanbe determined from the dot prodoct of u’ and the unit vecior u; along = [ 1

the = axis-
uow & m:ff:;:mmrmrm
= Wl & U8 s e wcramiibed by
wharr o is the mapnimde of u'; mmammﬁf
d=+'b 5 n

Similarty, we can determine the sine of & from the mﬂ—[_-mdr.n:tnfn'arld n.. The
m-:lu'ﬂhﬁiu—in:ir.?ei'ld!nt frrm el this cro=-produet i

o« iy =ty o) o) mine v
and the Cartesion form for the cross-product ghves os
T o U =0 (T

Equating the right sides of Equations 18 and 19, and noting that |u | = 1z and
j'} = &, we havo
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the unit vector in the xz plone, resuline from @e rotation sbout the ¥ axis. This
vector, labeled 0, has the value s for its r component, becauses rotation about thes
xaeiy loaves the ¥ component unchanged: s z comppnent s d (the magnitude nf
u'), becamse vector o' has been mtated onio the = axie Also the v component of
g” in 0 because it now fss in the = plane Again, we con determine the cosine
uf rotation angle # from the dot product of endt vectors o™ and u,. This,
u* -, =

ﬂﬁ:m_rf (21
beciuse fu:] = |u"| = | Comparing the coordinate-independant form of the
crose-product

u' o o=y |u'| g sn g (13
with the Cartesian form
W U=y ) (i
we firkd that
sHnfl = —a {15}
Themefore. the transformation matris lor retation of 0" aboul the v axis i=
d 0 —a 0O
TEOEE
a9 4 1

With transformation matrices 15, 21, and 26, we have alipned the rots-

Hom axie with the posithve 2 axis. The specified rotation angle & con now beapplied
as g rotetion about the = axds &= [ollows

codfl —sim@ 0 0

emifl oosd 0 [
=15 5 3 o @n

it i 0 1
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To complets the equired rotation about the given axis, we need o mnsform
thie rrtation axis back 1o 1= original position. This is done by applving the nvemse
of mansformations 15, 21, and 26, The tmnsformabon matrix for mtation
about an arbitrary axis can then be oxpressed o the .mp-u-slﬂhri of thess sevon
md ividual fransformations:

Rii=T" R o) By (0 Retl) - Rg() - Reloe)-T (%

A somewhat quicker, but perhaps lose intuiive, mothod for chiaining the
composile ot tion matris Ry(f) Rale) bs touze the fact that the composite matrix
for any sequence of thme-dimensional rotatians is of the frm

ry re P O

R - Fig Tz:l Fr ] !1!'
i = 0
] il 01

The Joft 3 « 3 submatrix of this matnx s orthogonal. This means that e
kit o

the molirmns] of this submistrix form a set of arthogonal wnit vectors that
are rotated by matri R anto the 3, 3, and = aves, respectivaly:
it 1 Fil L e
R-[TF] = g | H[E ol L
1

= £t
P My

1
oy n
1 [I 1 |
Tharetore, wie oin set up 3 lecal corrdinate system with one isf (= axos aligned on
the mtation dxis, Thisn the unit vee s for the three cordinate aves are ussd o

= =]

comstruct the eolumns of the notation matric ing that the rotation axs is o
niil parallel b any coordirate ads wel could fomm the following s of local undt / E
voctors (Figum: 15), H
o FIGURE 15
: Lo comvoinaie-syten i a ratoion
i qqy 2% et by i oo
e ug 0

e Tl
1 we express the elements of the unit lom] vectors for the rotation axis as
U = (W Mpas Wiy )
0 = (i, Wi, Wi (£
= iy, by o)
then the required composite matr, which is equal o the produce R#) - Ryle);

I=
Wy Mgy gy O
Lr'H ":u u'p ]

Ll £ A o

(N (T R B

This matris transforms the unit vectors wt, w)_ and W, onfo the x, y, and = axes,
raspectively, This atigns the mtation o= with the = o= bemnse o) = o,

Duatembon Methods for Three-Dimenslonal Rotatlons

Amaors sfficient method for gonsrating a rotation sbont an arbitrarily selected axds
I= o p== & quatemion representadon for the rotation trensforma ton. Quatemions,
which am extensions of hye-dimensional complex numbers, are wsehil M 2 mme-

h:!'rﬂi mrrqnlh!r-miphm pmn:dm‘a, Induding the gensation of Erm_:lzl ohieci=
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TI'E'!.rm{uj.c:E E':Emmfg: FPaIcE than 4 x 41::11|:|:h:u, ind It s ai:hphﬂ' I wiita

in animaticns, which often regiie complicatad II.'I-II-I.h:B.'i seiiEncas :m:l motien

mterpolatioms botwen two pivim position= of an objact
U way B chameterize A quatsmion = as &n ondersd pait, consisting of =
sondar port and o tector part

i = {5 )

We @=n also think of a guatermion & @ higher-order munples, number with e
roal part (the scalar part) and three complox: parts (the sloments of vector v A
roda b abvoul any o s passing throogh the coontinate origin bs acoomplished by
first setting up 3 unit quatermicn with the scalar and vector parts a= follows:

g

= 005w, ¥ =usm

5 (34

1]

P =0, p) 38)

The =comid berm in this ondened pair is the mtated point position F which =
svalimted with vector dot and conss-prodiects as

P =l"'F.I+H-||:It"a"b+.._l-I_1||'.-: Pl4v = [voxpl (37)

Vialues fir parameters & and v are obtained from the expressions in 4. Many
crmpter gmphice systems sse ol oimt hardwane immplementations of these voo-
b cakemlytions by perform rapid thee-dimensiomal abject rotations
Tranatormation 15 i= equivalent iorotation aboutan axis that passes though
the cocrdinate origin, Thi= i= the same s the ssquence of mditlon tmmsfommstions
in Bguation 28 that aligns the rotation axi= with the z axig, rotates aboimt = and
thim returns the nolation axis to its origimal ofentaton at the coond inite origin.
W can evaluate the tormein Fquation 37 using the defmitien for qoatemion
ton, Also, desipna antpcmmlauflhutuﬂnrpartufqﬂr—
(@, b, ¢}, woobtain Ilmellﬂtﬂms bor e composite rotation matrix B o) - H-"l;ﬂ'l
R (8- RyF Rejedinad = 3 formoes

1 -2 -2 b — e 2ur -+ 2ah
Myly= | 20b4+2s¢ 1 —-20°—27 2002w
2oe —Xh e 4 2eg I

The mlculatens nvolved m this matrix can I}gum redtly mdored by sbstituimg

explicit values for paramsters g, b, ¢, and , and Lﬁnlgﬂmluﬂnﬁm.gmﬁtm-
metric idantities to simolity the terms:

(38
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For example, we can perform a rotation about the z axis by setting
rotationaxisvector u to the unit z-axis vector (0, O, 1). Substituting the
components of thisvector intoMatrix 39, we get the 3x3 version of the z-axis
rotationmatrix Rz (0 )in Equation . Similarly, substituting the unit-
quaternion rotation values intoEquation 35 produces the rotated coordinate
values in Equations 4.

In the following code, we give examples of procedures that could be
used toconstruct a three-dimensional rotation matrix. The quaternion
representation inEquation 40 is used to set up thematrix elements for a
general three-dimensionalrotation.
class wcPt3D
{public:

GLfloat x, y, z;

5

typedef float Matrix4x4 [4][4];

Matrix4x4 matRot;

/* Construct the 4 x 4 identity matrix. */

void matrix4x4Setldentity (Matrix4x4 matldent4x4)

{

GLint row, col;

for (row = O; row < 4; row++)

for (col = 0; col < 4 ; col++)

matldent4x4 [row][col] = (row == col);

3

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;

Matrix4x4 matTemp;

for (row = O; row < 4; row++)

for (col = O0; col < 4 ; col++)
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matTemp [row][col] = m1 [row][0] * m2 [O][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][co]] +

m1l [row][3] * m2 [3][col];

for (row = O; row < 4; row++)

for (col = O; col < 4; col++)

m2 [row][col] = matTemp [row][col];

}
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)

{

Matrix4x4 matTransl3D;

/* Initialize translation matrix to identity. */
matrix4x4Setldentity (matTransl3D);
matTransl3D [0][3] = tx;

matTransl3D [1][3] = ty;

matTransl3D [2][3] = tz;

/* Concatenate translation matrix with matRot. */
matrix4x4PreMultiply (matTransl3D, matRot);

}
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle)

{
Matrix4x4 matQuaternionRot;
GLfloat axisVectLength = sqrt ((p2.x - pl1.x) * (p2.x - pl.x) +
(p2.y - pl.y) * (p2.y - pl.y) +
(p2.z - pl.z) * (p2.z - pl.2));
GLfloat cosA = cos (radianAngle);
GLfloat oneC = 1 - cosA;
GLfloat sinA = sin (radianAngle);
GLfloat ux = (p2.x - pl.x) / axisVectLength;
GLfloat uy = (p2.y - pl.y) / axisVectLength;
GLfloat uz = (p2.z - pl.z) / axisVectLength;
/* Set up translation matrix for moving p1 to origin. */
translate3D (-pl.x, -pl.y, -pl.z);
/* Initialize matQuaternionRot to identity matrix. */
matrix4x4Setldentity (matQuaternionRot);
matQuaternionRot [0][0] = ux*ux*oneC + cosA;
matQuaternionRot [0][1] = ux*uy*oneC - uz*sinA;
matQuaternionRot [0][2] = ux*uz*oneC + uy*sinA;
matQuaternionRot [1][0] = uy*ux*oneC + uz*sinA;
matQuaternionRot [1][1] = uy*uy*oneC + cosA;
matQuaternionRot [1][2] = uy*uz*oneC - ux*sinA;
matQuaternionRot [2][0] = uz*ux*oneC - uy*sinA;
matQuaternionRot [2][1] = uz*uy*oneC + ux*sinA;
matQuaternionRot [2][2] = uz*uz*oneC + cosA;
/* Combine matQuaternionRot with translation matrix. */
matrix4x4PreMultiply (matQuaternionRot, matRot);
/* Set up inverse matTransl3D and concatenate with
* product of previous two matrices.
*

/
translate3D (pl.x, pl.y, pl.z);
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}void displayFcn (void)

{/* Input rotation parameters. */

/* Initialize matRot to identity matrix: */
matrix4x4Setldentity (matRot);

/* Pass rotation parameters to procedure rotate3D. */
/* Display rotated object. */

}
SCALING

The matrix expression for the threedimensional scaling transformation of a
position P = (x, y, 2) relakive to the coordinate origin is a simple extension of
two-dimensional scaling. We just include the parameter [or ~coordinate scaling
in the transformation matrix:

k
Hﬂ

o o

{41)

Ll S A
ey

[ R = B = |
s T TS OO
s POt e

Sy
¢
0

The three-dimensional scaling transformabion for a point position can be repre-
senterd as

F—5.P (4}

where scaling: parameters s, s, and s. are assigned any positive values. Explicit
expressions tor the scaling ransformation relative to the origin are
r=ur-s,, y':y-s\y* 2 =n- {43)

Scaling an object with trensformation 41 chanpes the position of the object
relative to the coordinate arigin. A parameter value greater than | maves a poing
farther from the origin in the corresponding coordinate directon. Similarly. a
parameter value iess than 1 moves a point closer to the origin in that coordinate
directior. Also, if the scating parameters are notall equal, relative dimensions of a
transformed object are changed. We preserve the original shape of an olyect with
2 aniform sealing: 5; = 5, = 5:. The result of scaling an olyect uniformly, with each
scaling pararneter set ko L, Is (Tustrated In Figure 17.

Because same graphjl.j packages provide only a routine that scales relative
to the rpondinate origin, we can always constrisct 4 scaling transtormation with
respect io any selected fixed position {ar, ¥y, =) using the inflowing transipomation
SEQUBTHT:

1. Translate the fixed point to the erigin.
2. Apply the scaling transformabion relative o the coordinate origin using
Equation 41.

3. Translate the fixed point back to its original position.

This seguence of transformadons is demoensirated in Figure 18, The matrix
representation for an arbitrary Fxed-point scaling can than be expressed as the
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¥ concatenation of these translate-scale-tmmslate tansformations:
$ = 0 0 “—F;:ﬂ:_q:]
i g (1=
(TS5 Tixy, ¥r. 22) - Sioefyt) Tl-Zp, =¥, =34 )= | 5 'E = ‘E:—iﬁf}: el
A I
¥ Orgmal P
fa) We can el op g’.ﬂn‘mmigpmmﬂ s for comstricting 4 thres-dimensional
imlh:gmﬂ!ﬂxuﬁg;f‘;mqlhmﬂmmlp-mhmmmm1mm$
ration of the fived-point coordinates In the following code example, we demon-

sirate & dined construction of 2 three-dimensional scaling matriy relstive o 2
salncled fived point i=ing the mlrulatinns in Fouostion 44

x Ve Tranelels
£l

FIGURE 18

A =juere of manskormaton fof
g ey ralithe s siketad
Tz i, veuing Expanlion a7

matScale3D [0][0] = sx;

matScale3D [0][3] = (1 - sx) * fixedPt.getx ( );
matScale3D [1][1] = sy;

matScale3D [1][3] = (1 - sy) * fixedPt.gety ( );
matScale3D [2][2] = sz;

matScale3D [2][3] = (1 - sz) * fixedPt.getz ( );
3
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An inverse, three-dimensional scalingmatrix is set up for either
Equation 41or Equation 44 by replacing each scaling parameter (s x, sy, and
sz )with its reciprocal.However, this inverse transformation is undefined if
any scaling parameteris assigned the value 0. The inverse matrix generates
an opposite scaling transformation,and the concatenation of a three-
dimensional scaling matrix with itsinverse yields the identity matrix.
COMPOSITE

As with two-dimensional transformations, we form a composite
threedimensionaltransformation by multiplying the matrix representations
for
the individual operations in the transformation sequence. Any of the
twodimensionaltransformation sequences, such as scaling in noncoordinate
directions,can be carried out in three-dimensional space.

We can implement a transformation sequence by concatenating the
individualmatrices from right to left or from left to right, depending on the
order in whichthe matrix representations are specified. Of course, the
rightmost term in a matrixproduct is always the first transformation to be
applied to an object and theleftmost term is always the last transformation.
We need to use this ordering forthe matrix product because coordinate
positions are represented as four-elementcolumn vectors, which are
premultiplied by the composite 4 x 4 transformationmatrix.

The following program provides example routines for constructing a
threedimensionalcomposite transformation matrix. The three basic
geometric transformationsare combined in a selected order to produce a
single composite matrix,which is initialized to the identity matrix. For this
example, we first rotate, thenscale, then translate.We choose a left-to-right
evaluation of the composite matrixso that the transformations are called in
the order that they are to be applied.

