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E-CONTENT- COMPUTER GRAPHICS BY A.JEROME ROBINSON 
UNIT 1:  
INTRODUCTION TO COMPUTER GRAPHICS 

The power and utility of computer graphics is widely recognized,and a 
broad range of graphics hardware and softwaresystems is now available for 
applications in virtuallyall fields. Graphics capabilities for both two-
dimensional and three dimensionalapplications are now common, even on 
general-purposecomputers and handheld calculators. With personal 
computers, wecan use a variety of interactive input devices and graphics 
softwarepackages. For higher-quality applications, we can choose from a 
numberof sophisticated special-purpose graphics hardware systems and 
technologies. In this chapter, we explore the basic features of 
graphicshardware components and graphics software packages. 
VIDEO DISPLAY DEVICES 

Typically, the primary output device in a graphics system is a video 
monitor.Historically, the operation of most video monitors was based on the 
standardcathode-ray tube (CRT) design, but several other technologies 
exist. In recentyears, flat-panel displays have become significantly more 
popular due to theirreduced power consumption and thinner designs. 
Refresh Cathode-Ray Tubes 

Figure 1 illustrates the basic operation of a CRT. A beam of electrons 
(cathoderays), emitted by an electron gun, passes through focusing and 
deflection systemsthat direct the beam toward specified positions on the 
phosphor-coated screen.The phosphor then emits a small spot of light at 
each position contacted by theelectron beam. Because the light emitted by 
the phosphor fades very rapidly,some method is needed for maintaining the 
screen picture. One way to do thisis to store the picture information as a 
charge distribution within the CRT. Thischarge distribution can then be 
used to keep the phosphors activated. However,the most common method 
now employed for maintaining phosphor glow is toredraw the picture 
repeatedly by quickly directing the electron beam back over thesame screen 
points. This type of display is called a refreshCRT, and the frequencyat 
which a picture is redrawn on the screen is referred to as the refresh 
rate.The primary components of an electron gun in a CRT are the heated 
metalcathode and a control grid (Fig. 2). Heat is supplied to the cathode by 
directinga current through a coil of wire, called the filament, inside the 
cylindrical cathodestructure. This causes electrons to be “boiled off” the hot 
cathode surface.  
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Inthe vacuum inside the CRT envelope, the free, negatively charged 

electrons are then accelerated toward the phosphor coating by a high 
positive voltage. The accelerating voltage can be generated with a positively 
charged metal coating on the inside of the CRT envelope near the phosphor 
screen, or an accelerating 
anode, as in Figure 2, can be used to provide the positive voltage. 
Sometimes the electron gun is designed so that the accelerating anode and 
focusing system are within the same unit.  

Intensity of the electron beam is controlled by the voltage at the 
control grid, which is a metal cylinder that fits over the cathode. A high 
negative voltage applied to the control grid will shut off the beam by 
repelling electrons and stopping them from passing through the small hole 
at the end of the controlgrid structure. A smaller negative voltage on the 
control grid simply decreases the number of electrons passing through. 
Since the amount of light emitted by the phosphor coating depends on the 
number of electrons striking the screen, the brightness of a display point is 
controlled by varying the voltage on the control grid. This brightness, or 
intensity level, is specified for individual screen positions with graphics 
software commands. The focusing system in a CRT forces the electron beam 
to converge to a small cross section as it strikes the phosphor. Otherwise, 
the electrons would repel each other, and the beam would spread out as it 
approaches the screen. Focusing is accomplished with either electric or 
magnetic fields. With electrostatic focusing, the electron beam is passed 
through a positively charged metal cylinder so that electrons along the 
center line of the cylinder are in an equilibrium position. This arrangement 
forms an electrostatic lens, as shown in Figure 2, and the electron beam is 
focused at the center of the screen in the same way that an optical lens 
focuses a beam of light at a particular focal distance. Similar lens focusing 
effects can be accomplished with a magnetic field set up by a coil mounted 
around the outside of the CRT envelope, and magnetic lens focusing usually 
produces the smallest spot size on the screen. 

Additional focusing hardware is used in high-precision systems to 
keep the beam in focus at all screen positions. The distance that the 
electron beam must travel to different points on the screen varies because 
the radius of curvature for most CRTs is greater than the distance from the 
focusing system to the screen center. Therefore, the electron beam will be 
focused properly only at the center of the screen. As the beam moves to the 
outer edges of the screen, displayed images become blurred. To compensate 
for this, the system can adjust the focusing according to the screen position 
of the beam. 

As with focusing, deflection of the electron beam can be controlled 
with either electric or magnetic fields. Cathode-ray tubes are now commonly 
constructed with magnetic-deflection coils mounted on the outside of the 
CRT envelope, as illustrated in Figure 1. Two pairs of coils are used for this 
purpose. One pair is mounted on the top and bottom of the CRT neck, and 
the other pair is mounted on opposite sides of the neck. The magnetic field 
produced by each pair of coils results in a transverse deflection force that is 
perpendicular to both the direction of the magnetic field and the direction of 
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travel of the 
electron 
beam. 
Horizontal 
deflection is 
accomplished 
with one pair 
of coils, and 
vertical 
deflection with the other pair. The proper deflection amounts are attained by 
adjusting the current through the coils. When electrostatic deflection is 
used, two pairs of parallel plates are mounted inside the CRT envelope. One 
pair of plates is mounted horizontally to control vertical deflection, and the 
other pair is mounted vertically to control horizontal deflection (Fig. 3). 

Spots of light are produced on the screen by the transfer of the CRT 
beam energy to the phosphor. When the electrons in the beam collide with 
the phosphor coating, they are stopped and their kinetic energy is absorbed 
by the phosphor. 

Part of the beam energy is converted by friction into heat energy, and 
the remainder 
causes electrons in the phosphor atoms to move up to higher quantum-
energy levels. After a short time, the “excited” phosphor electrons begin 
dropping back to their stable ground state, giving up their extra energy as 
small quantums of light energy called photons. What we see on the screen is 
the combined effect of all the electron light emissions: a glowing spot that 
quickly fades after all the excited phosphor electrons have returned to their 
ground energy level. The frequency (or color) of the light emitted by the 
phosphor is in proportion to the energy difference between the excited 
quantum state and the ground state. 

Different kinds of phosphors are available for use in CRTs. Besides 
color, a major difference between phosphors is their persistence: how long 
they continue to emit light (that is, how long it is before all excited electrons 
have returned to the ground state) after the CRT beam is removed. 
Persistence is defined as the time that it takes the emitted light from the 
screen to decay to one-tenth of its original intensity. Lower-persistence 
phosphors require higher refresh rates to maintain a picture on the screen 
without flicker. A phosphor with low persistence can be useful for 
animation, while high-persistence phosphors are better suited for displaying 
highly complex, static pictures. Although some phosphors have 
persistence values greater than 1 second, general-purpose graphics 
monitors are usually constructed with persistence in the range from 10 to 
60 microseconds. 

Figure 4 shows the intensity distribution of a spot on the screen. The 
intensity is greatest at the center of the spot, and it decreases with a 
Gaussian distribution out to the edges of the spot. This distribution 
corresponds to the cross-sectional electron density distribution of the CRT 
beam. The maximum number of points that can be displayed without 
overlap on a CRT is referred to as the resolution. A more precise definition 
of resolution is the number of points per centimeter that can be plotted 
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horizontally and vertically, although it is often simply stated as the total 
number of points in each direction. Spot intensity has a Gaussian 
distribution (Fig. 4), so two adjacent spots will appear distinct as long as 
their separation is greater than the diameter at which each spot has an 
intensity of about 60 percent of that at the center of the spot. This overlap 
position is illustrated in Figure 5. Spot size also depends on intensity. As 
more electrons are accelerated toward the phosphor per second, the 
diameters of the CRT beam and the illuminated spot increase. In addition, 
the increased excitation energy tends to spread to neighboring phosphor 
atoms not directly in the path of the beam, which further increases the spot 
diameter.  

Thus, resolution of a CRT is dependent on the type 
of phosphor, the intensity to be displayed, and the 
focusing and deflection systems. Typical resolution on 
high-quality systems is 1280 by 1024, with higher 
resolutions available on many systems. High-resolution 
systems are often referred to as high-definition systems.  

The physical size of a graphics monitor, on the 
other hand, is given as the length of the screen diagonal, 
with sizes varying from about 12 inches to 27 inches or 
more. 

A CRT monitor can be attached to a variety of 
computer systems, so the number of screen points that 
can actually be plotted also depends on the capabilities 
of the system to which it is attached. 
Raster-Scan Displays 

The most common type of graphics monitor employing a CRT is the 
raster-scan display, based on television technology. In a raster-scan 
system, the electron beam is swept across the screen, one row at a time, 
from top to bottom. Each row is referred to as a scan line. As the electron 
beam moves across a scan line, the beam intensity is turned on and off (or 
set to some intermediate value) to create a pattern of illuminated spots. 
Picture definition is stored in a memory area called the refresh buffer or 
frame buffer, where the term frame refers to the total screen area. 

This memory area holds the set of color values for the screen points. 
These stored color values are then retrieved from the refresh buffer and used 
to control the intensity of the electron beam as it moves fromspot to spot 
across the screen. In this way, the picture is “painted” on the screen one 
scan line at a time, as demonstrated in Figure 6. Each screen spot that can 
be illuminated by the electron beam is referred to as a pixel or pel 
(shortened forms of picture element). Since the refresh buffer is used to 
store the set of screen color values, it is also sometimes called a color 
buffer. Also, other kinds of pixel information, besides color, are stored in 
buffer locations, so all the different buffer areas are sometimes referred to 
collectively as the “frame buffer.” The capability of a raster-scan system to 
store color information for each screen point makes it well suited for the 
realistic display of scenes containing subtle shading and color patterns. 
Home television sets and printers are examples of other systems using 
raster-scan methods. 
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Raster 
systems are 
commonly 
characterized 
by their 
resolution, 
which is the 
number of 
pixel positions 
that can be 
plotted. 
Another 
property of 
video 
monitors is 
aspect ratio, which is now often defined as the number of pixel columns 
divided by the number of scan lines that can be displayed by the system. 
(Sometimes this term is used to refer to the number of scan lines divided by 
the number of pixel columns.) Aspect ratio can also be described as the 
number of horizontal points to vertical points (or vice versa) necessary to 
produce equal-length lines in both directions on the screen. Thus, an aspect 
ratio of 4/3, for example, means that a horizontal line plotted with four 
points has the same length as a vertical line plotted with three points, where 
line length is measured in some physical units such as centimeters. 
Similarly, the aspect ratio of any rectangle (including the total screen area) 
can be defined to be the width of the rectangle divided by its height. The 
range of colors or shades of gray that can be displayed on a raster system 
depends on both the types of phosphor used in the CRT and the number of 
bits per pixel available in the frame buffer. For a simple black-and-white 
system, each screen point is either on or off, so only one bit per pixel is 
needed to control the intensity of screen positions. A bit value of 1, for 
example, indicates that the electron beam is to be turned on at that 
position, and a value of 0 turns the beam off. Additional bits allow the 
intensity of the electron beam to be varied over a range of values between 
“on” and “off.” Up to 24 bits per pixel are included in high-quality systems, 
which can require several megabytes of storage for the frame buffer, 
depending on the resolution of the system. For example, a system with 24 
bits per pixel and a screen resolution of 1024 by 1024 requires 3 MB of 
storage for the refresh buffer. The number of bits per pixel in a frame buffer 
is sometimes referred to as either the depth of the buffer area or the 
number of bit planes. A frame buffer with one bit per pixel is commonly 
called a bitmap, and a frame buffer with multiple bits per pixel is a pixmap, 
but these terms are also used to describe other rectangular arrays, where a 
bitmap is any pattern of binary values and a pixmap is a multicolor pattern. 
As each screen refresh takes place, we tend to see each frame as a smooth 
continuation of the patterns in the previous frame, so long as the refresh 
rate is not too low. Below about 24 frames per second, we can usually 
perceive a gap between successive screen images, and the picture appears to 
flicker. Old silent films, for example, show this effect because they were 
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photographed at a rate of 16 frames per second. When sound systems were 
developed in the 1920s, motionpicture film rates increased to 24 frames per 
second, which removed flickering and the accompanying jerky movements of 
the actors. Early raster-scan computer systems were designed with a refresh 
rate of about 30 frames per second. This produces reasonably good results, 
but picture quality is improved, up to a point, with higher refresh rates on a 
video monitor because the display technology on the monitor is basically 
different from that of film. A film projector can maintain the continuous 
display of a film frame until the next frame is brought into view. But on a 
video monitor, a phosphor spot begins to decay as soon as it is illuminated. 
Therefore, current raster-scan displays perform refreshing at the rate of 60 
to 80 frames per second, although some systems now have refresh rates of 
up to 120 frames per second. And some graphics systems have been 
designed with a variable refresh rate. For example, a higher refresh rate 
could be selected for a stereoscopic application so that two views of a scene 
(one from each eye position) can be alternately displayed without flicker. But 
other methods, such as multiple frame buffers, are typically used for such 
applications. 

Sometimes, refresh rates are described in units of cycles per second, 
or hertz (Hz), where a cycle corresponds to one frame. Using these units, we 
would describe a refresh rate of 60 frames per second as simply 60 Hz. At 
the end of each scan line, the electron beam returns to the left side of the 
screen to begin displaying the next scan line. The return to the left of the 
screen, after refreshing each scan line, is called the horizontal retrace of 
the electron beam. And at the end of each frame (displayed in 1 80 to 1 60 of 
a second), the electron beam returns to the upper-left corner of the screen 
(vertical retrace) to begin the next frame.  

On some raster-scan 
systems and TV sets, each 
frame is displayed in two 
passes using an interlaced 
refresh procedure. In the first 
pass, the beam sweeps across 
every other scan line from top 
to bottom. After the vertical 
retrace, the beam then sweeps out the remaining scan lines (Fig. 7). 
Interlacing of the scan lines in this way allows us to see the entire screen 
displayed in half the time that it would have taken to sweep across all the 
lines at once from top to bottom. 

This technique is primarily used with slower refresh rates. On an 
older, 30 frameper- second, non-interlaced display, for instance, some 
flicker is noticeable. But with interlacing, each of the two passes can be 
accomplished in 1 60 of a second, which brings the refresh rate nearer to 60 
frames per second. This is an effective technique for avoiding flicker—
provided that adjacent scan lines contain similar display information. 
Random-Scan Displays 
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When 
operated as a 
random-scan 
display unit, a 
CRT has the 
electron beam 
directed only to 
those parts of 
the screen 
where a 
picture is to be 
displayed. 
Pictures are 
generated as 
line drawings, with the electron beam tracing out the component lines one 
after the other. For this reason, random-scan monitors are also referred to 
as vector displays (or stroke-writing displays or calligraphic displays). 
The component lines of a picture can be drawn and refreshed by a random-
scan system in any specified order (Fig. 8). A pen plotter operates in a 
similar way and is an example of a random-scan, hard-copy device. 

Refresh rate on a random-scan system depends on the number of 
lines to be displayed on that system. Picture definition is now stored as a set 
of line-drawing commandsin an area ofmemoryreferred to as the display 
list, refresh display file, vector file, or display program. To display a 
specified picture, the system cycles through the set of commands in the 
display file, drawing each component line in turn. After all line-drawing 
commands have been processed, the system cycles back to the first line 
command in the list. Random-scan displays are designed to draw all the 
component lines of a picture 30 to 60 times each second, with up to 100,000 
“short” lines in the display list. When a small set of lines is to be displayed, 
each refresh cycle is delayed to avoid very high refresh rates, which could 
burn out the phosphor. 

Random-scan systems were designed for line-drawing applications, 
such as architectural and engineering layouts, and they cannot display 
realistic shaded scenes. Since picture definition is stored as a set of line-
drawing instructions rather than as a set of intensity values for all screen 
points, vector displays generally have higher resolutions than raster 
systems. Also, vector displays produce smooth linedrawings because the 
CRT beam directly follows the line path.Araster system, by contrast, 
produces jagged lines that are plotted as discrete point sets. However, the 
greater flexibility and improved line-drawing capabilities of raster systems 
have resulted in the abandonment of vector technology. 
Color CRT Monitors 

A CRT monitor displays color pictures by using a combination of 
phosphors that emit different-colored light. The emitted light from the 
different phosphors merges to form a single perceived color, which depends 
on the particular set of phosphors that have been excited.  

One way to display color pictures is to coat the screen with layers of 
differentcolored 
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phosphors. The emitted color depends on how far the electron beam 
penetrates into the phosphor layers. This approach, called the beam-
penetration method, typically used only two phosphor layers: red and 
green. A beam of slow electrons excites only the outer red layer, but a beam 
of very fast electrons penetrates the red layer and excites the inner green 
layer. At intermediate beam speeds, combinations of red and green light are 
emitted to show two additional colors: orange and yellow. The speed of the 
electrons, and hence the screen color at any point, is controlled by the beam 
acceleration voltage. Beam penetration has been an inexpensive way to 
produce color, but only a limited number of colors are possible, and picture 
quality is not as good as with other methods. 

Shadow-mask methods are commonly used in raster-scan systems 
(includingcolor TV) because they produce a much wider range of colors than 
the beampenetrationmethod. This approach is based on the way that we 
seem to perceivecolors as combinations of red, green, and blue components, 
called the RGB colormodel. Thus, a shadow-mask CRT uses three 
phosphor color dots at each pixelposition. One phosphor dot emits a red 
light, another emits a green light, and thethird emits a blue light. This type 
of CRT has 
three electron 
guns, one for 
eachcolor dot, 
and a shadow-
mask grid just 
behind the 
phosphor-
coated screen. 
The light 
emitted from 
the three phosphors results in a small spot of color at each pixelposition, 
since our eyes tend to merge the light emitted from the three dots intoone 
composite color. Figure 9 illustrates the delta-delta shadow-mask 
method,commonly used in color CRT systems. The three electron beams are 
deflectedand focused as a group onto the shadow mask, which contains a 
series of holesaligned with the phosphor-dot patterns. When the three 
beams pass through ahole in the shadow mask, they activate a dot triangle, 
which appears as a smallcolor spot on the screen. The phosphor dots in the 
triangles are arranged so thateach electron beam can activate only its 
corresponding color dot when it passesthrough the shadow mask. Another 
configuration for the three electron guns is anin-line arrangement in which 
the three electron guns, and the corresponding RGBcolor dots on the screen, 
are aligned along one scan line instead of in a triangularpattern. This in-line 
arrangement of electron guns is easier to keep in alignmentand is commonly 
used in high-resolution color CRTs. 

We obtain color variations in a shadow-mask CRT by varying the 
intensitylevels of the three electron beams. By turning off two of the three 
guns, we getonly the color coming from the single activated phosphor (red, 
green, or blue).When all three dots are activated with equal beam intensities, 
we see a whitecolor. Yellow is produced with equal intensities from the green 
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and red dots only,magenta is produced with equal blue and red intensities, 
and cyan shows upwhen blue and green are activated equally. In an 
inexpensive system, each of thethree electron beams might be restricted to 
either on or off, limiting displays toeight colors. More sophisticated systems 
can allow intermediate intensity levelsto be set for the electron beams, so 
that several million colors are possible. 

Color graphics systems can be used with several types ofCRT display 
devices.Some inexpensive home-computer systems and video games have 
been designedfor use with a color TV set and a radio-frequency (RF) 
modulator. The purpose ofthe RF modulator is to simulate the signal froma 
broadcast TV station. This meansthat the color and intensity information of 
the picture must be combined andsuperimposed on the broadcast-frequency 
carrier signal that the TV requires asinput. Then the circuitry in theTVtakes 
this signal fromthe RF modulator, extractsthe picture information, and 
paints it on the screen. As we might expect, thisextra handling of the picture 
information by the RF modulator and TV circuitrydecreases the quality of 
displayed images.  

Composite monitors are adaptations ofTVsets that allow bypass of 
the broadcastcircuitry. These display devices still require that the picture 
information becombined, but no carrier signal is needed. Since picture 
information is combinedinto a composite signal and then separated by the 
monitor, the resulting picturequality is still not the best attainable. 

Color CRTs in graphics systems are designed as RGB monitors. 
These monitorsuse shadow-mask methods and take the intensity level for 
each electron gun(red, green, and blue) directly from the computer system 
without any intermediateprocessing. High-quality raster-graphics systems 
have 24 bits per pixel inthe frame buffer, allowing 256 voltage settings for 
each electron gun and nearly17 million color choices for each pixel. An RGB 
color system with 24 bits of storageper pixel is generally referred to as a full-
color system or a true-color system. 
Flat-Panel Displays 

Although most graphics monitors are still constructed with CRTs, 
other technologies 
are emerging that may soon replace CRT monitors. The term flat-
paneldisplay refers to a class of video devices that have reduced volume, 
weight, andpower requirements compared to a CRT. A significant feature of 
flat-panel displaysis that they are thinner than CRTs, and we can hang 
them on walls or wearthem on our wrists. Since we can even write on some 
flat-panel displays, theyare also available as pocket notepads. Some 
additional uses for flat-panel displaysare as small TV monitors, calculator 
screens, pocket video-game screens, 
laptop computer screens, armrest movie-viewing stations on airlines, 
advertisementboards in elevators, and graphics displays in applications 
requiring rugged,portable monitors. 

We can separate flat-panel displays into two categories: emissive 
displaysand nonemissive displays. The emissive displays (or emitters) are 
devices thatconvert electrical energy into light. Plasma panels, thin-film 
electroluminescentdisplays, and light-emitting diodes are examples of 
emissive displays. Flat CRTshave also been devised, in which electron beams 
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are accelerated parallel to thescreenandthen deflected 90 onto the screen. 
But flatCRTs have not proved to be assuccessful as other emissive devices. 
Nonemissive displays (or nonemitters) useoptical effects to convert sunlight 
or light from some other source into graphicspatterns. The most important 
example of a nonemissive flat-panel display is aliquid-crystal device. 

Plasma panels, also called gas-discharge displays, are constructed 
by fillingthe 
region between 
two glass 
plates with a 
mixture of 
gases that 
usually 
includesneon. 
A series of 
vertical 
conducting 
ribbons is 
placed on one 
glass panel, and aset of horizontal conducting ribbons is built into the other 
glass panel (Fig. 10). 

Firingvoltages applied to an intersecting pair of horizontal and vertical 
conductorscause the gas at the intersection of the two conductors to break 
down intoa glowing plasma of electrons and ions. Picture definition is stored 
in a refreshbuffer, and the firing voltages are applied to refresh the pixel 
positions (at theintersections of the conductors) 60 times per second. 
Alternating-current methodsare used to provide faster application of the 
firing voltages and, thus, brighter displays. 

Separation between pixels is provided by the electric field of the 
conductors.One disadvantage of plasma panels has been that they were 
strictly monochromaticdevices, but systems are now available with 
multicolor capabilities. 

Thin-film electroluminescent displays are 
similar in construction to plasmapanels. The difference is 
that the region between the glass plates is filled with 
aphosphor, such as zinc sulfide doped with manganese, 
instead of a gas (Fig. 11). 

When a sufficiently high voltage is applied to a pair 
of crossing electrodes, the phosphor becomes a 
conductor in the area of the intersection of the two 
electrodes. 

Electrical energy is absorbed by the manganese 
atoms, which then release theenergy as a spot of light 
similar to the glowing plasma effect in a plasma panel. 

Electroluminescent displays require more power 
than plasma panels, and goodcolor displays are harder to 
achieve. 

Athird type of emissive device is the light-emitting diode 
(LED).Amatrix ofdiodes is arranged to form the pixel positions in the display, 
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and picture definitionis stored in a refresh buffer. As in scan-line refreshing 
of a CRT, information isread from the refresh buffer and converted to voltage 
levels that are applied tothe diodes to produce the light patterns in the 
display.  

Liquid-crystal displays (LCDs) are commonly used in small systems, 
such aslaptop computers and calculators (Fig. 12). These nonemissive 
devices producea picture by passing polarized light from the surroundings 
or from an internallight source through a liquid-crystal material that can be 
aligned to either blockor transmit the light. 

The term liquid crystal refers to the fact that these compounds have a 
crystallinearrangement of molecules, yet they flow like a liquid. Flat-panel 
displayscommonly use nematic (threadlike) liquid-crystal compounds that 
tend to keepthe long axes of the rod-shaped molecules aligned. A flat-panel 
display can thenbe constructed with a nematic liquid crystal, as 
demonstrated in Figure 13. Twoglass plates, each containing a light 
polarizer that is aligned at a right angle to theother plate, sandwich the 
liquid-crystal 
material. 
Rows of 
horizontal, 

transparentconductors are built into one glass plate, and columns of vertical 
conductorsare put into the other plate. The intersection of two conductors 
defines a pixel 

position. Normally, the molecules are aligned as shown in the “on state” of 
Figure 
13. Polarized light passing through the material is twisted so that it will pass 
through the opposite polarizer. The light is then reflected back to the viewer. 
Toturn off the pixel,weapply a voltage to the two intersecting conductors to 
align themolecules so that the light is not twisted. This type of flat-panel 
device is referredto as a passive-matrix LCD. Picture definitions are stored 
in a refresh buffer, andthe screen is refreshed at the rate of 60 frames per 
second, as in the emissive devices. Backlighting is also commonly applied 
using solid-state electronicdevices, so that the system is not completely 
dependent on outside light sources. 

Colors can be displayed by using different materials or dyes and by 
placing a triad 
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of color pixels at each screen location. Another method for constructing 
LCDs isto place a transistor at each pixel location, using thin-film transistor 
technology.The transistors are used to control the voltage at pixel locations 
and to preventcharge from gradually leaking out of the liquid-crystal cells. 
These devices arecalled active-matrix displays. 
Three-Dimensional Viewing Devices 

Graphics monitors for the display of three-dimensional scenes have 
been devisedusing a technique that reflects a CRT image from a vibrating, 
flexible 
mirror(Fig. 
14). As the 
varifocal 
mirror 
vibrates, it 
changes 
focal 
length. 
These 

vibrationsare synchronized with the display of an object on a CRT so that 
each pointon the object is reflected from the mirror into a spatial position 
correspondingto the distance of that point from a specified viewing location. 
This allows us towalk around an object or scene and view it from different 
sides. 
In addition to displaying three-dimensional images, these systems areoften 
capable of displaying two-dimensional cross-sectional “slices” of 
objectsselected at different depths, such as in medical applications to 
analyze datafrom ultrasonography and CAT scan devices, in geological 
applications toanalyze topological and seismic data, in design applications 
involving solidobjects, and in three-dimensional simulations of systems, 
such as molecules andterrain. 
Stereoscopic and Virtual-Reality Systems 

Another technique for representing a three-dimensional object is to 
displaystereoscopic views of the object. This method does not produce true 
threedimensionalimages, but it does provide a three-dimensional effect by 
presentinga different view to each eye of an observer so that scenes do 
appear to havedepth. 

To obtain a stereoscopic projection, we must obtain two views of a 
scenegenerated with viewing directions along the lines from the position of 
each eye(left and right) to the scene.We can construct the two views as 
computer-generatedscenes with different viewing positions, or we can use a 
stereo camera pair tophotograph an object or scene. When we 
simultaneously look at the left viewwith the left eye and the right view with 
the right eye, the two views merge intoa single image and we perceive a 
scene with depth. 
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One way to produce a stereoscopic effect on a raster system is to 
display eachof the two views on alternate refresh cycles. The screen is 
viewed through glasses,with each lens designed to act as a rapidly 
alternating shutter that is synchronizedto block out one of the views. One 
such design (Figure 15) uses liquid-crystalshutters and an infrared emitter 
that synchronizes the glasses with the views onthe screen. 

Stereoscopic viewing is also a component in virtual-reality systems, 
whereusers can step into a scene and interact with the environment. A 
headset containingan optical system to generate the stereoscopic views can 
be used in conjunctionwith interactive input devices to locate and 
manipulate objects in the scene. 

A sensing system in the headset keeps track of the viewer’s position, 
so that thefront and back of objects can be seen as the viewer “walks 
through” and interactswith the display. Another method for creating a 
virtual-reality environmentis to use projectors to generate a scene within an 
arrangement of walls, where aviewer interacts with a virtual display using 
stereoscopic glasses and data gloves(Section 4). 

Lower-cost, interactive virtual-reality environments can be set up 
using agraphics monitor, stereoscopic glasses, and a head-tracking device. 
The trackingdevice is placed above the video monitor and is used to record 
head movements,so that the viewing position for a scene can be changed as 
head positionchanges. 
RASTER SCAN SYSTEMS 

Interactive raster-graphics systems typically employ several 
processingunits. Inaddition to the central processing unit (CPU), a special-
purpose processor, calledthe video controller or display controller, is used 
to control the operation of thedisplay device. Organization of a simple raster 
system is shown in Figure 16. 

Here, the frame buffer can be anywhere in the system memory, and 
the videocontroller accesses the frame buffer to refresh the screen. In 
addition to the videocontroller, more sophisticated raster systems employ 
other processors as coprocessorsand accelerators to implement various 
graphics operations. 
Video Controller 

Figure 17 shows a commonly used organization for raster systems. A 
fixed areaof the system memory is reserved for the frame buffer, and the 
video controller isgiven direct access to the frame-buffer memory. 
Frame-buffer 
locations, and 
the 
corresponding 
screen 
positions, are 
referencedin 
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Cartesiancoordinates. In an application program, we use the 
commandswithin a graphics software package to set coordinate positions for 
displayedobjects relative to the origin of the Cartesian reference frame. 
Often, the coordinateorigin is referenced at the lower-left corner of a screen 
display area by thesoftware commands, although we can typically set the 
origin at any convenientlocation for a particular application. Figure 18 
shows a two-dimensional Cartesianreference frame with the origin at the 
lower-left screen corner. The screensurface is then represented as the first 
quadrant of a two-dimensional system,with positive x values increasing from 
left to right and positive y values increasingfrom the bottom of the screen to 
the top. Pixel positions are then assignedinteger x values that range from 0 
to xmax across the screen, left to right, and integery values that vary from 0 
to ymax, bottom to top. However, hardware processessuch as screen 
refreshing, as well as some software systems, reference the pixelpositions 
from the top-left corner of the screen. 

In Figure 19, 
the basic refresh 
operations of the 
video controller are 
diagrammed.Two 
registers are used to 
store the coordinate 
values for the 
screenpixels. Initially, 
the x register is set to 
0 and the y register is 
set to the value forthe 
top scan line. The 
contents of the frame 
buffer at this pixel position are thenretrieved and used to set the intensity of 
the CRT beam. Then the x register isincremented by 1, and the process is 
repeated for the next pixel on the top scanline. This procedure continues for 
each pixel along the top scan line. After thelast pixel on the top scan line 
has been processed, the x register is reset to 0 andthe y register is set to the 
value for the next scan line down from the top of thescreen. Pixels along this 
scan line are then processed in turn, and the procedure isrepeated for each 
successive scan line. After cycling through all pixels along thebottom scan 
line, the video controller resets the registers to the first pixel position 
on the top scan line and the refresh process starts over. 

Since the screen must be refreshed at a rate of at least 60 frames per 
second,the simple procedure illustrated in Figure 19 may not be 
accommodated bytypical RAM chips if the cycle time is too slow. To speed 
up pixel processing, video controllers can retrieve multiple pixel values from 
the refresh buffer oneach pass. The multiple pixel intensities are then stored 
in a separate register andused to control the CRT beam intensity for a group 
of adjacent pixels. When thatgroup of pixels has been processed, the next 
block of pixel values is retrieved fromthe frame buffer. 

A video controller can be designed to perform a number of other 
operations.For various applications, the video controller can retrieve pixel 
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values from differentmemory areas on different refresh 
cycles. In some systems, for example,multiple frame 
buffers are often provided so that one buffer can be used 
forrefreshing while pixel values are being loaded into the 
other buffers. Then thecurrent refresh buffer can switch 
roles with one of the other buffers. This providesa fast 
mechanism for generating real-time animations, for 
example, sincedifferent views of moving objects can be 
successively loaded into a buffer withoutinterrupting a 
refresh cycle. Another video-controller task is the 
transformationof blocks of pixels, so that screen areas 
can be enlarged, reduced, or moved fromone location to 
another during the refresh cycles. In addition, the video 
controlleroften contains a lookup table, so that pixel 
values in the frame buffer are usedto access the lookup 
table instead of controlling the CRT beam intensity 
directly. 

This provides a fast method for changing screen 
intensity values. Finally, somesystems are designed to allow the video 
controller to mix the frame-bufferimage with an input image from a 
television camera or other input device. 
Raster-Scan Display Processor 

Figure 20 shows one way to organize the components of a raster 
system thatcontains a separate display processor, sometimes referred to as 
a graphics 
controlleror a 
display 
coprocessor. 
The purpose of 
the display 
processor is to 
freethe CPU 
from the 
graphics 
chores. In 
addition to the system memory, a separatedisplay-processor memory area 
can be provided. 

A major task of the display processor is digitizing a picture definition 
givenin an application program into a set of pixel values for storage in the 
framebuffer. This digitization process is called scan conversion. Graphics 
commands 
specifying straight lines and other geometric objects are scan converted into 
aset of discrete points, corresponding to screen pixel positions. Scan 
convertinga straight-line segment, for example, means that we have to locate 
the pixelpositions closest to the line path and store the color for each 
position in the frame buffer. Similar methods are used for scan converting 
other objects in a picturedefinition. Characters can be defined with 
rectangular pixel grids, as inFigure 21, or they can be defined with outline 
shapes, as in Figure 22. Thearray size for character grids can vary from 
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about 5 by 7 to 9 by 12 or more forhigher-quality displays. A character grid 
is displayed by superimposing the rectangulargrid pattern into the frame 
buffer at a specified coordinate position. Forcharacters that are defined as 
outlines, the shapes are scan-converted into theframe buffer by locating the 
pixel positions closest to the outline. 

Display processors are also designed to perform a number of 
additional operations. 

These functions include generating various line styles (dashed, dotted, 
orsolid), displaying color areas, and applying transformations to the objects 
in ascene. Also, display processors are typically designed to interface with 
interactiveinput devices, such as a mouse. 

In an effort to reduce memory requirements in raster systems, 
methods havebeen devised for organizing the frame buffer as a linked list 
and encoding thecolor information. One organization scheme is to store each 
scan line as a set ofnumber pairs. The first number in each pair can be a 
reference to a color value, andthe second number can specify the number of 
adjacent pixels on the scan line thatare to be displayed in that color. This 
technique, called run-length encoding, canresult in a considerable saving 
in storage space if a picture is to be constructedmostly with long runs of a 
single color each. A similar approach can be takenwhen pixel colors change 
linearly. Another approach is to encode the raster as aset of rectangular 
areas (cell encoding). The disadvantages of encoding runs arethat color 
changes are difficult to record and storage requirements increase as 
thelengths of the runs decrease. In addition, it is difficult for the display 
controller toprocess the raster when many short runs are involved. 
Moreover, the size of theframe buffer is no longer a major concern, because 
of sharp declines in memorycosts. Nevertheless, encoding methods can be 
useful in the digital storage andtransmission of picture information.  
RANDOM SCAN SYSTEMS 
Random-Scan Displays 

When 
operated as a 
random-scan 
display unit, a 
CRT has the 
electron beam 
directed only to 
those parts of 
the screen 
where a 
picture is to be 
displayed. 
Pictures are 
generated as 
line drawings, with the electron beam tracing out the component lines one 
after the other. For this reason, random-scan monitors are also referred to 
as vector displays (or stroke-writing displays or calligraphic displays). 
The component lines of a picture can be drawn and refreshed by a random-
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scan system in any specified order (Fig. 8). A pen plotter operates in a 
similar way and is an example of a random-scan, hard-copy device. 

Refresh rate on a random-scan system depends on the number of 
lines to be displayed on that system. Picture definition is now stored as a set 
of line-drawing commandsin an area ofmemoryreferred to as the display 
list, refresh display file, vector file, or display program. To display a 
specified picture, the system cycles through the set of commands in the 
display file, drawing each component line in turn. After all line-drawing 
commands have been processed, the system cycles back to the first line 
command in the list. Random-scan displays are designed to draw all the 
component lines of a picture 30 to 60 times each second, with up to 100,000 
“short” lines in the display list. When a small set of lines is to be displayed, 
each refresh cycle is delayed to avoid very high refresh rates, which could 
burn out the phosphor. 
Random-scan systems were designed for line-drawing applications, such as 
architectural and engineering layouts, and they cannot display realistic 
shaded scenes. Since picture definition is stored as a set of line-drawing 
instructions rather than as a set of intensity values for all screen points, 
vector displays generally have higher resolutions than raster systems. Also, 
vector displays produce smooth line drawings because the CRT beam 
directly follows the line path.Araster system, by contrast, produces jagged 
lines that are plotted as discrete point sets. However, the greater flexibility 
and improved line-drawing capabilities of raster systems have resulted in 
the abandonment of vector technology. 
INTERACTIVE INPUT DEVICES 

Graphics workstations can make use of various devices for data input. 
Most systemshave a keyboard and one or more additional devices  
specifically designed forinteractive input. These include a mouse, trackball, 
spaceball, and joystick. Someother input devices used in particular 
applications are digitizers, dials, buttonboxes, data gloves, touch panels, 
image scanners, and voice systems. 
Keyboards, Button Boxes, and Dials 

An alphanumeric keyboard on a graphics system is used primarily as 
a device forentering text strings, issuing certain commands, and selecting 
menu options. Thekeyboard is an efficient device for inputting such 
nongraphic data as picture labelsassociated with a graphics display. 
Keyboards can also be provided with featuresto facilitate entry of screen 
coordinates, menu selections, or graphics functions. 

Cursor-control keys and function keys are common features on 
generalpurposekeyboards. Function keys allow users to select frequently 
accessed operationswith a single keystroke, and cursor-control keys are 
convenient for selectinga displayed object or a location by positioning the 
screen cursor. A keyboardcan also contain other types of cursor-positioning 
devices, such as a trackball orjoystick, along with a numeric keypad for fast 
entry of numeric data. In additionto these features, some keyboards have an 
ergonomic design that providesadjustments for relieving operator fatigue. 

