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      NUMERICAL METHODS SYLLABUS  

UNIT I 
Interpolation: Finite differences – operators Δ,δ,E,D – relation between operators – 
linear interpolation – interpolation with equal intervals – Newtons forward 
interpolation formula – Newton backward interpolation formula. 

 
UNIT II 
Numerical solutions of Algebraic, Transcendental and Differential equations: Bisection 
method – Regula falsi method- Newton Raphson method – Horner’s method – Solution 
of ordinary differential equation – Euler’s method (Only Basic) 

 
UNIT III 
Simultaneous Linear Algebraic Equations: Method of triangularisation – Gauss 
elimination method – Inverse of a matrix – Gauss Jordan method. 

 
UNIT IV 
Methods of curve fitting: Principles of Least squares – fitting a straight line – linear 
regression – fitting an exponential curve. 

       

UNIT V 
Numerical integration: General Quadrature formula – Trapizoidal rule, Simpson’s 1/3 
rule and 3/8 rule –Applications – Weddle’s rule. 

 



FINITE DIFFERENCES OPERATORS

For a function y=f(x), it is given that 0 1, ,..., ny y y are the values of the variable y
corresponding to the equidistant arguments, 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        .  In this case, even though Lagrange and
divided difference interpolation polynomials can be used for interpolation, some simpler
interpolation formulas can be derived.  For this, we have to be familiar with some finite
difference operators and finite differences, which were introduced by Sir Isaac Newton.
Finite differences deal with the changes that take place in the value of a function f(x) due
to finite changes in x. Finite difference operators include, forward difference operator,
backward difference operator, shift operator, central difference operator and mean
operator.

 Forward difference operator ( ) :

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1 2, , ,..., nx x x x ,
where 1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the forward difference operator  is
defined on the function f(x) as,

         1i i i i if x f x h f x f x f x     

That is,

1i i iy y y  

Then,  in particular

         0 0 0 1 0

0 1 0

f x f x h f x f x f x

y y y

     

   

         1 1 1 2 1

1 2 1

f x f x h f x f x f x

y y y

     

   

etc.,

0 1, ,..., ,...iy y y   are known as the first forward differences.

The second forward differences are defined as,
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       
   
       
     

2

2 1

2

2 2

2

i i i i

i i

i i i i

i i i

i i i

f x f x f x h f x

f x h f x

f x h f x h f x h f x

f x h f x h f x

y y y 

             
    

         
    

  

In particular,

 2 2
0 2 1 0 0 2 1 02 2f x y y y or y y y y       

The third forward differences are,

3 2

2 2

3 33 2 1

f x f xi i

f x h f x h f xi i i

y y y yii i i

              

      
       
      

   

    

     

In particular,

 3 3
0 3 2 1 0 0 3 2 1 03 3 3 3f x y y y y or y y y y y         

In general the nth forward difference,

     1 1n n n
i i if x f x h f x      

The differences 2 3
0 0 0, , ....y y y   are called the leading differences.

Forward differences can be written in a tabular form as follows:

x y y 2 y 3 y

0x

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

0 1 0y y y  

1 2 1y y y  

2 3 2y y y  

2
0 1 0y y y   

2
1 2 1y y y   

3 2 2
0 1 0y y y   
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Example Construct the forward difference table for the following x values and its
corresponding f values.

x 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f 0.003 0.067 0.148 0.248 0.370 0.518 0.697

x f f 2f 3f 4f 5f

0.1 0.003
0.064

0.081

0.100

0.122

0.148

0.179

0.3 0.067 0.017
0.002

0.003

0.004

0.005

0.5 0.148 0.019 0.001
0.000

0.000
0.7 0.248 0.022 0.001

0.9 0.370 0.026 0.001

1.1 0.518 0.031

1.3 0.697

Example Construct the forward difference table, where
x

xf
1

)(  , x = 1(0.2)2, 4D.

x x
xf

1
)( 

f

first
differe

nce

2f

second
differe

nce

3f 4f 5f

1.0 1.000
-0.1667

-0.1190

-0.0893

-0.0694

-0.0556

1.2 0.8333 0.0477
-0.0180

-0.0098

-0.0061

1.4 0.7143 0.0297 0.0082 -0.0045

1.6 0.6250 0.0199 0.0037

1.8 0.5556 0.0138

2.0 0.5000
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School of Distance Education

Example Construct the forward difference table for the data

: 2 0 2 4

( ) : 4 9 17 22

x

y f x




The forward difference table is as follows:

x y=f(x) y 2 y 3 y

-2

0

2

4

4

9

17

22

0y =5

1y =8

2y =5

2
0y =3

2
1y =-3

3
0y =-6

Properties of Forward difference operator ( ):

(i) Forward difference of a constant function is zero.

Proof:     Consider the constant function ( )f x k

Then, ( ) ( ) ( ) 0f x f x h f x k k      

(ii) For the functions ( ) ( )f x and g x ;  ( ) ( ) ( ) ( )f x g x f x g x     

Proof:   By definition,

   

 

( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

f x g x f g x

f g x h f g x

f x h g x h f x g x

f x h f x g x h g x

f x g x

    

    

     

     
   

(iii)Proceeding as in (ii), for the constants a and b,

 ( ) ( ) ( ) ( )af x bg x a f x b g x      .

(iv)Forward difference of the product of two functions is given by,

 ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x g x f x     

4
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Proof:

   ( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

f x g x fg x

fg x h fg x

f x h g x h f x g x

  

  
   

Adding and subtracting ( ) ( )f x h g x , the above gives

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x h f x h g x f x h g x f x g x        

   ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x h g x h g x g x f x h f x

f x h g x g x f x

      

    

Note : Adding and subtracting ( ) ( )g x h f x instead of ( ) ( )f x h g x , it can also be
proved that

 ( ) ( ) ( ) ( ) ( ) ( )f x g x g x h f x f x g x     

(v) Forward difference of the quotient of two functions is given by

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

f x g x f x f x g x
g x g x h g x

       

Proof:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

f x f x h f x
g x g x h g x

f x h g x f x g x h
g x h g x

f x h g x f x g x f x g x f x g x h
g x h g x

      
  


    



   ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

g x f x h f x f x g x h g x

g x h g x

    




( ) ( ) ( ) ( )
( ) ( )

g x f x f x g x
g x h g x
  


Following are some results on forward differences:

Result 1:  The nth forward difference of a polynomial of degree n is constant when the
values of the independent variable are at equal intervals.

5
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Result 2: If n is an integer,
2

1 2( ) ( ) ( ) ( ) ( )n n nf a nh f a C f a C f a f a        

for the polynomial f(x) in x.

Forward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f0

f1

f2

f3

f4

f5

x1 f1 2f0
3f0

3f1

3f2

3f3

x2 f2 2f2 4f0
5f0

5f1
x3 f3 2f2 4f1 6f0

x4 f4 2f3 4f2

x5 f5 2f4

x6 f6

Example Express 0
2 f and 0

3 f in terms of the values of the function f.

  01220112010
2 ffffffffff 

 01120
2

1
2

0
3 fffffff 

       3 2 2 1 2 1 1 0f f f f f f f f       

3 33 2 1 0f f f f   

In general,

0
)1(...

3322110
fn

n
fCn

n
fCn

n
fCn

n
ffn 








 .

If we write yn to denote fn the above results takes the following forms:

01220
2 yyyy 

0132330
3 yyyyy 

0)1(...3322110 yn
nyCn

nyCn
nyCn

nyyn 

6
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Example Show that the value of yn can be expressed in terms of the leading value y0

and the leading differences .,...,, 00
2

0 yyy n

Solution

(For notational convenience, we treat yn as fn and so on.)

From the forward difference table we have

0 1 0 1 0 0

1 2 1 2 1 1

2 3 2 3 2 2

or

or

or

f f f f f f

f f f f f f

f f f f f f

     


      
      

and so on.  Similarly,
2 2

0 1 0 1 0 0

2 2
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Similarly, we can write
3 2 2 2 2 3

0 1 0 1 0 0

3 2 2 2 2 3
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Also, we can write 2f as

   2
2 0 0 0 0

2
0 0 0

2
0

2

(1 )

f f f f f

f f f

f

      

    

  

Hence

3 2 2f f f  

  2 3
1 1 0 0 02f f f f f        

0
3

0
2

00 33 ffff 

 3 01 f  

That is, we can symbolically write

      .1,1,1 0
3

30
2

201 ffffff 

Continuing this procedure, we can show, in general

  .1 0ff n
n 

Using binomial expansion, the above is

7
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00
2

2010 ... ffCfCff nnn
n 

Thus

0
0

.
n

n i
n i

i

f C f


 

Backward Difference Operator

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the backward difference operator  is defined
on the function f(x) as,

    1) (i i i i if x f x f x h y y       ,

which is the first backward difference.

In particular, we have the first backward differences,

   1 1 0 2 2 1;f x y y f x y y etc     

The second backward difference is given by

          
   

   

2

1 1 2

1 2

) (

) ( ) ( 2

2

i i i i i i

i i i i

i i i i

i i i

f x f x f x f x h f x f x h

f x f x h f x h f x h

y y y y

y y y
  

 

           
             
   

  

Similarly, the third backward difference,  3
1 2 33 3i i i i if x y y y y       and so on.

Backward differences can be written in a tabular form as follows:

x

Y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0y y y  

2 2 1y y y  

3 3 2y y y  

2
2 2 1y y y  

2
3 3 2y y y  

3 2 2
3 3 2y y y  

Relation between backward difference and other differences:

1. 0 1 0 1y y y y     ; 2 2
0 2 1 0 22y y y y y     etc.

8
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2.   

Proof:  Consider the function f(x).

( ) ( ) ( )

( ) ( ) ( )

f x f x h f x

f x f x f x h

   
   

 
   

 
 

( ( )) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

f x f x f x

f x h f x f x f x h

f x f x h

f x f x h

f x

    

     

    

   

  

    

3. 1E  

Proof:  Consider the function f(x).

1( ) ( ) ( ) ( ) ( )f x f x f x h f x h E f x         1E   

4. 11 E  

Proof:  Consider the function f(x).

 1 1( ) ( ) ( ) ( ) ( ) 1 ( )f x f x f x h f x E f x E f x         11 E   

Problem: Construct the backward difference table for the data

: 2 0 2 4

( ) : 8 3 1 12

x

y f x


 

Solution: The backward difference table is as follows:

x Y=f(x) y 2 y 3 y

-2

0

2

4

-8

3

1

12

1y =3-(-8)=11

2y =1-3=-2

3y =12-1=11

2
2y =-2-11= -13

2
3y =11-(2)=13

3
3y =13-(-13)=26

9
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Backward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f1

f2

f3

f4

f5

f6

x1 f1 2f2

3f3

3f4

3f5

3f6

x2 f2 2f3 4f4 5f
5

5f
6

x3 f3 2f4 4f5 6f6

x4 f4 2f5 4f6

x5 f5 2f6

x6 f6

Example Show that any value of f (or y)  can be expressed in terms of fn (or yn ) and its
backward differences.

Solution

1 nnn fff implies 1n n nf f f  

and 1 1 2n n nf f f     implies 2 1 1n n nf f f   

1
2

 nnn fff implies 2
1n n nf f f   

From equations (1) to (3), we obtain

nnnn ffff 2
2 2  .

Similarly, we can show that

nnnnn fffff 32
3 33  .

Symbolically, these results can be rewritten as follows:

      .1,1,1 3
3

2
21 nnnnnn ffffff  

Thus, in general, we can write

  n
r

rn ff  1 .

i.e., 2
1 2 . . . ( 1)r r r r

n r n n n nf f C f C f f         

If we write yn to denote fn the above result is:
2

1 2 . . . ( 1)r r r r
n r n n n ny y C y C y y         
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Central Differences

Central difference operator  for a function f(x) at ix is defined as,

( )
2 2i i i
h hf x f x f x          

   
, where h being the interval of differencing.

Let 1 0
2 2

hy f x   
 

.  Then,

       

1 0 0 0
2

0 0 1 0 1 0

1 0
2

2 2 2 2 2
h h h h hy f x f x f x

f x h f x f x f x y y

y y

 



                 
     

      

  

Central differences can be written in a tabular form as follows:

x y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0
2

y y y  

3 2 1
2

y y y  

5 3 2
2

y y y  

2
1 3 1

2 2

y y y   

2
2 5 3

2 2

y y y   

3 2 2
3 2 1
2

y y y   

Central Difference Table

x f f 2f 3f 4f

x0 f0

f1/2

f3/2

f5/2

f7/2

x1 f1 2f1
3f3/2

3f5/2

x2 f2 2f2 4f2

x3 f3 2f3

x4 f4
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Example Show that

(a)
1

2
1

2



m

fmfm
fmf

(b)
1

3
1

3
2

2

1
3




 m
f

m
f

m
f

m
f

m
f

(a) 2 ( ) ( )1 11/2 1/2f f f f f f fm m mm mm m        

21 1
f f fmm m
   

(b)  3 2 2 211/2 2 1
f f f f f fmmm m m m
        

 2
1 1

f f f
m m m
   1

3
1

3
2 


m

f
m

f
m

f
m

f

Shift operator, E

Let y = f (x) be a function of x, and let x takes the consecutive values x, x + h, x + 2h, etc.
We then define an operator E, called the shift operator having the property

E f(x) = f (x + h) …(1)

Thus, when E operates on f (x), the result is the next value of the function. If we apply the
operator twice on f (x), we get

E2 f (x) = E [E f (x)] = f (x+ 2h).

Thus, in general, if we apply the shift operator n times on f (x), we arrive at

E n f (x) = f (x+ nh)                            …(2)

for all real values of n.

If f0 (= y0), f1 (= y1)… are the consecutive values of the function

y = f (x), then we can also write

E f0 = f1 (or E y0 = y1), E f1 = f2 (or E y1 = y2)…

E2f0 = f2 (or E 2y0 = y2), E 2 f1 = f3 (or E y1 = y3)…

E3f0 = f3 (or E 2y0 = y3), E 3 f1 = f4 (or E y1 = y4)…

and so on.  The inverse operator E1 is defined as:
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E1 f(x) = f (x  h) …(3)

and similarly

En f(x) = f (x  nh) …(4)

Average Operator 

The average operator  is defined as

  2 2
1 ( ) ( )
2

h hf x f x f x      

Differential operator D

The differential operator D has the property

( ) ( ) ( )dDf x f x f x
dx

 

2
2

2
( ) ( ) ( )dD f x f x f x

dx
 

Relations between the operators:

Operators,,, and D in terms of E

From the definition of operators  and E, we have

 f (x)  = f (x + h)  f (x) = E f (x)  f (x)  =  (E  1) f (x).

Therefore,

 = E  1

From the definition of operators  and E  1, we have

 f (x)  = f (x)  f (x  h) = f (x)  E  1f (x)  =  (1  E  1) f (x).

Therefore,

1 11 .EE
E

    

The definition of the operators  and E gives

f (x)  = f (x + h/2)  f (x  h/2) = E 1/2f (x)  E  1/2f (x)

= (E 1/2  E  1/2) f (x).
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School of Distance Education

Therefore,

 = E 1/2  E  1/2

The definition of the operators  and E yields

   1/ 2 1/ 21 1 .
2 2 2 2

h hf x f x f x E E f x                      

Therefore,

 1/ 2 1/ 21 .
2

E E  

It is known that

E f (x) = f (x + h).

Using the Taylor series expansion, we have

       
2

. . .
2!
hEf x f x h f x f x    

     
2

2 . . .
2!
hf x h Df x D x   

   
2 2

1 . . .
1! 2!

hDh D h D f x e f x
      
 

.