Thus, as each matrix is constructed, it is concatenated on the left of
the currentcomposite matrix to form the updated product matrix.
class wcPt3D {
public:

GLfloat x, y, z;

b

typedef GLfloat Matrix4x4 [4][4];

Matrix4x4 matComposite;

/* Construct the 4 x 4 identity matrix. */

void matrix4x4Setldentity (Matrix4x4 matldent4x4)

{

GLint row, col;

for (row = O; row < 4; row++)

for (col = 0; col < 4 ; col++)

matldent4x4 [row][col] = (row == col);

3

/* Premultiply matrix m1 by matrix m2, store result in m2. */
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2)
{

GLint row, col;

Matrix4x4 matTemp;
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for (row = 0; row < 4; row++)
for (col = O0; col < 4 ; col++)
matTemp [row][col] = m1 [row][0] * m2 [O][col] + m1 [row][1] *
m2 [1][col] + m1 [row][2] * m2 [2][co]] +
m1l [row][3] * m2 [3][col];
for (row = 0; row < 4; row++)
for (col = O; col < 4; col++)
m2 [row][col] = matTemp [row][col];
}
/* Procedure for generating 3-D translation matrix. */
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz)
{
Matrix4x4 matTransl3D;
/* Initialize translation matrix to identity. */
matrix4x4Setldentity (matTransl3D);
matTransl3D [0][3] = tx;
matTransl3D [1][3] = ty;
matTransl3D [2][3] = tz;
/* Concatenate matTransl3D with composite matrix. */
matrix4x4PreMultiply (matTransl3D, matComposite);
}
/* Procedure for generating a quaternion rotation matrix. */
void rotate3D (wcPt3D pl, wcPt3D p2, GLfloat radianAngle)
{
Matrix4x4 matQuatRot;
float axisVectLength = sqrt ((p2.x - pl.x) * (p2.x - pl.x) +
(p2.y - pl.y) * (p2.y - pl.y) +
(p2.z - pl.z) * (p2.z - pl.2));
float cosA = cosf (radianAngle);
float oneC = 1 - cosA;
float sinA = sinf (radianAngle);
float ux = (p2.x - pl.x) / axisVectLength;
float uy = (p2.y - pl.y) / axisVectLength;
float uz = (p2.z - pl.z) / axisVectLength;
/* Set up translation matrix for moving p1 to origin,
* and concatenate translation matrix with matComposite.
*
/
translate3D (-pl.x, -pl.y, -pl.z);
/* Initialize matQuatRot to identity matrix. */
matrix4x4Setldentity (matQuatRot);
matQuatRot [0][0] = ux*ux*oneC + cosA;
matQuatRot [0][1] = ux*uy*oneC - uz*sinA;
matQuatRot [0][2] = ux*uz*oneC + uy*sinA;
matQuatRot [1][0] = uy*ux*oneC + uz*sinA;
matQuatRot [1][1] = uy*uy*oneC + cosA;
matQuatRot [1][2] = uy*uz*oneC - ux*sinA;
matQuatRot [2][0] = uz*ux*oneC - uy*sinA;
matQuatRot [2][1] = uz*uy*oneC + ux*sinA;
matQuatRot [2][2] = uz*uz*oneC + cosA;
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/* Concatenate matQuatRot with composite matrix. */
matrix4x4PreMultiply (matQuatRot, matComposite);
/* Construct inverse translation matrix for p1 and
* concatenate with composite matrix.
*
/
translate3D (pl.x, pl.y, pl.z);
}
/* Procedure for generating a 3-D scaling matrix. */
void scale3D (Gfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt)
{
Matrix4x4 matScale3D;
/* Initialize scaling matrix to identity. */
matrix4x4Setldentity (matScale3D);
matScale3D [0][0] = sx;
matScale3D [0][3] = (1 - sx) * fixedPt.x;
matScale3D [1][1] = sy;
matScale3D [1][3] = (1 - sy) * fixedPt.y;
matScale3D [2][2] = sz;
matScale3D [2][3] = (1 - sz) * fixedPt.z;
/* Concatenate matScale3D with composite matrix. */
matrix4x4PreMultiply (matScale3D, matComposite);
}
void displayFcn (void)
{
/* Input object description. */
/* Input translation, rotation, and scaling parameters. */
/* Set up 3-D viewing-transformation routines. */
/* Initialize matComposite to identity matrix: */
matrix4x4Setldentity (matComposite);
/* Invoke transformation routines in the order they
* are to be applied:
*/
rotate3D (p1, p2, radianAngle); // First transformation: Rotate.
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale.
translate3D (tx, ty, tz); // Final transformation: Translate.
/* Call routines for displaying transformed objects. */
3
SHEARS AND REFLECTIONS
In addition to translation, rotation, and scaling, the other
transformationsdiscussed for two-dimensional applications are also useful
in many threedimensionalsituations. These additional transformations
include reflection,shear, and transformations between coordinate-reference
frames.
Three-Dimensional Reflections
A reflection in a three-dimensional space can be performed relative to
a selectedreflection axis or with respect to a reflection plane. In general,
three-dimensionalreflection matrices are set up similarly to those for two
dimensions. Reflections relativeto a given axis are equivalent to 180-
rotations about that axis. Reflectionswith respect to a plane are similar;
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when the reflection plane is a coordinateplane (xy, xz, or yz), we can think of
the transformation as a 180¢ rotation infour-dimensional space with a
conversion between a left-handed frame and aright-handed frame.

Anexample of a reflection that converts coordinate specifications
froma righthandedsystemto a left-handed system(or vice versa) is shown in
Figure 19. Thistransformation changes the sign of z coordinates, leaving the
values for the x andy coordinates unchanged. The matrix representation for
this reflection relative tothe xy plane is
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THREE DIMENSIONAL VIEWING

For two-dimensional graphics applications, viewing operationstransfer
positions from the world-coordinate plane topixel positions in the plane of
the output device. Usingthe rectangular boundaries for the clipping window
and the viewport,a two-dimensional package clips a scene and maps it to
devicecoordinates. Three-dimensional viewing operations, however, aremore
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involved, because we now have many more choices as to howwe can
construct a scene and how we can generate views of thescene on an output
device.

When we model a three-dimensional
scene, each object in the scene is
typicallydefined with a set of surfaces that
form a closed boundary around the
objectinterior. And, for some applications, we
may need also to specify informationabout the
interior structure of an object. In addition to -
procedures that generateviews of the surface
features of an object, graphics packages

sometimes provideroutines for displaying -
internal components or cross-sectional views  piauUEE 1
of a SOlidObjCCt. Viewing functions process the Conmiene 1reEcE on-ecEnim A
object descriptions through a set of =iget ven ol 3 eedmemaena

proceduresthat ultimately project a specified SR LEY

view of the objects onto the surfaceof a

display device. Many processes in three-dimensional viewing, such as
theclipping routines, are similar to those in the two-dimensional viewing
pipeline.

But three-dimensional viewing involves some tasks that are not
present in twodimensionalviewing. For example, projection routines are
needed to transfer thescene to a view on a planar surface, visible parts of a
scene must be identified, and,for a realistic display, lighting effects and
surface characteristics must be takeninto account.

Viewing a Three-Dimensional Scene

To obtain a display of a three-dimensional world-coordinate scene, we
first setup a coordinate reference for the viewing, or “camera,” parameters.
This coordinatereference defines the position and orientation for a view
plane (or projectionplane) that corresponds to a camera film plane (Figure 1).
Object descriptionsare then transferred to the viewing reference coordinates
and projected onto theview plane. We can generate a view of an object on the
output device in wireframe(outline) form, or we can apply lighting and
surface-rendering techniquesto obtain a realistic shading of the visible
surfaces.

PROJECTION

Unlike a camera picture, we can choose different methods for
projecting a sceneonto the view plane. One method for getting the
description of a solid objectonto a view plane is to project points on the
object surface along parallel lines.

This technique, called parallel projection, is used in engineering and
architecturaldrawings to represent an object with a set of views that show
accurate dimensionsof the object, as in Figure 2.
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Another method for generating a view of a three-dimensional scene is
toproject points to the view plane along converging paths. This process,
called aperspective projection, causes objects farther from the viewing
position to be displayedsmaller than objects of the same size that are nearer
to the viewing position.

A scene that is generated using a perspective projection appears more
realistic,because this is the way that our eyes and a camera lens form
images. Parallel linesalong the viewing direction appear to converge to a
distant point in the background,and objects in the background appear to be
smaller than objects in theforeground.

In the next phase of the three-dimensional viewing pipeline, after the
transformationto viewing coordinates, object descriptions are projected to
the view plane.

Graphics packages generally support both parallel and perspective
projections.

In a parallel projection, coordinate positions are transferred to the
view planealong parallel lines. Figure 15 illustrates a parallel projection for a
straightlinesegment defined with endpoint coordinates P1 and P2. A parallel
projectionpreserves relative proportions of objects, and this is the method
used in computeraideddrafting and design to produce scale drawings of
three-dimensional objects.

All parallel lines in a scene are displayed as parallel when viewed with
a parallelprojection. There are two general methods for obtaining a parallel-
projection viewof an object: We can project along lines that are
perpendicular to the view plane,or we can project at an oblique angle to the
view plane.

For a perspective projection, object positions are transformed to
projectioncoordinates along lines that converge to a point behind the view
plane. An exampleof a perspective projection for a straight-line segment,
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defined with endpoint coordinates P1 and P2, is given in Figure 16. Unlike a
parallel projection, a perspectiveprojection does not preserve relative
proportions of objects. But perspectiveviews of a scene are more realistic
because distant objects in the projected displayare reduced in size.

ORTHOGONAL PROJECTIONS

A transformation of object descriptions to a view plane along lines that
are allparallel to the view-plane normal vector N is called an orthogonal
projection (or,equivalently, an orthographic projection). This produces a
parallel-projectiontransformation in which the projection lines are
perpendicular to the view plane.

Orthogonal projections are most often used to produce the front, side,
and top views of an object, as shown in Figure 17. Front, side, and rear
orthogonal projections of an object are called elevations; and a top
orthogonal projection iscalled a plan view. Engineering and architectural
drawings commonly employthese orthographic projections, because
lengthsandangles are accurately depictedand can be measured from the
drawings.

Axonometric and Isometric Orthogonal Projections

We can also form orthogonal projections that display more than one
face of anobject. Such views are called axonometric orthogonal projections.
The most commonlyused axonometric projection is the isometric projection,
which is generatedby aligning the projection plane (or the object) so that the
plane intersects eachcoordinate axis in which the object is defined, called
the principal axes, at the same distance from the origin. Figure 18 shows an
isometric projection for a cube. We can obtain the isometric projection
shown in this figure by aligning the viewplanenormal vector along a cube
diagonal. There are eight positions, one in eachoctant, for obtaining an
isometric view. All three principal axes are foreshortenedequally in an
isometric projection, so that relative proportions are maintained.
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This is not the case in a general axonometric projection, where scaling
factorsmay be different for the three principal directions.
Orthogonal Projection Coordinates

With the projection direction parallel to the zview axis, the

transformation equationsfor an orthogonal projection are trivial. For any
position (x, y, z) in viewingcoordinates, as in Figure 19, the projection
coordinates arexp = x, yp = y (6)

The z-coordinate value for any projection transformation is preserved
for use inthe visibility determination procedures. And each three-
dimensional coordinatepoint in a scene is converted to a position in
normalized space.

Clipping Window and Orthogonal-Projection View Volume

In the camera analogy, the type of lens is one factor that determines
how much ofthe scene is transferred to the film plane. A wide-angle lens
takes in more of thescene than a regular lens. For computer-graphics
applications, we use the rectangularclipping window for this purpose. As in
two-dimensional viewing, graphicspackages typically require that clipping
rectangles be placed in specific positions.

In OpenGL, we set up a clipping window for three-dimensional viewing
just aswe did for two-dimensional viewing, by choosing two-dimensional
coordinatepositions for its lower-left and upper-right corners. For three-
dimensional viewing,the clipping window is positioned on the view plane
with its edges parallelto the xview and yview axes, as shown in Figure 20. If
we want to use some othershape or orientation for the clipping window, we
must develop our own viewingprocedures.
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The edges of the clipping window specify the x and y limits for the part
ofthe scene that we want to display. These limits are used to form the top,
bottom,and two sides of a clipping region called the orthogonal-projection
viewvolume. Because projection lines are perpendicular to the view plane,
these fourboundaries are planes that are also perpendicular to the view
plane and that pass.

through the edges of the clipping window to form an infinite clipping region,
asin Figure 21.

We can limit the extent of the orthogonal view volume in the zview
directionby selecting positions for one or two additional boundary planes
that are parallelto the view plane. These two planes are called the near-far
clipping planes, or thefront-back clipping planes. The near and far planes
allow us to exclude objectsthat are in front of or behind the part of the scene
that we want to display. Withthe viewing direction along the negative zview
axis, we usually have zfar <znear,so that the far plane is father out along
the negative zview axis. Some graphicslibraries provide these two planes as
options, and other libraries require them.

When the near and far planes are specified, we obtain a finite
orthogonal viewvolume that is a rectangular parallelepiped, as shown in
Figure 22 along with onepossible placement for the view plane. Our view of
the scene will then containonly those objects within the view volume, with
all parts of the scene outside theview volume eliminated by the clipping
algorithms.
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Graphics packages provide varying degrees of flexibility in the
positioningof the near and far clipping planes, including options for
specifying additionalclipping planes at other positions in the scene. In
general, the near and far planescan be in any relative position to each other
to achieve various viewing effects,including positions that are on opposite
sides of the view point. Similarly, the viewplane can sometimes be placed in
any position relative to the near and far clippingplanes, although it is often
taken to be coincident with the near clipping plane.

However, providing numerous positioning options for the clipping and
viewplanes usually results in less efficient processing of a three-dimensional
scene

Normalization Transformation for an Orthogonal Projection

Using an orthogonal transfer of coordinate positions onto the view
plane, weobtain the projected position of any spatial point (x, y, z) as simply
(x, y). Thus,once we have established the limits for the view volume,
coordinate descriptionsinside this rectangular parallelepiped are the
projection coordinates, and theycan be mapped into a normalized view
volume without any further projectionprocessing. Some graphics packages
use a unit cube for this normalized viewvolume, with each of the x, y, and z
coordinates normalized in the range from Oto 1. Another normalization-
transformation approach is to use a symmetric cube,with coordinates in the
range from
-1 to 1.




175

Because screen coordinates are often specified in a left-handed
reference frame(Figure 23), normalized coordinates also are often specified in
a left-handedsystem. This allows positive distances in the viewing direction
to be directlyinterpreted as distances fromthe screen (the viewing plane).
Thus, we can convertprojection coordinates into positions within a left-
handed normalized-coordinatereference frame, and these coordinate
positions will then be transferred to lefthandedscreen coordinates by the
viewport transformation.To illustrate the normalization transformation, we
assume that theorthogonal-projection view volume is to be mapped into the
symmetricnormalization cube within a left-handed reference frame. Also, z-
coordinate positionsfor the near and far planes are denoted as znear and
zfar, respectively. Figure24 illustrates this normalization transformation.
Position (xmin, ymin, znear )is mapped to the normalized position (-1, -1,
-1), and position (xmax, ymax, zfar)is mapped to (1, 1, 1).
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Transforming the rectangular-parallelepiped view volume to a
normalizedcube is similar to the methods for converting the clipping window
into the normalizedsymmetric square. The normalization transformation for
the orthogonalview volume ismultiplied on the right by the composite
viewing transformationR'T(Section 4) to produce the complete
transformation from world coordinatesto normalized orthogonal-projection
coordinates.

At this stage of the viewing pipeline, all device-independent coordinate
transformationsare completed and can be concatenated into a single
composite matrix.

Thus, the clipping procedures are most efficiently performed following
the normalizationtransformation. After clipping, procedures for visibility
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testing, surfacerendering, and the viewport transformation can be applied to
generate thefinal screen display of the scene.
OBLIQUE PARALLEL PROJECTIONS.

In general, a parallel-projection view of a scene is obtained by
transferring objectdescriptions to the view plane along projection paths that
can be in any selecteddirection relative to the view-plane normal vector.
When the projection path isnot perpendicular to the view plane, this
mapping is called an oblique parallelprojection. Using this projection, we
can produce combinations such as a front,side, and top view of an object, as
in Figure 25. Oblique parallel projectionsare defined by a vector direction for
the projection lines, and this direction can bespecified in various ways.
Oblique Parallel Projections in Drafting and Design

For applications in engineering and architectural design, an oblique
parallel projectionis often specified with two angles, a and ¢, as shown in
Figure 26. Aspatial position (x, y, z), in this illustration, is projected to (xp,
yp, zup) on a viewplane, which is at location zvp along the viewing z axis.
Position (x, y, zvp) is thecorresponding orthogonal-projection point. The
oblique parallel projection linefrom (x, y, z) to (xp, yp, zvp) has an
intersection angle a with the line on the projectionplane that joins (xp, yp,
zvp) and (x, y, zup). This view-plane line, with lengthL, is at an angle ¢ with
the horizontal direction in the projection plane. Angle acan be assigned a
value between 0 and 90-, and angle ¢ can vary from O to 360-.

