
1

2

CORE 9 - MICROPROCESSOR (INTEL 8085)

UNIT I

ARCHITECTURE OF 8085 MICROPROCESSOR – Demultiplexing address / data bus – Control

SignalGeneration and status signals – 8085 – pin-out diagram & functions - Interrupts - Priority

Concept

INSTRUCTION SET OF 8085 – Instruction classification – addressing modes

UNIT II.

MEMORY– Instruction cycle – machine cycle – T-state -Timing diagrams for Opcode Fetch Cycle

Memory Read,Memory Write, I/O Read, I/O Write, – Functional explanation for RAM, ROM,

EPROM, EEPROM.

UNIT III

PROGRAMMING EXERCISES – addition & subtraction(16-bit), multiplication, division, largest,

smallest, blocktransfer (all 8-bit data), Binary to BCD, BCD to Binary, Binary to ASCII, ASCII to

Binary, BCD to ASCII, ASCII to BCD (all 8-bit data) - Stack & Subroutines Concept – time delay

using single register & calculations – Debugging a program.

UNIT IV

INTERFACING MEMORY – 2K X 8, 4K X 8 ROM, RAM to 8085, Interfacing an I/O port in

Memory MappedI/O and I/O Mapped I/O – Difference between I/O mapped and Memory Mapped I/O.

UNIT V

MICROPROCESSOR APPLICATIONS – Programmable peripheral devices (8255, 8253) – Pin

functions,Different Modes & Block Diagram - Keyboard and Display Interface 8279 (Architecture) -

Simple temperature controller – Simple traffic light controller.

3

MICROPROCESSOR 8085

INTRODUCTION

UNIT I

Microprocessor – Overview

Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip capable of

performing ALU (Arithmetic Logical Unit) operations and communicating with the other devices

connected to it.

Microprocessor consists of an ALU, register array, and a control unit. ALU performs arithmetical and

logical operations on the data received from the memory or an input device. Register array consists of

registers identified by letters like B, C, D, E, H, L and accumulator. The control unit controls the flow

of data and instructions within the computer.

Block Diagram of a Basic Microcomputer

How does a Microprocessor Work?

The microprocessor follows a sequence: Fetch, Decode, and then Execute.

Initially, the instructions are stored in the memory in a sequential order. The microprocessor fetches

those instructions from the memory, then decodes it and executes those instructions till STOP

instruction is reached. Later, it sends the result in binary to the output port. Between these processes,

the register stores the temporarily data and ALU performs the computing functions.

8085 Pin Diagram | Functional Pin Diagram of 8085 Microprocessor:

The signals of 8085 Pin Diagram can be classified into seven groups according to their functions.

1. Power supply and frequency signals.

2. Data bus and address bus

3. Control bus

4. Interrupt signals

5. Serial I/O signals

6. DMA signals

7. Reset signals

4

1. Power Supply and Frequency Signals:

 Vcc : It requires a single +5 V power supply.

 Vss : Ground reference.

 X1 and X2 : A tuned circuit like LC, RC or crystal is connected at these two The

internal clock generator divides oscillator frequency by 2, therefore, to operate a

system at 3 MHz, the crystal of tuned circuit must have a frequency of 6 MHz.

 CLK OUT : This signal is used as a system clock for other devices. Its frequency is

half the oscillator frequency.

2. DATA BUS AND ADDRESS BUS:

A) AD0 to AD7 : The 8 bit data bus (D0 – D7) is multiplexed with the lower half (A0 – A7) of the 16 bit

address bus. During first part of the machine cycle (T1), lower 8 bits of memory address or I/O address

appear on the bus. During remaining part of the machine cycle (T2 and T3) these lines are used as a bi-

directional data bus.

https://www.eeeguide.com/pulse-width-modulation/
https://www.eeeguide.com/beat-frequency-oscillator/
https://www.eeeguide.com/dc-machine-diagram/

5

B) A8 to A15 : The upper half of the 16 bit address appears on the address lines A8 to A15. These lines

are exclusively used for the most significant 8 bits of the 16 bit address lines.

. CONTROL AND STATUS SIGNALS:

A) ALE (Address Latch Enable) : We, know that AD0 to AD7 lines are multiplexed and the

lower half of address (A0 – A7) is available only during T1 of the machine cycle. This lower half

of address is also necessary during T2 and T3 of machine cycle to access specific location in

memory or I/O port. This means that the lower half of an address must be latched in T1 of the

machine cycle, so that it is available throughout the machine cycle. The latching of lower half

of an address bus is done by using external latch and ALE signal from 8085 Pin Diagram.

1. DemultiplexingAD0-AD7

 Thehigher-orderbusremainsonthebusforthreeclockperiods.However,thelow-

orderaddressislostafterthefirstclockperiod.

Thisaddressneedtobelatchedandusedforidentifyingthememoryaddress.IfthebusAD7-

AD0isusedtoidentifythememorylocation(2005H),theaddresswillchangeto204FHafterthefirstclockp

eriod.

 FigureshowsaschematicthatusesalatchandtheALEsignaltodemultiplexthebus.

 ThebusAD7-AD0isconnectedastheinputtothelatch.

 TheALEsignalisconnectedtotheEnablepinofthelatch,andtheoutputcontrolsignalofthel

atchisgrounded.

 FigureshowsthattheALEgoeshighduringT1.AndduringT1addressoflower-

orderaddressbusisstoreintothelatch.

6

B) RD and WR: These signals are basically used to control the direction of the data flow between

processor and memory or I/O device/port. A low on RD indicates that the data must be read from the

selected memory location or I/O port via data bus. A low on WR indicates that the data must be written

into the selected memory location or I/O port via data bus.

C) IO/M, S0 and S1 : IO/M indicates whether I/O operation or memory operation is being carried out.

S1 and S0 indicate the type of machine cycle in progress.

. INTERRUPT SIGNALS:

The 8085 Pin Diagram has five hardware interrupt signals : RST 5.5, RST 6.5, RST 7.5, TRAP and

INTR. The microprocessor recognises interrupt requests on these lines at the end of the current

instruction execution.

 The INTA (Interrupt Acknowledge) signal is used to indicate that the processor has

acknowledged an INTR interrupt.

INTR(Input) InterruptRequest.Itisusedasgeneralpurposeinterrupt

 INTA’(Output) InterruptAcknowledge.Itisusedtoacknowledgeaninterrupt.

 RST7.5,RST6.5,RST5.5(Input) RestartInterrupts.

o Thesearevectorinterruptsthattransfertheprogramcontroltospecificmemorylocations.

o TheyhavehigherprioritiesthanINTRinterrupt.

o Amongthese3interrupts,thepriorityorderisRST7.5,RST6.5,RST5.5

 TRAP(Input) Thisisanon-maskableinterrupt&hasthehighestpriority.

5. SERIAL I/O SIGNALS:

A) SID (Serial I/P Data) : This input signal is used to accept serial data bit by bit from the external

device.

https://www.eeeguide.com/plc-hardware-components/

7

B) SOD (Serial O/P Data) : This is an output signal which enables the transmission of serial data bit

by bit to the external device.

6. DMA Signal:

A) HOLD : This signal indicates that another master is requesting for the use of address bus, data bus

and control bus.

B) HLDA : This active high signal is used to acknowledge HOLD request.

7. RESET SIGNALS:

A) RESET IN: A low on this pin

 Sets the program counter to zero (0000H).

 Resets the interrupt enable and HLDA flip-flops.

 Tri-states the data bus, address bus and control bus. (Note : Only during RESET is

active).

 Affects the contents of processor’s internal registers randomly.

On reset, the PC sets to 0000H which causes the 8085 Pin Diagram to execute the first instruction from

address 0000H. For proper reset operation reset signal must be held low for at least 3 clock cycles. The

power-on reset circuit can be used to ensure execution of first instruction from address 0000H.

B) RESET OUT: This active high signal indicates that processor is being reset. This signal is

synchronized to the processor clock and it can be used to reset other devices connected in the

system.

MICROPROCESSOR - 8085 ARCHITECTURE

o It is a 40 pin I.C. package fabricated on a single LSI chip.

o The Intel 8085 uses a single +5Vd.c. supply for its operation.

o Intel 8085s clock speed is about 3 MHz; the clock cycle is of 320ns.

o 8bit data bus.

o Address bus is of 16-bit, which can address up to 64KB

o 16-bit stack pointer

o 16bit PC (Program Counter)

o Six 8-bit registers are arranged in pair: BC, DE, HL

.

https://www.eeeguide.com/choice-electronic-signal-transmission/
https://www.eeeguide.com/plc-structure/
http://www.circuitstoday.com/

8

The below diagram shows the block diagram of Intel 8085:

 Thearchitectureofmicroprocessor8085canbedividedintosevenpartsasfollows:

RegisterUnit:

GeneralPurposeDataRegister

 8085hassixgeneralpurposedataregisterstostore8-bitdata.

 TheseregistersarenamedasB,C,D,E,HandLasshowninfig.1.

 Theusercanusetheseregisterstostoreorcopyadatatemporarilyduringtheexecutionofapr

ogrambyusingdatatransferinstructions.

 Theseregistersareof8bitsbutwheneverthemicroprocessorhastohandle16-

bitdata,theseregisterscanbecombinedasregisterpairs–BC,DEandHL.

 Therearetwointernalregisters–

WandX.TheseregistersareonlyforinternaloperationlikeexecutionofCALLandXCHGi

nstructionsandnotavailabletotheuser.

ProgramCounter(PC)

 16-bitregisterdealswithsequencingtheexecutionofinstructions.

 Thisregisterisamemorypointer.

9

 Memorylocationshave16-bitaddresseswhicharewhythisisa16-bitregister.

 Themicroprocessorusesthisregistertosequencetheexecutionoftheinstructions.

 Thefunctionoftheprogramcounteristopointtothememoryaddressfromwhichthenextby

teistobefetched.

 Whenabyte(machinecode)isbeingfetched,theprogramcounterisincrementedbyonetop

ointtothenextmemorylocation.

StackPointer(SP)

 SPisalsoa16-bitregisterusedasamemorypointer.

 ItpointstoamemorylocationinR/Wmemory,calledthestack.

Thebeginningofthestackisdefinedbyloading16-bitaddressinthestackpointer

MUX/DEMUXunit

 Thisunitisusedtoselectaregisteroutofalltheavailableregisters.

 ThisunitbehavesasaMUXwhendataisgoingfromtheregistertotheinternaldatabus.

 ItbehavesasaDEMUXwhendataiscomingtoaregisterfromtheinternaldatabusofthemicr

oprocessor.

TheregisterselectwillbehaveasthefunctionselectionlinesoftheMUX/DEMUX

AddressBufferRegister&Data/AddressBufferRegister

 Theseregistersholdtheaddress/data,receivedfromPC/internaldatabusandthenloadthee

xternaladdressanddatabuses.

 Theseregistersactuallybehaveasthebufferstagebetweenthemicroprocessorandexterna

lsystembuses.

ControlUnit:

 Thecontrolunitgeneratessignalswithinmicroprocessortocarryouttheinstruction,which

hasbeendecoded.

 Inrealityitcausesconnectionsbetweenblocksofthemicroprocessortobeopenedorclosed

,sothatthedatagoeswhereitisrequiredandtheALUoperationsoccur.

 Thecontrolunititselfconsistsofthreeparts;theinstructionregisters(IR),instructiondecod

erandmachinecycleencoderandtimingand controlunit.

InstructionRegister

 Thisregisterholdsthemachinecodeoftheinstruction.

 Whenmicroprocessorexecutesaprogramitreadstheopcodefromthememory,thisopcode

isstoredintheinstructionregister.

10

InstructionDecoder&MachineCycleEncoder

 TheIRsendsthemachinecodetothisunit.

 Thisunit, as itsnamesuggests,decodestheopcode and findsoutwhatis to bedonein

response

ofthecomingopcodeandhowmanymachinecyclesarerequiredtoexecutethisinstruction.

Timing&Controlunit

 Thecontrolunitgeneratessignalswithinmicroprocessortocarryouttheinstruction,which

hasbeendecoded.

 Inreality,itcausescertainconnectionsbetweenblocksofthemicroprocessortobeopenedo

rclosed,sothatthedatagoeswhereitisrequiredandtheALUoperationsoccur.

Arithmetic&LogicalUnit:

 TheALUperformstheactualnumericalandlogicaloperationsuchas‘add’,‘subtract’,‘AND’,‘O

R’,etc.

