
1

2

UNIT-I

1.1 Introduction to Compiler

o A compiler is a translator that converts the high-level language into the machine language.

o High-level language is written by a developer and machine language can be understood by the

processor.

o The main purpose of compiler is to change the code written in one language without changing the

meaning of the program.

o When you execute a program which is written in HLL programming language then it executes into

two parts.

o In the first part, the source program compiled and translated into the object program (low level

language).

o In the second part, object program translated into the target program through the assembler.

Fig: Execution process of source program in Compiler

UNIT I

Introduction to Compilers - Finite Automata and lexical Analysis.

UNIT II

Syntax Analysis: Context free grammars - Derivations and parse trees – Basic parsing
techniques - LR parsing.

UNIT III

Syntax - directed translation, symbol tables.

UNIT IV

Code optimization - More about code optimization.

UNIT V

Code generation - Error detection and recovery.

3

1.2 Compiler Phases

The compilation process contains the sequence of various phases. Each phase takes source program in one

representation and produces output in another representation. Each phase takes input from its previous stage.

There are the various phases of compiler:

Fig: phases of compiler

Lexical Analysis:

Lexical analyzer phase is the first phase of compilation process. It takes source code as input. It reads the

source program one character at a time and converts it into meaningful lexemes. Lexical analyzer represents

these lexemes in the form of tokens.

4

Syntax Analysis

Syntax analysis is the second phase of compilation process. It takes tokens as input and generates a parse tree

as output. In syntax analysis phase, the parser checks that the expression made by the tokens is syntactically

correct or not.

Semantic Analysis

Semantic analysis is the third phase of compilation process. It checks whether the parse tree follows the rules

of language. Semantic analyzer keeps track of identifiers, their types and expressions. The output of semantic

analysis phase is the annotated tree syntax.

Intermediate Code Generation

In the intermediate code generation, compiler generates the source code into the intermediate code.

Intermediate code is generated between the high-level language and the machine language. The intermediate

code should be generated in such a way that you can easily translate it into the target machine code.

Code Optimization

Code optimization is an optional phase. It is used to improve the intermediate code so that the output of the

program could run faster and take less space. It removes the unnecessary lines of the code and arranges the

sequence of statements in order to speed up the program execution.

Code Generation

Code generation is the final stage of the compilation process. It takes the optimized intermediate code as

input and maps it to the target machine language. Code generator translates the intermediate code into the

machine code of the specified computer.

5

Example:

6

1.3 Lexical Analysis Phase

The purpose of the lexical analyzer is to read the source program, one character

at time, and to translate it into a sequence of primitive units called tokens. Keywords,

identifiers, constants, and operators are examples of tokens.

 The Role of the Lexical Analyzer

The lexical Analyzer could be a separate pass, placing its output on an intermediate

file from which the parser would then take its input, or the lexical analyzer and parser

are together in the same pass where the lexical analyzer acts as a subroutine which is

called by the parser whenever it needs a new token. This organization eliminates the

need for the intermediate file. In this arrangement, the lexical analyzer returns to the

parser a representation for the token it has found. The representation is an integer

code if the token is a simple construct such as a left parenthesis, comma or colon.

The representation is a pair consisting of an integer code and a pointer to a table if the

token is a more complex element such as an identifier or constant. T h e integer

code gives the token type and the pointer points to the value of that token. Pairs are

also returned whenever we wish to distinguish between instances of tokens. For

example, we may treat "operator" as a token and let the second component of the pair

indicate whether the operator found is +,*, and so on.

 The Need for Lexical Analyzer

The purpose of splitting the analysis of the source program into two phases, lexical

analysis and syntax analysis is to simplify the overall design of a compiler. It is easier

to specify the structures of tokens than the syntactic structure of the source program.

Consequently, we can construct a more specialized, and hence more efficient,

recognizer for tokens than for the syntactic structure.

Other functions sometimes performed by the lexical analyzer are keeping track of line

numbers, stripping out white space (such as redundant blanks and tabs), and deleting

comments.

Specification of tokens

String and languages

First we introduce some terms that dealing with languages. We shall use the term

7

"alphabet" or "character class", to denote any finite set of symbols.

The set {0, 1} is an alphabet. It consists of the two symbols 0 and 1, and it is

called binary alphabet. Two important examples of programming language alphabets

are the ASCII and EBCDIC character sets.

A string is a finite sequence of symbols, such as 0011. Sequence and word are

synonyms for string. The length of the string x, usually denoted |x| is the total

number of the symbols in x. For example 01101 is a string of length 5. A special string

in the empty string, which we shall denote by ε. . This string is of length zero.

If x and y are string, then the concatenation of x and y; written x.y or xy, is the string

formed by the symbol of x followed by the symbol of y. For example if x=abc and

y=de, where a, b, c, d, e are symbols, then xy=abcde. The condition of the empty string

with any string is that string, more formally εx=xε=x

We may think of condition as a "product". It thus makes sense to talk of exponentiation

of string as representing an iterated project. For example, x1=x, x2=xx, x3=xxx and so

on. In general, xi is the string x repeated i times. As a useful convention, we take x0 to

be ε for any string x. Thus, ε, is the identity of concatenation.

The term languages to mean any set of string formed from some specific

alphabet.

The notation of concatenation can also be applied to languages. If L and M are

languages, then L.M is the language consisting of all string xy, which can be found by

selecting a string x from L, and a string y from M, and concatenating them in that

order. That is,

LM= {xy|x is in L and y in M} we call LM the concatenation of L and M.

Example: Let L be {0, 01,110}, and let M be {10,110}.

Then LM= {010, 0110, 01110, 11010, 110110}.

We use Li to stand for LL … L (i times). It is logical to define L0 to be { }.

8

The union of languages L and M is given by

L M = {x x is in L or x is in M}.

The empty set, , is the identity under union, since

L=L =L

And L=L =

There is another operation on languages which plays an important role in

specifying tokens. This is the kleen closure operator. We use L* to denote the concatenation of

language L with itself any number of times.

L*= ∞Li
i=0

Example

Let D be the language consisting of the string 0, 1… 9, that is, each string is a single

decimal digit. Then D* is all strings of digits, including the empty string. For example, if

L= {aa}, then L* is all string of an even number of a's,

since L0= { }, L1= {aa}, L2= {aaaa}, If we wished to exclude , we could

write L.(L*), to denote that language. That is:-

L.(L*) =L. ∞Li = ∞Li+1 = ∞ i

i=0

i=0

L
i=1

9

We shall often use the L* for L.(L*). The unary postfix operator + is called positive closure, and

denotes "one or more instances of".

1.4 Definition of Regular Expression

 After the definition of the string and languages, we are ready to describe regular expressions,

the notation we shall use to define the class of languages known as regular sets. Recall that a token is

either a single string (such as a punctuation symbol) or one of a collection of string of a certain type

(such as an identifier). If we view the set of strings in each token class as a language, we can use the

regular-expression notation to describe tokens.

In regular expression notation we could write the definition for identifier as:

The vertical bar means "or" that is union, the parentheses are used to group sub expressions,

and the star is the closure operator meaning "zero or more instances".

What we call the regular expression over alphabet Σ are exactly those expressions that can be

constructed from the following rules. Each regular expression denotes a language and we gives the

rules for construction of the denoted languages along with the regular-expression construction rules.

10

Example: The token discussed in fig (5), can be described by regular expression

as follows:

For any regular expression R, S and T, the following axioms hold:-

11

1.5 A simple Approach to the Design of Lexical Analyzers

One way to begin the design of any program is to describe the behavior of the program

by a flowchart. This approach is particularly useful when the program is a lexical analyzer,

because the action taken is highly dependent on what characters have been seen recently.

Remembering previous characters by the position in a flowchart is a valuable tool, so

much so that a specialized kind of flowchart for lexical analyzer, called a transition

diagram, has evolved. In a transition diagram, the boxes of the flowchart are drawn as circles

and called states. The states are connected by arrow, called edges. The labels on the

various edges leaving a state indicate the input characters that can appear after that state.

Letter or digit

Fig (4) Transition diagram for identifier
Fig (4) shows a transition diagram for an identifier, defined to be a letter followed by

any number of letters or digits. The starting state of the transition diagram is state 0, the

edge from which indicates that the first input character must be a letter. If this is the case,

we enter state 1 and look at the next input character if this is a letter or the digit, we

continue this way, reading letters and digits, and making transition from state 1 to itself,

until the next input characters is a delimiter for an identifier, which we have assume is any

character that is not a letter or a digit. On reading the delimiter, we enter state 2.

To turn a collection of transition diagram into a program, we construct a segment of

code for each state. The first step to be done in the code for any state is to obtain the next

character from the input buffer. For this purpose we use a function GETCHAR, which

returns the next character, advancing the look ahead pointer at each call. The next step is to

Start Letter Delimiter *
0 1 2

12

determine which edge, if any, out of the state is labeled by a character or class of

characters that includes the character just read. If such an edge is found, control is

transferred to the state pointed to by that edge. If no such edge is found, and the state is

not one which indicated that a token has been found (indicated by a double circle), we have

fail to find this token. The look ahead pointer must be retracted to where the beginning

pointer is, and another token must be searched for, using another transition diagram. If all

transition diagrams have been tried without success, a lexical error has been detected, and

an error correction routine must be called.

Consider the transition diagram in fig (4), the code for state 0 might be:-

State 0: C: = GETCHAR ();

If LETTER(C) then goto state 1

else FAIL ()

Here, LETTER is a procedure which returns true if and only if C is a letter. Fail() is a

routine which retracts the lookahead pointer and starts up the next transition diagram, if

there is one, or calls the error routine. The code for state 1 is:

State 1 C:=GETCHAR ();

if LETTER (C) or DIGIT (C) then goto state 1

else if DELIMITER(C) then goto state 2

else FAIL ()

DIGIT is a procedure which returns true if and only if C is one of the digits 0, 1… 9.

DELIMITER is a procedure which returns true whenever C is a character that could follow

an identifier. If we define a delimiter to be any character that is not letter or digit, then the

clause "if DELIMITER (C) then", need not be presented in state 1. To detect errors more

effectively we might define a delimiter precisely (e.g., blank, arithmetic or logical

operator, left or right parenthesis, equal sign, colon, semicolon, or comma), depending on

the language being compiled.

State 2 indicates that an identifier has been found. Since the delimiter is not part of the

identifier, we must retract the lookahead pointer one character, for which we use a

procedure RETRACT. We use '*' to indicate states on which input retraction must take

place. We must also install the newly-found identifier in the symbol table if it is not already

13

there, using the procedure INSTALL*. In state 2 we return a pair consisting of the

integer code for an identifier, which we denote by id, and a value that is a pointer to the

symbol table returned by INSTALL. The code for state 2 is:

State 2: RETRACT ()
return (id, INSTALL ())

If blank must be skipped in the language at hand, we should include in the code for

state 2 a step that moved the beginning pointer to the next non- blank.