We can express the projection coordinates in terms of x, y, L, and ¢ as

Xp=x+ Lcos @
yp=y + L sin ¢(8)
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whereLl = cot a, which is also the value of L when zvp—z = 1.We can then
writethe oblique parallel projection equations 8 as

xp=x+ Ll(zvp — z) cos @

yp=y+ Ll(zvp — z) sin ¢(11)

An orthogonal projection is obtained when L1 = O (which occurs at the
projection angle a = 90¢).Equations 11 represent a z-axis shearing
transformation. In fact, the effect ofan oblique parallel projection is to shear
planes of constant z and project themonto the view plane. The (x, y)
positions on each plane of constant z are shiftedby an amount proportional
to the distance of the plane from the view plane, sothat angles, distances,
and parallel lines in the plane are projected accurately.

This effect is shown in Figure 27, where the view plane is positioned at
the frontface of a cube. The back plane of the cube is sheared and
overlapped with thefront plane in the projection to the viewing surface. Aside
edge of the cube connectingthe front and back planes is projected into a line
of length L1 that makesan angle ¢ with a horizontal line in the projection
plane.

Cavalier and Cabinet Oblique Parallel Projections

Typical choices for anglep are 30° and45°, which display a
combination view of thefront, side, and top (or front, side, and bottom) of an
object. Two commonly usedvalues for a are those for which tan a = 1 and
tan a = 2. For the first case, a = 45°and the views obtained are called
cavalier projections. All lines perpendicular tothe projection plane are
projected with no change in length. Examples of cavalierprojections for a
cube are given in Figure 28.

When the projection angle a is chosen so that tan a =2, the resulting
viewis called a cabinet projection. For this angle (#63.4¢), lines
perpendicular to theviewing surface are projected at half their length.
Cabinet projections appearmore realistic than cavalier projections because
of this reduction in the length ofperpendiculars. Figure 29 shows examples
of cabinet projections for a cube.
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Oblique Parallel-Projection Vector

In graphics programming libraries that support oblique parallel
projections, thedirection of projection to the view plane is specified with a
parallel-projection vector,Vp. This direction vector can be designated with
a reference position relative tothe view point, aswedid with the view-plane
normal vector, or with any other twopoints. Some packages use a reference
point relative to the center of the clippingwindow to define the direction for a
parallel projection. If the projection vector isspecified in world coordinates, it
must first be transformed to viewing coordinatesusing the rotation matrix
discussed in Section 4. (The projection vector is wunaffectedby the
translation, because it is simply a direction with no fixed position.)

Once the projection vectorVp is established in viewing coordinates, all
pointsin the scene are transferred to the view plane along lines that are
parallel to thisvector. Figure 30 illustrates an oblique parallel projection of a
spatial point tothe view plane. We can denote the components of the
projection vector relativeto the viewing-coordinate frame as Vp= (Vpx, Vpy,
Vpz), where Vpy/Vpx = tan ¢.

Then, comparing similar triangles in Figure 30, we have
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The oblique parallel-projection coordinates in 12 reduce to the
orthogonalprojectioncoordinates 6 when Vpx = Vpy = 0.

Clipping Window and Oblique Parallel-Projection View Volume

A view volume for an oblique parallel projection is set up using the
same proceduresas in an orthogonal projection. We select a clipping window
on the viewplane with coordinate positions (xwmin, ywmin) and (xwmax,
ywmax), for the lowerleftand upper-right corners of the clipping rectangle.
The top, bottom, and sidesof the view volume are then defined by the
direction of projection and the edgesof the clipping window. In addition, we
can limit the extent of the view volumeby adding a near plane and a far
plane, as in Figure 31. The finite obliqueparallel-projection view volume is
an oblique parallelepiped.

Oblique parallel projections may be affected by changes in the position
of theview plane, depending on how the projection direction is to be
specified. In somesystems, the oblique parallel-projection direction is
parallel to the line connectinga reference point to the center of the clipping
window. Therefore, moving theposition of the view plane or clipping window
without adjusting the referencepoint changes the shape of the view volume.
Oblique Parallel-Projection Transformation Matrix

Using the projection-vector parameters from the equations in 12, we
canexpress the elements of the transformation matrix for an oblique parallel
projection as

This matrix shifts the
values of the x and y
coordinates by an amount
proportionalto the distance
from the view plane, which is
at position zvp on the zview
axis. The zvalues of spatial
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positions are unchanged. If Vpx = Vpy = O,wehave an orthogonalprojection
and matrix 13 is reduced to the identity matrix.

For a general oblique parallel projection, matrix 13 represents a z-axis
shearing transformation. All coordinate positions within the oblique view
volumeare sheared by an amount proportional to their distance from the
viewplane. The effect is to shear the oblique view volume into a rectangular
parallelepiped,as illustrated in Figure 32. Thus, positions inside the view
volume aresheared into orthogonal-projection coordinates by the oblique
parallel-projectiontransformation.

Normalization Transformation for an Oblique Parallel Projection

Because the oblique parallel-projection equations convert object
descriptions toorthogonal-coordinate positions, we can apply the
normalization procedures followingthis transformation. The oblique view
volume has been converted to arectangular parallelepiped, so we use the
same procedures as in Section 6.

Following the normalization example in Section 6, we again map to the
symmetric normalized cube within a left-handed coordinate frame. Thus, the
complete transformation, from viewing coordinates to normalized
coordinates,for an oblique parallel projection is
Moblique,norm= Mortho,norm -Moblique (14)
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Transformation Moblique is matrix 13, which converts the scene
descriptionto  orthogonal-projection coordinates; and transformation
Mortho,norm is matrix7, which maps the contents of the orthogonal view
volume to the symmetricnormalization cube.

To complete the viewing transformations (with the exception of the
mappingto viewport screen coordinates), we concatenate matrix 14 to the
leftof the transformation MWC, VCfrom Section 4. Clipping routines can then
beapplied to the normalized view volume, followed by the determination of
visibleobjects, the surface-rendering procedures, and the viewport
transformation.

UNIT 4:
VIEWING
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Although a parallel-projection view of a scene is easy to generate and
preservesrelative proportions of objects, it does not provide a realistic
representation. Tosimulate a camera picture, we need to consider that
reflected light rays fromthe objects in a scene follow converging paths to the
camera film plane. We canapproximate this geometric-optics effect by
projecting objects to the view planealong converging paths to a position
called the projection reference point (orcenter of projection). Objects are
then displayed with foreshortening effects, andprojections of distant objects
are smaller than the projections of objects of the samesize that are closer to
the view plane (Figure 33).

PERSPECTIVE PROJECTION
Perspective-Projection Transformation Coordinates

We can
sometimes select
the projection

reference point as
another  viewing
parameterin a
graphics package,
but some systems
place this
convergence pointat a fixed position, such as at the view point. Figure 34
shows the projectionpath of a spatial position (x, y, 2z) to a general projection
reference point at(xprp, yprp, zprp). The projection line intersects the view
plane at the coordinateposition (xp, yp, zvp), where zvp is some selected
position for the view plane onthe zview axis. We can write equations
describing coordinate positions along thisperspective-projection line in
parametric form as

X' =x- (x - xprp)u

Y=y-(y-yprpJu0O <u<1(15)

Z’=z- (z- zprpJu
Coordinate position (x’, y’, z’) represents any point along the projection
line.Whenu = 0, we are at position P = (x, y, z). At the other end of the line, u
=1 and
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Calculations for a perspective mapping are more complex than
theparallel-projection equations, because the denominators in the
perspectivecalculations 17 are functions of the z coordinate of the spatial
position. Therefore,we now need to formulate the perspective-transformation
procedures a littledifferently so that this mapping can be concatenated with
the other viewing transformations.

But first we take a look at some of the properties of Equations 17.
Perspective-Projection Equations: Special Cases

Various restrictions are often placed on the parameters for a
perspective projection.Depending on a particular graphics package,
positioning for either theprojection reference point or the view plane may not
be completely optional.

To simplify the perspective calculations, the projection reference point could
be limited to positions along the zview axis, then

L Ypep =W =1k
1P=_1|:_:.1rr —'"J Uy = f-"{_-"r-_w} (18}

Sy — =

S g — 5
Sometimes the projection reference point is fixed at the coordinate origin, and

— (1, 03, {1}

F=t(:;| ¥, =|.,.{%}I 19y

If the view plane is the oy plane and there are no restrictions on the placement of
the projection mference point, then we have

L Axprp Yprpe Zprp!

3. Zpp =1k : .
'=:='=1|:;mr__} Imtlr-r':jl {20)
[ TuE—-L'_—]l ‘.”l"'."f ;_;:I

(g — = \=prp
With the ur plane as the view plane and the projection reference pointon Be Zyiee
axis, the perspective squations are
4 Ypp =Wy =2p =1k
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Of course, we cannot have the projection reference point on the view
plane.In that case, the entire scene would project to a single point. The view
planeis usually placed between the projection reference point and the scene,
but, ingeneral, the view plane could be placed anywhere except at the
projection point.

If the projection reference point is between the view plane and the
scene, objectsare inverted on the view plane (Figure 35). With the scene
between the viewplane and the projection point, objects are simply enlarged
as they are projectedaway from the viewing position onto the view plane.

Perspective effects also depend on the distance between the projection
referencepoint and the view plane, as illustrated in Figure 36. If the
projection

reference point is close to the view plane, perspective effects are emphasized,;
thatis, closer objects will appearmuchlarger thanmore distant objects of the
same size.

Similarly, as the projection reference point moves farther from the
view plane, thedifference in the size of near and far objects decreases. When
the projection referencepoint is very far from the view plane, a perspective
projection approaches aparallel projection.

Vanishing Points for Perspective Projections

When a scene is projected onto a view plane using a perspective

mapping, linesthat are parallel to the view plane are projected as parallel
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lines. But any parallellines in the scene that are not parallel to the view
plane are projected intoconverging lines. The point at which a set of
projected parallel lines appears toconverge is called a vanishing point. Each
set of projected parallel lines has aseparate vanishing point.

For a set of lines that are parallel to one of the principal axes of an
object,the vanishing point is referred to as a principal vanishing point. We
control thenumber of principal vanishing points (one, two, or three) with the
orientationof the projection plane, and perspective projections are
accordingly classified asone-point, two-point, or three-point projections. The
number of principal vanishingpoints in a projection is equal to the number
of principal axes that intersectthe view plane. Figure 37 illustrates the
appearance of one-point and twopointperspective projections for a cube. In
the projected view (b), the view planeis aligned parallel to the xy object plane
so that only the object z axis is intersected.

This orientation produces a one-point perspective projection with a z-
axisvanishing point. For the view shown in (c), the projection plane
intersects boththe x and z axes but not the y axis. The resulting two-point
perspective projectioncontains both x-axis and z-axis vanishing points.
There is not much increasein the realism of a three-point perspective
projection compared to a two-pointprojection, so three-point projections are
not used as often in architectural andengineering drawings.
Perspective-Projection View Volume

We again create a view volume by specifying the position of a
rectangular clippingwindow on the view plane. But now the bounding planes
for the view volume arenot parallel, because the projection lines are not
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parallel. The bottom, top,andsidesof the view volume are planes through the
window edges that all intersect at theprojection reference point. This forms a
view volume that is an infinite rectangularpyramid with its apex at the

center of projection (Figure 38). All objects outsidethis pyramid are
eliminated by the clipping routines. A perspective-projectionview volume is
often referred to as a pyramid of vision because it approximatesthe cone of
vision of our eyes or a camera. The displayed view of a scene includesonly
those objects within the pyramid, just as we cannot see objects beyond
ourperipheral vision, which are outside the cone of vision.

By adding near and far clipping planes that are perpendicular to the
zviewaxis (and parallel to the view plane), we chop off parts of the infinite,
perspectiveprojectionview volume to form a truncated pyramid, or frustum,
view volume.

Figure 39 illustrates the shape of a finite, perspective-projection view
volumewith a view plane that is placed between the near clipping plane and
the projectionreference point. Sometimes the near and far planes are
required in a graphicspackage, and sometimes they are optional.

Usually, both the near and far clipping planes are on the same side of
theprojection reference point, with the far plane farther from the projection
pointthan the near plane along the viewing direction. And, as in a parallel
projection,we can use the near and far planes simply to enclose the scene to
be viewed. Butwith a perspective projection, we could also use the near

clipping plane to take outlarge objects close to the view plane that could
project into unrecognizable shapeswithin the clipping window. Similarly, the
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far clipping plane could be used to cutout objects far from the projection
reference point that might project to small blotson the view plane. Some
systems restrict the placement of the view plane relativeto the near and far
planes, and other systems allow it to be placed anywhere exceptat the
position of the projection reference point. If the view plane is “behind”
theprojection reference point, objects are inverted, as shown in Figure 35.
Perspective-Projection Transformation Matrix

Unlike a parallel projection, we cannot directly use the coefficients of the x
and ycoordinates in equations 17 to form the perspective-projection matrix
elements,because the denominators of the coefficients are functions of the z
coordinate.But we can use a three-dimensional, homogeneous-coordinate
representation toexpress the perspective-projection equations in the form

Ty Uy

1 o —— L, = —— Ell
F i # I
where the homogenecus parnmeder has the value
=2y — = (23}
The numerators in 22 are the same as in equations 17
i — '_-'_rrl_ — __;"_| 4 '|r|,.i,.l____|:| |
(24}

Wy = Yy — So) 4 Ypralig — 20

Thus, we can set up a transformation matrix to convert a spatial
position tohomogeneous coordinates so that the matrix contains only the
perspective parametersand not coordinate values. The perspective-projection
transformation of aviewing-coordinate position is then accomplished in two
steps. First, we calculatethe homogeneous coordinates using the
perspective-transformation matrix:

Ph = Mpers - P (25)

wherePh is the column-matrix representation of the homogeneous
point(xh, yh, zh, h) and P is the column-matrix representation of the
coordinate position(x, y, z, 1). (Actually, the perspective matrix would be
concatenated with theother viewing-transformation matrices, and then the
composite matrix would beapplied to the world-coordinate description of a
scene to produce homogeneouscoordinates.) Second, after other processes
have been applied, such as the normalizationtransformation and clipping
routines, homogeneous coordinates aredivided by parameter h to obtain the
true transformation-coordinate positions. Setting up matrix elements for
obtaining the homogeneous-coordinate xh andyh values in 24 is
straightforward, but we must also structure the matrix topreserve depth (z-
value) information. Otherwise, the 2z coordinates are distortedby the
homogeneous-division parameter h.We can do this by setting up the matrix
elements for the z transformation so as to normalize the perspective-
projection zpcoordinates. There are various ways that we could choose the
matrix elements toproduce the homogeneous coordinates 24 and the
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normalized z p value for aspatial position (x, y, z). The following matrix gives
one possible way to formulatea perspective-projection matrix.

Parameters sz and tz are the scaling and translation factors for
normalizing theprojected values of z-coordinates. Specific values for sz and
tz depend on thenormalization range we select.

Matrix 26 converts the description of a scene into homogeneous
parallelprojectioncoordinates. However, the frustum view volume can have
any orientation,so that these transformed coordinates could correspond to
an obliqueparallel projection. This occurs if the frustum view volume is not
symmetric. If thefrustum view volume for the perspective projection is
symmetric, the resultingparallel-projection coordinates correspond to an
orthogonal projection. We nextconsider these two possibilities.

Symmetric Perspective-Projection Frustum

The line from the projection reference point through the center of the
clippingwindow and on through the view volume is the centerline for a
perspectiveprojectionfrustum. If this centerline is perpendicular to the view
plane, we havea symmetric frustum (with respect to its centerline) as in
Figure 40.