 ALUusesdatafrommemoryandfromaccumulatortoperformthearithmeticoperationsan

dalways storestheresultoftheoperationinaccumulator.

 ALUconsistsofaccumulator,flagregisterandtemporaryregister.

Accumulator

 Theaccumulatorisan8-bitregisterthatisapartofALU.

 Thisregisterisusedtostore8-bitdataandperformarithmeticalandlogicaloperations.

 Theresultofanoperationisstoredintheaccumulator.

 ItisalsoidentifiedasregisterA.

Flagsregister

 Flagregisterincludesfiveflip-

flops,whicharesetorresetafteranoperationaccordingtothedataconditionsoftheresultint

heaccumulatorand otherregisters.

 Theyarecalled zero (Z),carry(CY),sign (S),parity(P)andauxiliarycarry

(AC)flags;their bitpositionsintheflagregisterareshown infig.

 Themicroprocessorusestheseflagstosetandtestdataconditions.

11

Figure:Flagsregistersin8085.

 Theflagsarestoredinthe8-

bitregistersothattheprogrammercanexaminetheseflagsbyaccessingtheregisterthrough

aninstruction.

 Theseflagshavecriticalimportanceinthedecision-makingprocessofthemicroprocessor.

 Theconditions(setorreset)oftheflagsaretestedthroughthesoftwareinstructions.

 Forinstance,JC(jumponcarry)isimplementedtochangethesequenceofaprogramwhenC

Yflagisset.

Z(Zero)Flag:

 Thisflagindicateswhethertheresultofmathematicalorlogicaloperationiszeroornot.

 Iftheresultofthecurrentoperationiszero,thenthisflagwillbeset,otherwisereset.

CY(Carry)Flag:

 Thisflagindicates,whether,duringanadditionorsubtractionoperation,carryorborrowisg

eneratedornot,ifgeneratedthenthisflagbitwillbeset.

AC(AuxiliaryCarry)Flag:

 ItshowscarrypropagationfromD3positiontoD4position.

 Asshowninthefig.,acarryisgeneratedfromD3bitpositionandpropagatestotheD4positio

n.Thiscarryiscalledauxiliarycarry.

S(Sign)Flag:

 Signflagindicateswhethertheresultofamathematicaloperationisnegativeorpositive.

 Iftheresultispositive,thenthisflagwillresetandiftheresultisnegativethisflagwillbeset.

 Thisbit,infact,isareplicaoftheD7bit.

P(Parity)Flag:

 Parityisthenumberof1’sinanumber.

 Ifthenumberof1’sinanumberiseventhenthatnumberisknownasevenparitynumber.

 Ifthenumberof1’sinanumberisoddthenthatnumberisknownasanoddparitynumber.

 Thisflagindicateswhetherthecurrentresultisofevenparity(set)orofoddparity(reset).

12

InterruptControl

 Theinterruptcontrolunithas5interruptinputsTRAP,RST7.5,RST6.5,RST5.5&INTRa

ndoneacknowledgesignalINTA.

 Itcontrolstheinterruptactivityof8085microprocessor.

SerialIOcontrol

 8085serialIOcontrolprovidestwolines,SODandSIDforserialcommunication.

 Theserialoutputdata(SOD)lineisusedtosenddataseriallyandserialinputdataline(SID)is

usedtoreceivedataserially.

8085 Instructions

An instruction of computer is a command given to the computer to perform a specified operation on

given data. Some instructions of Intel 8085 microprocessor are: MOV, MVI, LDA, STA, ADD, SUB,

RAL, INR, MVI, etc.

Opcode and Operands

Each instruction contains two parts: Opcode (Operation code) and Operand.

The 1st part of an instruction which specifies the task to be performed by the computer is called

Opcode.

The 2nd part of the instruction is the data to be operated on, and it is called Operand. The Operand (or

data) given in the instruction may be in various forms such as 8-bit or 16-bit data, 8-bit or 16-bit

address, internal registers or a register or memory location.

Instruction Word Size

A digital computer understands instruction written in binary codes (machine codes). The binary codes

of all instructions are not of the same length.

According to the word size, the Intel 8085 instructions are classified into the following three

types:

1. One byte instruction

2. Two byte instruction

3. Three byte instruction

13

1. One-byte instruction: Examples of one byte instructions are:

o MOV A, B - Move the content of the register B to register A.

o ADD B ? Add the content of register B to the content of the accumulator.

All the above two examples are only one byte long. All one-byte instructions contain information

regarding operands in the opcode itself.

2. Two-byte instruction: In a two byte instruction the first byte of the instruction is its opcode and the

second byte is either data or address.

Example:

 MVI B, 05; 05 moved to register B.

 06, 05; MVI B, 05 is in the code form.

The first byte 06 is the opcode for MVI B and second byte 05 is the data which is to be moved to

register B.

3. Three-byte instruction: The first byte of the instruction is its opcode and the second and third bytes

are either 16-bit data or 16-bit address.

Example:

 LXI H, 2400H; Load H-L Pair with 2400H

 21, 00, 24; LXI H, 2400H in the code form

The first byte 21 is the opcode for the instruction LXI H. The second 00 is 8 LSBs of the data (2400H),

which is loaded into register L. The third byte 24 is 8 MSBs of the data (2400H), which is loaded into

register H.

Instruction Cycle

14

The time required to fetch an instruction and necessary data from memory and to execute it, is called

an instruction cycle. Or the total time required to execute an instruction is given by:

 IC = FC + EC

Where,

IC = Instruction Cycle

FC = Fetch Cycle

EC = Execute Cycle

Timing Diagram for Instruction Cycle

Instruction Set of 8085

Instruction and Data Formats

The various techniques to specify data for instructions are:

1. 8-bit or 16-bit data may be directly given in the instruction itself. The address of the memory

location, I/O port or I/O device, where data resides, may be given in the instruction itself.

2. In some instructions, only one register is specified. The content of the specified register is one

of the operands.

3. Some instructions specify two registers. The contents of the registers are the required data.

4. In some instructions, data is implied. The most instructions of this type operate on the content

of the accumulator.

Due to different ways of specifying data for instructions, the machine codes of all instructions are not

of the ame length. It may 1-byte, 2-byte or 3-byte instruction.

15

8085 Instructions

An instruction of a computer is a command given to the computer to perform a specified operation on

given data. In microprocessor, the instruction set is the collection of the instructions that the

microprocessor is designed to execute.

The programmer writes a program in assembly language using these instructions. These instructions

have been classified into the following groups:

Data Transfer Group

Instructions which are used to transfer the data from a register to another register from memory to

register or register to memory come under this group...

Instruction
Set

Explanation States Flags Addre-ssing M

C
Example

MOV r1, r2

[r1] ← [r2]
Move the

content of

the one

register to

another

4 none Register 1

MOV

A, B

MOV r, M

[r]←[[H-L]]

Move the

content of

memory to

register

7 none Register

Indirect

2 MOV

B, M

MOV

M,r

[[H-

L]]←[
r]

Move the

content of

register to

memory

7 none Register

Indirect

2 MOV

M, C

MVI

r, data

[r]

←data

Move

immediate

data to

register

7 None Immediate

Register

3 MVI M,

08

LXI rp, data

16

[rp] ←data
16 bits, [rh]

←8 MSBs,
[rl] ←8
LSBs of

data

Load

Register pair

immediate

10 None Immediate 3 LXI H,

2500H

LDA addr Load 13 None Direct 4 LDA

16

[A] ←[addr] Accumulator

direct

2400 H

STA Addr

[addr] ←[A]
Store

accumulator

direct

13 None Direct 4 STA

2000H

LHLD addr

[L]

←[addr],
[H] ← [addr
+ 1]

Load H-L

pair direct

16 None Direct 5 LHLD

2500H

SHLD addr

[addr]

←[L], [addr
+1] ← [H]

Store H-L

pair direct

16 None Direct 5 SHLD

2500 H

LDAX rp

[A] ←[[rp]]
Load

accumulator

indirect

7 None Register

Indirect

2 LDAX

B

STAX rp

[[rp]] ←[A]
Store

accumulator

indirect

7 None Register

Indirect

2 STAX

D

XCHG

[H-L] ↔[D-

E]

Change the

contents of

H-L with D-

E pair

4 None Register 1

Arithmetic Group

The instructions of this group perform arithmetic operations such as addition, subtraction, increment or

decrement of the content of a register or a memory.

Instruction
Set

Explanation States Flags Addre-ssing Machine
Cycles

Example

ADD r

[A]

←[A]+[r]

Add register

to

accumulator

4 All Register 1 ADD K

ADD M

[A] ← [A] +
[[H-L]]

Add

memory to

accumulator

7 All Register

indirect

2 ADD K

ACC r

[A] ← [A] +
[r] + [CS]

Add register

with carry to

accumulator

4 All Register 1 ACC K

17

ADC M

[A] ← [A] +
[[H-L]] [CS]

Add

memory

with carry to

accumulator

7 All Register

indirect

2 ADC K

ADI data

[A] ← [A] +
data

Add

immediate

data to

accumulator

7 All Immediate 2 ADI 55K

ACI data

[A] ← [A] +
data + [CS]

Add with

carry

immediate

data to

accumulator

7 All Immediate 2 ACI 55K

DAD rp

[H-L] ←[H-

L] + [rp]

Add register

paid to H-L

pair

10 CS Register 3 DAD K

SUB r

[A] ←[A]-
[r]

Subtract

register

from

accumulator

4 All Register 1 SUB K

SUB M

[A] ← [A] -

[[H-L]]

Subtract

memory

from

accumulator

7 ALL Register

indirect

2 SUB K

SBB r

[A] ←[A]-
[H-L]] -

[CS]

Subtract

memory

from

accumulator

with borrow

7 All Register

indirect

2 SBB K

SUI data

[A] ←[A]-
data

Subtract

immediate

data from

accumulator

7 All Immediate 2 SUI 55K

SBI data

[A] ←[A]-
data-[CS]

Subtract

immediate

data from

accumulator

with borrow

7 All Immediate 2 XCHG

INR r

[r] ←[r]+1

Increment

register

content

4 All

except

carry

flag

Register 1 INR K

INR M

[[H-L]]

←[[H-L]]+1

Increment

memory

content

10 All

except

carry

Register

indirect

3 INR K

18

flag

DCR r

[r] ←[r] -1

Decrement

register

content

4 All

except

carry

flag

Register 1 DCR K

DCR M

[[H-L]] ←
[[H-L]]-1

Decrement

memory

content

10 All

except

carry

flag

Register

indirect

3 DCR K

INX rp

[rp] ←[rp]+1

Increment

memory

content

6 None Register 1 INX K

DCX rp

[rp] ←[rp]-1

Decrement

register pair

6 None Register 1 DCX K

DAA Decimal

adjust

accumulator

4 1 DAA

Logical Group

The instructions in this group perform logical operation such as AND, OR, compare, rotate, etc.

Instruction Set Explanation States Flags Addressing Machine
Cycles

ANA r

[A] ←[A]∧[r]

AND register

with accumulator

4 All Register 1

ANA M

[A] ←[A]∧[[H-]]

AND memory

with accumulator

4 All Register

indirect

2

ANI data

[A] ← [A] ∧ [data]

AND immediate

data with

accumulator

7 All Immediate 2

ORA r

[A] ←[A]∨[r]

OR-register with

accumulator

4 All Register 1

ORA M

[A] ←[A]∨[[H-L]]

OR-memory with

accumulator

7 All Register

indirect

2

ORI data OR -immediate

data with

7 All Immediate 2

19

[A] ← [A] ∨ [data] accumulator

XRA r [A] ←
[A]∀[r]

XOR register

with accumulator

4 All Register 1

XRA M [A] ← [A] ∀ [[H-L]]

XOR memory

with accumulator

7 All Register

indirect

2

XRI data [A] ←[A] ∀ [data]

XOR immediate

data with

accumulator

7 All Immediate 2

CMA [A] ←[A] Complement the

accumulator

4 None Implicit 1

CMC

[CS] ←[CS]
Complement the

carry status

4 CS 1

STC

[CS] ← 1

Set carry status 4 CS 1

CMP r

[A]-[r]

Compare register

with accumulator

4 All Register 1

CMP M

[A] - [[H-L]]

Compare memory

with accumulator

7 All Register

indirect

2

CPI data

[A] - data

Compare

immediate data

with accumulator

7 All Immediate 2

RLC

[An+1] ←[An], [A0]

←[A7], [CS] ←[A7]

Rotate

accumulator left

4 Cs Implicit 1

RRC

[A7] ←[A0], [CS]

←[A0], [An]

←[An+1]

Rotate

accumulator right

 CS Implicit 1

RAL

[An+1] ←[An], [CS]

←[A7], [A0] ←[CS]

Rotate

accumulator left

through carry

 CS Implicit 1

RAR

[An] ←[An+1], [CS]

←[A0], [A7] ←[CS]

Rotate

accumulator right

through carry

 CS Implicit 1

20

Branch Control Group

This group contains the instructions for conditional and unconditional jump, subroutine call and return,

and restart.