For specialized tasks, input to a graphics application may come from a 
set ofbuttons, dials, or switches that select data values or customized 
graphics operations. 
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Buttons and switches are often used to input predefined functions, 
anddials are common devices for entering scalar values. Numerical values 
withinsome defined range are selected for input with dial rotations. A 
potentiometeris used to measure dial rotation, which is then converted to 
the correspondingnumerical value. 
Mouse Devices 

A mouse is a small 
handheld unit that is usually 
moved around on a flat 
surfaceto position the screen 
cursor. One or more buttons 
on the top of the mouse 
providea mechanism for 
communicating selection 
information to the computer; wheelsor rollers on the bottom of the mouse 
can be used to record the amount anddirection of movement. Another 
method for detecting mouse motion is with anoptical sensor. For some 
optical systems, the mouse is moved over a special mousepad that has a 
grid of horizontal and vertical lines. The optical sensor detectsmovement 
across the lines in the grid. Other optical mouse systems can operate on any 
surface. Some mouse systems are cordless, communicating with computer 
processors using digital radio technology. 

Since a mouse can be picked up and put down at another position 
without change in cursor movement, it is used for making relative changes 
in the position of the screen cursor. One, two, three, or four buttons are 
included on the top of the mouse for signaling the execution of operations, 
such as recording cursor position or invoking a function. Most general-
purpose graphics systems now include a mouse and a keyboard as the 
primary input devices. 

Additional features can be included in the basic mouse design to 
increase the number of allowable input parameters and the functionality of 
the mouse. 

The Logitech G700 wireless gaming mouse in Figure 23 features 13 
separately programmable control inputs. Each input can be configured to 
perform a wide range of actions, from traditional single-click inputs to macro 
operations containing multiple key strongs, mouse events, and pre-
programmed delays between operations. The laser-based optical sensor can 
be configured to control the degree of sensitivity to motion, allowing the 
mouse to be used in situations requiring different levels of control over 
cursor movement. In addition, the mouse can hold up to five different 
configuration profiles to allow the configuration to be switched easily when 
changing applications. 
Trackballs and Space balls 

A trackball is a ball device that can be rotated with the fingers or 
palm of the hand to produce screen-cursor movement. Potentiometers, 
connected to the ball, measure the amount and direction of rotation. Laptop 
keyboards are often equipped with a trackball to eliminate the extra space 
required by a mouse. A trackball also can be mounted on other devices, or it 
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can be obtained as a separate add-on unit that contains two or three control 
buttons. 

An extension of the two-dimensional trackball concept is the 
spaceball, which provides six degrees of freedom. Unlike the trackball, a 
spaceball does not actually move. Strain gauges measure the amount of 
pressure applied to the spaceball to provide input for spatial positioning and 
orientation as the ball is pushed or pulled in various directions. Spaceballs 
are used for three-dimensional positioning and selection operations in 
virtual-reality systems, modeling, animation, CAD, and other applications. 
Joysticks 

Another positioning device is the joystick, which consists of a small, 
vertical lever (called the stick) mounted on a base.We use the joystick to 
steer the screen cursor around. Most joysticks select screen positions with 
actual stick movement; othersrespond to pressure on the stick. Some 
joysticks are mounted on a keyboard, and some are designed as stand-alone 
units. 

The distance that the stick is moved in any direction from its center 
position corresponds to the relative screen-cursor movement in that 
direction. 

Potentiometers mounted at the base of the joystick measure the 
amount of movement, and springs return the stick to the center position 
when it is released. One or more buttons can be programmed to act as input 
switches to signal actions that are to be executed once a screen position has 
been selected. 

In another type of movable joystick, the stick is used to activate 
switches that cause the screen cursor to move at a constant rate in the 
direction selected. Eight switches, arranged in a circle, are sometimes 
provided so that the stick can select any one of eight directions for cursor 
movement. Pressure-sensitive joysticks, also called isometric joysticks, have 
a non-movable stick. A push or pull on the stick is measured with strain 
gauges and converted to movement of the screen cursor in the direction of 
the applied pressure. 
Data Gloves 

A data glove is a device that fits over the user’s hand and can be used 
to grasp a “virtual object.” The glove is constructed with a series of sensors 
that detect hand and finger motions. Electromagnetic coupling between 
transmitting antennas and receiving antennas are used to provide 
information about the position and orientation of the hand. The transmitting 
and receiving antennas can each be structured as a set of three mutually 
perpendicular coils, forming a three dimensional Cartesian reference 
system. Input from the glove is used to position or manipulate objects in a 
virtual scene. A two-dimensional projection of the scene can be viewed on a 
video monitor, or a three-dimensional projection can be viewed with a 
headset. 
Digitizers 

A common device for drawing, painting, or interactively selecting 
positions is a digitizer. These devices can be designed to input coordinate 
values in either a two-dimensional or a three-dimensional space. In 
engineering or architectural applications, a digitizer is often used to scan a 
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drawing or object and to input a set of discrete coordinate positions. The 
input positions are then joined with straight-line segments to generate an 
approximation of a curve or surface shape. 

One type of digitizer is the graphics tablet (also referred to as a data 
tablet), which is used to input two-dimensional coordinates by activating a 
hand cursor or stylus at selected positions on a flat surface. A hand cursor 
contains crosshairs for sighting positions, while a stylus is a pencil-shaped 
device that is pointed at positions on the tablet. The tablet size varies from 
12 by 12 inches for desktop models to 44 by 60 inches or larger for floor 
models. Graphics tablets provide a highly accurate method for selecting 
coordinate positions, with an accuracy that varies from about 0.2 mm on 
desktop models to about 0.05 mm or less on larger 
models. 

Many graphics tablets are constructed with a rectangular grid of wires 
embedded in the tablet surface. Electromagnetic pulses are generated in 
sequence along the wires, and an electric signal is induced in a wire coil in 
an activated stylus or hand-cursor to record a tablet position. Depending on 
the technology, signal strength, coded pulses, or phase shifts can be used to 
determine the position on the tablet. 

An acoustic (or sonic) tablet uses sound waves to detect a stylus 
position. Either strip microphones or point microphones can be employed to 
detect the soundemitted by an electrical spark from a stylus tip. The 
position of the stylus is calculated by timing the arrival of the generated 
sound at the different microphonepositions. An advantage of two-
dimensional acoustic tablets is that the microphones can be placed on any 
surface to form the “tablet” work area. For example, the microphones could 
be placed on a book page while a figure on that page is digitized. 

Three-dimensional digitizers use sonic or electromagnetic 
transmissions to record positions. One electromagnetic transmission 
method is similar to that employed in the data glove: A coupling between the 
transmitter and receiver is used to compute the location of a stylus as it 
moves over an object surface. As the points are selected on a nonmetallic 
object, a wire-frame outline of the surface is displayed on the computer 
screen. Once the surface outline is constructed, it can be rendered using 
lighting effects to produce a realistic display of the object. 
Image Scanners 

Drawings, graphs, photographs, or text can be stored for computer 
processing with an image scanner by passing an optical scanning 
mechanism over the information to be stored. The gradations of grayscale or 
color are then recorded and stored in an array. Once we have the internal 
representation of a picture, we can apply transformations to rotate, scale, or 
crop the picture to a particular screen area. We can also apply various 
image-processing methods to modify the array representation of the picture. 
For scanned text input, various editing operations can be performed on the 
stored documents. Scanners are available in a variety of sizes and 
capabilities, including small handheld models, drum scanners, and flatbed 
scanners. 
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Touch Panels 
As the name implies, touch panels allow displayed objects or screen 

positions tobe selected with the touch of a finger. A typical application of 
touch panels is forthe selection of processing options that are represented as 
a menu of graphicalicons. Some monitors are designed with touch screens. 
Other systems can beadapted for touch input by fitting a transparent device 
containing a touch-sensingmechanism over the video monitor screen. Touch 
input can be recorded usingoptical, electrical, or acoustical methods. 

Optical touch panels employ a line of infrared light-emitting diodes 
(LEDs)along one vertical edge and along one horizontal edge of the frame. 
Light detectorsare placed along the opposite vertical and horizontal edges. 
These detectorsare used to record which beams are interrupted when the 
panel is touched. Thetwo crossing beams that are interrupted identify the 
horizontal and vertical coordinatesof the screen position selected. Positions 
can be selected with an accuracyof about 1/4 inch.With closely spaced 
LEDs, it is possible to break two horizontalor two vertical beams 
simultaneously. In this case, an average position betweenthe two 
interrupted beams is recorded. The LEDs operate at infrared frequencies 
so that the light is not visible to a user. 

Anelectrical touch panel is constructed with two transparent plates 
separatedby a small distance. One of the plates is coated with a conducting 
material, andthe other plate is coated with a resistive material. When the 
outer plate is touched,it is forced into contact with the inner plate. This 
contact creates a voltage dropacross the resistive plate that is converted to 
the coordinate values of the selectedscreen position. 

In acoustical touch panels, high-frequency sound waves are generated 
inhorizontal and vertical directions across a glass plate. Touching the screen 
causespart of each wave to be reflected fromthe finger to the emitters. The 
screen positionat the point of contact is calculated from a measurement of 
the time intervalbetween the transmission of each wave and its reflection to 
the emitter. 
Light Pens 

Light pens are pencil-shaped devices are used to select screen 
positions by detectingthe light coming from points on the CRT screen. They 
are sensitive to the shortburst of light emitted from the phosphor coating at 
the instant the electron beamstrikes a particular point. Other light sources, 
such as the background light in theroom, are usually not detected by a light 
pen. An activated light pen, pointed at aspot on the screen as the electron 
beam lights up that spot, generates an electricalpulse that causes the 
coordinate position of the electron beam to be recorded. Aswith cursor-
positioning devices, recorded light-pen coordinates can be used toposition 
an object or to select a processing option. 

Although light pens are still with us, they are not as popular as they 
once werebecause they have several disadvantages compared to other input 
devices thathave been developed. For example, when a light pen is pointed 
at the screen, partof the screen image is obscured by the hand and pen. In 
addition, prolonged use ofthe light pen can causearmfatigue, and light pens 
require special implementationsfor some applications because they cannot 
detect positions within black areas. Tobe able to select positions in any 
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screen area with a light pen, we must have somenonzero light intensity 
emitted from each pixel within that area. In addition, lightpens sometimes 
give false readings due to background lighting in a room. 
Voice Systems 

Speech recognizers are used with some graphics workstations as 
input devicesfor voice commands. The voice system input can be used to 
initiate graphicsoperations or to enter data. These systems operate by 
matching an input againsta predefined dictionary of words and phrases. 

A dictionary is set up by speaking the command words several times. 
Thesystem then analyzes each word and establishes a dictionary of word 
frequencypatterns, along with the corresponding functions that are to be 
performed. 

Later, when a voice command is given, the system searches the 
dictionary fora frequency-pattern match. A separate dictionary is needed for 
each operatorusing the system. Input for a voice system is typically spoken 
into a microphonemounted on a headset; the microphone is designed to 
minimize input of backgroundsounds. Voice systems have some advantage 
over other input devicesbecause the attention of the operator need not 
switch from one device to anotherto enter a command. 
HARD COPY DEVICES 

We can obtain 
hard-copy output for 
our images in several 
formats. For 
presentationsor 
archiving, we can 
send image files to 
devices or service 
bureaus thatwill 
produce overhead 
transparencies, 35mm slides, or film. Also, we can put ourpictures on paper 
by directing graphics output to a printer or plotter. 

The quality of the pictures obtained from an output device depends on 
dotsize and the number of dots per inch, or lines per inch, that can be 
displayed. 

To produce smooth patterns, higher-quality printers shift dot 
positions so thatadjacent dots overlap.  

Printers produce output by either impact or nonimpact methods. 
Impact printerspress formed character faces against an inked ribbon onto 
the paper. A lineprinter is an example of an impact device, with the 
typefaces mounted on bands,chains, drums, or wheels. Nonimpact printers 
and plotters use laser techniques,ink-jet sprays, electrostatic methods, and 
electrothermal methods to get imagesonto paper. 

Character impact printers often have a dot-matrix print head 
containing a rectangulararray of protruding wire pins, with the number of 
pins varying dependingupon the quality of the printer. Individual characters 
or graphics patterns areobtained by retracting certain pins so that the 
remaining pins form the pattern tobe printed. Figure 24 shows a picture 
printed on a dot-matrix printer. 
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In a laser device, a laser beam creates a charge distribution on a 
rotating drumcoated with a photoelectric material, such as selenium. Toner 
is applied to thedrum and then transferred to paper. Ink-jet methods 
produce output by squirtingink in horizontal rows across a roll of paper 
wrapped on a drum. The electricallycharged ink stream is deflected by an 
electric field to produce dot-matrix patterns. 

An electrostatic device places a negative charge on the paper, one 
complete rowat atime across the sheet. Then the paper is exposed to a 
positively charged toner. Thiscauses the toner to be attracted to the 
negatively charged areas, where it adheresto produce the specified output. 
Another output technology is the electrothermalprinter. With these systems, 
heat is applied to a dot-matrix print head to outputpatterns on heat-
sensitive paper. 

We can get limited color output on some impact printers by using 
differentcoloredribbons. Nonimpact devices use various techniques to 
combine threedifferent color pigments (cyan, magenta, and yellow) to 
produce a range of colorpatterns. Laser and electrostatic devices deposit the 
three pigments on separatepasses; ink-jet methods shoot the three colors 
simultaneously on a single passalong each print line. 

Drafting layouts and other drawings are typically generated with ink-
jet orpen plotters. A pen plotter has one or more pens mounted on a 
carriage, or crossbar,that spans a sheet of paper. Pens with varying colors 
and widths are used toproduce a variety of shadings and line styles.Wet-ink, 
ballpoint, and felt-tip pensare all possible choices for use with a pen plotter. 
Plotter paper can lie flat or itcan be rolled onto a drum or belt. Crossbars 
can be either movable or stationary,while the pen moves back and forth 
along the bar. The paper is held in positionusing clamps, a vacuum, or an 
electrostatic charge. 
GRAPHICS SOFTWARE 

So far, we have mainly considered graphics applications on an isolated 
systemwith a single user. However, multiuser environments and computer 
networks arenow common elements in many graphics applications. Various 
resources, such asprocessors, printers, plotters, and data files, can be 
distributed on a network andshared by multiple users. 

A graphics monitor on a network is generally referred to as a graphics 
server,or simply a server. Often, the monitor includes standard input 
devices such as akeyboard and a mouse or trackball. In that case, the 
system can provide input, aswell as being an output server. The computer 
on the network that is executing agraphics application program is called the 
client, and the output of the program isdisplayed on a server.Aworkstation 
that includes processors, as well as a monitorand input devices, can 
function as both a server and a client. 

When operating on a network, a client computer transmits the 
instructionsfor displaying a picture to the monitor (server). Typically, this is 
accomplished bycollecting the instructions into packets before transmission 
instead of sending theindividual graphics instructions one at a time over the 
network. Thus, graphicssoftware packages often contain commands that 
affect packet transmission, aswell as the commands for creating pictures. 
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AREA FILL ATTRIBUTES 
Mostgraphics packages limit fill areas to polygons because they are 

described withlinear equations. A further restriction requires fill areas to be 
convex polygons,so that scan lines do not intersect more than two boundary 
edges. However, ingeneral, we can fill any specified regions, including 
circles, ellipses, and other objectswith curved boundaries. Also, application 
systems, such as paint programs,provide fill options for arbitrarily shaped 
regions. 
Fill Styles 

A basic fill-area attribute provided by a general graphics library is the 
displaystyle of the interior. We can display a region with a single color, a 
specified fillpattern, or in a “hollow” style by showing only the boundary of 
the region. Thesethree fill styles are illustrated in Figure 5. We can also fill 
selected regions of ascene using various brush styles, color-blending 
combinations, or textures. Otheroptions include specifications for the 
display of the boundaries of a fill area. 

For polygons, we could show the edges in different colors, widths, and 
styles;and we can select different display attributes for the front and back 
faces of aregion. 

Fill patterns can be defined in rectangular color arrays that list 
different colorsfor different positions in the array. Alternatively, a fill pattern 
could be specifiedas a bit array that indicates which relative positions are to 
be displayed in a singleselected color. An array specifying a fill pattern is a 
mask that is to be appliedto the display area. Some graphics systems 
provide an option for selecting anarbitrary initial position for overlaying the 
mask. From this starting position, themask is replicated in the horizontal 
and vertical directions until the display areais filled with nonoverlapping 
copies of the pattern. Where the pattern overlapsspecified fill areas, the 
array pattern indicates which pixels should be displayedin a particular 
color. This process of filling an area with a rectangular pattern iscalled 
tiling, and a rectangular fill pattern is sometimes referred to as a 
tilingpattern. Sometimes, predefined fill patterns are available in a system, 
such as thehatch fill patterns shown in Figure 6.  
Color-Blended Fill Regions 

It is also possible to combine a fill pattern with background colors in 
various ways.A pattern could be combined with background colors using a 
transparency factorthat determines how much of the background should be 
mixed with the objectcolor. 

Some fill methods 
using blended colors 
have been referred to as 
soft-fill ortint-fill 
algorithms.Oneuse for 
these fill methods is to soften the fill colors at object 
borders that have been blurred to antialias the edges. Another application of 
asoft-fill algorithm is to allow repainting of a color area that was originally 
filledwith a semitransparent brush, where the current color is then a 
mixture of thebrush color and the background colors “behind” the area. In 
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either case, we wantthe new fill color to have the same variations over the 
area as the current fill color. 
CHARACTER ATTRIBUTES  

We control the appearance of displayed characters with attributes 
such as font,size, color, and orientation. In many packages, attributes can 
be set both for entirecharacter strings (text) and for individual characters 
that can be used for specialpurposes such as plotting a data graph. 

There are a great many possible text-display options. First, there is 
the choiceof font (or typeface), which is a set of characters with a particular 
design stylesuch as New York, Courier, Helvetica, London, Times Roman, 
and various specialsymbol groups. The characters in a selected font can also 
be displayed withassorted underlining styles (solid, -d-o-t-t-e-d-, double), in 
boldface, in italic, and inOUTLINE or shadow styles. 

Color settings for displayed text can be stored in the system attribute 
list andused by the procedures that generate character definitions in the 
frame buffer. 
 When a character string is to be displayed, the current color is used to 
set pixelvalues in the frame buffer corresponding to the character shapes 
and positions. 

We could adjust text size by scaling the overall dimensions (height and 
width) of characters or by 
scaling only the height or 
the width. Character 
size(height) is specified by 
printers and compositors 
in points, where 1 point is 
about0.035146 
centimeters (or 0.013837 inch, which is approximately 172 inch). For 
example,the characters in this book are set in a 10-point font. Point 
measurementsspecify the size of the body of a character (Figure 11), but 
different fonts withthe same point specifications can have different character 
sizes, depending onthe design of the typeface. The distance between the 
bottomline and the topline ofthe character body is the same for all characters 
in a particular size and typeface,but the body width may vary. Proportionally 
spaced fonts assign a smaller bodywidth to narrow characters such as i, j, l, 
and f compared to broad characters such asWor M. Character height is 

defined as the distance between the baseline andthe capline of characters. 
Kerned characters, such as f and j in Figure 11, typicallyextend beyond the 
character body limits, and letters with descenders (g, j, p, q, y)extend below 
the baseline. Each character is positioned within the character bodyby a 
font designer in such a way that suitable spacing is attained along 
andbetween print lines when text is displayed with character bodies 
touching. 

Sometimes, text size is adjusted without changing the width-to-height 
ratioof characters. Figure 12 shows a character string displayed with three 
differentcharacter heights, while maintaining the ratio of width to height. 
Examples of textdisplayed with a constant height and varying widths are 
given in Figure 13. 
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Spacing between characters is another attribute that can often be 
assignedto a character string. Figure 14 shows a character string displayed 
with threedifferent settings for the intercharacter spacing. 

The orientation for a character string can be set according to the 
direction ofa character up vector. Text is then displayed so that the 
orientation of charactersfrom baseline to capline is in the direction of the up 
vector. For example, with thedirection of the up vector at 45◦, text would be 
displayed as shown in Figure 15. 

A 
procedure for 
orienting text 
could rotate 
characters so 
that the sides of 
characterbodies, 
from baseline to 
capline, are 
aligned with the up vector. The rotatedcharacter shapes are then scan 

converted into the frame buffer. 
It is useful in many applications to be able to 

arrange character stringsvertically or horizontally. 
Examples of this are given in Figure 16. We couldalso 
arrange the characters in a text string so that the 
string is displayed forwardor backward. Examples of 
text displayed with these options are shown inFigure 
17. A procedure for implementing text-path 
orientation adjusts theposition of the individual 
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characters in the frame buffer according to the optionselected. 
Character strings could also be oriented using a combination of up-

vector andtext-path specifications to produce slanted text. Figure 18 shows 
the directions of character strings generated by various text path settings for 
a 45◦ up vector. 

Examples of character strings generated for text-path values down 
and right withthis up vector are illustrated in Figure 19. 

Another possible attribute for character strings is alignment. This 
attributespecifies how text is to be displayed with respect to a reference 
position. For example,individual characters could be aligned according to 
the base lines or thecharacter centers. Figure 20 illustrates typical character 
positions for horizontaland vertical alignments. String alignments are also 
possible, and Figure 21shows common alignment positions for horizontal 
and vertical text labels.In some graphics packages, a text-precision attribute 
is also available. Thisparameter specifies the amount of detail and the 
particular processing optionsthat are to be used with a text string. For a 
low-precision text string, many attributeselections, such as text path, are 
ignored, and faster procedures are usedfor processing the characters 
through the viewing pipeline. 

Finally, a library of text-processing routines often supplies a set of 
special characters,such as a small circle or cross, which are useful in 
various applications. Most often these characters are used as marker 
symbols in network layouts or in graphingdata sets. The attributes for these 
marker symbols are typically color and size.  

We have two methods for displaying characters with the OpenGL 
package. Eitherwe can design a font set using the bitmap functions in the 
core library, or wecan invoke the GLUT character-generation routines. The 
GLUT library containsfunctions for displaying predefined bitmap and stroke 
character sets. Therefore,the character attributes we can set are those that 
apply to either bitmaps or linesegments. 

For either bitmap or outline fonts, the display color is determined by 
thecurrent color state. In general, the spacing and size of characters is 
determinedby the font designation, such as GLUT BITMAP 9 BY 15 and 
GLUTSTROKE MONO ROMAN. However, we can also set the line width and 
line type forthe outline fonts.We specify the width for a line with the 
glLineWidth function,and we select a line type with the glLineStipple 
function. The GLUT strokefonts will then be displayed using the current 
values we specified for the OpenGLline-width and line-type attributes. 

We can accomplish some other text-display characteristics using 
transformationfunctions. The transformation routines allow us to scale, 
position, and rotatethe GLUT stroke characters in either two-dimensional 
space or three-dimensionalspace. In addition, the three-dimensional viewing 
transformations can be usedto generate other display effects. 
INQUIRY FUNCTION 

We can retrieve current values for any of the state parameters, 
including attributesettings, using OpenGL query functions. These 
functions copy specified statevalues into an array, which we can save for 
later reuse or to check the currentstate of the system if an error occurs. 
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For current attribute values we use an appropriate “glGet” function, 
such as 
glGetBooleanv ( )  
glGetFloatv ( ) 
glGetIntegerv ( )  
glGetDoublev ( ) 

In each of the preceding functions, we specify two arguments. The first 
argumentis an OpenGL symbolic constant that identifies an attribute or 
other state parameter. 

The second argument is a pointer to an array of the data type 
indicated bythe function name. For instance, we can retrieve the current 
RGBA floating-pointcolor settings with 
glGetFloatv (GL_CURRENT_COLOR, colorValues); 

The current color components are then passed to the array 
colorValues. Toobtain the integer values for the current color components, 
we invoke the glGet-Integerv function. In some cases, a type conversion 
may be necessary to returnthe specified data type. 

Other OpenGL constants, such as GL POINT SIZE, GL LINE WIDTH, 
andGL CURRENT RASTER POSITION, can be used in these functions to 
returncurrent state values. Also, we could check the range of point sizes or 
linewidths that are supported using the constants GL POINT SIZE RANGE 
andGL LINE WIDTH RANGE. 

Although we can retrieve and reuse settings for a single attribute with 
theglGetfunctions,OpenGLprovides other functions for saving groups of 
attributesand reusing their values.We consider the use of these functions for 
saving currentattribute settings in the next section. 

There are many other state and system parameters that are often 
useful toquery. For instance, to determine how many bits per pixel are 
provided in theframe buffer on a particular system, we can ask the system 
how many bits areavailable for each individual color component, such as 
glGetIntegerv (GL_RED_BITS, redBitSize); 

Here, array redBitSize is assigned the number of red bits available in 
each ofthe buffers (frame buffer, depth buffer, accumulation buffer, and 
stencil buffer). 

Similarly, we can make an inquiry for the other color bits using GL 
GREEN BITS,GL BLUE BITS, GL ALPHA BITS, or GL INDEX BITS. 

We can also find out whether edge flags have been set, whether a 
polygonface was tagged as a front face or a back face, and whether the 
system supportsdouble buffering. In addition, we can inquire whether 
certain routines, such ascolor blending, line stippling or antialiasing, have 
been enabled or disabled. 
OUTPUT PRIMITIVES 

A general software package for graphics applications, 
sometimesreferred to as a computer-graphics application 
programminginterface (CG API), provides a library of functionsthat we can 
use within a programming language such as C++ to create pictures. The set 
of library functions can be subdivided into severalcategories. One of the first 
things we need to do when creating a pictureis to describe the component 
parts of the scene to be displayed. 
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Picture components could be trees and terrain, furniture and 
walls,storefronts and street scenes, automobiles and billboards, atoms 
andmolecules, or stars and galaxies. For each type of scene, we need 
todescribe the structure of the individual objects and their coordinate 
locationswithin the scene. Those functions in a graphics package that weuse 
to describe the various picture components are called the graphicsoutput 
primitives, or simply primitives. The output primitives describingthe 
geometry of objects are typically referred to as geometricprimitives. Point 
positions and straight-line segments are the simplestgeometric primitives. 
Additional geometric primitives that can be available in a graphicspackage 
include circles and other conic sections, quadric surfaces, spline curves and 
surfaces,and polygon color areas. Also, most graphics systems provide some 
functions fordisplaying character strings. After the geometry of a picture has 
been specified withina selected coordinate reference frame, the output 
primitives are projected to a twodimensionalplane, corresponding to the 
display area of an output device, and scan convertedinto integer pixel 
positions within the frame buffer. 

In this chapter, we introduce the output primitives available in 
OpenGL, and discusstheir use. 
Coordinate Reference Frames 

To describe a picture, we first decide upon a convenient Cartesian 
coordinatesystem, called the world-coordinate reference frame, which could 
be either twodimensionalor three-dimensional.We then describe the objects 
in our picture bygiving their geometric specifications in terms of positions in 
world coordinates. 

For instance, we define a straight-line segment with two endpoint 
positions, anda polygon is specified with a set of positions for its vertices. 
These coordinatepositions are stored in the scene description along with 
other information aboutthe objects, such as their color and their coordinate 
extents, which are the minimumand maximum x, y, and z values for each 
object. A set of coordinate extentsis also described as a bounding box for an 
object. For a two-dimensional figure,the coordinate extents are sometimes 
called an object’s bounding rectangle. 

Objects are then displayed by passing the scene information to the 
viewing routines,which identify visible surfaces and ultimately map the 
objects to positionson the video monitor. The scan-conversion process stores 
information about thescene, such as color values, 
at the appropriate locations in the frame buffer, 
andthe objects in the scene are displayed on the 
output device. 
Screen Coordinates 

Locations on a video monitor are referenced 
in integer screen coordinates, whichcorrespond 
to the pixel positions in the frame buffer. Pixel 
coordinate values givethe scan line number (the y 
value) and the column number (the x value along a 
scan line). Hardware processes, such as screen 
refreshing, typically address pixelpositions with 
respect to the top-left corner of the screen. Scan 
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lines are thenreferenced from 0, at the top of the screen, to some integer 
value, ymax, at thebottom of the screen, and pixel positions along each scan 
line are numbered from0 to xmax, left to right. However, with software 
commands, we can set up anyconvenient reference frame for screen 
positions. For example, we could specifyan integer range for screen positions 
with the coordinate origin at the lower-leftof a screen area (Figure 1), or we 
could use noninteger Cartesian values for apicture description. The 
coordinate values we use to describe the geometry of ascene are then 
converted by the viewing routines to integer pixel positions withinthe frame 
buffer. 

Scan-line algorithms for the graphics primitives use the defining 
coordinatedescriptions to determine the locations of pixels that are to be 
displayed. Forexample, given the endpoint coordinates for a line segment, a 
display algorithmmust calculate the positions for those pixels that lie along 
the line path betweenthe endpoints. Since a pixel position occupies a finite 
area of the screen, thefinite size of a pixel must be taken into account by the 
implementation algorithms. 

For the present, we assume that each integer screen position 
referencesthe center of a pixel area. 

Once pixel positions have been identified for an object, the appropriate 
colorvalues must be stored in the frame buffer. For this purpose, we will 
assume thatwe have available a low-level procedure of the form 
setPixel (x, y); 

This procedure stores the current color setting into the frame buffer at 
integerposition (x, y), relative to the selected position of the screen-
coordinate origin.Wesometimes also will want to be able to retrieve the 
current frame-buffer setting fora pixel location. So we will assume that we 
have the following low-level functionfor obtaining a frame-buffer color value: 
getPixel (x, y, color); 

In this function, parameter color receives an integer value 
corresponding to thecombined red, green, and blue (RGB) bit codes stored 
for the specified pixel atposition (x, y). 

Although we need only specify color values at (x, y) positions for a 
twodimensionalpicture, additional screen-coordinate information is needed 
for 
three-dimensional scenes. In this case, screen coordinates are stored as 
threedimensionalvalues, where the third dimension references the depth of 
objectpositions relative to a viewing position. For a two-dimensional scene, 
all depthvalues are 0. 
Absolute and Relative Coordinate Specifications 

So far, the coordinate references that we have discussed are stated as 
absolutecoordinate values. This means that the values specified are the 
actual positionswithin the coordinate system in use. 

However, some graphics packages also allow positions to be 
specifiedusing relative coordinates. This method is useful for various 
graphics applications,such as producing drawings with pen plotters, artist’s 
drawing and paintingsystems, and graphics packages for publishing and 
printing applications. Takingthis approach, we can specify a coordinate 
position as an offset from the lastposition that was referenced (called the 
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current position). For example, if location(3, 8) is the last position that has 
been referenced in an application program,a relative coordinate specification 
of (2, −1) corresponds to an absolute positionof (5, 7). An additional function 
is then used to set a current position before anycoordinates for primitive 
functions are specified. To describe an object, such as aseries of connected 
line segments, we then need to give only a sequence of relativecoordinates 
(offsets), once a starting position has been established. Options can 
beprovided in a graphics system to allow the specification of locations using 
eitherrelative or absolute coordinates. In the following discussions, we will 
assumethat all coordinates are specified as absolute references unless 
explicitly statedotherwise. 
Specifying A Two-DimensionalWorld-Coordinate Reference Framein 
OpenGL 

The gluOrtho2D command is a function we can use to set up any 
twodimensionalCartesian reference frame. The arguments for this function 
are thefour values defining the x and y coordinate limits for the picture we 
want to display. 

Since the gluOrtho2D function specifies an orthogonal projection, we 
need also to be sure that the coordinate values are placed in the OpenGL 
projectionmatrix. In addition, we could assign the identity matrix as the 
projectionmatrix before defining the world-coordinate range. This would 
ensure that thecoordinate values were not accumulated with any values we 
may have previouslyset for the projection matrix. Thus, for our initial two-
dimensional examples, wecan define the coordinate frame for the screen 
display window with the followingstatements: 
glMatrixMode (GL_PROJECTION); 
glLoadIdentity ( ); 
gluOrtho2D (xmin, xmax, ymin, ymax); 

The display window will then be referenced by coordinates (xmin, 
ymin) at thelower-left corner and by coordinates (xmax, ymax) at the 
upper-right corner, asshown in Figure 2. 

We can then 
designate one or more 
graphics primitives 
for display using 
thecoordinate 
reference specified in 
the gluOrtho2D 
statement. If the 
coordinateextents of a 
primitive are within 
the coordinate range 
of the display window, allof the primitive will be displayed. Otherwise, only 
those parts of the primitivewithin the display-window coordinate limits will 
be shown. Also, when we set upthe geometry describing a picture, all 
positions for the OpenGL primitives mustbe given in absolute coordinates, 
with respect to the reference frame defined inthe gluOrtho2D function. 
OpenGL Point Functions 
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To specify the geometry of a point, we simply give a coordinate 
position in theworld reference frame. Then this coordinate position, along 
with other geometricdescriptions we may have in our scene, is passed to the 
viewing routines. Unlesswe specify other attribute values, OpenGL primitives 
are displayed with a defaultsize and color. The default color for primitives is 
white, and the default point sizeis equal to the size of a single screen pixel. 

We use the following OpenGL function to state the coordinate values 
for asingle position: 
glVertex* ( ); 
where the asterisk (*) indicates that suffix codes are required for this 
function. 

These suffix codes are used to identify the spatial dimension, the 
numerical datatype to be used for the coordinate values, and a possible 
vector form for thecoordinate specification. Calls to glVertex functions must 
be placed between aglBegin function and a glEnd function. The argument of 
the glBegin functionis used to identify the kind of output primitive that is to 
be displayed, and glEndtakes no arguments. For point plotting, the 
argument of the glBegin function isthe symbolic constant GL POINTS. 
Thus, the form for an OpenGL specificationof a point position is 
glBegin (GL_POINTS); 
glVertex* ( ); 
glEnd ( ); 

Although the term vertex strictly refers to a “corner” point of a 
polygon, thepoint of intersection of the sides of an angle, a point of 
intersection of anellipse with its major axis, or other similar coordinate 
positions on geometricstructures, the glVertex function is used in OpenGL 
to specify coordinates forany point position. In this way, a single function is 
used for point, line, and polygonspecifications—and, most often, polygon 
patches are used to describe theobjects in a scene. 

Coordinate positions in OpenGL can be given in two, three, or four 
dimensions. 

We use a suffix value of 2, 3, or 4 on the glVertex function to indicate 
the dimensionality of a coordinate position. A four-dimensional specification 
indicates a homogeneous-coordinate representation, where the homogeneous 
parameter h (the fourth coordinate) is a scaling factor for the Cartesian-
coordinatevalues. Homogeneous-coordinate representations are useful for 
expressing transformation operations in matrix form. Because OpenGL 
treats two-dimensionsas a special case of three dimensions, any (x, y) 
coordinate specification isequivalent to a three-dimensional specification of 
(x, y, 0). Furthermore, OpenGLrepresents vertices internally in four 
dimensions, so each of these specificationsare equivalent to the four-
dimensional specification (x, y, 0, 1). 

We also need to state which data type is to be used for the 
numericalvaluespecifications of the coordinates. This is accomplished with a 
secondsuffix code on the glVertex function. Suffix codes for specifying a 
numericaldata type are i (integer), s (short), f (float), and d (double). Finally, 
thecoordinate values can be listed explicitly in the glVertex function, or a 
singleargument can be used that references a coordinate position as an 
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array. If weuse an array specification for a coordinate position, we need to 
append v (for“vector”) as a third suffix code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



35 

 

Using this class definition, we could specify a two-dimensional, world-
coordinatepoint position with the statements 
wcPt2D pointPos; 
pointPos.x = 120.75; 
pointPos.y = 45.30; 
glBegin (GL_POINTS); 
glVertex2f (pointPos.x, pointPos.y); 
glEnd ( ); 

Also, we can use the OpenGL point-plotting functions within a C++ 
procedureto implement the setPixel command. 
OpenGL Line Functions 

Graphics packages typically provide a function for specifying one or 
morestraight-line segments, where each line segment is defined by two 
endpointcoordinate positions. In OpenGL, we select a single endpoint 
coordinate positionusing the glVertex function, just as we did for a point 
position. And we enclosea list of glVertex functions between the 
glBegin/glEnd pair. But now we usea symbolic constant as the argument 
for the glBegin function that interprets alist of positions as the endpoint 
coordinates for line segments. There are threesymbolic constants in OpenGL 
that we can use to specify how a list of endpointpositions should be 
connected to form a set of straight-line segments. By default,each symbolic 
constant displays solid, white lines. 

A set of straight-line segments between each successive pair of 
endpoints in alist is generated using the primitive line constant GL LINES. 
In general, this willresult in a set of unconnected lines unless some 
coordinate positions are repeated,because OpenGL considers lines to be 
connected only if they share a vertex; linesthat cross but do not share a 
vertex are still considered to be unconnected. Nothingis displayed if only one 
endpoint is specified, and the last endpoint is not processedif the number of 
endpoints listed is odd. For example, if we have five coordinatepositions, 
labeled p1 through p5, and each is represented as a two-dimensionalarray, 
then the following code could generate the display shown in Figure 4(a): 
glBegin (GL_LINES); 
glVertex2iv (p1); 
glVertex2iv (p2); 
glVertex2iv (p3); 
glVertex2iv (p4); 
glVertex2iv (p5); 
glEnd ( ); 

Thus, we obtain one line segment between the first and second 
coordinatepositions and another line segment between the third and fourth 
positions. Inthis case, the number of specified endpoints is odd, so the last 
coordinate positionis ignored. 

With the OpenGL primitive constant GL LINE STRIP,we obtain a 
polyline. 

In this case, the display is a sequence of connected line segments 
between the firstendpoint in the list and the last endpoint. The first line 
segment in the polyline isdisplayed between the first endpoint and the 
second endpoint; the second linesegment is between the second and third 
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endpoints; and so forth, up to the last lineendpoint. Nothing is displayed if 
we do not list at least two coordinate positions. 
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LINE FUNCTION 
Graphics packages typically provide a function for specifying one or 

morestraight-line segments, where each line segment is defined by two 
endpointcoordinate positions. In OpenGL, we select a single endpoint 
coordinate positionusing the glVertex function, just as we did for a point 
position. And we enclosea list of glVertex functions between the 
glBegin/glEnd pair. But now we usea symbolic constant as the argument 
for the glBegin function that interprets alist of positions as the endpoint 
coordinates for line segments. There are threesymbolic constants in OpenGL 
that we can use to specify how a list of endpointpositions should be 
connected to form a set of straight-line segments. By default,each symbolic 
constant displays solid, white lines. 