Because the frustum centerline intersects the view plane at the
coordinatelocation (xprp, yprp, zvp), we can express the corner positions for
the clipping
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window in torms of the window dimensions;

width width
TWmim = Ty — — Ny = Ty o —
helzhi height

: B

Wiimin = Wprp — = ¥Wemes = Yprp + |

Therefore, we could specify a symmetric perspective-projection view of
a sceneusing the width and height of the clipping window instead of the
window coordinates.

This uniquely establishes the position of the clipping window, because
itis symmetric about the x and y coordinates of the projection reference
point.

Another way to specify a symmetric perspective projection is to use
parametersthat approximate the properties of a camera lens. A photograph
is producedwith a symmetric perspective projection of a scene onto the film
plane. Reflectedlight rays from the objects in a scene are collected on the
film plane from withinthe “cone of vision” of the camera. This cone of vision
can be referenced with afield-of-view angle, which is a measure of the size
of the camera lens. A largefield-of-view angle, for example, corresponds to a
wide-angle lens. In computergraphics, the cone of vision is approximated
with a symmetric frustum, and wecan use a field-of-view angle to specify an
angular size for the frustum. Typically,the field-of-view angle is the angle
between the top clipping plane and the bottomclipping plane of the frustum,
as shown in Figure 41.

For a given projection reference point and view-plane position, the
field-ofviewangle determines the height of the clipping window (Figure 42),
but notthe width. We need an additional parameter to define completely the
clippingwindowdimensions,and this second parameter could be either
thewindowwidthor the aspect ratio (width/height) of the clipping window.
Fromthe right trianglesin the diagram of Figure 42, we see that
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In some graphics libraries, fixed positions are used for the view plane
andthe projection reference point, so that a symmetric perspective projection
iscompletely specified by the field-of-view angle, the aspect ratio of the
clippingwindow, and the distances from the viewing position to the near and
far clippingplanes. The same aspect ratio is wusually applied to the
specification of theviewport.

If the field-of-view angle is decreased in a particular application, the
foreshorteningeffects of a perspective projection are also decreased. This is
comparable tomoving the projection reference point farther from the view
plane. Also, decreasingthe field-of-view angle decreases the height of the
clipping window, and thisprovides a method for zooming in on small regions
of a scene. Similarly, a largefield-of-view angle results in a large clipping-
window height (a zoom out), and itincreases perspective effects, which is
what we achieve when we set the projectionreference point close to the view
plane. Figure 43 illustrates the effects ofvarious field-of-view angles for a
fixed-width clipping window.

When the perspective-projection view volume is a symmetric frustum,
theperspective transformation maps locations inside the frustum to
orthogonalprojectioncoordinates within a rectangular parallelepiped. The
centerline of theparallelepiped is the frustum centerline, because this line is
already perpendicularto the view plane (Figure 44). This is a consequence of
the fact that all positionsalong a projection line within the frustum map to
the same point (xp, yp) onthe view plane. Thus, each projection line is
converted by the perspective transformationto a line that is perpendicular to
the view plane and, thus, parallel tothe frustum centerline.With the
symmetric frustum converted to an orthogonalprojectionview volume, we
can next apply the normalization transformation.

Oblique Perspective-Projection Frustum

If the centerline of a perspective-projection view volume is not
perpendicular tothe view plane, we have an oblique frustum. Figure 45
illustrates the general
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appearance of an oblique perspective-projection view volume. In this case,
we canfirst transform the view volume to a symmetric frustum and then to a
normalizedview volume.

An oblique perspective-projection view volume can be converted to a
symmetric frustum by applying a z-axis shearing-transformation matrix.
This transformationshifts all positions on any plane that is perpendicular to
the z axis byan amount that is proportional to the distance of the plane from
a specified symz-axis reference position. In this case, the reference position
is zprp, which is thez coordinate of the projection reference point. And we
need to shift by an amountthat will move the center of the clipping window
to position (xprp, yprp) on theview plane. Because the frustum centerline
passes through the center of the clippingwindow, this shift adjusts the
centerline so that it is perpendicular to theview plane, as in Figure 40.

The computations for the shearing transformation, as well as for the
perspectiveand normalization transformations, are greatly reduced if we take
theprojection reference point to be the viewing-coordinate origin. We could
do thiswith no loss in generality by translating all coordinate positions in a
scene so thatour selected projection reference point is shifted to the
coordinate origin. Or wecould have initially set up the viewing-coordinate
reference frame so that its originis at the projection point that we want for a
scene. And, in fact, some graphicslibraries do fix the projection reference
point at the coordinate origin.

Taking the projection reference point as (xprp, yprp, zprp) = (O, O, 0),
we obtainthe elements of the required shearing matrix as
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Expressions for the z-coordinate scaling and translation parameters
will be determinedby the normalization requirements.Concatenating the
simplified perspective-projection matrix 33 with theshear matrix 30, we
obtain the following oblique perspective-projection matrixfor converting
coordinate positions in a scene to homogeneous
orthogonalprojectioncoordinates. The projection reference point for this
transformation isthe viewing-coordinate origin, and the near clipping plane
is the view plane.

Mobliquepers = Mpers ‘Mz shear
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Although we no longer have options for the placement of the projection
referencepoint and the view plane, this matrix provides an efficient method
for generating aperspective-projection view of a scene without sacrificing a
great deal of flexibility.

If we choose the clipping-window coordinates so that xwmax =
-xwmin andywmax = -ywmin, the frustumviewvolume is symmetric
andmatrix 34 reducesto matrix 33. This is because the projection reference
point is now at the originof the viewing-coordinate frame.We could also use
Equations 29, with z prp = Oand zvp = znear, to express the first two
diagonal elements of this matrix in termsof the field-of-view angle and the
clipping-window dimensions.

Normalized Perspective-Projection Transformation Coordinates

Matrix 34 transforms object positions in viewing coordinates to
perspectiveprojectionhomogeneous coordinates. When we divide the
homogeneouscoordinates by the homogeneous parameter h, we obtain the
actual projectioncoordinates, which are orthogonal-projection coordinates.
Thus, this perspectiveprojection transforms all points within the frustum
view volume to positionswithin a rectangular parallelepiped view volume.
The final step in the perspectivetransformation process is to map this
parallelepiped to a normalized viewvolume.

We follow the same normalization procedure that we used for a
parallelprojection. The transformed frustum view volume, which is a
rectangular parallelepiped,is mapped to a symmetric normalized cube within
a left-handed referenceframe (Figure 46).We have already included the
normalization parametersfor z coordinates in the perspective-projection
matrix 34, but we still needto determine the values for these parameters
when we transform to the symmetricnormalization cube. Also, we need to
determine the mnormalization transformationparameters for x and y
coordinates. Because the centerline of the rectangularparallelepiped view
volume is now the zview axis, no translation is needed inthe x and y
normalization transformations: We require only the x and y
scalingparameters relative to the coordinate origin. The scaling matrix for
accomplishingthe xy normalization is
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To pormalire this perspective transformation, we want the projection coondi-
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And the elements of the normalized transformation matrix for a
generalperspective-projection are
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If thie perspective-propection view violumie was originall v specified as s symmetric
frostum, we can express the clements of the normalired perspective transforma-
tami i terms of the field -of-view angle and the dimensions of the clipping window.
Thars, using Equations 26, with the propection reference point at the origin and
the view plane at the position of the nesr dipping plane, we have
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The complete transformation fom world codinstes 0 noomalized

porspective-prjection coordinates is the composite matrix formed by concate-
nating this perspective matrix on the lelt of the viewing-transformation product
R.T. Next, the dipping maitimes can be applied to the normalized view vol-
ume. The remaining tasks are visibility determination, sorface rendoring, and the
transformation o the viewparl.

THREE DIMENSIONAL CLIPPING ALGORITHMS

Previously, we discussed the advantages of using the normalized
boundariesof the clipping window in two-dimensional clipping algorithms.
Similarly, wecan apply three-dimensional clipping algorithms to the
normalized boundariesof the view volume. This allows the viewing pipeline
and the clipping proceduresto be implemented in a highly efficient way. All
device-independent transformations(geometric and  viewing) are
concatenated and applied before executing theclipping routines. And each
of the clipping boundaries for the normalized viewvolume is a plane that is
parallel to one of the Cartesian planes, regardless of theprojection type and
original shape of the view volume. Depending on whetherthe view volume
has been normalized to a unit cube or to a symmetric cube withedge length
2, the clipping planes have coordinate positions either at O and lor at -1

and 1. For the symmetric cube, the equations for the three-
dimensionalclipping planes are

xwmin= -1, xwmax = 1

ywmin= -1, ywmax = 1 (43)

zwmin= -1, zwmax = 1
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The x and y clipping boundaries are the normalized limits for the
clipping window,and the z clipping boundaries are the normalized positions
for the near andfar clipping planes.

Clipping algorithms for three-dimensional viewing identify and save all
object sections within the normalized view volume for display on the output
device. All parts of objects that are outside the view-volume clipping planes
areeliminated. And the algorithms are now extensions of two-dimensional
methods,using the normalized boundary planes of the view volume instead
of thestraight-line boundaries of the normalized clipping window.

Clipping in Three-Dimensional Homogeneous Coordinates
Computer-graphics libraries process spatial positions as four-
dimensionalhomogeneous coordinates so that all transformations can be
represented as 4 by4 matrices. As each coordinate position enters the
viewing pipeline, it is convertedto a four-dimensional representation:

()C, Y, Z)_) ()C, Y, 2 1)
After a position has passed through the geometric, viewing, and projection
transformations,it is now in the homogeneous form

Wherematrix M represents the concatenation of all the various
transformationsfrom world coordinates to normalized, homogeneous
projection coordinates, andthe homogeneous parameter h may no longer
have the value 1. In fact, h can haveany real value, depending on how we
represented objects in the scene and thetype of projection we used.

If the homogeneous parameter h does have the value 1, the
homogeneouscoordinates are the same as the Cartesian projection
coordinates. This is oftenthe case for a parallel-projection transformation.
But a perspective projection producesa homogeneous parameter that is a
function of the 2z coordinate for anyspatial position. The perspective-
projection homogeneous parameter can even benegative. This occurs when
coordinate positions are behind the projection referencepoint. Also, rational
spline representations for object surfaces are often formulatedin
homogeneous coordinates, where the homogeneous parameter can
bepositive or negative. Therefore, if clipping is performed in projection
coordinatesafter division by the homogeneous parameter h, some coordinate
information canbe lost and objects may not be clipped correctly.

An effective method for dealing with all possible projection transformations
and object representations is to apply the clipping routines to the
homogeneouscoordinaterepresentations of spatial positions. And, because
all view volumes canbe converted to a normalized cube, a single clipping
procedure can be implementedin hardware to clip objects in homogeneous
coordinates against the normalizedclipping planes.
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bitl =1 Hh+ze <0 (lzf)

bit? =1 Hh-—m <0  (rpht)
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bit4= 1 iFh— <0}  ftop)
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Three-Dimensional Point and Line Clipping

For standard point positions and straight-line segments that are
defined in a scenethat is not behind the projection reference point, all
homogeneous parameters arepositive and the region codes can be
established using the conditions in 47.

Then, once we have set up the region code for each position in a
scene, we caneasily identify a point position as outside the view volume or
inside the viewvolume. For instance, a region code of 101000 tells us that
the point is above anddirectly behind the view volume, while the region code
000000 indicates a pointwithin the volume (Figure 50). Thus, for point
clipping, we simply eliminateany individual point whose region code is not
000000. In other words, if any oneof the tests in 47 is negative, the point is
outside the view volume.

Methods for three-dimensional line clipping are essentially the same
as fortwo-dimensional lines. We can first test the line endpoint region codes
for trivialacceptance or rejection of the line. If the region code for both
endpoints of a lineis 000000, the line is completely inside the view volume.
Equivalently, we cantrivially accept the line if the logical or operation on the
two endpoint regioncodes produces a value of 0. And we can trivially reject
the line if the logical andoperation on the two endpoint region codes
produces a value that is not 0. Thisnonzero value indicates that both
endpoint region codes have a 1 value in the samebit position, and hence the
line is completely outside one of the clipping planes. Asan example of this,
the line from P3 to P4 in Figure 51 has the endpoint regioncodevalues of
010101 and 100110. So this line is completely below the bottomclipping
plane. If a line fails these two tests, we next analyze the line equation
todetermine whether any part of the line should be saved.
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Next, we determine the values yp and zpon this clipping plane, using
the calculatedvalue for u. In this case, the yp and zpintersection values are
within the t1boundaries of the view volume and the line does cross into the
view-volume interior.

So we next proceed to locate the intersection position with the top
clippingplane. That completes the processing for this line segment, because
the intersectionpoints with the top and right clipping planes identify the part
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of the linethat is inside the view volume and all the line sections that are
outside the viewvolume.

When a line intersects a clipping boundary but does not enter the
viewvolumeinterior, we continue the line processing as in two-dimensional
clipping.

The section of the line outside that clipping boundary is eliminated,
and weupdate the region-code information and the values for parameter u
for the partof the line inside that boundary. Then we test the remaining
section of the lineagainst the other clipping planes for possible rejection or
for further intersectioncalculations.

Line segments in three-dimensional scenes are usually not isolated.
They aremost often components in the description for the solid objects in the
scene, andwe need to process the lines as part of the surface-clipping
routines.

Three-Dimensional Polygon Clipping

Graphics packages typically deal only with scenes that contain
“graphics objects.”These are objects whose boundaries are described with
linear equations, so thateach object is composed of a set of surface
polygons. Therefore, to clip objects in athree-dimensional scene, we apply
the clipping routines to the polygon surfaces.

Figure 52, for example, highlights the surface sections of a pyramid
that are tobe clipped, and the dashed lines show sections of the polygon
surfaces that areinside the view volume.

We can first test a polyhedron for trivial acceptance or rejection using
itscoordinate extents, a bounding sphere, or some other measure of its
coordinatelimits. If the coordinate limits of the object are inside all clipping
boundaries, wesave the entire object. If the coordinate limits are all outside
any one of the clippingboundaries, we eliminate the entire object.

When we cannot save or eliminate the entire object, we can next
processthe vertex lists for the set of polygons that define the object surfaces.

Applying

methods similar to those in two-dimensional polygon clipping, we can clip
edgesto obtain new vertex lists for the object surfaces.We may also need to
create somenew vertex lists for additional surfaces that result from the
clipping operations.
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And the polygon tables are updated to add any new polygon surfaces
and torevise the connectivity and shared-edge information about the
surfaces.

To simplify the clipping of general polyhedra, polygon surfaces are
oftendivided into triangular sections and described with triangle strips. We
can thenclip the triangle strips using the Sutherland-Hodgman approach.
Each trianglestrip is processed in turn against the six clipping planes to
obtain the final vertexlist for the strip.

For concave polygons, we can apply splitting methods to obtain a set
of triangles,for example, and then clip the triangles. Alternatively, we could
clip threedimensionalconcave polygons using the Weiler-Atherton algorithm.
Three-Dimensional Curve Clipping

As in polyhedra clipping, we first check to determine whether the
coordinateextents of a curved object, such as a sphere or a spline surface,
are completelyinside the view volume. Then we can check to determine
whether the object iscompletely outside any one of the six clipping planes.

If the trivial rejection-acceptance tests fail, we locate the intersections with
the clipping planes. To do this, we solve the simultaneous set of surface
equationsand the clipping-plane equation. For this reason, most graphics
packagesdo not include clipping routines for curved objects. Instead, curved
surfaces areapproximated as a set of polygon patches, and the objects are
then clipped wusingpolygon-clipping routines. When surface-rendering
procedures are applied topolygon patches, they can provide a highly realistic
display of a curved surface.