Fig (5) shows a list of tokens that we want to recognize using token recognizer that

use transition diagram explained in fig (6).

Token Code Value
begin 1 -------
end 2 -------
if 3 -------
then 4 -------
else 5 -------
identifier 6 Pointer to Symbol Table
constant 7 Pointer to Symbol Table
< 8 1
<= 8 2
= 8 3
<> 8 4
> 8 5
>= 8 6

Fig (5) Token Recognizer

14

Keywords:

Blank
or

Start B E
0 1

G I
2 3 4

N newline *
5 6

E N D

7 8

Blank
or

newline
9

*
return (2,)

return (1,)

L S E

11 12

Blank
or

newline
13 14 * return (5,)

I F

15 16

Blank
or

newline
17 * return (3,)

T H E N

Blank
or

newline

* return (4,)

18 19 20 21 22

Identifier:

Start
23

Letter

Not Letter
or digit

24

25

*
return (6,INSTALL ())

Letter or digit

Constant:

Start

Digit
26

Not Digit
27

28

*
return (7,INSTALL ())

Digit

10

15

Re lops:

Start < not
= or >

*
return (8,1)

29 30 31

32 return (8,2)

33 return (8,4)

34 return (8,3)

not =
35

=

36 * return (8,5)

37 return (8,6)

=

>

=

>

16

1.6 The Language for Specifying Lexical Analyzer

 A LEX source program is a specification of a lexical analyzer, consisting of a set of regular

expressions together with an action for each regular expression. The action is a piece of code which is to

be executed whenever a token specified by the corresponding regular expression is recognized. The

output of LEX is a lexical analyzer program constructed from the LEX source specification.

 A LEX source program consists of two parts, a sequence of auxiliary definition followed by a

sequence of translation rules.

 Auxiliary Definitions
The auxiliary definitions are statements of the form:

D1=R1
D2=R2

.

.

.
Dn=Rn

Where each Di is a distinct name, and each Ri is a regular expression whose symbol are chosen

from ∪ {D1, D2, Di-1}, i.e., characters or previously defined names. The Di's are shorthand names

for regular expressions. is our input symbol alphabet.

Example:
We can define the class of identifiers for a typical programming language with the sequence of auxiliary

definitions.

Letter = A B … Z

Digit = 0 1 … 9

Identifier = Letter (Letter Digit)*

17

Translation Rules

The translation rules of a LEX program are statements of the form:-

P1 {A1}
P2 {A2}

.
.
.

Pm {Am}

Where each Pi is a regular expression called a pattern, over the alphabet consisting of and the

auxiliary definition names. The patterns describe the form of the tokens. Each Ai is a program

fragment describing what action the lexical analyzer should take when token Pi is found. The Ai's

are written in a conventional programming language, rather than any particular language, we use

pseudo language. To create the lexical analyzer L, each of the Ai's must be compiled into machine

code.

[

The lexical analyzer L created by LEX behaves in the following manner: L read its input, one

characters at a time, until it has found the longest prefix of the input which matches one of the regular

expressions, Pi. Once L has found that prefix, L removes it from the input and places it in a buffer

called TOKEN.

Example: Let us consider the collection of tokens defined in Fig.7, LEX program is
shown in Fig.26

AUXILIARY DEFINITION

Letter= A B … Z

Digit= 0 1 … 9

TRANSLATION RULES
BEGIN {return 1}

END {return 2}

IF

{return 3}

THEN {return 4}

ELSE {return 5}

18

.

.

.

.

.

.

letter(letter digit)* {LEX VAL:= INSTALL(); return 6}

digit+

{LEX VAL:= INSTALL(); return 7}
< {LEX VAL := 1; return 8}

<= {LEX VAL := 2; return 8}

= {LEX VAL := 3; return 8}

< > {LEX VAL := 4; return 8}

> {LEX VAL := 5; return 8}

>=

{LEX VAL := 6; return 8}

1.7 Implementing the Lexical Analyzer

The LEX can build from its input a lexical analyzer that behaves roughly like a finite automaton.

The idea is to construct a NFA Ni for each tokens pattern Pi in the translation rules, then links

these NFA's together with a new start states as shown in Fig.27. Next we convert this NFA to a

DFA.

Example: Suppose we have the following LEX program.

AUXILIARY DEFINITION

 (none)

TRANSLATION RULES

a {} /* actions are omitted here*/

19

abb

a*b+

 {}

{}

The three tokens above are recognized by the simple automata of Fig.28. We may convert the

NFA's of Fig.28 into one NFA as described earlier. The result is shown in Fig.29. Then this NFA

may be converted to a DFA using the algorithm and the transition table is shown in Fig.30, where

the states of the DFA have been named by lists of the states of the NFA.

The last column in Fig.30 indicates the token which will be recognized if that state is the last state

entered that recognizes any token at all. In all cases but the last line, state 68, the token recognized is

the only token whose final state is included among the NFA states forming the DFA state. For

example, among NFA states 2, 4, and 7,

only 2 is final, and it is the final state of the automaton for regular expression 'a' in Fig.28. Thus,

DFA state 247 recognizes token 'a'. In the case of DFA state 68, both 6 and 8 are final states of

their respective nondeterministic automata. Since the translation rules of our LEX program

mention abb before a*b+, NFA state 6 has priority, and we announce that abb has been found in

DFA state 68.

20

State a b Token found

0137 247 8 none

247 7 58 a

8 --- 8 a*b+

7 7 8 none

58 --- 68 a*b+

68 --- 8 abb

In following figure we see NFA’s for the patterns. We use here a simple NFA for identifiers and

constants.

21

22

Fig : Combined DFA

23

UNIT- II

2.1 Syntax Analyzer (Parser)

We show that the lexical structure of tokens could be specified by regular expressions and that form a

regular expressions we could automatically construct a lexical analyzer to recognize the tokens

denoted by the expression. We shall use a notation called a context-free grammar or grammar only,

for the syntactic specification of a programming language which is also called a BNF (Backus-Naur

Form) description. The parser obtains a string of tokens from the lexical analyzer, and verifies that the

string can be generated by the grammar for the source language. The parser reports any syntax errors

and gives an indication of the type of these errors. Fig.1 shows the position of parser

Context Free Grammars (CFG's) It is natural to define certain programming-language construct

recursively. For example, we might state:-

If S1 and S2 are statements and E is an expression, then:-

 "If E then S1 else S2" is a statement ------------- (1)

Or: If S1, S2,…, Sn are statements then

"begin S1; S2 ;…;Sn end" is a statement --------------(2)

As a third example:

 If E1 and E2 are expressions, then "E1+E2" is an expression ----------- (3)

If we use the syntactic category "statement" to denote the class of the statements and "expression" to

denote the class of expressions, then (1) can be expressed by this production:

24

Statement if expression then statement else statement ------- (4)

And (3) can be written as:

Expression expression + expression ----------- (5)

If we want to write (2) in the same way we may have:

Statement ->begin statement; statement; … ; statement end

But the use of ellipses (…) would create problems when we attempt to define translations based on this

description. For this reason, we require that each rewriting rule (production) have a known number of

symbols, with no ellipses permitted.

To express (2) by rewriting rules, we can introduce a new syntactic category "statement-list" denoting

any sequence of statements separated by semicolons. Then we can write:

A set of rules such that (6) is an example of a grammar. In general, a grammar involves four quantities:

start symbol, terminals, nonterminals, productions .

EX: consider the following grammar for simple arithmetic expressions. The non-terminal symbols are

expressions and operator, with expression the start symbol. The terminal symbols are: id, +, -, *, /, (,),↑

25

We can write these productions in this form:-

2.2 Derivation and Parse Trees

The central idea of how context free grammar defines a language is that the productions may be applied

repeatedly to expend the non-terminals in a string of non-terminals and terminals. For example, consider

the following grammar for arithmetic expressions

Parse Trees

We can create a 'graphical representation' for derivations that filter out the choice regarding replacement

order. This representation is called the parse tree, and it has the important purpose of making explicit the

hierarchical syntactic structure of sentences that is implied by the grammar. Each interior node of the

parse tree is labeled by some non-terminal A, and the children of node are labeled, from left to right, by

the symbols in the right side of the production by which this A was replaced in the derivation.

EX: let us again consider the arithmetic expression grammar (7), with which we have been dealing. The

sentence id+id*id has the two distinct left most derivations:

For example if A -> XYZ is a production used at some step of a derivation, then the parse tree for that

derivation will have the sub tree:-

The leaves of the parse tree are labeled by non-terminals or terminals and read from left to right; they

constitute a sentential form called the yield or frontier of the tree. For example the parse tree for -

(id+id) implied by the derivation of the previous example is shown in Fig.2

26

EX: let us again consider the arithmetic expression grammar (7), with which we have been dealing. The

sentence id+id*id has the two distinct left most derivations:

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be 'ambiguous'. Put

another way, an ambiguous grammar is one that produced more than one left most or more than one right

most derivation for some sentence. For certain types of parsers, it is desirable that the grammar be made

unambiguous, for if it is not, we cannot uniquely determine which parse tree to select for a sentence.

Example Consider the following grammar for arithmetic expression involving +,-,*, / and ↑

(exponentiation)

27

This grammar like (7) is ambiguous. However, we can disambiguate both these grammars by

specifying the associativity and precedence of the arithmetic operators.

Suppose we wish to give the operators the following precedence in decreasing order:-

- (unary minus) ↑ * / + -

We begin by introducing one non-terminal for each precedence level. An 'element' is either a single

identifier or a parenthesized expression. We therefore have the productions:-

Next we introduce the category of 'Primaries', which are elements with zero or more of the operator of

highest precedence, the unary minus. The rule for primary is:-

Then we construct 'factors' as a sequence of one or more primaries connected by
exponentiation signs. That is:-

Then we introduce 'term',

Then the final, unambiguous grammar is:-

28

2.3 Basic Parsing Techniques

We show previously that the CFG can be used to define the syntax of a programming language, but

now we show how to check whether an input string is a sentence of a given grammar and how to

construct a parse tree for this string. The input to the parse is typically a sentence of tokens. The output

of the parser can be of many different forms, and for simplicity we assume that the parser is some

representation of the parse tree.