Unconditional Jump

Instruction Set Explanation States Flags Addressing Machine

Cycles

JMP

addr(label)

[PC] ← Label

Unconditional jump:

jump to the instruction

specified by the

address

10 None Immediate 3

Conditional Jump

Instruction Set Explanation States Machine
Cycles

Jump addr

(label)

[PC] ← Label

Conditional jump: jump to the instruction

specified by the address if the

specified condition is fulfilled

10, if true

and

7, if not true

3, if true

and

2, if not

true

Instruction Set Explanation Status States Flags Addressing Machine
Cycles

JZ addr (label) [PC]

← address (label)
Jump, if

the result

is zero

Jump

if

Z=1

7/10 None Immediate 2/3

JNZ addr (label)

[PC] ← address
(label)

Jump if the

result is

not zero

Jump

if

Z=0

7/10 None Immediate 2/3

JC addr (label)

[PC] ← address
(label)

Jump if

there is a

carry

Jump

if CS

=1

7/10 None Immediate 2/3

JNC addr (label)

[PC] ← address
(label)

Jump if

there is no

carry

Jump

if CS

=0

7/10 None Immediate 2/3

JP addr (label)

[PC] ← address
Jump if

result is

Jump

if

7/10 None Immediate 2/3

21

(label) plus S=0

JM addr (label)

[PC] ← address
(label)

Jump if

result is

minus

Jump

if

S=1

7/10 None Immediate 2/3

JPE addr (label)

[PC] ← address
(label)

Jump if

even parity

The

parity

status

P =1

7/10 None Immediate 2/3

JPO addr (label)

[PC] ← address
(label)

Jump if

odd parity

The

parity

status

P =0

7/10 None Immediate 2/3

1. Stack

 Stack is a group of memory location in the R/W memory that is used for temporary storage of

binaryinformationduringexecutionofa program.

 The starting memory location of the stack is defined in program and space is reserved usually at

the highendofmemorymap.

 The beginning of the stack is defined in the program by using instruction LXI SP, 16-bit

memory address.Whichloadsa 16-bitmemoryaddressin stackpointerregisterofmicroprocessor.

 Once stack location is defined storing of data bytes begins at the memory address that is one less

thenaddressinstackpointerregister.LXISP,2099hthestoringofdatabytesbeginsat2098Handcontinues

inreversed numericalorder.

Fig.Stack

 Data bytes in register pair of microprocessor can be stored on the stack in reverse order by using

thePUSHinstruction.

 PUSHB instructionsoredataofregisterpairBConsack.

22

Fig.PUSHoperationonstack

 DatabytescanbetransferredfromthestacktorespectiveregistersbyusinginstructionPOP.

Pop operation

Instructionnecessaryforstackin8085

LXISP,2095 Loadthe stackpointerregisterwith a16-bitaddress.

PUSHB/D/H Itcopies contentsofB-C/D-E/H-L registerpaironthestack.

PUSHPSW OperandPSWrepresentsProgramstatuswordmeaningcontentsofaccumulatorandflags.

POPB/D/H Itcopies contentoftoptwomemory locationsofthestackintospecifiedregisterpair.

POPPSW ItcopiescontentoftoptwomemorylocationsofthestackintoB-Caccumulatorandflags

respectively.

23

2. Subroutine

 A subroutineisa groupofinstructionthat performs asubtaskof repeatedoccurrence.

 Asubroutinecanbeusedrepeatedlyindifferent locationsoftheprogram.

AdvantageofusingSubroutine

 Ratherthanrepeatthesameinstructionsseveraltimes,theycanbegroupedintoasubroutinethatiscal

ledfromthedifferentlocations.

WheretowriteSubroutine?

 InAssemblylanguage, asubroutinecanexistanywhere inthecode.

 However,itiscustomarytoplace subroutinesseparatelyfrom themainprogram.

Instructionsfordealingwithsubroutinesin8085.

 TheCALLinstructionisusedtoredirectprogramexecutiontothesubroutine.

o WhenCALLinstructionisfetched,theMicroprocessorknowsthatthenexttwonewMemoryloc

ationcontains16bitsubroutineaddress.

o Microprocessor Reads the subroutine address from the next two memory location and

stores thehigher order 8bit of the address in the W register and stores the lower order

8bit of the address intheZ register.

o Push the Older address of the instruction immediately following the CALL onto the

stack [Returnaddress]

o Loadstheprogramcounter(PC)withthenew16-bitaddresssupplied withtheCALL

instructionfromWZregister.The RET instructionisusedto return.

Unconditional CALL

Instruction Set Explanation States Flags Addressing Machine

Cycles

CALL addr (label)

[SP]-1] ← [PCH]
,[[SP-2] ← [PCL],
[SP] ← [SP]-2,

[PC] ←
addr(label)

Unconditional

CALL: Call the

subroutine

identified by the

address

18 None Immediate

/register

5

24

Conditional CALL

Instruction Set Explanation States Machine
Cycles

CALL addr (label)

[SP]-1] ← [PCH] , [[SP-2] ←
[PCL], [PC] ← addr (label), [SP]
← [SP]-2

Unconditional CALL:

Call the subroutine

identified by the

address if the

specified condition is

fulfilled

18, if true

and

9, if not

true

5, if true

and

2, if not

true

Instruction
Set

Explanation Status States Flags Addressing Machine
Cycles

CC

addr(label)

Call

subroutine

if carry

status CS=1

CS

=1

9/18 None Immediate

/register

2/5

CNC addr

(label)

Call

subroutine

if carry

status CS=0

CS

=0

9/18 None Immediate

/register

2/5

CZ addr

(label)

Call

Subroutine

if the result

is zero

Zero

status

Z=1

9/18 None Immediate

/register

2/5

CNZ addr

(label)

Call

Subroutine

if the result

is not zero

Zero

status

Z=0

9/18 None Immediate

/register

2/5

CP addr

(label)

Call

Subroutine

if the result

is plus

Sign

status

S=0

9/18 None Immediate

/register

2/5

CM addr

(label)

Call

Subroutine

if the result

is minus

Sign

status

S= 1

9/18 None Immediate

/register

2/5

CPE

addr(label)

Call

subroutine

if even

Parity

Status

P=1

9/18 None Immediate

/register

2/5

25

parity

CPO

addr(label)

Call

subroutine

if odd

parity

Parity

Status

P= 0

9/18 None Immediate

/register

2/5

Unconditional Return

Instruction Set Explanation States Flags Addressing Machine
Cycles

RET

[PCL] ← [[SP]], [PCH]
← [[SP] + 1], [SP] ←
[SP] + 2

Unconditional

RET: Return

from

subroutine

10 None Indirect 3

Conditional Return

Instruction Set Explanation States Machine
Cycles

RET

[PCL] ←
[[SP]],

[PCH] ←
[[SP] + 1],

[SP] ← [SP] +
2

Conditional

RET: Return

from

subroutine

12, if true and 6, if not true 3, if true

and 1, if not

true

26

Instruction
Set

Explanation Status States Flags Addressing Machine
Cycles

RC Return from

subroutine if

carry status is

zero.

CS =1 6/12 None Register

indirect

1/3

RNC Return from

subroutine if

carry status is

not zero.

CS = 0 6/12 None Register

indirect

1/3

RZ Return from

subroutine if

result is zero.

Zero

status

Z=1

6/12 None Register

indirect

1/3

RNZ Return from

subroutine if

result is not

zero.

Zero

status

Z= 0

6/12 None Register

indirect

1/3

RP Return from

subroutine if

result is not

plus.

Sign

Status

S= 0

6/12 None Register

indirect

1/3

RM Return from

subroutine if

result is not

minus.

Sign

Status

S= 0

6/12 None Register

indirect

1/3

RPE Return from

subroutine if

even parity.

Parity

Status

P= 1

6/12 None Register

indirect

1/3

RPO Return from

subroutine if

odd parity.

Parity

Status

P= 1

6/12 None Register

indirect

1/3

27

Restart

Instruction Set Explanation States Flags Addressing Machine
Cycles

RST

[[SP]-1] ← [PCH],
[[SP]-2] ← [PCL],
[SP] ← [SP] - 2,

[PC] ← 8 times n

Restart is a one

word CALL

instruction.

12 None Register

Indirect

3

The restart instructions and locations are as follows:

Instruction Opcode Restart Locations

RST 0 C7 0000

RST 1 CF 0008

RST 2 D7 0010

RST 3 DF 0018

RST 4 E7 0020

RST 5 EF 0028

RST 6 F7 0030

RST 7 FF 0038

PCHL

Instruction Set Explanation States Flags Addressing Machine
Cycles

PCHL

[PC] ← [H-L],

[PCH] ←[H], [PCL]
←[L]

Jump

address

specified

by H-L

pair

6 None Register 1

28

Stack, I/O and Machine Control Group

This group contains the instructions for input/output ports, stack and machine control.

Instruction Set Explanation States Flags Addressing Machine
Cycles

IN port -

address

[A] ← [Port]

Input to

accumulator

from I/O

port

10 None Direct 3

OUT port-

address

[Port] ← [A]

Output

from

accumulator

to I/O port

10 None Direct 3

PUSH rp

[[SP] - 1] ←
[rh],

[[SP] - 2] ←
[rh],

[SP] ← [SP] -
2

Push the

content of

register pair

to stack

12 None Register(source)/register

Indirect(destination)

3

PUSH PSW

[SP]-1] ←
[A],

[[SP] -2] ←
PSW,

[SP] ← [SP] -
2

Push

processor

word

12 None Register(source)/register

Indirect(destination)

3

POP rp

[rl] ← [[SP]
],

[rh] ←
[[SP]+1],

[SP] ← [SP]
+ 2

Pop the

content of

register

pair, which

was saved,

from the

stack

10 None Register(source)/register

Indirect(destination)

3

HLT Halt 5 None 1

29

XTHL

[L] ↔ [[SP]],
[H] ↔ [[SP]
+ 1]

Exchange

top stack

with H-L

16 None Register indirect 5

SPHL

[H-L] → [SP]
Moves the

contents of

H-L pair to

stack

pointer

6 None Register 1

EI Enable

Interrupts

4 None 1

SIM Set

Interrupts

Masks

4 None 1

RIM Read

Interrupts

Masks

4 None 1

NOP No

Operation

4 None 1

 8085 Addressing Modes

The way in which for specifying operands are called the addressing modes. For 8085, they are

 Immediate Addressing:

o Data is provided in the instruction.

o Load the immediate data to the destination provided.

o Example: MVI A, 12 H

 Register Addressing:

o Data is provided through the registers.

o Example: MOV B, C

 Direct Addressing:

o Used to accept data from outside devices to store in the accumulator or send the

data stored in the accumulator to the outside device.

o Example: MOV A, [1000]

30

 Indirect Addressing:

o Effective address is calculated by the processor and the contents of the address is

used to form a second address. The second address is where the data is stored.

o Example: MOV A, [[1000]]

 Implicit addressing:

o In this addressing mode the data itself specifies the data to be operated upon.

o Example: CMA ; Complement the contents of accumulator

UNIT II

Timing Diagrams of 8085

It is one of the best way to understand to process of micro-processor/controller. With the help of

timing diagram we can understand the working of any system, step by step working of each

instruction and its execution, etc.

It is the graphical representation of process in steps with respect to time. The timing diagram

represents the clock cycle and duration, delay, content of address bus and data bus, type of

operation ie. Read/write/status signals.

Important terms related to timing diagrams:

T-state: Each clock cycle is called as T-states.

Machine cycle: It is the time required by the microprocessor to complete the one portion of an

operation

Instruction cycle: this term is defined as the number of steps required by the CPU to complete

the entire process i.e. Fetching and execution of one instruction. The fetch and execute cycles are

carried out in synchronization with the clock.