Thus hDeE  .  Or,

hD = log E.

Example If , ,  denote forward, backward and central difference operators, E and 
respectively the shift operator and average operators, in the analysis of data with equal
spacing h, prove the following:

 

   

22
2 2 1/ 2

2
2

( ) 1 1
2 2

1 / 4
2

i ii E

iii

 
     

 

   

 
  


 

   
1

.
2 2 2
Eiv v
       

Solution

(i)  From the definition of operators, we have
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    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E        .

Therefore

   22 2 2 2 11 11 1 2
4 4

E E E E         

Also,

   
2 21/ 2 1/ 2 11 11 1

2 2 2
E E E E      

From equations (1) and (2), we get
22

2 21 1 .
2

      
 

(ii)  1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 .
2 2

E E E E E       

(iii)  We can write

   21/ 2 1/ 22
21 / 4

2 2

E E         21/ 2 1/ 2 1/ 2 1/ 211
4

E E E E    

  
1

1/ 2 1/ 2 1/ 2 1/ 22 1
2 2

E E E E E E


     

1 12
2 2

E E E E    

= E  1

= 

(iv) We write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 11 1 1 11 1 .
2 2 2 2 2 2 2

EE E
E E

                 
 

(v)  We can write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

    1 11 1 .
2 2
       
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Example Prove that

     1log 1 log 1 sinh .hD        

Using the standard relations given in boxes in the last section, we have

   1log log 1 log log log 1hD E E E         

Also,

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 sin
2

hD hDe e hD  

Therefore

 .sinh 1  hD

Example Show that the operations  and E commute.

Solution

From the definition of operators  and E , we have

 0 1 3/ 2 1/ 2
1
2

Ef f f f    

and also

   0 1/ 2 1/ 2 3/ 2 1/ 2
1 1
2 2

E f E f f f f    

Hence

.E E  

Therefore, the operators  and E commute.

Example Show that
2 2

2
0 0 0 0 1 2... ...

2! 2!
          
 

x x xe u x u u u u x u

2 2 2
2

0 0 0 0... 1 ...
2! 2!

              
   

x xx xe u x u u e x u

(1 )
0 0

  x x xe e u e u

0 xEe u
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2 2

01 ...
2!

     
 

x ExE u

2

0 1 2 ...,
2!

   xu xu u

as desired.

Example Using the method of separation of symbols, show that

1 2

( 1)
( 1) .

2   
      n n

x n x x x x n

n n
u u nu u u

To prove this result, we start with the right-hand side. Thus,

R.H.S 1 2

( 1)
( 1) .

2  
      n

x x x x n

n n
u nu u u

1 2( 1)
( 1)

2
        n n

x x x x

n n
u nE u E u E u

1 2( 1)
1 ( 1)

2
          

 n n
x

n n
nE E E u

 11  
n

xE u

11   
 

n

xu
E

1   
 

n

x
E u

E


n

xn u
E

 n n
xE u

, n
x nu

= L.H.S

Differences of a Polynomial

Let us consider the polynomial of degree n in the form
1 2

0 1 2 1( ) . . . ,n n n
n nf x a x a x a x a x a 
     

where 0 0a  and 0 1 2 1, , , . . . , ,n na a a a a are constants.  Let h be the interval of differencing.
Then
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1 2
0 1 2( ) ( ) ( ) ( ) ...n n nf x h a x h a x h a x h         1( )n na x h a  

Now the difference of the polynomials is:

1 1
0 1( ) ( ) ( ) ( ) ( ) ...n n n nf x f x h f x a x h x a x h x                  1( )na x h x  

Binomial expansion yields

   nnnnnnn xhhxChxCxaxf   ...22
2

1
10

   1 11 2 3 2
1 1 2[ n nn n na x C x h C x h     

1 1
1. . . ] . . .n n

nh x a h 
    

   .... 1
2

1
1

1
2

20
1

0 haxhCahCanhxa n
nnnn


 

Therefore,

  ,...321
0 lxkxcxbnhxaxf nnn  

where b, c,    . . . , k, l are constants involving h but not x.  Thus, the first difference of
a polynomial of degree n is another polynomial of degree (n  1).  Similarly,

        xfhxfxfxf 2

   1 21 2
0

n nn na nh x h x b x h x
             

 . . . k x h x   

On simplification, it reduces to the form

    qxcxbxhnnaxf nnn   ...1 4322
0

2 .

Therefore,  xf2 is a polynomial of degree (n  2) in x.  Similarly, we can form the
higher order differences, and every time we observe that the degree of the polynomial is
reduced by 1.  After differencing n times, we are left with only the first term in form

        0 1 2 3 . . . 2 1n nf x a n n n n h    

 0 ! constant.na n h 

This constant is independent of x.  Since  xfn is a constant   .01   xfn Hence the (n
+ 1)th and higher order differences of a polynomial of degree n are 0.
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Conversely, if the n th differences of a tabulated function are constant and the ( 1)thn ,
( 2)th,...,n differences all vanish, then the tabulated function represents a polynomial of
degree n. It should be noted that these results hold good only if the values of x are equally
spaced. The converse is important in numerical analysis since it enables us to approximate
a function by a polynomial if its differences of some order become nearly constant.

Theorem (Differences of a polynomial)The nth differences of a polynomial of degree n is a
constant, when the values of the independent variable are given at equal intervals.

Exercises

1. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a) 2 decimal places, (b) 3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

2. Express 2y1 (i.e. 2f1 )  and 4y0 (i.e. 4f0 )  in terms of the values of the function y =
f(x).

3. Set up a difference table of 2( )f x x for 0(1)10x  .  Do the same with the calculated
value 25 of (5)f replaced by 26.  Observe the spread of the error.

4. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a)2 decimal places, (b)3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

5. Set up a forward difference table of f(x) = x2 for x = 0(1)10.  Do the same with the
calculated value 25 of f(5)  replaced by 26.  Observe the spread of the error.

6. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cosx 1.000 00 0.995 00 0.980 07 0.955 34 0.921 06 0.877 58

7. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sinx 0.000 00 0.099
83

0.198
67

0.295
52

0.389
42

0.479

8. Construct the backward difference table, where

( ) sinf x x , x = 1.0(0.1)1.5, 4D.
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9. Show that .2/1EE 

10. Prove that

11.        .2/cosh2and2/sinh2 hDiihDi 

12. Show that the operators ,  , E,  and  commute with each other.

13.Construct the backward difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cos x 1.000
00

0.995
00

0.980
07

0.955
34

0.921
06

0.877
58

Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sin
x

0.000
00

0.099
83

0.198
67

0.295
52

0.389
42

0.479
43

6. Construct the backward difference table, where

f(x) = sin x, x = 1.0(0.1)1.5, 4D.

7. Evaluate   (2 + 3)(E + 2)(3x2 + 2),  interval of differencing being unity.

8. Compute the missing values of ny and ny in the following table:

ny ny 2
ny

-

-

-

5

-

-

-

1

4

13

18

24

-

-

6

-

-

-

20

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


NUMERICAL INTERPOLATION

Consider a single valued continuous function ( )y f x defined over [a,b] where
( )f x is  known explicitly.  It is easy to find the values of ‘y’ for a given set of values of ‘x’ in

[a,b].  i.e., it is possible to get information of all the points ( , )x y where .a x b 

But the converse is not so easy.  That is, using only the points 0 0( , )x y , 1 1( , )x y ,…,
( , )n nx y where , 0,1,2,...,ia x b i n   ,  it is not so easy to find the relation between x and y in
the form ( )y f x explicitly.  That is one of the problem we face in numerical
differentiation or integration.

Now we have first to find a simpler function, say ( )g x , such that ( )f x and ( )g x agree
at the given set of points and accept the value of ( )g x as the required value of ( )f x at some
point x in between a and b. Such a process is called interpolation. If ( )g x is a
polynomial, then the process is called polynomial interpolation.

When a function f(x) is not given explicitly and only values of ( )f x are given at a
set of distinct points called nodes or tabular points, using the interpolated function ( )g x to
the function f(x), the required operations intended for ( )f x , like determination of roots,
differentiation and integration etc. can be carried out. The approximating polynomial ( )g x

can be used to predict the value of ( )f x at a non- tabular point. The deviation of ( )g x from
( )f x , that is ( ) ( )f x g x is called the error of approximation.

Consider a continuous single valued function ( )f x defined on an interval [a, b].
Given the values of the function for n + 1 distinct tabular points 0 1, ,..., nx x x such that

0 1 ... na x x x b     .   The problem of polynomial interpolation is to find a polynomial g(x)
or ( )np x , of degree n, which fits the given data. The interpolation polynomial fitted to a
given data is unique.

If we are given two points satisfying the function such as    0 0 1 1, ; ,x y x y , where

 0 0y f x and  1 1y f x it is possible to fit a unique polynomial of degree 1. If three
distinct points are given, a polynomial of degree not greater than two can be fitted
uniquely.  In general, if n+ 1 distinct points are given, a polynomial of degree not greater
than n can be fitted uniquely.

Interpolation fits a real function to discrete data.   Given the set of tabular values

0 0 1 1( , ), ( , ) ( , ) n nx y x y x y satisfying the relation ( )y f x , where the explicit nature of

21

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


( )f x is not known,  and it is required to find the values of ( )f x corresponding to certain
given values of x in between x0 and xn .  To do this we have first to find a simpler function,
say ( )g x , such that ( )f x and ( )g x agree at the set of tabulated points and accept the value
of ( )g x as the required value of ( )f x at some point x in between x0 and xn .   Such a process
is called interpolation.  If ( )g x is a polynomial, then the process is called polynomial
interpolation.

In interpolation, we have to determine the function ( )g x , in the case that ( )f x is
difficult to be obtained, using the pivotal values 0 0( ),f f x 1 1( )f f x ,. . . , ( )n nf f x .

Linear interpolation

In linear interpolation, we are given with two pivotal values 0 0( )f f x and 1 1( ),f f x

and we approximate the curve of f by a chord (straight line) P1 passing through the points
0 0( , )x f and 1 1( , )x f . Hence the approximate value of f at the intermediate point 0x x rh 

is given by the linear interpolation formula

1 0 1 0 0 0
( ) ( ) ( )f x P x f r f f f r f      

where 0
x x

r
h


 and 10  r .

Example Evaluate ln 9.2 , given that ln 9.0 2.197 and ln 9.5 2.251.

Here x0 = 9.0 , x1 = 9.5, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln 9.0 2.197 and
1 1( ) ln 9.5 2.251.  f f x Now to calculate ln9.2 (9.2), f take 9.2,x so that

0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and hence

1 0 1 0
ln 9.2 (9.2) (9.2) ( ) 2.197 0.4 (2.251 2.197) 2.219f P f r f f        

Example Evaluate f (15), given that f(10) = 46, f(20) = 66.

Here x0 = 10 , x1 = 20, h = x1  x0 =20  10 = 10,

f0 = f(x0)  = 46 and f1 = f(x1) = 66.

Now to calculate f(15), take x = 15, so that

0 15 10 5 0.5
10 10

x x
r

h

    

and hence
1 0 1 0

(15) (15) ( ) 46 0.5 (66 46) 56f P f r f f       

Example Evaluate 1.24
e , given that 1.1

3.0042e  and 1.4
4.0552e  .
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School of Distance Education

Here x0 = 1.1 , x1 = 1.4, h = x1  x0 =1.41.1 = 0.3, f0 = f(x0) =1.1 and f1 = f(x1) = 1.24.

Now to calculate 1.24
e =f(1.24), take x =1.24, so that 0 1.24 1.1 0.14 0.4667

0.3 0.3

x x
r

h

     and

hence

1.24

1 0 1 0
(1.24) ( ) 3.0042 0.4667(4.0552 3.0042) 3.4933,e P f r f f        while the exact value of 1.24

e is

3.4947.

Quadratic Interpolation

In quadratic interpolation we are given with three pivotal values 0 0 1 1( ), ( ) f f x f f x

and 2 2( )f f x and we approximate the curve of the function f between x0 and x2 = x0 +2h
by the quadratic parabola P2 , which passes through the points 0 0 1 1 2 2( , ), ( , ), ( , )x f x f x f and
obtain the quadratic interpolation formula

2

2 0 0 0

( 1)
( ) ( )

2
r r

f x P x f r f f
     

where 0
x x

r
h


 and 20  r .

ExampleEvaluate ln 9.2, using quadratic interpolation, given that

ln 9.0 = 2.197,    ln 9.5 = 2.251  and   ln10.0 = 2.3026.

Here x0 = 9.0 , x1 = 9.5, x1 = 10.0, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln9.0 = 2.197,
f1 = f(x1) = ln9.5 = 2.251 and f2 = f(x2) = ln10.0 = 2.3026. Now to calculate ln9.2=f(9.2), take

x = 9.2, so that 0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and

2

2 0 0 0

( 1)
ln 9.2 (9.2) ( )

2
r r

f P x f r f f
      

To proceed further, we have to construct the following forward difference table.

x f f 2f

9.0 2.1972

0.0541

0.0513
9.5 2.2513

-
0.0028

10.0 2.3026

Hence,
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2

0.4(0.4 1)
ln 9.2 (9.2) (9.2) 2.1972 0.4(0.0541) ( 0.0028)

2
f P

      = 2.2192, which exact to

4D to the exact value of ln 9.2 2.2192.

Example Using the values given in the following table, find cos0.28 by linear interpolation
and by quadratic interpolation and compare the results with the value 0.96106 (exact to
5D)

x ( ) cosf x x
First
difference

Second
difference

0.0 1.00000
-0.01993

-0.05901
0.2 0.98007 -0.03908

0.4 0.92106

Here ( )f x , where 0 0.28x is to determined. In linear interpolation, we need two
consecutive x values and their corresponding f values and first difference.  Here, since
x=0.28 lies in between 0.2 and 0.4, we take x0 = 0.2, x1 = 0.4.  (Attention! Choosing 0 0.2,x

1 0.4x  is very important; taking 0 0.0x would give wrong answer). Then h = x1  x0

=0.40.2 = 0.2, f0 = f(x0) =0.98007 and f1 = f(x1) =0.92106.

Also 0 0.28 0.2 0.08 0.4
0.2 0.2

x x
r

h

     and

1 0 1 0
cos0.28 (0.28) (0.28) ( )    f P f r f f

0.98007 0.4(0.92106 0.98007)  

=  0.95647, correct to 5 D.

In quadratic interpolation, we need three consecutive (equally spaced) x values and
their corresponding f values, first differences and second difference.  Here x0 = 0.0 , x1 =
0.2, x1 = 0.4, h = x1  x0 =0.2  0.0 = 02, f0 =  1.00000, f1 = 0.98007 and f2 = 0.92106,

f0=-0.01993, 2f0=-0.03908 0 0.28 0.00 1.4
0.2

x x
r

h

    and

2

2 0 0 0

( 1)
cos0.28 (0.28)

2
r r

P f r f f
     

  96116.003908.0
2

)14.1(4.1
)1993.0(4.100.1 


 to 5D.
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From the above, it can be seen that quadratic interpolation gives more accurate value.

Newton’s  Forward  Difference  Interpolation  Formula

Using Newton’s forward difference interpolation formula we find the n degree
polynomial Pn which approximates the function f(x) in such a way that Pn and f agrees at
n+1 equally spaced x values, so that 0 0 1 1( ) , ( ) , , ( ) ,  n n n n nP x f P x f P x f where 0 0( ),f f x

1 1( ), , ( )  n nf f x f f x are the values of f in the table.