The most common forms of parsers are 'operator precedence' and 'recursive descent'. Operator

precedence is especially suitable for parsing expressions, since it can use information about the

precedence and associativity of operators to guide the parse. 'Recursive descent' uses a collection of

mutually recursive routines to perform the syntax analysis. A common situation is for operator

precedence to be used for expressions and recursive descent for the test of the language.

Parsers

 A parser for a grammar G is a program that takes as input a string W and produces as output either a

parse tree for W, if W is a sentence of G, or an error message indicating that W is not sentence of G.

We discuss the operations of two types of parsers for CFG's:- bottom-up and top-down parsers build,

parse tree from the bottom (leaves) to the top (root), while top-down parsers start with the root and

work down to the leaves. In both cases the input to the parser is being scanned from the left to right,

one symbol at a time.

The bottom-up parsing method is called "Shift-reduce" parsing, because it appears on top of the stack.

One type of shift-reduce is "operator precedence parser". The top-down parsing method is called

"recursive descent" parsing.

Representation of a Parse Tree

There are two basic types of representations: - implicit and explicit. The sequence of productions used

in some derivation is an example of an implicit representation. A linked list structure for the parse tree

is an explicit representation. Recall that a derivation in which the left most non-terminal is replaced at

every step is said to be left most. If α β by a step in which the left-most non-terminal is α is

replaced, we write α β. y. If α derives β by a left most derivation we write α β. If S α, then

we say α is a left-sentential form of the grammar. Right most derivations are sometimes called

"canonical derivations”.

29

The left-most derivation corresponding to this parse tree is given by:

A right most derivation can be constructed from a parse tree analogously. At each step we replace the

right-most non-terminal by the tables of its children. For example, the first two steps of a right most

derivation constructed from Fig.4 would be

2.4 Bottom-Up Parsing

Shift-Reduce Parsing

In this section, we discuss a bottom-up style of parsing called shift-reduce parsing. This parsing method

is bottom-up because it attempts to construct a parse tree for an input string beginning at the leaves (the

bottom) and working up towards the root. We can think of this process as one of "reducing" a string W

30

to the start symbol of a grammar. At each step a string matching the right side of the production is

replaced by the symbol on the left.

For example, consider the grammar

and the string "abbcde". We want to reduce this string to S. We scan this string looking for substring

that matches the right side of any production. The substring b and d qualify. Let us choose the left most

b and replace it by A the left side of the production A→ b. We continue according to this step:

Each replacement of the right side of a production by the left side in the process above is called

"reduction". Thus, by a sequence of four reductions we were able to reduce abbcde to S.

Handles

 A handle of a right sentential form y is a production A→ β and a position of y, where the string β may

be found and replaced by A to produce the previous right-sentential form in the right most derivation of

y.

31

Handle Pruning

A right most derivation in reverse, often called a "canonical reduction sequence", is obtained by "handle

pruning". That is, we start with a string of terminal w which we wish to parse. If w is a sentence of the

grammar at hand, then w=yn, where yn is the nth right-sentential form of same as yet unknown right most

derivation:

Stack Implementation of Shift-Reduce Parsing

A convenient way to implement a shift-reduce parser is to use a stack and an input buffer. We shall use $

to mark the bottom of the stack and the right of the input.

The parser operates by shifting zero or more input symbols onto the stack until a handle β is on top of the

32

stack. The parser then reduces β to the left side of the appropriate production. The parser then reduces

this cycle until it has detected an error or until the stack contains the start symbol and the input is empty.

In this configuration the parser halts and makes successful parsing.

EX: Let us step through the actions a shift-reduce parser might make in parsing the input string

id1+id2*id3 according to the grammar

 2.5 Top-Down Parsing

Top-down parsing can be viewed as attempt to find left most derivation for an input string. It can be

viewed as attempting to construct a parse tree for the input starting from the root and creating the nodes

of the parse tree in preorder .

Left-recursive grammar can cause a top-down parser to go into an infinite loop

33

 2.5.1 Recursive Descent Parsing

Recursive descent is a top-down parsing technique that constructs the parse tree from the top

and the input is read from left to right. It uses procedures for every terminal and non-terminal entity.

This parsing technique recursively parses the input to make a parse tree, which may or may not

require back-tracking. But the grammar associated with it (if not left factored) cannot avoid back-

tracking. A form of recursive-descent parsing that does not require any back-tracking is known as

predictive parsing.

 Example (backtracking)

 Consider the grammar

S → cAd

A → ab | a (Grammar 1)

and the input string w = cad

· To construct a parse tree for this string using top-down approach, initially create a tree consisting of

a single node labeled S.

34

Fig 2

· An input pointer points to c, the first symbol of w.

· Then use the first production for S to expand the tree and obtain the tree (as in Fig 2(a)

· The leftmost leaf, labeled c, matches the first symbol of w.

· Next input pointer to a, the second symbol of w.

· Consider the next leaf, labeled A.

· Expand A using the first alternative for A to obtain the tree (as in Fig 2(b)).

· Now have a match for the second input symbol. Then advance to the next input pointer d, the third input

symbol and compare d against the next leaf, labeled b. Since b does not match d, report failure and go

back to A to see whether there is another alternative. (Backtracking takes place).

· If there is another alternative for A, substitute and compare the input symbol with leaf.

· Repeat the step for all the alternatives of A to find a match using backtracking. If match found, then the

string is accepted by the grammar. Else report failure.

· A left-recursive grammar can cause a recursive-descent parser, even one with backtracking, to go into an

infinite loop.

· For the grammar (Grammar 1) above write the recursive procedure for each nonterminal S and A.

 Procedure S
procedure S() S → cAd

 begin A → ab | a

 if input symbol = ‘c’ then

 begin

 ADVANCE();

 if A() then

 if input symbol = ‘d’ then

 begin ADVANCE(); return true end

 end;

 return false
end

 Procedure A

35

procedure A()

begin

 isave := input-pointer;

 if input symbol = ‘a’ then

 begin

 ADVANCE();

 if input symbol = ‘b’ then

 begin ADVANCE(); return true end

 end

 input-pointer := isave;

 /* failure to find ab */

 if input symbol = ‘a’ then

 begin ADVANCE(); return true end

 else return false

end

S → cAd

A → ab | a not left factoring

S → cAd

A → aC`

C`→ b | ε left factoring

2.5.2 Predictive parser

Predictive parser is a recursive descent parser, which has the capability to predict which production is

to be used to replace the input string. The predictive parser does not suffer from backtracking. To

accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next input

symbols. To make the parser back-tracking free, the predictive parser puts some constraints on the

grammar and accepts only a class of grammar known as LL(1) grammar.

 The first "L" in LL(1) stands for scanning the input from left to right, the second "L" for producing a

leftmost derivation, and the "1" for using one input symbol of lookahead at each step to make parsing

action decisions.

36

 predictive parser

Non recursive Predictive Parser

The predictive parser has an input, a stack, a parsing table, and an output.

 - The input contains the string to be parsed, followed by $, the right endmarker.

 - The stack contains a sequence of grammar symbols, preceded by $, the bottom-of-stack marker.

 - Initially the stack contains the start symbol of the grammar preceded by $.

 - The parsing table is a two dimensional array M[A,a], where A is a nonterminal, and a is a terminal

or the symbol $.

 - The parser is controlled by a program that behaves as follows:

 - The program determines X, the symbol on top of the stack, and a, the current input symbol.

 - These two symbols determine the action of the parser.

 There are three possibilities:

 1. If X = a = $, the parser halts and announces successful completion of parsing.

 2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next input symbol.

 3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. This entry will be

either an X-production of the grammar or an error entry.

 If M[X,a] = {X → UVW}, the parser replaces X on top of the stack by WVU (with U on top).

 If M[X,a] = error, the parser calls an error recovery routine.

 Moves by Predictive parser using the input string

 Predictive parsing program

repeat

 begin

 let X be the top stack symbol and a the next input symbol;

 if X is a terminal or $ then

37

 if X = a then
 pop X from the stack and remove a from the input
 else
 ERROR()
 else /* X is a nonterminal */
 if M[X,a] = X → Y1, Y2, … , Yk then
 begin
 pop X from the stack;
 push Yk, Yk-1, … ,Y1 onto the stack, Y1 on top
 end
 else
 ERROR()

 end
until X = $ /* stack has emptied */

 id + * () $
E E → TE` E → TE`
E` E` → +TE` E` → ε E` → ε
T T → FT` T → FT`
T` T` → ε T` → *FT` T` → ε T` → ε
F F → id F → (E)

Predictive parser table

38

Construction of Parsing Table:

 Before constructing the parsing table, two functions are to be performed to fill the entries in the table.

 FIRST() and FOLLOW() functions.

 These functions will indicate proper entries in the table for a grammar G.

 To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or

ε can be added to any FIRST set.

 1. If X is terminal, then FIRST(X) is {X}.

 2. If X is nonterminal and X → aα is a production, then add a to FIRST(X). If X → ε is a production,

then add ε to FIRST(X).

 3. If X → Y1, Y2, … , Yk is a production, then for all I such that all of Y1, … , Yi-1 are nonterminals and

FIRST(Yj) contains ε for j = 1,2, … , i-1 (i.e., Y1, Y2, … . Yi-1 ε), add every non-ε symbol in

FIRST(Yi) to FIRST(X). If ε is in FIRST(Yj) for all j = 1, 2, … , k, than add ε to FIRST(X).

 To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added

to any FOLLOW set.

1. $ is in FOLLOW(S), where S is the start symbol.

2. If there is a production A → αBβ, β ≠ ε, the everything in FIRST(β) but ε is in FOLLOW(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε (i.e., β ε),

then everything in FOLLOW(A) is in FOLLOW(B).

Example

 Consider the following grammar
E → E + T | T
T → T * F | F
F → (E) | id (Grammar 2)

 Compute the FIRST and FOLLOW function for the above grammar.
Solution:

 Here the (Grammar 2) is in left-recursion, so eliminate the left recursion for the
(Grammar 2) we get;

 FIRST FOLLOW

E → TE` {id , (} {$,) }
E` → +TE` | ε { + , ε } {$,) }
T → FT` {id , (} {+,$,) }
T` → *FT` | ε { * , ε } {+, $,) }
F → (E) | id {id , (} {+,*, $,) }

39

Example
 Consider the following grammar. Compute the FIRST and FOLLOW function for the
above grammar.