31

Opcode fetch:

 The microprocessor requires instructions to perform any particular action. In order to perform

these actions microprocessor utilizes Opcode which is a part of an instruction which provides

detail (ie. Which operation µp needs to perform) to microprocessor.

Operation:

 During T1 state, microprocessor uses IO/M(bar), S0, S1 signals are used to instruct

microprocessor to fetch opcode.

 Thus when IO/M(bar)=0, S0=S1= 1, it indicates opcode fetch operation.

 During this operation 8085 transmits 16-bit address and also uses ALE signal for address

latching.

 At T2 state microprocessor uses read signal and make data ready from that memory

location to read opcode from memory and at the same time program counter increments by

1 and points next instruction to be fetched.

 In this state microprocessor also checks READY input signal, if this pin is at low logic

level ie. '0' then microprocessor adds wait state immediately between T2 and T3.

 At T3, microprocessor reads opcode and store it into instruction register to decode it

further.

32

 During T4 microprocessor performs internal operation like decoding opcode and providing

necessary actions.

 The opcode is decoded to know whether T5 or T6 states are required, if they are not

required then µp performs next operation.

Read and write timing diagram for memory and I/O Operation

MemoryRead:

 <>Figure: Memory read timing diagram

Operation:

 It is used to fetch one byte from the memory.

 It requires 3 T-States.

 It can be used to fetch operand or data from the memory.

 During T1, A8-A15 contains higher byte of address. At the same time ALE is high. Therefore

Lower byte of address A0-A7 is selected from AD0-AD7.

 Since it is memory ready operation, IO/M(bar) goes low.

 During T2 ALE goes low, RD(bar) goes low. Address is removed from AD0-AD7 and data

33

D0-D7 appears on AD0-AD7.

 During T3, Data remains on AD0-AD7 till RD(bar) is at low signal.

Memory Write: Figure: Memory write timing diagram

Operation:

 It is used to send one byte into memory.

 It requires 3 T-States.

 During T1, ALE is high and contains lower address A0-A7 from AD0-AD7.

 A8-A15 contains higher byte of address.

 As it is memory operation, IO/M(bar) goes low.

 During T2, ALE goes low, WR(bar) goes low and Address is removed from AD0-AD7 and

then data appears on AD0-AD7.

Data remains on AD0-AD7 till WR(bar) is low.

I/ORead:

 Figure: I/O read timing diagram

Operation:

It is used to fetch one byte from an IO port.

It requires 3 T-States.

34

During T1, The Lower Byte of IO address is duplicated into higher order address bus A8-A15.

ALE is high and AD0-AD7 contains address of IO device.

IO/M (bar) goes high as it is an IO operation.

During T2, ALE goes low, RD (bar) goes low and data appears on AD0-AD7 as input from IO

device.

During T3 Data remains on AD0-AD7 till RD(bar) is low.

I/OWrite:

Operation:

 It is used to writ one byte into IO device.

 It requires 3 T-States.

 During T1, the lower byte of address is duplicated into higher order address bus A8-A15.

 ALE is high and A0-A7 address is selected from AD0-AD7.

 As it is an IO operation IO/M (bar) goes low.

 During T2, ALE goes low, WR (bar) goes low and data appears on AD0-AD7 to write data

into IO device.

 During T3, Data remains on AD0-AD7 till WR(bar) is low.

35

ClassificationofMemory

Memory is the most essential element of a computing system because without it computer can’t

perform simple tasks. Computer memory is of two basic type – Primary memory(RAM and ROM)

and Secondary memory(hard drive,CD,etc.). Random Access Memory (RAM) is primary-volatile

memory and Read Only Memory (ROM) is primary-non-volatile memory.

Random Access Memory (RAM) –

It is also called as read write memory or the main memory or the primary memory.

The programs and data that the CPU requires during execution of a program are stored in this

memory.

It is a volatile memory as the data loses when the power is turned off.

RAM is further classified into two types- SRAM (Static Random Access Memory) and DRAM

(Dynamic Random Access Memory).

36

2. Read Only Memory (ROM) –

Stores crucial information essential to operate the system, like the program essential to boot the

computer.

It is not volatile.

Always retains its data.

Used in embedded systems or where the programming needs no change.

Used in calculators and peripheral devices.

ROM is further classified into 4 types- ROM, PROM, EPROM, and EEPROM.

Types of Read Only Memory (ROM) –

PROM (Programmable read-only memory) – It can be programmed by user. Once programmed,

the data and instructions in it cannot be changed.

EPROM (Erasable Programmable read only memory) – It can be reprogrammed. To erase data

from it, expose it to ultra violet light. To reprogram it, erase all the previous data.

EEPROM (Electrically erasable programmable read only memory) – The data can be erased by

applying electric field, no need of ultra violet light. We can erase only portions of the chip

RAM(Random Access Memory) is a part of computer’s Main Memory which is directly

accessible by CPU. RAM is used to Read and Write data into it which is accessed by CPU

randomly. RAM is volatile in nature, it means if the power goes off, the stored information is lost.

RAM is used to store the data that is currently processed by the CPU. Most of the programs and

data that are modifiable are stored in RAM.

37

Integrated RAM chips are available in two form:

SRAM(Static RAM)

DRAM(Dynamic RAM)

SRAM

The block diagram of SRAM chip is given below.

The SRAM memories consist of circuits capable of retaining the stored information as long as

the power is applied. That means this type of memory requires constant power. SRAM

memories are used to build Cache Memory.

SRAM Memory Cell: Static memories(SRAM) are memories that consist of circuits capable of

retaining their state as long as power is on. Thus this type of memories is called volatile

memories. The below figure shows a cell diagram of SRAM. A latch is formed by two inverters

connected as shown in the figure. Two transistors T1 and T2 are used for connecting the latch

with two bit lines. The purpose of these transistors is to act as switches that can be opened or

closed under the control of the word line, which is controlled by the address decoder. When the

word line is at 0-level, the transistors are turned off and the latch remains its information. For

example, the cell is at state 1 if the logic value at point A is 1 and at point B is 0. This state is

retained as long as the word line is not activated.

38

For Read operation, the word line is activated by the address input to the address decoder. The

activated word line closes both the transistors (switches) T1 and T2. Then the bit values at

points A and B can transmit to their respective bit lines. The sense/write circuit at the end of the

bit lines sends the output to the processor.

For Write operation, the address provided to the decoder activates the word line to close both

the switches. Then the bit value that to be written into the cell is provided through the

sense/write circuit and the signals in bit lines are then stored in the cell.

DRAM

Dynamic random-access memory, or DRAM, is a specific type of random access memory that

allows for higher densities at a lower cost. The memory modules found in laptops and desktops

uses DRAM.

How Does DRAM Work?

Invented by Robert Dennard in 1966 at IBM, DRAM works much differently than other types of

memory. The fundamental storage cell within DRAM is composed of two elements: a transistor

and a capacitor.

When a bit needs to be put in memory, the transistor is used to charge or discharge the capacitor.

A charged capacitor represents a logic high, or '1', while a discharged capacitor represents a logic

low, or '0'. The charging/discharging is done via the wordline and bitline, shown in Figure 1.

39

During a read or write, the wordline goes high and the transistor connects the capacitor to the

bitline. Whatever value is on the bitline ('1' or '0') gets stored or retrieved from the capacitor.

The charge stored on each capacitor is too small to be read directly and is instead measured by a

circuit called a sense amplifier. The sense amplifier detects the minute differences in charge and

outputs the corresponding logic level. The act of reading from the bitline forces the charge to flow

out of the capacitor. Thus, in DRAM, reads are destructive. To get around this, an operation

known as precharging is done to put the value read from the bitline back into the capacitor.

Equally problematic is the fact that the capacitors leak charge over time. Therefore, to maintain

the data stored in memory the capacitors must be refreshed periodically. Refreshing works just

like a read and ensures data is never lost. This is where DRAM gets the “Dynamic” moniker

from—the charge on a DRAM cell is dynamically refreshed every so often. Contrast this with

SRAM (Static RAM) which retains its state without needing to be refreshed.

Rank, Bank, Row, and Column

As mentioned earlier, the rank of a DRAM is a set of separately addressable DRAM chips. Each

DRAM chip is further organized into a number of banks that contain a set of memory arrays. The

number of memory arrays per bank is equal to the size of the output width. Therefore in a x4

DRAM chip, the internal banks would each have four memory arrays.

40

The Gray section is the memory array designed as a grid of rows and columns. A set of decoders

are used to access the rows and columns, selecting a single intersection within the memory array.

It is at this intersection that a small capacitor stores a charge representing the data being accessed.

Sense amplifiers perform precharge operations on capacitors and generate logic-level outputs for a

number of data buffers that store the data until it can be retrieved by a memory controller or CPU.

Classification and Programming of Read-Only Memory (ROM)

Read-Only Memory (ROM) is the primary memory unit of any computer system along with the

Random Access Memory (RAM), but unlike RAM, in ROM, the binary information is stored

permanently . Now, this information to be stored is provided by the designer and is then stored

inside the ROM . Once, it is stored, it remains within the unit, even when power is turned off and

on again .

The information is embedded in the ROM, in the form of bits, by a process known as

programming the ROM . Here, programming is used to refer to the hardware procedure which

41

specifies the bits that are going to be inserted in the hardware configuration of the device . And

this is what makes ROM a Programmable Logic Device (PLD) .

Block Structure

It consists of k input lines and n output lines .

The k input lines is used to take the input address from where we want to access the content of the

ROM .

Since each of the k input lines can be either 0 or 1, so there are 2^k total addresses which can be

referred to by these input lines and each of these addresses contain n bit information, which is

given out as the output of the ROM.

Such a ROM is specified as 2^k x n ROM .

Internal Structure

It consists of two basic components – Decoder and OR gates .

A Decoder is a combinational circuit which is used to decode any encoded form (such as binary,

BCD) to a more known form (such as decimal form) .

In ROM, the input to a decoder will be in binary form and the output will represent its decimal

equivalent .

The Decoder is represented as l x 2^l, that is, it has l inputs and has 2^l outputs, which implies that

it will take l-bit binary number and decode it into one of the 2^l decimal number .

All the OR gates present in the ROM will have outputs of the decoder as their input .

Classification Of ROM

PROM – It stands for Programmable Read-Only Memory . It is first prepared as blank memory,

and then it is programmed to store the information . The difference between PROM and Mask

ROM is that PROM is manufactured as blank memory and programmed after manufacturing,

whereas a Mask ROM is programmed during the manufacturing process.

To program the PROM, a PROM programmer or PROM burner is used . The process of

programming the PROM is called as burning the PROM . Also, the data stored in it cannot be

modified, so it is called as one – time programmable device.

42

Uses – They have several different applications, including cell phones, video game consoles,

RFID tags, medical devices, and other electronics.

EPROM – It stands for Erasable Programmable Read-Only Memory . It overcomes the

disadvantage of PROM that once programmed, the fixed pattern is permanent and cannot be

altered . If a bit pattern has been established, the PROM becomes unusable, if the bit pattern has to

be changed .

This problem has been overcome by the EPROM, as when the EPROM is placed under a special

ultraviolet light for a length of time, the shortwave radiation makes the EPROM return to its initial

state, which then can be programmed accordingly .Again for erasing the content, PROM

programmer or PROM burner is used.

EEPROM – It stands for Electrically Erasable Programmable Read-Only Memory . It is similar to

EPROM, except that in this, the EEPROM is returned to its initial state by application of an

electrical signal, in place of ultraviolet light . Thus, it provides the ease of erasing, as this can be

done, even if the memory is positioned in the computer. It erases or writes one byte of data at a

time .

Uses – It is used for storing the computer system BIOS.

Flash ROM – It is an enhanced version of EEPROM .The difference between EEPROM and Flash

ROM is that in EEPROM, only 1 byte of data can be deleted or written at a particular time,

whereas, in flash memory, blocks of data (usually 512 bytes) can be deleted or written at a

particular time . So, Flash ROM is much faster than EEPROM .

Uses – Many modern PCs have their BIOS stored on a flash memory chip, called as flash BIOS

and they are also used in modems as well.

Programming the Read-Only Memory (ROM)

To understand how to program a ROM, consider a 4 x 4 ROM, which means that it has total of 4

addresses at which information is stored, and each of those addresses has a 4-bit information,

which is permanent and must be given as the output, when we access a particular address . The

following steps need to be performed to program the ROM –

1. Construct a truth table, which would decide the content of each address of the ROM and

based upon which a particular ROM will be programmed.