Newton’s forward difference interpolation formula is

( ) ( )nf x P x 

2

0 0 0 0

( 1). . .( 1)( 1)
. . .

2! !
nr r r nr r

f r f f f
n

         

where 0

0
, , 0

x x
x x rh r r n

h


     .

Derivation of Newton’s forward Formulae for Interpolation

Given the set of ( 1)n values, viz., 0 0 1 1 2 2( , ), ( , ), ( , ),..., ( , )n nx f x f x f x f

of x and f, it is required to find ( )np x , a polynomial of the nth degree such that ( )f x and
( )np x agree at the tabulated points. Let the values of x be equidistant, i.e., let

0 , 0,1,2,...,ix x rh r n  

Since ( )np x is a polynomial of the nth degree, it may be written as

0 1 0 2 0 1

3 0 1 2

0 1 2 1

( ) ( ) ( )( )

( )( )( ) ...

( )( )( )...( )

n

n n

p x a a x x a x x x x

a x x x x x x

a x x x x x x x x 

      
     
     

Imposing now the condition that ( )f x and ( )np x should agree at the set of tabulated
points, we obtain

2 3
1 0 0 0 0 0

0 0 1 2 32 3
1 0

; ; ; ;...; ;
2! 3! !

n

n n

f f f f f f
a f a a a a

x x h h h h n

    
     



Setting 0x x rh  and substituting for 0 1, ,..., ,na a a we obtain the expression.

Remark 1:

Newton’s forward difference formula has the permanence property.  If we add a new set
of value  1 1,n nx y  , to the given set of values, then the forward difference table gets a new
column of (n+1)th forward difference.  Then the Newton’s Forward difference
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Interpolation Formula with the already given values will be added with a new term at the

end,       
1

0 1 01

1.....
1 !

n
n n

x x x x x x y
n h



     

to get the new interpolation formula with the

newly added value.

Remark 2:

Newton’s forward difference interpolation formula is useful for interpolation near the
beginning of a set of tabular values and for extrapolating values of y a short distance
backward, that is left  from 0y .The process of finding the value of y for some value of x
outside the given range is called extrapolation.

Example Using Newton’s forward difference interpolation formula and the following
table evaluate f(15) .

x f(x) f 2f 3f 4f

10 46
20

15

12

8

20 66 -5

-3

-4

2

30 81 -1 -3

40 93

50 101

Here x = 15, x0 = 10, x1 = 20, h = x1  x0 = 20  10 = 10, r = (x  x0)/h = (15–10)/10 = 0.5, f0 =
46, f0 = 20, 2f0 = 5, 3f0 = 2, 4f0 = 3.

Substituting these values in the Newton’s forward difference interpolation formula for
n = 4, we obtain

2 4

4 0 0 0 0

( 1) . . . ( 4 1)( 1)
( ) ( ) . . .

2! 4!
r r rr r

f x P x f r f f f
           ,

so that

(0.5)(0.5 1) (0.5)(0.5 1)(0.5 2)
(15) 46 (0.5)(20) ( 5) (2)

2! 3!
f

  
    

(0.5(0.5 1)(0.5 2)(0.5 3)
( 3)

4!
  

 

= 56.8672, correct to 4 decimal places.
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Example Find a cubic polynomial in x which takes on the values -3, 3, 11, 27, 57 and
107, when x=0, 1, 2, 3, 4 and 5 respectively.

x f(x)  2 3

0 -3
6

8

16

30

50

1 3 2

8

14

20

6

6

6

2 11

3 27

4 57

5 107

Now the required cubic polynomial (polynomial of degree 3) is obtained from Newton’s
forward difference interpolation formula

2 3

3 0 0 0 0

( 1) ( 1)( 3 1)
( ) ( )

2! 3!
r r r r r

f x P x f r f f f
           ,

where r=(x – x0)/h = (x – 0)/1 = x, so that

3

( 1) ( 1)( 3 1)
( ) ( ) 3 (6) (2) (6)

2! 3!
x x x x x

f x P x x
        

or 3 2
( ) 2 7 3f x x x x   

Example Using the Newton’s forward difference interpolation formula evaluate f(2.05)
where xxf )( , using the values:

x 2.0 2.1 2.2 2.3 2.4

x 1.414 214 1.449 138 1.483 240 1.516 575 1.549 193
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The forward difference table is

x x  2 3 4

2.0 1.414 214
0.034 924

0.034 102

0.033 335

0.032 618

2.1 1.449 138 -0.000 822

-0.000 767

-0.000 717

0.000055

0.000050
2.2 1.483 240 0.000 005

2.3 1.516 575

2.4 1.549 193

Here
h

xx
r 0 =(2.05–2.00)/0.1=0.5, so by substituting the values in Newton’s formula (for

4 degree polynomial), we get

4
(2.05) (2.05) 1.414214 (0.5)(0.034924)f P  

(0.5)(0.5 1)
( 0.000822)

2!
 

(0.5)(0.5 1)(0.5 2)
(0.000055)

3!

 


(0.5(0.5 1)(0.5 2)(0.5 3)
(0.000005)

4!

  
 = 1.431783.

Example Find the cubic polynomial which takes the following values;
(1) 24, (3) 120, (5) 336, and (7) 720   f f f f . Hence, or otherwise, obtain the value of (8)f .

We form the difference table:
2 3

1 24

96

3 120 120

216 48

5 336 168

384

7 720

  x y

Here 2h with 0 1,x we have 1 2 x p or ( 1) / 2r x  . Substituting this value of r, we
obtain

1 1 1
2 21( ) 24 (96) (120)

2 2

x x
xf x

          
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1 1 11 2
2 2 2

(48)
6

x x x         
    3 26 11 6.   x x x

To determine (9)f , we put 9x  in the above and obtain (9) 1320.f 

With 0 1,x  9,rx  and 2,h  we have 0 9 1
4

2
rx x

r
h

 
   . Hence

2
0 0 0

( 1)
(9) (9)

2!

r r
f p f r f f


       3

0

( 1) ( 2)

3!

r r r
f

 


4 3 4 3 2
24 4 96 120 48 1320

2 3 2

  
       



Example Using Newton’s forward difference formula, find the sum
3 3 3 31 2 3 ... .    nS n

Solution
3 3 3 3 3

1 1 2 3 ... ( 1)       nS n n

and hence
3

1 ( 1) ,   n nS S n

or
3( 1)  nS n .

it follows that
2 3 3 2

1 ( 2) ( 1) 3 9 7           n n nS S S n n n n

3 23( 1) 9 7 (3 9 7) 6 12         nS n n n n n

4 6( 1) 12 (6 12) 6      nS n n

Since 5 6 ... 0,    n n nS S S is a fourth-degree polynomial in the variable n.

Also,
3 2

1 1 11, (1 1) 8, 3 9 7 19,S S S         

3 4
1 16 12 18, 8.S S     

formula (3) gives (with 0 1f S and 1)r n 

( 1)( 2) ( 1)( 2)( 3)
1 ( 1)(8) (19) (18)

2 6
        n

n n n n n
S n
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( 1)( 2)( 3)( 4)
(6)

24
    n n n n

4 3 21 1 1
4 2 4
  n n n

2
( 1)

2
    

n n

Problem: The population of a country for various years in millions is provided.  Estimate the
population for the year 1898.

Year x: 1891 1901 1911 1921 1931

Population y: 46 66 81 93         101

Solution: Here the interval of difference among the arguments h=10. Since 1898 is at the
beginning of the table values, we use Newton’s forward difference interpolation formula for finding
the population of the year 1898.

The forward differences for the given values are as shown here.

Let x=1898.  Newton’s forward difference interpolation formula is,

      

   

    

2
0 0 0 0 1 02

3
0 1 2 03

0 1 1 0

1 1( )
2!

1 ....
3!

1.....
!

n
n n

f x y x x y x x x x y
h h

x x x x x x y
h

x x x x x x y
n h

         

        

     

x y y 2 y 3 y 4 y

1891

1901

1911

1921

1931

46

66

81

93

101

0 20y 

1 15y 

2 12y 

3 8y 

2
0 5y  

2
1 3y  

2
2 4y  

3
0 2y 

3
1 1y  

4
0 3y  
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Now, substituting the values, we get,

        

     

      

2

3

4

1 1(1898) 46 1898 1891 20 1898 1891 1898 1901 5
10 2!10

11898 1891 1898 1901 1898 1911 2
3!10

11898 1891 1898 1901 1898 1911 1898 1921 3
4!10

f       

    

    

21 91 18837(1898) 46 14 61.178
40 500 40000

f      

Example Values of x (in degrees) and sin x are given in the following table:

(in degrees) sin

15 0.2588190

20 0.3420201

25 0.4226183

30 0.5

35 0.5735764

40 0.6427876

x x

Determine the value of 0sin38 .

Solution

The difference table is
2 3 4 5sin

15 0.2588190

0.0832011

20 0.3420201 0.0026029

0.0805982 0.0006136

25 0.4226183 0.0032165 0.0000248

0.0773817 0.0005888 0.0000041

30 0.5 0.0038053 0.0000289

0.0735764 0.00

35 0.5735764
0.0043652

0.0692112

x x     












05599

40 0.6427876

As 38 is closer to 40nx  than 0 15,x  we use Newton’s backward difference formula with
40nx  and 38x  . This gives
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38 40 2 0.4
5 5

nx x
r

h
      

Hence, using formula, we obtain

0.4( 0.4 1)
(38) 0.6427876 0.4(0.0692112) ( 0.0043652)

2
f

     

( 0.4)( 0.4 1)( 0.4 2)
( 0.0005599)

6
    

 

( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)
(0.0000289)

24
      



( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4)
(0.0000041)

120
        



0.6427876 0.02768448 0.00052382 0.00003583   

0.00000120

0.6156614

Example Find the missing term in the following table:

( )

0 1

1 3

2 9

3

4 81

x y f x



Explain why the result differs from 33 27?

Since four points are given, the given data can be approximated by a third degree
polynomial in x . Hence 4

0 0f  . Substituting 1E   we get, 4
0( 1) 0,E f  which on

simplification yields
4 3 2

0 0 0 0 04 6 4 0    E f E f E f Ef f .

Since 0
r

rE f f the above equation becomes

4 3 2 1 04 6 4 0f f f f f    

Substituting for 0 1 2, ,f f f and 4f in the above, we obtain

3 31f 
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By inspection it can be seen that the tabulated function is 3x and the exact value of (3)f is
27. The error is due to the fact that the exponential function 3x is approximated by means
of a polynomial in x of degree 3.

ExampleThe table below gives the values of tan x for 0.10 0.30x 

t a n

0 . 1 0 0 . 1 0 0 3

0 . 1 5 0 . 1 5 1 1

0 . 2 0 0 . 2 0 2 7

0 . 2 5 0 . 2 5 5 3

0 . 3 0 0 . 3 0 9 3

x y x

Find: (a) tan 0.12 (b) tan 0.26 . (c) tan 0.40 (d) tan 0.50

The table difference is

2 3 4( )

0 .1 0 0 .1 0 0 3

0 .0 5 0 8

0 .1 5 0 .1 5 1 1 0 .0 0 0 8

0 .0 5 1 6 0 .0 0 0 2

0 .2 0 0 .2 0 2 7 0 .0 0 1 0 0 .0 0 0 2

0 .0 5 2 6 0 .0 0 0 4

0 .2 5 0 .2 5 5 3 0 .0 0 1 4

0 .0 5 4 0

0 .3 0 0 .3 0 9 3

x y f x    

a)  To find tan (0.12), we have 0.4r  Hence Newton’s forward difference interpolation
formula gives

0.4(0.4 1)
tan (0.12) 0.1003 0.4(0.0508) (0.0008)

2
  

0.4(0.4 1)(0.4 2)
(0.0002)

6
 

0.4(0.4 1)(0.4 2)(0.4 3)
(0.0002)

24
  

0.1205

b) To find tan (0.26), we use Newton’s backward difference interpolation formula
with
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nx x
r

n




0.26 03

0.05




0.8 

which gives

0.8( 0.8 1)
tan (0.26) 0.3093 0.8(0.0540) (0.0014)

2
    

0.8( 0.8 1)( 0.8 2)
(0.0004)

6
    

0.8( 0.8 1)( 0.8 2)( 0.8 3
(0.0002)

24
       0.2662

Proceeding as in the case (i) above, we obtain

(c) tan 0.40 0.4241, and

(d) tan 0.50 0.5543

The actual values, correct to four decimal places, of tan (0.12), tan(0.26) are respectively
0.1206 and 0.2660. Comparison of the computed and actual values shows that in the first
two cases (i.e., of interpolation) the results obtained are fairly accurate whereas in the last-
two cases (i.e., of extrapolation) the errors are quite considerable. The example therefore
demonstrates the important results that if a tabulated function is other than a polynomial,
then extrapolation very far from the table limits would be dangerous-although
interpolation can be carried out very accurately.

Exercises

1. Using the difference table in exercise 1, compute cos0.75 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value 0.731 69.

2. Using the difference table in exercise 1, compute cos0.28 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value

3. Using the values given in the table, find cos0.28 (in radian measure) by linear interpolation and
by quadratic interpolation and compare the results with the value 0.961 06 (exact to 5D).
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x f(x)=cosx
First
difference

Second
difference

0.0 1.000 00
-0.019 93

-0.059 01

-0.095 72

-0.128 63

-0.156 41

-0.03908

-0.03671

-0.03291

-0.02778

0.2 0.980 07

0.4 0.921 06

0.6 0.825 34

0.8 0.696 71

1.0 0.540 30

4. Find Lagrangian interpolation polynomial for the   function f having
(4) 1, (6) 3, (8) 8, (10) 16f f f f    . Also calculate (7)f .

5. The sales in a particular shop for the last ten years is given in the table:

Year 1996 1998 2000 2002 2004

Sales (in
lakhs)

40
43 48 52 57

Estimate the sales for the year 2001 using Newton’s backward difference interpolating formula.

6. Find (3)f , using Lagrangian interpolation formula  for the function f having

(1) 2, (2) 11, (4) 77f f f   .

7. Find the cubic polynomial which takes the following values:

x 0 1 2 3

( )f x 1 2 1 10

8. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx 2

0.
2

0.198 67 -0.007 92

0.
4

0.389 42 -0.015 53

.6 0.564 64 -0.022 50
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9.  The following table gives the distances in nautical miles of the visible horizon for the given
heights in feet above the earth’s surface:

x =height     : 100 150 200 250 300 350 400

y = distance : 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same data as in exercise 9, find the value of y when x = 410ft.
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FIXED POINT ITERATION METHOD

Nature of numerical problems

Solving mathematical equations is an important requirement for various branches of
science. The field of numerical analysis explores the techniques that give approximate
solutions to such problems with the desired accuracy.

Computer based solutions

The major steps involved to solve a given problem using a computer are:

1. Modeling: Setting up a mathematical model, i.e., formulating the problem in
mathematical terms, taking into account the type of computer one wants to use.

2. Choosing an appropriate numerical method (algorithm) together with a preliminary
error analysis (estimation of error, determination of steps, size etc.)

3. Programming, usually starting with a flowchart showing a block diagram of the
procedures to be performed by the computer and then writing, say, a C++  program.

4. Operation or computer execution.

5. Interpretation of results, which may include decisions to rerun if further data are
needed.

Errors

Numerically computed solutions are subject to certain errors.  Mainly there are three
types of errors. They are inherent errors, truncation errors and errors due to rounding.