A set of straight-line segments between each successive pair of 
endpoints in alist is generated using the primitive line constant GL LINES. 
In general, this willresult in a set of unconnected lines unless some 
coordinate positions are repeated,because OpenGL considers lines to be 
connected only if they share a vertex; linesthat cross but do not share a 
vertex are still considered to be unconnected. Nothingis displayed if only one 
endpoint is specified, and the last endpoint is not processedif the number of 
endpoints listed is odd. For example, if we have five coordinatepositions, 
labeled p1 through p5, and each is represented as a two-dimensionalarray, 
then the following code could generate the display shown in Figure 4(a): 
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glBegin (GL_LINES); 
glVertex2iv (p1); 
glVertex2iv (p2); 
glVertex2iv (p3); 
glVertex2iv (p4); 
glVertex2iv (p5); 
glEnd ( ); 

Thus, we obtain one line segment between the first and second 
coordinatepositions and another line segment between the third and fourth 
positions. Inthis case, the number of specified endpoints is odd, so the last 
coordinate positionis ignored. 

With the OpenGL primitive constant GL LINE STRIP,we obtain a 
polyline.In this case, the display is a sequence of connected line segments 
between the firstendpoint in the list and the last endpoint. The first line 
segment in the polyline isdisplayed between the first endpoint and the 
second endpoint; the second linesegment is between the second and third 
endpoints; and so forth, up to the last lineendpoint. Nothing is displayed if 
we do not list at least two coordinate positions. 
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LINE DRAWING ALGORITHMS 

A straight-line segment in a scene is defined by the coordinate 
positions for theendpoints of the segment. To display the line on a raster 
monitor, the graphics systemmust first project the endpoints to integer 
screen coordinates and determinethe nearest pixel positions along the line 
path between the two endpoints. Then theline color is loaded into the frame 
buffer at the corresponding pixel coordinates.Reading from the frame buffer, 
the video controller plots the screen pixels. Thisprocess digitizes the line into 
a set of discrete integer positions that, in general,only approximates the 
actual line path. A computed line position of (10.48, 20.51),for example, is 
converted to pixel position (10, 21). This rounding of coordinatevalues to 
integers causes all but horizontal and vertical lines to be displayed witha 
stair-step appearance (known as “the jaggies”), as represented in Figure 1. 
Thecharacteristic stair-step shape of raster lines is particularly noticeable 
on systemswith low resolution, and we can improve their appearance 
somewhat by displayingthem on high-resolution systems. More effective 
techniques for smoothinga raster line are based on adjusting pixel 
intensities along the line path. 
INITIALIZING LINES 

We determine pixel positions along a straight-line path from the 
geometric propertiesof the line. The Cartesian slope-intercept equation for a 
straight line is 

y = m ・x + b (1) 

withmas the slope of the line and b as the y intercept. Given that the two 
endpointsof a line segment are specified at positions (x0, y0) and (xend, 
yend), as shown inFigure 2, we can determine values for the slope m and y 
intercept b with thefollowing calculations: 

m = yend − y0 
xend− x0  (2) 

b = y0 − m ・x0  (3) 

Algorithms for displaying straight lines are based on Equation 1 and 
the calculationsgiven in Equations 2 and 3. 

For any given x interval δx along a line, we can compute the 
correspondingy interval, δy, from Equation 2 as 

δy= m ・δx  (4) 
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Similarly, we can obtain the x interval δx corresponding to a specified 
δyasδx = δym  (5) 

These equations form the basis for 
determining deflection voltages in analog 
displays,such as a vector-scan system, where 
arbitrarily small changes in deflectionvoltage are 
possible. For lines with slope magnitudes |m|<1, 
δx can be set proportionalto a small horizontal 
deflection voltage, and the corresponding 
verticaldeflection is then set proportional to δy as 
calculated from Equation 4. For lineswhose slopes 
have magnitudes |m|>1, δy can be set 
proportional to a small verticaldeflection voltage 
with the corresponding horizontal deflection 
voltage setproportional to δx, calculated 
fromEquation 5. For lineswithm = 1, δx = δyandthe horizontal and vertical 
deflections voltages are equal. In each case, a smoothline with slope m is 
generated between the specified endpoints. 

Onraster systems, lines are plotted with pixels, and step sizes in the 
horizontaland vertical directions are constrained by pixel separations. That 
is, we must“sample” a line at discrete positions and determine the nearest 
pixel to the line ateach sampled position. This scan-conversion process for 
straight lines is illustratedin Figure 3 with discrete sample positions along 
the x axis. 
DDA Algorithm 

The digital differential analyzer (DDA) is a scan-conversion line 
algorithm based oncalculating either δyor δx, using Equation 4 or Equation 
5. A line is sampledat unit intervals in one coordinate and the corresponding 
integer values nearestthe line path are determined for the other coordinate. 

We consider first a linewith positive slope, as shown in Figure 2. If the 
slopeis less than or equal to 1, we sample at unit x intervals (δx = 1) and 
computesuccessive y values as 

yk+1 = yk + m   (6) 
Subscript k takes integer values starting from 0, for the first point, 

and increasesby 1 until the final endpoint is reached. Because m can be any 
real numberbetween 0.0 and 1.0, each calculated y value must be rounded 
to the nearest integercorresponding to a screen pixel position in the x 
column that we are processing. 

For lines with a positive slope greater than 1.0, we reverse the roles of 
x and y. 

That is,wesample at unit y intervals (δy = 1) and calculate consecutive 
x values as 

xk+1 = xk + 1m  (7) 
In this case, each computed x value is rounded to the nearest pixel 

position alongthe current y scan line. 
Equations 6 and 7 are based on the assumption that lines are to be 

processedfromthe left endpoint to the right endpoint (Figure 2). If this 
processing isreversed, so that the starting endpoint is at the right, then 
either we have δx=−1and 
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yk+1 = yk − m   (8) 
or 

(when the slope is greater than 1) we have δy = −1 with 
xk+1 = xk − 1m  (9) 

 Similar calculations are carried out using Equations 6 through 9 to 
determinepixel positions along a line with negative slope. Thus, if the 
absolute valueof the slope is less than 1 and the starting endpoint is at the 
left, we set δx = 1 andcalculate y values with Equation 6. When the starting 
endpoint is at the right(for the same slope), we set δx = −1 and obtain y 
positions using Equation 8.For a negative slope with absolute value greater 
than 1, we use δy= −1 andEquation 9, or we use δy = 1 and Equation 7.This 
algorithm is summarized in the following procedure, which accepts asinput 
two integer screen positions for the endpoints of a line segment. 
Horizontaland vertical differences between the endpoint positions are 
assigned to parametersdx and dy. The difference with the greater magnitude 
determines the value ofparameter steps. This value is the number of pixels 
that must be drawn beyondthe starting pixel; from it, we calculate the x and 
y increments needed to generate the next pixel position at each step along 
the line path.We draw the starting pixelat position (x0, y0), and then draw 
the remaining pixels iteratively, adjusting xand y at each step to obtain the 
next pixel’s position before drawing it. If the magnitudeof dx is greater than 
the magnitude of dyand x0 is less than xEnd, the valuesfor the increments 
in the x and y directions are 1 and m, respectively. If the greaterchange is in 
the x direction, but x0 is greater than xEnd, then the decrements −1and −m 
are used to generate each new point on the line. Otherwise, we use a 
unitincrement (or decrement) in the y directionandan x increment (or 
decrement) of 1/m. 
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CIRCLE GENERATING ALGORITHMS 
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ELLIPSE GENERATING ALGORITHMS 
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ATTRIBUTES OF OUTPUT PRIMITIVES  

In general, a parameter that affects the way a primitive isto be 
displayed is referred to as an attribute parameter.Some attribute 
parameters, such as color and size, determinethe fundamental 
characteristics of a primitive. Other attributesspecify how the primitive is to 
be displayed under special conditions. 

Examples of special-condition attributes are the options such as 
visibilityor detectability within an interactive object-selection program.These 
special-condition attributes are explored in later chapters. Here,we treat 
only those attributes that control the basic display propertiesof graphics 
primitives, without regard for special situations. For example,lines can be 
dotted or dashed, fat or thin, and blue or orange.Areas might be filled with 
one color or with a multicolor pattern. Textcan appear reading from left to 
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right, slanted diagonally across thescreen, or in vertical columns. Individual 
characters can be displayedin different fonts, colors, and sizes. And we can 
apply intensity variationsat the edges of objects to smooth out the raster 
stair-step effect One way to incorporate attribute options into a graphics 
package is to extend theparameter list associated with each graphics-
primitive function to include the appropriateattribute values. A line-drawing 
function, for example, could contain additionalparameters to set the color, 
width, and other properties of a line. Another approach is tomaintain a 
system list of current attribute values. Separate functions are then 
includedin the graphics package for setting the current values in the 
attribute list. To generate aprimitive, the system checks the relevant 
attributes and invokes the display routine forthat primitive using the 
current attribute settings. Some graphics packages use a combination 
of methods for setting attribute values, and other libraries, including 
OpenGL,assign attributes using separate functions that update a system 
attribute list. 

A graphics system that maintains a list for the current values of 
attributes and otherparameters is referred to as a state system or state 
machine. Attributes of outputprimitives and some other parameters, such 
as the current frame-buffer position, arereferred to as state variables or 
state parameters. When we assign a value to one ormore state parameters, 
we put the system into a particular state, and that state remainsin effect 
until we change the value of a state parameter. 

LINE ATTRIBUTES  

A straight-line segment can be displayed with three basic attributes: 
color, width,and style. Line color is typically set with the same function for 
all graphics primitives,while line width and line style are selected with 
separate line functions. Inaddition, lines may be generated with other 
effects, such as pen and brush strokes. 
Line Width 

Implementation of line-width options depends on the capabilities of 
the outputdevice. A heavy line could be displayed on a video monitor as 
adjacent parallellines, while a pen plotter might require pen changes to draw a 

thick line. 

For raster implementations, a standard-width line is generated with 
singlepixels at each sample position, as in the Bresenham algorithm. 
Thicker lines aredisplayed as positive integer multiples of the standard line 
by plotting additionalpixels along adjacent parallel line paths. 

Line Style 
Possible selections for the line-style attribute include solid lines, 

dashed lines, anddotted lines.We modify a line-drawing algorithm to 
generate such lines by settingthe length and spacing of displayed solid 
sections along the line path.With manygraphics packages, we can select the 
length of both the dashes and the inter-dash 
spacing. 
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Pen and Brush Options 

With some packages, particularly painting and drawing systems, we 
can selecte different pen and brush styles directly. Options in this category 
include shape, size, and pattern for the pen or brush. Some example pen 
and brush shapes aregiven in Figure 2. 

 
COLOR AND GRAYSCALE STYLE. 

A basic attribute for all primitives is color. Various color options can 
be madeavailable to a user, depending on the capabilities and design 
objectives of a particularsystem. Color options can be specified numerically 
or selected from menusor displayed slider scales. For a video monitor, these 
color codes are then convertedto intensity-level settings for the electron 
beams. With color plotters, thecodes might control ink-jet deposits or pen 
selections. 
RGB Color Components 

In a color raster system, the number of color choices available 
depends on theamount of storage provided per pixel in the frame buffer. Also, 

color information can be stored in the frame buffer in two ways: We can store 
red, green, and blue(RGB) color codes directly in the frame buffer, or we can 
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put the color codes intoa separate table and use the pixel locations to store 
index values referencing thecolor-table entries. With the direct storage 
scheme, whenever a particular colorcode is specified in an application 
program, that color information is placed in theframe buffer at the location 
of each component pixel in the output primitives tobe displayed in that 
color. A minimum number of colors can be provided in thisscheme with 3 
bits of storage per pixel, as shown in Table 1. Each of the threebit positions 
is used to control the intensity level (either on or off, in this case) ofthe 
corresponding electron gun in an RGB monitor. The leftmost bit controls the 
red gun, the middle bit controls the green gun, and the rightmost bit 
controls theblue gun. Adding more bits per pixel to the frame buffer 
increases the numberof color choices that we have. With 6 bits per pixel, 2 
bits can be used for eachgun. This allows four different intensity settings for 
each of the three color guns,and a total of 64 color options are available for 
each screen pixel. As more coloroptions are provided, the storage required 
for the frame buffer also increases. 

With a resolution of 1024 × 1024, a full-color (24-bit per pixel) RGB 
system needs3 MB of storage for the frame buffer. 

Color tables are an alternate means for providing extended color 

capabilitiesto a user without requiring large frame buffers. At one time, this 
was an importantconsideration; but today, hardware costs have decreased 
dramatically andextended color capabilities are fairly common, even in low-
end personal computersystems. So most of our examples will simply assume 
that RGB color codesare stored directly in the frame buffer. 
Color Tables 



97 

 

Figure 1 illustrates a possible scheme for storing color values in a 
color lookuptable (or color map). Sometimes a color table is referred to as 
a video lookuptable. Values stored in the frame buffer are now used as 
indices into the colortable. In this example, each pixel can reference any of 
the 256 table positions, andeach entry in the table uses 24 bits to specify an 
RGB color. For the hexadecimalcolor code 0x0821, a combination green-blue 
color is displayed for pixel location(x, y). Systems employing this particular 

lookup table allow a user to select any256 colors for simultaneous display from 
a palette of nearly 17 million colors. 

Compared to a full-color system, this scheme reduces the number of 
simultaneouscolors that can be displayed, but it also reduces the frame-
buffer storagerequirement to 1 MB. Multiple color tables are sometimes 
available for handlingspecialized rendering applications, such as 
antialiasing, and they are used withsystems that contain more than one 
color output device. 

A color table can be useful in a number of applications, and it can 
providea “reasonable” number of simultaneous colors without requiring 
large framebuffers. For most applications, 256 or 512 different colors are 
sufficient for a singlepicture. Also, table entries can be changed at any time, 
allowing a user to beable to experiment easily with different color 

combinations in a design, scene,or graph without changing the attribute 
settings for the graphics data structure. 

When a color value is changed in the color table, all pixels with that 
color indeximmediately change to the new color. Without a color table, we 
can change thecolor of a pixel only by storing the new color at that frame-
buffer location. Similarly,data-visualization applications can store values for 
some physical quantity,such as energy, in the frame buffer and use a lookup 
table to experiment withvarious color combinations without changing the 
pixel values. Also, in visualizationand image-processing applications, color 
tables are a convenient meansfor setting color thresholds so that all pixel 
values above or below a specifiedthreshold can be set to the same color. For 
these reasons, some systems provideboth capabilities for storing color 
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information. A user can then elect either to usecolor tables or to store color 
codes directly in the frame buffer. 
Grayscale 

Because color capabilities are now common in computer-graphics 
systems, weuse RGB color functions to set shades of gray, or grayscale, in 
an applicationprogram. When an RGB color setting specifies an equal 
amount of red, green, andblue, the result is some shade of gray. Values 
close to 0 for the color componentsproduce dark gray, and higher values 
near 1.0 produce light gray. Applicationsfor grayscale display methods 
include enhancing black-and-white photographsand generating visualization 
effects. 
Other Color Parameters 

In addition to an RGB specification, other three-component color 
representationsare useful in computer-graphics applications. For example, 
color output on printersis described with cyan, magenta, and yellow color 
components, and colorinterfaces sometimes use parameters such as 
lightness and darkness to choose acolor. Also, color, and light in general, 
are complex subjects, and many terms andconcepts have been devised in 
the fields of optics, radiometry, and psychologyto describe the various 
aspects of light sources and lighting effects. Physically,we can describe a 
color as electromagnetic radiation with a particular frequencyrange and 
energy distribution, but then there are also the characteristics of 
ourperception of the color. Thus, we use the physical term intensity to 
quantify theamount of light energy radiating in a particular direction over a 
period of time,and we use the psychological term luminance to characterize 
the perceived brightnessof the light.We discuss these terms and other color 
concepts in greater detail when we consider methods for modeling lighting 
effects and the various models for describing color. 
 

UNIT 2: 
TWO DIMENSIONAL TRANSFORMATION 

So far, we have seen how we can describe a scene interms of graphics 
primitives, such as line segments and fillareas, and the attributes associated 
with these primitives. 

Also, we have explored the scan-line algorithms for displaying output 
primitives on a raster device. Now, we take a look at 
transformationoperations that we can apply to objects to reposition or resize 
them.These operations are also used in the viewing routines that convert 
aworld-coordinate scene description to a display for an output device. 

In addition, they are used in a variety of other applications, such 
ascomputer-aided design (CAD) and computer animation. An architect,for 
example, creates a layout by arranging the orientation and size ofthe 
component parts of a design, and a computer animator developsa video 
sequence by moving the “camera” position or the objectsin a scene along 
specified paths. Operations that are applied to thegeometric description of 
an object to change its position, orientation,or size are called geometric 
transformations. 

Sometimes geometric transformations are also referred to asmodeling 
transformations, but some graphics packages make a distinction between 
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the two. In general, modeling transformations are used to constructa scene 
or to give the hierarchical description of a complex object that is composed 
of several parts, which in turn could be composed of simpler parts, and so 
forth. For example, an aircraft consists of wings, tail, fuselage, engine, and 
other components,each of which can be specified in terms of second-level 
components, andso on, down the hierarchy of component parts. Thus, the 
aircraft can be describedin terms of these components and an associated 
“modeling” transformation for eachone that describes how that component is 
to be fitted into the overall aircraft design. 

Geometric transformations, on the other hand, can be used to 
describe how objectsmight move around in a scene during an animation 
sequence or simply to view themfrom another angle. Therefore, some 
graphics packages provide two sets of transformationroutines, while other 
packages have a single set of functions that can be used forboth geometric 
transformations and modeling transformations. 
BASIC TRANSFORMATION 

The geometric-transformation functions that are available in all 
graphics packages are those for translation, rotation, and scaling. Other 
useful transformation routines that are sometimes included in a package are 
reflection and shearing operations. To introduce the general concepts 
associated with geometric transformations, we first consider operations in 
two dimensions. Once we understand the basic concepts, we can easily write 
routines to perform geometric transformationson objects in a two-
dimensional scene. 
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a column vector whose elements are the constant terms in Equations 14, 
thenadd this column vector to the product S · P in Equation 12. In the next 
section,we discuss a matrix formulation for the transformation equations 
that involvesonly matrix multiplication. 
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Polygons are scaled by applying transformations 14 to each vertex, 
thenregenerating the polygon using the transformed vertices. For other 
objects,we apply the scaling transformation equations to the parameters 
defining theobjects. To change the size of a circle, we can scale its radius 
and calculate thenew coordinate positions around the circumference. And to 
change the size of anellipse, we apply scaling parameters to its two axes and 
then plot the new ellipsepositions about its center coordinates. 

The following procedure illustrates an application of the scaling 
calculationsfor a polygon. Coordinates for the polygon vertices and for the 
fixed point areinput parameters, along with the scaling factors. After the 
coordinate transformations, 

OpenGL routines are used to generate the scaled polygon. 
class wcPt2D  
{public: 
 GLfloat x, y; 
}; 
void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, 
GLfloat sx, GLfloat sy) 
{ wcPt2D vertsNew; 

GLint k; 
for (k = 0; k < nVerts; k++)  
{ vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx); 

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy); 
} 
glBegin {GL_POLYGON}; 
for (k = 0; k < nVerts; k++) 
glVertex2f (vertsNew [k].x, vertsNew [k].y); 
glEnd ( ); 

} 
MATRIX REPRESENTATION AND HOMOGENEOUS CO-ORDINATES 

Many graphics applications involve sequences of geometric 
transformations. Ananimation might require an object to be translated and 
rotated at each incrementof the motion. In design and picture construction 
applications, we perform translations,rotations, and scalings to fit the 
picture components into their properpositions. The viewing transformations 
involve sequences of translations androtations to take us from the original 
scene specification to the display on an outputdevice. Here, we consider how 
the matrix representations discussed in theprevious sections can be 
reformulated so that such transformation sequences canbe processed 
efficiently. 

We have seen in Section 1 that each of the three basic two-
dimensionaltransformations (translation, rotation, and scaling) can be 
expressed in the generalmatrix form 

P’ = M1 · P +M2 
with coordinate positions P and P_ represented as column vectors. 

Matrix M1 isa 2 × 2 array containing multiplicative factors, and M2 is a two-
element columnmatrix containing translational terms. For translation, M1 is 
the identity matrix. 
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For rotation or scaling, M2 contains the translational terms associated 
with thepivot point or scaling fixed point. To produce a sequence of 
transformations withthese equations, such as scaling followed by rotation 
and then translation, wecould calculate the transformed coordinates one 
step at a time. First, coordinatepositions are scaled, then these scaled 
coordinates are rotated, and finally, therotated coordinates are translated. A 
more efficient approach, however, is to combinethe transformations so that 
the final coordinate positions are obtained directlyfrom the initial 
coordinates, without calculating intermediate coordinate values. 

We can do this by reformulating Equation 15 to eliminate the matrix 
additionoperation. 
Homogeneous Coordinates 

Multiplicative and translational terms for a two-dimensional geometric 
transformationcan be combined into a single matrix if we expand the 
representationsto 3 × 3 matrices. Then we can use the third column of a 
transformation matrixfor the translation terms, and all transformation 
equations can be expressed asmatrix multiplications. But to do so, we also 
need to expand the matrix representationfor a two-dimensional coordinate 
position to a three-element columnmatrix. A standard technique for 
accomplishing this is to expand each twodimensionalcoordinate-position 
representation (x, y) to a three-element representation(xh, yh, h), called 
homogeneous coordinates, where the homogeneousparameter h is a 
nonzero value such thatx = xh, y = yh 

Therefore, a general two-dimensional homogeneous coordinate 
representationcould also be written as (h·x, h·y, h). For geometric 
transformations,wecan choosethe homogeneous parameter h to be any 
nonzero value. Thus, each coordinatepoint (x, y) has an infinite number of 
equivalent homogeneous representations. 

A convenient choice is simply to set h = 1. Each two-dimensional 
position is thenrepresented with homogeneous coordinates (x, y, 1). Other 
values for parameterh are needed, for example, in matrix formulations of 
three-dimensional viewingtransformations. 

The term homogeneous coordinates is used in mathematics to refer to 
the effectof this representation on Cartesian equations. When a Cartesian 
point (x, y) isconverted to a homogeneous representation (xh, yh, h), 
equations containing x andy, such as f (x, y) = 0, become homogeneous 
equations in the three parametersxh, yh, and h. This just means that if each 
of the three parameters is replaced byany value v times that parameter, the 
value v can be factored out of the equations. 

Expressing positions in homogeneous coordinates allows us to 
represent allgeometric transformation equations as matrix multiplications, 
which is the standardmethod used in graphics systems. Two-dimensional 
coordinate positionsare represented with three-element column vectors, and 
two-dimensional transformationoperations are expressed as 3 × 3 matrices. 
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COMPOSITE TRANSFORMATION-MATRIX REPRESENTATION 
Using matrix representations, we can set up a sequence of 

transformations as acomposite transformation matrix by calculating the 
product of the individualtransformations. Forming products of 
transformation matrices is often referredto as a concatenation, or 
composition, of matrices. Because a coordinate positionis represented with 
a homogeneous column matrix, we must premultiplythe column matrix by 
the matrices representing any transformation sequence. 

Also, because many positions in a scene are typically transformed by 
the samesequence, it is more efficient to first multiply the transformation 
matrices to forma single composite matrix. Thus, if we want to apply two 
transformations to pointposition P, the transformed location would be 
calculated as 

P’ = M2 ·M1 · P 
= M· P 

The coordinate position is transformed using the composite matrixM, 
rather thanapplying the individual transformations M1 and thenM2. 
Composite Two-Dimensional Translations 

If two successive translation vectors (t1x, t1y) and (t2x, t2y) are 
applied to a twodimensionalcoordinate position P, the final transformed 
location P_ is calculatedas 

P’ = T(t2x, t2y) · {T(t1x, t1y) · P} 
= {T(t2x, t2y) · T(t1x, t1y)} · P 

whereP and P_ are represented as three-element, homogeneous-coordinate 
columnvectors. We can verify this result by calculating the matrix product 
for thetwo associative groupings. Also, the composite transformation matrix 
for thissequence of translations is 
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Constructing Two-Dimensional Rotation Matrices 
The orthogonal property of rotation matrices is useful for constructing 

the matrixwhenweknow the final orientation of an object, rather than the 
amount of angularrotation necessary to put the object into that position. 
This orientation informationcould be determined by the alignment of certain 
objects in a scene or by referencepositions within the coordinate system. For 
example, we might want to rotate anobject to align its axis of symmetry with 
the viewing (camera) direction, or wemight want to rotate one object so that 
it is above another object. Figure 14 showsan object that is to be aligned 
with the unit direction vectors u_ and v_. Assumingthat the original object 
orientation, as shown in Figure 14(a), is aligned withthe coordinate axes, we 
construct the desired transformation by assigning theelements of u_ to the 
first row of the rotation matrix and the elements of v_ to thesecond row. In a 

modeling application, for instance, we can use this method toobtain the 
transformation matrix within an object’s local coordinate system whenwe 
know what its orientation is to be within the overall world-coordinate 
scene.Asimilar transformation is the conversion of object descriptions 
fromone coordinatesystem to another, and we take up these methods in 
more detail in Section 8. 
Two-Dimensional Composite-Matrix Programming Example 

An implementation example for a sequence of geometric 
transformations is givenin the following program. Initially, the composite 
matrix, compMatrix, is constructedas the identity matrix. For this example, 
a left-to-right concatenationorder is used to construct the composite 
transformation matrix, and we invokethe transformation routines in the 
order that they are to be executed. As each ofthe basic transformation 
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routines (scale, rotate, and translate) is invoked, a matrixis set up for that 
transformation and left-concatenated with the composite matrix. 

When all transformations have been specified, the composite 
transformation isapplied to transform a triangle. The triangle is first scaled 
with respect to its centroidposition, then the triangle is rotated about its 
centroid, and, lastly, it istranslated. Figure 15 shows the original and final 
positions of the triangle thatis transformed by this sequence. Routines in 
OpenGL are used to dispaly theinitial and final position of the triangle. 

 
 
 
#include <GL/glut.h> 
#include <stdlib.h> 
#include <math.h> 
/* Set initial display-window size. */ 
GLsizei winWidth = 600, winHeight = 600; 
/* Set range for world coordinates. */ 
GLfloat xwcMin = 0.0, xwcMax = 225.0; 
GLfloat ywcMin = 0.0, ywcMax = 225.0; 
class wcPt2D  
{ public: 

GLfloat x, y; 
}; 
typedef GLfloat Matrix3x3 [3][3]; 
Matrix3x3 matComposite; 
const GLdouble pi = 3.14159; 
void init (void) 
{ /* Set color of display window to white. */ 

glClearColor (1.0, 1.0, 1.0, 0.0); 
} 
/* Construct the 3 x 3 identity matrix. */ 
void matrix3x3SetIdentity (Matrix3x3 matIdent3x3) 
{ GLint row, col; 

for (row = 0; row < 3; row++) 
for (col = 0; col < 3; col++) 

matIdent3x3 [row][col] = (row == col); 
} 
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/* Premultiply matrix m1 times matrix m2, store result in m2. */ 
void matrix3x3PreMultiply (Matrix3x3 m1, Matrix3x3 m2) 
{ GLint row, col; 

Matrix3x3 matTemp; 
for (row = 0; row < 3; row++) 

for (col = 0; col < 3 ; col++) 
matTemp [row][col] = m1 [row][0] * m2 [0][col]  

+ m1 [row][1] *m2 [1][col] + m1 [row][2] *  
m2 [2][col]; 

for (row = 0; row < 3; row++) 
for (col = 0; col < 3; col++) 

m2 [row][col] = matTemp [row][col]; 
} 
void translate2D (GLfloat tx, GLfloat ty) 
{ Matrix3x3 matTransl; 

/* Initialize translation matrix to identity. */ 
matrix3x3SetIdentity (matTransl); 
matTransl [0][2] = tx; 
matTransl [1][2] = ty; 
/* Concatenate matTransl with the composite matrix. */ 
matrix3x3PreMultiply (matTransl, matComposite); 

} 
void rotate2D (wcPt2D pivotPt, GLfloat theta) 
{ Matrix3x3 matRot; 

/* Initialize rotation matrix to identity. */ 
matrix3x3SetIdentity (matRot); 
matRot [0][0] = cos (theta); 
matRot [0][1] = -sin (theta); 
matRot [0][2] = pivotPt.x * (1 - cos (theta)) + 
pivotPt.y * sin (theta); 
matRot [1][0] = sin (theta); 
matRot [1][1] = cos (theta); 
matRot [1][2] = pivotPt.y * (1 - cos (theta)) - 
pivotPt.x * sin (theta); 
/* Concatenate matRot with the composite matrix. */ 
matrix3x3PreMultiply (matRot, matComposite); 

} 
void scale2D (GLfloat sx, GLfloat sy, wcPt2D fixedPt) 
{ Matrix3x3 matScale; 

/* Set geometric transformation parameters. */ 
wcPt2D pivPt, fixedPt; 
pivPt = centroidPt; 
fixedPt = centroidPt; 
GLfloat tx = 0.0, ty = 100.0; 
GLfloat sx = 0.5, sy = 0.5; 
GLdouble theta = pi/2.0; 
glClear (GL_COLOR_BUFFER_BIT); // Clear display window. 
glColor3f (0.0, 0.0, 1.0); // Set initial fill color to blue. 
triangle (verts); // Display blue triangle. 
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/* Initialize composite matrix to identity. */ 
matrix3x3SetIdentity (matComposite); 
/* Construct composite matrix for transformation sequence. */ 
scale2D (sx, sy, fixedPt); // First transformation: Scale. 
rotate2D (pivPt, theta); // Second transformation: Rotate 
translate2D (tx, ty); // Final transformation: Translate. 
/* Apply composite matrix to triangle vertices. */ 
transformVerts2D (nVerts, verts); 
glColor3f (1.0, 0.0, 0.0); // Set color for transformed triangle. 
triangle (verts); // Display red transformed triangle. 
glFlush ( ); 

} 
void winReshapeFcn (GLint newWidth, GLint newHeight) 
{ glMatrixMode (GL_PROJECTION); 

glLoadIdentity ( ); 
gluOrtho2D (xwcMin, xwcMax, ywcMin, ywcMax); 
glClear (GL_COLOR_BUFFER_BIT); 

} 
void main (int argc, char ** argv) 
{ glutInit (&argc, argv); 

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 
glutInitWindowPosition (50, 50); 
glutInitWindowSize (winWidth, winHeight); 
glutCreateWindow ("Geometric Transformation Sequence"); 
init ( ); 
glutDisplayFunc (displayFcn); 
glutReshapeFunc (winReshapeFcn); 
glutMainLoop ( ); 

} 
/* Initialize scaling matrix to identity. */ 
matrix3x3SetIdentity (matScale); 
matScale [0][0] = sx; 
matScale [0][2] = (1 - sx) * fixedPt.x; 
matScale [1][1] = sy; 
matScale [1][2] = (1 - sy) * fixedPt.y; 
/* Concatenate matScale with the composite matrix. */ 
matrix3x3PreMultiply (matScale, matComposite); 
} 
/* Using the composite matrix, calculate transformed coordinates. */ 
void transformVerts2D (GLint nVerts, wcPt2D * verts) 
{ GLint k; 

GLfloat temp; 
for (k = 0; k < nVerts; k++) { 
temp = matComposite [0][0] * verts [k].x + matComposite [0][1] * 

verts [k].y + matComposite [0][2]; 
verts [k].y = matComposite [1][0] * verts [k].x +  

matComposite [1][1] *verts [k].y + matComposite [1][2]; 
verts [k].x = temp; 

} 
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} 
void triangle (wcPt2D *verts) 
{ GLint k; 

glBegin (GL_TRIANGLES); 
for (k = 0; k < 3; k++) 
glVertex2f (verts [k].x, verts [k].y); 
glEnd ( ); 

}void displayFcn (void) 
{ /* Define initial position for triangle. */ 

GLint nVerts = 3; 
wcPt2D verts [3] = { {50.0, 25.0}, {150.0, 25.0}, {100.0, 100.0} }; 
/* Calculate position of triangle centroid. */ 
wcPt2D centroidPt; 
GLint k, xSum = 0, ySum = 0; 
for (k = 0; k < nVerts; k++) { 
xSum += verts [k].x; 
ySum += verts [k].y;} 

centroidPt.x = GLfloat (xSum) / GLfloat (nVerts); 
centroidPt.y = GLfloat (ySum) / GLfloat (nVerts); 

OTHER TRANSFORMATIONS 
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TWO DIMENSIONAL VIEWING 
We now examine in more detail the procedures for displayingviews of a 

two-dimensional picture on an output device.Typically, a graphics package 
allows a user to specifywhich part of a defined picture is to be displayed and 
wherethat part is to be placed on the display device. Any convenient 
Cartesiancoordinate system, referred to as the world-coordinate 
referenceframe, can be used to define the picture. For a two-dimensional 
picture,a view is selected by specifying a region of the xy plane thatcontains 
the total picture or any part of it. A user can select a singlearea for display, 
or several areas could be selected for simultaneousdisplay or for an 
animated panning sequence across a scene. 

The picture parts within the selected areas are then mapped 
ontospecified areas of the device coordinates. When multiple view areasare 
selected, these areas can be placed in separate display locations,or some 
areas could be inserted into other, larger display areas.Two-dimensional 
viewing transformations from world to device coordinates involve 
translation,rotation, and scaling operations, as well as procedures for 
deleting those parts ofthe picture that are outside the limits of a selected 
scene area. 
WINDOW – TO- VIEWPORT CO-ORDINATE TRANSFORMATION. 
Normalization and ViewportTransformations 

With some graphics packages, the normalization and window-to-
viewport transformationsare combined into one operation. In this case, the 
viewport coordinatesare often given in the range from 0 to 1 so that the 
viewport is positioned withina unit square. After clipping, the unit square 
containing the viewport is mappedto the output display device. In other 
systems, the normalization and clippingroutines are applied before the 
viewport transformation. For these systems, theviewport boundaries are 
specified in screen coordinates relative to the displaywindowposition. 
Mapping the Clipping Window into a Normalized Viewport 

To illustrate the general procedures for the normalization and viewport 
transformations,we first consider a viewport defined with normalized 
coordinate valuesbetween 0 and 1. Object descriptions are transferred to 
this normalized spaceusing a transformation that maintains the same 
relative placement of a point in 
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which gives us the same result as in Equations 3.Any other clipping-
windowreferencepoint, such as the top-right corner or the window center, 
could be used forthe scale–translate operations. Alternatively, we could first 
translate any clippingwindowposition to the corresponding location in the 
viewport, and then scalerelative to that viewport location. 

The window-to-viewport transformation maintains the relative 
placement ofobject descriptions. An object inside the clipping window is 
mapped to a correspondingposition inside the viewport. Similarly, an object 
outside the clippingwindow is outside the viewport. 

Relative proportions of objects, on the other hand, are maintained 
only if theaspect ratio of the viewport is the same as the aspect ratio of the 
clipping window. 

In other words, we keep the same object proportions if the scaling 
factors sx andsy are the same. Otherwise, world objects will be stretched or 
contracted in eitherthe x or y directions (or both) when displayed on the 
output device. 

The clipping routines can be applied using either the clipping-window 
boundariesor the viewport boundaries. After clipping, the normalized 
coordinates aretransformed into device coordinates. And the unit square can 
be mapped onto theoutput device using the same procedures as in the 
window-to-viewport transformation,with the area inside the unit square 
transferred to the total display areaof the output device. 
Mapping the Clipping Window into a Normalized Square 

Another approach to two-dimensional viewing is to transform the 
clipping windowinto a normalized square, clip in normalized coordinates, 
and then transferthe scene description to a viewport specified in screen 
coordinates. This transformationis illustrated in Figure 7 with normalized 
coordinates in the range from−1 to 1. The clipping algorithms in this 
transformation sequence are now standardizedso that objects outside the 
boundaries x = • }1 and y = • }1 are detectedand removed from the scene 
description. At the final step of the viewing transformation,the objects in the 
viewport are positioned within the display window. 

We transfer the contents of the clipping window into the normalization 
squareusing the same procedures as in the window-to-viewport 
transformation. Thematrix for the normalization transformation is obtained 
from Equation 8 bysubstituting −1 for xvmin and yvmin and substituting +1 
for xvmax and yvmax. 
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will be stretched or contracted in the x or y directions. Also, the aspect ratio 
of thedisplay window can affect the proportions of objects. If the viewport is 
mappedto the entire area of the display window and the size of the display 
window ischanged, objects may be distorted unless the aspect ratio of the 
viewport is alsoadjusted. 
Display of Character Strings 

Character strings can be handled in one of two ways when they are 
mappedthrough the viewing pipeline to a viewport. The simplest mapping 
maintains aconstant character size. This method could be employed with 
bitmap characterpatterns. But outline fonts could be transformed the same 
as other primitives; wejust need to transform the defining positions for the 
line segments in the outlinecharacter shapes. Algorithms for determining 
the pixel patterns for the transformedcharacters are then applied when the 
other primitives in the scene areprocessed. 
Split-Screen Effects and Multiple Output Devices 

By selecting different clipping windows and associated viewports for a 
scene, wecan provide simultaneous display of two or more objects, multiple 
picture parts,or different views of a single scene. And we can position these 
views in differentparts of a single display window or in multiple display 
windows on the screen. 

In a design application, for example, we can display a wire-frame view 
of anobject in one viewport while also displaying a fully rendered view of the 
objectin another viewport. In addition, we could list other information or 
menus in athird viewport. 

It is also possible that two or more output devices could be operating 
concurrentlyon a particular system, and we can set up a clipping-
window/viewportpair for each output device. A mapping to a selected output 
device is sometimesreferred to as a workstation transformation. In this 
case, viewports couldbe specified in the coordinates of a particular display 
device, or each viewportcould be specified within a unit square, which is 
then mapped to a chosen outputdevice. Some graphics systems provide a 
pair of workstation functions for thispurpose.Onefunction is used to 
designate a clippingwindowfor a selected outputdevice, identified by a 
workstation number, and the other function is used to setthe associated 
viewport for that device. 
 