So, the truth table for the specification of the 4 x 4 ROM is described as below :

43

1. This truth table shows that at location 00, content to be stored is 0011, at location 01, the

content should be 1100, and so on, such that whenever a particular address is given as

input, the content at that particular address is fetched . Since, with 2 input bits, 4 input

combinations are possible and each of these combinations hold a 4-bit information, so this

ROM is a 4 X 4 ROM .

2. Now, based upon the total no. of addresses in the ROM and the length of their content,

decide the decoder as well as the no. of OR gates to be used .

Generally, for a 2 x n ROM, a k x 2 decoder is used, and the total no. of OR gates is

equal to the total no. of bits stored at each location in the ROM .

So, in this case, for a 4 x 4 ROM, the decoder to be used is a 2 x 4 decoder.

The following is a 2 x 4 decoder –

The truth table for a 2 x 4 decoder is as follows –

When both the inputs are 0, then only D_0 is 1 and rest are 0, when input is 01, then, only D_1 is

high and so on. (Just remember that if the input combination of the decoder resolves to a

particular decimal number d, then at the output side the terminal which is at position d + 1 from

the top will be 1 and rest will be 0).

44

Now, since we want each address to store 4 – bits in the 4 x 4 ROM, so, there will be 4 OR gates,

with each of the 4 outputs of the decoder being input to each one of the 4 OR gates, whose output

will be the output of the ROM, as follows

A cross sign in this figure shows connection between the two lines is intact . Now, since there are

4 OR gates and 4 output lines from the decoder, so there are total of 16 intersections, called as

crosspoint .

Now, program the intersection between the two lines, as per the truth table, so that the output of

the ROM (OR gates) is in accordance with the truth table .

For programming the crosspoints, initially all the crosspoints are left intact, which means that it is

logically equivalent to a closed switch, but these intact connections can be blown by the

application of a high – voltage pulse into these fuse, which will disconnect the two interconnected

lines, and in this way the output of a ROM can be manipulated .

So, to program a ROM, just look at the truth table specifying the ROM and blow away (if

required) a connection . The connections for the 4 x 4 ROM as per the truth table is as shown

below –

45

Remember, a cross sign is used to denote that the connection is left intact and if there is no cross

this means that there is no connection .

In this figure, since, as can be seen from the truth table specifying the ROM, when the input is 00,

then, the output is 0011, so as we know from the truth table of a decoder, that input 00 gives

output such that only D_0 is 1 and rest are 0, so to get output 0011 from the OR gates, the

connections of D_0 with the first two OR gates has been blown away, to get the outputs as 0,

while the last two OR gates give the output as 1, which is what is required .

Similarly, when the input is 01, then the output should be 1100, and with input 01, in decoder only

D_1 is 1 and rest are 0, so to get the desired output the first two OR gates have their connection

intact with D_1, while last two OR gates have their connection blown away . And for the rest also

the same procedure is followed.

So, this is how a ROM is programmed and since, the output of these gates will remain constant

every time, so that is how the information is stored permanently in the ROM, and does not get

altered even on switching on and off .

46

Programming In 8085.

The memory addresses given in the program are for a particular microprocessor kit. These

addresses can be changed to suit the microprocessor kit available in your system.

ADDITION OF TWO 8 BIT NUMBERS

AIM:

To perform addition of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading the first data into Accumulator.

2) Move the data to a register (B register).

3) Get the second data and load into Accumulator.

4) Add the two register contents.

5) Check for carry.

6) Store the value of sum and carry in memory location.

7) Terminate the program.

PROGRAM:

 XRA A Clear carry flag and Accumulator

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B register.

LDA 4151 Load the value to Accumulator.

ADD B Add the value of register B to A

JNC LOOP Jump on no carry.

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

RESULT:

Input: FF (4150)

 03 (4151)

Output: 02 (4152)

 01 (4153)

47

SUBTRACTION OF TWO 8 BIT NUMBERS

AIM:To perform Subtraction of two 8 bit numbers using 8085.

ALGORITHM:

1) Start the program by loading the first data into Accumulator.

2) Move the data to a register (B register).

3) Get the second data and load into Accumulator.

4) Subtract the two register contents.

5) Check for carry.

6) Store the value of difference and borrow in memory location.

7) Terminate the program.

PROGRAM:

 XRA A Clear carry flag and Accumulator

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B register.

LDA 4151 Load the value to Accumulator.

SUB B Sub the value of register B to A

JNC LOOP Jump on no carry.

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (difference).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (borrow)

HLT Halt the program.

RESULT:

Input: 05(4150)

 03(4151)

Output: 02 (4152)

 0 (4153)

48

49

.

50

51

52

For Hex to ASCII

 LDA 4500 I/P 4500 09

 CPI 0A O/P 4501 39

 JC SKIP

 ADI 07

 SKIP: ADI 30

 STA 4501

 HLT

53

3. TimeDelay Calculation

4. EachinstructionpassesthroughdifferentcombinationsofFetch,MemoryRead,andMemoryWrite

cycles.

5. Knowingthecombinationsofcycles,onecancalculatehowlongsuchaninstructionwouldrequireto

complete.

6. Itis countedintermsof numberofT–statesrequired.

7. Calculatingthistimewegeneraterequiresoftwaredelay.

TimeDelayUsingSingleRegister

Label Opcode Operand Comment T-states

 MVI C,05h ;LoadCounter 7

LOOP: DCR C ;Decrement Counter 4

 JNZ LOOP ;Jumpback toDecr.C 10/7

MVIC05

Mchine Cycle: F+

R=2

T-States:4T+3T =7T

DCR C

Mchine Cycle:F=

1

T-States:4T=4T

JNZLOOP (true)

Mchine Cycle: F+ R+

R=3

T-States:4T+3T +3T=10T

JNZLOOP(false)Mchine

Cycle: F+R=3

T-States:4T+3T =7T

 InstructionMVIC,05hrequires7T-

Statestoexecute.Assuming,8085Microprocessorwith2MHzclockfrequency.Howmuchtimeitw

illtaketoexecuteabove instruction?

Clock frequency of the system (f)

= 2 MHzClockperiod(T)=1/f=½

*10-6=0.5µs

54

Timeto executeMVI =7T-states* 0.5µs

=3.5μs

 Nowtocalculatetimedelayinloop,wemustaccountfortheT-

statesrequiredforeachinstruction,andforthenumberoftimesinstructionsareexecuted

intheloop.Thereforthenexttwoinstructions:

DCR: 4T-States

JNZ: 10T-States

14T-States

 Here, theloopisrepeatedfor5 times.

 TimedelayinloopTLwith2MHzclockfrequencyiscalculated as:

TL=T* LoopT-sates*N10 --------- (1)

TL=(0.5 *10-6*14*5)

=35 s

 Ifwewanttocalculatedelaymoreaccurately,weneedtoaccuratelycalculateexecutionofJNZinstru

ctioni.e

IfJNZ =true,thenT-States=10

ElseifJNZ=false,thenT-States=7

 Delaygeneratedbylastclock cycle:

=3T*ClockPeriod

= 3T*(1/2*10-6)

=1.5 s

 Now,the accurateloopdelayis:

TLA=TL- Delaygenerated bylast

clockcycleTLA=35 s - 1.5 s

TLA=33.5 s

55

 Now,tocalculatetotaltimedelay

TotalDelay= Timetaken toexecute instructionoutside

loop+Timetakentoexecuteloopinstructions

TD=TO+TLA

=(7*0.5 s)+33.5 s

=3.5 s+33.5 s

=37 s

 Inmostofthecasewearegiventimedelayandneedtofindvalueofthecounterregisterwhichdeciden

umberof timesloopexecute.

 Forexample:writeALP togenerate 37 µsdelaygiventhatclockfrequencyif2MHz.

 Singleregisterloopcangeneratesmalldelayonlyforlarge delaywe useothertechnique.

TimeDelayUsingaRegisterPair

 Time delay can be considerably increased by setting a loop and using a register pair with a

16-bit number(FFFFh).

 A16-bitisdecremented byusingDCXinstruction.

 ProblemwithDCX instruction isDCXinstructiondoesn’t setZeroflag.

 Withouttestflag,Jumpinstructioncan’tcheckdesiredconditions.

 Additionaltechnique mustbe usedto setZeroflag.

Label Opcode Operand Comment T-

states

 LXI B,2384h ; LoadBCwith16-bit counter 10

LOOP: DCX B ;DecrementBC by1 6

 MOV A, C ; PlacecontentsofCinA 4

 ORA B ;ORBwithCtosetZero flag 4

 JNZ LOOP ;ifresultnotequalto0,10/7jumpback to loop 10/7

 Here the loop includes four

instruction:TotalT-States= 6T

+4T+4T+10T

=24T-states

56

 Theloopisrepeatedfor2384 htimes.

 Converting(2384)16intodecimal.

2384h=(2*163)+ (3*162) + (8 *161) +(4* 160)

=8192 +768+128+4=9092

 Clockfrequencyofthesystem(f)=2MHz

 Clockperiod(T)=1/f=½*10-6=0.5 s

 Now, to find delay in

the loopTL=T

*LoopT-sates*N10

=0.5*24 *9092

=109104 s=109ms(withoutadjustinglastcycle)

DEBUGGING A MACHINE LEVEL PROGRAM

Debugging is the process of identifying and removing bug from software or program. It refers to

identification of errors in the program logic, machine codes, and execution. It gives step by step

information about the execution of code to identify the fault in the program.

Debugging of machine code: Translating the assembly language to machine code is similar to

building a circuit from a schematic diagram. Debugging can help in determining:

 Values of register.

 Flow of program.

 Entry and exit point of a function.

 Entry into if or else statement.

 Looping of code.

 Calculation check.

Common sources of error:

 Selecting a wrong code

 Forgetting second or third byte of instruction

 Specifying wrong jump locations

 Not reversing the order of high and low bytes in a Jump instruction

 Writing memory addresses in decimal instead of hexadecimal

 Failure to clear accumulator when adding two numbers

 Failure to clear carry registers

57

 Failure to set flag before Jump instruction

 Specifying wrong memory address on Jump instruction

 Use of improper combination of rotate instructions

The debugging process is divided into two parts:

1. Static Debugging: It is similar to visual inspection of circuit board, it is done by a

paper and pencil to check the flowchart and machine codes. It is used to the

understanding of code logic and structure of program.

2. Dynamic Debugging: It involves observing the contents of register or output after

execution of each instruction (in single step technique) or a group of instructions (in

breakpoint technique).

In a single board microprocessor, techniques and tools commonly used in dynamic

debugging are:

 Single Step: This technique allows to execute one instruction at a time and observe the

results of each instruction. Generally, this is build using hard-wired logic circuit. As we

press the single step run key we will be able to observe the contents of register and

memory location. This helps to spot:

 incorrect addresses

 incorrect jump location in loops

 incorrect data or missing codes

However, if there is large loop then single step debugging can be very tiring and time-

consuming. So instead of running the loop n times, we can reduce the number of iteration to

check the effectiveness of the loop. The single step technique is very useful for short programs.

 Breakpoint: The breakpoint facility is usually a software routine that allows users to

execute a program in sections. The breakpoints can be set using RST instruction. When

we push the Execute key, the program will be executed till the breakpoint. The registers

can be examined for the expected result. With the breakpoint facility, isolate the segment

of program with errors. Then that segment can be debugged using the single-step

facility. It is usually used to check:

 Timing loop

 I/O section

 Interrupts

 Register Examine: The register examine key allows you to examine the contents of the

microprocessor register. This technique is used in conjunction with either single-step or

breakpoint facility.

58

 UNIT IV

 MEMORY INTERFACING

Memory Interfacing in 8085:

Memory is an integral part of a microprocessor system, and in this section, we will discuss how to

interface a memory device with the microprocessor. The Memory Interfacing in 8085 is used to

access memory quite frequently to read instruction codes and data stored in memory. This

read/write operations are monitored by control signals. The microprocessor activates these signals

when it wants to read from and write into memory. I

Basic Concepts in Memory Interfacing:

1. Microprocessor 8085 can access 64Kbytes memory since address bus is 16-bit. But

it is not always necessary to use full 64Kbytes address space. The total memory

size depends upon the application.