1. Inherent errors or experimental errors arise due to the assumptions made in the
mathematical modeling of problem.  It can also arise when the data is obtained from
certain physical measurements of the parameters of the problem. i.e., errors arising
from measurements.

2. Truncation errors are those errors corresponding to the fact that a finite (or infinite)
sequence of computational steps necessary to produce an exact result is “truncated”
prematurely after a certain number of steps.

3. Round of errors are errors arising from the process of rounding off during
computation.  These are also called chopping, i.e. discarding all decimals from some
decimals on.

UNIT 2
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Truevalue

Errorε
rε 

a

Error in Numerical Computation

Due to errors that we have just discussed, it can be seen that our numerical result is an
approximate value of the (sometimes unknown) exact result, except for the rare case
where the exact answer is sufficiently simple rational number.

If a~ is an approximate value of a quantity whose exact value is a, then the difference  =
a~  a is called the absolute error of a~ or, briefly, the error of a~ . Hence, a~ = a + , i.e.

Approximate value = True value + Error.

For example, if a~ = 10.52 is an approximation to a = 10.5, then the error is  = 0.02.  The
relative error, r, of a~ is defined by

For example, consider the value of ...)414213.1(2  up to four decimal places, then

Error4142.12  .

Error = 1.4142  1.41421 = .00001,

taking 1.41421 as true or exact value.  Hence,  the  relative error is

4142.1

00001.0
rε  .

We note that

a~
εε r  if  is much less than a~ .

We may also introduce the quantity  = a  a~ =  and call it the correction, thus, a = a~

+ , i.e.

True value = Approximate value + Correction.

Error bound for a~ is a number  such that  a~  a    i.e.,   .

Number representations

Integer representation
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Floating point representation

Most digital computers have two ways of representing numbers, called fixed point and
floating point.  In a fixed point system the numbers are represented by a fixed number of
decimal places e.g. 62.358, 0.013, 1.000.

In a floating point system the numbers are represented with a fixed number of
significant digits, for example

0.6238  103 0.1714  10 13 0.2000  101

also written as   0.6238 E03 0.1714 E 13 0.2000 E01

or more simply  0.6238 +03 0.1714 13 0.2000 +01

Significant digits

Significant digit of a number c is any given digit of c, except possibly for zeros to the
left of the first nonzero digit that serve only to fix the position of the decimal point.  (Thus,
any other zero is a significant digit of c).  For example, each of the number 1360, 1.360,
0.01360 has 4 significant digits.

Round off rule to discard the k + 1th and all subsequent decimals

(a) Rounding down If the number at (k + 1)th decimal to be discarded is less than half a
unit in the k th place, leave the k th decimal unchanged. For example, rounding of 8.43
to 1 decimal gives 8.4 and rounding of 6.281 to 2 decimal places gives 6.28.

(b) Rounding up If the number at (k + 1)th decimal to be discarded is greater than half a
unit in the k th place, add 1 to the k th decimal.  For example, rounding of 8.48 to 1
decimal gives 8.5 and rounding of 6.277 to 2 decimals gives 6.28.

(c) If it is exactly half a unit, round off to the nearest even decimal.  For example, rounding
off 8.45 and 8.55 to 1 decimal gives 8.4 and 8.6 respectively.  Rounding off 6.265 and
6.275 to 2 decimals gives 6.26 and 6.28 respectively.

Example Find the roots of the following equations using 4 significant figures in the
calculation.

(a) x2  4x + 2 = 0           and        (b) x2  40x + 2 = 0.
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Solution

A formula for the roots x1, x2 of a quadratic equation ax2 + bx + c = 0 is

(i) 2
1

1
( 4 )

2
x b b ac

a
    and 2

2

1
( 4 )

2
x b b ac

a
    .

Furthermore, since x1x2 = c/a, another formula for these roots is

(ii) 2
1

1
( 4 )

2
x b b ac

a
    ,  and 2

1

c
x

ax


For the equation in (a), formula (i) gives,

x1 = 2 + 2 = 2 + 1.414 = 3.414,

x2= 2  2 = 2  1.414 = 0.586

and formula (ii) gives,

x1 = 2 + 2 = 2 + 1.414 = 3.414,

x2= 2.000/3.414 = 0.5858.

For the equation in (b), formula (i) gives,

x1 = 20 + 398 = 20 + 19.95 = 39.95,

x2= 20  398 = 20  19.95 = 0.05

and formula (ii) gives,

x1 = 20 + 398 = 20 + 19.95 = 39.95,

x2= 20.000/39.95 = 0.05006.

Example Convert the decimal number (which is in the base 10) 81.5 to its binary form (of
base 2).

Solution Note that (81.5)10=8 101+1  100+5 10-1

Now 81.5 = 64+16+1+0.5=26 +24 +20 + 2-1=(1010001.1)2.
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Remainder Product Integer
part

2 81



0.5 × 2 1.0 1


2 40 1

2 20 0

2 10 0

2 5 0

2 2 1

2 1 0

0 1

Example Convert the binary number 1010.101 to its decimal form.

Solution

(1010.101)2 = 1  23 + 1  21 + 1  2-1 + 1  2-3

= 8 + 2 + 0.5 + 0.125=(10.625)10

Numerical Iteration Method

A numerical iteration method or simply iteration method is a mathematical
procedure that generates a sequence of improving approximate solutions for a class of
problems. A specific way of implementation of an iteration method, including the
termination criteria, is called an algorithm of the iteration method. In the problems of
finding the solution of an equation an iteration method uses an initial guess to generate
successive approximations to the solution.

Since the iteration methods involve repetition of the same process many times,
computers can act well for finding solutions of equation numerically. Some of the iteration
methods for finding solution of equations involves (1) Bisection method, (2) Method of
false position (Regula-falsi Method), (3) Newton-Raphson  method.

A numerical method to solve equations may be a long process in some cases.  If the
method leads to value close to the exact solution, then we say that the method is
convergent. Otherwise, the method is said to be divergent.

Solution of Algebraic and Transcendental Equations

One of the most common problem encountered in engineering analysis is that given a
function f (x), find the values of x for which f(x) = 0. The solution (values of x) are known
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as the roots of the equation f(x) = 0, or the zeroes of the function f (x).  The roots of
equations may be real or complex.

In general, an equation may have any number of (real) roots, or no roots at all. For
example, sin x – x = 0 has a single root, namely, x = 0, whereas tan x – x = 0 has infinite
number of roots (x = 0, ± 4.493, ± 7.725, …).

Algebraic and Transcendental Equations

f(x) = 0 is called an algebraic equation if the corresponding ( )f x is a polynomial.  An
example is 7x2 + x - 8 = 0. ( ) 0f x is called transcendental equation if the ( )f x contains
trigonometric, or exponential or logarithmic functions.  Examples of transcendental
equations are sin x – x = 0, tan 0 x x and 37 log(3 6) 3 cos tan 0.xx x e x x    

There are two types of methods available to find the roots of algebraic and
transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of
steps. We assume here that there are no round off errors. Direct methods determine all the
roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of
successive approximations. The general procedure is to start with one or more initial
approximation to the root and obtain a sequence of iterates kx which in the limit
converges to the actual or true solution to the root.  Indirect or iterative methods
determine one or two roots at a time.  The indirect or iterative methods are further
divided into two categories: bracketing and open methods.  The bracketing methods
require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False position methods are two known
examples of the bracketing methods. Among the open methods, the Newton-Raphson is
most commonly used. The most popular method for solving a non-linear equation is the

Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter and in the coming chapters, we present the following indirect or iterative
methods with illustrative examples:

1. Fixed Point Iteration Method

2. Bisection Method

3. Method of False Position (Regula Falsi Method)

4. Newton-Raphson Method (Newton’s method)
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Fixed Point Iteration Method

Consider

( ) 0f x  … (1)

Transform (1) to the form,

( ).x x …(2)

Take an arbitrary x0 and then compute a sequence x1, x2, x3, . . . recursively from a
relation of the form

1 ( )n nx x   ( 0, 1, )n   … (3)

A solution of (2) is called fixed point of .  To a given equation (1) there may
correspond several equations (2) and the behaviour, especially, as regards speed of
convergence of iterative sequences x0, x1, x2, x3, . . . may differ accordingly.

Example Solve 2( ) 3 1 0,f x x x    by fixed point iteration method.

Solution

Write the given equation as

2 3 1x x  or 3 1/x x  .

Choose 1( ) 3x
x

   . Then
2

1
( ) andx

x
   ( ) 1 x on the interval (1, 2).

Hence the iteration method can be applied to the Eq. (3).

The  iterative formula is given by

1
13n

n

x
x   (n = 0, 1, 2, . . . )

Starting with, 0 1x  , we obtain the sequence

x0=1.000, x1 =2.000, x2 =2.500, x3 = 2.600, x4 =2.615, . . .

Question : Under what assumptions on  and 0 ,x does Algorithm 1 converge ? When
does the  sequence ( )nx obtained from the iterative process (3) converge ?

We answer this in the  following theorem, that is a sufficient condition for
convergence of iteration process
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Theorem Let x  be a root of ( ) 0f x and let I be an interval containing the point .x 

Let ( )x be continuous in I, where ( )x is defined by the equation ( )x x which is
equivalent to ( ) 0.f x Then if ( ) 1 x for all x in I, the sequence of approximations

0 1 2, , ,x x x , nx defined by

1 ( )n nx x  ( 0, 1, )n  

converges to the root , provided that the initial approximation 0x is chosen in I.

Example Find a real root of the equation 3 2 1 0  x x on the interval [0, 1] with an
accuracy of 410 .

To find this root, we rewrite the given equation in the form

1
1




x
x

Take

 


1( ) .
1

x
x

Then
3
2

1 1( )
2

( 1)
 


x

x



     
[0, 1]

1max| ( ) | 0.17678 0.2.
2 8

x k

Choose 1( ) 3x
x

   . Then
2

1
( ) andx

x
   ( ) 1x   on the interval (1, 2).

Hence the iteration method gives:

11 1/ 1

0 0.75 1.3228756 0.7559289

1 0.7559289 1.3251146 0.7546517

2 0.7546617 1.3246326 0.7549263

  n n n nn x x x x

At this stage,
1| | 0.7549263 0.7546517 0.0002746,    n nx x

which is  less than 0.0004. The iteration is therefore terminated and the root to the
required accuracy is 0.7549.

Example Use the method of iteration to find a positive root, between 0 and 1, of the
equation 1.xxe

Writing the equation in the form

 xx e
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We find that ( )  xx e and so ( )    xx e .

Hence | ( ) | 1 x for 1,x which assures that the iterative process defined by the equation

1 ( ) n nx x will be convergent, when 1.x 

The iterative formula is

1

1
n

n x
x

e  ( 0, 1, )n  

Starting with 0 1,x we find that the successive iterates are given by

1 1/ 0.3678794, x e  2
1

1 0.6922006,x
ex

3 0.5004735,x 4 0.6062435,x

5 0.5453957,x 6 0.5796123,x

We accept 6.5453957 as an approximate root.

Example Find the root of the equation 2 cos 3 x x correct to three decimal places.

We rewrite the equation in the form

1 (cos 3)
2
 x x

so that

  1 (cos 3),
2

x

and

sin
| ( ) | 1.

2
  x

x

Hence the iteration method can be applied to the eq. (3) and we start with 0 / 2.x  The
successive iterates are

1 2 3

4 5 6

7 8

1.5, 1.535, 1.518,

1.526, 1.522, 1.524,

1.523, 1.524.

  
  
 

x x x

x x x

x x

We accept the solution as 1.524 correct to three decimal places.

Example Find a solution of 3( ) 1 0,f x x x    by fixed point iteration.
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x3 + x – 1 = 0 can be written as  2 1 1xx   , or
2

1

1
x

x



.

Note that

 22

2 | |
( ) 1

1

x
x

x
   


for any real x,

so by the Theorem we can expect a solution for any real number x0 as the starting point.

Choosing x0 = 1, and undergoing calculations in the iterative formula

1 ( )n nx x  
2

1

1
n

x
(n = 0, 1, . . .),              …(4)

we get the sequence

x0=1.000 , x1=0.500, x2=0.800, x3 =0.610 ,

x4= 0.729, x5=0.653, x6=0.701, ...

and we choose 0.701 as an (approximate) solution to  the given equation.

Example Solve the equation 3 sin .x x Considering various ( ),x discuss the convergence
of the solution.

How do the functions we considered for ( )x compare? Table  shows the results of
several

iterations using initial value 0 1x  and four different functions for ( )x . Here nx is the
value of x

on the nth iteration .

Answer:

When 3( ) sin ,x x  we have:

1x  0.94408924124306; 2 0.93215560685805x 

3 0.92944074461587x  ; 4 0.92881472066057x 

When
2

sin
( ) ,

x
x

x
  we have:

1x  0.84147098480790; 2 1.05303224555943x 

3 0.78361086350974x  ; 4 1.14949345383611x 

55

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Referring to Theorem, we can say that for
2

sin
( ) ,

x
x

x
  the iteration doesn’t  converge.

When 3( ) sin ,x x x x    we have:

1x  0.84147098480790; 2 0.99127188988250x 

3 0.85395152069647x  ; 4 0.98510419085185x 

When
3

2

sin
( ) ,

cos 3

x x
x x

x x



 


we have:

1x  0.93554939065467; 2 0.92989141894368x 

3 0.92886679103170x  ; 4 0.92867234089417x 

Example Give all possible transpositions to ( ),x x and solve 3 2( ) 4 10 0.f x x x   

Possible Transpositions to ( ),x x are

3 2
1

2

3
3

4

3 2

5 2

( ) 4 10,

10
( ) 4 ,

1
( ) 10

2

10
( )

4

4 10
( )

3 8

x x x x x

x x x
x

x x x

x x
x

x x
x x x

x x











    

  

  

 


 
  



For 3 2
1( ) 4 10,x x x x x     numerical results are:

0 2

3 4

1.5;   0.875

6.732; 469.7

x x

x x

  

  
;

Hence doesn’t converge.

For 2
10

( ) 4 ,x x x
x

   numerical results are:

0 2

1/ 2
3 4

1.5;   0.8165

2.9969; ( 8.65)

x x

x x

 

  
;
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For 3
3

1
( ) 10 ,

2
x x x   numerical results are:

0 2

3 4

1.5;   1.2869

1.4025; 1.3454

x x

x x

 

 
;

Exercises

Solve the following equations by iteration method:

 1
sin

1

x
x

x





 x4 = x + 0.15

 3 cos 2 0x x    ,0353  xx

 3 1 0x x     31 3
6

x x 

 103 6 logx x    31 3
5

x x 

 102 log 7x x   3 22 10 20x x x  

 2sin x x  cos 3 1x x 

 3 2 100x x   3 sin xx x e 
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BISECTION AND REGULA FALSI METHODS

Bisection Method

The bisection method is one of the bracketing methods for finding roots of an equation.
For a given a function f(x), guess an interval which might contain a root and perform a
number of iterations, where, in each iteration the interval containing the root is get halved.

The bisection method is based on the intermediate value theorem for continuous
functions.

Intermediate value theorem for
continuous functions: If f is a
continuous function and ( )f a and ( )f b

have opposite signs, then  at least one root
lies in between a and .b If the interval
( , )a b is small enough, it is likely to contain
a single root.

i.e., an interval [a, b] must contain a
zero of a continuous function f if the
product ( ) ( ) 0.f a f b  Geometrically, this
means that if ( ) ( ) 0,f a f b  then the curve
f has to cross the x-axis at some point in

between a and b.