UNIT 3:  
CLIPPING ALGORITHMS 

Generally, any procedure that eliminates those portions of a picture 
that are eitherinside or outside a specified region of space is referred to as a 
clipping algorithmor simply clipping.Usually a clipping region is a 
rectangle in standard position,although we could use any shape for a 
clipping application. 

The most common application of clipping is in the viewing 
pipeline,where clipping is applied to extract a designated portion of a scene 
(eithertwo-dimensional or three-dimensional) for display on an output 
device. Clippingmethods are also used to antialias object boundaries, to 
construct objectsusing solid-modeling methods, to manage a multiwindow 
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environment, and toallow parts of a picture to be moved, copied, or erased in 
drawing and paintingprograms. 

Clipping algorithms are applied in two-dimensional viewing 
procedures toidentify those parts of a picture that are within the clipping 
window. Everythingoutside the clipping window is then eliminated from the 
scene description thatis transferred to the output device for display. An 
efficient implementation ofclipping in the viewing pipeline is to apply the 
algorithms to the normalizedboundaries of the clipping window. This 
reduces calculations, because all geometricand viewing transformation 
matrices can be concatenated and applied toa scene description before 
clipping is carried out. The clipped scene can then betransferred to screen 
coordinates for final processing. 
In the following sections, we explore two-dimensional algorithms for 
• Point clipping 
• Line clipping (straight-line segments) 
• Fill-area clipping (polygons) 
• Curve clipping 
• Text clipping 

Point, line, and polygon clipping are standard components of graphics 
packages.But similar methods can be applied to other objects, particularly 
conics, such ascircles, ellipses, and spheres, in addition to spline curves 
and surfaces. Usually,however, objects with nonlinear boundaries are 
approximated with straight-linesegments or polygon surfaces to reduce 
computations. 

Unless otherwise stated, we assume that the clipping region is a 
rectangularwindow in standard position, with boundary edges at coordinate 
positionsxwmin, xwmax, ywmin, and ywmax. These boundary edges 
typically correspond to anormalized square, in which the x and y values 
range either from 0 to 1 or from−1 to 1. 
POINT CLIPPING 

For a clipping rectangle in standard position, we save a two-
dimensional pointP = (x, y) for display if the following inequalities are 
satisfied: xwmin ≤ x ≤ xwmax 

ywmin≤ y ≤ ywmax  (12) 
If any of these four inequalities is not satisfied, the point is clipped 

(not saved fordisplay). 
Although point clipping is applied less often than line or polygon 

clipping,it is useful in various situations, particularly when pictures are 
modeled withparticle systems. For example, point clipping can be applied to 
scenes involvingclouds, sea foam, smoke, or explosions that are modeled 
with “particles,” such asthe center coordinates for small circles or spheres. 
LINE CLIPPING 

Figure 9 illustrates possible positions for straight-line segments in 
relationshipto a standard clipping window. A line-clipping algorithm 
processes each line in ascene through a series of tests and intersection 
calculations to determine whetherthe entire line or any part of it is to be 
saved. The expensive part of a line-clippingprocedure is in calculating the 
intersection positions of a line with the windowedges. Therefore, a major 
goal for any line-clipping algorithm is to minimizethe intersection 
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calculations. To do this, we can first perform tests to determinewhether a 
line segment is completely inside the clipping window or completelyoutside. 
It is easy to determine whether a line is completely inside a clippingwindow, 
but it is more difficult to identify all lines that are entirely outside 
thewindow. If we are unable to identify a line as completely inside or 
completely 
outside a clipping rectangle, we must then perform intersection calculations 
todetermine whether any part of the line crosses the window interior. 

We test a line segment to determine if it is completely inside or outside 
aselected clipping-window edge by applying the point-clipping tests of the 
previoussection. When both endpoints of a line segment are inside all four 
clippingboundaries, such as the line fromP1 to P2 in Figure 9, the line is 
completely insidethe clipping window and we save it. And when both 
endpoints of a line segmentare outside any one of the four boundaries (as 
with line P3P4 in Figure 9), thatline is completely outside the window and it 
is eliminated from the scene description. 

But if both these tests fail, the line segment intersects at least one 
clippingboundary and it may or may not cross into the interior of the 
clipping window. 

One way to formulate the equation for a straight-line segment is to 
use thefollowing parametric representation, where the coordinate positions 
(x0, y0) and(xend, yend) designate the two line endpoints: 

x = x0 + u(xend − x0) 
y = y0 + u(yend − y0) 0 ≤ u ≤ 1 (13) 

We can use this parametric representation to determine where a line 
segmentcrosses each clipping-window edge by assigning the coordinate 
value for thatedge to either x or y and solving for parameter u. For example, 
the left windowboundary is at position xwmin, so we substitute this value 
for x, solve for u, andcalculate the corresponding y-intersection value. If this 
value of u is outside therange from 0 to 1, the line segment does not 
intersect that window border line. 

However, if the value of u is within the range from 0 to 1, part of the 
line is insidethat border. We can then process this inside portion of the line 
segment againstthe other clipping boundaries until either we have clipped 
the entire line or wefind a section that is inside the window. 

Processing line segments in a scene using the simple clipping 
approachdescribed in the preceding paragraph is straightforward, but not 
very efficient. 
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It is possible to reformulate the initial testing and the intersection 
calculations toreduce processing time for a set of line segments, and a 
number of faster lineclippers have been developed. Some of the algorithms 
are designed explicitlyfor two-dimensional pictures and some are easily 
adapted to sets of threedimensionalline 
segments. 
Cohen-Sutherland Line Clipping 

This is one of the earliest 
algorithms to be developed for fast line 
clipping, andvariations of this method 
are widely used. Processing time is 
reduced in theCohen-Sutherland method 
by performing more tests before 
proceeding to theintersection 
calculations. Initially, every line endpoint 
in a picture is assigneda four-digit binary 
value, called a region code, and each bit 
position is used toindicate whether the 
point is inside or outside one of the clipping-window boundaries. 

We can reference the window edges in any order, and Figure 10 
illustratesone possible ordering with the bit positions numbered 1 through 4 
from rightto left. Thus, for this ordering, the rightmost position (bit 1) 
references the leftclipping-window boundary, and the leftmost position (bit 
4) references the topwindow boundary. A value of 1 (or true) in any bit 
position indicates that theendpoint is outside that window border. Similarly, 
a value of 0 (or false) in anybit position indicates that the endpoint is not 
outside (it is inside or on) the correspondingwindow edge. Sometimes, a 
region code is referred to as an “out” codebecause a value of 1 in any bit 
position indicates that the spatial point is outsidethe corresponding clipping 
boundary.  

Each clipping-window edge divides two-dimensional space into an insidehalf 
space and an outside half space. Together, the four window borders 
createnine regions, and Figure 11 lists the value for the binary code in each 
of theseregions. Thus, an endpoint that is below and to the left of the 
clipping window isassigned the region code 0101, and the region-code value 
for any endpoint insidethe clipping window is 0000. 
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Bit values in a region code are determined by comparing the 
coordinate values(x, y) of an endpoint to the clipping boundaries. Bit 1 is set 
to 1 if x <xwmin, and the other three bit values are determined similarly. 
Instead of using inequalitytesting, we can determine the values for a region-
code more efficiently usingbit-processing operations and the following two 
steps: (1) Calculate differencesbetween endpoint coordinates and clipping 
boundaries. (2) Use the resultant signbit of each difference calculation to set 
the corresponding value in the region code. 

For the ordering scheme shown in Figure 10, bit 1 is the sign bit of x − 
xwmin;bit 2 is the sign bit of xwmax − x; bit 3 is the sign bit of y − ywmin; 
and bit 4 is thesign bit of ywmax − y. 

Once we have established region codes for all line endpoints, we can 
quicklydetermine which lines are completely inside the clip window and 
which are completelyoutside. Any lines that are completely contained within 
the window edgeshave a region code of 0000 for both endpoints, and we save 
these line segments. 

Anyline that has a region-code value of 1 in the same bit position for 
each endpointis completely outside the clipping rectangle, and we eliminate 
that line segment. 

As an example, a line that has a region code of 1001 for one endpoint 
and a codeof 0101 for the other endpoint is completely to the left of the 
clipping window, asindicated by the value of 1 in the first bit position of each 
region code. 

We can perform the inside-outside tests for line segments using logical 
operators. 

When the oroperation between two endpoint region codes for a line 
segmentis false (0000), the line is inside the clipping window. Therefore, we 
save the lineand proceed to test the next line in the scene description. When 
the andoperationbetween the two endpoint region codes for a line is true (not 
0000), the line iscompletely outside the clipping window, and we can 
eliminate it from the scenedescription. 
Lines that cannot be identified as being completely inside or completely 

outsidea clipping window by the region-code tests are next checked for 
intersectionwith the window border lines. As shown in Figure 12, line 
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segments canintersect clipping boundary lines without entering the interior 
of the window. 

Therefore, several intersection calculations might be necessary to clip 
a line segment,depending on the order in which we process the clipping 
boundaries. Aswe process each clipping-window edge, a section of the line is 
clipped, and theremaining part of the line is checked against the other 
window borders. We continueeliminating sections until either the line is 
totally clipped or the remainingpart of the line is inside the clipping window. 
For the following discussion, weassume that the window edges are 
processed in the following order: left, right,bottom, top. To determine 
whether a line crosses a selected clipping boundary,we can check 
corresponding bit values in the two endpoint region codes. If oneof these bit 
values is 1 and the other is 0, the line segment crosses that boundary.  

Figure 12 illustrates two line segments that cannot be identified 
immediatelyas completely inside or completely outside the clipping window. 
The regioncodes for the line from P1 to P2 are 0100 and 1001. Thus, P1 is 
inside the left clippingboundary and P2 is outside that boundary.We then 
calculate the intersectionposition P’2, and we clip off the line section from 
P2 to P’2. The remaining portionof the line is inside the right border line, 
and so we next check the bottom border.Endpoint P1 is below the bottom 
clipping edge and P’2 is above it, so we determinethe intersection position at 
this boundary (P’1).We eliminate the line section fromP1 to P’1 and proceed 
to the top window edge. There we determine the intersectionposition to be 
P’2. The final step is to clip off the section above the top boundaryand save 
the interior segment from P’1 to P’2. For the second line, we find that 
pointP3 is outside the left boundary and P4 is inside. Thus, we calculate the 
intersectionposition P’3 and eliminate the line section from P3 to P’3. By 
checking region codesfor the endpoints P’3 and P4, we find that the 
remainder of the line is below theclipping window and can be eliminated as 
well. 

It is possible, when clipping a line segment using this approach, to 
calculatean intersection position at all four clipping boundaries, depending 
on how theline endpoints are processed and what ordering we use for the 
boundaries. Figure13 shows the four intersection positions that could be 
calculated for a line segmentthat is processed against the clipping-window 
edges in the 
order left, right, 
bottom, top. 
Therefore, 
variations of this 
basic approach 
have been 
developed inan 
effort to reduce 
the intersection 
calculations. 

To 
determine a 
boundary 
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intersection for a line segment, we can use the slopeinterceptform of the line 
equation. For a line with endpoint coordinates (x0, y0)and (xend, yend), the 
y coordinate of the intersection point with a vertical clippingborder line can 
be obtained with the calculation 

y = y0 + m(x − x0)    (14) 
where the x value is set to either xwmin or xwmax, and the slope of the line 
iscalculated as  

m = (yend − y0)/(xend − x0).  
Similarly, if we are looking for theintersection with a horizontal 

border, the x coordinate can be calculated as 
x = x0 + (y − y0)/ m    (15) 

withy set either to ywmin or to ywmax. 

An implementation of the two-dimensional, Cohen-Sutherland line-clipping 
algorithmis given in the following procedures. 
class wcPt2D  
{ public: 

GLfloat x, y; 
}; 
inline GLint round (const GLfloat a) { return GLint (a + 0.5); } 
/* Define a four-bit code for each of the outside regions of a 
* rectangular clipping window. 
*/ 
const GLint winLeftBitCode = 0x1; 
const GLint winRightBitCode = 0x2; 
const GLint winBottomBitCode = 0x4; 
const GLint winTopBitCode = 0x8; 
/* A bit-mask region code is also assigned to each endpoint of an input 
* line segment, according to its position relative to the four edges of 
* an input rectangular clip window. 
** 
An endpoint with a region-code value of 0000 is inside the clipping 
* window, otherwise it is outside at least one clipping boundary. If 
* the'or' operation for the two endpoint codes produces a value of 
* false, the entire line defined by these two endpoints is saved 
* (accepted). If the 'and' operation between two endpoint codes is 
* true, the line is completely outside the clipping window, and it is 
* eliminated (rejected) from further processing. 
*/ 
inline GLint inside (GLint code) { return GLint (!code); } 
inline GLint reject (GLint code1, GLint code2) 
{ return GLint (code1 & code2); } 
inline GLint accept (GLint code1, GLint code2) 
{ return GLint (!(code1 | code2)); } 
GLubyte encode (wcPt2D pt, wcPt2D winMin, wcPt2D winMax) 
{ GLubyte code = 0x00; 

if (pt.x < winMin.x) 
code = code | winLeftBitCode; 

if (pt.x > winMax.x) 
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code = code | winRightBitCode; 
if (pt.y < winMin.y) 

code = code | winBottomBitCode; 
if (pt.y > winMax.y) 

code = code | winTopBitCode; 
return (code); 

} 
void swapPts (wcPt2D * p1, wcPt2D * p2) 
{ wcPt2D tmp; 

tmp = *p1; *p1 = *p2; *p2 = tmp; 
} 
void swapCodes (GLubyte * c1, GLubyte * c2) 
{ GLubyte tmp; 

tmp = *c1; *c1 = *c2; *c2 = tmp; 
} 
void lineClipCohSuth (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, 
wcPt2D p2) 
{ GLubyte code1, code2; 

GLint done = false, plotLine = false; 
GLfloat m; 
while (!done) { 
code1 = encode (p1, winMin, winMax); 
code2 = encode (p2, winMin, winMax); 
if (accept (code1, code2))  
{ done = true; 

plotLine = true; 
} 
else 

if (reject (code1, code2)) 
done = true; 

else 
{ 

/* Label the endpoint outside the display window as  
p1. */ 
if (inside (code1))  
{ swapPts (&p1, &p2); 

swapCodes (&code1, &code2); 
} 
/* Use slope m to find line-clipEdge intersection. */ 
if (p2.x != p1.x) 

m = (p2.y - p1.y) / (p2.x - p1.x); 
if (code1 & winLeftBitCode)  
{ p1.y += (winMin.x - p1.x) * m; 

p1.x = winMin.x; 
} 
else 

if (code1 & winRightBitCode)  
{ p1.y += (winMax.x - p1.x) * m; 

p1.x = winMax.x; 
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} 
else 

if (code1 & winBottomBitCode)  
{ /* Need to update p1.x for nonvertical 

lines only. */ 
if (p2.x != p1.x) 

p1.x += (winMin.y - p1.y) / m; 
p1.y = winMin.y; 

} 
else 

if (code1 & winTopBitCode)  
{ if (p2.x != p1.x) 

p1.x += (winMax.y - p1.y) / m; 
p1.y = winMax.y; 

} 
} 

} 
if (plotLine) 

lineBres (round (p1.x), round (p1.y), round (p2.x),  
    round (p2.y)); 

} 
Liang-Barsky Line Clipping 

Faster line-clipping algorithms have been developed that do more line 
testingbefore proceeding to the intersection calculations. One of the earliest 
efforts inthis direction is an algorithm developed by Cyrus and Beck, which 
is based onanalysis of the parametric line equations. Later, Liang and 
Barsky independentlydevised an even faster form of the parametric line-
clipping algorithm. 

For a line segment with endpoints (x0, y0) and (xend, yend), we can 
describe theline with the parametric form 

x = x0 + u_x 
y = y0 + u_y 0 ≤ u ≤ 1  (16) 

where_x = xend − x0 and _y = yend − y0. In the Liang-Barsky algorithm, the 
parametric line equations are combined with the point-clipping conditions 
12to obtain the inequalities 

xwmin≤ x0 + u_x ≤ xwmax 
ywmin≤ y0 + u_y ≤ ywmax   (17) 

which can be expressed as 
u pk ≤ qk , k = 1, 2, 3, 4     (18) 

where parameters p and q are defined as 
p1 = −_x, q1 = x0 − xwmin 
p2 = _x, q2 = xwmax − x0 
p3 = −_y, q3 = y0 − ywmin 
p4 = _y, q4 = ywmax − y0   (19) 

Any line that is parallel to one of the clipping-window edges has pk = 0 
for thevalue of k corresponding to that boundary, where k = 1, 2, 3, and 4 
correspondto the left, right, bottom, and top boundaries, respectively. If, for 
that value of k,we also find qk <0, then the line is completely outside the 
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boundary and canbe eliminated from further consideration. If qk ≥ 0, the 
line is inside the parallelclipping border. 

When pk <0, the infinite extension of the line proceeds from the 
outsideto the inside of the infinite extension of this particular clipping-
window edge. Ifpk >0, the line proceeds from the inside to the outside. For a 
nonzero value of pk ,we can calculate the value of u that corresponds to the 
point where the infinitelyextended line intersects the extension of window 
edge k as 

u = qk/pk(20) 
For each line, we can calculate values for parameters u1 and u2 that 

define thatpart of the line that lies within the clip rectangle. The value of u1 
is determined bylooking at the rectangle edges for which the line proceeds 
from the outside to theinside (p <0). For these edges, we calculate rk = qk/pk 
. The value of u1 is takenas the largest of the set consisting of 0 and the 
various values of r . Conversely,the value of u2 is determined by examining 
the boundaries for which the lineproceeds from inside to outside (p >0). A 
value of rk is calculated for each ofthese boundaries, and the value of u2 is 
the minimum of the set consisting of 1 andthe calculated r values. If u1 >u2, 
the line is completely outside the clip windowand it can be rejected. 
Otherwise, the endpoints of the clipped line are calculatedfrom the two 
values of parameter u. 

This algorithm is implemented in the following code sections. Line 
intersectionparameters are initialized to the values u1 = 0 and u2 = 1. For 
each clippingboundary, the appropriate values for p and q are calculated 
and used by thefunction clipTest to determine whether the line can be 
rejected or whetherthe intersection parameters are to be adjusted. When p 
<0, parameter r is usedto update u1; when p >0, parameter r is used to 
update u2. If updating u1 oru2 results in u1 >u2, we reject the line. 
Otherwise, we update the appropriate uparameter only if the new value 
results in a shortening of the line. When p = 0 andq <0, we can eliminate the 
line because it is parallel to and outside this boundary. 

If the line has not been rejected after all four values of p and q have 
been tested,the endpoints of the clipped line are determined from values of 
u1 and u2. 
class wcPt2D 
{ private: 

GLfloat x, y; 
public: 
/* Default Constructor: initialize position as (0.0, 0.0). */ 
wcPt3D ( )  
{ x = y = 0.0; 
} 
setCoords (GLfloat xCoord, GLfloat yCoord)  
{ x = xCoord; 

y = yCoord; 
} 
GLfloat getx ( ) const  
{ return x; 
} 
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GLfloat gety ( ) const  
{ return y; 
} 

}; 
inline GLint round (const GLfloat a)  
{ return GLint (a + 0.5);  
} 
GLint clipTest (GLfloat p, GLfloat q, GLfloat * u1, GLfloat * u2) 
{ GLfloat r; 

GLint returnValue = true; 
if (p < 0.0)  
{ r = q / p; 

if (r > *u2) 
returnValue = false; 

else 
if (r > *u1) 

*u1 = r; 
} 
else 

if (p > 0.0)  
{ r = q / p; 

if (r < *u1) 
returnValue = false; 

else if (r < *u2) 
*u2 = r; 

} 
else 
/* Thus p = 0 and line is parallel to clipping boundary. */ 
if (q < 0.0) 

/* Line is outside clipping boundary. */ 
returnValue = false; 
return (returnValue); 

} 
void lineClipLiangBarsk (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, 
wcPt2D p2) 
{ GLfloat u1 = 0.0, u2 = 1.0, dx = p2.getx ( ) - p1.getx ( ), dy; 

if (clipTest (-dx, p1.getx ( ) - winMin.getx ( ), &u1, &u2)) 
if (clipTest (dx, winMax.getx ( ) - p1.getx ( ), &u1, &u2))  
{ dy = p2.gety ( ) - p1.gety ( ); 

if (clipTest (-dy, p1.gety ( ) - winMin.gety ( ), &u1, &u2)) 
if (clipTest (dy, winMax.gety ( ) - p1.gety ( ), &u1, &u2)) { 

if (u2 < 1.0)  
{ p2.setCoords (p1.getx ( ) + u2 * dx, p1.gety  

( ) + u2 * dy); 
} 

if (u1 > 0.0)  
{ p1.setCoords (p1.getx ( ) + u1 * dx, p1.gety ( ) +  

u1 * dy); 
} 
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lineBres (round (p1.getx ( )), round (p1.gety ( )), 
round (p2.getx ( )), round (p2.gety ( ))); 

} 
} 

} 
In general, the Liang-Barsky algorithm is more efficient than the 

Cohen-Sutherland line-clipping algorithm. Each update of parameters u1 
and u2 requiresonly one division; and window intersections of the line are 
computed only once,when the final values of u1 and u2 have been 
computed. In contrast, the Cohenand Sutherland algorithm can calculate 
intersections repeatedly along a line path,even though the line may be 
completely outside the clip window. In addition, eachCohen-Sutherland 
intersection calculation requires both a division and a multiplication. 

The two-dimensional Liang-Barsky algorithm can be extended to clip 
three-dimensional lines. 
Nicholl-Lee-Nicholl Line Clipping 

By creating more regions around the clipping window, the Nicholl-Lee-
Nicholl(NLN) algorithm avoids multiple line-intersection calculations. In the 
Cohen-Sutherland method, for example, multiple intersections could be 
calculated alongthe path of a line segment before an intersection on the 
clipping rectangle islocated or the line is completely rejected. These extra 
intersection calculationsare eliminated in the NLN algorithm by carrying out 
more region testing beforeintersection positions are calculated. Compared to 
both the Cohen-Sutherlandand the Liang-Barsky algorithms, the Nicholl-
Lee-Nicholl algorithm performsfewer comparisons and divisions. The trade-
off is that the NLN algorithm can beapplied only to two-dimensional clipping, 
whereas both the Liang-Barsky andthe Cohen-Sutherland methods are 
easily extended to three-dimensional scenes. 

Initial testing to determine whether a line segment is completely inside 
theclipping window or outside the window limits can be accomplished with 
regioncodetests, as in the previous two algorithms. If a trivial acceptance or 
rejection ofthe line is not possible, the NLN algorithm proceeds to set up 
additional clippingregions. 

For a line with endpoints P0 and Pend, we first determine the position 
ofpoint P0 for the nine possible regions relative to the clipping window. Only 
thethree regions shown in Figure 14 need be considered. If P0 lies in any 

one ofthe other six regions, we can move it to one of the three regions in 
Figure 14using a symmetry transformation. For example, the region directly 
above the clipwindow can be transformed to the region left of the window 
using a reflectionabout the line y = −x, or we could use a 90◦ 
counterclockwise rotation. 

Assuming that P0 and Pend are not both inside the clipping window, 
we nextdetermine the position ofPend relative toP0.To do this,wecreate 
somenewregionsin the plane, depending on the location of P0. Boundaries of 
the new regions aresemi-infinite line segments that start at the position of 
P0 and pass through theclipping-window corners. If P0 is inside the clipping 
window, we set up the fourregions shown in Figure 15. Then, depending on 
which one of the four regions(L, T, R, or B) contains Pend, we compute the 
line-intersection position with thecorresponding window boundary. 



137 

 

If P0 is in the region to the left of the window,weset up the four 
regions labeledL, LT, LR, and LB in Figure 16. These four regions again 
determine a uniqueP0 
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POLYGON CLIPPING  

Graphics packages typically support only fill areas that are polygons, 
and oftenonly convex polygons. To clip a polygon fill area, we cannot apply a 
line-clippingmethod to the individual polygon edges directly because this 
approach would not,in general, produce a closed polyline. Instead, a line 
clipper would often producea disjoint set of lines with no complete 
information about how we might forma closed boundary around the clipped 
fill area. Figure 19 illustrates a possibleoutput from a line-clipping 
procedure applied to the edges of a polygon fill area. 

What we require is a procedure that will output one or more closed 
polylines forthe boundaries of the clipped fill area, so that the polygons can 
be scan-convertedto fill the interiors with the assigned color or pattern, as in 
Figure 20. 

We can process a polygon fill area against the borders of a clipping 
windowusing the same general approach as in line clipping. A line segment 
is defined byits two endpoints, and these endpoints are processed through a 
line-clipping procedureby constructing a new set of clipped endpoints at 
each clipping-windowboundary. Similarly, we need to maintain a fill area as 
an entity as it is processedthrough the clipping stages. Thus, we can clip a 
polygon fill area by determiningthe new shape for the polygon as each 
clipping-window edge is processed, asdemonstrated in Figure 21. Of course, 
the interior fill for the polygon would notbe applied until the final clipped 
border had been determined.  
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Just as we first tested a line segment to determine whether it could be 
completelysaved or completely clipped, we can do the same with a polygon 
fillarea by checking its coordinate extents. If the minimum and maximum 
coordinatevalues for the fill area are inside all four clipping boundaries, the 
fill area issaved for further processing. If these coordinate extents are all 
outside any of theclipping-window borders, we eliminate the polygon from 
the scene description(Figure 22). 

When we cannot identify a fill area as being completely inside or 
completelyoutside the clipping window, we then need to locate the polygon 

intersectionpositions with the clipping boundaries. One way to implement 
convex-polygonclipping is to create a new vertex list at each clipping 
boundary, and then passthis new vertex list to the next boundary clipper. 
The output of the final clippingstage is the vertex list for the clipped polygon 
(Figure 23). For concave-polygonclipping, we would need to modify this basic 
approach so that multiple vertexlists could be generated. 
Sutherland--Hodgman Polygon Clipping 

An efficient method for clipping a convex-polygon fill area, developed 
by Sutherlandand Hodgman, is to send the polygon vertices through each 
clipping stageso that a single clipped vertex can be immediately passed to 
the next stage. Thiseliminates the need for an output set of vertices at each 
clipping stage, and itallows the boundary-clipping routines to be 
implemented in parallel. The finaloutput is a list of vertices that describe the 
edges of the clipped polygon fill area. 

Because the Sutherland-Hodgman algorithm produces only one list of 
outputvertices, it cannot correctly generate the two output polygons in 
Figure 20(b) thatare the result of clipping the concave polygon shown in 
Figure 20(a). However,more processing steps can be added to the algorithm 
to allow it to produce multipleoutput vertex lists, so that general concave-
polygon clipping could be accomodated. 

And the basic Sutherland-Hodgman algorithm is able to process 
concavepolygons when the clipped fill area can be described with a single 
vertex list. 

The general strategy in this algorithm is to send the pair of endpoints 
for eachsuccessive polygon line segment through the series of clippers (left, 
right, bottom,and top). As soon as a clipper completes the processing of one 
pair of vertices, theclipped coordinate values, if any, for that edge are sent to 
the next clipper. Thenthe first clipper processes the next pair of endpoints. 
In this way, the individualboundary clippers can be operating in parallel. 
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There are four possible cases that need to be considered when 
processing apolygon edge against one of the clipping boundaries. One 
possibility is that thefirst edge endpoint is outside the clipping boundary 
and the second endpointis inside. Or, both endpoints could be inside this 
clipping boundary. Anotherpossibility is that the first endpoint is inside the 
clipping boundary and the secondendpoint is outside. And, finally, both 
endpoints could be outside the clippingboundary. 

To facilitate the passing of vertices from one clipping stage to the next, 
theoutput from each clipper can be formulated as shown in Figure 24. As 
eachsuccessive pair of endpoints is passed to one of the four clippers, an 
output isgenerated for the next clipper according to the results of the 
following tests: 
1. If the first input vertex is outside this clipping-window border and 

thesecond vertex is inside, both the intersection point of the polygon 
edgewith the window border and the second vertex are sent to the next 
clipper. 
2. If both input vertices are inside this clipping-window border, only the 
second vertex is sent to the next clipper. 
3. If the first vertex is inside this clipping-window border and the second 
vertex is outside, only the polygon edge-intersection position with 
theclipping-window border is sent to the next clipper. 
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4. If both input vertices are outside this clipping-window border, no vertices 
are sent to the next clipper. 

The last clipper in this series generates a vertex list that describes the 
final clippedfill area. 

Figure 25 provides an example of the Sutherland-Hodgman 
polygonclippingalgorithm for a fill area defined with the vertex set {1, 2, 3}. 
As soon 
as a clipper receives a pair of endpoints, it determines the appropriate 
outputusing the tests illustrated in Figure 24. These outputs are passed in 
successionfrom the left clipper to the right, bottom, and top clippers. The 
output from the return (iPt); 
} 
void clipPoint (wcPt2D p, Boundary winEdge, wcPt2D wMin, wcPt2D 
wMax, 
wcPt2D * pOut, int * cnt, wcPt2D * first[], wcPt2D * s) 
{ 
wcPt2D iPt; 
/* If no previous point exists for this clipping boundary, 
* save this point. 
*/ 
if (!first[winEdge]) 
first[winEdge] = &p; 
else 
/* Previous point exists. If p and previous point cross 
* this clipping boundary, find intersection. Clip against 
* next boundary, if any. If no more clip boundaries, add 
* intersection to output list. 
*/ 
if (cross (p, s[winEdge], winEdge, wMin, wMax)) { 
iPt = intersect (p, s[winEdge], winEdge, wMin, wMax); 
if (winEdge < Top) 
clipPoint (iPt, b+1, wMin, wMax, pOut, cnt, first, s); 
else { 
pOut[*cnt] = iPt; (*cnt)++; 
} 
} 
/* Save p as most recent point for this clip boundary. */ 
s[winEdge] = p; 
/* For all, if point inside, proceed to next boundary, if any. */ 
if (inside (p, winEdge, wMin, wMax)) 
if (winEdge < Top) 
clipPoint (p, winEdge + 1, wMin, wMax, pOut, cnt, first, s); 
else { 
pOut[*cnt] = p; (*cnt)++; 
} 
} 
void closeClip (wcPt2D wMin, wcPt2D wMax, wcPt2D * pOut, 
GLint * cnt, wcPt2D * first [ ], wcPt2D * s) 
{ 
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wcPt2D pt; 
Boundary winEdge; 
for (winEdge = Left; winEdge <= Top; winEdge++) { 
if (cross (s[winEdge], *first[winEdge], winEdge, wMin, wMax)) { 
pt = intersect (s[winEdge], *first[winEdge], winEdge, wMin, wMax); 
if (winEdge < Top) 
clipPoint (pt, winEdge + 1, wMin, wMax, pOut, cnt, first, s); 
else { 
pOut[*cnt] = pt; (*cnt)++; 
} 
} 
} 
} 
top clipper is the set of vertices defining the clipped fill area. For this 
example,the output vertex list is {1_, 2, 2_, 2__}. 

A sequential implementation of the Sutherland-Hodgman polygon-
clippingalgorithm is demonstrated in the following set of procedures. An 
input set ofvertices is converted to an output vertex list by clipping it against 
the four edgesof the axis-aligned rectangular clipping region. 
typedef enum { Left, Right, Bottom, Top } Boundary; 
const GLint nClip = 4; 
GLint inside (wcPt2D p, Boundary b, wcPt2D wMin, wcPt2D wMax) 
{ 
switch (b) { 
case Left: if (p.x < wMin.x) return (false); break; 
case Right: if (p.x > wMax.x) return (false); break; 
case Bottom: if (p.y < wMin.y) return (false); break; 
case Top: if (p.y > wMax.y) return (false); break; 
} 
return (true); 
} 
GLint cross (wcPt2D p1, wcPt2D p2, Boundary winEdge, wcPt2D wMin, 
wcPt2D wMax) 
{ 
if (inside (p1, winEdge, wMin, wMax) == inside (p2, winEdge, wMin, 
wMax)) 
return (false); 
else return (true); 
} 
wcPt2D intersect (wcPt2D p1, wcPt2D p2, Boundary winEdge, 
wcPt2D wMin, wcPt2D wMax) 
{ 
wcPt2D iPt; 
GLfloat m; 
if (p1.x != p2.x) m = (p1.y - p2.y) / (p1.x - p2.x); 
switch (winEdge) { 
case Left: 
iPt.x = wMin.x; 
iPt.y = p2.y + (wMin.x - p2.x) * m; 
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break; 
case Right: 
iPt.x = wMax.x; 
iPt.y = p2.y + (wMax.x - p2.x) * m; 
break; 
case Bottom: 
iPt.y = wMin.y; 
if (p1.x != p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m; 
else iPt.x = p2.x; 
break; 
case Top: 
iPt.y = wMax.y; 
if (p1.x != p2.x) iPt.x = p2.x + (wMax.y - p2.y) / m; 
else iPt.x = p2.x; 
break; 
} 
GLint polygonClipSuthHodg (wcPt2D wMin, wcPt2D wMax, GLint n, 
wcPt2D * pIn, wcPt2D * pOut) 
{ 
/* Parameter "first" holds pointer to first point processed for 
* a boundary; "s" holds most recent point processed for boundary. 
*/ 
wcPt2D * first[nClip] = { 0, 0, 0, 0 }, s[nClip]; 
GLint k, cnt = 0; 
for (k = 0; k < n; k++) 
clipPoint (pIn[k], Left, wMin, wMax, pOut, &cnt, first, s); 
closeClip (wMin, wMax, pOut, &cnt, first, s); 
return (cnt); 
} 

Whena concave polygon is clipped with the Sutherland-Hodgman 
algorithm,extraneous lines may be displayed. An example of this effect is 
demonstrated inFigure 26. This occurs when the clipped polygon should 
have two or moreseparate sections. But since there is only one output vertex 
list, the last vertex inthe list is always joined to the first vertex.There are 
several things we can do to display clipped concave polygonscorrectly. 
Weiler-Atherton Polygon Clipping 

This algorithm provides a general polygon-clipping approach that can 
be usedto clip a fill area that is either a convex polygon or a concave 
polygon. Moreover,the method was developed as a means for identifying 
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visible surfaces in a threedimensionalscene. Therefore, we could also use 
this approach to clip any polygonfill area against a clipping window with any 
polygon shape. 

For one, we could split a concave polygon into two or more 
convexpolygons and process each convex polygon separately using the 
Sutherland-Hodgman algorithm. Another possibility is to modify the 
Sutherland- Hodgmanmethod so that the final vertex list is checked for 
multiple intersection pointsalong any clipping-window boundary. If we find 
more than two vertex positionsalong any clipping boundary, we can separate 
the list of vertices into two ormore lists that correctly identify the separate 
sections of the clipped fill area. Thismay require extensive analysis to 
determine whether some points along the clippingboundary should be 
paired or whether they represent single vertex pointsthat have been 
clipped.Athird possibility is to use a more general polygon clipperthat has 
been designed to process concave polygons correctly. 

Instead of simply clipping the fill-area edges as in the Sutherland-
Hodgmanmethod, the Weiler-Atherton algorithm traces around the 
perimeter of the fillpolygon searching for the borders that enclose a clipped 
fill region. In this way,multiple fill regions, as in Figure 26(b), can be 
identified and displayed as separate,unconnected polygons. To find the 
edges for a clipped fill area, we follow apath (either counterclockwise or 
clockwise) around the fill area that detours alonga clipping-window 
boundary whenever a polygon edge crosses to the outside ofthat boundary. 
The direction of a detour at a clipping-window border is the sameas the 
processing direction for the polygon edges. 

We can usually determine whether the processing direction is 
counterclockwiseor clockwise from the ordering of the vertex list that defines 
a polygon fillarea. In most cases, the vertex list is specified in a 
counterclockwise order as ameans for defining the front face of the polygon. 
Thus, the cross-product of twosuccessive edge vectors that form a convex 
angle determines the direction for thenormal vector, which is in the direction 
from the back face to the front face of thepolygon. If we do not know the 
vertex ordering, we could calculate the normal vector, or we can locate the 
interior of the fill area from any reference position. 

Then, if we sequentially process the edges so that the polygon interior 
is alwayson our left, we obtain a counterclockwise traversal. Otherwise, with 
the interiorto our right, we have a clockwise traversal. For a 
counterclockwise traversal of the polygon fill-area vertices, we applythe 
followingWeiler-Atherton procedures: 
1. Process the edges of the polygon fill area in a counterclockwise order until 
an inside-outside pair of vertices is encountered for one of the 
clippingboundaries; that is, the first vertex of the polygon edge is inside the 
clipregion and the second vertex is outside the clip region. 
2. Follow the window boundaries in a counterclockwise direction from 
theexit-intersection point to another intersection point with the polygon. 
Ifthis is a previously processed point, proceed to the next step. If this is 
anew intersection point, continue processing polygon edges in a 
counterclockwise 
order until a previously processed vertex is encountered. 
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3. Form the vertex list for this section of the clipped fill area. 
4. Return to the exit-intersection point and continue processing the polygon 
edges in a counterclockwise order. 

Figure 27 illustrates the Weiler-Atherton clipping of a concave polygon 

against a standard, rectangular clipping window for a counterclockwise 
traversalof the polygon edges. For a clockwise edge traversal, we would use a 
clockwiseclipping-window traversal. 