 FIRST FOLLOW
S → ABCDE {a,b,c} {$}
A → a | ε {a, ε} {b,c}
B → b | ε {b, ε} {c}
C → c {c} {d,e,$}
D → d | ε {d, ε} {e,$}
E → e | ε {e, ε} {$}

Example

 Consider the following grammar. Compute the FIRST and FOLLOW function for the
above grammar.
 FIRST FOLLOW
S → Bb| Cd {a,b,c,d} {$}
B → aB | ε {a, ε} {b}
C → cC| ε {c, ε} {d}

 Exercise
 Consider the grammar

S → iEtSS` | a
S` → eS | ε
E → b (Grammar 4)

· Compute the FIRST and FOLLOW for the (Grammar 4)

Construction of Predictive Parsing Table:

 The following algorithm can be used to construct a predictive parsing table for a grammar G

 Algorithm Constructing a predictive parsing table

Input: Grammar G

Output: Parsing table M

Method:

1. For each production A → α of the grammar, do step 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A,a].

3. If ε is in FIRST(α), add A → α to M[A,b] for each terminal b in FOLLOW(A). If ε is in FIRST(α)

and $ is in FOLLOW(A), add A → α to M[A,$].

4. Make each undefined entry of M error.

Example

 Construct the predictive parsing table for the (Grammar 3) using the Algorithm of constructing a

predictive parsing table

40

 FIRST FOLLOW

E → TE` {id , (} {$,) }
E` → +TE` | ε {+, ε } {$,) }
T → FT` {id , (} {+,$,) }
T` → *FT` | ε { * , ε } {+, $,) }
F → (E) | id {id , (} {+,*, $,) }

 id + * () $
E E → TE` E → TE`
E` E` → +TE` E` → ε E` → ε
T T → FT` T → FT`
T` T` → ε T` → *FT` T` → ε T` → ε
F F → id F → (E)

Example

 Construct the predictive parsing table for the below grammar using the Algorithm of constructing a

predictive parsing table

 FIRST FOLLOW
S → aABC {a} {$}
A → a | bb {a, b} {a,b,$}
B → a | ε {a, ε} {b,$}
C → b | ε {b, ε} {$}

 A b $

S S → aABC
A A → a A → bb
B B → a B → ε B → ε
C C → b C → ε

predictive parsing table

Example
 Construct the predictive parsing table for the (Grammar 4)

41

2.5.3 LL(1) Grammars:

o When there is a situation that the parsing table consists of at least one multiply defined entries, then

the easiest recourse is to transform the grammar by eliminating all left-recursion and then left-factoring

whenever possible, to produce a grammar for which the parsing table has no multiply-defined entries.

o A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

o A grammar is LL(1) if and only if whenever A → α | β are two distinct productions of G the

following conditions hold:

 1. For no terminal a do α and β derive strings beginning with a.

 2. At most one of α and β can derive the empty string.

 3. If β→* ε, then α does not derive any strings beginning with a terminal in FOLLOW(A).

2.5.4 LR Parsers

LR parsers are used to parse the large class of context free grammars. This technique is called LR(k)

parsing.

• L is left-to-right scanning of the input.

• R is for constructing a right most derivation in reverse.

• k is the number of input symbols of lookahead that are used in making parsing decisions.

LR parsing is divided into four parts: LR (0) parsing, SLR parsing, CLR parsing and LALR parsing.

42

There are three widely used algorithms available for constructing an LR parser:

• SLR(l) - Simple LR

 o Works on smallest class of grammar.

 o Few number of states, hence very small table.

 o Simple and fast construction.

• LR(1) - LR parser

 o Also called as Canonical LR parser.

 o Works on complete set of LR(l) Grammar.

 o Generates large table and large number of states.

 o Slow construction.

• LALR(l) - Look ahead LR parser

 o Works on intermediate size of grammar.

 o Number of states are same as in SLR(l).

Reasons for attractiveness of LR parser

• LR parsers can handle a large class of context-free grammars.
• The LR parsing method is a most general non-back tracking shift-reduce parsing method.

• An LR parser can detect the syntax errors as soon as they can occur.
• LR grammars can describe more languages than LL grammars.

Drawbacks of LR parsers

• It is too much work to construct LR parser by hand. It needs an automated parser generator.

• If the grammar contains ambiguities or other constructs then it is difficult to parse in a left-to-right
scan of the input.

Model of LR Parser
LR parser consists of an input, an output, a stack, a driver program and a parsing table that has two
functions

1. Action

2. Goto

The driver program is same for all LR parsers. Only the parsing table changes from one parser to
another.
The parsing program reads character from an input buffer one at a time, where a shift reduces parser
would shift a symbol; an LR parser shifts a state. Each state summarizes the information contained in the
stack.

The stack holds a sequence of states, so, s1, · ·· , Sm, where Sm is on the top.

https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

43

Action This function takes as arguments a state i and a terminal a (or $, the input end marker). The
value of ACTION [i, a] can have one of the four forms:

i) Shift j, where j is a state.
ii) Reduce by a grammar production A---> β.

iii) Accept.
iv) Error.

Goto This function takes a state and grammar symbol as arguments and produces a state.
If GOTO [Ii ,A] = Ij, the GOTO also maps a state i and non terminal A to state j.

Behavior of the LR parser

1. If ACTION[sm, ai] = shift s. The parser executes the shift move, it shifts the next state s onto the
stack, entering the configuration

a) Sm - the state on top of the stack.

b) ai- the current input symbol.
2. If ACTION[sm, ai] =reduce A---> β, then the parser executes a reduce move, entering the
configuration

 (s0s1 ... S(m-r)S, ai+l ... an$)

a) where r is the length of β and s= GOTO[sm - r, A].
b) First popped r state symbols off the stack, exposing state Sm-r·

c) Then pushed s, the entry for GOTO[sm-r, A], onto the stack.
3. If ACTION[sm, ai] = accept, parsing is completed.

4. If ACTION[sm, ai] = error, the parser has discovered an error and calls an error recovery routine.
Example

STATE Id + * () $ E T F
0 S5 S4 1 2 3
1 S6 acc
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 S11

https://ecomputernotes.com/images/Model-of-an-LR-Parser.jpg

44

9 R1 S7 R1 R1
10 R3 R3 R3 R3
11 R5 R5 R5 R5

Figure shows the parsing action and goto functions of an LR parser for the grammar

(1) E->E+T
(2) E->T
(3) T->T*F
(4) T->F
(5) F->€
(6) F->id

The codes for the actions are
1. si means shift and stack state i,
2.rj means reduce by production numbered j,
3. acc means accept
4. blank means error
Consider the moves made by parser on input id*id+id. The sequence of stack and input
contents is shown below

Stack Input
(1) 0 id*id+id$
(2) 0 id 5 *id +id $
(3) 0 F 3 *id + id $
(4) 0 T 2 *id + id $
(5) 0 T 2 *7 id + id $
(6) 0 T 2 * 7 id 5 + id $
(7) 0 T 2 * 7 F 10 + id $
(8) 0 T 2 + id $
(9) 0 E 1 + id $
(10) 0 E1 + 6 id $
(11) 0 E 1 + 6 id 5 $
(12) 0 E1 + 6 F 3 $
(13) 0 E1 + 6T9 $
(14) 0 E 1 $

Figure: Moves of LR parser on id*id+id

LR Parsing Algorithm
Algorithm LR Parsing Algorithm.
Input Input string w,

 LR-Parsing table with functions ACTION and

 GOTO for a grammar G

Output If w is in L(G), the reduction steps of a

 bottom-up parse for w,

45

 otherwise, an error indication.

Method Initially, the parser has So on its stack,
 where So is the initial state, and w $ in the

 input buffer.
 let a be the first symbol of w $

 while(l) { //repeat forever

 let s be the state on top of the stack;

 if(ACTION[s, a] =shift t {

 push t onto the stack;

 let a be the next input symbol;
 } else if (ACTION [s, a] = reduce A---> β) {

 pop β symbols off the stack;
 let state t now be on top of the stack;

 push GOTO[t, A] onto the stack;
 output the production A---> β;

 } else if (ACTION [s, a] accept) break;
 //parsing is done

 else call error-recovery routine;
 }

LR(O) Items
An LR(O) item of a grammar G is a production of G with a dot at some position of the body.

(eg.)

 A ---> •XYZ

 A ---> XeYZ

 A ---> XYeZ

 A ---> XYZ•

One collection of set of LR(O) items, called the canonical LR(O) collection, provides finite automaton
that is used to make parsing decisions. Such an automaton is called an LR(O) automaton.

LR(O) Parser SLR(1) Parser
An LR(O)parser is a shift-reduce parser that uses zero tokens of lookahead to determine what action to
take (hence the 0). This means that in any configuration of the parser, the parser must have an
unambiguous action to choose-either it shifts a specific symbol or applies a specific reduction. If there
are ever two or more choices to make, the parser fails and the grammar is not LR(O).
An LR parser makes shift-reduce decisions by maintaining states to keep track of parsing. States

represent a set of items.

Closure of item sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set of items constructed from I by the

two rules.

46

• Initially, add every item I to CLOSURE(I).

• If A ---> αB,β is in CLOSURE(I) and B ---> ɣ is a production, then add the item B ---> • ɣ

to CLOSURE(i), if it is not already there. Apply this rule until no more items can be added

to CLOSURE (!).

Construct canonical LR(O) collection

• Augmented grammar is defined with two functions, CLOSURE and GOTO. If G is a grammar with

start symbol S, then augmented grammar G' is G with a new start symbol S' ---> S.

• The role of augmented production is to stop parsing and notify the acceptance of the input i.e.,

acceptance occurs when and only when the parser performs reduction by S' ---> S.

Limitations of the LR(O) parsing method

Consider grammar for matched parentheses

1. S' ---> S

2. S' ---> (S) S

3. S' ---> Ɛ

The LR(O) DFA of grammar G is shown below

In states: 0, 2 and 4 parser can shift (and reduce Ɛ to S)

Conflicts

Conflicts are the situations which arise due to more than one option to opt for a particular step of

shift or reduce.

• Two kinds of conflicts may arise.

 Shift-reduce and reduce-reduce.

• In state 0 parser encounters a conflict.

 It can shift state 2 on stack when next token is (.

https://ecomputernotes.com/images/LRO-DFA-of-grammar-G.jpg

47

 It can reduce production 2: S ---> Ɛ on +.

 This is a called a shift-reduce conflict.

 This conflict also appears in states 2 and 4.

Shift-reduce conflict parser can shift and can reduce.

Reduce-reduce conflict two (or more) productions can be reduced.

SLR(1) grammars

• SLR(l) parsing increases the power of LR(O) significantly.
Look ahead token is used to make parsing decisions

Reduce action is applied more selectively according to FOLLOW set.
• A grammar is SLR(l) if two conditions are met in every state.

If A ---> α • x ɣ and B ---> β ,•then token x Ɛ FOLLOW(B).
If A ---> α • and B ---> • then FOLLOW(A) П FOLLOW(B) = Ø.