Algorithm : Bisection Method

Suppose we want to find the solution to the equation ( ) 0f x , where f is continuous.

Given a function ( )f x continuous on an interval [a0 , b0] and satisfying 0 0( ) ( ) 0.f a f b 

For n = 0, 1, 2, … until termination do:

Compute 1
( )

2
 n n nx a b .

If ( ) 0nf x , accept xn as a solution and stop.
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Else continue.

If ( ) ( ) 0n nf a f x , a root lies in the interval ( , )n na x .

Set 1 1,  n n n na a b x .

If ( ) ( ) 0,n nf a f x a root lies in the interval ( , )n nx b .

Set 1 1,  n n n na x b b .

Then ( ) 0f x  for some x in 1 1[ , ]n na b  .

Test for termination.

Criterion for termination

A convenient criterion is to compute the percentage error r defined by

100%.
 

 
r r

r
r

x x
x



where rx is the new value of rx . The computations can be terminated when r becomes
less than a prescribed tolerance, say .p In addition, the maximum number of iterations

may also be specified in advance.

Some other termination criteria are as follows:

 Termination after N steps (N given, fixed)

 Termination  if  xn+1  xn    ( > 0 given)

 Termination   if f(xn)  ( >0 given).

In this chapter our criterion for termination is terminate the iteration process after
some finite steps.  However, we note that this is generally not advisable, as the steps may
not be sufficient to get an approximate solution.

Example Solve x3 – 9x+1 = 0 for the root between x = 2 and x = 4, by bisection method.

Given 3( ) 9 1f x x x   . Now (2) 9, (4) 29f f   so that (2) (4) 0f f  and hence a root lies
between 2 and 4.

Set a0 = 2 and b0 = 4.  Then
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0 0

0

( ) 2 4 3
2 2

a b
x

    and 0( ) (3) 1f x f  .

Since (2) (3) 0f f  , a root lies between 2 and 3, hence we set a1 = a0 = 2 and 1 0 3b x  .  Then

1 1
1

( ) 2 3
2.5

2 2

a b
x

 
   and 1( ) (2.5) 5.875f x f  

Since (2) (2.5) 0,f f  a root lies between 2.5 and 3, hence we set 2 1 2.5a x  and 2 1 3b b  .

Then 2 2

2

( ) 2.5 3 2.75
2 2

a b
x

    and 2( ) (2.75) 2.9531.f x f  

The steps are illustrated in the following table.

n nx ( )nf x

0 3 1.0000

1 2.5 5.875

2 2.75 
2.9531

3 2.875 
1.1113

4 2.9375 
0.0901

Example Find a real root of the equation 3( ) 1 0.   f x x x

Since (1)f is negative and (2)f positive, a root lies between 1 and 2 and therefore we take
 0 3/ 2 1.5.x Then

  0
27 3 15( )
8 2 8

f x is positive and  hence (1) (1.5) 0f f  and Hence the root lies between 1

and 1.5 and we obtain

1
1 1.5 1.25

2
 x

1( ) 19 / 64, f x which is negative and hence (1) (1.25) 0f f  and hence a root lies between
1.25 and 1.5. Also,
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2
1.25 1.5 1.375

2
 x

The procedure is repeated and the successive approximations are

3 1.3125,x 4 1.34375,x 5 1.328125,x etc.

Example Find a positive root of the equation 1,xxe which lies between 0 and 1.

Let ( ) 1. xf x xe Since (0) 1 f and (1) 1.718,f it follows that a root lies between 0 and 1.
Thus,

 0
0 1 0.5

2
x .

Since (0.5)f is negative, it follows that a root lies between 0.5 and 1. Hence the new root is
0.75, i.e.,

 1
.5 1 0.75.

2
x

Since 1( )f x is positive, a root lies between 0.5  and 0.75 .  Hence

2

.5 .75
0.625

2
x


 

Since 2( )f x is positive, a root lies between 0.5 and 0.625. Hence

3

.5 .625
0.5625.

2
x


 

We accept 0.5625 as an approximate root.

Merits of bisection method

a) The iteration using bisection method always produces a root, since the method
brackets the root between two values.

b) As iterations are conducted, the length of the interval gets halved.   So one can
guarantee the convergence in case of the solution of the equation.

c) the Bisection Method is simple to program in a computer.
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Demerits of bisection method

a) The convergence of the bisection method is slow as it is simply based on
halving the interval.

b) Bisection method cannot be applied over an interval where there is a
discontinuity.

c) Bisection method cannot be applied over an interval where the function takes
always values of the same sign.

d) The method fails to determine complex roots.

e) If one of the initial guesses 0a or 0b is closer to the exact solution, it will take
larger number of iterations to reach the root.

Exercises

Find a real root of the following equations by bisection method.

1. 3 1 sinx x  2. 3 21.2 4 48x x x   

3. 3xe x 4. 3 4 9 0x x  

5. 3 3 1 0x x   6. 3 cos 1x x 

7. 3 2 1 0x x   8. 2 3 cosx x 

9. 4 3x  10. x3  5x = 6

11. cos x x 12. ,0323  xxx

13. x4 = x + 0.15 near x = 0.

Regula Falsi method   or   Method of False Position

This method is also based on the intermediate value theorem.  In this method also, as
in bisection method, we choose two points an and bn such that ( )nf a and ( )nf b are of
opposite signs (i.e., ( ) ( ) 0)n nf a f b  .   Then, intermediate value theorem suggests that a zero
of f lies in between an and bn, if f is a continuous function.
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Algorithm: Given a function ( )f x continuous on an interval [a0 , b0] and satisfying

0 0( ) ( ) 0.f a f b 

For n = 0, 1, 2, … until termination do:

Compute

( ) ( )

( ) ( )

n n

n n
n

n n

a b

f a f b
x

f b f a



.

If ( ) 0nf x  , accept nx as a solution and stop.

Else continue.

If ( ) ( ) 0,n nf a f x  set 1 1,n n n na a b x   . Else set 1 1,n n n na x b b   .

Then ( ) 0f x  for some x in 1 1[ , ]n na b  .

Example Using regula-falsi method, find a real root of the equation,

3( ) 1 0,f x x x    near x = 1.
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Here note that f(0) = -1 and (0) 1f   .   Hence (0) (1) 0f f  , so by intermediate value
theorem a root lies in between 0 and 1.  We search for that root by regula falsi method and
we will get an approximate root.

Set a0 = 0 and b0 = 1.  Then

   
     

0 0

0 0

0

0 0

0 1
1 1

0.5
1 1

a b

f a f b
x

f b f a


  

 

and 0( ) (0.5) 0.375f x f   .

Since (0) (0.5) 0f f  , a root lies between 0.5 and 1. Set 1 0 0.5a x  and 1 0 1b b  .

Then

   
     

1 1

1 1

1

1 1

0.5 1
0.375 1

0.6364
1 0.375


  

 

a b

f a f b
x

f b f a

and 1( ) (0.6364) 0.1058.f x f  

Since 1(0.6364) ( ) 0f f x  , a root lies between 1x and 1 and hence we  set 2 1 0.6364a x  and

2 1 1.b b  Then

   
     

2 2

2 2

2

2 2

0.6364 1
0.1058 1

0.6712
1 0.1058

a b

f a f b
x

f b f a


  

 

and 2( ) (0.6712) 0.0264f x f  

Since (0.6712) (0.6364) 0,f f  a root lies between 2x and 1, and hence we set 3 2 0.6364a x 

and 3 1 1b b  .

Then
   
     

3 3

3 3

3

3 3

0.6712 1
0.0264 1

0.6796
1 0.0264

a b

f a f b
x

f b f a


  

 

and 3( ) (0.6796) 0.0063 0f x f    .
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Since (0.6796) 0.0000f  we accept 0.6796   as  an (approximate) solution of 013  xx .

Example Given that the equation 2.2 69x  has a root between 5 and 8. Use the method of
regula-falsi to determine it.

Let 2.2( ) 69.f x x  We find

(5) 3450675846 f and (8) 28.00586026. f

  
 1

5 8

(5) (8) 5(28.00586026) 8( 34.50675846)
(8) (5) 28.00586026 34.50675846)

f f
x

f f
 6.655990062 .

Now, 1( ) 4.275625415 f x and therefore, 1(5) ( ) 0f f x  and hence the root lies between
6.655990062 and 8.0. Proceeding similarly,

2 6.83400179,x 3 6.850669653,x

The correct root is 3 6.8523651 , x so that 3x is correct to these significant figures. We
accept 6.850669653 as an approximate root.

Theoretical Exercises with Answers:

1. What is the difference between algebraic and transcendental equations?

Ans: An equation ( ) 0f x  is called an algebraic equation if the corresponding ( )f x

is a polynomial, while, ( ) 0f x is called transcendental equation if the ( )f x

contains trigonometric, or exponential or logarithmic functions.

2. Why we are using numerical iterative methods for solving equations?

Ans: As analytic solutions are often either too tiresome or simply do not exist, we
need to find an approximate method of solution. This is where numerical analysis
comes into the picture.

3. Based on which principle, the bisection and regula-falsi method is developed?

Ans: These methods are based on the intermediate value theorem for continuous
functions: stated as , “If f is a continuous function and ( )f a and ( )f b have
opposite signs, then  at least one root  lies in between a and .b If the interval ( , )a b

is small enough, it is likely to contain a single root. ”

4. What are the advantages and disadvantages of the bracketing methods like bisection
and regula-falsi?
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Ans:  (i) The bisection and regula-falsi method is always convergent.  Since the
method brackets the root, the method is guaranteed to converge. The main
disadvantage is, if it is not possible to bracket the roots, the methods cannot
applicable.  For example, if ( )f x is such that it always takes the values with same
sign, say, always positive or always negative, then we cannot work with bisection
method.   Some examples of such functions are

 2( )f x x which take only non-negative values and

 2( )f x x  , which take only non-positive values.

Exercises

Find a real root of the following equations by false position method:

1. 3 5 6x x  2. 4 xx e

3. 10log 1.2x x  4. tan tanh 0x x 

5. sinxe x  6. 3 5 7 0x x  

7. 3 22 10 20 0x x x    8. 102 log 7x x 

9. cosxxe x 10. 3 5 1 0x x  

11. 3xe x 12. 2 log 12ex x 

13. 3 cos 1x x  14. 2 3sin 5x x 

15. 2 cos 3x x  16. 3xxe 

17. cos x x 18. 3 5 3 0x x  

Ramanujan’s Method

We need the following Theorem:

Binomial Theorem: If n is any rational number and 1x  , then

  2 ( 1) . . . ( ( 1))( 1)
1 1 . . . . . .

1 1 2 1 2 . . .
n rn n n rn nnx x x x

r
  

      
   
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In particular,

   1 2 31 1 . . . 1 . . .
n nx x x x x

        

and   1 2 31 1 . . . . . .nx x x x x
       

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation

( ) 0,f x 

where ( )f x is of the form

2 2 4
1 2 3 4( ) 1 ( ).f x a x a x a x a x     

For smaller values of x, we can write

         2 3 4 1 2
1 2 3 4 1 2 3[1 ( )]a x a x a x a x b b x b x

Expanding the left-hand side using binomial theorem , we obtain

2 3 2 3 2
1 2 3 1 2 31 ( ) ( )a x a x a x a x a x a x          

2
1 2 3b b x b x   

Comparing the coefficients of like powers of x on both sides of we obtain

1

2 1 1 1

2
3 1 2 1 2 2 1

1 1 2 2 1 1

1,

,

,

2,3,n n n n

b

b a a b

b a a a b a b

b a b a b a b n  

 
  

    


     



 

Then 1/n nb b approach a root of the equation ( ) 0f x  .

Example Find the smallest root of the equation

3 2( ) 6 11 6 0.f x x x x    

Solution

The given equation can be written as ( )f x

   2 31( ) 1 (11 6 )
6

f x x x x
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Comparing,

1
11,
6

a  2 1,a   3
1 ,
6

a  4 5 0a a  

To apply Ramanujan’s method we write

12 3
2

1 2 3
11 61

6
x x x b b x b x


       
 



Hence,

1 1;b 

2 1
11;
6

b a 

3 1 2 2 1
121 851 ;
36 36

b a b a b    

4 1 3 2 2 3 1
575;
216

b a b a b a b   

5 1 4 2 3 3 2 4 1
3661;
1296

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
22631;
7776

b a b a b a b a b a b     

Therefore,

1

2

6 0.54545
11

b
b
  ; 2

3

66 0.7764705
85

b
b
 

3

4

102 0.8869565
115

b
b
  ; 4

5

3450 0.9423654
3661

b
b
 

5

6

3138 0.9706155
3233

b
b
 

By inspection, a root of the given equation is unity and it can be seen that the successive

convergents
1

n

n

b

b 
approach this root.

Example Find a root of the equation 1.xxe 

Let 1xxe 
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Recall
2 3

1
2! 3!

x x x
e x    

Hence,

3 4 5
2( ) 1 0

2 6 24
x x xf x x x

         
 



1 1,a  2 1,a  3
1 ,
2

a  4
1 ,
6

a  5
1 ,
24

a  

We then have

1 1;b 

2 2 1;b a 

3 1 2 2 1 1 1 2;b a b a b    

4 1 3 2 2 3 1
1 72 1 ;
2 2

b a b a b a b      

5 1 4 2 3 3 2 4 1
7 1 1 372 ;
2 2 6 6

b a b a b a b a b        

6 1 5 2 4 3 3 4 2 5 1
37 7 1 1 261; 1 ;
6 2 6 24 24

b a b a b a b a b a b          

Therefore,

2

3

1 0.5
2

b
b
  ; 3

4

4 0.5714
7

b
b
  ;

4

5

21 0.56756756
37

b
b
  ; 5

6

148 0.56704980
261

b
b
  .

Example Using Ramanujan’s method, find a real root of the equation

2 3 4

2 2 2
1 0.

(2!) (3!) (4!)
x x xx     

Solution

Let
2 3 4

2 2 2
( ) 1 0.

(2!) (3!) (4!)
x x xf x x

 
       

 


Here

1 1,a  2 2
1 ,

(2!)
a   3 2

1 ,
(3!)

a  4 2
1 ,

(4!)
a  
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5 2
1 ,

(5!)
a  6 2

1 ,
(6!)

a   

Writing

1
2 3 4

2
1 2 32 2

1
(2!) (3!) (4!)
x x xx b b x b x


             
   

  ,

we obtain

1 1,b 

2 1 1,b a 

3 1 2 2 1 2
1 31 ;

4(2!)
b a b a b    

4 1 3 2 2 3 1 2 2
3 1 1 3 1 1
4 4 4 36(2!) (3!)

b a b a b a b         19 ,
36


5 1 4 2 3 3 2 4 1b a b a b a b a b   

19 1 3 1 1 2111 .
36 4 4 36 576 576
      

It follows

1

2

1;
b
b
 2

3

4 1.333 ;
3

b
b
  

3

4

3 36 27 1.4210 ,
4 19 19

b
b
     4

5

19 576 1.4408 ,
36 211

b
b
   

where the last result is correct to three significant figures.