Starting fromthe vertex labeled 1 in Figure 27(a), the next polygon 
vertex toprocess in a counterclockwise order is labeled 2. Thus, this edge 
exits the clippingwindow at the top boundary. We calculate this intersection 
position (point 1’)and make a left turn there to process the window borders 
in a counterclockwisedirection. Proceeding along the top border of the 
clipping window, we do notintersect a polygon edge before reaching the left 
window boundary. Therefore,we label this position as vertex 1__ and follow 
the left boundary to the intersectionposition 1___. We then follow this 
polygon edge in a counterclockwise direction,which returns us to vertex 1. 
This completes a circuit of the window boundariesand identifies the vertex 
list {1, 1_, 1__, 1___} as a clipped region of the original fillarea. Processing of 
the polygon edges is then resumed at point 1_. The edge definedby points 2 
and 3 crosses to the outside of the left boundary, but points 2 and 2_are 
above the top clipping-window border and points 2_ and 3 are to the left of 
theclipping region. Also, the edge with endpoints 3 and 4 is outside the left 
clippingboundary, but the next edge (from endpoint 4 to endpoint 5) 
reenters the clippingregion and we pick up intersection point 4_. The edge 
with endpoints 5 and 6exits the window at intersection position 5_, so we 
detour down the left clippingboundary to obtain the closed vertex list {4_, 5, 
5_}. We resume the polygon edgeprocessing at position 5_, which returns us 
to the previously processed point 1___. 
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At this point, all polygon vertices and edges have been processed, so 
the fill areais completely clipped. 
Polygon Clipping Using Nonrectangular Polygon Clip Windows 

The Liang-Barsky algorithm and other parametric line-clipping 
methods are particularlywell suited for processing polygon fill areas against 
convex-polygonclipping windows. In this approach, we use a parametric 
representation for theedges of both the fill area and the clipping window, 
and both polygons are representedwith a vertex list.We first compare the 
positions of the bounding rectanglesfor the fill area and the clipping polygon. 
If we cannot identity the fill area as completelyoutside the clipping 
polygon,wecan use inside-outside tests to process theparametric edge 
equations. After completing all the region tests, we solve pairsof 
simultaneous parametric line equations to determine the window 
intersectionpositions. 

We can also process any polygon fill area against any polygon-shaped 
clippingwindow (convex or concave), as in Figure 28, using the edge-
traversalapproach of the Weiler-Atherton algorithm. In this case, we need to 
maintaina vertex list for the clipping window as well as for the fill area, with 
both listsarranged in a counterclockwise (or clockwise) order. In addition, we 
need to apply inside-outside tests to determine whether a fill-area vertex is 
inside or outside aparticular clipping-window boundary. As in the previous 
examples, we followthe window boundaries whenever a fill-area edge exits a 
clipping boundary. Thisclipping method can also be used when either the fill 
area or the clipping windowcontains holes that are defined with polygon 
borders. In addition, we can use thisbasic approach in constructive solid-
geometry applications to identify the resultof a union, intersection, or 
difference operation on two polygons. In fact, locatingthe clipped region of a 
fill area is equivalent to determining the intersection oftwo planar areas. 
Polygon Clipping Using Nonlinear Clipping-Window Boundaries 

One method for processing a clipping window with curved boundaries 
is toapproximate the boundaries with straight-line sections and use one of 
the algorithmsfor clipping against a general polygon-shaped clipping 
window. Alternatively,we could use the same general procedures that we 
discussed for linesegments. First, we can compare the coordinate extents of 
the fill area to thecoordinate extents of the clipping window. Depending on 
the shape of the clippingwindow, we may also be able to perform some other 
region tests based onsymmetric considerations. For fill areas that cannot be 
identified as completelyinside or completely outside the clipping window, we 
ultimately need to calculatethe window intersection positions with the fill 
area. 
CURVE CLIPPING  

Areas with curved boundaries can be clipped with methods similar to 
those discussedin the previous sections. If the objects are approximated 
with straight-lineboundary sections, we use a polygon-clipping method. 
Otherwise, the clippingprocedures involve nonlinear equations, and this 
requires more processing thanfor objects with linear boundaries. 
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We can first test the coordinate extents of an object against the 
clipping boundariesto determine whether it is possible to accept or reject the 
entire object trivially. 

If not, we could check for object symmetries 
that we might be able to exploit inthe initial 
accept/reject tests. For example, circles have 
symmetries between quadrantsand octants, so we 
could check the coordinate extents of these 
individualcircle regions. We cannot reject the 
complete circular fill area in Figure 29 justby 
checking its overall coordinate extents. But half of 
the circle is outside the rightclipping border (or 
outside the top border), the upper-left quadrant is 
above thetop clipping border, and the remaining 
two octants can be similarly eliminated. 

An intersection calculation involves 
substituting a clipping-boundary position(xwmin, 
xwmax, ywmin, or ywmax) in the nonlinear 
equation for the object boundaryand solving for 
the other coordinate value. Once all intersection 
positions havebeen evaluated, the defining 
positions for the object can be stored for later use 
by the scan-line fill procedures. Figure 30 
illustrates circle clipping against arectangular 
window. For this example, the circle radius and 
the endpoints of theclipped arc can be used to fill 
the clipped region, by invoking the circle algorithm 
to locate positions along the arc between the 
intersection endpoints. 

Similar procedures can be applied when clipping a curved object 
against ageneral polygon clipping region. On the first pass, we could 
compare the boundingrectangle of the object with the bounding rectangle of 
the clipping region. Ifthis does not save or eliminate the entire object, we 
next solve the simultaneousline-curve equations to determine the clipping 
intersection points. 
 TEXT CLIPPING EXTERIOR CLIPPING 

Several 
techniques 
can be used 
to provide text 
clipping in a 
graphics 
package. 

In a 
particular 
application, 
the choice of 
clipping 
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method depends on how charactersare generated and what requirements we 
have for displaying characterstrings. 

The simplest method for processing character strings relative to the 
limitsof a clipping window is to use the all-or-none string-clipping strategy 
shown inFigure 31. If all of the string is inside the clipping window, we 
display the entirestring. Otherwise, the entire string is eliminated. This 
procedure is implementedby examining the coordinate extents of the text 
string. If the coordinate limits ofthis bounding rectangle are not completely 
within the clipping window, the stringis rejected. 

An alternative is to use the all-or-none character-clipping strategy. Here 
weeliminate only those characters that are not completely inside the 
clippingwindow(Figure 32). In this case, the coordinate extents of individual 
characters arecompared to the window boundaries. Any character that is 
not completely withinthe clipping-window boundary is eliminated. 

A third approach to text clipping is to clip the components of 
individualcharacters. This provides the most accurate display of clipped 
character strings,but it requires the most processing.We now treat 
characters in much the same waythat we treated lines or polygons. If an 
individual character overlaps a clippingwindow, we clip off only the parts of 
the character that are outside the window(Figure 33). Outline character 
fonts defined with line segments are processed inthis way using a polygon-
clipping algorithm. Characters defined with bit mapsare clipped by 
comparing the relative position of the individual pixels in thecharacter grid 
patterns to the borders of the clipping region. 
 THREE DIMENSIONAL TRANSFORMATIONS 

Methods for geometric transformations in three dimensionsare 
extended from two-dimensional methods by includingconsiderations for the 
z coordinate. In most cases, thisextension is relatively straighforward. 
However, in some casesparticularly, rotation—the extension to three 
dimensions is lessobvious. 

When we discussed two-dimensional rotations in the xy plane,we 
needed to consider only rotations about axes that were perpendicularto the 
xy plane. In three-dimensional space, we can now selectany spatial 
orientation for the rotation axis. Some graphics packageshandle three-
dimensional rotation as a composite of three rotations,one for each of the 
three Cartesian axes. Alternatively, we can set upgeneral rotation equations, 
given the orientation of a rotation axisand the required rotation angle. 

A three-dimensional position, expressed in homogeneous coordinates, 
is represented as a four-element column vector. Thus, eachgeometric 
transformation operator is now a 4 × 4 matrix, which premultiplies a 
coordinate column vector. In addition, as in two dimensions, any sequence 
of transformations is represented as a single matrix, formed by 
concatenating the matricesfor the individual transformations in the 
sequence. Each successive matrix in a transformationsequence is 
concatenated to the left of previous transformation matrices. 
TRANSLATION 
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 An inverse 
of a three-
dimensional 
translation 
matrix is 
obtained using 
thesame 
procedures that 
we applied in a 
two-dimensional 
translation. That is,we negate the translation distances tx, ty, and tz. This 
produces a translation in theoppositedirection, and the product of a 
translation matrix and its inverse is theidentity matrix. 
typedef GLfloat Matrix4x4 [4][4]; 
/* Construct the 4 x 4 identity matrix. */ 
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4) 
{ 
GLint row, col; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4 ; col++) 
matIdent4x4 [row][col] = (row == col); 
} 
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz) 
{ 
Matrix4x4 matTransl3D; 
/* Initialize translation matrix to identity. */ 
matrix4x4SetIdentity (matTransl3D); 
matTransl3D [0][3] = tx; 
matTransl3D [1][3] = ty; 
matTransl3D [2][3] = tz; 
} 
ROTATION 

We can rotate an object about 
any axis in space, but the easiest 
rotation axes tohandle are those 
that are parallel to the Cartesian-

coordinate axes. Also,wecan 
usecombinations of coordinate-axis 
rotations (along with appropriate 
translations)to specify a rotation 
about any other line in space. 
Therefore, we first consider 
theoperations involved in 
coordinate-axis rotations, then we 
discuss the calculationsneeded for 
other rotation axes.By convention, 
positive rotation angles produce 
counterclockwise rotationsabout a 
coordinate axis, assuming that we 
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are looking in the negative directionalong that coordinate axis (Figure 3). 
This agrees with our earlier discussion of  
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For example, we can perform a rotation about the z axis by setting 
rotationaxisvector u to the unit z-axis vector (0, 0, 1). Substituting the 
components of thisvector intoMatrix 39, we get the 3×3 version of the z-axis 
rotationmatrix Rz (θ )in Equation . Similarly, substituting the unit-
quaternion rotation values intoEquation 35 produces the rotated coordinate 
values in Equations 4. 

In the following code, we give examples of procedures that could be 
used toconstruct a three-dimensional rotation matrix. The quaternion 
representation inEquation 40 is used to set up thematrix elements for a 
general three-dimensionalrotation. 
class wcPt3D  
{public: 
GLfloat x, y, z; 
}; 
typedef float Matrix4x4 [4][4]; 
Matrix4x4 matRot; 
/* Construct the 4 x 4 identity matrix. */ 
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4) 
{ 
GLint row, col; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4 ; col++) 
matIdent4x4 [row][col] = (row == col); 
} 
/* Premultiply matrix m1 by matrix m2, store result in m2. */ 
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2) 
{ 
GLint row, col; 
Matrix4x4 matTemp; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4 ; col++) 
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matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] * 
m2 [1][col] + m1 [row][2] * m2 [2][col] + 
m1 [row][3] * m2 [3][col]; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4; col++) 
m2 [row][col] = matTemp [row][col]; 
} 
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz) 
{ 
Matrix4x4 matTransl3D; 
/* Initialize translation matrix to identity. */ 
matrix4x4SetIdentity (matTransl3D); 
matTransl3D [0][3] = tx; 
matTransl3D [1][3] = ty; 
matTransl3D [2][3] = tz; 
/* Concatenate translation matrix with matRot. */ 
matrix4x4PreMultiply (matTransl3D, matRot); 
} 
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle) 
{ 
Matrix4x4 matQuaternionRot; 
GLfloat axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) + 
(p2.y - p1.y) * (p2.y - p1.y) + 
(p2.z - p1.z) * (p2.z - p1.z)); 
GLfloat cosA = cos (radianAngle); 
GLfloat oneC = 1 - cosA; 
GLfloat sinA = sin (radianAngle); 
GLfloat ux = (p2.x - p1.x) / axisVectLength; 
GLfloat uy = (p2.y - p1.y) / axisVectLength; 
GLfloat uz = (p2.z - p1.z) / axisVectLength; 
/* Set up translation matrix for moving p1 to origin. */ 
translate3D (-p1.x, -p1.y, -p1.z); 
/* Initialize matQuaternionRot to identity matrix. */ 
matrix4x4SetIdentity (matQuaternionRot); 
matQuaternionRot [0][0] = ux*ux*oneC + cosA; 
matQuaternionRot [0][1] = ux*uy*oneC - uz*sinA; 
matQuaternionRot [0][2] = ux*uz*oneC + uy*sinA; 
matQuaternionRot [1][0] = uy*ux*oneC + uz*sinA; 
matQuaternionRot [1][1] = uy*uy*oneC + cosA; 
matQuaternionRot [1][2] = uy*uz*oneC - ux*sinA; 
matQuaternionRot [2][0] = uz*ux*oneC - uy*sinA; 
matQuaternionRot [2][1] = uz*uy*oneC + ux*sinA; 
matQuaternionRot [2][2] = uz*uz*oneC + cosA; 
/* Combine matQuaternionRot with translation matrix. */ 
matrix4x4PreMultiply (matQuaternionRot, matRot); 
/* Set up inverse matTransl3D and concatenate with 
* product of previous two matrices. 
*/ 
translate3D (p1.x, p1.y, p1.z); 
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}void displayFcn (void) 
{/* Input rotation parameters. */ 
/* Initialize matRot to identity matrix: */ 
matrix4x4SetIdentity (matRot); 
/* Pass rotation parameters to procedure rotate3D. */ 
/* Display rotated object. */ 
} 
SCALING  

 



164 

 

matScale3D [0][0] = sx; 
matScale3D [0][3] = (1 - sx) * fixedPt.getx ( ); 
matScale3D [1][1] = sy; 
matScale3D [1][3] = (1 - sy) * fixedPt.gety ( ); 
matScale3D [2][2] = sz; 
matScale3D [2][3] = (1 - sz) * fixedPt.getz ( ); 
} 
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An inverse, three-dimensional scalingmatrix is set up for either 
Equation 41or Equation 44 by replacing each scaling parameter (s x, sy, and 
sz )with its reciprocal.However, this inverse transformation is undefined if 
any scaling parameteris assigned the value 0. The inverse matrix generates 
an opposite scaling transformation,and the concatenation of a three-
dimensional scaling matrix with itsinverse yields the identity matrix. 
COMPOSITE 

As with two-dimensional transformations, we form a composite 
threedimensionaltransformation by multiplying the matrix representations 
for 
the individual operations in the transformation sequence. Any of the 
twodimensionaltransformation sequences, such as scaling in noncoordinate 
directions,can be carried out in three-dimensional space. 

We can implement a transformation sequence by concatenating the 
individualmatrices from right to left or from left to right, depending on the 
order in whichthe matrix representations are specified. Of course, the 
rightmost term in a matrixproduct is always the first transformation to be 
applied to an object and theleftmost term is always the last transformation. 
We need to use this ordering forthe matrix product because coordinate 
positions are represented as four-elementcolumn vectors, which are 
premultiplied by the composite 4 × 4 transformationmatrix. 

The following program provides example routines for constructing a 
threedimensionalcomposite transformation matrix. The three basic 
geometric transformationsare combined in a selected order to produce a 
single composite matrix,which is initialized to the identity matrix. For this 
example, we first rotate, thenscale, then translate.We choose a left-to-right 
evaluation of the composite matrixso that the transformations are called in 
the order that they are to be applied. 

Thus, as each matrix is constructed, it is concatenated on the left of 
the currentcomposite matrix to form the updated product matrix. 
class wcPt3D { 
public: 
GLfloat x, y, z; 
}; 
typedef GLfloat Matrix4x4 [4][4]; 
Matrix4x4 matComposite; 
/* Construct the 4 x 4 identity matrix. */ 
void matrix4x4SetIdentity (Matrix4x4 matIdent4x4) 
{ 
GLint row, col; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4 ; col++) 
matIdent4x4 [row][col] = (row == col); 
} 
/* Premultiply matrix m1 by matrix m2, store result in m2. */ 
void matrix4x4PreMultiply (Matrix4x4 m1, Matrix4x4 m2) 
{ 
GLint row, col; 
Matrix4x4 matTemp; 
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for (row = 0; row < 4; row++) 
for (col = 0; col < 4 ; col++) 
matTemp [row][col] = m1 [row][0] * m2 [0][col] + m1 [row][1] * 
m2 [1][col] + m1 [row][2] * m2 [2][col] + 
m1 [row][3] * m2 [3][col]; 
for (row = 0; row < 4; row++) 
for (col = 0; col < 4; col++) 
m2 [row][col] = matTemp [row][col]; 
} 
/* Procedure for generating 3-D translation matrix. */ 
void translate3D (GLfloat tx, GLfloat ty, GLfloat tz) 
{ 
Matrix4x4 matTransl3D; 
/* Initialize translation matrix to identity. */ 
matrix4x4SetIdentity (matTransl3D); 
matTransl3D [0][3] = tx; 
matTransl3D [1][3] = ty; 
matTransl3D [2][3] = tz; 
/* Concatenate matTransl3D with composite matrix. */ 
matrix4x4PreMultiply (matTransl3D, matComposite); 
} 
/* Procedure for generating a quaternion rotation matrix. */ 
void rotate3D (wcPt3D p1, wcPt3D p2, GLfloat radianAngle) 
{ 
Matrix4x4 matQuatRot; 
float axisVectLength = sqrt ((p2.x - p1.x) * (p2.x - p1.x) + 
(p2.y - p1.y) * (p2.y - p1.y) + 
(p2.z - p1.z) * (p2.z - p1.z)); 
float cosA = cosf (radianAngle); 
float oneC = 1 - cosA; 
float sinA = sinf (radianAngle); 
float ux = (p2.x - p1.x) / axisVectLength; 
float uy = (p2.y - p1.y) / axisVectLength; 
float uz = (p2.z - p1.z) / axisVectLength; 
/* Set up translation matrix for moving p1 to origin, 
* and concatenate translation matrix with matComposite. 
*/ 
translate3D (-p1.x, -p1.y, -p1.z); 
/* Initialize matQuatRot to identity matrix. */ 
matrix4x4SetIdentity (matQuatRot); 
matQuatRot [0][0] = ux*ux*oneC + cosA; 
matQuatRot [0][1] = ux*uy*oneC - uz*sinA; 
matQuatRot [0][2] = ux*uz*oneC + uy*sinA; 
matQuatRot [1][0] = uy*ux*oneC + uz*sinA; 
matQuatRot [1][1] = uy*uy*oneC + cosA; 
matQuatRot [1][2] = uy*uz*oneC - ux*sinA; 
matQuatRot [2][0] = uz*ux*oneC - uy*sinA; 
matQuatRot [2][1] = uz*uy*oneC + ux*sinA; 
matQuatRot [2][2] = uz*uz*oneC + cosA; 



167 

 

/* Concatenate matQuatRot with composite matrix. */ 
matrix4x4PreMultiply (matQuatRot, matComposite); 
/* Construct inverse translation matrix for p1 and 
* concatenate with composite matrix. 
*/ 
translate3D (p1.x, p1.y, p1.z); 
} 
/* Procedure for generating a 3-D scaling matrix. */ 
void scale3D (Gfloat sx, GLfloat sy, GLfloat sz, wcPt3D fixedPt) 
{ 
Matrix4x4 matScale3D; 
/* Initialize scaling matrix to identity. */ 
matrix4x4SetIdentity (matScale3D); 
matScale3D [0][0] = sx; 
matScale3D [0][3] = (1 - sx) * fixedPt.x; 
matScale3D [1][1] = sy; 
matScale3D [1][3] = (1 - sy) * fixedPt.y; 
matScale3D [2][2] = sz; 
matScale3D [2][3] = (1 - sz) * fixedPt.z; 
/* Concatenate matScale3D with composite matrix. */ 
matrix4x4PreMultiply (matScale3D, matComposite); 
} 
void displayFcn (void) 
{ 
/* Input object description. */ 
/* Input translation, rotation, and scaling parameters. */ 
/* Set up 3-D viewing-transformation routines. */ 
/* Initialize matComposite to identity matrix: */ 
matrix4x4SetIdentity (matComposite); 
/* Invoke transformation routines in the order they 
* are to be applied: 
*/ 
rotate3D (p1, p2, radianAngle); // First transformation: Rotate. 
scale3D (sx, sy, sz, fixedPt); // Second transformation: Scale. 
translate3D (tx, ty, tz); // Final transformation: Translate. 
/* Call routines for displaying transformed objects. */ 
} 
SHEARS AND REFLECTIONS 

In addition to translation, rotation, and scaling, the other 
transformationsdiscussed for two-dimensional applications are also useful 
in many threedimensionalsituations. These additional transformations 
include reflection,shear, and transformations between coordinate-reference 
frames. 
Three-Dimensional Reflections 

A reflection in a three-dimensional space can be performed relative to 
a selectedreflection axis or with respect to a reflection plane. In general, 
three-dimensionalreflection matrices are set up similarly to those for two 
dimensions. Reflections relativeto a given axis are equivalent to 180◦ 
rotations about that axis. Reflectionswith respect to a plane are similar; 
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when the reflection plane is a coordinateplane (xy, xz, or yz), we can think of 
the transformation as a 180◦ rotation infour-dimensional space with a 
conversion between a left-handed frame and aright-handed frame. 

Anexample of a reflection that converts coordinate specifications 
froma righthandedsystemto a left-handed system(or vice versa) is shown in 
Figure 19. Thistransformation changes the sign of z coordinates, leaving the 
values for the x andy coordinates unchanged. The matrix representation for 
this reflection relative tothe xy plane is 
 

THREE DIMENSIONAL VIEWING  
For two-dimensional graphics applications, viewing operationstransfer 
positions from the world-coordinate plane topixel positions in the plane of 
the output device. Usingthe rectangular boundaries for the clipping window 
and the viewport,a two-dimensional package clips a scene and maps it to 
devicecoordinates. Three-dimensional viewing operations, however, aremore 
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involved, because we now have many more choices as to howwe can 
construct a scene and how we can generate views of thescene on an output 
device.  

When we model a three-dimensional 
scene, each object in the scene is 
typicallydefined with a set of surfaces that 
form a closed boundary around the 
objectinterior. And, for some applications, we 
may need also to specify informationabout the 
interior structure of an object. In addition to 
procedures that generateviews of the surface 
features of an object, graphics packages 
sometimes provideroutines for displaying 
internal components or cross-sectional views 
of a solidobject. Viewing functions process the 
object descriptions through a set of 
proceduresthat ultimately project a specified 
view of the objects onto the surfaceof a 
display device. Many processes in three-dimensional viewing, such as 
theclipping routines, are similar to those in the two-dimensional viewing 
pipeline. 

But three-dimensional viewing involves some tasks that are not 
present in twodimensionalviewing. For example, projection routines are 
needed to transfer thescene to a view on a planar surface, visible parts of a 
scene must be identified, and,for a realistic display, lighting effects and 
surface characteristics must be takeninto account. 
Viewing a Three-Dimensional Scene 

To obtain a display of a three-dimensional world-coordinate scene, we 
first setup a coordinate reference for the viewing, or “camera,” parameters. 
This coordinatereference defines the position and orientation for a view 
plane (or projectionplane) that corresponds to a camera film plane (Figure 1). 
Object descriptionsare then transferred to the viewing reference coordinates 
and projected onto theview plane. We can generate a view of an object on the 
output device in wireframe(outline) form, or we can apply lighting and 
surface-rendering techniquesto obtain a realistic shading of the visible 
surfaces. 

 
PROJECTION  

Unlike a camera picture, we can choose different methods for 
projecting a sceneonto the view plane. One method for getting the 
description of a solid objectonto a view plane is to project points on the 
object surface along parallel lines. 

This technique, called parallel projection, is used in engineering and 
architecturaldrawings to represent an object with a set of views that show 
accurate dimensionsof the object, as in Figure 2. 
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Another method for generating a view of a three-dimensional scene is 
toproject points to the view plane along converging paths. This process, 
called aperspective projection, causes objects farther from the viewing 
position to be displayedsmaller than objects of the same size that are nearer 
to the viewing position. 

A scene that is generated using a perspective projection appears more 
realistic,because this is the way that our eyes and a camera lens form 
images. Parallel linesalong the viewing direction appear to converge to a 
distant point in the background,and objects in the background appear to be 
smaller than objects in theforeground. 

In the next phase of the three-dimensional viewing pipeline, after the 
transformationto viewing coordinates, object descriptions are projected to 
the view plane. 

Graphics packages generally support both parallel and perspective 
projections. 

In a parallel projection, coordinate positions are transferred to the 
view planealong parallel lines. Figure 15 illustrates a parallel projection for a 
straightlinesegment defined with endpoint coordinates P1 and P2. A parallel 
projectionpreserves relative proportions of objects, and this is the method 
used in computeraideddrafting and design to produce scale drawings of 
three-dimensional objects. 

All parallel lines in a scene are displayed as parallel when viewed with 
a parallelprojection. There are two general methods for obtaining a parallel-
projection viewof an object: We can project along lines that are 
perpendicular to the view plane,or we can project at an oblique angle to the 
view plane. 

For a perspective projection, object positions are transformed to 
projectioncoordinates along lines that converge to a point behind the view 
plane. An exampleof a perspective projection for a straight-line segment, 
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defined with endpoint coordinates P1 and P2, is given in Figure 16. Unlike a 
parallel projection, a perspectiveprojection does not preserve relative 
proportions of objects. But perspectiveviews of a scene are more realistic 
because distant objects in the projected displayare reduced in size. 

 

ORTHOGONAL PROJECTIONS  
A transformation of object descriptions to a view plane along lines that 

are allparallel to the view-plane normal vector N is called an orthogonal 
projection (or,equivalently, an orthographic projection). This produces a 
parallel-projectiontransformation in which the projection lines are 
perpendicular to the view plane. 

Orthogonal projections are most often used to produce the front, side, 
and top views of an object, as shown in Figure 17. Front, side, and rear 
orthogonal projections of an object are called elevations; and a top 
orthogonal projection iscalled a plan view. Engineering and architectural 
drawings commonly employthese orthographic projections, because 
lengthsandangles are accurately depictedand can be measured from the 
drawings. 

Axonometric and Isometric Orthogonal Projections 
We can also form orthogonal projections that display more than one 

face of anobject. Such views are called axonometric orthogonal projections. 
The most commonlyused axonometric projection is the isometric projection, 
which is generatedby aligning the projection plane (or the object) so that the 
plane intersects eachcoordinate axis in which the object is defined, called 
the principal axes, at the same distance from the origin. Figure 18 shows an 
isometric projection for a cube. We can obtain the isometric projection 
shown in this figure by aligning the viewplanenormal vector along a cube 
diagonal. There are eight positions, one in eachoctant, for obtaining an 
isometric view. All three principal axes are foreshortenedequally in an 
isometric projection, so that relative proportions are maintained. 
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This is not the case in a general axonometric projection, where scaling 
factorsmay be different for the three principal directions. 
Orthogonal Projection Coordinates 

With the projection direction parallel to the zview axis, the 

transformation equationsfor an orthogonal projection are trivial. For any 
position (x, y, z) in viewingcoordinates, as in Figure 19, the projection 
coordinates arexp = x, yp = y (6) 
 

The z-coordinate value for any projection transformation is preserved 
for use inthe visibility determination procedures. And each three-
dimensional coordinatepoint in a scene is converted to a position in 
normalized space. 
Clipping Window and Orthogonal-Projection View Volume 

In the camera analogy, the type of lens is one factor that determines 
how much ofthe scene is transferred to the film plane. A wide-angle lens 
takes in more of thescene than a regular lens. For computer-graphics 
applications, we use the rectangularclipping window for this purpose. As in 
two-dimensional viewing, graphicspackages typically require that clipping 
rectangles be placed in specific positions. 

In OpenGL, we set up a clipping window for three-dimensional viewing 
just aswe did for two-dimensional viewing, by choosing two-dimensional 
coordinatepositions for its lower-left and upper-right corners. For three-
dimensional viewing,the clipping window is positioned on the view plane 
with its edges parallelto the xview and yview axes, as shown in Figure 20. If 
we want to use some othershape or orientation for the clipping window, we 
must develop our own viewingprocedures. 
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The edges of the clipping window specify the x and y limits for the part 
ofthe scene that we want to display. These limits are used to form the top, 
bottom,and two sides of a clipping region called the orthogonal-projection 
viewvolume. Because projection lines are perpendicular to the view plane, 
these fourboundaries are planes that are also perpendicular to the view 
plane and that pass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
through the edges of the clipping window to form an infinite clipping region, 
asin Figure 21. 

We can limit the extent of the orthogonal view volume in the zview 
directionby selecting positions for one or two additional boundary planes 
that are parallelto the view plane. These two planes are called the near-far 
clipping planes, or thefront-back clipping planes. The near and far planes 
allow us to exclude objectsthat are in front of or behind the part of the scene 
that we want to display. Withthe viewing direction along the negative zview 
axis, we usually have zfar <znear,so that the far plane is father out along 
the negative zview axis. Some graphicslibraries provide these two planes as 
options, and other libraries require them. 

When the near and far planes are specified, we obtain a finite 
orthogonal viewvolume that is a rectangular parallelepiped, as shown in 
Figure 22 along with onepossible placement for the view plane. Our view of 
the scene will then containonly those objects within the view volume, with 
all parts of the scene outside theview volume eliminated by the clipping 
algorithms. 
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Graphics packages provide varying degrees of flexibility in the 
positioningof the near and far clipping planes, including options for 
specifying additionalclipping planes at other positions in the scene. In 
general, the near and far planescan be in any relative position to each other 
to achieve various viewing effects,including positions that are on opposite 
sides of the view point. Similarly, the viewplane can sometimes be placed in 
any position relative to the near and far clippingplanes, although it is often 
taken to be coincident with the near clipping plane. 

However, providing numerous positioning options for the clipping and 
viewplanes usually results in less efficient processing of a three-dimensional 
scene 

Normalization Transformation for an Orthogonal Projection 
Using an orthogonal transfer of coordinate positions onto the view 

plane, weobtain the projected position of any spatial point (x, y, z) as simply 
(x, y). Thus,once we have established the limits for the view volume, 
coordinate descriptionsinside this rectangular parallelepiped are the 
projection coordinates, and theycan be mapped into a normalized view 
volume without any further projectionprocessing. Some graphics packages 
use a unit cube for this normalized viewvolume, with each of the x, y, and z 
coordinates normalized in the range from 0to 1. Another normalization-
transformation approach is to use a symmetric cube,with coordinates in the 
range from 
−1 to 1. 
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Because screen coordinates are often specified in a left-handed 
reference frame(Figure 23), normalized coordinates also are often specified in 
a left-handedsystem. This allows positive distances in the viewing direction 
to be directlyinterpreted as distances fromthe screen (the viewing plane). 
Thus, we can convertprojection coordinates into positions within a left-
handed normalized-coordinatereference frame, and these coordinate 
positions will then be transferred to lefthandedscreen coordinates by the 
viewport transformation.To illustrate the normalization transformation, we 
assume that theorthogonal-projection view volume is to be mapped into the 
symmetricnormalization cube within a left-handed reference frame. Also, z-
coordinate positionsfor the near and far planes are denoted as znear and 
zfar, respectively. Figure24 illustrates this normalization transformation. 
Position (xmin, ymin, znear )is mapped to the normalized position (−1, −1, 
−1), and position (xmax, ymax, zfar)is mapped to (1, 1, 1). 

Transforming the rectangular-parallelepiped view volume to a 
normalizedcube is similar to the methods for converting the clipping window 
into the normalizedsymmetric square. The normalization transformation for 
the orthogonalview volume ismultiplied on the right by the composite 
viewing transformationR·T(Section 4) to produce the complete 
transformation from world coordinatesto normalized orthogonal-projection 
coordinates. 

At this stage of the viewing pipeline, all device-independent coordinate 
transformationsare completed and can be concatenated into a single 
composite matrix. 

Thus, the clipping procedures are most efficiently performed following 
the normalizationtransformation. After clipping, procedures for visibility 
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testing, surfacerendering, and the viewport transformation can be applied to 
generate thefinal screen display of the scene. 
OBLIQUE PARALLEL PROJECTIONS. 

In general, a parallel-projection view of a scene is obtained by 
transferring objectdescriptions to the view plane along projection paths that 
can be in any selecteddirection relative to the view-plane normal vector. 
When the projection path isnot perpendicular to the view plane, this 
mapping is called an oblique parallelprojection. Using this projection, we 
can produce combinations such as a front,side, and top view of an object, as 
in Figure 25. Oblique parallel projectionsare defined by a vector direction for 
the projection lines, and this direction can bespecified in various ways. 
Oblique Parallel Projections in Drafting and Design 

For applications in engineering and architectural design, an oblique 
parallel projectionis often specified with two angles, α and φ, as shown in 
Figure 26. Aspatial position (x, y, z), in this illustration, is projected to (xp, 
yp, zvp) on a viewplane, which is at location zvp along the viewing z axis. 
Position (x, y, zvp) is thecorresponding orthogonal-projection point. The 
oblique parallel projection linefrom (x, y, z) to (xp, yp, zvp) has an 
intersection angle α with the line on the projectionplane that joins (xp, yp, 
zvp) and (x, y, zvp). This view-plane line, with lengthL, is at an angle φ with 
the horizontal direction in the projection plane. Angle αcan be assigned a 
value between 0 and 90◦, and angle φ can vary from 0 to 360◦. 

We can express the projection coordinates in terms of x, y, L, and φ as 
  xp= x + L cos φ 
  yp= y + L sin φ(8) 
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whereL1 = cot α, which is also the value of L when zvp−z = 1.We can then 
writethe oblique parallel projection equations 8 as 

xp= x + L1(zvp − z) cos φ 
yp= y + L1(zvp − z) sin φ (11) 

An orthogonal projection is obtained when L1 = 0 (which occurs at the 
projection angle α = 90◦).Equations 11 represent a z-axis shearing 
transformation. In fact, the effect ofan oblique parallel projection is to shear 
planes of constant z and project themonto the view plane. The (x, y) 
positions on each plane of constant z are shiftedby an amount proportional 
to the distance of the plane from the view plane, sothat angles, distances, 
and parallel lines in the plane are projected accurately. 

This effect is shown in Figure 27, where the view plane is positioned at 
the frontface of a cube. The back plane of the cube is sheared and 
overlapped with thefront plane in the projection to the viewing surface. Aside 
edge of the cube connectingthe front and back planes is projected into a line 
of length L1 that makesan angle φ with a horizontal line in the projection 
plane. 
Cavalier and Cabinet Oblique Parallel Projections 

Typical choices for angleφ are 30◦ and45◦, which display a 
combination view of thefront, side, and top (or front, side, and bottom) of an 
object. Two commonly usedvalues for α are those for which tan α = 1 and 
tan α = 2. For the first case, α = 45◦and the views obtained are called 
cavalier projections. All lines perpendicular tothe projection plane are 
projected with no change in length. Examples of cavalierprojections for a 
cube are given in Figure 28. 

When the projection angle α is chosen so that tan α =2, the resulting 
viewis called a cabinet projection. For this angle (≈63.4◦), lines 
perpendicular to theviewing surface are projected at half their length. 
Cabinet projections appearmore realistic than cavalier projections because 
of this reduction in the length ofperpendiculars. Figure 29 shows examples 
of cabinet projections for a cube. 
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Oblique Parallel-Projection Vector 

In graphics programming libraries that support oblique parallel 
projections, thedirection of projection to the view plane is specified with a 
parallel-projection vector,Vp. This direction vector can be designated with 
a reference position relative tothe view point, aswedid with the view-plane 
normal vector, or with any other twopoints. Some packages use a reference 
point relative to the center of the clippingwindow to define the direction for a 
parallel projection. If the projection vector isspecified in world coordinates, it 
must first be transformed to viewing coordinatesusing the rotation matrix 
discussed in Section 4. (The projection vector is unaffectedby the 
translation, because it is simply a direction with no fixed position.) 

Once the projection vectorVp is established in viewing coordinates, all 
pointsin the scene are transferred to the view plane along lines that are 
parallel to thisvector. Figure 30 illustrates an oblique parallel projection of a 
spatial point tothe view plane. We can denote the components of the 
projection vector relativeto the viewing-coordinate frame as Vp= (Vpx, Vpy, 
Vpz), where Vpy/Vpx = tan φ. 

Then, comparing similar triangles in Figure 30, we have 
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The oblique parallel-projection coordinates in 12 reduce to the 
orthogonalprojectioncoordinates 6 when Vpx = Vpy = 0. 
Clipping Window and Oblique Parallel-Projection View Volume 

A view volume for an oblique parallel projection is set up using the 
same proceduresas in an orthogonal projection. We select a clipping window 
on the viewplane with coordinate positions (xwmin, ywmin) and (xwmax, 
ywmax), for the lowerleftand upper-right corners of the clipping rectangle. 
The top, bottom, and sidesof the view volume are then defined by the 
direction of projection and the edgesof the clipping window. In addition, we 
can limit the extent of the view volumeby adding a near plane and a far 
plane, as in Figure 31. The finite obliqueparallel-projection view volume is 
an oblique parallelepiped. 

Oblique parallel projections may be affected by changes in the position 
of theview plane, depending on how the projection direction is to be 
specified. In somesystems, the oblique parallel-projection direction is 
parallel to the line connectinga reference point to the center of the clipping 
window. Therefore, moving theposition of the view plane or clipping window 
without adjusting the referencepoint changes the shape of the view volume. 
Oblique Parallel-Projection Transformation Matrix 

Using the projection-vector parameters from the equations in 12, we 
canexpress the elements of the transformation matrix for an oblique parallel 
projection as 
 

 
 
 
 
 
 
 
 
 
 

This matrix shifts the 
values of the x and y 
coordinates by an amount 
proportionalto the distance 
from the view plane, which is 
at position zvp on the zview 
axis. The zvalues of spatial 
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positions are unchanged. If Vpx = Vpy = 0,wehave an orthogonalprojection 
and matrix 13 is reduced to the identity matrix. 

For a general oblique parallel projection, matrix 13 represents a z-axis 
shearing transformation. All coordinate positions within the oblique view 
volumeare sheared by an amount proportional to their distance from the 
viewplane. The effect is to shear the oblique view volume into a rectangular 
parallelepiped,as illustrated in Figure 32. Thus, positions inside the view 
volume aresheared into orthogonal-projection coordinates by the oblique 
parallel-projectiontransformation. 
Normalization Transformation for an Oblique Parallel Projection 

Because the oblique parallel-projection equations convert object 
descriptions toorthogonal-coordinate positions, we can apply the 
normalization procedures followingthis transformation. The oblique view 
volume has been converted to arectangular parallelepiped, so we use the 
same procedures as in Section 6. 

Following the normalization example in Section 6, we again map to the 
symmetric normalized cube within a left-handed coordinate frame. Thus, the 
complete transformation, from viewing coordinates to normalized 
coordinates,for an oblique parallel projection is 
Moblique,norm= Mortho,norm ·Moblique    (14) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transformation Moblique is matrix 13, which converts the scene 
descriptionto orthogonal-projection coordinates; and transformation 
Mortho,norm is matrix7, which maps the contents of the orthogonal view 
volume to the symmetricnormalization cube. 