2. Generally, EPROM (or EPROMs) is used as a program memory and RAM (or

RAMs) as a data memory. When both, EPROM and RAM are used, the total

address space 64Kbytes is shared by them.

3. The capacity of program memory and data memory depends on the application.

4. It is not always necessary to select 1 EPROM and 1 RAM. We can have multiple

EPROMs and multiple RAMs as per the requirement of application.

5. We can place EPROM/RAM anywhere in full 64 Kbytes address space. But

program memory (EPROM) should be located from address 0000H since reset

address of 8085 microprocessor is 0000H.

6. It is not always necessary to locate EPROM and RAM in consecutive memory For

example : If the mapping of EPROM is from 0000H to OFFFH, it is not must to

locate RAM from 1000H. We can locate it anywhere between 1000H and FFFFH.

Where to locate memory component totally depends on the application.

The memory interfacing requires to :

 Select the chip

 Identify the register

 Enable the appropriate buffer.

59

INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of memory

locations can be interfaced with it. The memory address space of the 8085 takes values from

0000H to FFFFH.

60

61

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder such that the

starting address assigned to the chip is 4000H.

Specification of IC 6264:

· 8K x 8 RAM

· 8 KB = 213 bytes

· 13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the address

4000H to 5FFFH are written in binary form, the values in the lines A15, A14, A13 are 0, 1 and 0

respectively. The NAND gate is designed such that when the lines A15 and A13 carry 0 and A14

carries 1, the output of the NAND gate is 0. The NAND gate output is in turn connected to the

^(CE1) pin of the RAM chip. A NAND output of 0 selects the RAM chip for read or write

operation, since CE2 is already 1 because of its connection to +5V. Fig. 18 shows the interfacing

of IC 6264 with the 8085.

62

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the starting addresses

assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

· 2 K x 8 RAM

· 2 KB = 211 bytes

· 11 address lines

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1 is and chip 2

are 87FFH and 97FFH, respectively. Table 10 shows the address range of the two chips.

Table 10 Address range for IC 6116

63

Interfacing:

 A0 – A10 lines of 8085 are connected to 11 address lines of the RAM chips.

· Three address lines of 8085 having specific value for a particular RAM are connected to the

three select inputs (C, B and A) of 74LS138 decoder.

· Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and A13=0,

A12=1 and A11=0 for the address assigned to RAM 2.

· Remaining lines of 8085 which are constant for the address range assigned to the two RAM

are connected to the enable inputs of decoder.

· When 8085 places any address between 8000H and 87FFH in the address bus, the select

inputs C, B and A of the decoder are all 0. The Y0 output of the decoder is also 0, selecting RAM

1.

· When 8085 places any address between 9000H and 97FFH in the address bus, the select

inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of the decoder is also 0, selecting

RAM 2.

64

Input Output Interfacing Techniques:

The most of the microprocessors support isolated I/O system. It partitions memory from I/O, via

software, by having instructions that specifically access (address) memory, and others that

specifically access I/O. When these instructions are decoded by the microprocessor, an

appropriate control signal is generated to activate either memory or I/O operation. In 8085, IO/M

signal is used for this purpose. The 8085 outputs a logic ‘1’ on the IO/M line for an I/O operation

and a logic ‘0’ for memory, operation. In 8085, it is possible to connect 64 Kbyte memory and

256 I/O ports in the system since 8085 sends 16 bit address for memory and 8 bit address for I/O.

I/O devices can be Input Output Interfacing Techniques to an 8085A system in two ways :

I/O Mapped I/O

Memory mapped I/O

In I/O mapped I/O, the 8085 uses IO/M signal to distinguish between I/O read/write and memory

read/write operations. The 8085 has separate instructions IN and OUT for I/O data transfer. When

8085 executes IN or OUT instruction, it places device address (port number) on the demultiplexed

low order address bus as well as the high order address bus. In other words, we can say that higher

order address bus duplicates the contents of demultiplexed low-order address bus, when 8085

microprocessor executes an IN or OUT instruction. For example, if the device address is 60H then

the contents on A15 to A0 will be as follows :

65

Here, A8 follows A0, A9 follows A1 and so on, as shown below.

The instruction IN inputs data from an input device (such as keyboard) into the accumulator and

the instruction OUT sends the contents of the accumulator to an output device such as LED

display. These are two byte instructions. The second byte of the instruction specifies the address

or the port number of an I/O device. As it is a byte, the address or port number can be any of the

256 combinations of eight bits, from 00H to FFH. Therefore, the 8085 can communicate with 256

different I/O devices. When we want to Input Output Interfacing Techniques, it is necessary to

assign a device address or a port number. Before going to see this device address logic, we will

examine how the 8085 executes IN and OUT instructions.

https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-3.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-4.jpg
https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-5.jpg

66

Fig. 4.30 shows the timing diagram of the IN instruction. It has three machine cycles. As usual,

firSt cycle is opcode fetch machine cycle. The opcode fetch cycle is followed by one memory read

machine cycle to read the address of port.

In the third machine cycle (I/O read) the 8085 microprocessor places the address of the input port

on the low-order address bus AD7-AD0 as well as on the high-order address hubs A15-A8 and

asserts the RD signal. During T2 and T3 of the machine cycle, RD and IO/M signals are 0 and 1

respectively, which activates IOR signal. The IOR signal enables the input port arid the data from

the input port is placed on the data bus and transferred into the accumulator.

Fig. 4.31 shows the timing diagram of OUT instruction. It has, three machine cycles. The first

machine cycle is an opcode fetch machine cycle, which reads the opcode of OUT instruction from

the memory. The second machine cycle is a memory read machine cycle. This machine cycle

https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-6.jpg

67

reads the address of the port. In the third machine cycle (I/O write), the 8085 microprocessor

places this address of the output port on the low-order address bus as well as on the high order

address bus and asserts the WR signal. During T2 and T3 of the I/O write machine cycle, WR and

ION signals are 0 and 1 respectively, which activates IOW signal. The IOW signal enables the

output port and the data from the accumulator is sent to the output port.

Comparison Between Memory Mapped I/O and I/O Mapped I/O:

UNIT V

 MICROPROCESSOR APPLICATIONS

 8255 Programmable Peripheral Interface

 8255 is a Programmable Peripheral Interface, available in the form of a 40 pin IC which

works on a power supply of +5 V DC.

 It is compatible with a wide range of microprocessors and microcontrollers, making it

widely popular.

 It has three 8-bit I/O: Ports A, B, and C.

 Port A and port B can function as 8-bit input or output ports.

 Bits of port C are divided into two subgroups of 4 bits each – port C upper and port C

lower.

https://www.eeeguide.com/wp-content/uploads/2018/07/Input-Output-Interfacing-8085-Microprocessor-2.jpg

68

 There are other control pins which are used to specify and control the flow of data and

operation of the 8255..

 The port pins have the ability to source 1 mA current at 1.5 V when programmed to

function as output pins. This provides the capability of driving Darlington transistors for

applications such as printers and high voltage displays.

 The most important feature of 8255 is that it is ‘programmable.’ This means that the

operation of 8255 can be controlled by programming the microprocessor appropriately.

This gives us the freedom to use 8255 in a number of ways without having to change the

wiring and connections.

 It has a few different modes of operation.

Pin diagram of 8255

69

Pin

name

Number

of pins
Description

Vcc 1 Used to supply power to the IC. Usually at +5 V dc with respect to ground.

Ground 1
Ground pin. All the voltages (signals) are measured with respect to this pin. It

is connected to the common ground of the circuit.

PA0-

PA7
8

These 8-bit bi-directional I/O pins are used to send data to output from a

device and to receive data from an input device.

PB0-

PB-7
8

These 8-bit bi-directional I/O pins are used to send data to an output device

and to receive data from an input device.

PC0-

PC3
4 These four pins are used by 8255 for communicating with an I/O device.

PC4-

PC7
4 These four pins are used by 8255 for communicating with an I/O device.

D0-D7 8

These are the data pins used by the Master (uP/uC) to communicate with

8255. All the data to be transmitted and received and control instructions are

transmitted to and from 8255 through these pins. These are connected to the

data bus of the microprocessor.

CS 1

This is an active low input pin. The microprocessor uses this input to select

the chip 8255. In other words, the microprocessor uses this pin to say to 8255

that “Hey!! Now I am talking to you. And I will keep talking to you until this

CS signal remains low.”

RD 1
This is also an active low input pin used by the microprocessor to tell 8255

that it wants to read data from one of its ports.

WR 1
This is also an active low input pin used by the microprocessor to tell 8255

that it wants to write data to one of its ports.

A1, A0 2

These are the port address pins. They are used to select the port with which

the microprocessor intends to communicate. For values of A1A0:

00 = Port A is selected

01 = Port B is selected

10 = Port C is selected

70

11 = Control port is selected.

Reset 1
An active high input. Used to reset 8255. Immediately after reset, all the three

ports work as input ports in mode 0.

Data Bus Buffer

• This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data

bus.

• Data is transmitted or received by the buffer upon execution of input or output instructions

by the CPU.

• Control words and status information are also transferred through the data bus buffer.

71

Group A and Group B Controls

• The functional configuration of each port is programmed by the systems software. In

essence, the CPU "outputs" a control word to the 8255.

• The control word contains information such as "mode", "bit set", "bit reset", etc., that

initializes the functional configuration of the 8255.

• Each of the Control blocks (Group A and Group B) accepts "commands" from the

Read/Write Control logic, receives "control words" from the internal data bus and issues the

proper commands to its associated ports.

Ports A, B, and C

• The 8255 contains three 8-bit ports (A, B, and C).

• All can be configured to a wide variety of functional characteristics by the system software

but each has its own special features or "personality" to further enhance the power and

flexibility of the 8255.

• Port A One 8-bit data output latch/buffer and one 8-bit data input latch.

• Both "pull-up" and "pull-down" bus-hold devices are present on Port A.

• Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

• Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for

input). This port can be divided into two 4-bit ports under the mode control.

• Each 4-bit port contains a 4-bit latch and it can be used for the control signal output and

status signal inputs in conjunction with ports A and B.

72

Control Word: Content of Control register is known as Control Word.

• Control word specify an I/O function for each port this register can be

• Accessed to write a control word when A0 and A1 are at logic1, the register is not

accessible for a read operation.

• Bit D7 of the control register either specifies the I/O function or the bit Set/Reset function,

as classified in figure 1.

• If bit D7=0, bits D6-D0 determine I/O function in various mode, as shown in figure 4.

• If bit D7=0 port C operates in the bit Set/Reset (BSR) mode.

• MODES OF 8255

Thesearetwobasicmodesofoperationof8255.

I/OmodeandBitSet-Resetmode(BSR).

InI/Omode,the8255portsworkasprogrammableI/Oports,whileinBSRmodeonlyportC(PC0-

PC7) canbe usedtosetorresetitsindividualportbits.

UndertheI/Omodeofoperation,furthertherearethreemodesofoperationof8255,soasto

73

supportdifferenttypesof applications,mode0,mode1 andmode2.

8255A:BSR(BitSet/Reset)Mode

Inthismodeanyofthe8-bitsofportCcanbesetorresetdependingonD0ofthecontrolword.

ThebittobesetorresetisselectedbybitselectflagsD3,D2andD1oftheCWR(ControlWord

Register).

BSRControlWordaffectsonebitatatime

ItdoesnotaffecttheI/Omode

8255A has three different I/O operating modes:

1. Mode 0

2. Mode 1

3. Mode 2

MODE 0

• Simple I/O for port A,B and C

• In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports.

• Each port can be programmed in either input mode or output mode where outputs are

latched and inputs are not latched.

• MODE 1: INPUT OR OUTPUT WITH HANDSHAKE

• Handshake signal are exchanged between MPU and peripheral prior to data transfer.

• In this mode, Port A and B is used as 8-bit I/O ports.

• Mode 1 is a handshake Mode whereby ports A and/or B use bits from port C as handshake

signals.

• In the handshake mode, two types of I/O data transfer can be implemented: status check

and interrupt.

• Port A uses upper 3 signals of Port C: PC3, PC4, PC5

74

• Port B uses lower 3 signals of Port C : PC0, PC1, PC2

• PC6 and PC7 are general purpose I/O pinso not have handshake or interrupt capability.

STB (Strobe Input):

• This active low signal is generated by a peripheral device to indicate that, it has

transmitted a byte of data. The 8255A, in response to STB, generates IBF and INTR.