Example Find a root of the equation sin 1 .x x 

Using the expansion of sin ,x the given equation may be written as

3 5 7

( ) 1 0.
3! 5! 7!
x x xf x x x

         
 



Here
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1 2,a  2 0,a  3
1 ,
6

a  4 0,a 

5
1 ,

120
a  6 0,a  7

1 ,
5040

a   

we write

1
3 5 7

2
1 2 31 2

6 120 5040
x x xx b b x b x


            
  

 

We then obtain

1 1;b 

2 1 2;b a 

3 1 2 2 1 4;b a b a b  

4 1 3 2 2 3 1
1 478 ;
6 6

b a b a b a b     

5 1 4 2 3 3 2 4 1
46 ;
3

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
3601;
120

b a b a b a b a b a b     

Therefore,

1

2

1 ;
2

b
b
 2

3

1 ;
2

b
b


3

4

24 0.5106382
27

b
b
  4

5

47 0.5108695
92

b
b
 

5

6

1840 0.5109691
3601

b
b
  .

The root, correct to four decimal places is 0.5110

Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
2 3 4

2 2 2
1 0

(2!) (3!) (4!)

x x x
x     

2. Using Ramanujan’s method, find the real root of the equation 3 1.x x 
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3

NEWTON RAPHSON ETC..

The Newton-Raphson method, or Newton Method, is a powerful technique for solving
equations numerically. Like so much of the differential calculus, it is based on the simple
idea of linear approximation.

Newton – Raphson Method

Consider ( ) 0f x  , where f has  continuous
derivative f  .  From the figure we can say that at

, ( ) 0x a y f a   ; which means that a is a
solution to the equation ( ) 0f x  . In order to find
the value of a, we start with any arbitrary point
x0 .  From figure we can see that, the tangent to
the curve f at 0 0( , ( ))x f x (with slope 0( )f x )
touches the x-axis at x1.

Now,
10

10
0

)()(
)(tan

xx

xfxf
xf




 ,

As 1( ) 0,f x  the above simplifies to

)(

)(

0

0
01 xf

xf
xx




In the second step, we compute

)(

)(

1

1
12 xf

xf
xx


 ,

in the third step we compute

)(

)(

2

2
23 xf

xf
xx




and so on.    More generally, we write 1nx  in terms of , ( )n nx f x and ( )nf x for 1, 2,n  

by means of the Newton-Raphson formula

1

( )

( )
  

n

n n
n

f x
x x

f x
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NEWTON RAPHSON ETC..

The Newton-Raphson method, or Newton Method, is a powerful technique for solving
equations numerically. Like so much of the differential calculus, it is based on the simple
idea of linear approximation.
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Now,
10
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0
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)(tan

xx

xfxf
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

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As 1( ) 0,f x  the above simplifies to

)(

)(

0

0
01 xf

xf
xx




In the second step, we compute

)(

)(

1

1
12 xf

xf
xx


 ,

in the third step we compute

)(

)(

2

2
23 xf

xf
xx




and so on.    More generally, we write 1nx  in terms of , ( )n nx f x and ( )nf x for 1, 2,n  

by means of the Newton-Raphson formula

1

( )

( )
  

n

n n
n

f x
x x

f x
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NEWTON RAPHSON ETC..

The Newton-Raphson method, or Newton Method, is a powerful technique for solving
equations numerically. Like so much of the differential calculus, it is based on the simple
idea of linear approximation.

Newton – Raphson Method

Consider ( ) 0f x  , where f has  continuous
derivative f  .  From the figure we can say that at

, ( ) 0x a y f a   ; which means that a is a
solution to the equation ( ) 0f x  . In order to find
the value of a, we start with any arbitrary point
x0 .  From figure we can see that, the tangent to
the curve f at 0 0( , ( ))x f x (with slope 0( )f x )
touches the x-axis at x1.

Now,
10

10
0

)()(
)(tan

xx

xfxf
xf




 ,

As 1( ) 0,f x  the above simplifies to

)(

)(

0

0
01 xf

xf
xx




In the second step, we compute

)(

)(

1

1
12 xf

xf
xx


 ,

in the third step we compute

)(

)(

2

2
23 xf

xf
xx




and so on.    More generally, we write 1nx  in terms of , ( )n nx f x and ( )nf x for 1, 2,n  

by means of the Newton-Raphson formula

1

( )

( )
  

n

n n
n

f x
x x

f x
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The refinement on the value of the root
n

x is terminated by any of the following conditions.

(i) Termination after a pre-fixed number of steps

(ii) After n iterations where,  
1

0
nn

x x for a given

    , or

(iii) After n iterations, where  ( ) 0
n

f x for a given    .

Termination after a fixed number of steps is not advisable, because a fine approximation cannot be
ensured by a fixed number of steps.

Algorithm: The steps of the Newton-Raphson method to find the root of an equation   0xf are

1. Evaluate  xf 

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as

 
 i

i
ii xf

xf
 = xx


1

3. Find the absolute relative approximate error a as

010
1

1 







i

ii
a x

 xx
 =

4. Compare the absolute relative approximate error with the pre-specified relative error

tolerance, s .  If a > s then go to Step 2, else stop the algorithm.  Also, check if the

number of iterations has exceeded the maximum number of iterations allowed.  If so, one
needs to terminate the algorithm and notify the user.

The method can be used for both algebraic and transcendental equations, and it also works
when coefficients or roots are complex.  It should be noted, however, that in the case of an
algebraic equation with real coefficients, a complex root cannot be reached with a real starting
value.

Example Set up a Newton iteration for computing the square root of a given positive
number.  Using the same find the square root of 2 exact to six decimal places.

Let c be a given positive number and let x be its positive square root, so that cx  .  Then
cx 2 or
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2
( ) 0f x x c  

xxf 2)( 

Using the Newton’s iteration formula we have

2

1 2
n

n n
n

x c
x x

x


 

or
1 2 2

n

n
n

x cx
x

 

or
1

1 , 0.1, 2,
2n n

n

cx x n
x

 
    
 

 ,

Now to find the square root of 2, let c = 2, so that

1

1 2 , 0, 1, 2,
2n n

n

x x n
x

 
    
 



Choose 0 1x  . Then

x1 = 1.500000, x2 = 1.416667, x3 = 1.414216, x4 = 1.414214, …

and accept 1.414214 as the square root of 2 exact to 6D.

Historical Note: Heron of Alexandria (60 CE?) used a pre-algebra version of the above

recurrence. It is still at the heart of computer algorithms for finding square roots.

Example. Let us find an approximation to 5 to ten decimal places.

Note that 5 is an irrational number. Therefore the sequence of decimals which defines
5 will not stop. Clearly 5 is the only zero of f(x) = x2 - 5 on the interval [1, 3]. See the

Picture.
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Let ( )nx be the successive approximations obtained through Newton's method. We have

Let us start this process by taking x1 = 2.

Example. Let us approximate the only solution to the equation cosx x

In fact, looking at the graphs we can see that this equation has one solution.
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Let ( )nx be the successive approximations obtained through Newton's method. We have

Let us start this process by taking x1 = 2.

Example. Let us approximate the only solution to the equation cosx x

In fact, looking at the graphs we can see that this equation has one solution.
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Let ( )nx be the successive approximations obtained through Newton's method. We have

Let us start this process by taking x1 = 2.

Example. Let us approximate the only solution to the equation cosx x

In fact, looking at the graphs we can see that this equation has one solution.
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This solution is also the only zero of the function ( ) cosf x x x  . So now we see how
Newton's method may be used to approximate r. Since r is between 0 and / 2 , we
set x1 = 1. The rest of the sequence is generated through the formula

We have

Example Apply Newton’s method to solve the algebraic equation 013)(  xxxf

correct to 6 decimal places. (Start with x0=1)

3
( ) 1f x x x   ,

2
( ) 3 1f x x  

and substituting these in Newton’s iterative formula, we have

3

21

1

3 1
n n

n n

n

x x
x x

x

 
 


or

3

21

2 1

3 1
n

n

n

x
x

x





, n= 0,1,2,….

Starting from x0=1.000 000,

1 20.750000, 0.686047,x x  3 40.682340, 0.682328,x x   and we accept 0.682328 as an

approximate solution of 3( ) 1 0f x x x    correct to 6 decimal places.

Example Set up Newton-Raphson iterative formula for the equation

10
log 1.2 0. x x

Solution

Take
10

( ) log 1.2. f x x x
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n n

n n

n
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n

n

n
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3 1
n n

n n

n
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x x
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 
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3
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3 1
n

n

n

x
x
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

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10
log 1.2 0. x x
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Take
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Noting that
10 10

log log log log0.4343 ,
e e

x x e x  

we obtain ( ) log0.4343 1.2.
e

f x x x 

10
( ) log log10.4343 0.4343 0.4343

e
f x x x x

x
     

and hence the Newton’s iterative formula for the given equation is

1
10

log

log

( ) 0.4343 1.2

( ) 0.4343
n e n

n n n
n

f x x x
x x x

f x x


    

.

Example Find the positive solution of the transcendental equation

xx sin2 .

Here xxxf sin2)(  ,

so that xxf cos21)( 

Substituting in Newton’s iterative formula, we have

1

2sin

1 2cos
n n

n n
n

x x
x x

x


 

 , 0.1, 2,n   or

1

2(sin cos )

1 2cos
n n n n

n
n n

x x x N
x

x D


 

 , 0.1, 2,n  

where we take 2(sin cos )
n n n n

N x x x  and 1 2cos
n n

D x  , to easy our calculation.  Values

calculated at each step are indicated in the following table  (Starting with 0 2x  ).

n xn Nn Dn xn+1

0 2.000 3.483 1.832 1.901

1 1.901 3.125 1.648 1.896

2 1.896 3.107 1.639 1.896

1.896 is an approximate solution to xx sin2 .

Example Use Newton-Raphson method to find a root of the equation 3 2 5 0.  x x

Here 3( ) 2 5  f x x x and 2( ) 3 2.  f x x Hence Newton’s iterative formula becomes
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3`

1 2

2 5

3 2
 

 


n n
n n

n

x x
x x

x

Choosing 0 2,x we obtain 0( ) 1 f x and 0( ) 10. f x

 1
12 2.1

10
   x

3
1( ) (2.1) 2(2.1) 5 0.06,f x    

and 2
1( ) 3(2.1) 2 11.23.f x   

2
0.0612.1 2.094568.
11.23

x   

2.094568 is an approximate root.

Example Find a root of the equation sin cos 0.x x x 

We have

( ) sin cosf x x x x  and ( ) cos .f x x x 

Hence the iteration formula is

1

sin cos
cos

n n n
n n

n n

x x x
x x

x x


 

With 0 ,x  the successive iterates are given below:

1( )

0 3.1416 1.0 2.8233

1 2.8233 0.0662 2.7986

2 2.7986 0.0006 2.7984

3 2.7984 0.0 2.7984

n n nn x f x x 




Example Find a real root of the equation ,xx e using the Newton – Raphson method.

( ) 1 0xf x xe  

Let 0 1.x  Then

 1
1 1 11 1 0.6839397

2 2
ex

e e
    
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Now 1( ) 0.3553424,f x  and 1( ) 3.337012,f x 

2
0.35534240.6839397 0.5774545.
3.337012

x   

3 0.5672297x  and 4 0.5671433.x 

Example f(x) = x−2+lnx has a root near x = 1.5. Use the Newton-Raphson formula to
obtain a better estimate.

Here x0 = 1.5, f(1.5)= −0.5 + ln(1.5)= −0.0945

1

( 0.0945)1 5( ) 1 ; (1.5) ; 1.5 1.5567
3 1.6667

f x f x
x

      

The Newton-Raphson formula can be used again: this time beginning with 1.5567 as our
initial

2

( 0.0007)
1.5567 1.5571

1.6424
x

  

This is in fact the correct value of the root to 4 d.p.

Generalized Newton’s Method

If  is a root of ( ) 0f x  with multiplicity p, then the generalized Newton’s formula is

1

( )
,

( )
n

n n
n

f x
x x p

f x   

Since  is a root of ( ) 0f x  with multiplicity p, it follows that  is a root of ( ) 0f x 

with multiplicity ( 1),p  of ( ) 0f x  with multiplicity ( 2),p  and so on. Hence the
expressions

0 0 0
0 0 0

0 0 0

( ) ( ) ( )
, ( 1) , ( 2)

( ) ( ) ( )
f x f x f x

x p x p x p
f x f x f x

 
      

must  have the same value if there is a root with multiplicity p, provided that the initial
approximation 0x is chosen sufficiently close to the root.

Example Find a double root of the equation

3 2( ) 1 0.f x x x x    

Here 2( ) 3 2 1,f x x x    and ( ) 6 2.f x x   With 0 0.8,x  we obtain
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0
0

0

( ) 0.0722 0.8 2 1.012,
( ) (0.68)

f x
x

f x
    

and

0
0

0

( ) (0.68)0.8 1.043,
( ) 2.8

f x
x

f x

    

The closeness of these values indicates that there is a doublel root near to unity. For the
next approximation, we choose 1 1.01x  and obtain

1
1

1

( )
2 1.01 0.0099 1.0001,

( )
f x

x
f x

   

and 1
1

1

( )
1.01 0.0099 1.0001,

( )
f x

x
f x


   

Hence we conclude that there is a double root at 1.0001x  which is sufficiently close to the
actual root unity.

On the other hand, if we apply Newton-Raphson method with 0 0.8,x  we obtain

1 0.8 0.106 0.91,x    and 2 0.91 0.046 0.96.x   

Exercises

1. Approximate the real root to two four decimal places of 3 5 3 0x x  

2. Approximate to four decimal places 3 3

3. Find a positive root of the equation 4 2 1 0x x   correct to 4 places of decimals.
(Choose x0 = 1.3)

4. Explain how to determine the square root of a real number by N R method and
using it determine 3 correct to three decimal places.

5. Find the value of 2 correct to four decimals places using Newton Raphson method.

6. Use the Newton-Raphson method, with 3 as starting point, to find a fraction that is
within 810 of 10 .

7. Design Newton iteration for the cube root.  Calculate 3 7 , starting from x0 = 2 and
performing 3 steps.

8. Calculate 7 by Newton’s iteration, starting from x0 = 2 and calculating x1, x2, x3.
Compare the results with the value 645751.27 

80

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


9. Design a Newton’s iteration for computing kth root of a positive number c.

10. Find all real solutions of the following equations by Newton’s iteration method.

(a) sin x = .
2

x (b) ln x = 1 – 2x (c) cos x x

11. Using Newton-Raphson method, find the root of the equation ,0323  xxx

correct to three decimal places

12. Apply Newton’s method to the equation

3
5 3 0x x  

starting from the given
0

2x  and performing 3 steps.

13. Apply Newton’s method to the equation

4 3
2 34 0x x x   

starting from the given
0

3x  and performing 3 steps.

14. Apply Newton’s method to the equation

3 2
3.9 4.79 1.881 0x x x   

starting from the given
0

1x  and performing 3 steps.

Ramanujan’s Method

We need the following Theorem:

Binomial Theorem: If n is any rational number and 1x  , then

  2 ( 1) . . . ( ( 1))( 1)
1 1 . . . . . .

1 1 2 1 2 . . .
n rn n n rn nnx x x x

r
  

      
   

In particular,

   1 2 31 1 . . . 1 . . .
n nx x x x x

        

and   1 2 31 1 . . . . . .nx x x x x
       

Indian Mathematician Srinivasa Ramanujan (1887-1920) described an iterative method
which can be used to determine the smallest root of the equation
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( ) 0,f x 

where ( )f x is of the form

2 2 4
1 2 3 4( ) 1 ( ).f x a x a x a x a x     

For smaller values of x, we can write

         2 3 4 1 2
1 2 3 4 1 2 3[1 ( )]a x a x a x a x b b x b x

Expanding the left-hand side using binomial theorem , we obtain

2 3 2 3 2
1 2 3 1 2 31 ( ) ( )a x a x a x a x a x a x          

2
1 2 3b b x b x   

Comparing the coefficients of like powers of x on both sides of we obtain

1

2 1 1 1

2
3 1 2 1 2 2 1

1 1 2 2 1 1

1,

,

,

2,3,n n n n

b

b a a b

b a a a b a b

b a b a b a b n  

 
  

    


     



 

Then 1/n nb b approach a root of the equation ( ) 0f x  .