• Violation of first condition results in shift-reduce conflict.

A---> α • x ɣ and B ---> β• and x Ɛ FOLLOW(B) then ...

Parser can shift x and reduce B ---> β.

• Violation of second condition results in reduce-reduce conflict.
A---> α • and B ---> β,•and x Ɛ FOLLOW(A) n FOLLOW(B).

Parser can reduce A ---> α and B ---> β,.

https://ecomputernotes.com/images/shift-reduce-conflict.jpg

48

• SLR(l) grammars are a superset of LR(O) grammars.

LR(1) Parser I Canonical LR (CLR)
• Even more powerful than SLR(l) is the LR(l) parsing method.

• LR(l) includes LR(O) items and a look ahead token in itemsets.

• An LR(l) item consists of,

o Grammar production rule.
o Right-hand position represented by the dot and.

o Lookahead token.
o A --->X1 · · · Xi • Xi+1 · · · Xn, l where l is a lookahead token

• The • represents how much of the right-hand side has been seen,
o X1 · · · Xi appear on top of the stack.

o Xi+l · · · Xn are expected to appear on input buffer.
• The lookahead token l is expected after X1 · · · Xn appears on stack.

• An LR(l) state is a set of LR(l) items.

Introduction to LALR Parser
• LALR stands for lookahead LR parser.

• This is the extension of LR(O) items, by introducing the one symbol of lookahead on the input.

• It supports large class of grammars.

• The number of states is LALR parser is lesser than that of LR(1) parser. Hence, LALR is
preferable as it can be used with reduced memory.

• Most syntactic constructs of programming language can be stated conveniently.

Steps to construct LALR parsing table

• Generate LR(l) items.
• Find the items that have same set of first components (core) and merge these sets into one.

• Merge the goto's of combined itemsets.
• Revise the parsing table of LR(l) parser by replacing states and goto's with combined states and
combined goto's respectively.

2.5.5 Constructing a Parse Tree

The bottom-up tree construction process has two aspects.

1- When we shift an input symbol a onto the stack we create a one-node tree labelled a. Both the root

and the yield of this tree are at, and the yield truly represents the string of the terminals "reduced"

(by zero reduction) to symbol a.

2- When we reduce X1, X2, … Xn to A, we create a new node labelled A. It's children, from the left to

right, are the roots of the trees for X1, X2, … Xn. If for all I the tree for Xi has yielded Xi, then the yield

for the new tree is X1, X2, … Xn. This string has in fact been reduced to A by a series of reductions

culminating in the present one. As a special case, if we reduced E to A we create a node labelled A with

one child labelled E.

49

2.5.6 Operator – Precedence Parsing
For a certain small class of Grammars we can easily construct efficient shiftreduce parsers by hand.

These grammars have the property that no production right side id E or has two adjacent non-terminals.

A grammar with the latter property is called an Operator grammar.

EX:- The following grammar for expressions

Is not operator grammar, because the right side EAE has two (in fact three) consecutive non-terminals.

However, if a substitute for A each of its alternates, we obtain the following operator grammar:

50

51

UNIT -III

3.1 Syntax directed translation

In syntax directed translation, is a CFG in which a program fragment called an output action or
semantic action or semantic rule is associated with each production.

So we can say that

1. Grammar + semantic rule = SDT (syntax directed translation)

o In syntax directed translation, every non-terminal can get one or more than one attribute or sometimes

0 attribute depending on the type of the attribute. The value of these attributes is evaluated by the

semantic rules associated with the production rule.

o Value associated with a grammar symbol is called a translation of the symbol

o In the semantic rule, attribute is VAL and an attribute may hold anything like a string, a number, a

memory location and a complex record

o If we have a production with several instances of the same symbol on the right, we shall distinguish

the symbols with superscript

Synthesized translation

It defines the value of the translation of the nonterminal on left side of the production as a function of

the translations of the nonterminals on the right side

52

E->E(1) + E(2) {E.VAL:=E(1).VAL +E(2).VAL}

Inherited translation

The translation of nonterminal on the right side of the production is defined in terms of translation of

the nonterminal on the left.

Ex:

A->XYZ {Y.VAL:=2*A.VAL}

Example

Production Semantic Rules

E → E + T E.val := E.val + T.val

E → T E.val := T.val

T → T * F T.val := T.val * F.val

T → F T.val := F.val

F → (F) F.val := F.val

F → num F.val := num.lexval

E.val is one of the attributes of E.

num.lexval is the attribute returned by the lexical analyzer.

3.2 Syntax directed translation scheme

o The Syntax directed translation scheme is a context -free grammar.

o The syntax directed translation scheme is used to evaluate the order of semantic rules.

o In translation scheme, the semantic rules are embedded within the right side of the productions.

o The position at which an action is to be executed is shown by enclosed between braces. It is written

within the right side of the production.

Example

Production Semantic Rules

53

S → E $ { printE.VAL }

E → E + E {E.VAL := E.VAL + E.VAL }

E → E * E {E.VAL := E.VAL * E.VAL }

E → (E) {E.VAL := E.VAL }

E → I {E.VAL := I.VAL }

I → I digit {I.VAL := 10 * I.VAL + LEXVAL }

I → digit { I.VAL:= LEXVAL}

3.3 Implementation of Syntax directed translation

Syntax direct translation is implemented by constructing a parse tree and performing the actions in a
left to right depth first order.

SDT is implementing by parse the input and produce a parse tree as a result.

For Example for the input expression 23*5+4$, the program is to produce the value 119.

Example Parse tree for SDT:

Fig: Parse tree

54

3.4 Symbol Tables

 Introduction

 A compiler needs to collect and use information about the names appearing in the source program.

This information is entered into a data structure called a symbol table. The information collected

about a name includes:

1- The string of characters by which it is denoted.

2- It's type (e.g. integer, real, string).

3- It's form (e.g. a simple variable, a structure).

4- It's location in memory.

5- Other attributes depending on the language.

Each entry in the symbol table is a pair of the form (name, information). Each time a name is

encountered, the symbol table is searched to see whether that name has been seen previously. If the

name is new, it is entered into the table. Information about that name is entered into the table during

lexical and syntactic analysis.

The information collected in the symbol table is used during several stages in the compilation process.

It is used in semantic analysis, that is, in checking that uses of names are consistent with their implicit

or explicit declarations. It is also used during code generation. Then we need to know how much and

what kind of run-time storage must be allocated to a name.

There are also a number of ways in which the symbol table can be used to aid in error detection and

correction. For example, we can record whether an error message such as "variable A undefined" has

been printed out before, and reject from doing so more than once. Additionally, space in the symbol

table can be used for code-optimization purposes, such as to flag temporaries that are used more than

once.

The primary issues in symbol table design are the format of the entries, the method of access, and the

place where they are stored (primary or secondary storage). Block-structured languages impose

another problem in that the same identifier can be used to represent distinct names with nested scopes.

In compilers for such languages, the symbol table mechanism must make sure that the inner most

occurrence of an identifier is always found first, and that names are removed from the active portion

of the symbol table when they are no longer active.

55

3.4.1 The Contents of a Symbol Table

A simple table is a table with two fields, a name field and information field. We require several

capabilities of the symbol table. We need to be able to:-

1- Determine whether a given name is in the table.

2- 2- Add a new name to the table.

3- 3- Access the information, associated with a given name.

4- 4- Add new information for a given name.

5- 5- Delete a name or group of names from the table.

In a compiler, the names in the symbol table denote objects of various sorts. There may be separate tables

for variable names, labels, procedure names, constants, and other types of names depending on the

language. Depending on how lexical analysis is performed, it may be useful to enter keywords into the

symbol table initially. If the languages does not reserve keywords (forbid the use of keywords as

identifiers), then it is essential that keywords be entered into the symbol table and that they have

associated information warning of their possible use as a keyword.

3.4.2 Basic Implementation Techniques

 The first consideration of symbol table implementation is how entering and find, store and search for

names. Depending on the number of names we wish to accommodate and the performance we desire, a

wide variety of implementations is possible:-

Unordered List

 Use of an unordered list is the simplest possible storage mechanism. The only data structure required is

an array, with insertions being performed by adding new names in the next available location. Of course,

a linked list may be used to avoid the limitations imposed by a fixed array size. Searching is simple using

an iterative searching algorithm, but it is impractically slow except for very small tables.

Ordered List

 If a list of names in an array is kept ordered, it may be searched using binary searched, which requires O

(log (n)) time for a list of n entries. However, each new entry must be inserted in the array in the

appropriate location. Insertion in an ordered array is relatively expensive operation. Thus ordered lists are

typically used only when the entire set of names in a table is known in advance. They are useful therefore

for tables of reserved words.

Binary Search Trees

Binary search trees are a data structure designed to combine the size flexibility and insertion efficiency of

a linked data structure with the search speed provided by a binary search. On average, entering or

searching for a name in a binary search tree built from random inputs requires O(log(n))time. One

compelling argument in favor of binary search trees is their simple, widely known implementation. This

implementation simplicity and the common perception of good average case performance make binary

search trees a popular technique for implementing symbol tables.

56

Hash Tables

 Hash tables are probably the most common means of implementing symbol tables in production

compilers and other system software. With a large enough table, a good hash function, and the

appropriate collision-handling technique, Searching can be done in essentially constant time regardless of

the number of entries in the table.

UNIT -IV

4.1 Code Optimization

It is a program transformation technique, which tries to improve the code by making it consume less

resources (i.e. CPU, Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced by very efficient low-level

programming codes. A code optimizing process must follow the three rules given below:

 The output code must not, in any way, change the meaning of the program.

 Optimization should increase the speed of the program and if possible, the program should demand

less number of resources.

 Optimization should itself be fast and should not delay the overall compiling process.

Efforts for an optimized code can be made at various levels of compiling the process.

 At the beginning, users can change/rearrange the code or use better algorithms to write the code.

identification

Input : a sequence of 3-address stmt

 Output: A list of After generating intermediate code, the compiler can modify the intermediate code by

address calculations and improving loops.

 While producing the target machine code, the compiler can make use of memory hierarchy and CPU

registers.

Optimization can be categorized broadly into two types : machine independent and machine dependent.

4.2 Machine-independent Optimization

In this optimization, the compiler takes in the intermediate code and transforms a part of the code that

does not involve any CPU registers and/or absolute memory locations. For example:

do

{

 item = 10;

 value = value + item;

57

} while(value<100);

This code involves repeated assignment of the identifier item, which if we put this way:

Item = 10;

do

{

 value = value + item;

} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

4.3 Machine-dependent Optimization

Machine-dependent optimization is done after the target code has been generated and when the code is

transformed according to the target machine architecture. It involves CPU registers and may have

absolute memory references rather than relative references. Machine-dependent optimizers put efforts to

take maximum advantage of memory hierarchy.