To complete the viewing transformations (with the exception of the 
mappingto viewport screen coordinates), we concatenate matrix 14 to the 
leftof the transformation MWC,VCfrom Section 4. Clipping routines can then 
beapplied to the normalized view volume, followed by the determination of 
visibleobjects, the surface-rendering procedures, and the viewport 
transformation. 
 
UNIT 4: 
VIEWING 
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Although a parallel-projection view of a scene is easy to generate and 
preservesrelative proportions of objects, it does not provide a realistic 
representation. Tosimulate a camera picture, we need to consider that 
reflected light rays fromthe objects in a scene follow converging paths to the 
camera film plane. We canapproximate this geometric-optics effect by 
projecting objects to the view planealong converging paths to a position 
called the projection reference point (orcenter of projection). Objects are 
then displayed with foreshortening effects, andprojections of distant objects 
are smaller than the projections of objects of the samesize that are closer to 
the view plane (Figure 33). 
PERSPECTIVE PROJECTION 
Perspective-Projection Transformation Coordinates 

We can 
sometimes select 
the projection 
reference point as 
another viewing 
parameterin a 
graphics package, 
but some systems 
place this 
convergence pointat a fixed position, such as at the view point. Figure 34 
shows the projectionpath of a spatial position (x, y, z) to a general projection 
reference point at(xprp, yprp, zprp). The projection line intersects the view 
plane at the coordinateposition (xp, yp, zvp), where zvp is some selected 
position for the view plane onthe zview axis. We can write equations 
describing coordinate positions along thisperspective-projection line in 
parametric form as 

X’ = x − (x − xprp)u 
Y’ = y − (y − yprp)u0 ≤ u ≤ 1 (15) 
Z’ = z − (z − zprp)u 

Coordinate position (x’, y’, z’) represents any point along the projection 
line.Whenu = 0, we are at position P = (x, y, z). At the other end of the line, u 
= 1 and 
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Calculations for a perspective mapping are more complex than 
theparallel-projection equations, because the denominators in the 
perspectivecalculations 17 are functions of the z coordinate of the spatial 
position. Therefore,we now need to formulate the perspective-transformation 
procedures a littledifferently so that this mapping can be concatenated with 
the other viewing transformations. 
 But first we take a look at some of the properties of Equations 17. 
Perspective-Projection Equations: Special Cases 

Various restrictions are often placed on the parameters for a 
perspective projection.Depending on a particular graphics package, 
positioning for either theprojection reference point or the view plane may not 
be completely optional. 
To simplify the perspective calculations, the projection reference point could 
be limited to positions along the zview axis, then 
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Of course, we cannot have the projection reference point on the view 
plane.In that case, the entire scene would project to a single point. The view 
planeis usually placed between the projection reference point and the scene, 
but, ingeneral, the view plane could be placed anywhere except at the 
projection point. 

If the projection reference point is between the view plane and the 
scene, objectsare inverted on the view plane (Figure 35). With the scene 
between the viewplane and the projection point, objects are simply enlarged 
as they are projectedaway from the viewing position onto the view plane. 

Perspective effects also depend on the distance between the projection 
referencepoint and the view plane, as illustrated in Figure 36. If the 
projection 

 

reference point is close to the view plane, perspective effects are emphasized; 
thatis, closer objects will appearmuchlarger thanmore distant objects of the 
same size. 

Similarly, as the projection reference point moves farther from the 
view plane, thedifference in the size of near and far objects decreases. When 
the projection referencepoint is very far from the view plane, a perspective 
projection approaches aparallel projection. 
Vanishing Points for Perspective Projections 

When a scene is projected onto a view plane using a perspective 
mapping, linesthat are parallel to the view plane are projected as parallel 
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lines. But any parallellines in the scene that are not parallel to the view 
plane are projected intoconverging lines. The point at which a set of 
projected parallel lines appears toconverge is called a vanishing point. Each 
set of projected parallel lines has aseparate vanishing point. 

For a set of lines that are parallel to one of the principal axes of an 
object,the vanishing point is referred to as a principal vanishing point. We 
control thenumber of principal vanishing points (one, two, or three) with the 
orientationof the projection plane, and perspective projections are 
accordingly classified asone-point, two-point, or three-point projections. The 
number of principal vanishingpoints in a projection is equal to the number 
of principal axes that intersectthe view plane. Figure 37 illustrates the 
appearance of one-point and twopointperspective projections for a cube. In 
the projected view (b), the view planeis aligned parallel to the xy object plane 
so that only the object z axis is intersected. 

This orientation produces a one-point perspective projection with a z-
axisvanishing point. For the view shown in (c), the projection plane 
intersects boththe x and z axes but not the y axis. The resulting two-point 
perspective projectioncontains both x-axis and z-axis vanishing points. 
There is not much increasein the realism of a three-point perspective 
projection compared to a two-pointprojection, so three-point projections are 
not used as often in architectural andengineering drawings. 
Perspective-Projection View Volume 

We again create a view volume by specifying the position of a 
rectangular clippingwindow on the view plane. But now the bounding planes 
for the view volume arenot parallel, because the projection lines are not 
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parallel. The bottom, top,andsidesof the view volume are planes through the 
window edges that all intersect at theprojection reference point. This forms a 
view volume that is an infinite rectangularpyramid with its apex at the 

center of projection (Figure 38). All objects outsidethis pyramid are 
eliminated by the clipping routines. A perspective-projectionview volume is 
often referred to as a pyramid of vision because it approximatesthe cone of 
vision of our eyes or a camera. The displayed view of a scene includesonly 
those objects within the pyramid, just as we cannot see objects beyond 
ourperipheral vision, which are outside the cone of vision. 

By adding near and far clipping planes that are perpendicular to the 
zviewaxis (and parallel to the view plane), we chop off parts of the infinite, 
perspectiveprojectionview volume to form a truncated pyramid, or frustum, 
view volume. 

Figure 39 illustrates the shape of a finite, perspective-projection view 
volumewith a view plane that is placed between the near clipping plane and 
the projectionreference point. Sometimes the near and far planes are 
required in a graphicspackage, and sometimes they are optional. 

Usually, both the near and far clipping planes are on the same side of 
theprojection reference point, with the far plane farther from the projection 
pointthan the near plane along the viewing direction. And, as in a parallel 
projection,we can use the near and far planes simply to enclose the scene to 
be viewed. Butwith a perspective projection, we could also use the near 

clipping plane to take outlarge objects close to the view plane that could 
project into unrecognizable shapeswithin the clipping window. Similarly, the 
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far clipping plane could be used to cutout objects far from the projection 
reference point that might project to small blotson the view plane. Some 
systems restrict the placement of the view plane relativeto the near and far 
planes, and other systems allow it to be placed anywhere exceptat the 
position of the projection reference point. If the view plane is “behind” 
theprojection reference point, objects are inverted, as shown in Figure 35. 
Perspective-Projection Transformation Matrix 
Unlike a parallel projection, we cannot directly use the coefficients of the x 
and ycoordinates in equations 17 to form the perspective-projection matrix 
elements,because the denominators of the coefficients are functions of the z 
coordinate.But we can use a three-dimensional, homogeneous-coordinate 
representation toexpress the perspective-projection equations in the form 

 
Thus, we can set up a transformation matrix to convert a spatial 

position tohomogeneous coordinates so that the matrix contains only the 
perspective parametersand not coordinate values. The perspective-projection 
transformation of aviewing-coordinate position is then accomplished in two 
steps. First, we calculatethe homogeneous coordinates using the 
perspective-transformation matrix: 

Ph = Mpers · P (25) 
wherePh is the column-matrix representation of the homogeneous 

point(xh, yh, zh, h) and P is the column-matrix representation of the 
coordinate position(x, y, z, 1). (Actually, the perspective matrix would be 
concatenated with theother viewing-transformation matrices, and then the 
composite matrix would beapplied to the world-coordinate description of a 
scene to produce homogeneouscoordinates.) Second, after other processes 
have been applied, such as the normalizationtransformation and clipping 
routines, homogeneous coordinates aredivided by parameter h to obtain the 
true transformation-coordinate positions. Setting up matrix elements for 
obtaining the homogeneous-coordinate xh andyh values in 24 is 
straightforward, but we must also structure the matrix topreserve depth (z-
value) information. Otherwise, the z coordinates are distortedby the 
homogeneous-division parameter h.We can do this by setting up the matrix 
elements for the z transformation so as to normalize the perspective-
projection zpcoordinates. There are various ways that we could choose the 
matrix elements toproduce the homogeneous coordinates 24 and the 
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normalized z p value for aspatial position (x, y, z). The following matrix gives 
one possible way to formulatea perspective-projection matrix. 

Parameters sz and tz are the scaling and translation factors for 
normalizing theprojected values of z-coordinates. Specific values for sz and 
tz depend on thenormalization range we select. 

Matrix 26 converts the description of a scene into homogeneous 
parallelprojectioncoordinates. However, the frustum view volume can have 
any orientation,so that these transformed coordinates could correspond to 
an obliqueparallel projection. This occurs if the frustum view volume is not 
symmetric. If thefrustum view volume for the perspective projection is 
symmetric, the resultingparallel-projection coordinates correspond to an 
orthogonal projection. We nextconsider these two possibilities. 
Symmetric Perspective-Projection Frustum 

The line from the projection reference point through the center of the 
clippingwindow and on through the view volume is the centerline for a 
perspectiveprojectionfrustum. If this centerline is perpendicular to the view 
plane, we havea symmetric frustum (with respect to its centerline) as in 
Figure 40. 

Because the frustum centerline intersects the view plane at the 
coordinatelocation (xprp, yprp, zvp), we can express the corner positions for 
the clipping 
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Therefore, we could specify a symmetric perspective-projection view of 
a sceneusing the width and height of the clipping window instead of the 
window coordinates. 

This uniquely establishes the position of the clipping window, because 
itis symmetric about the x and y coordinates of the projection reference 
point. 

Another way to specify a symmetric perspective projection is to use 
parametersthat approximate the properties of a camera lens. A photograph 
is producedwith a symmetric perspective projection of a scene onto the film 
plane. Reflectedlight rays from the objects in a scene are collected on the 
film plane from withinthe “cone of vision” of the camera. This cone of vision 
can be referenced with afield-of-view angle, which is a measure of the size 
of the camera lens. A largefield-of-view angle, for example, corresponds to a 
wide-angle lens. In computergraphics, the cone of vision is approximated 
with a symmetric frustum, and wecan use a field-of-view angle to specify an 
angular size for the frustum. Typically,the field-of-view angle is the angle 
between the top clipping plane and the bottomclipping plane of the frustum, 
as shown in Figure 41. 

For a given projection reference point and view-plane position, the 
field-ofviewangle determines the height of the clipping window (Figure 42), 
but notthe width. We need an additional parameter to define completely the 
clippingwindowdimensions,and this second parameter could be either 
thewindowwidthor the aspect ratio (width/height) of the clipping window. 
Fromthe right trianglesin the diagram of Figure 42, we see that 
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In some graphics libraries, fixed positions are used for the view plane 
andthe projection reference point, so that a symmetric perspective projection 
iscompletely specified by the field-of-view angle, the aspect ratio of the 
clippingwindow, and the distances from the viewing position to the near and 
far clippingplanes. The same aspect ratio is usually applied to the 
specification of theviewport. 

If the field-of-view angle is decreased in a particular application, the 
foreshorteningeffects of a perspective projection are also decreased. This is 
comparable tomoving the projection reference point farther from the view 
plane. Also, decreasingthe field-of-view angle decreases the height of the 
clipping window, and thisprovides a method for zooming in on small regions 
of a scene. Similarly, a largefield-of-view angle results in a large clipping-
window height (a zoom out), and itincreases perspective effects, which is 
what we achieve when we set the projectionreference point close to the view 
plane. Figure 43 illustrates the effects ofvarious field-of-view angles for a 
fixed-width clipping window. 

When the perspective-projection view volume is a symmetric frustum, 
theperspective transformation maps locations inside the frustum to 
orthogonalprojectioncoordinates within a rectangular parallelepiped. The 
centerline of theparallelepiped is the frustum centerline, because this line is 
already perpendicularto the view plane (Figure 44). This is a consequence of 
the fact that all positionsalong a projection line within the frustum map to 
the same point (xp, yp) onthe view plane. Thus, each projection line is 
converted by the perspective transformationto a line that is perpendicular to 
the view plane and, thus, parallel tothe frustum centerline.With the 
symmetric frustum converted to an orthogonalprojectionview volume, we 
can next apply the normalization transformation. 
Oblique Perspective-Projection Frustum 

If the centerline of a perspective-projection view volume is not 
perpendicular tothe view plane, we have an oblique frustum. Figure 45 
illustrates the general 
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appearance of an oblique perspective-projection view volume. In this case, 
we canfirst transform the view volume to a symmetric frustum and then to a 
normalizedview volume. 

An oblique perspective-projection view volume can be converted to a 
symmetric frustum by applying a z-axis shearing-transformation matrix. 
This transformationshifts all positions on any plane that is perpendicular to 
the z axis byan amount that is proportional to the distance of the plane from 
a specified symz-axis reference position. In this case, the reference position 
is zprp, which is thez coordinate of the projection reference point. And we 
need to shift by an amountthat will move the center of the clipping window 
to position (xprp, yprp) on theview plane. Because the frustum centerline 
passes through the center of the clippingwindow, this shift adjusts the 
centerline so that it is perpendicular to theview plane, as in Figure 40. 

The computations for the shearing transformation, as well as for the 
perspectiveand normalization transformations, are greatly reduced if we take 
theprojection reference point to be the viewing-coordinate origin. We could 
do thiswith no loss in generality by translating all coordinate positions in a 
scene so thatour selected projection reference point is shifted to the 
coordinate origin. Or wecould have initially set up the viewing-coordinate 
reference frame so that its originis at the projection point that we want for a 
scene. And, in fact, some graphicslibraries do fix the projection reference 
point at the coordinate origin. 

Taking the projection reference point as (xprp, yprp, zprp) = (0, 0, 0), 
we obtainthe elements of the required shearing matrix as 
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Expressions for the z-coordinate scaling and translation parameters 
will be determinedby the normalization requirements.Concatenating the 
simplified perspective-projection matrix 33 with theshear matrix 30, we 
obtain the following oblique perspective-projection matrixfor converting 
coordinate positions in a scene to homogeneous 
orthogonalprojectioncoordinates. The projection reference point for this 
transformation isthe viewing-coordinate origin, and the near clipping plane 
is the view plane. 
Mobliquepers = Mpers ·Mz shear 
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Although we no longer have options for the placement of the projection 
referencepoint and the view plane, this matrix provides an efficient method 
for generating aperspective-projection view of a scene without sacrificing a 
great deal of flexibility. 

If we choose the clipping-window coordinates so that xwmax = 
−xwmin andywmax = −ywmin, the frustumviewvolume is symmetric 
andmatrix 34 reducesto matrix 33. This is because the projection reference 
point is now at the originof the viewing-coordinate frame.We could also use 
Equations 29, with z prp = 0and zvp = znear, to express the first two 
diagonal elements of this matrix in termsof the field-of-view angle and the 
clipping-window dimensions. 
Normalized Perspective-Projection Transformation Coordinates 

Matrix 34 transforms object positions in viewing coordinates to 
perspectiveprojectionhomogeneous coordinates. When we divide the 
homogeneouscoordinates by the homogeneous parameter h, we obtain the 
actual projectioncoordinates, which are orthogonal-projection coordinates. 
Thus, this perspectiveprojection transforms all points within the frustum 
view volume to positionswithin a rectangular parallelepiped view volume. 
The final step in the perspectivetransformation process is to map this 
parallelepiped to a normalized viewvolume. 

We follow the same normalization procedure that we used for a 
parallelprojection. The transformed frustum view volume, which is a 
rectangular parallelepiped,is mapped to a symmetric normalized cube within 
a left-handed referenceframe (Figure 46).We have already included the 
normalization parametersfor z coordinates in the perspective-projection 
matrix 34, but we still needto determine the values for these parameters 
when we transform to the symmetricnormalization cube. Also, we need to 
determine the normalization transformationparameters for x and y 
coordinates. Because the centerline of the rectangularparallelepiped view 
volume is now the zview axis, no translation is needed inthe x and y 
normalization transformations: We require only the x and y 
scalingparameters relative to the coordinate origin. The scaling matrix for 
accomplishingthe xy normalization is 
 

 
 
 



193 

 

 
And the elements of the normalized transformation matrix for a 

generalperspective-projection are 
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THREE DIMENSIONAL CLIPPING ALGORITHMS 
Previously, we discussed the advantages of using the normalized 

boundariesof the clipping window in two-dimensional clipping algorithms. 
Similarly, wecan apply three-dimensional clipping algorithms to the 
normalized boundariesof the view volume. This allows the viewing pipeline 
and the clipping proceduresto be implemented in a highly efficient way. All 
device-independent transformations(geometric and viewing) are 
concatenated and applied before executing theclipping routines. And each 
of the clipping boundaries for the normalized viewvolume is a plane that is 
parallel to one of the Cartesian planes, regardless of theprojection type and 
original shape of the view volume. Depending on whetherthe view volume 
has been normalized to a unit cube or to a symmetric cube withedge length 
2, the clipping planes have coordinate positions either at 0 and 1or at −1 
and 1. For the symmetric cube, the equations for the three-
dimensionalclipping planes are 

xwmin= −1, xwmax = 1 
ywmin= −1, ywmax = 1 (43) 
zwmin= −1, zwmax = 1 
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The x and y clipping boundaries are the normalized limits for the 
clipping window,and the z clipping boundaries are the normalized positions 
for the near andfar clipping planes. 

Clipping algorithms for three-dimensional viewing identify and save all 
object sections within the normalized view volume for display on the output 
device. All parts of objects that are outside the view-volume clipping planes 
areeliminated. And the algorithms are now extensions of two-dimensional 
methods,using the normalized boundary planes of the view volume instead 
of thestraight-line boundaries of the normalized clipping window. 
Clipping in Three-Dimensional Homogeneous Coordinates 
Computer-graphics libraries process spatial positions as four-
dimensionalhomogeneous coordinates so that all transformations can be 
represented as 4 by4 matrices. As each coordinate position enters the 
viewing pipeline, it is convertedto a four-dimensional representation: 

(x, y, z) → (x, y, z, 1) 
After a position has passed through the geometric, viewing, and projection 
transformations,it is now in the homogeneous form 

 
 
 
 
 
 
 

Wherematrix M represents the concatenation of all the various 
transformationsfrom world coordinates to normalized, homogeneous 
projection coordinates, andthe homogeneous parameter h may no longer 
have the value 1. In fact, h can haveany real value, depending on how we 
represented objects in the scene and thetype of projection we used. 

If the homogeneous parameter h does have the value 1, the 
homogeneouscoordinates are the same as the Cartesian projection 
coordinates. This is oftenthe case for a parallel-projection transformation. 
But a perspective projection producesa homogeneous parameter that is a 
function of the z coordinate for anyspatial position. The perspective-
projection homogeneous parameter can even benegative. This occurs when 
coordinate positions are behind the projection referencepoint. Also, rational 
spline representations for object surfaces are often formulatedin 
homogeneous coordinates, where the homogeneous parameter can 
bepositive or negative. Therefore, if clipping is performed in projection 
coordinatesafter division by the homogeneous parameter h, some coordinate 
information canbe lost and objects may not be clipped correctly. 
An effective method for dealing with all possible projection transformations 
and object representations is to apply the clipping routines to the 
homogeneouscoordinaterepresentations of spatial positions. And, because 
all view volumes canbe converted to a normalized cube, a single clipping 
procedure can be implementedin hardware to clip objects in homogeneous 
coordinates against the normalizedclipping planes. 
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Three-Dimensional Point and Line Clipping 
For standard point positions and straight-line segments that are 

defined in a scenethat is not behind the projection reference point, all 
homogeneous parameters arepositive and the region codes can be 
established using the conditions in 47. 

Then, once we have set up the region code for each position in a 
scene, we caneasily identify a point position as outside the view volume or 
inside the viewvolume. For instance, a region code of 101000 tells us that 
the point is above anddirectly behind the view volume, while the region code 
000000 indicates a pointwithin the volume (Figure 50). Thus, for point 
clipping, we simply eliminateany individual point whose region code is not 
000000. In other words, if any oneof the tests in 47 is negative, the point is 
outside the view volume. 

Methods for three-dimensional line clipping are essentially the same 
as fortwo-dimensional lines. We can first test the line endpoint region codes 
for trivialacceptance or rejection of the line. If the region code for both 
endpoints of a lineis 000000, the line is completely inside the view volume. 
Equivalently, we cantrivially accept the line if the logical or operation on the 
two endpoint regioncodes produces a value of 0. And we can trivially reject 
the line if the logical andoperation on the two endpoint region codes 
produces a value that is not 0. Thisnonzero value indicates that both 
endpoint region codes have a 1 value in the samebit position, and hence the 
line is completely outside one of the clipping planes. Asan example of this, 
the line from P3 to P4 in Figure 51 has the endpoint regioncodevalues of 
010101 and 100110. So this line is completely below the bottomclipping 
plane. If a line fails these two tests, we next analyze the line equation 
todetermine whether any part of the line should be saved. 
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Next, we determine the values yp and zpon this clipping plane, using 

the calculatedvalue for u. In this case, the yp and zpintersection values are 
within the ±1boundaries of the view volume and the line does cross into the 
view-volume interior. 

So we next proceed to locate the intersection position with the top 
clippingplane. That completes the processing for this line segment, because 
the intersectionpoints with the top and right clipping planes identify the part 
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of the linethat is inside the view volume and all the line sections that are 
outside the viewvolume. 

When a line intersects a clipping boundary but does not enter the 
viewvolumeinterior, we continue the line processing as in two-dimensional 
clipping. 

The section of the line outside that clipping boundary is eliminated, 
and weupdate the region-code information and the values for parameter u 
for the partof the line inside that boundary. Then we test the remaining 
section of the lineagainst the other clipping planes for possible rejection or 
for further intersectioncalculations. 

Line segments in three-dimensional scenes are usually not isolated. 
They aremost often components in the description for the solid objects in the 
scene, andwe need to process the lines as part of the surface-clipping 
routines. 
Three-Dimensional Polygon Clipping 

Graphics packages typically deal only with scenes that contain 
“graphics objects.”These are objects whose boundaries are described with 
linear equations, so thateach object is composed of a set of surface 
polygons. Therefore, to clip objects in athree-dimensional scene, we apply 
the clipping routines to the polygon surfaces. 

Figure 52, for example, highlights the surface sections of a pyramid 
that are tobe clipped, and the dashed lines show sections of the polygon 
surfaces that areinside the view volume. 

We can first test a polyhedron for trivial acceptance or rejection using 
itscoordinate extents, a bounding sphere, or some other measure of its 
coordinatelimits. If the coordinate limits of the object are inside all clipping 
boundaries, wesave the entire object. If the coordinate limits are all outside 
any one of the clippingboundaries, we eliminate the entire object. 

When we cannot save or eliminate the entire object, we can next 
processthe vertex lists for the set of polygons that define the object surfaces. 
Applying 

methods similar to those in two-dimensional polygon clipping, we can clip 
edgesto obtain new vertex lists for the object surfaces.We may also need to 
create somenew vertex lists for additional surfaces that result from the 
clipping operations. 
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And the polygon tables are updated to add any new polygon surfaces 
and torevise the connectivity and shared-edge information about the 
surfaces. 

To simplify the clipping of general polyhedra, polygon surfaces are 
oftendivided into triangular sections and described with triangle strips. We 
can thenclip the triangle strips using the Sutherland-Hodgman approach. 
Each trianglestrip is processed in turn against the six clipping planes to 
obtain the final vertexlist for the strip. 

For concave polygons, we can apply splitting methods to obtain a set 
of triangles,for example, and then clip the triangles. Alternatively, we could 
clip threedimensionalconcave polygons using the Weiler-Atherton algorithm. 
Three-Dimensional Curve Clipping 

As in polyhedra clipping, we first check to determine whether the 
coordinateextents of a curved object, such as a sphere or a spline surface, 
are completelyinside the view volume. Then we can check to determine 
whether the object iscompletely outside any one of the six clipping planes. 
If the trivial rejection-acceptance tests fail, we locate the intersections with 
the clipping planes. To do this, we solve the simultaneous set of surface 
equationsand the clipping-plane equation. For this reason, most graphics 
packagesdo not include clipping routines for curved objects. Instead, curved 
surfaces areapproximated as a set of polygon patches, and the objects are 
then clipped usingpolygon-clipping routines. When surface-rendering 
procedures are applied topolygon patches, they can provide a highly realistic 
display of a curved surface. 
Arbitrary Clipping Planes 

It is also possible, in some graphics packages, to clip a three-
dimensional sceneusing additional planes that can be specified in any 
spatial orientation. This optionis useful in a variety of applications. For 
example, we might want to isolate orclip off an irregularly shaped object, 
eliminate part of a scene at an oblique anglefor a special effect, or slice off a 
section of an object along a selected axis to showa cross-sectional view of its 
interior. 

Optional clipping planes can be specified along with the description of 
a scene,so that the clipping operations can be performed prior to the 
projection transformation. 

However, this also means that the clipping routines are implemented 
insoftware. 

A clipping plane can be specified with the plane parameters A, B, C, 
and D. 

The plane then divides three-dimensional space into two parts, so that 
all partsof a scene that lie on one side of the plane are clipped off. Assuming 
that objectsbehind the plane are to be clipped, then any spatial position (x, 
y, z) that satisfiesthe following inequality is eliminated from the scene. 

Ax + By + Cz+ D <0    (52) 
As an example, if the plane-parameter array has the values (A, B, C, 

D) =(1.0, 0.0, 0.0, 8.0), then any coordinate position satisfying x + 8.0 <0.0 
(or,x <−8.0) is clipped from the scene. 
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To clip a line segment, we can first test its two endpoints to see if the 
lineis completely behind the clipping plane or completely in front of the 
plane. Wecan represent inequality 52 in a vector form using the plane 
normal vector 

N = (A, B, C).  
Then, for a line segment with endpoint positions P1 and P2, we 

clip the entire line if both endpoints satisfy 
N · Pk + D <0, k = 1, 2   (53) 

We save the entire line if both endpoints satisfy 
N · Pk + D ≥ 0, k = 1, 2   (54) 

Otherwise, the endpoints are on opposite sides of the clipping plane, 
as inFigure 53, and we calculate the line intersection point. 

To calculate the line-intersection point with the clipping plane, we can 
usethe following parametric representation for the line segment: 

P = P1 + (P2 − P1)u, 0≤ u ≤ 1  (55) 
Point P is on the clipping plane if it satisfies the plane equation 

N · P + D = 0    (56) 
Substituting the expression for P from Equation 55, we have 

N · [P1 + (P2 − P1)u] + D = 0 (57) 
Solving this equation for parameter u, we obtain 
 
 
 
 

We then substitute this value of u into the vector parametric line 
representation55 to obtain values for the x, y, and z intersection 
coordinates. For the examplein Figure 53, the line segment from P1 to P is 
clipped and we save the sectionof the line from P to P2. 

For polyhedra, such as the pyramid in Figure 54, we apply similar 
clippingprocedures. We first test to see if the object is completely behind or 
completelyin front of the clipping plane. If not, we process the vertex list for 
each polygonsurface. Line-clipping methods are applied to each polygon 
edge in succession,just as in view-volume clipping, to produce the surface 
vertex lists. But in thiscase, we have to deal with only one clipping plane. 
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Clipping a curved object against a single clipping plane is easier than 
clippingthe object against the six planes of a view volume. However, we still 
need to solvea set of nonlinear equations to locate intersections, unless we 
approximate thecurve boundaries with straight-line sections. 

 
VISIBLE SURFACE DETECTION METHODS  
A major consideration in the generation of realistic graphics 
displays is determining what is visible within a scene from a 
chosen viewing position. There are a number of approaches 
we can take to accomplish this, and numerous algorithms have been 
devised for efficient identification and display of visible objects for 
different types of applications. Some methods require more memory, 
some involve more processing time, and some apply only to special 
types of objects. Which method we select for a particular application 
can depend on such factors as the complexity of the scene, type of 
objects to be displayed, available equipment, and whether static or 
animated displays are to be generated. The various algorithms are 
referred to as visible-surface detection methods. Sometimes these 
methods are also referred to as hidden-surface elimination methods, 
although there can be subtle differences between identifying 
visible surfaces and eliminating hidden surfaces. With a wire-frame 
display, for example, we may not want to eliminate the hidden surfaces, 
but rather to display them with dashed boundaries or in some 
other way to retain information about their shape. they deal with the object definitions or with their projected 

images. These two 

approaches are called object-space methods and image-space methods, respectively. 

An object-space method compares objects and parts of objects to each other 

within the scene definition to determine which surfaces, as a whole, we should 

label as visible. In an image-space algorithm, visibility is decided point by point 

at each pixel position on the projection plane. Most visible-surface algorithms use 

image-space methods, although object-space methods can be used effectively to 

locate visible surfaces in some cases. Line-display algorithms, for instance, generally 

use object-space methods to identify visible lines in wire-frame displays, but 

many image-space visible-surface algorithms can be adapted easily to visible-line 
detection. 

Although there are major differences in the basic approaches taken by the various 

visible-surface detection algorithms, most use sorting and coherence methods 

to improve performance. Sorting is used to facilitate depth comparisons by ordering 
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the individual surfaces in a scene according to their distance from the view 

plane. Coherence methods are used to take advantage of regularities in a scene. 

An individual scan line can be expected to contain intervals (runs) of constant 

pixel intensities, and scan-line patterns often change little from one line to the 

next. Animation frames contain changes only in the vicinity of moving objects. 

And constant relationships can often be established between the objects in a scene. 

 
BACKFACEDETECTION 

Afast and simple object-space method for locating the back faces of a 
polyhedron is based on front-back tests. A point (x, y, z) is behind a polygon 
surface if  

Ax + By + Cz+ D <0 (1) 
whereA, B,C, and Dare the plane parameters for the polygon. When this 
positionis along the line of sight to the surface, we must be looking at the 
back of thepolygon. Therefore, we could use the viewing position to test for 
back faces. 

We can simplify the back-face test by considering the direction of the 
normalvector N for a polygon surface. If Vview is a vector in the viewing 
direction fromour camera position, as shown in Figure 1, then a polygon is a 
back face if 

Vview ·N >0 (2) 
Furthermore, if object descriptions have been converted to projection 

coordinatesand our viewing direction is parallel to the viewing zv axis, then 
we need toconsider only the z component of the normal vector N. 

In a right-handed viewing system with the viewing direction along the 
negativezv axis (Figure 2), a polygon is a back face if the z component, C, of 
itsnormal vector N satisfies C <0. Also, we cannot see any face whose normal 
hasz component C = 0, because our viewing direction is grazing that 
polygon. Thus,in general, we can label any polygon as a back face if its 
normal vector has a zcomponent value that satisfies the inequalityC ≤ 0 

Similar methods can be used in packages that employ a left-handed 
viewingsystem. In these packages, plane parameters A, B, C, and D can be 
calculatedfrom polygon vertex coordinates specified in a clockwise direction 
(instead of thecounterclockwise direction used in a right-handed system). 
Inequality 1 thenremains a valid test for points behind the polygon. Also, 
back faces have normalvectors that point away from the viewing position 
and are identified by C ≥ 0when the viewing direction is along the positive zv 
axis. 
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By examining parameter C for the different plane surfaces describing 
anobject, we can immediately identify all the back faces. For a single convex 
polyhedron,such as the pyramid in Figure 2, this test identifies all the 
hidden surfacesin the scene, because each surface is either completely 
visible or completely hidden. 

Also, if a scene contains only nonoverlapping convex polyhedra, then 
againall hidden surfaces are identified with the back-
face method. 

For other objects, such as the concave 
polyhedron in Figure 3, more testsmust be carried 
out to determine whether there are additional faces 
that are totallyor partially obscured by other faces. A 
general scene can be expected to containoverlapping 
objects along the line of sight, and we then need to 
determine wherethe obscured objects are partly or 
completely hidden by other objects. In general,back-
face removal can be expected to eliminate about half 
of the polygon surfacesin a scene from further 
visibility tests. 
DEPTH BUFFER 

A commonly used image-space approach for detecting visible surfaces 
is thedepth-buffer method, which compares surface depth values 
throughout a scenefor each pixel position on the projection plane. Each 
surface of a scene is processedseparately, one pixel position at a time, 
across the surface. The algorithm is usuallyapplied to scenes containing 
only polygon surfaces, because depth values canbe computed very quickly 
and the method is easy to implement. But we couldalso apply the same 
procedures to nonplanar surfaces. This visibility-detectionapproach is also 
frequently alluded to as the z-buffer method, because object depth isusually 
measured along the z axis of a viewing system. However, rather than using 
actualz coordinates within the scene, depth-buffer algorithms often compute 
adistance from the view plane along the z axis. 

Figure 4 shows three surfaces at varying distances along the 
orthographicprojection line from position (x, y) on a view plane. These 
surfaces can be processedin any order. As each surface is processed, its 
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depth from the view plane iscompared to previously processed surfaces. If a 
surface is closer than any previouslyprocessed surfaces, its surface color is 

calculated and saved, along with itsdepth. The visible surfaces in a scene are 
represented by the set of surface colorsthat have been saved after all surface 
processing is completed. Implementationof the depth-buffer algorithm is 
typically carried out in normalized coordinates,so that depth values range 
from 0 at the near clipping plane (the view plane) to1.0 at the far clipping 
plane. 

As implied by the name of this method, two buffer areas are required. 
Adepth buffer is used to store depth values for each (x, y) position as 
surfacesare processed, and the frame buffer stores the surface-color values 
for each pixelposition. Initially, all positions in the depth buffer are set to 1.0 
(maximum depth),and the frame buffer (refresh buffer) is initialized to the 
background color. Eachsurface listed in the polygon tables is then 
processed, one scan line at a time, bycalculating the depth value at each (x, 
y) pixel position. This calculated depth iscompared to the value previously 
stored in the depth buffer for that pixel position. 

If the calculated depth is less than the value stored in the depth 
buffer, the newdepth value is stored. Then the surface color at that position 
is computed andplaced in the corresponding pixel location in the frame 
buffer. 

The depth-buffer processing steps are summarized in the following 
algorithm.This algorithm assumes that depth values are normalized on the 
range from 0.0 to1.0 with the view plane at depth= 0 and the farthest depth= 
1.We can also applythis algorithm for any other depth range, and some 
graphics packages allow theuser to specify the depth range over which the 
depth-buffer algorithm is to beapplied.Within the algorithm, the variable z 
represents the depth of the polygon(that is, its distance from the view plane 
along the negative z axis). 
Depth-Buffer Algorithm 
1. Initialize the depth buffer and frame buffer so that for all buffer positions 
(x, y), 
depthBuff (x, y) = 1.0, frameBuff (x, y) = backgndColor 
2. Process each polygon in a scene, one at a time, as follows: 
• For each projected (x, y) pixel position of a polygon, calculate the 
depthz (if not already known). 
• If z <depthBuff (x, y), compute the surface color at that 
position and set 
depthBuff (x, y) = z, frameBuff (x, y) = surfColor (x, y) 
After all surfaces have been processed, the depth buffer contains 
depthvalues for the visible surfaces and the frame buffer contains the 
correspondingcolor values for those surfaces. 
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One slight complication with this approach is that while pixel 
positions areat integer (x, y) coordinates, the actual point of intersection of 
a scan line withthe edge of a polygon may not be. As a result, it may be 
necessary to adjustthe intersection point by rounding its fractional part up 
or down, as is done inscan-line polygon fill algorithms. 
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An alternative approach is to use a midpoint method or Bresenham-
typealgorithm for determining the starting x values along edges for each 
scan line. 

The method can be applied to curved surfaces by determining depth 
and colorvalues at each surface projection point. 

For polygon surfaces, the depth-buffer method is very easy to 
implement, andit requires no sorting of the surfaces in a scene. But it does 
require the availabilityof a second buffer in addition to the refresh buffer. A 
system with a resolution of1280 × 1024, for example, would require over 1.3 
million positions in the depthbuffer, with each position containing enough 
bits to represent the number ofdepth increments needed. One way to reduce 
storage requirements is to processone section of the scene at a time, using a 
smaller depth buffer. After each viewsection is processed, the buffer is 
reused for the next section. 

In addition, the basic depth-buffer algorithm often performs needless 
calculations. 

Objects are processed in an arbitrary order, so that a color can be 
computedfor a surface point that is later replaced by a closer surface. To 
alleviate this problem,some graphics packages provide options that allow a 
user to adjust the depthrange for surface testing. This allows distant 
objects, for example, to be excludedfrom the depth tests. Using this option, 
we could even exclude objects that arevery close to the projection plane. 
Hardware implementations of the depth-bufferalgorithm are typically an 
integral component of sophisticated computer-graphicssystems. 
  
A-BUFFER 

An extension of the depth-buffer ideas is the A-buffer procedure (at 
the otherend of the alphabet from “z-buffer,” where z represents depth). This 
depth-bufferextension is an antialiasing, area-averaging, visibility-detection 
method developedat Lucasfilm Studios for inclusion in the surface-rendering 
system called REYES (an acronym for “Renders Everything You Ever Saw”). 
The buffer regionfor this procedure is referred to as the accumulation buffer, 
because it is used tostore a variety of surface data, in addition to depth 
values. 

A drawback of the depth-buffer method is that it identifies only one 
visiblesurface at each pixel position. In other words, it deals only with 
opaque surfacesand cannot accumulate color values for more than one 
surface, as is necessaryif transparent surfaces are to be displayed (Figure 8). 
The A-buffer methodexpands the depth-buffer algorithm so that each 
position in the buffer can referencea linked list of surfaces. This allows a 
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pixel color to be computed as acombination of different surface colors for 
transparency or antialiasing effects. 
Each position in the A-buffer has two fields: 
• Depth field: Stores a real-number value (positive, negative, or zero). 
• Surface data field: Stores surface data or a pointer. 