Example Find the smallest root of the equation

3 2( ) 6 11 6 0.f x x x x    

Solution

The given equation can be written as ( )f x

   2 31( ) 1 (11 6 )
6

f x x x x

Comparing,

1
11,
6

a  2 1,a   3
1 ,
6

a  4 5 0a a  

To apply Ramanujan’s method we write

12 3
2

1 2 3
11 61

6
x x x b b x b x


       
 



82

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Hence,

1 1;b 

2 1
11;
6

b a 

3 1 2 2 1
121 851 ;
36 36

b a b a b    

4 1 3 2 2 3 1
575;
216

b a b a b a b   

5 1 4 2 3 3 2 4 1
3661;
1296

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
22631;
7776

b a b a b a b a b a b     

Therefore,

1

2

6 0.54545
11

b
b
  ; 2

3

66 0.7764705
85

b
b
 

3

4

102 0.8869565
115

b
b
  ; 4

5

3450 0.9423654
3661

b
b
 

5

6

3138 0.9706155
3233

b
b
 

By inspection, a root of the given equation is unity and it can be seen that the successive

convergents
1

n

n

b

b 
approach this root.

Example Find a root of the equation 1.xxe 

Let 1xxe 

Recall
2 3

1
2! 3!

x x x
e x    

Hence,

3 4 5
2( ) 1 0

2 6 24
x x xf x x x

         
 



1 1,a  2 1,a  3
1 ,
2

a  4
1 ,
6

a  5
1 ,
24

a  
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We then have

1 1;b 

2 2 1;b a 

3 1 2 2 1 1 1 2;b a b a b    

4 1 3 2 2 3 1
1 72 1 ;
2 2

b a b a b a b      

5 1 4 2 3 3 2 4 1
7 1 1 372 ;
2 2 6 6

b a b a b a b a b        

6 1 5 2 4 3 3 4 2 5 1
37 7 1 1 261; 1 ;
6 2 6 24 24

b a b a b a b a b a b          

Therefore,

2

3

1 0.5
2

b
b
  ; 3

4

4 0.5714
7

b
b
  ;

4

5

21 0.56756756
37

b
b
  ; 5

6

148 0.56704980
261

b
b
  .

Example Using Ramanujan’s method, find a real root of the equation

2 3 4

2 2 2
1 0.

(2!) (3!) (4!)
x x xx     

Solution

Let
2 3 4

2 2 2
( ) 1 0.

(2!) (3!) (4!)
x x xf x x

 
       
 



Here

1 1,a  2 2
1 ,

(2!)
a   3 2

1 ,
(3!)

a  4 2
1 ,

(4!)
a  

5 2
1 ,

(5!)
a  6 2

1 ,
(6!)

a  

Writing
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1
2 3 4

2
1 2 32 2

1
(2!) (3!) (4!)
x x xx b b x b x


             
   

 ,

we obtain

1 1,b 

2 1 1,b a 

3 1 2 2 1 2
1 31 ;

4(2!)
b a b a b    

4 1 3 2 2 3 1 2 2
3 1 1 3 1 1
4 4 4 36(2!) (3!)

b a b a b a b         19 ,
36


5 1 4 2 3 3 2 4 1b ab a b a b a b   

19 1 3 1 1 2111 .
36 4 4 36 576 576
      

It follows

1

2

1;
b
b
 2

3

4 1.333 ;
3

b
b
  

3

4

3 36 27 1.4210 ,
4 19 19

b
b
     4

5

19 576 1.4408 ,
36 211

b
b
   

where the last result is correct to three significant figures.

Example Find a root of the equation sin 1 .x x 

Using the expansion of sin ,x the given equation may be written as

3 5 7

( ) 1 0.
3! 5! 7!
x x xf x x x

         
 



Here

1 2,a  2 0,a  3
1 ,
6

a  4 0,a 

5
1 ,

120
a  6 0,a  7

1 ,
5040

a   

we write
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1
3 5 7

2
1 2 31 2

6 120 5040
x x xx b b x b x


            
  

 

We then obtain

1 1;b 

2 1 2;b a 

3 1 2 2 1 4;b a b a b  

4 1 3 2 2 3 1
1 478 ;
6 6

b a b a b a b     

5 1 4 2 3 3 2 4 1
46 ;
3

b a b a b a b a b    

6 1 5 2 4 3 3 4 2 5 1
3601;
120

b a b a b a b a b a b     

Therefore,

1

2

1 ;
2

b
b
 2

3

1 ;
2

b
b


3

4

24 0.5106382
27

b
b
  4

5

47 0.5108695
92

b
b
 

5

6

1840 0.5109691
3601

b
b
  .

The root, correct to four decimal places is 0.5110

Exercises

1. Using Ramanujan’s method, obtain the first-eight convergents of the equation
2 3 4

2 2 2
1 0

(2!) (3!) (4!)

x x x
x     

2. Using Ramanujan’s method, find the real root of the equation 3 1.x x 

The Secant Method

We have seen that the Newton-Raphson method requires the evaluation of derivatives of
the function and this is not always possible, particularly in the case of functions arising in
practical problems. In the secant method, the derivative at nx is approximated by the
formula
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



 


1

1

( ) ( )
( ) ,n n

n
n n

f x f x
f x

x x

which can  be written as

1

1

,



 


n n
n

n n

f f
f

x x

where  ( ).n nf f x Hence, the Newton-Raphson formula becomes

  


 

 
  

 
1 1 1

1
1 1

(
.n n n n n n n

n n
n n n n

f x x x f x f
x x

f f f f

It should be noted that this formula requires two initial approximations to the root.

Example Find a real root of the equation 3 2 5 0x x   using secant method.

Let the two initial approximations be given by  1 2x and 0 3.x

We have

1 1( ) 8 9 1,f x f      and 0 0( ) 27 11 16.f x f   

1
2(16) 3( 1) 35 2.058823529.

17 17
x

   

Also,

1 1( ) 0.390799923.f x f  

0 1 1 0
2

1 0

3( 0.390799923) 2.058823529(16) 2.08126366.
16.390799923

x f x f
x

f f
    
 

Again

2 2( ) 0.147204057.f x f  

3 2.094824145.x 

Example: Find a real root of the equation 0xx e  using secant method.

Solution

The graph of ( ) xf x x e  is as shown here.
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Let us assume the initial approximation to the roots as 1 and 2.  That is consider 1 1x 

and 0 2x 

1
1 1( ) 1 1 0.367879441=0.632120559f x f e      and

2
0 0( ) 2 2 0.135335283=1.864664717.f x f e    

Step 1: Putting  0n , we obtain 1 0 0 1
1

0 1

x f x f
x

f f
 








Here, 1
1(1.864664717) 2(0.632120559) 0.600423599 0.487142.

1.864664717 0.632120559 1.232544158
x

  


Also,

0.487142
1 1( ) 0.487142 -0.12724.f x f e   

Step 2:  Putting 1n , we obtain

0 1 1 0
2

1 0

2(-0.12724) 0.487142(1.864664717) -1.16284 0.58378
-0.12724 1.864664717 -1.99190

x f x f
x

f f
    
 

Again

0.58378
2 2( ) 0.58378 0.02599.f x f e   

Step 3: Setting  2n ,

 
1 2 2 1

3
2 1

0.487142(0.02599) 0.58378(-0.12724) 0.08694 0.56738
0.153230.02599 -0.12724

x f x f
x

f f
    
 

0.56738
3 3( ) 0.56738 0.00037.f x f e   

Step 4: Setting 3n  in (*),
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2 3 3 2
4

3 2

0.58378(0.00037) 0.56738(0.02599) -0.01453 0.5671
0.00037 0.02599 -0.02562

x f x f
x

f f
    
 

Approximating to three digits, the root can be considered as 0.567.

Exercises

1. Determine the real root of the equation 1xxe  using the secant method. Compare
your result with the true value of 0.567143x   .

2. Use the secant method to determine the root, lying between 5 and 8, of the equation
2.2 69.x 

Objective Type Questions

(a) The Newton-Raphson method formula for finding the square root of a real
number C from the equation 2 0x C  is,

(i) 1 2
n

n

x
x   (ii) 1

3

2
n

n

x
x   (iii) 1

1

2n n
n

C
x x

x

 
  
 

(iv)  None of these

(b) The next iterative value of the root of 22 3 0x   using the Newton-Raphson
method, if the initial guess is 2, is

(i) 1.275      (ii)   1.375     (iii)    1.475 (iv) None of these

(c) The next iterative value of the root of 22 3 0x   using the secant method, if the
initial guesses are 2 and 3, is

(i) 1    (ii)   1.25     (iii)    1.5 (iv)  None of these

(d) In secant method,

(i) 1 1
1

1

n n n n
n

n n

x f x f
x

f f
 








(ii) 1 1

1
1

n n n n
n

n n

x f x f
x

f f
 








(iii) 1 1

1
1

n n n n
n

n n

x f x f
x

f f
 









(iv)  None of these

Answers

(a) (iii) 1

1

2n n
n

C
x x

x

 
  
 

(b)  (ii)   1.375

(c)  (iii)   1.5
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(d)  (i) 1 1
1

1

n n n n
n

n n

x f x f
x

f f
 









Theoretical Questions with Answers:

1. What is the difference between bracketing and open method?

Ans: For finding roots of a nonlinear equation 0)( xf , bracketing method requires
two guesses which contain the exact root. But in open method initial guess of the
root is needed without any condition of bracketing for starting the iterative process
to find the solution of an equation.

2. When the Generalized Newton’s methods for solving equations is helpful?

Ans: To solve the  find the oot of ( ) 0f x  with multiplicity p, the generalized
Newton’s formula is required.

3. What is the importance of Secant method over Newton-Raphson method?

Ans: Newton-Raphson method requires the evaluation of derivatives of the
function and this is not always possible, particularly in the case of functions arising
in practical problems. In such situations Secant method helps to solve the equation
with an approximation to the derivative.

************
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FINITE DIFFERENCES OPERATORS

For a function y=f(x), it is given that 0 1, ,..., ny y y are the values of the variable y
corresponding to the equidistant arguments, 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        .  In this case, even though Lagrange and
divided difference interpolation polynomials can be used for interpolation, some simpler
interpolation formulas can be derived.  For this, we have to be familiar with some finite
difference operators and finite differences, which were introduced by Sir Isaac Newton.
Finite differences deal with the changes that take place in the value of a function f(x) due
to finite changes in x. Finite difference operators include, forward difference operator,
backward difference operator, shift operator, central difference operator and mean
operator.

 Forward difference operator ( ) :

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1 2, , ,..., nx x x x ,
where 1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the forward difference operator  is
defined on the function f(x) as,

         1i i i i if x f x h f x f x f x     

That is,

1i i iy y y  

Then,  in particular

         0 0 0 1 0

0 1 0

f x f x h f x f x f x

y y y

     

   

         1 1 1 2 1

1 2 1

f x f x h f x f x f x

y y y

     

   

etc.,

0 1, ,..., ,...iy y y   are known as the first forward differences.

The second forward differences are defined as,
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       
   
       
     

2

2 1

2

2 2

2

i i i i

i i

i i i i

i i i

i i i

f x f x f x h f x

f x h f x

f x h f x h f x h f x

f x h f x h f x

y y y 

             
    

         
    

  

In particular,

 2 2
0 2 1 0 0 2 1 02 2f x y y y or y y y y       

The third forward differences are,

3 2

2 2

3 33 2 1

f x f xi i

f x h f x h f xi i i

y y y yii i i

              

      
       
      

   

    

     

In particular,

 3 3
0 3 2 1 0 0 3 2 1 03 3 3 3f x y y y y or y y y y y         

In general the nth forward difference,

     1 1n n n
i i if x f x h f x      

The differences 2 3
0 0 0, , ....y y y   are called the leading differences.

Forward differences can be written in a tabular form as follows:

x y y 2 y 3 y

0x

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

0 1 0y y y  

1 2 1y y y  

2 3 2y y y  

2
0 1 0y y y   

2
1 2 1y y y   

3 2 2
0 1 0y y y   

92

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Example Construct the forward difference table for the following x values and its
corresponding f values.

x 0.1 0.3 0.5 0.7 0.9 1.1 1.3

f 0.003 0.067 0.148 0.248 0.370 0.518 0.697

x f f 2f 3f 4f 5f

0.1 0.003
0.064

0.081

0.100

0.122

0.148

0.179

0.3 0.067 0.017
0.002

0.003

0.004

0.005

0.5 0.148 0.019 0.001
0.000

0.000
0.7 0.248 0.022 0.001

0.9 0.370 0.026 0.001

1.1 0.518 0.031

1.3 0.697

Example Construct the forward difference table, where
x

xf
1

)(  , x = 1(0.2)2, 4D.

x x
xf

1
)( 

f

first
differe

nce

2f

second
differe

nce

3f 4f 5f

1.0 1.000
-0.1667

-0.1190

-0.0893

-0.0694

-0.0556

1.2 0.8333 0.0477
-0.0180

-0.0098

-0.0061

1.4 0.7143 0.0297 0.0082 -0.0045

1.6 0.6250 0.0199 0.0037

1.8 0.5556 0.0138

2.0 0.5000
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Example Construct the forward difference table for the data

: 2 0 2 4

( ) : 4 9 17 22

x

y f x




The forward difference table is as follows:

x y=f(x) y 2 y 3 y

-2

0

2

4

4

9

17

22

0y =5

1y =8

2y =5

2
0y =3

2
1y =-3

3
0y =-6

Properties of Forward difference operator ( ):

(i) Forward difference of a constant function is zero.

Proof:     Consider the constant function ( )f x k

Then, ( ) ( ) ( ) 0f x f x h f x k k      

(ii) For the functions ( ) ( )f x and g x ;  ( ) ( ) ( ) ( )f x g x f x g x     

Proof:   By definition,

   

 

( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

f x g x f g x

f g x h f g x

f x h g x h f x g x

f x h f x g x h g x

f x g x

    

    

     

     
   

(iii)Proceeding as in (ii), for the constants a and b,

 ( ) ( ) ( ) ( )af x bg x a f x b g x      .

(iv)Forward difference of the product of two functions is given by,

 ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x g x f x     
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Proof:

   ( ) ( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

f x g x fg x

fg x h fg x

f x h g x h f x g x

  

  
   

Adding and subtracting ( ) ( )f x h g x , the above gives

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g x f x h g x h f x h g x f x h g x f x g x        

   ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f x h g x h g x g x f x h f x

f x h g x g x f x

      

    

Note : Adding and subtracting ( ) ( )g x h f x instead of ( ) ( )f x h g x , it can also be
proved that

 ( ) ( ) ( ) ( ) ( ) ( )f x g x g x h f x f x g x     

(v) Forward difference of the quotient of two functions is given by

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

f x g x f x f x g x
g x g x h g x

       

Proof:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

f x f x h f x
g x g x h g x

f x h g x f x g x h
g x h g x

f x h g x f x g x f x g x f x g x h
g x h g x

      
  


    



   ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

g x f x h f x f x g x h g x

g x h g x

    




( ) ( ) ( ) ( )
( ) ( )

g x f x f x g x
g x h g x
  


Following are some results on forward differences:

Result 1:  The nth forward difference of a polynomial of degree n is constant when the
values of the independent variable are at equal intervals.
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Result 2: If n is an integer,
2

1 2( ) ( ) ( ) ( ) ( )n n nf a nh f a C f a C f a f a        

for the polynomial f(x) in x.