4.4 Loop Optimization

Begin

PROD:= 0;

I:=1;

Do

Begin

PROD:= PROD +A[I] * B[I];

I:= I+1;

END

While I<=20

End

58

(1) PROD: =0

(2) I:=1

(3) T1:=4*I

(4) T2=addr(a)-4

(5) T3:=T2[T1] A[I]

(6) T4 :=addr(b)-4

(7) T5:=T4[T1] B[I]

(8) T6:=T3*T5

(9) PROD:= PROD+T6

(10) I:=I+1

(11) IF I<=20 goto(3)

4.5 Basic Blocks

Source codes generally have a number of instructions, which are always executed in sequence and are

considered as the basic blocks of the code. These basic blocks do not have any jump statements among

them, i.e., when the first instruction is executed, all the instructions in the same basic block will be

executed in their sequence of appearance without losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE

conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc.

Basic block basic block with each 3-addr stmt in exactly one block

Method

1. We first determine the set of leaders, the first statements of bb.

2. (i) The first stmt is a Leader

(ii)Any stmt which is the target of a conditional or unconditional goto is a header

(iii) Any stmt which immediately follows a conditional goto is a header

3. For each leader construct its bb, which consist of leader and all stmts up to but not including the next

leader or end of prg. Any stmt not placed in block can never be executed and may now be removed,

if desired.

4.6 Flow Graph

It is useful to portray the bb and their successor relationships by a directed graph called flow graph.

The nodes of the fg are the basic block. One node is distinguished as initial it is the block whose

leader is the first stmt. There is a directed edge from block B1 to block B2, if B2 could immediately

follow B1 during execution, that is

1. There is conditional or unconditional jump from last stmt of B1 to first stmt of B2

2. B2 immediately follows B1 in order of prg, and B1 does not end in unconditional jump

B1 is a predecessor of B2 and

59

B2 is a successor of B1

60

4.7 Peephole Optimization

A statement-by-statement code-generations strategy often produces target code that contains redundant

instructions and suboptimal constructs. The quality of such target code can be improved by applying

“optimizing” transformations to the target program.

 A simple but effective technique for improving the target code is peephole optimization, a method for

trying to improving the performance of the target program by examining a short sequence of target

instructions (called the peephole) and replacing these instructions by a shorter or faster sequence,

whenever possible.

 The peephole is a small, moving window on the target program. The code in the peephole need not be

contiguous, although some implementations do require this. It is characteristic of peephole optimization

that each improvement may spawn opportunities for additional improvements.

 Characteristics of peephole optimizations:

Redundant-instructions elimination

Flow-of-control optimizations

Algebraic simplifications

Use of machine idioms

Unreachable

Redundant Loads And Stores:

If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

 we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is

already in register R0.If (2) had a label we could not be sure that (1) was always executed immediately

before (2) and so we could not remove (2).

Unreachable Code:

 Another opportunity for peephole optimizations is the removal of unreachable instructions. An unlabeled

instruction immediately following an unconditional jump may be removed. This operation can be repeated to

eliminate a sequence of instructions. For example, for debugging purposes, a large program may have within

it certain segments that are executed only if a variable debug is 1. In C, the source code might look like:

#define debug 0

….

If (debug) {

61

Print debugging information

}

In the intermediate representations the if-statement may be translated as:

If debug =1 goto L1

goto L2

L1: print debugging information

L2: ………………………… (a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what the value of

debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: …………………………… (b)

If debug ≠0 goto L2

Print debugging information

L2: …………………………… (c)

As the argument of the statement of (c) evaluates to a constant true it can be replaced

 By goto L2. Then all the statement that print debugging aids are manifestly unreachable and can be

eliminated one at a time.

4.8 Flows-of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or the target code by the

following types of peephole optimizations. We can replace the jump sequence

goto L1

….

L1: gotoL2 (d)

by the sequence

goto L2

62

….

L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto L2 provided it

is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2 (e)

can be replaced by

If a < b goto L2

….

L1: goto L2

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. Then the

sequence

goto L1

L1: if a < b goto L2

L3:

may be replaced by

If a < b goto L2

goto L3

…….

L3:

63

While the number of instructions in(e) and (f) is the same, we sometimes skip the unconditional jump

in (f), but never in (e).Thus (f) is superior to (e) in execution time

Algebraic Simplification:

There is no end to the amount of algebraic simplification that can be attempted through peephole

optimization. Only a few algebraic identities occur frequently enough that it is worth considering

implementing them. For example, statements such as

x := x+0 or

x := x * 1

are often produced by straightforward intermediate code-generation algorithms, and they can be eliminated

easily through peephole optimization.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the target machine.

Certain machine instructions are considerably cheaper than others and can often be used as special cases of

more expensive operators.

For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation routine.

Fixed-point multiplication or division by a power of two is cheaper to implement as a shift. Floating-point

division by a constant can be implemented as multiplication by a constant, which may be cheaper.

X2 → X*X

Use of Machine Idioms:

The target machine may have hardware instructions to implement certain specific operations

efficiently. For example, some machines have auto-increment and auto-decrement addressing modes. These

add or subtract one from an operand before or after using its value. The use of these modes greatly improves

the quality of code when pushing or popping a stack, as in parameter passing. These modes can also be used

in code for statements like i : =i+1.

i:=i+1 → i++

i:=i-1 → i- -

64

4.9 Intermediate representation

Intermediate code can be represented in two ways:

1. High Level intermediate code:

High level intermediate code can be represented as source code. To enhance performance of source code, we

can easily apply code modification. But to optimize the target machine, it is less preferred.

2. Low Level intermediate code

Low level intermediate code is close to the target machine, which makes it suitable for register and memory

allocation etc. it is used for machine-dependent optimizations.

4.10 Postfix Notation

o Postfix notation is the useful form of intermediate code if the given language is expressions.

o Postfix notation is also called as 'suffix notation' and 'reverse polish'.

o Postfix notation is a linear representation of a syntax tree.

o In the postfix notation, any expression can be written unambiguously without

o parentheses.

o The ordinary (infix) way of writing the product of x and y is with operator in the middle: x * y. But in

the postfix notation, we place the operator at the right end as xy *.

o In postfix notation, the operator follows the operand.

Example

Consider the postfix expression ab+c*. Suppose a,b and c have values 1,3,5 respectively. To evaluate 13+5 *

the following actions are taken:

o Production Semantic action

E->E(1) OP E(2) E.code = E(1).code || E(2).code || ‘op’

E->E(1) E.code = E(1).code

E->id E.code = id

65

1. Stack 1

2. Stack 3

3. Add the two topmost element pop them off the stack and then stack the result, 4

4. Stack 5

5. Multiply the two topmost element pop them off the stack and then stack the result 20.

The value on top of the stack at the end is the value of the entire expression.

Syntax-Directed Translation to Postfix Code

Example

Production

1. E → E(1) op E(2)

2. E → E(1)

3. E → id

4.11 Parse tree and Syntax tree

When you create a parse tree then it contains more details than actually needed. So, it is very difficult to

compiler to parse the parse tree. Take the following parse tree as an example:

Production Program fragment

E->E(1) OP E(2) {print op}

E->E(1) { }

E->id {print id}

66

o In the parse tree, most of the leaf nodes are single child to their parent nodes.

o In the syntax tree, we can eliminate this extra information.

o Syntax tree is a variant of parse tree. In the syntax tree, interior nodes are operators and leaves are

operands.

o Syntax tree is usually used when represent a program in a tree structure.

A sentence id + id * id would have the following syntax tree:

Abstract syntax trees are important data structures in a compiler. It contains the least unnecessary

information.

Abstract syntax trees are more compact than a parse tree and can be easily used by a compiler.

Syntax-Directed Construction of Syntax Trees

67

Production Semantic Action
E->E(1) op E(2)

{E.VAL:= NODE(op,E(1) .VAL,E(2) .VAL}
E->E(1)

{E.VAL:= E(1) .VAL}
E-> -E(1)

{E.VAL:= UNARY(-,E(1) .VAL}

E->id

{E.VAL:= LEAF(id)}

The function NODE(OP,LEFT,RIGHT) takes three arguments. The first is the name of the operator, the

second and third are pointers to roots of subtrees. The function UNARY(OP,CHILD) creates a new node

labelled OP and makes CHILD its child.

4.12 Three address code

o Three-address code is an intermediate code. It is used by the optimizing compilers.

o In three-address code, the given expression is broken down into several separate instructions. These

instructions can easily translate into assembly language.

o Each Three address code instruction has at most three operands. It is a combination of assignment and

a binary operator.

Example

Given Expression:

1. a := (-c * b) + (-c * d)

Three-address code is as follows:

 t1 := -c

 t2 := b*t1

 t3 := -c

 t4 := d * t3

 t5 := t2 + t4

 a := t5

68

t is used as registers in the target program.

The three address code can be represented in two forms: quadruples and triples.

4.13 Quadruples

The quadruples have four fields to implement the three address code. The field of quadruples contains the

name of the operator, the first source operand, the second source operand and the result respectively.

 Fig: Quadruples field

Example

1. A := -B * C + D

Three-address code is as follows:

 T1 := -B

 T2 := C + D

 T3 := T1 * T2

 A := T3

These statements are represented by quadruples as follows:

 Operator ARG1 ARG2 RESULT

(0) uminus B - T1

(1) + C D T2

(2) * T1 T2 T3

69

(3) := T3 - A

4.14 Triples

The triples have three fields to implement the three address code. The field of triples contains the name of the

operator, the first source operand and the second source operand.

In triples, the results of respective sub-expressions are denoted by the position of expression. Triple is

equivalent to DAG while representing expressions.

 Fig: Triples field

Example:
1. A := -B * C + D

THREE ADDRESS CODE IS AS FOLLOWS:

T1 := -B

T2 := C + D

 T3 := T1 * T2

A := T3

These statements are represented by triples as follows:

 Operator

(0) uminus B -

(1) + C D

(2) * (0) (1)

70

(3) := A (2)

4.15 Translation of Assignment Statements

In the syntax directed translation, assignment statement is mainly deals with expressions. The expression can

be of type real, integer, array and records.

Consider the grammar

1. S → id := E

2. E → E1 + E2

3. E → E1 * E2

4. E → (E1)
5. E → id
The Abstract Translation Scheme

The translation of E have two fields

E.PLACE,the name that hold the value of expression and

E.CODE , a sequence of 3-address statements evaluating the expression.