Arbitrary Clipping Planes

It is also possible, in some graphics packages, to clip a three-
dimensional sceneusing additional planes that can be specified in any
spatial orientation. This optionis useful in a variety of applications. For
example, we might want to isolate orclip off an irregularly shaped object,
eliminate part of a scene at an oblique anglefor a special effect, or slice off a
section of an object along a selected axis to showa cross-sectional view of its
interior.

Optional clipping planes can be specified along with the description of
a scene,so that the clipping operations can be performed prior to the
projection transformation.

However, this also means that the clipping routines are implemented
insoftware.

A clipping plane can be specified with the plane parameters A, B, C,
and D.

The plane then divides three-dimensional space into two parts, so that
all partsof a scene that lie on one side of the plane are clipped off. Assuming
that objectsbehind the plane are to be clipped, then any spatial position (x,
Y, 2z) that satisfiesthe following inequality is eliminated from the scene.

Ax+ By + Cz+ D <0 (52)

As an example, if the plane-parameter array has the values (A, B, C,
D) =(1.0, 0.0, 0.0, 8.0), then any coordinate position satisfying x + 8.0 <0.0
(or,x <—8.0) is clipped from the scene.
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To clip a line segment, we can first test its two endpoints to see if the
lineis completely behind the clipping plane or completely in front of the
plane. Wecan represent inequality 52 in a vector form using the plane
normal vector

N = (A, B, C).
Then, for a line segment with endpoint positions P1 and P2, we
clip the entire line if both endpoints satisfy

N-Pk+D<0,k=1,2 (S3)
We save the entire line if both endpoints satisfy
N-Pk+D=20,k=1,2 (54)

Otherwise, the endpoints are on opposite sides of the clipping plane,
as inFigure 53, and we calculate the line intersection point.
To calculate the line-intersection point with the clipping plane, we can
usethe following parametric representation for the line segment:
P=Pl+ P2-Pl)ju,0su=<1l (55)
Point P is on the clipping plane if it satisfies the plane equation
N-P+D=0 (56)
Substituting the expression for P from Equation 55, we have
N:-[P1+P2-Pljul+ D=0 (57)
Solving this equation for parameter u, we obtain
-D-N-F,

TN

1LY

We then substitute this value of u into the vector parametric line
representation55 to obtain values for the x, y, and 2z intersection
coordinates. For the examplein Figure 53, the line segment from P1 to P is
clipped and we save the sectionof the line from P to P2.

For polyhedra, such as the pyramid in Figure 54, we apply similar
clippingprocedures. We first test to see if the object is completely behind or
completelyin front of the clipping plane. If not, we process the vertex list for
each polygonsurface. Line-clipping methods are applied to each polygon
edge in succession,just as in view-volume clipping, to produce the surface
vertex lists. But in thiscase, we have to deal with only one clipping plane.
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Clipping a curved object against a single clipping plane is easier than
clippingthe object against the six planes of a view volume. However, we still
need to solvea set of nonlinear equations to locate intersections, unless we

approximate thecurve boundaries with straight-line sections.

VISIBLE SURFACE DETECTION METHODS

A major consideration in the generation of realistic graphics

displays is determining what is visible within a scene from a

chosen viewing position. There are a number of approaches

we can take to accomplish this, and numerous algorithms have been

devised for efficient identification and display of visible objects for

different types of applications. Some methods require more memory,

some involve more processing time, and some apply only to special

types of objects. Which method we select for a particular application

can depend on such factors as the complexity of the scene, type of

objects to be displayed, available equipment, and whether static or

animated displays are to be generated. The various algorithms are

referred to as visible-surface detection methods. Sometimes these

methods are also referred to as hidden-surface elimination methods,

although there can be subtle differences between identifying

visible surfaces and eliminating hidden surfaces. With a wire-frame

display, for example, we may not want to eliminate the hidden surfaces,

but rather to display them with dashed boundaries or in some

other way to retain information about their shape. they deal with the object definitions or with their projected
images. These two

approaches are called object-space methods and image-space methods, respectively.
An object-space method compares objects and parts of objects to each other

within the scene definition to determine which surfaces, as a whole, we should
label as visible. In an image-space algorithm, visibility is decided point by point

at each pixel position on the projection plane. Most visible-surface algorithms use
image-space methods, although object-space methods can be used effectively to
locate visible surfaces in some cases. Line-display algorithms, for instance, generally
use object-space methods to identify visible lines in wire-frame displays, but

many image-space visible-surface algorithms can be adapted easily to visible-line
detection.

Although there are major differences in the basic approaches taken by the various
visible-surface detection algorithms, most use sorting and coherence methods

to improve performance. Sorting is used to facilitate depth comparisons by ordering
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the individual surfaces in a scene according to their distance from the view

plane. Coherence methods are used to take advantage of regularities in a scene.
An individual scan line can be expected to contain intervals (runs) of constant
pixel intensities, and scan-line patterns often change little from one line to the
next. Animation frames contain changes only in the vicinity of moving objects.
And constant relationships can often be established between the objects in a scene.

BACKFACEDETECTION

Afast and simple object-space method for locating the back faces of a
polyhedron is based on front-back tests. A point (x, y, z) is behind a polygon
surface if

Ax+ By + Cz+ D <0 (1)
whereA, B,C, and Dare the plane parameters for the polygon. When this
positionis along the line of sight to the surface, we must be looking at the
back of thepolygon. Therefore, we could use the viewing position to test for
back faces.

We can simplify the back-face test by considering the direction of the
normalvector N for a polygon surface. If Vview is a vector in the viewing
direction fromour camera position, as shown in Figure 1, then a polygon is a
back face if

Vview ‘N >0 (2)

Furthermore, if object descriptions have been converted to projection
coordinatesand our viewing direction is parallel to the viewing zv axis, then
we need toconsider only the z component of the normal vector N.
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In a right-handed viewing system with the viewing direction along the
negativezv axis (Figure 2), a polygon is a back face if the z component, C, of
itsnormal vector N satisfies C <0. Also, we cannot see any face whose normal
hasz component C = 0, because our viewing direction is grazing that
polygon. Thus,in general, we can label any polygon as a back face if its
normal vector has a zcomponent value that satisfies the inequalityC < O

Similar methods can be used in packages that employ a left-handed
viewingsystem. In these packages, plane parameters A, B, C, and D can be
calculatedfrom polygon vertex coordinates specified in a clockwise direction
(instead of thecounterclockwise direction used in a right-handed system).
Inequality 1 thenremains a valid test for points behind the polygon. Also,
back faces have normalvectors that point away from the viewing position
and are identified by C = Owhen the viewing direction is along the positive zv
axis.
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By examining parameter C for the different plane surfaces describing
anobject, we can immediately identify all the back faces. For a single convex
polyhedron,such as the pyramid in Figure 2, this test identifies all the
hidden surfacesin the scene, because each surface is either completely
visible or completely hidden.

Also, if a scene contains only nonoverlapping convex polyhedra, then
againall hidden surfaces are identified with the back-
face method.

For other objects, such as the concave
polyhedron in Figure 3, more testsmust be carried
out to determine whether there are additional faces
that are totallyor partially obscured by other faces. A
general scene can be expected to containoverlapping
objects along the line of sight, and we then need to
determine wherethe obscured objects are partly or
completely hidden by other objects. In general,back-
face removal can be expected to eliminate about half
of the polygon surfacesin a scene from further
visibility tests.

DEPTH BUFFER

A commonly used image-space approach for detecting visible surfaces
is thedepth-buffer method, which compares surface depth values
throughout a scenefor each pixel position on the projection plane. Each
surface of a scene is processedseparately, one pixel position at a time,
across the surface. The algorithm is usuallyapplied to scenes containing
only polygon surfaces, because depth values canbe computed very quickly
and the method is easy to implement. But we couldalso apply the same
procedures to nonplanar surfaces. This visibility-detectionapproach is also
frequently alluded to as the z-buffer method, because object depth isusually
measured along the z axis of a viewing system. However, rather than using
actualz coordinates within the scene, depth-buffer algorithms often compute
adistance from the view plane along the z axis.

Figure 4 shows three surfaces at varying distances along the
orthographicprojection line from position (x, y) on a view plane. These
surfaces can be processedin any order. As each surface is processed, its
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depth from the view plane iscompared to previously processed surfaces. If a
surface is closer than any previouslyprocessed surfaces, its surface color is
calculated and saved, along with itsdepth. The visible surfaces in a scene are
represented by the set of surface colorsthat have been saved after all surface
processing is completed. Implementationof the depth-buffer algorithm is
typically carried out in normalized coordinates,so that depth values range
from O at the near clipping plane (the view plane) tol.0 at the far clipping
plane.

As implied by the name of this method, two buffer areas are required.
Adepth buffer is used to store depth values for each (x, y) position as
surfacesare processed, and the frame buffer stores the surface-color values
for each pixelposition. Initially, all positions in the depth buffer are set to 1.0
(maximum depth),and the frame buffer (refresh buffer) is initialized to the
background color. Eachsurface listed in the polygon tables is then
processed, one scan line at a time, bycalculating the depth value at each (x,
y) pixel position. This calculated depth iscompared to the value previously
stored in the depth buffer for that pixel position.

If the calculated depth is less than the value stored in the depth
buffer, the newdepth value is stored. Then the surface color at that position
is computed andplaced in the corresponding pixel location in the frame
buffer.

The depth-buffer processing steps are summarized in the following
algorithm.This algorithm assumes that depth values are normalized on the
range from 0.0 to1l.0 with the view plane at depth= 0 and the farthest depth=
1.We can also applythis algorithm for any other depth range, and some
graphics packages allow theuser to specify the depth range over which the
depth-buffer algorithm is to beapplied.Within the algorithm, the variable z
represents the depth of the polygon(that is, its distance from the view plane
along the negative z axis).

Depth-Buffer Algorithm

1. Initialize the depth buffer and frame buffer so that for all buffer positions
(¢ y),

depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor

2. Process each polygon in a scene, one at a time, as follows:

* For each projected (x, y) pixel position of a polygon, calculate the

depthz (if not already known).

* If z <depthBuff (x, y), compute the surface color at that

position and set

depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y)

After all surfaces have been processed, the depth buffer contains
depthvalues for the visible surfaces and the frame buffer contains the
correspondingcolor values for those surfaces.
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Given the depth values for the vertex positions of any polygon in 2 scone, we
can calculate the doptlyat any olhaer peint on the plane containing the polyvgon
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One slight complication with this approach is that while pixel
positions areat integer (x, y) coordinates, the actual point of intersection of
a scan line withthe edge of a polygon may not be. As a result, it may be
necessary to adjustthe intersection point by rounding its fractional part up
or down, as is done inscan-line polygon fill algorithms.
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An alternative approach is to use a midpoint method or Bresenham-
typealgorithm for determining the starting x values along edges for each
scan line.

The method can be applied to curved surfaces by determining depth
and colorvalues at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to
implement, andit requires no sorting of the surfaces in a scene. But it does
require the availabilityof a second buffer in addition to the refresh buffer. A
system with a resolution of1280 x 1024, for example, would require over 1.3
million positions in the depthbuffer, with each position containing enough
bits to represent the number ofdepth increments needed. One way to reduce
storage requirements is to processone section of the scene at a time, using a
smaller depth buffer. After each viewsection is processed, the buffer is
reused for the next section.

In addition, the basic depth-buffer algorithm often performs needless
calculations.

Objects are processed in an arbitrary order, so that a color can be
computedfor a surface point that is later replaced by a closer surface. To
alleviate this problem,some graphics packages provide options that allow a
user to adjust the depthrange for surface testing. This allows distant
objects, for example, to be excludedfrom the depth tests. Using this option,
we could even exclude objects that arevery close to the projection plane.
Hardware implementations of the depth-bufferalgorithm are typically an
integral component of sophisticated computer-graphicssystems.
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An extension of the depth-buffer ideas is the A-buffer procedure (at
the otherend of the alphabet from “z-buffer,” where z represents depth). This
depth-bufferextension is an antialiasing, area-averaging, visibility-detection
method developedat Lucasfilm Studios for inclusion in the surface-rendering
system called REYES (an acronym for “Renders Everything You Ever Saw”).
The buffer regionfor this procedure is referred to as the accumulation buffer,
because it is used tostore a variety of surface data, in addition to depth
values.

A drawback of the depth-buffer method is that it identifies only one
visiblesurface at each pixel position. In other words, it deals only with
opaque surfacesand cannot accumulate color values for more than one
surface, as is necessaryif transparent surfaces are to be displayed (Figure 8).
The A-buffer methodexpands the depth-buffer algorithm so that each
position in the buffer can referencea linked list of surfaces. This allows a
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pixel color to be computed as acombination of different surface colors for
transparency or antialiasing effects.

Each position in the A-buffer has two fields:

* Depth field: Stores a real-number value (positive, negative, or zero).

» Surface data field: Stores surface data or a pointer.

If the depth field is nonnegative, the number stored at that position is
the depth ofa surface that overlaps the corresponding pixel area. The surface
data field thenstores various surface information, such as the surface color
for that position andthe percent of pixel coverage, as illustrated in Figure
9(a). If the depth field fora position in the A-buffer is negative, this indicates
multiple-surface contributionsto the pixel color. The color field then stores a
pointer to a linked list of surfacedata, as in Figure 9(b). Surface information
in the A-buffer includes
* RGB intensity components
* Opacity parameter (percent of transparency)

* Depth

» Percent of area coverage

» Surface identifier

* Other surface-rendering parameters
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The A-buffer visibility-detection scheme can be implemented using
methodssimilar to those in the depth-buffer algorithm. Scan lines are
processed todetermine how much of each surface covers each pixel position
across the individualscan lines. Surfaces are subdivided into a
polygonmeshand clipped againstthe pixel boundaries. Using the opacity
factors and percent of surface coverage,the rendering algorithms calculate
the color for each pixel as an average of thecontributions from the
overlapping surfaces.

SCAN-LINE

This image-space method for identifying visible surfaces computes and
comparesdepth values along the various scan lines for a scene.Aseach scan
line is processed,all polygon surface projections intersecting that line are
examined to determinewhich are visible. Across each scan line, depth




209

calculations are performed todetermine which surface is nearest to the view
plane at each pixel position. Whenthe visible surface has been determined
for a pixel, the surface color for thatposition is entered into the frame buffer.

Surfaces are processed using the information stored in the polygon
tables.The edge table contains coordinate endpoints for each line in the
scene, theinverse slope of each line, and pointers into the surface-facet table
to identify thesurfaces bounded by each line. The surface-facet table
contains the plane coefficients,surface material properties, other surface
data, and possibly pointers intothe edge table. To facilitate the search for
surfaces crossing a given scan line,an active list of edges is formed for each
scan line as it is processed. The activeedge list contains only those edges
that cross the current scan line, sorted in orderof increasing x. In addition,
we define a flag for each surface thatis setto  “on” or “off” to indicate
whether a position along a scan line is inside or outsidethe surface. Pixel
positions across each scan line are processed from left to right.At the left
intersection with the surface projection of a convex polygon, the surfaceflag
is turned on; at the right intersection point along the scan line, it is turned
off. For a concave polygon, scan-line intersections can be sorted from left to
right,with the surface flag set to “on” between each intersection pair.

Figure 10 illustrates the scan-line method for locating visible portions
ofsurfaces for pixel positions along a scan line. The active list for scan line 1
containsinformation fromthe edge table for edges AB, BC, EH, and FG. For
positions alongthis scan line between edgesABandBC, only the flag for

surface S1 is on. Therefore,no depth calculations are necessary, and color
values are calculated from thesurface properties and lighting conditions for
surface S1. Similarly, between edgesEH and FG, only the flag for surface S2
is on. No other positions along scan linel intersect surfaces, so the color for
those pixels is the background color, whichcould be loaded into the frame
buffer as part of the initialization routine.