IBF (Input Buffer Full)

This signal is acknowledged by 8255A to indicate that the input latch has received the data byte.

It will get reset when the MPU reads the data.

INTR(Interrupt Request)

This is an output signal that may be used to interrupt the MPU. This signal is generated if STB,

IBF and INTE (internal flip-flop) are all at logic 1. It will get reset by the falling edge of RD

INTE(Interrupt Enable)

• This signal is an internal flip-flop, used to enable or disable the generation of INTR signal.

• The interrupt enable signal is neither an input nor an output; it is an internal bit

programmed via the PC4 (port A) or PC2 (port B) bits.

MODE 2

• In this mode, Port A can be configured as the bidirectional port and Port B either in Mode

0 or Mode 1.

• Port A uses five signals from Port C as handshake signals for data transfer.

• The remaining three signals from Port C can be used either as simple I/O or as handshake

for port B.

PROGRAMMABLE INTERVAL TIMER

TheIntel8254isacounter/timerdevicedesignedtosolvethecommontimingcontrolproblemsin

microcomputersystemdesign.8254isthehighspeedversionofthe8253.

75

8254Vs8253

Application

Someoftheothercounter/timerfunctionscommontomicrocomputers

whichcanbeimplementedwiththe8254are:

 Realtimeclock

 Event-counter

 Digitalone-shot

 Programmablerategenerator

 Squarewavegenerator

 Binaryratemultiplier

 Complexwaveformgenerator

 Complexmotorcontroller

 Itincludesthree16-

bitcountersthatcanworkindependentlyin6differentmodes.

 It ispackaged ina24-pinDIP(Dualin-linepackage) andrequires

+5Vpowersupply.

 ItcancounteitherinbinaryorBCD.

 It’scounterscanoperateatamaximumfrequencyof10MHz.

Characteristics 8254 8253

FrequencyRange DCto8MHz

DCto10MHz(8254-2)

DCto2MHz

SpecialCommand Statusread-back

command

Nosuchcommand

76

 FunctionalDiagram

PIN FUNCTIONS

A0, A1: The address inputs select one of the four internal registers within the

8254.

A1 A0 Function

0 0 Counter 0

0 1 Counter 1

77

1 0 Counter 2

1 1 Control Word 𝐂𝐒: Chip select enables the 8254 for programming and for reading or writing a

counter.

Vcc: Power connects to the +5V power supply.

GND: Ground connects to the system ground bus.

GATE : The gate input controls the operation of the counter in some modes of operation.

GATE 0 Gate input of counter 0

GATE 1 Gate input of counter 1

GATE 2 Gate input of counter 2

D0-D7: Bidirectional three state data bus lines connected to system data bus.

CLK : The clock input is the timing source for each of the internal counters. This input is often

connected to the PCLK signal from the microprocessor system bus controller.

CLK0 Clock input of counter 0

CLK1 Clock input of counter 1

CLK2 Clock input of counter 2

OUT: A counter output is where the waveform generated by the counter is

available.

OUT 0 Output of counter 0

OUT 1 Output of counter 1

OUT 2 Output of counter 2 𝐑𝐃: Read causes data to be read from the 8254 and often connected to the 𝐼𝑂𝑅𝐶 signal. 𝐖𝐑: Write causes data to be written to the 8254 and often connects to the

78

write strobe (𝐼𝑂𝑊𝐶)

Pogrammingthe8254(ControlWordFormat)

8254 Write operation

The programming procedure for the 8254 is very flexible. Only two conversion

need to be remember.

1) For each Counter, the Control Word must be written before the initial

count is written.

2) The initial count must follow the count format specified in the Control Word (least

significant byte only, most significant byte only, or least significant byte and then most significant

byte).

With a clock and an appropriate gate signal to one of the counters, the above steps should start the

counter and provide appropriate output according to the control word.

8254 Read Operations

There are three possible methods for reading the counters:

 A simple read operation

 The Counter Latch Command, and

 The Read-Back Command.

79

Simple Read Operation

 This operation read the counter after stopping.

 To read the Counter, which is selected with the A1, A0 inputs, the CLK input of the

selected Counter must be inhibited by using either the GATE input or external logic. Otherwise,

the count may be in the process of changing when it is read, giving an undefined result.

 Two I/O read operation are performed by the MPU

1. The first I/O operation reads the low order byte.

2. The second I/O operation reads high order byte.

Counter Latch Command

 This allows reading the contents of the Counters “on the fly'' without

affecting counting in progress.

 The selected Counter's output latch (OL) latches the count at the time the Counter Latch

Command is received.

 This count is held in the latch until it is read by the CPU (or until the Counter is

reprogrammed). The count is then unlatched automatically and the OL returns to “following'' the

counting element (CE).

Read-Back Command

 This command is used to read several counters at a time. It eliminates the need of writing

separate counter-latch commands for different counters.

 It allows the user to check the count value, programmed Mode, and current

states of the OUT pin and Null Count flag of the selected counter/ counters.

 The read back command is written to the Control Word Register.

 The command is written into the Control Word Register and has the format shown in

Figure.

 The read-back command may be used to latch multiple counter output latches (OL) by

setting the COUNT bit D5 =0 and selecting the desired counter(s).

80

 A single read back command is functionally equivalent to several counter latch

commands.

 Each counter's latched count is held in the OL until it is read (or the counter is

reprogrammed). The counter is automatically unlatched when read, but other counters

remain latched until they are read.

 Theread-backcommand mayalso beused tolatch statusinformation ofselected

counter(s)by setting STATUSbit D4=0. Status must be latched

toberead;statusofacounterisaccessedbyareadfromthatcounter.

 ThecounterstatusformatisshowninFigurebelow.

 Bits D5 through D0 contain the counter's programmed Mode exactly as

written in the last Mode Control Word.

 OUTPUT bit D7 contains the current state of the OUT pin. This allows the user to monitor

the counter's output via software, possibly eliminating some hardware from a system

Modes of Operation

Mode 0: Interrupt on terminal count.

Mode 1: Hardware Retriggerable One-Shot.

81

Mode 2: Rate Generator.

Mode 3: Square Wave Mode.

Mod 4: Software Triggered Mode.

Mode 5: Hardware Triggered Mode

Mode 0: Interrupt on terminal count.

* N stands for an undefined count.

 Mode 0 is typically used for event counting.

 After the Control Word is written, OUT is initially low, and will remain low until the

Counter reaches zero. OUT then goes high and remains high until a new count or a new

Mode 0 Control Word is written into the Counter.

 After the Control Word and initial count are written to a Counter, the initial count will be

loaded on the next CLK pulse. This CLK pulse does not decrement the count, so for an

initial count of N, OUT does not go high until N +1 CLK pulses after the initial count is

written.

 GATE =1 enables counting; GATE = 0 disables counting.

 GATE has no effect on OUT. If G becomes a logic 0 in the middle of the

count, the counter will remain stop until G again becomes a logic 1.

 If a new count is written to the Counter, it will be loaded on the next

82

CLK pulse and counting will continue from the new count.

Mode 1: Hardware Retriggerable One-Shot

 Causes the counter to function as a retriggerable, monostable

multivibrator (one-shot).

 OUT is initially (after loading CW) high. Also remain high when count

is written.

 When gate is triggered, OUT goes low and will remain low until the Counter reaches

zero. On completion of count OUT goes high again

 If the GATE input occurs within the duration of counting, the counter is again

reloaded with the count and start counting from the beginning.

 At the rising edge of WR(CW) OUT becomes high.

 At the first falling edge of clock after first rising edge of WR(LSB), counter

starts counting.

83

Mode2:RATEGENERATOR

 Allows the counter to generate a series of continuous pulses that are one clock pulse

wide.

 The separation between pulses is determined by the count.

 If count N is loaded then, output will remain high for (N-1) clock period and low for 1

clock period. For example, for a count of 10, the output is a logic 1 for nine clock

period and low for 1 clock period. This cycle is repeated until the counter is programmed

with a new count or until G pin is placed at a logic 0 level.

 The G input must be logic 1 for this mode to generate a continuous series of pulses.

 In mode 2, a COUNT of 1 is illegal

 At the rising edge of WR(CW) OUT becomes high.

 At the first falling edge of clock after first rising edge of WR(LSB), counter

starts counting.

84

Mode3:SquareWaveMode.

 For example, if the count is programmed for a count of 5, the output is high for

three clocks and low for two clocks.

 Gate should be maintained at logic 1 always (GATE =1 enables counting; GATE =0

disables counting. If GATE goes low while OUT is low, OUT is set high

immediately; no CLK pulse is required).

 At the rising edge of WR(CW) OUT becomes high.

 At the first falling edge of clock after first rising edge of WR(LSB), counter starts

counting.

Mode 4: Software Triggered One-shot.

 Allows the counter to produce a single pulse at the output.

 If count of N is loaded, then OUT will be high for N clock cycles and low

for one clock cycle at the end.

 The cycle does not begin until the counter is loaded again.

 G input must be maintained at logic 1 throughout the operation.

 This mode operates as a software triggered one-shot.

85

N.B. The G input must be a logic 1 for the counter to operate for these three

modes (Mode 2, 3, 4)

 At the rising edge of WR(CW) OUT becomes high.

 At the first falling edge of clock after first rising edge of WR(LSB), counter starts

counting.

Mode5:HardwareTriggeredMode.

 At the rising edge of WR(CW) OUT becomes high.

 At the first falling edge of clock after first rising edge of GATE , counter starts

counting.Mode 5: Hardware Triggered Mode

86

8279 - Programmable Keyboard

8279 programmable keyboard/display controller is designed by Intel that interfaces a keyboard

with the CPU. The keyboard first scans the keyboard and identifies if any key has been pressed. It

then sends their relative response of the pressed key to the CPU and vice-a-versa.

How Many Ways the Keyboard is Interfaced with the CPU?

The Keyboard can be interfaced either in the interrupt or the polled mode. In the Interrupt mode,

the processor is requested service only if any key is pressed, otherwise the CPU will continue

with its main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to check whether any key

is pressed or not with key pressure.

How Does 8279 Keyboard Work?

The keyboard consists of maximum 64 keys, which are interfaced with the CPU by using the

key-codes. These key-codes are de-bounced and stored in an 8-byte FIFORAM, which can be

accessed by the CPU. If more than 8 characters are entered in the FIFO, then it means more than

eight keys are pressed at a time. This is when the overrun status is set.

If a FIFO contains a valid key entry, then the CPU is interrupted in an interrupt mode else the

CPU checks the status in polling to read the entry. Once the CPU reads a key entry, then FIFO is

updated, and the key entry is pushed out of the FIFO to generate space for new entries.

8279 − Pin Description

The following figure shows the pin diagram of 8279 −

87

Data Bu Lines, DB0 - DB7

These are 8 bidirectional data bus lines used to transfer the data to/from the CPU.

CLK

The clock input is used to generate internal timings required by the microprocessor.

RESET

As the name suggests this pin is used to reset the microprocessor.

CS Chip Select

When this pin is set to low, it allows read/write operations, else this pin should be set to high.

A0

This pin indicates the transfer of command/status information. When it is low, it indicates the

transfer of data.

88

RD, WR

This Read/Write pin enables the data buffer to send/receive data over the data bus.

IRQ

This interrupt output line goes high when there is data in the FIFO sensor RAM. The interrupt

line goes low with each FIFO RAM read operation. However, if the FIFO RAM further contains

any key-code entry to be read by the CPU, this pin again goes high to generate an interrupt to the

CPU.

Vss, Vcc

These are the ground and power supply lines of the microprocessor.

SL0 − SL3

These are the scan lines used to scan the keyboard matrix and display the digits. These lines can

be programmed as encoded or decoded, using the mode control register.

RL0 − RL7

These are the Return Lines which are connected to one terminal of keys, while the other terminal

of the keys is connected to the decoded scan lines. These lines are set to 0 when any key is

pressed.

SHIFT

The Shift input line status is stored along with every key code in FIFO in the scanned keyboard

mode. Till it is pulled low with a key closure, it is pulled up internally to keep it high

CNTL/STB - CONTROL/STROBED I/P Mode

In the keyboard mode, this line is used as a control input and stored in FIFO on a key closure.

The line is a strobe line that enters the data into FIFO RAM, in the strobed input mode. It has an

internal pull up. The line is pulled down with a key closure.

89

BD

It stands for blank display. It is used to blank the display during digit switching.