The translation scheme of above grammar is given below:

Production rule Semantic actions

S → id :=E {A.CODE := E.CODE ||

id.PLACE|| :=||E.PLACE}

E → E(1) + E(2) {T := NEWTEMP();

E.PLACE :=T;

E.CODE :=E(1).CODE || E(2).CODE ||

E.PLACE || :=||E(1).PLACE || +|| E(2).PLACE

}

E → E(1) * E(2) {T := NEWTEMP();

E.PLACE :=T;

E.CODE :=E(1).CODE || E(2).CODE ||

E.PLACE || :=||E(1).PLACE || * || E(2).PLACE

}

71

E → -E(1) T := NEWTEMP();

E.PLACE :=T;

E.CODE :=E(1).CODE ||

E.PLACE || := - ||E(1).PLACE }

E → E(1) {E.PLACE := E(1).PLACE ;

E.CODE :=E(1).CODE }

E → id {E.PLACE := id.PLACE ;

E.CODE :=null }

o The newtemp() is a function used to generate new temporary variables.

o E.place holds the value of E.

Traces of Syntax Directed Translation

Input stack Place Generated code

A:=-B*(C+D)

:= -B*(C+D) id A

 -B*(C+D) id:= A –

 B*(C+D) id:= - A - -

*(C+D) id:= - id A - -B

*(C+D) id:= - E A - -B T1:=-B

*(C+D) id:= E A – T1

(C+D) id:= - E * A – T1-

C+D) id:=-E * (A – T1- -

+D) id:=-E * (id A – T1- - C

+D) id:=-E * (E A – T1- - C

D) id := -E * (E + A – T1- - C –

72

) id := -E * (E + id A – T1- - C –

) id := -E * (E + E A – T1- - C – D T2 := C +D

) id := E * (E A – T1- - T2

 id := E * (E) A – T1- - T2 –

 id := E * E A – T1- T2 T3 := T1 * T2

 id:=E A - T3 A := T3

 A A

Assignment Statements with Mixed Types

Ex:

E->E+E

E->E+E {If E(1).MODE =INTEGER AND E(2).MODE=INTEGER THEN

 E.MODE := INTEGER

 Else E.MODE := REAL }

4.16 Boolean expressions

Boolean expressions have two primary purposes. They are used for computing the logical values. They are

also used as conditional expression using if-then-else or while-do.

Consider the grammar

1. E → E OR E

2. E → E AND E

3. E → NOT E

4. E → (E)

5. E → id relop id

6. E → TRUE

7. E → FALSE

The relop is denoted by <, >, <=, >=,=.

73

The AND and OR are left associated. NOT has the higher precedence then AND and lastly OR.

Methods of Translating Boolean Expression

Goto L

If A goto L

If A relop B goto L

Numerical Representations

Ex:

The translation for

 A or B and C

Is the three-address sequence

 T1 := B and C

 T2 := A or T1

A relational expression such as A < B is equivalent to conditional statement if A<B then 1 else 0, translated

into 3-address sequence

(1) If A<B goto (4)

(2) T := 0

(3) Goto (5)

(4) T :=1

(5)

Translation of A < B or C

(1) If A<B goto (4)

(2) T1 := 0

(3) Goto (5)

(4) T1 :=1

(5) T2 := T1 or C

(6)

74

4.17 Control-Flow Representation of Boolean Expression

Ex:

 Consider an expression of the form E(1) or E(2) . if E(1) is true then we know that E itself is true. If E(1) is

false then we evaluate E(2) , so we make FALSE for E(1) be the first statement in the code for E(2).

The code we generate therefore is a series of branching statements with targets of jumps temporarily left

unspecified. Each such quadruples will be on one or another list of quadruples to be filled in when the proper

location is found. We call this subsequent filling in of quadruples backpatching

To manipulate the list of quadruples we use three functions.

1. MAKELIST(i) creates a new list containing only I, an index into the array of quadruples being

generated. MAKELIST returns a pointer to the list it has made.

2. MERGE(p1 , p2) takes the list pointed to by p1 and p2, concatenates them into one list and returns a

pointer to the concatenated list

3. BACKPATCH(p , i) makes each of the quadruples on list pointed to by p take quadruple i as a target.

M->£ {M.QUAD := NEXTQUAD}

The revised grammar is

(1) E-> E(1) or M E(2)

(2) | E(1) and M E(2)

(3) | Not E(1)

(4) | (E(1))

(5) | Id

(6) | Id (1) relop id (2)

(7) M ->£

The syntax-directed translation scheme is as follows:

(1) E ->E(1) or M E(2)

{ BACKPATCH(E(1).FALSE, M.QUAD);

E.TRUE := MERGE(E(1).TRUE,E(2).TRUE);

E.FALSE := E(2) .FALSE}

75

(2) E ->E(1) and M E(2)

{ BACKPATCH(E(1).TRUE, M.QUAD);

E.TRUE := E(2) .TRUE}

E.FALSE := MERGE(E(1).FALSE,E(2).FALSE);

(3) E-> NOT E(1)

 {E.TRUE :=E(1) .FALSE;

 E.FALSE := E(1) .TRUE}

(4) E->(E(1))

 {E.TRUE := E(1) .TRUE;

 E.FALSE := E(1) .FALSE}

(5) E->id

{ E.TRUE := MAKELIST(NEXTQUAD);

 E.FALSE := MAKELIST(NEXTQUAD + 1);

 GEN (if id.PLACE goto -);

 GEN(goto -) }

(6)E-> Id (1) relop id (2)

{E.TRUE := MAKELIST(NEXTQUAD);

 E.FALSE := MAKELIST(NEXTQUAD + 1);

 GEN (if id(1).PLACE relop id(2).PLACE goto -);

 GEN(goto -) }

(7)M->£

{M.QUAD :=NEXTQUAD}

Here is the example which generates the three address code using the above translation scheme:

Consider the expression:

76

P <Q or R < S and T < U

The values of the translations at each node created by assuming that NEXTQUAD has the initial value 100
and is incremented with each call to GEN. Consider the semantic actions occurring as the numbered nodes as
“created” in a bottom-up parse.

In response to the reduction corresponding to node 1, the two quadruples

 100 : if P<Q goto –

 101 : goto –

Are generated. Then node 2, records the value of NEXTQUAD which is 102. Node 3 generates the
quadruples

 102: if R < S goto-

 103: goto-

Node 4 records the current value of NEXTQUAD, which is now 104. Node 5 generates the quadruples

 104: if T < U goto-

 105 : goto –

Node 6 corresponds to a reduction by E->E(1) and M E(2).

Node 7, the root is created by a reduction E->E(1) and M E(2). The associated semantic routine calls
BACKPATCH({101},102) which leaves the quadruples looking like:

100 : if P<Q goto –

 101 : goto 102

102: if R < S goto 104

 103: goto-

104: if T < U goto-

 105 : goto –

77

UNIT-V

5.1 Code generation

It can be considered as the final phase of compilation. Through post code generation, optimization process
can be applied on the code, but that can be seen as a part of code generation phase itself. The code generated
by the compiler is an object code of some lower-level programming language, for example, assembly
language. We have seen that the source code written in a higher-level language is transformed into a lower-
level language that results in a lower-level object code, which should have the following minimum
properties:

 It should carry the exact meaning of the source code.
 It should be efficient in terms of CPU usage and memory management.

5.2 Code Generator

Code generator is used to produce the target code for three-address statements. It uses registers to store the
operands of the three address statement.

Example:

Consider the three address statement x:= y + z. It can have the following sequence of codes:

 MOV x, R0
 ADD y, R0

Register and Address Descriptors:

78

o A register descriptor contains the track of what is currently in each register. The register descriptors
show that all the registers are initially empty.

o An address descriptor is used to store the location where current value of the name can be found at
run time.

A code-generation algorithm:

o The algorithm takes a sequence of three-address statements as input. For each three address statement
of the form a:= b op c perform the various actions. These are as follows:

o Invoke a function getreg to find out the location L where the result of computation b op c should be
stored.

o Consult the address description for y to determine y'. If the value of y currently in memory and
register both then prefer the register y' . If the value of y is not already in L then generate the
instruction MOV y' , L to place a copy of y in L.

o Generate the instruction OP z' , L where z' is used to show the current location of z. if z is in both
then prefer a register to a memory location. Update the address descriptor of x to indicate that x is in
location L. If x is in L then update its descriptor and remove x from all other descriptor.

o If the current value of y or z have no next uses or not live on exit from the block or in register then
alter the register descriptor to indicate that after execution of x : = y op z those register will no longer
contain y or z.

Generating Code for Assignment Statements:

The assignment statement d:= (a-b) + (a-c) + (a-c) can be translated into the following sequence of three
address code:

1. t:= a-b
2. u:= a-c
3. v:= t +u
4. d:= v+u

Code sequence for the example is as follows:

Statement Code Generated Register descriptor
Register empty

Address descriptor

t:= a - b MOV a, R0
SUB b, R0

R0 contains t t in R0

u:= a - c MOV a, R1
SUB c, R1

R0 contains t
R1 contains u

t in R0

u in R1

v:= t + u ADD R1, R0 R0 contains v u in R1

79

R1 contains u v in R1

d:= v + u ADD R1, R0
MOV R0, d

R0 contains d d in R0

d in R0 and memory

5.3 Design Issues

In the code generation phase, various issues can arises:

1. Input to the code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

1. Input to the code generator

o The input to the code generator contains the intermediate representation of the source program and the
information of the symbol table. The source program is produced by the front end.

o Intermediate representation has the several choices:
 a) Postfix notation
 b) Syntax tree

 c) Three address code

o We assume front end produces low-level intermediate representation i.e. values of names in it can
directly manipulated by the machine instructions.

o The code generation phase needs complete error-free intermediate code as an input requires.

2. Target program:

The target program is the output of the code generator. The output can be:

a) Assembly language: It allows subprogram to be separately compiled.

b) Relocatable machine language: It makes the process of code generation easier.

c) Absolute machine language: It can be placed in a fixed location in memory and can be executed
immediately.

3. Memory management

o During code generation process the symbol table entries have to be mapped to actual p addresses and
levels have to be mapped to instruction address.

80

o Mapping name in the source program to address of data is co-operating done by the front end and
code generator.

o Local variables are stack allocation in the activation record while global variables are in static area.

4. Instruction selection:

o Nature of instruction set of the target machine should be complete and uniform.

o When you consider the efficiency of target machine then the instruction speed and machine idioms
are important factors.

o The quality of the generated code can be determined by its speed and size.