For scan lines 2 and 3 in Figure 10, the active edge list contains edges
AD,EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the
flag forsurface S1 is on. But between edges EH and BC, the flags for both
surfaces are on.

Therefore, a depth calculation is necessary, using the plane
coefficients for the twosurfaces, when we encounter edge EH. For this
example, the depth of surface Slis assumed to be less than that of S2, so
the color values for surface S1 are assignedto the pixels across the scan line
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until boundary BC is encountered. Then thesurface flag for S1 goes off, and
the colors for surface S2 are stored up to edgeFG. No other depth
calculations are necessary, because we assume that surface S2remains
behind S1 once we have determined the depth relationship at edge EH.

We can take advantage of coherence along the scan lines as we pass
fromone scan line to the next. In Figure 10, scan line 3 has the same active
listof edges as scan line 2. No changes have occurred in line intersections,
so it isagain unnecessary to make depth calculations between edges EH and
BC. Thetwo surfaces must be in the same orientation as determined on scan
line 2, so thecolors for surface S1 can be entered without further depth
calculations.

Anynumber of overlapping polygon surfaces can be processed with
this scanlinemethod. Flags for the surfaces are set to indicate whether a
position is insideor outside, and depth calculations are performed only at
the edges of overlappingsurfaces. This procedure works correctly only if
surfaces do not cut through orotherwise cyclically overlap each other (Figure
11). If any kind of cyclic overlapis present in a scene, we can divide the
surfaces to eliminate the overlaps. Thedashed lines in this figure indicate
where planes could be subdivided to form twodistinct surfaces, so that the
cyclic overlaps are eliminated.

DEPTH SORTING

Using both image-space and object-space operations, the depth-

sorting methodperforms the following basic functions:

1. Surfaces are sorted in order of decreasing depth.

2. Surfaces are scan-converted in order, starting with the surface of greatest
depth.

Sorting operations are carried out in both image and object space, and
the scanconversion of the polygon surfaces is performed in image space.
This visibility-detection method is often referred to as the painter’s
algorithm.
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In creating an oil painting, an artist first paints the background
colors. Next, themost distant objects are added, then the nearer objects, and
so forth. At the finalstep, the foreground is painted on the canvas over the
background and the moredistant objects. Each color layer covers up the
previous layer. Using a similartechnique, we first sort surfaces according to
their distance from the view plane.

The color values for the farthest surface can then be entered into the
refresh buffer.Taking each succeeding surface in turn (in decreasing depth
order), we “paint’the surface onto the frame buffer over the colors of the
previously processedsurfaces.

Painting polygon surfaces into the frame buffer according to depth is
carriedout in several steps. Assuming we are viewing along the z direction,
surfaces areordered on the first pass according to the smallest z value on
each surface. Thesurface S at the end of the list (with the greatest depth) is
then compared to theother surfaces in the list to determine whether there
are any depth overlaps. Ifno depth overlaps occur, S is the most distant
surface and it is scan-converted.

Figure 12 shows two surfaces that overlap in the xy plane but have no
depthoverlap. This process is then repeated for the next surface in the list.
So long asno overlaps occur, each surface is processed in depth order until
all have beenscan-converted. If a depth overlap is detected at any point in
the list, we needto make some additional comparisons to determine whether
any of the surfacesshould be reordered.

We make the following tests for each surface that has a depth overlap
with S.If any one of these tests is true, no reordering is necessary for S and
the surfacebeing tested. The tests are listed in order of increasing difficulty:
1. The bounding rectangles (coordinate extents) in the xy directions for the
two surfaces do not overlap.

2. Surface Sis completely behind the overlapping surface relative to the
viewing position.

3. The overlapping surface is completely in front of S relative to the viewing
position.

4. The boundary-edge projections of the two surfaces onto the view plane
do not overlap.
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We perform these tests in the order listed and proceed to the next
overlappingsurface as soon aswefind that one of the tests is true. If all the

overlapping surfaces
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into the correct depth order. Therefore, we need to repeat the testing process

foreach surface that is reordered in the list.

It is possible for the algorithm just outlined to get into an infinite loop
if twoor more surfaces alternately obscure each other, as in Figure 11. In
such situations,the algorithm would continually rearrange the ordering of
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the overlappingsurfaces. To avoid such loops, we can flag any surface that
has been reordered toa farther depth position so that it cannot be moved
again. If an attempt is madeto switch the surface a second time, we divide it
into two parts to eliminate thecyclic overlap. The original surface is then
replaced by the two new surfaces, andwe continue processing as before.
BSP-TREE

A binary space-
partitioning (BSP) tree
is an efficient method
for determiningobject
visibility by painting
surfaces into the frame
buffer from back to
front,as in the painter’s
algorithm. The BSP
tree is  particularly
useful when the
viewreference point
changes, but the
objects in a scene are
at fixed positions.

Applying a BSP
tree to visibility testing
involves identifying surfaces that arebehind or in front of the partitioning
plane at each step of the space subdivision,relative to the viewing direction.
Figure 19 illustrates the basic concept in thisalgorithm. With plane P1, we
first partition the space into two sets of objects.

One set of objects is in back of plane Pl relative to the viewing
direction, andthe other set is in front of Pl. Because one object is
intersected by plane P1, wedivide that object into two separate objects,
labeled A and B. Objects A and C arein front of P1, and objects B and D are
behind Pl1. Because each object list containsmore than one object, we
partition the space again with plane P2, recursivelyprocessing the front and
back object lists. This process continues until all objectlists contain no more
than one object. This partitioning can be easily representedusing a binary
tree such as the one shown in Figure 19(b). In this tree, the objectsare
represented as terminal nodes, with front objects occupying the left
branchesand back objects occupying the right branches. The location of an
object in thetree exactly represents its position relative to each of the
partitioning planes.

For objects described with polygon facets, we often choose the
partitioningplanes to coincide with polygon-surface planes. The polygon
equations are thenused to identify back and front polygons, and the tree is
constructed with one partitioningplane for each polygon face. Any polygon
intersected by a partitioningplane is split into two parts.

When the BSP tree is complete, we interpret the tree relative to the
positionof our viewpoint, beginning at the root node. If the viewpoint is in
front ofthat partitioning plane, we recursively process the back subtree, then
recursivelyprocess the front subtree. If the viewpoint is behind the
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partitioning plane, wereverse this, and process the front subtree followed by
the back subtree. Thus, thesurfaces are generated for display in the order
back to front, so that foregroundobjects are painted over the background
objects. Fast hardware implementationsfor constructing and processing BSP
trees are used in some systems.

AREA SUBDIVISION

This technique for hidden-surface removal is essentially an image-
space method,but object-space operations can be used to accomplish depth
ordering of surfaces.
The area-subdivision method takes advantage of area coherence in a scene
bylocating those projection areas that represent part of a single surface. We
applythis method by successively dividing the total view-plane area into
smaller andsmaller rectangles until each rectangular area contains the
projection of part of asingle visible surface, contains no surface projections,
or the area has been reducedto the size of a pixel.

To implement this method, we need to
establish tests that can quickly identifythe
area as part of a single surface or tell us that
the area is too complex to analyzeeasily.
Starting with the total view, we apply the
tests to determine whether weshould
subdivide the total area into smaller
rectangles. If the tests indicate thatthe view is
sufficiently complex, we subdivide it. Next, we
apply the tests to eachof the smaller areas,
subdividing these if the tests indicate that
visibility of a  singlesurface is  still
uncertain.We continue this process until the
subdivisions are easilyanalyzed as belonging
to a single surface or until we have reached the resolutionlimit. An easy way
to do this is to successively divide the area into four equal

parts at each step, as shown in Figure 20. This approach is similar to that
usedin constructing a quadtree. A viewing area with a pixel resolution of
1024 x 1024could be subdivided ten times in this way before a subarea is
reduced to the sizeof a single pixel.

There are four possible relationships that a surface can have with an
area ofthe subdivided view plane.We can describe these relative surface
positions usingthe following classifications (Figure 21).

Surrounding Surface: A surface that completely encloses the area.
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Overlapping Surface: A surface that is partly inside and partly outside the
area.

Inside Surface: A surface that is completely inside the area.

Outside Surface: A surface that is completely outside the area. The tests for
determining surface visibility within a rectangular area can bestated in
terms of the four surface classifications illustrated in Figure 21.No further
subdivisions of a specified area are needed if one of the following conditions
is true.

Condition 1: An area has no inside, overlapping, or surrounding surfaces
(all surfaces are outside the area).

Condition 2: An area has only one inside, overlapping, or surrounding
surface.

Condition 3: An area has one surrounding surface that obscures all other
surfaces within the area boundaries.

Initially, we can compare the
coordinate extents of each surface with the
areaboundaries. This will identify the inside
and surrounding surfaces, but |
overlappingand outside surfaces wusually L I
require intersection tests. If a single |
boundingrectangle intersects the area in | Ir—'=_
some way, additional checks are used to
determinewhether the surface is
surrounding, overlapping, or outside. Once a I
single inside,overlapping, or surrounding Ay
surface has been identified, the surface color
valuesare stored in the frame buffer. FIGURE 22

One method for testing condition 3 is ¥
to sort the surfaces according to = witha masim daph of
minimumdepth from the view plane. For s ®HiF s A
each surrounding surface, we then T T EEITEEREE Sy
computethe maximum depth within the area under consideration. If the
maximum depthof one of these surrounding surfaces is closer to the view
plane than the minimumdepth of all other surfaces within the area,
condition 3 is satisfied. Figure 22illustrates this situation. Another method
for testing condition 3 that does not require depth sortingis to use plane
equations to calculate depth values at the four vertices of the areafor all
surrounding, overlapping, and inside surfaces. If all four depths for one
ofthe surrounding surfaces are less than the calculated depths for all other
surfaces,condition 3 is satisfied. Then the area can be displayed with the
colors for thatsurrounding surface.

For some situations, the previous two testing methods may fail to
identify correctlya surrounding surface that obscures all the other surfaces.
Further testingcould be carried out to identify the single surface that covers
the area, but it is fasterto subdivide the area than to continue with more
complex testing. Once a surfacehas been identified as an outside or
surrounding surface for an area, it will remainin that category for all
subdivisions of the area. Furthermore,wecan expect to eliminatesome inside
and overlapping surfaces as the subdivision process continues,so that the
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areas become easier to analyze. In the limiting case, when a subdivisionthe
size of a pixel is produced, we simply calculate the depth of each
relevantsurface at that point and assign the color of the nearest surface to
that pixel.

As a variation on the basic subdivision process, we could subdivide
areasalong surface boundaries instead of dividing them in half. If the
surfaces have been sorted according to minimum depth, we can use the
surface of smallestdepth value to subdivide a given area. Figure 23
illustrates this method forsubdividing areas. The projection of the boundary
of surface S is used to partitionthe original area into the subdivisions Al
and A2. Surface S is then a surroundingsurface for Al, and visibility
conditions 2 and 3 can be tested to determine whetherfurther subdividing is
necessary. In general, fewer subdivisions are required usingthis approach,
but more processing is needed to subdivide areas and to analyzethe relation
of surfaces to the subdivision boundaries.

OCTREE METHOD
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When an octree representation is used for the viewing volume, visible-
surfaceidentification is accomplished by searching octree nodes in a front-

to-back order.

In Figure 24, the foreground of a scene is
contained in octants 0, 1, 2, and 3.

Surfaces in the front of these octants are
visible to the viewer. Any surfaces towardthe
rear of the front octants or in the back octants
(4, 5, 6, and 7) may be hiddenby the front
surfaces.

We can process the octree nodes of Figure
24 in the order O, 1, 2, 3, 4, 5,6, 7. This results
in a depth-first traversal of the octree, where the
nodes for thefour front suboctants of octant O
are visited before the nodes for the four back
suboctants. The traversal of the octree continues
in this order for each octantsubdivision. When a
color value is encountered in an octree node,
that color is saved in thequadtree only if no
values have previously been saved for the same
area. In thisway, only the front colors are saved.
Nodes that have the value “void” are ignored.

Any node that is completely obscured is
eliminated from further processing, sothat its
subtrees are not accessed. Figure 25 depicts the
octants in a regionof space and the
corresponding quadrants on the view plane.
Contributions toquadrant O come from octants O
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Effective octree visibility testing is carried out with recursive
processing ofoctree nodes and the creation of a quadtree representation for
the visible surfaces.

In most cases, both a front and a back octant must be considered in
determiningthe correct color values for a quadrant. But if the front octant is
homogeneouslyfilled with some color, we do not process the back octant. For
heterogeneousregions, a recursive procedure is called, passing as new
arguments the child ofthe heterogeneous octant and a newly created
quadtree node. If the front is empty,it is necessary only to process the child
of the rear octant. Otherwise, two recursivecalls are made: one for the rear
octant and one for the front octant.

Different views of objects represented as octrees can be obtained by
applyingtransformations to the octree representation that reorient the object
according tothe view selected. Octants can then be renumbered so that the
octree representationis always organized with octants 0, 1, 2, and 3 as the
front face.

OTHER METHODS.
Ray-Casting Method
If we consider
the line of sight from
a pixel position on the
view plane througha
scene, as in Figure
26, we can determine
which objects in the -
scene (if any)intersect o=
this line. After
calculating all ray-
surface intersections, FriGuse zs
we identify thevisible i bt s o \
surface as the one
whose intersection point is closest to the pixel. Thisvisibility-detection
scheme uses ray casting procedures. Ray casting, as a visibility-detection
tool, is based on geometricoptics methods, which trace the pathsof light
rays. Because there are an infinite number of light rays in a scene and
weare interested only in those rays that pass through pixel positions, we can
tracethe light-ray paths backward from the pixels through the scene. The
ray-castingapproach is an effective visibility-detection method for scenes
with curved surfaces,particularly spheres. We can think of ray casting as a
variation on the depth-buffer method (Section3). In the depth-buffer
algorithm, we process surfaces one at a time andcalculate depth values for
all projection points over the surface. The calculatedsurface depths are then
compared to previously stored depths to determine visiblesurfaces at each
pixel. In ray casting, we process pixels one at a time andcalculate depths for
all surfaces along the projection path to that pixel. Ray casting is a special
case of ray-tracing algorithms that trace multiple raypaths to pick up global
reflection and refraction contributions from multipleobjects in a scene. With
ray casting, we only follow a ray out from each pixel tothe nearest object.
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Efficient ray-surface intersection calculations have been developedfor
common objects, particularly spheres.

UNIT 5 :
COMPUTER ANIMATION

Computer-graphics methods are now commonly wused to
produceanimations for a variety of applications, includingentertainment
(motion pictures and cartoons), advertising,scientific and engineering
studies, and training and education.Although we tend to think of animation
as implying object motion,the term computer animation generally refers to
any time sequenceof visual changes in a picture. In addition to changing
object positionsusing translations or rotations, a computer-generated
animationcould display time variations in object size, color, transparency,or
surface texture. Advertising animations often transition one objectshape into
another: for example, transforming a can of motor oilinto an automobile
engine. We can also generate computer animationsby varying camera
parameters, such as position, orientation, orfocal length, and variations in
lighting effects or other parameters andprocedures associated with
illumination and rendering can be used toproduce computer animations.

Another consideration in computer-generated animation isrealism.
Many applications require realistic displays. An accurate representation of
the shape of a thunderstorm or other natural phenomena describedwith a
numerical model is important for evaluating the reliability of the model.
Similarly,simulators for training aircraft pilots and heavy-equipment
operators must producereasonably accurate representations of the
environment. Entertainment and advertisingapplications, on the other hand,
are sometimes more interested in visual effects. Thus,scenes may be
displayed with exaggerated shapes and unrealistic motions and
transformations.

However, there are many entertainment and advertising applications
that dorequire accurate representations for computer-generated scenes.
Also, in some scientificand engineering studies, realism is not a goal. For
example, physical quantities areoften displayed with pseudo-colors or
abstract shapes that change over time to help theresearcher understand the
nature of the physical process.