OUTA0 – OUTA3 and OUTB0 – OUTB3

These are the output ports for two 16x4 or one 16x8 internal display refresh registers. The data

from these lines is synchronized with the scan lines to scan the display and the keyboard.

ARCHITECTURE AND DESCRIPTION

I/O Control And Data Buffer

This unit controls the flow of data through the microprocessor. It is enabled only when D is low.

Its data buffer interfaces the external bus of the system with the internal bus of the

microprocessor. The pins A0, RD, and WR are used for command, status or data read/write

operations.

90

Control And Timing Register And Timing Control

This unit contains registers to store the keyboard, display modes, and other operations as

programmed by the CPU. The timing and control unit handles the timings for the operation of the

circuit.

Scan Counter

It has two modes i.e. Encoded mode and Decoded mode. In the encoded mode, the counter

provides the binary count that is to be externally decoded to provide the scan lines for the

keyboard and display.

In the decoded scan mode, the counter internally decodes the least significant 2 bits and provides a

decoded 1 out of 4 scan on SL0-SL3.

Return Buffers, Keyboard Debounce, And Control

This unit first scans the key closure row-wise, if found then the keyboard debounce unit

debounces the key entry. In case, the same key is detected, then the code of that key is directly

transferred to the sensor RAM along with SHIFT & CONTROL key status.

FIFO/Sensor RAM and Status Logic

This unit acts as 8-byte first-in-first-out (FIFO) RAM where the key code of every pressed key is

entered into the RAM as per their sequence. The status logic generates an interrupt request after

each FIFO read operation till the FIFO gets empty.

In the scanned sensor matrix mode, this unit acts as sensor RAM where its each row is loaded

with the status of their corresponding row of sensors into the matrix. When the sensor changes its

state, the IRQ line changes to high and interrupts the CPU.

Display Address Registers and Display RAM

This unit consists of display address registers which holds the addresses of the word currently

read/written by the CPU to/from the display RAM.

Operational Modes of 8279

There are two modes of operation on 8279 − Input Mode and Output Mode.

91

Input Mode

This mode deals with the input given by the keyboard and this mode is further classified into 3

modes.

Scanned Keyboard Mode − In this mode, the key matrix can be interfaced using either encoded

or decoded scans. In the encoded scan, an 8×8 keyboard or in the decoded scan, a 4×8 keyboard

can be interfaced. The code of key pressed with SHIFT and CONTROL status is stored into the

FIFO RAM.

Scanned Sensor Matrix − In this mode, a sensor array can be interfaced with the processor using

either encoder or decoder scans. In the encoder scan, 8×8 sensor matrix or with decoder scan 4×8

sensor matrix can be interfaced.

Strobed Input − In this mode, when the control line is set to 0, the data on the return lines is

stored in the FIFO byte by byte.

Output Mode

This mode deals with display-related operations. This mode is further classified into two output

modes.

Display Scan − This mode allows 8/16 character multiplexed displays to be organized as dual 4-

bit/single 8-bit display units.

Display Entry − This mode allows the data to be entered for display either from the right side/left

side.

92

• Th ecircuit can be used in 8085 microprocessor system and consist of 16 numbers of

hexa-keys and 6 numbers of 7-segment LEDs.

• The 7-segment LED scan be used to display six digital phanumeric character.

KEYBOARD AND DISPLAY INTERFACE USING INTEL 8279 MICROPROCESSOR

In a microprocessor b system, when keyboard and 7-segment LED display is interfaced using ports or

latches then the processor has to carry the following task.

• Keyboard scanning

• Key debouncing

• Key code generation

• Sending display code to LED

• Display refreshing

Interfacing 8279 with 8085 processor:

• A typical Hexa keyboard and 7-segment LED display interfacing circuit using 8279 is shown.

93

• The 8279 can be either memory mapped or I/O mapped in the system. In the circuit shown is

the 8279 is I/O mapped.

• The address line A0ofthesystem isusedasA0of8279.

• The clock signal for 8279 is obtained by dividing the output clock signal of 8085 by a clock

divider circuit.

• The chip select signal is obtained from the I/O address decoder of the 8085 system. The chip

select signals for I/O mapped devices are generated by using a 3-to-8 decoder.

• TheaddresslinesA4,A5 andA6are usedasinputtodecoder.

• TheaddresslineA7andthecontrolsignalIO/M(low)areusedasenablefordecoder.

• Thechipselect signalIOCS-3isusedtoselect8279.

• TheI/Oaddressofthe internaldevicesof8279 areshownintable.

• Thecircuithas6 numbersof7-segmentLEDsandso the8279hastobe programmedin

encodedscan.(Because indecodedscan,only4numbersof7-segmentLEDscanbeinterfaced):
[

• Inencodedscantheoutputofscanlineswillbebinarycount.Thereforeanexternal,3-to-

8decoderisusedtodecode thescanlinesSL0,SL1 andSL2of8279 to produceeightscanlinesS0 to S7.

• ThedecodedscanlinesS0 andS1arecommonforkeyboardanddisplay.

• The decoded scan lines S2to S5are used only for display and the decoded

scan lines S6andS7arenotusedinthesystem.

• AnodeandCathodedriversareprovidedtotake careofthecurrentrequirementofLEDs.

• Thepnptransistors,BC158areusedasdrivertransistors.

• Theanodedriversarecalledsegmentdriversandcathodedriversarecalleddigitdrivers.

• The 8279 output the display code for one digit through its output lines

94

(OUT A0to OUTA3 andOUTB0toOUTB3)andsenda scancode through, SL0-

SL3.

• Thedisplaycodeisinvertedbysegmentdriversandsenttosegmentbus.

• Thescancode isdecodedbythedecoderandturns ONthecorrespondingdigitdriver.

Now one digit of the display characteris displayed.Afterasmallinterval (10milli- second,

typical), the displayis turned OFF(i.e., display is blanked) and the above process

Is repeated for next digit.Thus multiplexed displa yis performed by 8279.

• The keyboard matrix is- formed using the return lines, RL0 to RL3 of 8279 as columns

and decoded scanlinesS0andS1asrows.

• Ahexakey isplacedatthe crossingpointofeachrowandcolumn.Akeypresswillshortthe

rowandcolumn.Normallythecolumnandrow linewill behigh.

Duringscanningthe8279willoutput binarycount onSL0toSL3,whichisdecodedby

decodertomakea row as zero. When a row is zero the 8279 reads the columns. If

there isakeypressthenthe correspondingcolumnwillbezero.

• If8279detectsakeypressthenitwait fordebounce timeandagainreadthecolumnsto

generatekeycode.

• In encoded scan keyboard mode, the 8279 stores an 8-bit code for each valid key press. The

keycodeconsist of the binary value of the column and row in which the key is found and the

status of shift and controlkey.

• Afterascantime,the nextrowismadezeroandthe above

processisrepeatedandsoon.Thus8279continuously scanthekeyboard.

HARDWARE FOR TRAFFIC LIGHT CONTROL

95

Fig. shows the interfacing diagram to control 12 electric bulbs. Port A is used to control

lights on N-S road and Port B is used to control lights on W-E road. Actual pin connections

are listed in Table 1 below.

INTERFACING DIAGRAM

96

SOFTWARE FOR TRAFFIC LIGHT CONTROL

Source program:

 MVI A, 80H : Initialize 8255, port A and port B

 OUT 83H (CR) : in output mode

START: MVI A, 09H

 OUT 80H (PA) : Send data on PA to glow R1 and R2

 MVI A, 24H

 OUT 81H (PB) : Send data on PB to glow G3 and G4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

97

 MVI A, 12H

 OUT (81H) PA : Send data on Port A to glow Y1 and Y2

 OUT (81H) PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

CALL: DELAY : Call delay subroutine

 MVI A, 24H

 OUT (80H) PA : Send data on port A to glow G1 and G2

 MVI A, 09H

 OUT (81H) PB : Send data on port B to glow R3 and R4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

 MVI A, 12H

 OUT PA : Send data on port A to glow Y1 and Y2

 OUT PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

 CALL DELAY : Call delay subroutine

 JMP START

Delay Subroutine:

DELAY: LXI D, Count : Load count to give 0.5 sec delay

BACK: DCX D : Decrement counter

 MOV A, D

 ORA E : Check whether count is 0

 JNZ BACK : If not zero, repeat

 DCR C : Check if multiplier zero, otherwise repeat

 JNZ DELAY

 RET : Return to main program

98

Source program:

 MVI A, 80H : Initialize 8255, port A and port B

 OUT 83H (CR) : in output mode

START: MVI A, 09H

 OUT 80H (PA) : Send data on PA to glow R1 and R2

 MVI A, 24H

99

 OUT 81H (PB) : Send data on PB to glow G3 and G4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

 MVI A, 12H

 OUT (81H) PA : Send data on Port A to glow Y1 and Y2

 OUT (81H) PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

CALL: DELAY : Call delay subroutine

 MVI A, 24H

 OUT (80H) PA : Send data on port A to glow G1 and G2

 MVI A, 09H

 OUT (81H) PB : Send data on port B to glow R3 and R4

 MVI C, 28H : Load multiplier count (40ıο) for delay

 CALL DELAY : Call delay subroutine

 MVI A, 12H

 OUT PA : Send data on port A to glow Y1 and Y2

 OUT PB : Send data on port B to glow Y3 and Y4

 MVI C, 0AH : Load multiplier count (10ıο) for delay

 CALL DELAY : Call delay subroutine

 JMP START

	Microprocessor – Overview
	Block Diagram of a Basic Microcomputer
	How does a Microprocessor Work?
	8085 Pin Diagram | Functional Pin Diagram of 8085 Microprocessor:
	1. Power Supply and Frequency Signals:
	2. DATA BUS AND ADDRESS BUS:
	. CONTROL AND STATUS SIGNALS:
	1. DemultiplexingAD0-AD7
	. INTERRUPT SIGNALS:
	5. SERIAL I/O SIGNALS:
	6. DMA Signal:
	7. RESET SIGNALS:

	MICROPROCESSOR - 8085 ARCHITECTURE
	RegisterUnit:
	MUX/DEMUXunit
	TheregisterselectwillbehaveasthefunctionselectionlinesoftheMUX/DEMUX
	AddressBufferRegister&Data/AddressBufferRegister
	ControlUnit:
	Arithmetic&LogicalUnit:
	SerialIOcontrol

	8085 Instructions
	An instruction of computer is a command given to the computer to perform a specified operation on given data. Some instructions of Intel 8085 microprocessor are: MOV, MVI, LDA, STA, ADD, SUB, RAL, INR, MVI, etc.
	Opcode and Operands
	Instruction Word Size
	Instruction Cycle

	Instruction Set of 8085
	Instruction and Data Formats
	8085 Instructions
	Arithmetic Group
	Logical Group
	Branch Control Group
	1. Stack
	2. Subroutine
	AdvantageofusingSubroutine
	WheretowriteSubroutine?
	Instructionsfordealingwithsubroutinesin8085.

	PCHL
	Stack, I/O and Machine Control Group
	8085 Addressing Modes

	Timing Diagrams of 8085
	Important terms related to timing diagrams:
	Read and write timing diagram for memory and I/O Operation
	3. TimeDelay Calculation
	TimeDelayUsingSingleRegister
	TimeDelayUsingaRegisterPair

	Memory Interfacing in 8085:
	Basic Concepts in Memory Interfacing:
	The memory interfacing requires to :

	Input Output Interfacing Techniques:
	Comparison Between Memory Mapped I/O and I/O Mapped I/O:

	8255 Programmable Peripheral Interface
	Pin diagram of 8255
	8255A:BSR(BitSet/Reset)Mode

	8254Vs8253
	 FunctionalDiagram
	Mode2:RATEGENERATOR
	Mode5:HardwareTriggeredMode.
	8279 - Programmable Keyboard
	How Many Ways the Keyboard is Interfaced with the CPU?
	How Does 8279 Keyboard Work?
	8279 − Pin Description
	Data Bu Lines, DB0 - DB7
	CLK
	RESET
	CS Chip Select
	A0
	RD, WR
	IRQ
	Vss, Vcc
	SL0 − SL3
	RL0 − RL7
	SHIFT
	CNTL/STB - CONTROL/STROBED I/P Mode
	BD
	OUTA0 – OUTA3 and OUTB0 – OUTB3
	ARCHITECTURE AND DESCRIPTION