If the depth field is nonnegative, the number stored at that position is 
the depth ofa surface that overlaps the corresponding pixel area. The surface 
data field thenstores various surface information, such as the surface color 
for that position andthe percent of pixel coverage, as illustrated in Figure 
9(a). If the depth field fora position in the A-buffer is negative, this indicates 
multiple-surface contributionsto the pixel color. The color field then stores a 
pointer to a linked list of surfacedata, as in Figure 9(b). Surface information 
in the A-buffer includes 
• RGB intensity components 
• Opacity parameter (percent of transparency) 
• Depth 
• Percent of area coverage 
• Surface identifier 
• Other surface-rendering parameters 

The A-buffer visibility-detection scheme can be implemented using 

methodssimilar to those in the depth-buffer algorithm. Scan lines are 
processed todetermine how much of each surface covers each pixel position 
across the individualscan lines. Surfaces are subdivided into a 
polygonmeshand clipped againstthe pixel boundaries. Using the opacity 
factors and percent of surface coverage,the rendering algorithms calculate 
the color for each pixel as an average of thecontributions from the 
overlapping surfaces. 
 
SCAN-LINE 

This image-space method for identifying visible surfaces computes and 
comparesdepth values along the various scan lines for a scene.Aseach scan 
line is processed,all polygon surface projections intersecting that line are 
examined to determinewhich are visible. Across each scan line, depth 
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calculations are performed todetermine which surface is nearest to the view 
plane at each pixel position. Whenthe visible surface has been determined 
for a pixel, the surface color for thatposition is entered into the frame buffer. 
 Surfaces are processed using the information stored in the polygon 
tables.The edge table contains coordinate endpoints for each line in the 
scene, theinverse slope of each line, and pointers into the surface-facet table 
to identify thesurfaces bounded by each line. The surface-facet table 
contains the plane coefficients,surface material properties, other surface 
data, and possibly pointers intothe edge table. To facilitate the search for 
surfaces crossing a given scan line,an active list of edges is formed for each 
scan line as it is processed. The activeedge list contains only those edges 
that cross the current scan line, sorted in orderof increasing x. In addition, 
we define a flag for each surface that is set to “on” or “off” to indicate 
whether a position along a scan line is inside or outsidethe surface. Pixel 
positions across each scan line are processed from left to right.At the left 
intersection with the surface projection of a convex polygon, the surfaceflag 
is turned on; at the right intersection point along the scan line, it is turned 
off. For a concave polygon, scan-line intersections can be sorted from left to 
right,with the surface flag set to “on” between each intersection pair. 

Figure 10 illustrates the scan-line method for locating visible portions 
ofsurfaces for pixel positions along a scan line. The active list for scan line 1 
containsinformation fromthe edge table for edges AB, BC, EH, and FG. For 
positions alongthis scan line between edgesABandBC, only the flag for 

surface S1 is on. Therefore,no depth calculations are necessary, and color 

values are calculated from thesurface properties and lighting conditions for 
surface S1. Similarly, between edgesEH and FG, only the flag for surface S2 
is on. No other positions along scan line1 intersect surfaces, so the color for 
those pixels is the background color, whichcould be loaded into the frame 
buffer as part of the initialization routine. 

For scan lines 2 and 3 in Figure 10, the active edge list contains edges 
AD,EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the 
flag forsurface S1 is on. But between edges EH and BC, the flags for both 
surfaces are on. 

Therefore, a depth calculation is necessary, using the plane 
coefficients for the twosurfaces, when we encounter edge EH. For this 
example, the depth of surface S1is assumed to be less than that of S2, so 
the color values for surface S1 are assignedto the pixels across the scan line 
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until boundary BC is encountered. Then thesurface flag for S1 goes off, and 
the colors for surface S2 are stored up to edgeFG. No other depth 
calculations are necessary, because we assume that surface S2remains 
behind S1 once we have determined the depth relationship at edge EH. 

We can take advantage of coherence along the scan lines as we pass 
fromone scan line to the next. In Figure 10, scan line 3 has the same active 
listof edges as scan line 2. No changes have occurred in line intersections, 
so it isagain unnecessary to make depth calculations between edges EH and 
BC. Thetwo surfaces must be in the same orientation as determined on scan 
line 2, so thecolors for surface S1 can be entered without further depth 
calculations. 

Anynumber of overlapping polygon surfaces can be processed with 
this scanlinemethod. Flags for the surfaces are set to indicate whether a 
position is insideor outside, and depth calculations are performed only at 
the edges of overlappingsurfaces. This procedure works correctly only if 
surfaces do not cut through orotherwise cyclically overlap each other (Figure 
11). If any kind of cyclic overlapis present in a scene, we can divide the 
surfaces to eliminate the overlaps. Thedashed lines in this figure indicate 
where planes could be subdivided to form twodistinct surfaces, so that the 
cyclic overlaps are eliminated. 
DEPTH SORTING 

Using both image-space and object-space operations, the depth-
sorting methodperforms the following basic functions: 
1. Surfaces are sorted in order of decreasing depth. 
2. Surfaces are scan-converted in order, starting with the surface of greatest 
depth. 

Sorting operations are carried out in both image and object space, and 
the scanconversion of the polygon surfaces is performed in image space. 
This visibility-detection method is often referred to as the painter’s 
algorithm. 
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In creating an oil painting, an artist first paints the background 
colors. Next, themost distant objects are added, then the nearer objects, and 
so forth. At the finalstep, the foreground is painted on the canvas over the 
background and the moredistant objects. Each color layer covers up the 
previous layer. Using a similartechnique, we first sort surfaces according to 
their distance from the view plane. 

The color values for the farthest surface can then be entered into the 
refresh buffer.Taking each succeeding surface in turn (in decreasing depth 
order), we “paint”the surface onto the frame buffer over the colors of the 
previously processedsurfaces. 

Painting polygon surfaces into the frame buffer according to depth is 
carriedout in several steps. Assuming we are viewing along the z direction, 
surfaces areordered on the first pass according to the smallest z value on 
each surface. Thesurface S at the end of the list (with the greatest depth) is 
then compared to theother surfaces in the list to determine whether there 
are any depth overlaps. Ifno depth overlaps occur, S is the most distant 
surface and it is scan-converted. 

Figure 12 shows two surfaces that overlap in the xy plane but have no 
depthoverlap. This process is then repeated for the next surface in the list. 
So long asno overlaps occur, each surface is processed in depth order until 
all have beenscan-converted. If a depth overlap is detected at any point in 
the list, we needto make some additional comparisons to determine whether 
any of the surfacesshould be reordered. 

We make the following tests for each surface that has a depth overlap 
with S.If any one of these tests is true, no reordering is necessary for S and 
the surfacebeing tested. The tests are listed in order of increasing difficulty: 
1. The bounding rectangles (coordinate extents) in the xy directions for the 
two surfaces do not overlap. 
2. Surface S is completely behind the overlapping surface relative to the 
viewing position. 
3. The overlapping surface is completely in front of S relative to the viewing 
position. 
4. The boundary-edge projections of the two surfaces onto the view plane 
do not overlap. 
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We perform these tests in the order listed and proceed to the next 
overlappingsurface as soon aswefind that one of the tests is true. If all the 
overlapping surfaces 

 

into the correct depth order. Therefore, we need to repeat the testing process 
foreach surface that is reordered in the list. 

It is possible for the algorithm just outlined to get into an infinite loop 
if twoor more surfaces alternately obscure each other, as in Figure 11. In 
such situations,the algorithm would continually rearrange the ordering of 
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the overlappingsurfaces. To avoid such loops, we can flag any surface that 
has been reordered toa farther depth position so that it cannot be moved 
again. If an attempt is madeto switch the surface a second time, we divide it 
into two parts to eliminate thecyclic overlap. The original surface is then 
replaced by the two new surfaces, andwe continue processing as before. 
BSP-TREE 

A binary space-
partitioning (BSP) tree 
is an efficient method 
for determiningobject 
visibility by painting 
surfaces into the frame 
buffer from back to 
front,as in the painter’s 
algorithm. The BSP 
tree is particularly 
useful when the 
viewreference point 
changes, but the 
objects in a scene are 
at fixed positions. 

Applying a BSP 
tree to visibility testing 
involves identifying surfaces that arebehind or in front of the partitioning 
plane at each step of the space subdivision,relative to the viewing direction. 
Figure 19 illustrates the basic concept in thisalgorithm. With plane P1, we 
first partition the space into two sets of objects. 

One set of objects is in back of plane P1 relative to the viewing 
direction, andthe other set is in front of P1. Because one object is 
intersected by plane P1, wedivide that object into two separate objects, 
labeled A and B. Objects A and C arein front of P1, and objects B and D are 
behind P1. Because each object list containsmore than one object, we 
partition the space again with plane P2, recursivelyprocessing the front and 
back object lists. This process continues until all objectlists contain no more 
than one object. This partitioning can be easily representedusing a binary 
tree such as the one shown in Figure 19(b). In this tree, the objectsare 
represented as terminal nodes, with front objects occupying the left 
branchesand back objects occupying the right branches. The location of an 
object in thetree exactly represents its position relative to each of the 
partitioning planes. 

For objects described with polygon facets, we often choose the 
partitioningplanes to coincide with polygon-surface planes. The polygon 
equations are thenused to identify back and front polygons, and the tree is 
constructed with one partitioningplane for each polygon face. Any polygon 
intersected by a partitioningplane is split into two parts. 

When the BSP tree is complete, we interpret the tree relative to the 
positionof our viewpoint, beginning at the root node. If the viewpoint is in 
front ofthat partitioning plane, we recursively process the back subtree, then 
recursivelyprocess the front subtree. If the viewpoint is behind the 
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partitioning plane, wereverse this, and process the front subtree followed by 
the back subtree. Thus, thesurfaces are generated for display in the order 
back to front, so that foregroundobjects are painted over the background 
objects. Fast hardware implementationsfor constructing and processing BSP 
trees are used in some systems. 
 
AREA SUBDIVISION 

This technique for hidden-surface removal is essentially an image-
space method,but object-space operations can be used to accomplish depth 
ordering of surfaces. 
The area-subdivision method takes advantage of area coherence in a scene 
bylocating those projection areas that represent part of a single surface. We 
applythis method by successively dividing the total view-plane area into 
smaller andsmaller rectangles until each rectangular area contains the 
projection of part of asingle visible surface, contains no surface projections, 
or the area has been reducedto the size of a pixel. 

To implement this method, we need to 
establish tests that can quickly identifythe 
area as part of a single surface or tell us that 
the area is too complex to analyzeeasily. 
Starting with the total view, we apply the 
tests to determine whether weshould 
subdivide the total area into smaller 
rectangles. If the tests indicate thatthe view is 
sufficiently complex, we subdivide it. Next, we 
apply the tests to eachof the smaller areas, 
subdividing these if the tests indicate that 
visibility of a singlesurface is still 
uncertain.We continue this process until the 
subdivisions are easilyanalyzed as belonging 
to a single surface or until we have reached the resolutionlimit. An easy way 
to do this is to successively divide the area into four equal 

parts at each step, as shown in Figure 20. This approach is similar to that 
usedin constructing a quadtree. A viewing area with a pixel resolution of 
1024 × 1024could be subdivided ten times in this way before a subarea is 
reduced to the sizeof a single pixel. 

There are four possible relationships that a surface can have with an 
area ofthe subdivided view plane.We can describe these relative surface 
positions usingthe following classifications (Figure 21). 
Surrounding Surface: A surface that completely encloses the area. 
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Overlapping Surface: A surface that is partly inside and partly outside the 
area. 
Inside Surface: A surface that is completely inside the area. 
Outside Surface: A surface that is completely outside the area. The tests for 
determining surface visibility within a rectangular area can bestated in 
terms of the four surface classifications illustrated in Figure 21.No further 
subdivisions of a specified area are needed if one of the following conditions 
is true. 
Condition 1: An area has no inside, overlapping, or surrounding surfaces 
(all surfaces are outside the area). 
Condition 2: An area has only one inside, overlapping, or surrounding 
surface. 
Condition 3: An area has one surrounding surface that obscures all other 
surfaces within the area boundaries. 

Initially, we can compare the 
coordinate extents of each surface with the 
areaboundaries. This will identify the inside 
and surrounding surfaces, but 
overlappingand outside surfaces usually 
require intersection tests. If a single 
boundingrectangle intersects the area in 
some way, additional checks are used to 
determinewhether the surface is 
surrounding, overlapping, or outside. Once a 
single inside,overlapping, or surrounding 
surface has been identified, the surface color 
valuesare stored in the frame buffer. 

One method for testing condition 3 is 
to sort the surfaces according to 
minimumdepth from the view plane. For 
each surrounding surface, we then 
computethe maximum depth within the area under consideration. If the 
maximum depthof one of these surrounding surfaces is closer to the view 
plane than the minimumdepth of all other surfaces within the area, 
condition 3 is satisfied. Figure 22illustrates this situation. Another method 
for testing condition 3 that does not require depth sortingis to use plane 
equations to calculate depth values at the four vertices of the areafor all 
surrounding, overlapping, and inside surfaces. If all four depths for one 
ofthe surrounding surfaces are less than the calculated depths for all other 
surfaces,condition 3 is satisfied. Then the area can be displayed with the 
colors for thatsurrounding surface. 

For some situations, the previous two testing methods may fail to 
identify correctlya surrounding surface that obscures all the other surfaces. 
Further testingcould be carried out to identify the single surface that covers 
the area, but it is fasterto subdivide the area than to continue with more 
complex testing. Once a surfacehas been identified as an outside or 
surrounding surface for an area, it will remainin that category for all 
subdivisions of the area. Furthermore,wecan expect to eliminatesome inside 
and overlapping surfaces as the subdivision process continues,so that the 
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areas become easier to analyze. In the limiting case, when a subdivisionthe 
size of a pixel is produced, we simply calculate the depth of each 
relevantsurface at that point and assign the color of the nearest surface to 
that pixel. 
 As a variation on the basic subdivision process, we could subdivide 
areasalong surface boundaries instead of dividing them in half. If the 
surfaces have been sorted according to minimum depth, we can use the 
surface of smallestdepth value to subdivide a given area. Figure 23 
illustrates this method forsubdividing areas. The projection of the boundary 
of surface S is used to partitionthe original area into the subdivisions A1 
and A2. Surface S is then a surroundingsurface for A1, and visibility 
conditions 2 and 3 can be tested to determine whetherfurther subdividing is 
necessary. In general, fewer subdivisions are required usingthis approach, 
but more processing is needed to subdivide areas and to analyzethe relation 
of surfaces to the subdivision boundaries. 
OCTREE METHOD 
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When an octree representation is used for the viewing volume, visible-
surfaceidentification is accomplished by searching octree nodes in a front-
to-back order. 

In Figure 24, the foreground of a scene is 
contained in octants 0, 1, 2, and 3.  

Surfaces in the front of these octants are 
visible to the viewer. Any surfaces towardthe 
rear of the front octants or in the back octants 
(4, 5, 6, and 7) may be hiddenby the front 
surfaces. 

We can process the octree nodes of Figure 
24 in the order 0, 1, 2, 3, 4, 5,6, 7. This results 
in a depth-first traversal of the octree, where the 
nodes for thefour front suboctants of octant 0 
are visited before the nodes for the four back 
suboctants. The traversal of the octree continues 
in this order for each octantsubdivision. When a 
color value is encountered in an octree node, 
that color is saved in thequadtree only if no 
values have previously been saved for the same 

area. In thisway, only the front colors are saved. 
Nodes that have the value “void” are ignored. 

Any node that is completely obscured is 
eliminated from further processing, sothat its 
subtrees are not accessed. Figure 25 depicts the 
octants in a regionof space and the 
corresponding quadrants on the view plane. 
Contributions toquadrant 0 come from octants 0 
and 4. Color values in quadrant 1 are 
obtainedfrom surfaces in octants 1 and 5, and 
values in each of the other two quadrantsare 
generated from the pairs of octants aligned with each of these quadrants. 
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Effective octree visibility testing is carried out with recursive 
processing ofoctree nodes and the creation of a quadtree representation for 
the visible surfaces. 

In most cases, both a front and a back octant must be considered in 
determiningthe correct color values for a quadrant. But if the front octant is 
homogeneouslyfilled with some color, we do not process the back octant. For 
heterogeneousregions, a recursive procedure is called, passing as new 
arguments the child ofthe heterogeneous octant and a newly created 
quadtree node. If the front is empty,it is necessary only to process the child 
of the rear octant. Otherwise, two recursivecalls are made: one for the rear 
octant and one for the front octant. 

Different views of objects represented as octrees can be obtained by 
applyingtransformations to the octree representation that reorient the object 
according tothe view selected. Octants can then be renumbered so that the 
octree representationis always organized with octants 0, 1, 2, and 3 as the 
front face. 
 
OTHER METHODS. 

Ray-Casting Method 
If we consider 

the line of sight from 
a pixel position on the 
view plane througha 
scene, as in Figure 
26, we can determine 
which objects in the 
scene (if any)intersect 
this line. After 
calculating all ray-
surface intersections, 
we identify thevisible 
surface as the one 
whose intersection point is closest to the pixel. Thisvisibility-detection 
scheme uses ray casting procedures. Ray casting, as a visibility-detection 
tool, is based on geometricoptics methods, which trace the pathsof light 
rays. Because there are an infinite number of light rays in a scene and 

weare interested only in those rays that pass through pixel positions, we can 
tracethe light-ray paths backward from the pixels through the scene. The 
ray-castingapproach is an effective visibility-detection method for scenes 
with curved surfaces,particularly spheres. We can think of ray casting as a 
variation on the depth-buffer method (Section3). In the depth-buffer 
algorithm, we process surfaces one at a time andcalculate depth values for 
all projection points over the surface. The calculatedsurface depths are then 
compared to previously stored depths to determine visiblesurfaces at each 
pixel. In ray casting, we process pixels one at a time andcalculate depths for 
all surfaces along the projection path to that pixel. Ray casting is a special 
case of ray-tracing algorithms that trace multiple raypaths to pick up global 
reflection and refraction contributions from multipleobjects in a scene. With 
ray casting, we only follow a ray out from each pixel tothe nearest object. 
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Efficient ray-surface intersection calculations have been developedfor 
common objects, particularly spheres. 
 
UNIT 5 : 
COMPUTER ANIMATION 

Computer-graphics methods are now commonly used to 
produceanimations for a variety of applications, includingentertainment 
(motion pictures and cartoons), advertising,scientific and engineering 
studies, and training and education.Although we tend to think of animation 
as implying object motion,the term computer animation generally refers to 
any time sequenceof visual changes in a picture. In addition to changing 
object positionsusing translations or rotations, a computer-generated 
animationcould display time variations in object size, color, transparency,or 
surface texture. Advertising animations often transition one objectshape into 
another: for example, transforming a can of motor oilinto an automobile 
engine. We can also generate computer animationsby varying camera 
parameters, such as position, orientation, orfocal length, and variations in 
lighting effects or other parameters andprocedures associated with 
illumination and rendering can be used toproduce computer animations. 

Another consideration in computer-generated animation isrealism. 
Many applications require realistic displays. An accurate representation of 
the shape of a thunderstorm or other natural phenomena describedwith a 
numerical model is important for evaluating the reliability of the model. 
Similarly,simulators for training aircraft pilots and heavy-equipment 
operators must producereasonably accurate representations of the 
environment. Entertainment and advertisingapplications, on the other hand, 
are sometimes more interested in visual effects. Thus,scenes may be 
displayed with exaggerated shapes and unrealistic motions and 
transformations. 

However, there are many entertainment and advertising applications 
that dorequire accurate representations for computer-generated scenes. 
Also, in some scientificand engineering studies, realism is not a goal. For 
example, physical quantities areoften displayed with pseudo-colors or 
abstract shapes that change over time to help theresearcher understand the 
nature of the physical process. 

Two basic methods for constructing a motion sequence are real-time 
animationand frame-by-frame animation. In a real-time computer-
animation, each stage of thesequence is viewed as it is created. Thus the 
animation must be generated at a rate thatis compatible with the 
constraints of the refresh rate. For a frame-by-frame animation,each frame 
of the motion is separately generated and stored. Later, the frames can 
berecorded on film, or they can be displayed consecutively on a video 
monitor in “real-timeplayback” mode. Simple animation displays are 
generally produced in real time, whilemore complex animations are 
constructed more slowly, frame by frame. However, someapplications 
require real-time animation, regardless of the complexity of the animation. 

A flight-simulator animation, for example, is produced in real time 
because the videodisplays must be generated in immediate response to 
changes in the control settings. 
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In such cases, special hardware and software systems are often 
developed to allow thecomplex display sequences to be developed quickly. 
Raster Methods for Computer Animation 

Most of the time,wecan create simple animation sequences in our 
programs usingreal-time methods. In general, though, we can produce an 
animation sequenceon a raster-scan system one frame at a time, so that 
each completed frame couldbe saved in a file for later viewing. The 
animation can then be viewed by cyclingthrough the completed frame 
sequence, or the frames could be transferred to film. 

If we want to generate an animation in real time, however, we need to 
produce themotion frames quickly enough so that a continuous motion 
sequence is displayed. 

For a complex scene, one frame of the animation could take most of 
the refreshcycle time to construct. In that case, objects generated first would 
be displayedfor most of the frame refresh time, but objects generated toward 
the end of therefresh cycle would disappear almost as soon as they were 
displayed. For verycomplex animations, the frame construction time could 
be greater than the time torefresh the screen, which can lead to erratic 
motion and fractured frame displays. 

Because the screen display is generated from successively modified 
pixel valuesin the refresh buffer, we can take advantage of some of the 
characteristics of theraster screen-refresh process to produce motion 
sequences quickly. 
Double Buffering 

One method for producing a real-time animation with a raster system 
is toemploy two refresh buffers. Initially, we create a frame for the animation 
in oneof the buffers. Then, while the screen is being refreshed from that 
buffer, weconstruct the next frame in the other buffer. When that frame is 
complete, weswitch the roles of the two buffers so that the refresh routines 
use the secondbuffer during the process of creating the next frame in the 
first buffer. Thisalternating buffer process continues throughout the 
animation. Graphics librariesthat permit such operations typically have one 
function for activating the doublebufferingroutines and another function for 
interchanging the roles of the twobuffers. 

When a call is made to switch two refresh buffers, the interchange 
could beperformed at various times. The most 

straightforwardimplementation is to switchthe two buffers at the end of the 
current refresh cycle, during the vertical retraceof the electron beam. If a 
program can complete the construction of a frame withinthe time of a 
refresh cycle, say 1 
60 of a second, each motion sequence is displayedin synchronization with 
the screen refresh rate. However, if the time to constructa frame is longer 
than the refresh time, the current frame is displayed for twoor more refresh 
cycles while the next animation frame is being generated. Forexample, if the 
screen refresh rate is 60 frames per second and it takes 1/50 of asecond to 
construct an animation frame, each frame is displayed on the screentwice 
and the animation rate is only 30 frames each second. Similarly, if the frame 
construction time is 1/25 of a second, the animation frame rate is reduced 
to 20 framesper second because each frame is displayed three times. 
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Irregular animation frame rates can occur with double buffering when 
theframe construction time is very nearly equal to an integer multiple of the 
screenrefresh time.Asan example of this, if the screen refresh rate is 60 
frames per second,then an erratic animation frame rate is possible when the 
frame constructiontime is very close to 160 of a second, or 260 of a second, 
or 360 of a second, and soforth. Because of slight variations in the 
implementation time for the routines thatgenerate the primitives and their 
attributes, some frames could take a little moretime to construct and some a 
little less time. Thus, the animation frame rate canchange abruptly and 
erratically. One way to compensate for this effect is to adda small time delay 
to the program. Another possibility is to alter the motion orscene description 
to shorten the frame construction time. 
Generating Animations Using Raster Operations 

We can also generate real-time raster 
animations for limited applications usingblock 
transfers of a rectangular array of pixel values. This 
animation technique isoften used in game-playing 
programs. Asimple method for translating an object 
from one location to another in the xy plane is to 
transfer the group of pixel valuesthat define the 
shape of the object to the new location. Two-dimensional rotationsin 
multiples of 90º are also simple to perform, although we can rotate 
rectangularblocks of pixels through other angles using antialiasing 
procedures. Fora rotation that is not a multiple of 90º, we need to estimate 
the percentage of areacoverage for those pixels that overlap the rotated 
block. Sequences of raster operationscan be executed to produce realtime 
animation for either two-dimensionalor three-dimensional objects, so long as 
we restrict the animation to motionsin the projection plane. Then no viewing 
or visible-surface algorithms need beinvoked. 

We can also animate objects along two-dimensional motion paths 
using colortabletransformations. Here we predefine the object at 
successive positions alongthe motion path and set the successive blocks of 
pixel values to color-table entries. 

The pixels at the first position of the object are set to a foreground 
color, and thepixels at the other object positions are set to the background 
color. The animationis then accomplished by changing the color-table values 
so that the object color atsuccessive positions along the animation path 
becomes the foreground color asthe preceding position is set to the 
background color (Figure 1). 
Design of Animation Sequences 

Constructing an animation sequence can be a complicated task, 
particularly whenit involves a story line and multiple objects, each of which 
can move in a differentway. A basic approach is to design such animation 
sequences using the followingdevelopment stages: 
• Storyboard layout 
• Object definitions 
• Key-frame specifications 
• Generation of in-between frames 
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The storyboard is an outline of the action. It defines the motion 
sequence asa set of basic events that are to take place. Depending on the 
type of animation tobe produced, the storyboard could consist of a set of 
rough sketches, along witha brief description of the movements, or it could 
just be a list of the basic ideas forthe action. Originally, the set of motion 
sketches was attached to a large board thatwas used to present an overall 
view of the animation project. Hence, the name“storyboard.” 

An object definition is given for each participant in the action. 
Objects can bedefined in terms of basic shapes, such as polygons or spline 
surfaces. In addition,a description is often given of the movements that are 
to be performed by eachcharacter or object in the story. 

A key frame is a detailed drawing of the scene at a certain time in the 
animationsequence. Within each key frame, each object (or character) is 
positionedaccording to the time for that frame. Some key frames are chosen 
at extremepositions in the action; others are spaced so that the time interval 
between keyframes is not too great. More key frames are specified for 
intricate motions than forsimple, slowly varying motions. Development of the 
key frames is generally theresponsibility of the senior animators, and often a 
separate animator is assignedto each character in the animation. 

In-betweens are the intermediate frames between the key frames. The 
totalnumber of frames, and hence the total number of in-betweens, needed 
for ananimation is determined by the display media that is to be used. Film 
requires24 frames per second, and graphics terminals are refreshed at the 
rate of 60 ormore frames per second. Typically, time intervals for the motion 
are set up so thatthere are from three to five in-betweens for each pair of key 
frames. Dependingon the speed specified for the motion, some key frames 
could be duplicated. Asan example, a 1-minute film sequence with no 
duplication requires 
a total of1,440 
frames. If five in-
betweens are 
required for each 
pair of key frames, 
then288 key frames 
would need to be 
developed. 

There are 
several other tasks 
that may be 
required, depending on the application. 

These additional tasks include motion verification, editing, and the 
production 
and synchronization of a soundtrack. Many of the functions needed to 
produce general animations are now computer-generated. Figures 2 and 3 
show examples of computer-generated frames for animation sequences. 
 
Traditional Animation Techniques 
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Film animators use a variety of methods for depicting and 
emphasizing motionsequences. These include object deformations, spacing 
between animation frames,motion anticipation and follow-through, and 
action focusing. 

One of the most important techniques for simulating acceleration 
effects,particularly for nonrigid objects, is squash and stretch. Figure 4 
shows howthis technique is used to emphasize the 
accelerationanddeceleration of a bouncingball. As the ball accelerates, it 
begins to stretch. When the ball hits the floor andstops, it is first 
compressed (squashed) and then stretched again as it acceleratesand 
bounces upwards. 

Another technique used by film animators is timing, which refers to 
the spacingbetween motion frames. A slower moving object is represented 
with moreclosely spaced frames, and a faster moving object is displayed with 
fewer framesover the path of the motion. This effect is illustrated in Figure 5, 
where theposition changes between frames increase as a bouncing ball 
moves faster. 

Object movements can also be emphasized by creating preliminary 
actionsthat indicate an anticipation of a coming motion. For example, a cartoon 

charactermight lean forward and rotate its body before starting to run; or a 
character mightperform a “windup” before throwing a ball. Similarly, follow-
through actionscan be used to emphasize a previous motion. After throwing 
a ball, a charactercan continue the arm swing back to its body; or a hat can 
fly off a character thatis stopped abruptly. An action also can be emphasized 
with staging, which refersto any method for focusing on an important part 
of a scene, such as a characterhiding something. 

General Computer-Animation Functions 
Many software packages have been developed either for general 

animationdesign or for performing specialized animation tasks. Typical 
animation functionsinclude managing object motions, generating views of 
objects, producing cameramotions, and the generation of in-between frames. 
Some animation packages,such asWavefront for example, provide special 
functions for both the overall animationdesignandthe processing of 
individual objects. Others are special-purposepackages for particular 
features of an animation, such as a system for generatingin-between frames 
or a system for figure animation. 
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A set of routines is often provided in a general animation package for 
storingand managing the object database. Object shapes and associated 
parametersare stored and updated in the database. Other object functions 
include thosefor generating the object motion and those for rendering the 
object surfaces. 

Movements can be generated according to specified constraints using 
twodimensionalor three-dimensional transformations. Standard functions 
can thenbe applied to identify visible surfaces and apply the rendering 
algorithms. 

Another typical function set simulates camera movements. Standard 
cameramotions are zooming, panning, and tilting. Finally, given the 
specification for thekey frames, the in-betweens can be generated automatically. 

Computer-Animation Languages 
We can develop routines to design and control animation sequences 

within ageneral-purpose programming language, such as C, C++, Lisp, or 
Fortran, butseveral specialized animation languages have been developed. 
These languagestypically include a graphics editor, a key-frame generator, 
an in-between 
generator,and 
standard graphics 
routines. The 
graphics editor 
allows an animator 
todesign and modify 
object shapes, using 
spline surfaces, 
constructive 
solidgeometrymethods, or other representation schemes. 

An important task in an animation specification is scene description. 
Thisincludes the positioning of objects and light sources, defining the 
photometricparameters (light-source intensities and surface illumination 
properties), andsetting the camera parameters (position, orientation, and 
lens characteristics). 

Another standard function is action specification, which involves the 
layout ofmotion paths for the objects and camera. We need the usual 
graphics routines: 
viewing and perspective transformations, geometric transformations to 
generateobject movements as a function of accelerations or kinematic path 
specifications,visible-surface identification, and the surface-rendering 
operations. 

Key-frame systems were originally 
designed as a separate set of 
animationroutines for generating the in-
betweens from the user-specified key 
frames. Now,these routines are often a 
component in a more general animation 
package. In thesimplest case, each object 
in a scene is defined as a set of rigid bodies 
connectedat the joints and with a limited 
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number of degrees of freedom. As an example, the single-armed robot in 
Figure 6 has 6 degrees of freedom, which are referredto as arm sweep, 
shoulder swivel, elbow extension, pitch, yaw, and roll. We canextend the 
number of degrees of freedom for this robot arm to 9 by allowingthree-
dimensional translations for the base (Figure 7). If we also allow 
baserotations, the robot arm can have a total of 12 degrees of freedom. The 
humanbody, in comparison, has more than 200 degrees of freedom. 

Parameterized systems allow object motion characteristics to be 
specified aspart of the object definitions. The adjustable parameters control 
such object characteristicsas degrees of freedom, motion limitations, and 
allowable shape changes. 

Scripting systems allow object specifications and animation 
sequences to bedefined with a user-input script. From the script, a library of 
various objects andmotions can be constructed. 

 

Key-Frame Systems 
A set of in-betweens can be generated from the specification of two (or 

more)key frames using a key-frame system. Motion paths can be given with 
a kinematicdescription as a set of spline curves, or the motions can be 
physically based byspecifying the forces acting on the objects to be 
animated. 
 For complex scenes, we can separate the frames into individual 
componentsor objects called cels (celluloid transparencies). This term 
developed fromcartoonanimationtechniques where the background and each 
character in a scene wereplaced on a separate transparency. Then, with the 
transparencies stacked in theorder frombackground to foreground, they 
were photographed to obtain the completedframe. The specified animation 
paths are then used to obtain the next cell for each character, where the 
positions are interpolated from the key-frame times.With complex object 
transformations, the shapes of objects may change over 
time. Examples are clothes, facial features, magnified detail, evolving 
shapes, andexploding or disintegrating objects. For surfaces described with 
polygon meshes,these changes can result in significant changes in polygon 
shape such that thenumber of edges in a polygon could be different from 
one frame to the next. 
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These changes are incorporated into the development of the in-
between framesby adding or subtracting polygon edges according to the 
requirements of thedefining key frames. 
Morphing 

Transformation of object shapes from one form to another is termed 
morphing,which is a shortened form of “metamorphosing.” An animator can 
model morphingby transitioning polygon shapes through the in-betweens 
from one key frameto the next. 

Given two key frames, each with a different number of line segments 
specifyingan object transformation, we can first adjust the object 

specification in oneof the frames so that the number of polygon edges (or the 
number of polygonvertices) is the same for the two frames. This 
preprocessing step is illustrated inFigure 8. A straight-line segment in key 
frame k is transformed into two linesegments in key frame k +1. Because 
key frame k +1 has an extra vertex, we adda vertex between vertices 1 and 2 
in key frame k to balance the number of vertices(and edges) in the two key 
frames. Using linear interpolation to generate thein-betweens, we transition 
the added vertex in key frame k into vertex 3_ alongthe straight-line path 
shown in Figure 9. An example of a triangle linearlyexpanding into a 
quadrilateral is given in Figure 10. 

We can state general preprocessing rules for equalizing key frames in 
termsofeither the number of edges or the number of vertices to be added to a 
key frame.Wefirst consider equalizing the edge count, where parameters Lk 
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and Lk+1 denote thenumber of line segments in two consecutive frames. The 
maximum and minimumnumber of lines to be equalized can be determined 
asLmax = max(Lk , Lk+1), Lmin = min(Lk , Lk+1) (1) 
Next we compute the following two quantities: 
Ne = Lmax mod Lmin 
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Processing the in-betweens is simplified by initially modeling “skeleton 
(wire-frame) objects so that motion sequences can be interactively adjusted. 
Afterthe animation sequence is completely defined, objects can be fully 
rendered. 

Motion Specifications 
General methods for describing an animation sequence range from an 

explicitspecification of the motion paths to a description of the interactions 
that producethe motions. Thus, we could define how an animation is to take 
place by givingthe transformation parameters, the motion path parameters, 
the forces that are toact on objects, or the details of how objects interact to 
produce motion. 
Direct Motion Specification 

The most straightforward method for defining an animation is direct 
motion specificationof the geometric-transformation parameters. Here, we 
explicitly set thevalues for the rotation angles and translation vectors. Then 
the geometric transformationmatrices are applied to transform coordinate 
positions. Alternatively,we could use an approximating equation involving 
these parameters to specifycertain kinds of motions. We can approximate 
the path of a bouncing ball, forinstance, with a damped, rectified, sine curve 
(Figure 16): 

y(x) = A| sin(ωx + θ0)|e−kx   (10) 
whereA is the initial amplitude (height of the ball above the ground), ω is 
theangular frequency, θ0 is the phase angle, and k is the damping constant. 

This method for 
motion specification 
is particularly useful 
for simple 

userprogrammedanimation sequences. 
Goal-Directed Systems 

At the opposite extreme, we can specify the motions that are to take 
place in generalterms that abstractly describe the actions in terms of the 
final results. In otherwords, an animation is specified in terms of the final 
state of the movements. Thesesystems are referred to as goal-directed, since 
values for the motion parameters aredetermined from the goals of the 
animation. For example, we could specify thatwe want an object to “walk” or 
to “run” to a particular destination; or we couldstate that we want an object 
to “pick up” some other specified object. The inputdirectives are then 
interpreted in terms of component motions that will accomplishthe 
described task. Human motions, for instance, can be defined as a 
hierarchicalstructure of submotions for the torso, limbs, and so forth. Thus, 
when a goal, suchas “walk to the door” is given, the movements required of 
the torso and limbs to 
accomplish this action are calculated. 
Kinematics and Dynamics 
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We can also construct animation sequences using kinematic or 
dynamic descriptions.With a kinematic description, we specify the animation 
by giving motionparameters (position, velocity, and acceleration) without 
reference to causes orgoals of the motion. For constant velocity (zero 
acceleration), we designate themotions of rigid bodies in a scene by giving an 
initial position and velocity vectorfor each object. For example, if a velocity is 
specified as (3, 0, −4) km persec, then this vector gives the direction for the 
straight-line motion path and thespeed (magnitude of velocity) is calculated 
as 5 km per sec. If we also specifyaccelerations (rate of change of velocity), 
we can generate speedups, slowdowns,and curved motion paths. Kinematic 
specification of a motion can also be givenby simply describing the motion 
path. This is often accomplished using spline 
curves. 

An alternate approach is to use inverse kinematics. Here, we specify 
the initialand final positions of objects at specified times and the motion 
parameters arecomputed by the system. For example, assuming zero 
acceleration, we can determinethe constant velocity that will accomplish the 
movement of an object fromthe initial position to the final position. This 
method is often used with complexobjects by giving the positions and 
orientations of an end node of an object, suchas a hand or a foot. The 
system then determines the motion parameters of othernodes to accomplish 
the desired motion. 

Dynamicdescriptions, on the other hand, require the specification of 
the forcesthat produce the velocities and accelerations. The description of 
object behavior interms of the influence of forces is generally referred to as 
physically based modeling. 

Examples of forces affecting object motion include electromagnetic, 
gravitational,frictional, and other mechanical forces. 

Object motions are obtained from the force equations describing 
physicallaws, such as Newton’s laws of motion for gravitational and 
frictional processes,Euler or Navier-Stokes equations describing fluid flow, 
and Maxwell’s equationsfor electromagnetic forces. For example, the general 
form of Newton’s second lawfor a particle of mass m is 

F = (d/dt)(mv)   (11) 
whereF is the force vector and v is the velocity vector. If mass is constant, 
we solvethe equation F = ma, with a representing the acceleration vector. 
Otherwise, massis a function of time, as in relativistic motions or the 
motions of space vehiclesthat consume measurable amounts of fuel per unit 
time. We can also use inversedynamics to obtain the forces, given the initial 
and final positions of objects andthe type of motion required. 