Two basic methods for constructing a motion sequence are real-time
animationand frame-by-frame animation. In a real-time computer-
animation, each stage of thesequence is viewed as it is created. Thus the
animation must be generated at a rate thatis compatible with the
constraints of the refresh rate. For a frame-by-frame animation,each frame
of the motion is separately generated and stored. Later, the frames can
berecorded on film, or they can be displayed consecutively on a video
monitor in “real-timeplayback” mode. Simple animation displays are
generally produced in real time, whilemore complex animations are
constructed more slowly, frame by frame. However, someapplications
require real-time animation, regardless of the complexity of the animation.

A flight-simulator animation, for example, is produced in real time
because the videodisplays must be generated in immediate response to
changes in the control settings.
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In such cases, special hardware and software systems are often
developed to allow thecomplex display sequences to be developed quickly.
Raster Methods for Computer Animation

Most of the time,wecan create simple animation sequences in our
programs usingreal-time methods. In general, though, we can produce an
animation sequenceon a raster-scan system one frame at a time, so that
each completed frame couldbe saved in a file for later viewing. The
animation can then be viewed by cyclingthrough the completed frame
sequence, or the frames could be transferred to film.

If we want to generate an animation in real time, however, we need to
produce themotion frames quickly enough so that a continuous motion
sequence is displayed.

For a complex scene, one frame of the animation could take most of
the refreshcycle time to construct. In that case, objects generated first would
be displayedfor most of the frame refresh time, but objects generated toward
the end of therefresh cycle would disappear almost as soon as they were
displayed. For verycomplex animations, the frame construction time could
be greater than the time torefresh the screen, which can lead to erratic
motion and fractured frame displays.

Because the screen display is generated from successively modified
pixel valuesin the refresh buffer, we can take advantage of some of the
characteristics of theraster screen-refresh process to produce motion
sequences quickly.

Double Buffering

One method for producing a real-time animation with a raster system
is toemploy two refresh buffers. Initially, we create a frame for the animation
in oneof the buffers. Then, while the screen is being refreshed from that
buffer, weconstruct the next frame in the other buffer. When that frame is
complete, weswitch the roles of the two buffers so that the refresh routines
use the secondbuffer during the process of creating the next frame in the
first buffer. Thisalternating buffer process continues throughout the
animation. Graphics librariesthat permit such operations typically have one
function for activating the doublebufferingroutines and another function for
interchanging the roles of the twobuffers.

When a call is made to switch two refresh buffers, the interchange
could beperformed at various times. The most
straightforwardimplementation is to switchthe two buffers at the end of the
current refresh cycle, during the vertical retraceof the electron beam. If a
program can complete the construction of a frame withinthe time of a
refresh cycle, say 1
60 of a second, each motion sequence is displayedin synchronization with
the screen refresh rate. However, if the time to constructa frame is longer
than the refresh time, the current frame is displayed for twoor more refresh
cycles while the next animation frame is being generated. Forexample, if the
screen refresh rate is 60 frames per second and it takes 1/50 of asecond to
construct an animation frame, each frame is displayed on the screentwice
and the animation rate is only 30 frames each second. Similarly, if the frame
construction time is 1/25 of a second, the animation frame rate is reduced
to 20 framesper second because each frame is displayed three times.
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Irregular animation frame rates can occur with double buffering when
theframe construction time is very nearly equal to an integer multiple of the
screenrefresh time.Asan example of this, if the screen refresh rate is 60
frames per second,then an erratic animation frame rate is possible when the
frame constructiontime is very close to 160 of a second, or 260 of a second,
or 360 of a second, and soforth. Because of slight variations in the
implementation time for the routines thatgenerate the primitives and their
attributes, some frames could take a little moretime to construct and some a
little less time. Thus, the animation frame rate canchange abruptly and
erratically. One way to compensate for this effect is to adda small time delay
to the program. Another possibility is to alter the motion orscene description
to shorten the frame construction time.

Generating Animations Using Raster Operations

We can also generate real-time raster
animations for limited applications usingblock
transfers of a rectangular array of pixel values. This
animation technique isoften used in game-playing
programs. Asimple method for translating an object
from one location to another in the xy plane is to
transfer the group of pixel valuesthat define the
shape of the object to the new location. Two-dimensional rotationsin
multiples of 90° are also simple to perform, although we can rotate
rectangularblocks of pixels through other angles using antialiasing
procedures. Fora rotation that is not a multiple of 90°, we need to estimate
the percentage of areacoverage for those pixels that overlap the rotated
block. Sequences of raster operationscan be executed to produce realtime
animation for either two-dimensionalor three-dimensional objects, so long as
we restrict the animation to motionsin the projection plane. Then no viewing
or visible-surface algorithms need beinvoked.

We can also animate objects along two-dimensional motion paths
using colortabletransformations. Here we predefine the object at
successive positions alongthe motion path and set the successive blocks of
pixel values to color-table entries.

The pixels at the first position of the object are set to a foreground
color, and thepixels at the other object positions are set to the background
color. The animationis then accomplished by changing the color-table values
so that the object color atsuccessive positions along the animation path
becomes the foreground color asthe preceding position is set to the
background color (Figure 1).

Design of Animation Sequences

Constructing an animation sequence can be a complicated task,
particularly whenit involves a story line and multiple objects, each of which
can move in a differentway. A basic approach is to design such animation
sequences using the followingdevelopment stages:

» Storyboard layout

* Object definitions

» Key-frame specifications

* Generation of in-between frames
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The storyboard is an outline of the action. It defines the motion
sequence asa set of basic events that are to take place. Depending on the
type of animation tobe produced, the storyboard could consist of a set of
rough sketches, along witha brief description of the movements, or it could
just be a list of the basic ideas forthe action. Originally, the set of motion
sketches was attached to a large board thatwas used to present an overall
view of the animation project. Hence, the name“storyboard.”

An object definition is given for each participant in the action.
Objects can bedefined in terms of basic shapes, such as polygons or spline
surfaces. In addition,a description is often given of the movements that are
to be performed by eachcharacter or object in the story.

A key frame is a detailed drawing of the scene at a certain time in the
animationsequence. Within each key frame, each object (or character) is
positionedaccording to the time for that frame. Some key frames are chosen
at extremepositions in the action; others are spaced so that the time interval
between keyframes is not too great. More key frames are specified for
intricate motions than forsimple, slowly varying motions. Development of the
key frames is generally theresponsibility of the senior animators, and often a
separate animator is assignedto each character in the animation.

In-betweens are the intermediate frames between the key frames. The
totalnumber of frames, and hence the total number of in-betweens, needed
for ananimation is determined by the display media that is to be used. Film
requires24 frames per second, and graphics terminals are refreshed at the
rate of 60 ormore frames per second. Typically, time intervals for the motion
are set up so thatthere are from three to five in-betweens for each pair of key
frames. Dependingon the speed specified for the motion, some key frames
could be duplicated. Asan example, a 1-minute film sequence with no
duplication requires
a total of1,440
frames. If five in-
betweens are
required for each
pair of key frames,
then288 key frames
would need to be

FIGURE 2 FIGURE 3
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required, depending on the application.

These additional tasks include motion verification, editing, and the
production
and synchronization of a soundtrack. Many of the functions needed to
produce general animations are now computer-generated. Figures 2 and 3
show examples of computer-generated frames for animation sequences.

Traditional Animation Techniques
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Film animators use a variety of methods for depicting and
emphasizing motionsequences. These include object deformations, spacing
between animation frames,motion anticipation and follow-through, and
action focusing.
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One of the most important techniques for simulating acceleration
effects,particularly for nonrigid objects, is squash and stretch. Figure 4
shows howthis technique is used to emphasize the
accelerationanddeceleration of a bouncingball. As the ball accelerates, it
begins to stretch. When the ball hits the floor andstops, it is first
compressed (squashed) and then stretched again as it acceleratesand
bounces upwards.

Another technique used by film animators is timing, which refers to
the spacingbetween motion frames. A slower moving object is represented
with moreclosely spaced frames, and a faster moving object is displayed with
fewer framesover the path of the motion. This effect is illustrated in Figure 5,
where theposition changes between frames increase as a bouncing ball
moves faster.

Object movements can also be emphasized by creating preliminary
actionsthat indicate an anticipation of a coming motion. For example, a cartoon
charactermight lean forward and rotate its body before starting to run; or a
character mightperform a “windup” before throwing a ball. Similarly, follow-
through actionscan be used to emphasize a previous motion. After throwing
a ball, a charactercan continue the arm swing back to its body; or a hat can
fly off a character thatis stopped abruptly. An action also can be emphasized
with staging, which refersto any method for focusing on an important part
of a scene, such as a characterhiding something.

General Computer-Animation Functions

Many software packages have been developed either for general
animationdesign or for performing specialized animation tasks. Typical
animation functionsinclude managing object motions, generating views of
objects, producing cameramotions, and the generation of in-between frames.
Some animation packages,such asWavefront for example, provide special
functions for both the overall animationdesignandthe processing of
individual objects. Others are special-purposepackages for particular
features of an animation, such as a system for generatingin-between frames
or a system for figure animation.
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A set of routines is often provided in a general animation package for
storingand managing the object database. Object shapes and associated
parametersare stored and updated in the database. Other object functions
include thosefor generating the object motion and those for rendering the
object surfaces.

Movements can be generated according to specified constraints using
twodimensionalor three-dimensional transformations. Standard functions
can thenbe applied to identify visible surfaces and apply the rendering
algorithms.

Another typical function set simulates camera movements. Standard
cameramotions are zooming, panning, and tilting. Finally, given the
specification for thekey frames, the in-betweens can be generated automatically.
Computer-Animation Languages

We can develop routines to design and control animation sequences
within ageneral-purpose programming language, such as C, C++, Lisp, or
Fortran, butseveral specialized animation languages have been developed.
These languagestypically include a graphics editor, a key-frame generator,
an in-between
generator,and
standard  graphics
routines. The
graphics editor
allows an animator
todesign and modify
objfect shapes, using Bas FlGURE &
sphne surfaces , {eamees of freedom for 3 stationary, singie-grmed mbd.
constructive
solidgeometrymethods, or other representation schemes.

An important task in an animation specification is scene description.
Thisincludes the positioning of objects and light sources, defining the
photometricparameters (light-source intensities and surface illumination
properties), andsetting the camera parameters (position, orientation, and
lens characteristics).

Another standard function is action specification, which involves the
layout ofmotion paths for the objects and camera. We need the usual
graphics routines:
viewing and perspective transformations, geometric transformations to
generateobject movements as a function of accelerations or kinematic path
specifications,visible-surface identification, and the surface-rendering
operations.

Key-frame systems were originally
designed as a  separate set of
animationroutines for generating the in-
betweens from the user-specified key
frames. Now,these routines are often a
component in a more general animation
package. In thesimplest case, each object
in a scene is defined as a set of rigid bodies
connectedat the joints and with a limited
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number of degrees of freedom. As an example, the single-armed robot in
Figure 6 has 6 degrees of freedom, which are referredto as arm sweep,
shoulder swivel, elbow extension, pitch, yaw, and roll. We canextend the
number of degrees of freedom for this robot arm to 9 by allowingthree-
dimensional translations for the base (Figure 7). If we also allow
baserotations, the robot arm can have a total of 12 degrees of freedom. The
humanbody, in comparison, has more than 200 degrees of freedom.

Parameterized systems allow object motion characteristics to be
specified aspart of the object definitions. The adjustable parameters control
such object characteristicsas degrees of freedom, motion limitations, and
allowable shape changes.

Scripting systems allow object specifications and animation
sequences to bedefined with a user-input script. From the script, a library of
various objects andmotions can be constructed.

Key-Frame Systems

A set of in-betweens can be generated from the specification of two (or
more)key frames using a key-frame system. Motion paths can be given with
a kinematicdescription as a set of spline curves, or the motions can be
physically based byspecifying the forces acting on the objects to be
animated.

For complex scenes, we can separate the frames into individual
componentsor objects called cels (celluloid transparencies). This term
developed fromcartoonanimationtechniques where the background and each
character in a scene wereplaced on a separate transparency. Then, with the
transparencies stacked in theorder frombackground to foreground, they
were photographed to obtain the completedframe. The specified animation
paths are then used to obtain the next cell for each character, where the
positions are interpolated from the key-frame times.With complex object
transformations, the shapes of objects may change over
time. Examples are clothes, facial features, magnified detail, evolving
shapes, andexploding or disintegrating objects. For surfaces described with
polygon meshes,these changes can result in significant changes in polygon
shape such that thenumber of edges in a polygon could be different from
one frame to the next.
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These changes are incorporated into the development of the in-
between framesby adding or subtracting polygon edges according to the
requirements of thedefining key frames.

Morphing

Transformation of object shapes from one form to another is termed
morphing,which is a shortened form of “metamorphosing.” An animator can
model morphingby transitioning polygon shapes through the in-betweens
from one key frameto the next.

Given two key frames, each with a different number of line segments
specifyingan object transformation, we can first adjust the object

specification in oneof the frames so that the number of polygon edges (or the
number of polygonvertices) is the same for the two frames. This
preprocessing step is illustrated inFigure 8. A straight-line segment in key
frame k is transformed into two linesegments in key frame k +1. Because
key frame k +1 has an extra vertex, we adda vertex between vertices 1 and 2
in key frame k to balance the number of vertices(and edges) in the two key
frames. Using linear interpolation to generate thein-betweens, we transition
the added vertex in key frame k into vertex 3_ alongthe straight-line path
shown in Figure 9. An example of a triangle linearlyexpanding into a
quadrilateral is given in Figure 10.

We can state general preprocessing rules for equalizing key frames in
termsofeither the number of edges or the number of vertices to be added to a
key frame.Wefirst consider equalizing the edge count, where parameters Lk




227

and Lk+1 denote thenumber of line segments in two consecutive frames. The
maximum and minimumnumber of lines to be equalized can be determined
asLmax = max(Lk , Lk+1), Lmin = min(Lk , Lk+1) (1)

Next we compute the following two quantities:

Ne= Lmaxmod Lmin

The preprocessing steps. for edpe equalization dre then accomplished with the
fallowing two procedures:

L Divide N sdpes of kewframir,, into N + | sectione.

2. Divide the rermaming fmes of keyframey,, into X, sections

Asanexample, if Ly =15and Ly, ; =11, we would divide four lines of keyframe;,
mito {wio sections asch. The emamminyg lines of Grgfrane (o are left mtact

H we vqualize thee vertex count, we an pse paramaters Voamd Wy o
denpte the mumber of vertices in the two comseotive ey frames. In this cuse,
wr deterrmine the maximoem and minimoom momber of vertioes a5

Vimas = man{ Vg, Vi, Vimn = Triind Wy, W q) &)
Them we campite the fallowring two vales:

Ny = | Vi — 1) mud [ Vs — 1)

H,.:ml;{:l'—::} i

The=e twis gquantitivs are then used o perform vertex equalization with the fal-
lowing procedures;

L Add N, points to N, Hne sections of beyframeag,

L Add N, — | point o the remaiming edges of koyfrmeg,,
For the tdangie-to-quadrilateral example, Vj =3 and Wy = 4 Both N, and N,
are 1, 50 wi winild add ore point o one edge of kegframey. No points would be
added lo the remaining finos of kegfreme .

Simulating Accelerations

Corve-fitting techndogues ane often used o specify the animation paths botween
by frames. Givon the vertex positions at the koy frames, we can bt the positions
with linear or nonlinear paths. Figure 11 (lnstrates a nonlinear fit of key-
frame positiona. T simulate accElerations; we can adjust the time spacing for the




228




229




230

Processing the in-betweens is simplified by initially modeling “skeleton
(wire-frame) objects so that motion sequences can be interactively adjusted.
Afterthe animation sequence is completely defined, objects can be fully
rendered.