Example:

The Three address code is:

1. a:= b + c
2. d:= a + e

Inefficient assembly code is:

1. MOV b, R0 R0→b
2. ADD c, R0 R0 c + R0
3. MOV R0, a a → R0
4. MOV a, R0 R0→ a
5. ADD e, R0 R0 → e + R0
6. MOV R0, d d → R0

5. Register allocation

Register can be accessed faster than memory. The instructions involving operands in register are shorter and
faster than those involving in memory operand.

The following sub problems arise when we use registers:

Register allocation: In register allocation, we select the set of variables that will reside in register.

Register assignment: In Register assignment, we pick the register that contains variable.

Certain machine requires even-odd pairs of registers for some operands and result.

For example:

Consider the following division instruction of the form:

1. D x, y

Where,

x is the dividend even register in even/odd register pair

81

y is the divisor

Even register is used to hold the reminder.

Old register is used to hold the quotient.

6. Evaluation order

The efficiency of the target code can be affected by the order in which the computations are performed. Some
computation orders need fewer registers to hold results of intermediate than others.

5.4 Target Machine

o The target computer is a type of byte-addressable machine. It has 4 bytes to a word.

o The target machine has n general purpose registers, R0, R1,...., Rn-1. It also has two-address
instructions of the form:

1. op source, destination

Where, op is used as an op-code and source and destination are used as a data field.

o It has the following op-codes:
 ADD (add source to destination)
 SUB (subtract source from destination)
 MOV (move source to destination)

o The source and destination of an instruction can be specified by the combination of registers and
memory location with address modes.

MODE FORM ADDRESS EXAMPLE ADDED
COST

absolute M M Add R0,
R1

1

register R R Add temp,
R1

0

indexed c(R) C+
contents(R)

ADD 100
(R2), R1

1

indirect register *R contents(R) ADD * 100 0

indirect indexed *c(R) contents(c+
contents(R))

(R2), R1 1

literal #c c ADD #3,
R1

1

82

o Here, cost 1 means that it occupies only one word of memory.

o Each instruction has a cost of 1 plus added costs for the source and destination.

o Instruction cost = 1 + cost is used for source and destination mode.

5.5 Error Detection and Recovery

Error can be classified into mainly two categories
1. Compile time error

2. Runtime error

5.5.1 Lexical Error
This type of errors can be detected during lexical analysis phase. Typical lexical phase errors are:

1. Spelling errors. Hence get incorrect tokens.
2. Exceeding length of identifier or numeric constants.

3. Appearance of illegal characters Ex:

fi ()
{
}

In above code 'fi' cannot be recognized as a misspelling of keyword if rather lexical analyzer will

understand that it is an identifier and will return it as valid identifier. Thus misspelling causes errors in

token formation.

5.5.2 Syntax error
This type of error appear during syntax analysis phase of compiler Typical

errors are:

 Errors in structure
 Missing operators
 Unbalanced parenthesis
The parser demands for tokens from lexical analyzer and if the tokens do not satisfy the

grammatical rules of programming language then the syntactical errors get raised.

5.5.3 Semantic error
This type of error detected during semantic analysis phase. Typical errors

are:

 Incompatible types of operands

 Undeclared variable

 Not matching of actual argument with formal argument

5.6 Error recovery strategies OR Ad-hoc and systematic methods

83

1. Panic mode
 This strategy is used by most parsing methods. This is simple to implement.
 In this method on discovering error, the parser discards input symbol one at time. This process is

continued until one of a designated set of synchronizing tokens is found. Synchronizing tokens

are delimiters such as semicolon or end. These tokens indicate an end of input statement.

 Thus in panic mode recovery a considerable amount of input is skipped without checking it for

additional errors.

 This method guarantees not to go in infinite loop.
 If there is less number of errors in the same statement then this strategy is best choice.

2. Phrase level recovery

 In this method, on discovering error parser performs local correction on remaining input.
 It can replace a prefix of remaining input by some string. This actually helps parser to continue

its job.

 The local correction can be replacing comma by semicolon, deletion of semicolons or

inserting missing semicolon; this type of local correction is decided by compiler designer.
 While doing the replacement a care should be taken for not going in an infinite loop.
 This method is used in many error-repairing compilers.

3. Error production
 If we have knowledge of common errors that can be encountered then we can incorporate

these errors by augmenting the grammar of the corresponding language with error

productions that generate the erroneous constructs.

 If error production is used then during parsing, we can generate appropriate error message and

parsing can be continued.

 This method is extremely difficult to maintain. Because if we change grammar then it

becomes necessary to change the corresponding productions.

4. Global production
 We often want such a compiler that makes very few changes in processing an incorrect input

string.

 We expect less number of insertions, deletions, and changes of tokens to recover from

erroneous input.

 Such methods increase time and space requirements at parsing time.

Global production is thus simply a theoretical concept.

5.7 Error recovery in predictive parsing

Consider the grammar given below:

E ::= TE’

84

E’ ::= +TE’ | ε
T ::= FT’
T’ ::= *FT’ | ε
F ::= (E)|id

Insert ‘synch’ in FOLLOW symbol for all non terminals. ‘synch’ indicates resume the parsing

 FOLLOW

E {$,)}

E’ {$,)}
T {+,$,)}

T’ {+,$,)}

F {+,*,$,)}

NT Input Symbol

id + * () $

E E =>TE’
E=>TE’ synch Synch

E’
E’ => +TE’

E’ => ε E’ => ε

T T => FT’ synch
T=>FT’ Synch synch

T’ T’ => ε T’ =>* FT’ T’ => ε T’ => ε

F F => <id> synch synch F=>(E) synch synch

 If parser looks entry M[A,a] and finds that it is blank then i/p symbol a is skipped.
 If entry is “synch” then non terminal on the top of the stack is popped in an attempt to

resume parsing.

 If a token on top of the stack does not match i/p symbol then we pop token from the

stack.

Stack Input Remarks

$E)id*+id$ Error, skip)

$E id*+id$

$E’ T id*+id$

$E’ T’ F id*+id$

$E’ T’ id id*+id$

$E’ T’ *+id$

$E’ T’ F* *+id$

$E’ T’ F +id$ Error, M[F,+]=synch

$E’ T’ +id$ F has been popped.

$E’ +id$

$E’ T+ +id$

85

$E’ T id$

$E’ T’ F id$

$E’ T’ id id$

$E’ T’ $

$E’ $

$ $

5.8 Error recovery in LR parsing
 An LR parser will detect an error when it consults the parsing action table and finds an

error entry.

 Consider expression grammar E-

> E+E | E*E | (E) | id

I0:

E’->.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I1:

E’->E.

E->E.+E

E->E.*E

I2:

E-> (E.) E-

>.E+E E-

>.E*E E-

>.(E)

E->.id

I3:

E->id.

I4:

E-> E+.E

E->.E+E

E->.E*E E-

>.(E)

E->.id
I5:

E-> E*.E

E->.E+E E-

>.E*E E-

>.(E)

E->.id

I6:

E-> (E.) E-

>E.+E E-

>E.*E

I7:

E->E+E.

E->E.+E

E->E.*E

I8:

E->E*E.

E->E.+E

E->E.*E

I9:

E->(E).

Set of LR(0) items for given grammar
 Parsing table given below shows error detection and recovery.

States action goto

id + * () $ E

0 S3 E1 E1 S2 E2 E1 1

1 E3 S4 S5 E3 E2 Acc

2 S3 E1 E1 S2 E2 E1 6

3 R4 R4 R4 R4 R4 R4

4 S3 E1 E1 S2 E2 E1 7

5 S3 E1 E1 S2 E2 E1 8

6 E3 S4 S5 E3 S9 E4

7 R1 R1 S5 R1 R1 R1

8 R2 R2 R2 R2 R2 R2

9 R3 R3 R3 R3 R3 R3

 The error routines are as follow:
 E1: push an imaginary id onto the stack and cover it with state 3.

86

Issue diagnostics “missing operands”. This routine is called from states 0, 2, 4 and

5, all of which expect the beginning of an operand, either an id or left parenthesis.

Instead, an operator + or *, or the end of the input found.

 E2: remove the right parenthesis from the input. Issue diagnostics “unbalanced

right parenthesis. This routine is called from states 0, 1, 2,4,5 on finding right

parenthesis.
 E3: push + on to the stack and cover it with state 4

Issue diagnostics “missing operator”. This routine is called from states 1 or 6

when expecting an operator and an id or right parenthesis is found.

 E4: push right parenthesis onto the stack and cover it with state 9. Issue

diagnostics “missing right parenthesis”. This routine is called from states 6 when

the end of the input is found. State 6 expects an operator or right parenthesis.

Stack Input Error message and action

0 id+)$

0id3 +)$

0E1 +)$

0E1+4)$

0E1+4 $ “unbalanced right parenthesis” e2 removes right

parenthesis

0E1+4id3 $ “missing operands” e1 pushes id 3 on stack

0E1+4E7 $

0E1 $

	UNIT-I
	1.1 Introduction to Compiler
	1.2 Compiler Phases
	Lexical Analysis:
	Syntax Analysis
	Semantic Analysis
	Intermediate Code Generation
	Code Optimization
	Code Generation
	 The Role of the Lexical Analyzer
	 The Need for Lexical Analyzer
	Specification of tokens
	1.5 A simple Approach to the Design of Lexical Analyzers
	E N D
	L S E
	I F
	T H E N
	= or >
	not =

	=
	.
	.
	Model of LR Parser
	LR Parsing Algorithm
	LR(O) Items
	LR(O) Parser SLR(1) Parser
	Closure of item sets
	Construct canonical LR(O) collection
	Limitations of the LR(O) parsing method
	SLR(1) grammars

	LR(1) Parser I Canonical LR (CLR)
	Introduction to LALR Parser

	3.1 Syntax directed translation
	Example

	3.2 Syntax directed translation scheme
	Example

	3.3 Implementation of Syntax directed translation
	Example Parse tree for SDT:
	identification
	4.3 Machine-dependent Optimization
	4.5 Basic Blocks
	4.9 Intermediate representation
	1. High Level intermediate code:
	2. Low Level intermediate code

	4.10 Postfix Notation
	Example

	4.11 Parse tree and Syntax tree
	4.12 Three address code
	Example

	4.13 Quadruples
	Example

	4.14 Triples
	Example:

	4.15 Translation of Assignment Statements
	4.16 Boolean expressions
	5.2 Code Generator
	Example:
	Register and Address Descriptors:
	A code-generation algorithm:
	Generating Code for Assignment Statements:

	5.3 Design Issues
	1. Input to the code generator
	2. Target program:
	3. Memory management
	4. Instruction selection:
	Example:

	5. Register allocation
	For example:

	6. Evaluation order

	5.4 Target Machine
	5.8 Error recovery in LR parsing