Applications of physically based modeling include complex rigid-body 
systemsand such nonrigid systems as cloth and plastic materials. Typically, 
numericalmethods are used to obtain the motion parameters incrementally 
from thedynamical equations using initial conditions or boundary values. 

Character Animation 
Animation of simple objects is relatively straightforward. When we 

considerthe animation of more complex figures such as humans or animals, 
however, itbecomes much more difficult to create realistic animation. 
Consider the animationof walking or running human (or humanoid) 
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characters. Based upon observationsin their own lives of walking or running 
people, viewers will expect to see animatedcharacters move in particular 
ways. If an animated character’s movementdoesn’t match this expectation, 
the believability of the character may suffer. Thus,much of the work involved 
in character animation is focused on creating believablemovements. 
Articulated Figure Animation 

A basic technique for animating people, 
animals, insects, and other critters is tomodel them 
as articulated figures, which are hierarchical 
structures composed ofa set of rigid links that are 
connected at rotary joints (Figure 17). In less 
formalterms, this just means that we model animate 
objects as moving stick figures, orsimplified 
skeletons, that can later be wrapped with surfaces 
representing skin,hair, fur, feathers, clothes, or 
other outer coverings. 

The connecting points, or hinges, for an 
articulated figure are placed at theshoulders, hips, 
knees, and other skeletal joints, which travel along 
specifiedmotion paths as the body moves. For 
example, when a motion is specified for anobject, the 

shoulder automatically moves in a certain way and, as the shouldermoves, 
the arms move. Different types of movement, such as walking, running,or 
jumping, are defined and associated with particular motions for the joints 
andconnecting links. 

A series of walking leg motions, for instance, might be defined as 
inFigure 18. The hip joint is translated forward along a horizontal line, 
whilethe connecting links perform a series of movements about the hip, 
knee, and 
angle joints. Starting with a straight leg [Figure 18(a)], the first motion is a 
kneebend as the hip moves forward [Figure 18(b)]. Then the leg swings 
forward,returns to the vertical position, and swings back, as shown in 
Figures 18(c),(d), and (e). The final motions are a wide swing back and a 
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return to the straightvertical position, as in Figures 18(f) and (g). This 
motion cycle is repeated forthe duration of the animation as the figure 
moves over a specified distance or timeinterval. 

As a figure moves, other movements are incorporated into the various 
joints.A sinusoidal motion, often with varying amplitude, can be applied to 
the hips sothat they move about on the torso. Similarly, a rolling or rocking 
motion can beimparted to the shoulders, and the head can bob up and 
down. 
 Both kinematic-motion descriptions and inverse kinematics are used 
in figureanimations. Specifying the joint motions is generally an easier task, 
but inversekinematics can be useful for producing simple motion over 
arbitrary terrain. Fora complicated figure, inverse kinematics may not 
produce a unique animationsequence: Many different rotational motions 
may be possible for a given set ofinitial and final conditions. In such cases, a 
unique solution may be possible byadding more constraints, such as 
conservation of momentum, to the system. 
Motion Capture 

An alternative to determining the motion of a character 
computationally is todigitally record the movement of a live actor and to 
base the movement of ananimated character on that information. This 
technique, known as motion captureor mo-cap, can be used when the 
movement of the character is predetermined(as in a scripted scene). The 
animated character will perform the same series ofmovements as the live 
actor. 

The classic motion capture technique involves placing a set of markers 
atstrategic positions on the actor’s body, such as the arms, legs, hands, feet, 
andjoints. It is possible to place the markers directly on the actor, but more 
commonlythey are affixed to a special skintight body suit worn by the actor. 
The actor isthem filmed performing the scene. Image processing techniques 
are then usedto identify the positions of the markers in each frame of the 
film, and their positionsare translated to coordinates. These coordinates are 
used to determine thepositioning of the body of the animated character. The 
movement of each markerfrom frame to frame in the film is tracked and 
used to control the correspondingmovement of the animated character. 

To accurately determine the positions of the markers, the scene must 
be filmedby multiple cameras placed at fixed positions. The digitized marker 

data fromeachrecording can then be used to triangulate the position of each 
marker in threedimensions. Typical motion capture systems will use up to 
two dozen cameras,but systems with several hundred cameras exist. 
Optical motion capture systems rely on the reflection of light from a marker 
into the camera. These can be relatively simple passive systems using 
photoreflectivemarkers that reflect illumination from special lights placed 
near thecameras, or more advanced active systems in which the markers are 
poweredand emit light. Active systems can be constructed so that the 
markers illuminatein a pattern or sequence, which allows each marker to be 
uniquely identified ineach frame of the recording, simplifying the tracking 
process. 

Non-optical systems rely on the direct transmission of position 
informationfromthe markers to a recording device. Some non-optical 
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systems use inertial sensorsthat provide gyroscope-based position and 
orientation information. Othersuse magnetic sensors that measure changes 
in magnetic flux. A series of transmittersplaced around the stage generate 
magnetic fields that induce current in themagnetic sensors; that information 
is then transmitted to receivers. 

Some motion capture systems record more than just the gross 
movementsof the parts of the actor’s body. It is possible to record even the 
actor’sfacial movements. Often called performance capture systems, these 
typically use acamera trained on the actor’s face and small light-emitting 
diode (LED) lightsthat illuminate the face. Small photoreflective markers 
attached to the face reflectthe light from the LEDs and allow the camera to 
capture the small movements ofthe muscles of the face, which can then be 
used to create realistic facial animationon a computer-generated character. 
Periodic Motions 

When 
we construct 
an animation 
with repeated 
motion 
patterns, 
such as a 
rotating 
object, we 
need to be 
sure that the 
motion is 
sampled 
frequently 
enough 
torepresent 
the 
movements correctly. In other words, the motion must be synchronizedwith 
the frame-generation rate so that we display enough frames per cycleto show 
the true motion. Otherwise, the animation may be displayed incorrectly A 
typical example of an undersampled periodic-motion display is the 
wagonwheel in a Western movie that appears to be turning in the wrong 
direction. 

Figure 19 illustrates one complete cycle in the rotation of a wagon 
wheel withone red spoke that makes 18 clockwise revolutions per second. If 
this motion isrecorded on film at the standard motion-picture projection rate 
of 24 frames persecond, then the first five frames depicting this motion 
would be as shown inFigure 20. Because the wheel completes 34of a turn 
every 124 of a second, onlyone animation frame is generated per cycle, and 
the wheel thus appears to berotating in the opposite (counterclockwise) 
direction. 
In a computer-generated animation, we can control the sampling rate in 
aperiodic motion by adjusting the motion parameters.For example, we can 
set the angular increment for the motion of a rotating object so that multiple 
frames aregenerated in each revolution. Thus, a 3◦ increment for a rotation 
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angle produces120 motion steps during one revolution, and a 4◦ increment 
generates 90 steps. 

For faster motion, larger rotational steps could be used, so long as the 
numberof samples per cycle is not too small and the motion is clearly 
displayed. Whencomplex objects are to be animated, we also must take into 
account the effectthat the frame construction time might have on the refresh 
rate, as discussed inSection 1. The motion of a complex object can be much 
slower than we want itto be if it takes too long to construct each frame of the 
animation. 

Another factor that we need to consider in the display of a repeated 
motion is the effect of round-off in the calculations for the motion 
parameters. We canreset parameter values periodically to prevent the 
accumulated error from producingerratic motions. For a continuous 
rotation, we could reset parameter valuesonce every cycle (360º). 
 
 
THREE DIMENSIONAL OBJECT REPRESENTATIONS 

Graphics scenes can contain many different kinds of objectsand 
material surfaces: trees, flowers, clouds, rocks, water,bricks, wood paneling, 
rubber, paper, marble, steel, glass,plastic, and cloth, just to mention a few. 
So it may not be surprisingthat there is no single method that we can use to 
describe objectsthat will include all the characteristics of these different 
materials. 

Polygon and quadric surfaces provide precise descriptions forsimple 
Euclidean objects such as polyhedrons and ellipsoids. They areexamples of 
boundary representations (B-reps), which describea three-dimensional 
object as a set of surfaces that separate theobject interior from the 
environment. In this chapter, we considerthe features of these types of 
representation schemes and how theyare used in computer-graphics 
applications. 
Polyhedra 

The most commonly used boundary representation for a three-
dimensionalgraphics object is a set of surface polygons that enclose the 
object interior. Manygraphics systems store all object descriptions as sets of 
surface polygons. Thissimplifies and speeds up the surface rendering and 
display of objects because 
allsurfaces are described 
with linear equations. For 
this reason, polygon 
descriptionsare often 
referred to as standard 
graphics objects. In some 
cases, a polygonal 
representationis the only 
one available, but many 
packages also allow object 
surfacesto be described 
with other schemes, such 
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as spline surfaces, which are usually convertedto polygonal representations 
for processing through the viewing pipeline. 

To describe an object as a set of polygon facets,wegive the list of vertex 
coordinatesfor each polygon section over the object surface. The vertex 
coordinatesand edge information for the surface sections are then stored in 
tables alongwithother information, such as the surface normal vector for 
each polygon. Somegraphics packages provide routines for generating a 
polygon-surface mesh as aset of triangles or quadrilaterals. This allows us to 
describe a large section of anobject’s bounding surface, or even the entire 
surface, with a single command. 

And some packages also provide routines for displaying common 
shapes, suchas a cube, sphere, or cylinder, represented with polygon 
surfaces. Sophisticatedgraphics systems use fast hardware-implemented 
polygon renderers that have thecapability for displaying a million ormore 
shaded polygons (usually triangles) persecond, including the application of 
surface texture and special lighting effects. 
OpenGL Polyhedron Functions 

We have two methods for specifying polygon surfaces in an OpenGL 
program. 

Using the polygon primitiveswe can generate a variety of polyhedron 
shapes andsurface meshes. In addition, we can use GLUT functions to 
display the five regularpolyhedra. 
OpenGL Polygon Fill-Area Functions 

A set of polygon patches for a section of an object surface, or a 
completedescription for a polyhedron, can be given using the OpenGL 
primitive constantsGL POLYGON, GL TRIANGLES, GL TRIANGLE STRIP, 
GL TRIANGLE FAN,GL QUADS, and GL QUAD STRIP. For example, we 
could tessellate the lateral(axial) surface of a cylinder using a quadrilateral 
strip. Similarly, all faces of a parallelogramcan be described with a set of 
rectangles, and all faces of a triangularpyramid could be specified using a 
set of connected triangular surfaces. 
GLUT Regular Polyhedron Functions 

Some standard shapes—the five regular polyhedra—are predefined by 
routinesin the GLUT library. These polyhedra, also called the Platonic solids, 
are distinguishedby the fact that all the faces of any regular polyhedron are 
identical regularpolygons. Thus, all edges in a regular polyhedron are equal, 
all edge anglesare equal, and all angles between faces are equal. Polyhedra 
are named accordingto the number of faces in each of the solids, and the 
five regular polyhedra are theregular tetrahedron (or triangular pyramid, 
with 4 faces), the regular hexahedron(or cube, with 6 faces), the regular 
octahedron (8 faces), the regular dodecahedron 
(12 faces), and the regular icosahedron (20 faces). 

Ten functions are provided in GLUT for generating these solids: five of 
the functions produce wire-frame objects, and five display the polyhedra 
facetsas shaded fill areas. The displayed surface characteristics for the fill 
areas aredetermined by the material properties and the lighting conditions 
that we set fora scene. Each regular polyhedron is described in modeling 
coordinates, so thateach is centered at the world-coordinate origin. 
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We obtain the four-sided, regular triangular pyramid using either of 
thesetwo functions: 
glutWireTetrahedron ( ); 
orglutSolidTetrahedron ( ); 

This polyhedron is generated with its center at the world-coordinate 
origin andwith a radius (distance from the center of the tetrahedron to any 
vertex) equalto√3. 
The six-sided regular hexahedron (cube) is displayed with 
glutWireCube (edgeLength); 
or 
glutSolidCube (edgeLength); 

Parameter edgeLength can be assigned any positive, double-precision 
floatingpointvalue, and the cube is centered on the coordinate origin.To 
display the eight-sided regular octahedron, we invoke either of the following 
commands: 
glutWireOctahedron ( ); 
or 
glutSolidOctahedron ( ); 

This polyhedron has equilateral triangular faces, and the radius 
(distance fromthe center of the octahedron at the coordinate origin to any 
vertex) is 1.0. 

The twelve-sided regular dodecahedron, centered at the world-
coordinateorigin, is generated with 
glutWireDodecahedron ( ); 
or 
glutSolidDodecahedron ( ); 

Each face of this polyhedron is a pentagon.The following two functions 
generate the twenty-sided regular icosahedron: 
glutWireIcosahedron ( ); 
or 
glutSolidIcosahedron ( ); 

Default radius (distance from the polyhedron center at the coordinate 
origin toany vertex) for the icosahedron is 1.0, and each face is an 
equilateral triangle. 
Example GLUT Polyhedron Program 

Using the GLUT functions for the Platonic solids, the following 
program generatesa transformed, wire-frame perspective display of these 
polyhedrons. All fivesolids are positioned within one display window (shown 
in Figure 1). 
#include <GL/glut.h> 
GLsizei winWidth = 500, winHeight = 500; // Initial display-window 
size. 
void init (void) 
{ 
glClearColor (1.0, 1.0, 1.0, 0.0); // White display window. 
} 
void displayWirePolyhedra (void) 
{ 
glClear (GL_COLOR_BUFFER_BIT); // Clear display window. 
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glColor3f (0.0, 0.0, 1.0); // Set line color to blue. 
/* Set viewing transformation. */ 
gluLookAt (5.0, 5.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 
/* Scale cube and display as wire-frame parallelepiped. */ 
glScalef (1.5, 2.0, 1.0); 
glutWireCube (1.0); 
/* Scale, translate, and display wire-frame dodecahedron. */ 
glScalef (0.8, 0.5, 0.8); 
glTranslatef (-6.0, -5.0, 0.0); 
glutWireDodecahedron ( ); 
/* Translate and display wire-frame tetrahedron. */ 
glTranslatef (8.6, 8.6, 2.0); 
glutWireTetrahedron ( ); 
/* Translate and display wire-frame octahedron. */ 
glTranslatef (-3.0, -1.0, 0.0); 
glutWireOctahedron ( ); 
/* Scale, translate, and display wire-frame icosahedron. */ 
glScalef (0.8, 0.8, 1.0); 
glTranslatef (4.3, -2.0, 0.5); 
glutWireIcosahedron ( ); 
glFlush ( ); 
} 
void winReshapeFcn (GLint newWidth, GLint newHeight) 
{ 
glViewport (0, 0, newWidth, newHeight); 
glMatrixMode (GL_PROJECTION); 
glFrustum (-1.0, 1.0, -1.0, 1.0, 2.0, 20.0); 
glMatrixMode (GL_MODELVIEW); 
glClear (GL_COLOR_BUFFER_BIT); 
} 
void main (int argc, char** argv) 
{ 
glutInit (&argc, argv); 
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 
glutInitWindowPosition (100, 100); 
glutInitWindowSize (winWidth, winHeight); 
glutCreateWindow ("Wire-Frame Polyhedra"); 
init ( ); 
glutDisplayFunc (displayWirePolyhedra); 
glutReshapeFunc (winReshapeFcn); 
glutMainLoop ( ); 
} 
Curved Surfaces 

Equations for objects with curved boundaries can be expressed in 
either a parametricor a nonparametric form. The various objects that are 
often useful in graphicsfunctions, and spline surfaces. These input object 
descriptions typically aretessellated to produce polygon-mesh 
approximations for the surfaces. 
Quadric Surfaces 
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A frequently used class of objects are the quadric surfaces, which are 
describedwith second-degree equations (quadratics). They include spheres, 
ellipsoids, tori,paraboloids, and hyperboloids. Quadric surfaces, particularly 
spheres and ellipsoids,are common elements of graphics scenes, and 
routines for generating thesesurfaces are often available in graphics 
packages. Also, quadric surfaces can beproduced with rational spline 
representations. 
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SPLINE REPRESENTATION 
Splines are another example of boundary representationmodeling 

techniques. In drafting terminology, a spline is aflexible strip used to 
produce a smooth curve through a designatedset of points. Several small 
weights are distributed along thelength of the strip to hold it in position on 
the drafting table as thecurve is drawn. The term spline curve originally 
referred to a curvedrawn in this manner. We can mathematically describe 
such a curvewith a piecewise cubic polynomial function whose first and 
secondderivatives are continuous across the various curve sections. In 
computergraphics, the term spline curve now refers to any compositecurve 
formed with polynomial sections satisfying any specified 
continuityconditions at the boundary of the pieces. A spline surface canbe 
described with two sets of spline curves. There are several differentkinds of 
spline specifications that are used in computer-graphicsapplications. Each 
individual specification simply refers to a particulartype of polynomial with 
certain prescribed boundary conditions. 

Splines are used to design curve and surface shapes, to digitize 
drawings, andto specify animation paths for the objects or the camera 
position in a scene. Typicalcomputer-aided design (CAD) applications for 
splines include the design of automobilebodies, aircraft and spacecraft 
surfaces, ship hulls, and home appliances. 
BEZIER CURVES 

This spline approximation method was developed by the French 
engineer PierreBézier for use in the design of Renault automobile bodies. 
Bézier splines have anumber of properties that make them highly useful 
and convenient for curve andsurface design. They are also easy to 
implement. For these reasons, Bézier splinesare widely available in various 
CAD systems, in general graphics packages, andin assorted drawing and 
painting packages. 
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In general, a Bézier curve section can be fitted to any number of 
control points,although some graphic packages limit the number of control 
points to four. Thedegree of the Bézier polynomial is determined by the 
number of control pointsto be approximated and their relative position. As 
with the interpolation splines,we can specify the Bézier curve path in the 
vicinity of the control points usingblending functions, a characterizing 
matrix, or boundary conditions. For generalBézier curves, with no 
restrictions on the number of control points, the 
blendingfunctionspecification is the most convenient representation. 
Bézier Curve Equations 

We first consider the general case of n + 1 control-point positions, 
denoted aspk = (xk ,yk , zk), with k varying from 0 to n. These coordinate 
points are blendedto produce the following position vector P(u), which 
describes the path of anapproximating Bézier polynomial function between 
p0 and pn: 
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where the vector values for pku,kv specify the positions of the  
(nu+ 1) by (nv + 1)control points. B-spline surfaces exhibit the same 
properties as those of their componentB-spline curves. A surface can be 
constructed from selected values for degreeparameters du and dv, which set 
the degrees for the orthogonal surface polynomialsat du − 1 and dv − 1. For 
each surface parameter u and v, we also select valuesfor the knot vectors, 
which determines the parameter range for the blendingfunctions. 
 
COLOR MODELS AND COLOR APPLICATIONS.  

Our discussions of color up to this point have concentratedon 
methods involving red, green, and blue (RGB) components,which we use for 
generating displays on videomonitors. Several other color descriptions are 
useful as well incomputer-graphics applications. Some methods are used to 
describecolor output on printers and plotters, some are used for 
transmittingand storing color information, and others are used to provide a 
moreintuitive color-parameter interface to a program. 
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illustrates the time-varying oscillations for the magnitude of the electric field 

within one plane. The time between any two consecutive positions on the wave 

that have the same amplitude is called the period (T) of the wave, which is the 

inverse of the frequency (i.e., T =1/ f ). And the distance that the wave has traveled 

from the beginning of one oscillation to the beginning of the next oscillation 

is called the wavelength (λ). For one spectral color (a monochromatic wave), the 

wavelength and frequency are inversely proportional to each other, with the proportionality 

constant as the speed of light (c): 

c = λf (1) 

Frequency for each spectral color is a constant for all materials, but the speed of 

light and the wavelength are material dependent. In a vacuum, the speed of light is 

very nearly c =3×1010 cm/sec. Light wavelengths are very small, so length units 

for designating spectral colors are usually given in angstroms (1 ◦A =10−8 cm) 

or in nanometers (1nm = 10−7 cm). An equivalent term for nanometer is millimicron. 

Light at the low-frequency end of the spectrum (red) has a wavelength 

of approximately 780 nanometers (nm), and the wavelength at the other end of 

the spectrum (violet) is about 380 nm. Because wavelength units are somewhat 

more convenient to deal with than frequency units, spectral colors are typically 

specified in terms of the wavelength values in a vacuum. 

A light source such as the sun or a standard household light bulb emits all 

frequencies within the visible range to produce white light. When white light 
is incident upon an opaque object, some frequencies are reflected and some are 

absorbed. The combination of frequencies present in the reflected light determines 

what we perceive as the color of the object. If low frequencies are predominant 

in the reflected light, the object is described as red. In this case, we say that the 

perceived light has a dominant frequency (or dominant wavelength) at the red 

end of the spectrum. The dominant frequency is also called the hue, or simply the 

color, of the light. 

Psychological Characteristics of Color 
Other properties besides frequency are needed to characterize our perception of 

light. When we view a source of light, our eyes respond to the color (or dominant 

frequency) and two other basic sensations. One of these we call the brightness, 

which corresponds to the total light energy and can be quantified as the luminance of the light. The third 

perceived characteristic is called the purity, or the saturation, 

of the light. Purity describes how close a light appears to be to a pure spectral 

color, such as red. Pastels and pale colors have low purity (low saturation) 

and they appear to be nearly white. Another term, chromaticity, is used to refer 

collectively to the two properties describing color characteristics: purity and 

dominant frequency (hue).  

Radiation emitted by a white light source has an energy distribution that can 

be represented over the visible frequencies as in Figure 3. Each frequency component 

within the range from red to violet contributes more or less equally to the 

total energy, and the color of the source is described as white.Whena dominant frequency 
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is present, the energy 

distribution for the 

source takes a form such 

as that in 

Figure 4.We would 

describe this light as a 
red color (the dominant 

frequency), 

with a relatively high 

value for the purity. The 

energy density of the 

dominant 

light component is 

labeled as ED in this 

figure, and the contributions from the 

other frequencies produce white light of energy density EW.We can calculate the 

brightness of the source as the area under the curve, which gives the total energy 

density emitted. Purity (saturation) depends on the difference between ED and EW. The larger the energy ED of 
the dominant frequency compared to the 

white-light component EW, the higher the purity of the light.We have a purity of 

100 percent when EW = 0 and a purity of 0 percent when EW = ED. 

Color Models 
Any method for explaining the properties or behavior of color within some particular 

context is called a color model. No single model can explain all aspects 

of color, so we make use of different models to help describe different color 

characteristics. 

Primary Colors 
When we combine the light from two or more sources with different dominant 

frequencies, we can vary the amount (intensity) of light from each source to generate 

a range of additional colors. This represents one method for forming a color 

model. The hues that we choose for the sources are called the primary colors, and 

thecolor gamut for the model is the set of all colors that we can produce from the 

primary colors. Two primaries that produce white are referred to as complementary 

colors. Examples of complementary color pairs are red and cyan, green and 

magenta, and blue and yellow. 

No finite set of real primary colors can be combined to produce all possible 

visible colors. Nevertheless, three primaries are sufficient for most purposes, and 

colors not in the color gamut for a specified set of primaries can still be described 

using extended methods. Given a set of three primary colors, we can characterize 
any fourth color using color-mixing processes. Thus, a mixture of one or two of 

the primaries with the fourth color can be used to match some combination of the 

remaining primaries. In this extended sense, a set of three primary colors can be 

considered to describe all colors. Figure 5 shows a set of color-matching functions 

for three primaries and the amount of each needed to produce any spectral color. 

The curves plotted in Figure 5 were obtained by averaging the judgments of a 

large number of observers. Colors in the vicinity of 500 nm can be matched only 

by “subtracting” an amount 
of red light from a 

combination of blue and 

green 
lights. This means that a 

color around 500 nm is 

described only by 

combining 

that color with an amount 

of red light to produce the 

blue-green combination 

specified in the diagram. Thus, an RGB color monitor cannot display colors in the 

neighborhood of 500 nm. 
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Intuitive Color Concepts 
An artist creates a color painting by mixing color pigments with white and black 

pigments to form the various shades, tints, and tones in the scene. Starting with 

the pigment for a “pure color” (“pure hue”), the artist adds a black pigment 
to produce different shades of that color. The more black pigment, the darker 

the shade. Similarly, different tints of the color are obtained by adding a white 

pigment to the original color, making it lighter as more white is added. Tones of 

the color are produced by adding both black and white pigments. 

To many, these color concepts are more intuitive than describing a color as a 

set of three numbers that give the relative proportions of the primary colors. It is 

generally much easier to think of creating a pastel red color by adding white to 

pure red and producing a dark blue color by adding black to pure blue. Therefore, 

graphics packages providing color palettes to a user often employ two or more 
color models. One model provides an intuitive color interface for the user, and 

the others describe the color components for the output devices. 

3 Standard Primaries and 

the Chromaticity Diagram 
Because no finite set of light sources can be combined to display all possible 

colors, three standard primaries were defined in 1931 by the International 

Commission on Illumination, referred to as the CIE (Commission Internationale 

de l’ ´ Eclairage). The three standard primaries are imaginary colors. They are 

defined 

mathematically with positive color-matching functions (Figure 6) that 
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The YIQ and Related Color Models 
Although an RGB graphics monitor requires separate signals for the 

red, green,and blue components of an image, a television monitor uses a 
composite signal. 

NTSC color encoding for forming the composite video signal is called 
the YIQcolor model. 
The YIQ Parameters 

In the YIQ color model, parameter Y is the same as the Y component 
in theCIE XYZ color space. Luminance (brightness) information is conveyed 
by the Yparameter, while chromaticity information (hue and purity) is 
incorporated intothe Iand Q parameters. A combination of red, green, and 
blue is chosen forthe Y parameter to yield the standard luminosity curve. 
Because Y contains theluminance information, black-and-white television 
monitors use only theY signal. 
 Parameter I contains orange-cyan color information that provides the 
flesh-toneshading, and parameter Q carries green-magenta color 
information. 

The NTSC composite color signal is designed to provide information in 
aform that can be received by black-and-white television monitors, which 
obtaingrayscale information for a picture within a 6-MHz bandwidth. Thus, 
theYIQ information is also encoded within a 6-MHz bandwidth, but the 
luminanceand chromaticity values are encoded on separate analog signals. 
In this way, theluminance signal is unchanged for black-and-white 
monitors, and the colorinformation is simply added within the same 
bandwidth. Luminance information,the Y value, is conveyed as an amplitude 
modulation on a carrier signal witha bandwidth of about 4.2 MHz. 
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Chromaticity information, the I and Q values,is combined on a second 
carrier signal that has a bandwidth of about 1.8 MHz. 
 

The parameter names I and Q refer to the modulation methods used to 
encodethe color information on this carrier. An amplitude-modulation 
encoding (the“in-phase” signal) transmits the Ivalue, using about 1.3 MHz of 
the bandwidth. 

And a phase-modulation encoding (the “quadrature” signal), using 
about0.5 MHz, carries the Q value. 

Luminance values are encoded at a higher precision in the NTSC 
signal(4.2 MHz bandwidth) than the chromaticity values (1.8 MHz 
bandwidth),because we can detect small brightness changes more easily 
compared to smallcolor changes. However, the lower precision for the 
chromaticity encoding doesresult in some degradation of the color quality for 
an NTSC picture. 

Y = 0.299 R + 0.587 G + 0.114 B 
I = R − Y (8) 
Q = B − Y 

Transformations Between RGB and YIQ Color Spaces 
An RGB color is converted to a set of YIQ values using an NTSC 

encoder thatimplements the calculations in Equation 9 and modulates the 
carrier signals. 

The conversion from RGB space to YIQ space is accomplished using 
the followingtransformation matrix: 
 

 

 

Conversely, an NTSC video signal is converted to RGB color values 
using anNTSC decoder, which first separates the video signal into the YIQ 
components,and then converts the YIQ values to RGB values. The 
conversion from YIQ spaceto RGB space is accomplished with the inverse of 
transformation 9: 
 

 

 

The YUV and YCrCb Systems 
Because of the lower bandwidth assigned to the chromaticity 

information in theNTSC composite analog video signal, the color quality of 
an NTSC picture issomewhat impaired. Therefore, variations of the YIQ 
encoding have been developedto improve the color quality of video 
transmissions. One such encoding isthe YUV set of color parameters, which 
provides the composite color informationfor video transmissions by systems 
such as Phase Alternation Line (PAL) Broadcasting,used in most of Europe, 
as well as Africa, Australia, and Eurasia. Anothervariation of YIQ is the 
digital encoding called YCrCb. This color representation isused for digital 
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video transformations, and it is incorporated into various graphicsfile 
formats, such as the JPEG syste . 
6 The CMY and CMYK Color Models 

A video monitor displays color patterns by combining light that is 
emitted fromthe screen phosphors, which is an additive process. However, 
hard-copy devices,such as printers and plotters, produce a color picture by 
coating a paper withcolor pigments. We see the color patterns on the paper 
by reflected light, whichis a subtractive process. 
The CMY Parameters 

A subtractive color model can be formed with the three primary colors 
cyan,magenta, and yellow. As we have noted, cyan can be described as a 
combinationof green and blue. Therefore, when white light is reflected from 
cyancoloredink, the reflected light contains only the green and blue 
components,and the red component is absorbed, or subtracted, by the ink. 
Similarly, magentaink subtracts the green component from incident light, 
and yellow subtracts theblue component. A unit cube representation for the 
CMY model is illustrated inFigure 13. 

In the CMY model, the spatial position (1,1,1) 
represents black, becauseall components of the 
incident light are subtracted. The origin represents 
whitelight. Equal amounts of each of the primary 
colors produce shades of gray alongthe main 
diagonal of the cube. A combination of cyan and 
magenta ink producesblue light, because the red 
and green components of the incident light 
areabsorbed. Similarly, a combination of cyan and 
yellow ink produces green light,and a combination of 
magenta and yellow ink yields red light. 
The CMY printing process often uses a collection of 
four ink dots, which arearranged in a close pattern 
somewhat as an RGB monitor uses three 
phosphordots. Thus, in practice, the CMY color model is referred to as the 
CMYK model,where K is the black color parameter. One ink dot is used for 
each of the primarycolors (cyan, magenta, and yellow), and one ink dot is 
black. A black dot isincluded because reflected light fromthe cyan, magenta, 
and yellow inks typicallyproduce only shades of gray. Some plotters produce 

different color combinationsby spraying the ink for the three primary colors 
over each other and allowingthem to mix before they dry. For black-and-
white or grayscale printing, only theblack ink is used. 
Transformations Between CMY and RGB Color Spaces 

We can express the conversion from an RGB representation to a CMY 
representationusing the following matrix transformation: 
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In this transformation, the unit column vector represents the black 
point in theCMY color space. 

For the conversion from RGB to the CMYK color space, we first set K = 
max(R, G, B). Then K is subtracted from each of C, M, and Y in Equation 11. 
Similarly, for the transformation fromCMYKtoRGB,wefirst set  

K =min(R,G, B). 
Then K is subtracted fromeach of R, G, and B in Equation 12. In 

practice, thesetransformation equations are often modified to improve the 
printing quality fora particular system. 
The HSV Color Model 

Interfaces for selecting colors often use a color model based on 
intuitive concepts,rather than a set of primary colors.We can give a color 
specification in an intuitivemodel by selecting a spectral color and the 
amounts of white and black that areto be added to that color to obtain 
different shades, tints, and tones (Section 2). 
The HSV Parameters 

Color parameters in this model are called hue (H), saturation (S), and 
value (V).Wederive this three-dimensional color space by relating the HSV 
parameters to thedirections in the RGB cube. If we imagine viewing the cube 
along the diagonalfromthe white vertex to the origin (black),wesee an outline 
of the cube that has thehexagon shape shown in Figure 14. The boundary of 
the hexagon representsthe various hues, and it is used as the top of the 
HSV hexcone (Figure 15). 

In HSV space, saturation S is measured along a horizontal axis, and 
the 
valueparameter V 
is measured along 
a vertical axis 
through the 
center of the 
hexcone. 
 Hue is 
represented as an 
angle about the 
vertical axis, 
ranging from 0◦ at 
redthrough 360◦. 
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 Vertices of the hexagon are separated by 60◦ intervals. Yellow is at60◦, 
green at 120◦, and cyan (opposite the red point) is at H = 180◦. 
Complementarycolors are 180◦ apart. 

Saturation parameter S is used to designate the purity of a color. A 
pure color(spectral color) has the value S=1.0, and decreasing S values tend 
toward thegrayscale line (S = 0) at the center of the hexcone. 

Value V varies from 0 at the apex of the hexcone to 1.0 at the top 
plane. Theapex of the hexcone is the black point. At the top plane, colors 
have theirmaximumintensity. When V = 1.0 and S = 1.0, we have the pure 
hues. Parameter valuesfor the white point are V = 1.0 and S = 0. 

For most users, this is a more convenient model for selecting colors. 
Startingwith a selection for a pure hue, which specifies the hue angle H and 
sets  

V = S =1.0,  
we describe the color we want in terms of adding either white or black 

to thepure hue. Adding black decreases the setting for V while S is held 
constant. Toget a dark blue, for instance, V could be set to 0.4 with S = 1.0 
and H = 240◦. 

Similarly, when white is to be added to the selected hue, parameter S 
is decreasedwhile keeping V constant. A light blue could be designated with 
S = 0.3 whileV = 1.0 and H = 240◦. By adding some black and some white, 
we decrease bothV and S. An interface for this model typically presents the 
HSV parameter choicesin a color palette containing sliders and a color 
wheel. 
Selecting Shades, Tints, and Tones 

Color regions for selecting shades, tints, and tones are represented in 
the crosssectionalplane of the HSV hexcone shown in Figure 16. Adding 
black to aspectral color decreases V along the side of the hexcone toward the 
black point. 

Thus, various shades 
are represented with the 
values S=1.0 and 0.0≤ V 
≤1.0.Adding white to 
spectral colors produces the 
tints across the top plane of 
thehexcone, where 
parameter values are V = 
1.0 and 0 ≤ S ≤ 1.0. Various 
tonesare obtained by 
adding both black and white to spectral colors, which generatescolor points 
within the triangular cross-sectional area of the hexcone.The human eye can 
distinguish about 128 different hues and about 130 differenttints 
(saturation levels). For each of these, a number of shades (value settings)can 
be detected, depending on the hue selected. About 23 shades are 
discerniblewith yellow colors, and about 16 different shades can be seen at 
the blue end ofthe spectrum. This means that we can distinguish about 
128×130×23 = 382,720different colors. For most graphics applications, 128 
hues, 8 saturation levels, and16 value settings are sufficient. With this 
range of parameters in the HSV colormodel, 16,384 colors are available to a 
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user. These color values can be stored in14 bits per pixel, or we could use 
color-lookup tables and fewer bits per pixel. 
Transformations Between HSV and RGB Color Spaces 

To determine the operations required for the transformations between 
the HSVand RGB spaces, we first consider how the HSV hexcone can be 
constructed fromthe RGB cube. The diagonal of the RGB cube from black 
(the origin) to whitecorresponds to the V axis of the hexcone. Also, each 
subcube of the RGB cube correspondsto a hexagonal cross-sectional area of 
the hexcone. At any cross section,all sides of the hexagon and all radial lines 
from the V axis to any vertex havethe value V. Thus, for any set of RGB 
values, V is equal to the value of the maximumRGB component. The HSV 
point corresponding to this set of RGB valueslies on the hexagonal cross 
section at value V. Parameter S is then determined asthe relative distance of 
this point from the V axis. Parameter H is determined bycalculating the 
relative position of the point within each sextant of the hexagon. 

An algorithm for mapping any set of RGB values into the 
corresponding HSVvalues is given in the following procedure: 
The HLS Color Model 

Another model 
based on intuitive color 
parameters is the HLS 
system used bythe 
Tektronix Corporation. 
This color space has the 
double-cone 
representationshown in 
Figure 17. The three 
parameters in this color 
model are called hue(H), 
lightness (L), and 
saturation (S). 

Hue has the same 
meaning as in the HSV 
model. It specifies an 
angle aboutthe vertical 
axis that locates a hue 
(spectral color). In this 
model,  

H = 0◦ correspondsto blue. The remaining colors are specified around 
the perimeter of thecone in the same order as in the HSV model. Magenta is 
located at H =60◦, red isat H =120◦, and cyan is at H =300◦. Again, 
complementary colors are 180◦aparton the double cone. 

The vertical axis in this model is called lightness, L. At L = 0, we have 
black,and at L = 1.0, we have white. Grayscale values are along the L axis, 
and thepure colors lie on the L = 0.5 plane. 

Saturation parameter S again specifies the purity of a color. This 
parametervaries from 0 to 1.0, and pure colors are those for which S = 1.0 
and L = 0.5. AsS decreases, more white is added to a color. The grayscale 
line is at S = 0. 
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To specify a color, we begin by selecting hue angle H. Then a 
particular shade,tint, or tone for that hue is obtained by adjusting 
parameters L and S.We obtain alighter color by increasing L, and we obtain 
a darker color by decreasing L. WhenS is decreased, the spatial color point 
moves toward the grayscale line. 
Color Selection and Applications 

A graphics package can provide color capabilities in a way that aids us 
in makingcolor selections. For example, an interface can contain sliders and 
color wheelsinstead of requiring that all color specifications be provided as 
numerical valuesfor the RGB components. In addition, some aids can be 
provided for choosingharmonious color combinations and for basic color 
selection guidelines. 

One method for obtaining a set of coordinating colors is to generate 
the colorcombinations from a small subspace of a color model. If colors are 
selected at regularintervals along any straight line within the RGB or CMY 
cube, for example,we can expect to obtain a set of well-matched colors. 
Randomly selected hues canbe expected to produce harsh and clashing 
color combinations. Another considerationin color displays is the fact that 
we perceive colors at different depths. 

This occurs because our eyes focus on colors according to their 
frequency. Blues,in particular, tend to recede. Displaying a blue pattern 
next to a red pattern cancause eye fatigue, because we continually need to 
refocus when our attention isswitched from one area to the other. This 
problem can be reduced by separatingthese colors or by using colors from 
one-half or less of the color hexagon in theHSV model. With this technique, 
a display contains either blues and greens orreds and yellows. 

As a general rule, the use of a smaller number of colors produces a 
betterlookingdisplay than one with a large number of colors. Also, tints and 
shadestend to blend better than the pure hues. For a background, gray or 
the complementof one of the foreground colors is usually best. 

 
***** 