Motion Specifications

General methods for describing an animation sequence range from an
explicitspecification of the motion paths to a description of the interactions
that producethe motions. Thus, we could define how an animation is to take
place by givingthe transformation parameters, the motion path parameters,
the forces that are toact on objects, or the details of how objects interact to
produce motion.

Direct Motion Specification

The most straightforward method for defining an animation is direct
motion specificationof the geometric-transformation parameters. Here, we
explicitly set thevalues for the rotation angles and translation vectors. Then
the geometric transformationmatrices are applied to transform coordinate
positions. Alternatively,we could use an approximating equation involving
these parameters to specifycertain kinds of motions. We can approximate
the path of a bouncing ball, forinstance, with a damped, rectified, sine curve
(Figure 16):

Y(x)= A| sin(wx+ 60)| e-kx (10)
whereA is the initial amplitude (height of the ball above the ground), o is
theangular frequency, 60 is the phase angle, and k is the damping constant.

This method for
motion specification
is particularly useful
for simple

userprogrammedanimation sequences.
Goal-Directed Systems

At the opposite extreme, we can specify the motions that are to take
place in generalterms that abstractly describe the actions in terms of the
final results. In otherwords, an animation is specified in terms of the final
state of the movements. Thesesystems are referred to as goal-directed, since
values for the motion parameters aredetermined from the goals of the
animation. For example, we could specify thatwe want an object to “walk” or
to “run” to a particular destination; or we couldstate that we want an object
to “pick up” some other specified object. The inputdirectives are then
interpreted in terms of component motions that will accomplishthe
described task. Human motions, for instance, can be defined as a
hierarchicalstructure of submotions for the torso, limbs, and so forth. Thus,
when a goal, suchas “walk to the door” is given, the movements required of
the torso and limbs to
accomplish this action are calculated.
Kinematics and Dynamics
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We can also construct animation sequences using kinematic or
dynamic descriptions.With a kinematic description, we specify the animation
by giving motionparameters (position, velocity, and acceleration) without
reference to causes orgoals of the motion. For constant velocity (zero
acceleration), we designate themotions of rigid bodies in a scene by giving an
initial position and velocity vectorfor each object. For example, if a velocity is
specified as (3, 0, -4) km persec, then this vector gives the direction for the
straight-line motion path and thespeed (magnitude of velocity) is calculated
as 5 km per sec. If we also specifyaccelerations (rate of change of velocity),
we can generate speedups, slowdowns,and curved motion paths. Kinematic
specification of a motion can also be givenby simply describing the motion
path. This is often accomplished using spline
curves.

An alternate approach is to use inverse kinematics. Here, we specify
the initialand final positions of objects at specified times and the motion
parameters arecomputed by the system. For example, assuming zero
acceleration, we can determinethe constant velocity that will accomplish the
movement of an object fromthe initial position to the final position. This
method is often used with complexobjects by giving the positions and
orientations of an end node of an object, suchas a hand or a foot. The
system then determines the motion parameters of othernodes to accomplish
the desired motion.

Dynamicdescriptions, on the other hand, require the specification of
the forcesthat produce the velocities and accelerations. The description of
object behavior interms of the influence of forces is generally referred to as
physically based modeling.

Examples of forces affecting object motion include electromagnetic,
gravitational,frictional, and other mechanical forces.

Object motions are obtained from the force equations describing
physicallaws, such as Newton’s laws of motion for gravitational and
frictional processes,Euler or Navier-Stokes equations describing fluid flow,
and Maxwell’s equationsfor electromagnetic forces. For example, the general
form of Newton’s second lawfor a particle of mass mis

F = (d/dt)(mv) (11)
whereF is the force vector and v is the velocity vector. If mass is constant,
we solvethe equation F = ma, with a representing the acceleration vector.
Otherwise, massis a function of time, as in relativistic motions or the
motions of space vehiclesthat consume measurable amounts of fuel per unit
time. We can also use inversedynamics to obtain the forces, given the initial
and final positions of objects andthe type of motion required.

Applications of physically based modeling include complex rigid-body
systemsand such nonrigid systems as cloth and plastic materials. Typically,
numericalmethods are used to obtain the motion parameters incrementally
from thedynamical equations using initial conditions or boundary values.
Character Animation

Animation of simple objects is relatively straightforward. When we
considerthe animation of more complex figures such as humans or animals,
however, itbecomes much more difficult to create realistic animation.
Consider the animationof walking or running human (or humanoid)
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characters. Based upon observationsin their own lives of walking or running
people, viewers will expect to see animatedcharacters move in particular
ways. If an animated character’s movementdoesn’t match this expectation,
the believability of the character may suffer. Thus,much of the work involved
in character animation is focused on creating believablemovements.
Articulated Figure Animation
A basic technique for animating people,
animals, insects, and other critters is tomodel them
as articulated figures, which are hierarchical
structures composed ofa set of rigid links that are
connected at rotary joints (Figure 17). In less
formalterms, this just means that we model animate
objects as moving stick figures, orsimplified
skeletons, that can later be wrapped with surfaces
representing skin, hair, fur, feathers, clothes, or
other outer coverings.
The connecting points, or hinges, for an
articulated figure are placed at theshoulders, hips,
knees, and other skeletal joints, which travel along
specifiedmotion paths as the body moves. For
example, when a motion is specified for anobject, the

shoulder automatically moves in a certain way and, as the shouldermoves,
the arms move. Different types of movement, such as walking, running,or
jumping, are defined and associated with particular motions for the joints
andconnecting links.

A series of walking leg motions, for instance, might be defined as
inFigure 18. The hip joint is translated forward along a horizontal line,
whilethe connecting links perform a series of movements about the hip,
knee, and
angle joints. Starting with a straight leg [Figure 18(a)], the first motion is a
kneebend as the hip moves forward [Figure 18(b)]. Then the leg swings
forward,returns to the vertical position, and swings back, as shown in
Figures 18(c),(d), and (e). The final motions are a wide swing back and a
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return to the straightvertical position, as in Figures 18(f) and (g). This
motion cycle is repeated forthe duration of the animation as the figure
moves over a specified distance or timeinterval.

As a figure moves, other movements are incorporated into the various
joints.A sinusoidal motion, often with varying amplitude, can be applied to
the hips sothat they move about on the torso. Similarly, a rolling or rocking
motion can beimparted to the shoulders, and the head can bob up and
down.

Both kinematic-motion descriptions and inverse kinematics are used
in figureanimations. Specifying the joint motions is generally an easier task,
but inversekinematics can be useful for producing simple motion over
arbitrary terrain. Fora complicated figure, inverse kinematics may not
produce a unique animationsequence: Many different rotational motions
may be possible for a given set ofinitial and final conditions. In such cases, a
unique solution may be possible byadding more constraints, such as
conservation of momentum, to the system.

Motion Capture

An alternative to determining the motion of a character
computationally is todigitally record the movement of a live actor and to
base the movement of ananimated character on that information. This
technique, known as motion captureor mo-cap, can be used when the
movement of the character is predetermined(as in a scripted scene). The
animated character will perform the same series ofmovements as the live
actor.

The classic motion capture technique involves placing a set of markers
atstrategic positions on the actor’s body, such as the arms, legs, hands, feet,
andjoints. It is possible to place the markers directly on the actor, but more
commonlythey are affixed to a special skintight body suit worn by the actor.
The actor isthem filmed performing the scene. Image processing techniques
are then usedto identify the positions of the markers in each frame of the
film, and their positionsare translated to coordinates. These coordinates are
used to determine thepositioning of the body of the animated character. The
movement of each markerfrom frame to frame in the film is tracked and
used to control the correspondingmovement of the animated character.

To accurately determine the positions of the markers, the scene must
be filmedby multiple cameras placed at fixed positions. The digitized marker
data fromeachrecording can then be used to triangulate the position of each
marker in threedimensions. Typical motion capture systems will use up to
two dozen cameras,but systems with several hundred cameras exist.

Optical motion capture systems rely on the reflection of light from a marker
into the camera. These can be relatively simple passive systems using
photoreflectivemarkers that reflect illumination from special lights placed
near thecameras, or more advanced active systems in which the markers are
poweredand emit light. Active systems can be constructed so that the
markers illuminatein a pattern or sequence, which allows each marker to be
uniquely identified ineach frame of the recording, simplifying the tracking
process.

Non-optical systems rely on the direct transmission of position
informationfromthe markers to a recording device. Some non-optical
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systems use inertial sensorsthat provide gyroscope-based position and
orientation information. Othersuse magnetic sensors that measure changes
in magnetic flux. A series of transmittersplaced around the stage generate
magnetic fields that induce current in themagnetic sensors; that information
is then transmitted to receivers.

Some motion capture systems record more than just the gross
movementsof the parts of the actor’s body. It is possible to record even the
actor’sfacial movements. Often called performance capture systems, these
typically use acamera trained on the actor’s face and small light-emitting
diode (LED) lightsthat illuminate the face. Small photoreflective markers
attached to the face reflectthe light from the LEDs and allow the camera to
capture the small movements ofthe muscles of the face, which can then be
used to create realistic facial animationon a computer-generated character.
Periodic Motions

When
we construct
an animation
with repeated
motion
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movements correctly. In other words, the motion must be synchronizedwith
the frame-generation rate so that we display enough frames per cycleto show
the true motion. Otherwise, the animation may be displayed incorrectly A
typical example of an wundersampled periodic-motion display is the
wagonwheel in a Western movie that appears to be turning in the wrong
direction.

Figure 19 illustrates one complete cycle in the rotation of a wagon
wheel withone red spoke that makes 18 clockwise revolutions per second. If
this motion isrecorded on film at the standard motion-picture projection rate
of 24 frames persecond, then the first five frames depicting this motion
would be as shown inFigure 20. Because the wheel completes 34of a turn
every 124 of a second, onlyone animation frame is generated per cycle, and
the wheel thus appears to berotating in the opposite (counterclockwise)
direction.

In a computer-generated animation, we can control the sampling rate in
aperiodic motion by adjusting the motion parameters.For example, we can
set the angular increment for the motion of a rotating object so that multiple
frames aregenerated in each revolution. Thus, a 3° increment for a rotation
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angle produces120 motion steps during one revolution, and a 4° increment
generates 90 steps.

For faster motion, larger rotational steps could be used, so long as the
numberof samples per cycle is not too small and the motion is clearly
displayed. Whencomplex objects are to be animated, we also must take into
account the effectthat the frame construction time might have on the refresh
rate, as discussed inSection 1. The motion of a complex object can be much
slower than we want itto be if it takes too long to construct each frame of the
animation.

Another factor that we need to consider in the display of a repeated
motion is the effect of round-off in the calculations for the motion
parameters. We canreset parameter values periodically to prevent the
accumulated error from producingerratic motions. For a continuous
rotation, we could reset parameter valuesonce every cycle (360°).

THREE DIMENSIONAL OBJECT REPRESENTATIONS

Graphics scenes can contain many different kinds of objectsand
material surfaces: trees, flowers, clouds, rocks, water,bricks, wood paneling,
rubber, paper, marble, steel, glass,plastic, and cloth, just to mention a few.
So it may not be surprisingthat there is no single method that we can use to
describe objectsthat will include all the characteristics of these different
materials.

Polygon and quadric surfaces provide precise descriptions forsimple
Euclidean objects such as polyhedrons and ellipsoids. They areexamples of
boundary representations (B-reps), which describea three-dimensional
object as a set of surfaces that separate theobject interior from the
environment. In this chapter, we considerthe features of these types of
representation schemes and how theyare used in computer-graphics
applications.

Polyhedra

The most commonly used boundary representation for a three-
dimensionalgraphics object is a set of surface polygons that enclose the
object interior. Manygraphics systems store all object descriptions as sets of
surface polygons. Thissimplifies and speeds up the surface rendering and
display of objects because
allsurfaces are described
with linear equations. For
this reason, polygon
descriptionsare often
referred to as standard
graphics objects. In some
cases, a polygonal
representationis the only
one available, but many
packages also allow object
surfacesto be described
with other schemes, such
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as spline surfaces, which are usually convertedto polygonal representations
for processing through the viewing pipeline.

To describe an object as a set of polygon facets,wegive the list of vertex
coordinatesfor each polygon section over the object surface. The vertex
coordinatesand edge information for the surface sections are then stored in
tables alongwithother information, such as the surface normal vector for
each polygon. Somegraphics packages provide routines for generating a
polygon-surface mesh as aset of triangles or quadrilaterals. This allows us to
describe a large section of anobject’s bounding surface, or even the entire
surface, with a single command.

And some packages also provide routines for displaying common
shapes, suchas a cube, sphere, or cylinder, represented with polygon
surfaces. Sophisticatedgraphics systems use fast hardware-implemented
polygon renderers that have thecapability for displaying a million ormore
shaded polygons (usually triangles) persecond, including the application of
surface texture and special lighting effects.

OpenGL Polyhedron Functions

We have two methods for specifying polygon surfaces in an OpenGL
program.

Using the polygon primitiveswe can generate a variety of polyhedron
shapes andsurface meshes. In addition, we can use GLUT functions to
display the five regularpolyhedra.

OpenGL Polygon Fill-Area Functions

A set of polygon patches for a section of an object surface, or a
completedescription for a polyhedron, can be given using the OpenGL
primitive constantsGL POLYGON, GL TRIANGLES, GL TRIANGLE STRIP,
GL TRIANGLE FAN,GL QUADS, and GL QUAD STRIP. For example, we
could tessellate the lateral(axial) surface of a cylinder using a quadrilateral
strip. Similarly, all faces of a parallelogramcan be described with a set of
rectangles, and all faces of a triangularpyramid could be specified using a
set of connected triangular surfaces.

GLUT Regular Polyhedron Functions

Some standard shapes—the five regular polyhedra—are predefined by
routinesin the GLUT library. These polyhedra, also called the Platonic solids,
are distinguishedby the fact that all the faces of any regular polyhedron are
identical regularpolygons. Thus, all edges in a regular polyhedron are equal,
all edge anglesare equal, and all angles between faces are equal. Polyhedra
are named accordingto the number of faces in each of the solids, and the
five regular polyhedra are theregular tetrahedron (or triangular pyramid,
with 4 faces), the regular hexahedron(or cube, with 6 faces), the regular
octahedron (8 faces), the regular dodecahedron
(12 faces), and the regular icosahedron (20 faces).

Ten functions are provided in GLUT for generating these solids: five of
the functions produce wire-frame objects, and five display the polyhedra
facetsas shaded fill areas. The displayed surface characteristics for the fill
areas aredetermined by the material properties and the lighting conditions
that we set fora scene. Each regular polyhedron is described in modeling
coordinates, so thateach is centered at the world-coordinate origin.
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We obtain the four-sided, regular triangular pyramid using either of
thesetwo functions:
glutWireTetrahedron ( );
orglutSolidTetrahedron ( );

This polyhedron is generated with its center at the world-coordinate
origin andwith a radius (distance from the center of the tetrahedron to any
vertex) equaltoV3.

The six-sided regular hexahedron (cube) is displayed with
glutWireCube (edgeLength);

or

glutSolidCube (edgeLength);

Parameter edgeLength can be assigned any positive, double-precision
floatingpointvalue, and the cube is centered on the coordinate origin.To
display the eight-sided regular octahedron, we invoke either of the following
commands:
glutWireOctahedron ( );
or
glutSolidOctahedron ( );

This polyhedron has equilateral triangular faces, and the radius
(distance fromthe center of the octahedron at the coordinate origin to any
vertex) is 1.0.

The twelve-sided regular dodecahedron, centered at the world-
coordinateorigin, is generated with
glutWireDodecahedron ( );
or
glutSolidDodecahedron ( );

Each face of this polyhedron is a pentagon.The following two functions
generate the twenty-sided<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>