Forward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f0

f1

f2

f3

f4

f5

x1 f1 2f0
3f0

3f1

3f2

3f3

x2 f2 2f2 4f0
5f0

5f1
x3 f3 2f2 4f1 6f0

x4 f4 2f3 4f2

x5 f5 2f4

x6 f6

Example Express 0
2 f and 0

3 f in terms of the values of the function f.

  01220112010
2 ffffffffff 

 01120
2

1
2

0
3 fffffff 

       3 2 2 1 2 1 1 0f f f f f f f f       

3 33 2 1 0f f f f   

In general,

0
)1(...

3322110
fn

n
fCn

n
fCn

n
fCn

n
ffn 








 .

If we write yn to denote fn the above results takes the following forms:

01220
2 yyyy 

0132330
3 yyyyy 

0)1(...3322110 yn
nyCn

nyCn
nyCn

nyyn 
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Example Show that the value of yn can be expressed in terms of the leading value y0

and the leading differences .,...,, 00
2

0 yyy n

Solution

(For notational convenience, we treat yn as fn and so on.)

From the forward difference table we have

0 1 0 1 0 0

1 2 1 2 1 1

2 3 2 3 2 2

or

or

or

f f f f f f

f f f f f f

f f f f f f

     


      
      

and so on.  Similarly,
2 2

0 1 0 1 0 0

2 2
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Similarly, we can write
3 2 2 2 2 3

0 1 0 1 0 0

3 2 2 2 2 3
1 2 1 2 1 1

or

or

f f f f f f

f f f f f f

          


          

and so on.  Also, we can write 2f as

   2
2 0 0 0 0

2
0 0 0

2
0

2

(1 )

f f f f f

f f f

f

      

    

  

Hence

3 2 2f f f  

  2 3
1 1 0 0 02f f f f f        

0
3

0
2

00 33 ffff 

 3 01 f  

That is, we can symbolically write

      .1,1,1 0
3

30
2

201 ffffff 

Continuing this procedure, we can show, in general

  .1 0ff n
n 

Using binomial expansion, the above is
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00
2

2010 ... ffCfCff nnn
n 

Thus

0
0

.
n

n i
n i

i

f C f


 

Backward Difference Operator

For the values 0 1, ,..., ny y y of a function y=f(x), for the equidistant values 0 1, ,..., nx x x , where

1 0 2 0 3 0 0, 2 , 3 ,..., nx x h x x h x x h x x nh        , the backward difference operator  is defined
on the function f(x) as,

    1) (i i i i if x f x f x h y y       ,

which is the first backward difference.

In particular, we have the first backward differences,

   1 1 0 2 2 1;f x y y f x y y etc     

The second backward difference is given by

          
   

   

2

1 1 2

1 2

) (

) ( ) ( 2

2

i i i i i i

i i i i

i i i i

i i i

f x f x f x f x h f x f x h

f x f x h f x h f x h

y y y y

y y y
  

 

           
             
   

  

Similarly, the third backward difference,  3
1 2 33 3i i i i if x y y y y       and so on.

Backward differences can be written in a tabular form as follows:

x

Y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0y y y  

2 2 1y y y  

3 3 2y y y  

2
2 2 1y y y  

2
3 3 2y y y  

3 2 2
3 3 2y y y  

Relation between backward difference and other differences:

1. 0 1 0 1y y y y     ; 2 2
0 2 1 0 22y y y y y     etc.
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2.   

Proof:  Consider the function f(x).

( ) ( ) ( )

( ) ( ) ( )

f x f x h f x

f x f x f x h

   
   

 
   

 
 

( ( )) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

f x f x f x

f x h f x f x f x h

f x f x h

f x f x h

f x

    

     

    

   

  

    

3. 1E  

Proof:  Consider the function f(x).

1( ) ( ) ( ) ( ) ( )f x f x f x h f x h E f x         1E   

4. 11 E  

Proof:  Consider the function f(x).

 1 1( ) ( ) ( ) ( ) ( ) 1 ( )f x f x f x h f x E f x E f x         11 E   

Problem: Construct the backward difference table for the data

: 2 0 2 4

( ) : 8 3 1 12

x

y f x


 

Solution: The backward difference table is as follows:

x Y=f(x) y 2 y 3 y

-2

0

2

4

-8

3

1

12

1y =3-(-8)=11

2y =1-3=-2

3y =12-1=11

2
2y =-2-11= -13

2
3y =11-(2)=13

3
3y =13-(-13)=26
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Backward Difference Table

x f f 2f 3f 4f 5f 6f

x0 f0

f1

f2

f3

f4

f5

f6

x1 f1 2f2

3f3

3f4

3f5

3f6

x2 f2 2f3 4f4 5f
5

5f
6

x3 f3 2f4 4f5 6f6

x4 f4 2f5 4f6

x5 f5 2f6

x6 f6

Example Show that any value of f (or y)  can be expressed in terms of fn (or yn ) and its
backward differences.

Solution

1 nnn fff implies 1n n nf f f  

and 1 1 2n n nf f f     implies 2 1 1n n nf f f   

1
2

 nnn fff implies 2
1n n nf f f   

From equations (1) to (3), we obtain

nnnn ffff 2
2 2  .

Similarly, we can show that

nnnnn fffff 32
3 33  .

Symbolically, these results can be rewritten as follows:

      .1,1,1 3
3

2
21 nnnnnn ffffff  

Thus, in general, we can write

  n
r

rn ff  1 .

i.e., 2
1 2 . . . ( 1)r r r r

n r n n n nf f C f C f f         

If we write yn to denote fn the above result is:
2

1 2 . . . ( 1)r r r r
n r n n n ny y C y C y y         
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Central Differences

Central difference operator  for a function f(x) at ix is defined as,

( )
2 2i i i
h hf x f x f x          

   
, where h being the interval of differencing.

Let 1 0
2 2

hy f x   
 

.  Then,

       

1 0 0 0
2

0 0 1 0 1 0

1 0
2

2 2 2 2 2
h h h h hy f x f x f x

f x h f x f x f x y y

y y

 



                 
     

      

  

Central differences can be written in a tabular form as follows:

x y y 2 y 3 y

ox

1x

2x

3x

0 ( )oy f x

1 1( )y f x

2 2( )y f x

3 3( )y f x

1 1 0
2

y y y  

3 2 1
2

y y y  

5 3 2
2

y y y  

2
1 3 1

2 2

y y y   

2
2 5 3

2 2

y y y   

3 2 2
3 2 1
2

y y y   

Central Difference Table

x f f 2f 3f 4f

x0 f0

f1/2

f3/2

f5/2

f7/2

x1 f1 2f1
3f3/2

3f5/2

x2 f2 2f2 4f2

x3 f3 2f3

x4 f4
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Example Show that

(a)
1

2
1

2



m

fmfm
fmf

(b)
1

3
1

3
2

2

1
3




 m
f

m
f

m
f

m
f

m
f

(a) 2 ( ) ( )1 11/2 1/2f f f f f f fm m mm mm m        

21 1
f f fmm m
   

(b)  3 2 2 211/2 2 1
f f f f f fmmm m m m
        

 2
1 1

f f f
m m m
   1

3
1

3
2 


m

f
m

f
m

f
m

f

Shift operator, E

Let y = f (x) be a function of x, and let x takes the consecutive values x, x + h, x + 2h, etc.
We then define an operator E, called the shift operator having the property

E f(x) = f (x + h) …(1)

Thus, when E operates on f (x), the result is the next value of the function. If we apply the
operator twice on f (x), we get

E2 f (x) = E [E f (x)] = f (x+ 2h).

Thus, in general, if we apply the shift operator n times on f (x), we arrive at

E n f (x) = f (x+ nh)                            …(2)

for all real values of n.

If f0 (= y0), f1 (= y1)… are the consecutive values of the function

y = f (x), then we can also write

E f0 = f1 (or E y0 = y1), E f1 = f2 (or E y1 = y2)…

E2f0 = f2 (or E 2y0 = y2), E 2 f1 = f3 (or E y1 = y3)…

E3f0 = f3 (or E 2y0 = y3), E 3 f1 = f4 (or E y1 = y4)…

and so on.  The inverse operator E1 is defined as:
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E1 f(x) = f (x  h) …(3)

and similarly

En f(x) = f (x  nh) …(4)

Average Operator 

The average operator  is defined as

  2 2
1 ( ) ( )
2

h hf x f x f x      

Differential operator D

The differential operator D has the property

( ) ( ) ( )dDf x f x f x
dx

 

2
2

2
( ) ( ) ( )dD f x f x f x

dx
 

Relations between the operators:

Operators,,, and D in terms of E

From the definition of operators  and E, we have

 f (x)  = f (x + h)  f (x) = E f (x)  f (x)  =  (E  1) f (x).

Therefore,

 = E  1

From the definition of operators  and E  1, we have

 f (x)  = f (x)  f (x  h) = f (x)  E  1f (x)  =  (1  E  1) f (x).

Therefore,

1 11 .EE
E

    

The definition of the operators  and E gives

f (x)  = f (x + h/2)  f (x  h/2) = E 1/2f (x)  E  1/2f (x)

= (E 1/2  E  1/2) f (x).
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Therefore,

 = E 1/2  E  1/2

The definition of the operators  and E yields

   1/ 2 1/ 21 1 .
2 2 2 2

h hf x f x f x E E f x                      

Therefore,

 1/ 2 1/ 21 .
2

E E  

It is known that

E f (x) = f (x + h).

Using the Taylor series expansion, we have

       
2

. . .
2!
hEf x f x h f x f x    

     
2

2 . . .
2!
hf x h Df x D x   

   
2 2

1 . . .
1! 2!

hDh D h D f x e f x
      
 

.

Thus hDeE  .  Or,

hD = log E.

Example If , ,  denote forward, backward and central difference operators, E and 
respectively the shift operator and average operators, in the analysis of data with equal
spacing h, prove the following:

 

   

22
2 2 1/ 2

2
2

( ) 1 1
2 2

1 / 4
2

i ii E

iii

 
     

 

   

 
  


 

   
1

.
2 2 2
Eiv v
       

Solution

(i)  From the definition of operators, we have
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    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E        .

Therefore

   22 2 2 2 11 11 1 2
4 4

E E E E         

Also,

   
2 21/ 2 1/ 2 11 11 1

2 2 2
E E E E      

From equations (1) and (2), we get
22

2 21 1 .
2

      
 

(ii)  1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 .
2 2

E E E E E       

(iii)  We can write

   21/ 2 1/ 22
21 / 4

2 2

E E         21/ 2 1/ 2 1/ 2 1/ 211
4

E E E E    

  
1

1/ 2 1/ 2 1/ 2 1/ 22 1
2 2

E E E E E E


     

1 12
2 2

E E E E    

= E  1

= 

(iv) We write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 11 1 1 11 1 .
2 2 2 2 2 2 2

EE E
E E

                 
 

(v)  We can write

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

    1 11 1 .
2 2
       
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Example Prove that

     1log 1 log 1 sinh .hD        

Using the standard relations given in boxes in the last section, we have

   1log log 1 log log log 1hD E E E         

Also,

    1/ 2 1/ 2 1/ 2 1/ 2 11 1
2 2

E E E E E E       

   1 sin
2

hD hDe e hD  

Therefore

 .sinh 1  hD

Example Show that the operations  and E commute.

Solution

From the definition of operators  and E , we have

 0 1 3/ 2 1/ 2
1
2

Ef f f f    

and also

   0 1/ 2 1/ 2 3/ 2 1/ 2
1 1
2 2

E f E f f f f    

Hence

.E E  

Therefore, the operators  and E commute.

Example Show that
2 2

2
0 0 0 0 1 2... ...

2! 2!
          
 

x x xe u x u u u u x u

2 2 2
2

0 0 0 0... 1 ...
2! 2!

              
   

x xx xe u x u u e x u

(1 )
0 0

  x x xe e u e u

0 xEe u
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2 2

01 ...
2!

     
 

x ExE u

2

0 1 2 ...,
2!

   xu xu u

as desired.

Example Using the method of separation of symbols, show that

1 2

( 1)
( 1) .

2   
      n n

x n x x x x n

n n
u u nu u u

To prove this result, we start with the right-hand side. Thus,

R.H.S 1 2

( 1)
( 1) .

2  
      n

x x x x n

n n
u nu u u

1 2( 1)
( 1)

2
        n n

x x x x

n n
u nE u E u E u

1 2( 1)
1 ( 1)

2
          

 n n
x

n n
nE E E u

 11  
n

xE u

11   
 

n

xu
E

1   
 

n

x
E u

E


n

xn u
E

 n n
xE u

, n
x nu

= L.H.S

Differences of a Polynomial

Let us consider the polynomial of degree n in the form
1 2

0 1 2 1( ) . . . ,n n n
n nf x a x a x a x a x a 
     

where 0 0a  and 0 1 2 1, , , . . . , ,n na a a a a are constants.  Let h be the interval of differencing.
Then
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1 2
0 1 2( ) ( ) ( ) ( ) ...n n nf x h a x h a x h a x h         1( )n na x h a  

Now the difference of the polynomials is:

1 1
0 1( ) ( ) ( ) ( ) ( ) ...n n n nf x f x h f x a x h x a x h x                  1( )na x h x  

Binomial expansion yields

   nnnnnnn xhhxChxCxaxf   ...22
2

1
10

   1 11 2 3 2
1 1 2[ n nn n na x C x h C x h     

1 1
1. . . ] . . .n n

nh x a h 
    

   .... 1
2

1
1

1
2

20
1

0 haxhCahCanhxa n
nnnn


 

Therefore,

  ,...321
0 lxkxcxbnhxaxf nnn  

where b, c,    . . . , k, l are constants involving h but not x.  Thus, the first difference of
a polynomial of degree n is another polynomial of degree (n  1).  Similarly,

        xfhxfxfxf 2

   1 21 2
0

n nn na nh x h x b x h x
             

 . . . k x h x   

On simplification, it reduces to the form

    qxcxbxhnnaxf nnn   ...1 4322
0

2 .

Therefore,  xf2 is a polynomial of degree (n  2) in x.  Similarly, we can form the
higher order differences, and every time we observe that the degree of the polynomial is
reduced by 1.  After differencing n times, we are left with only the first term in form

        0 1 2 3 . . . 2 1n nf x a n n n n h    

 0 ! constant.na n h 

This constant is independent of x.  Since  xfn is a constant   .01   xfn Hence the (n
+ 1)th and higher order differences of a polynomial of degree n are 0.
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Conversely, if the n th differences of a tabulated function are constant and the ( 1)thn ,
( 2)th,...,n differences all vanish, then the tabulated function represents a polynomial of
degree n. It should be noted that these results hold good only if the values of x are equally
spaced. The converse is important in numerical analysis since it enables us to approximate
a function by a polynomial if its differences of some order become nearly constant.

Theorem (Differences of a polynomial)The nth differences of a polynomial of degree n is a
constant, when the values of the independent variable are given at equal intervals.

Exercises

1. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a) 2 decimal places, (b) 3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

2. Express 2y1 (i.e. 2f1 )  and 4y0 (i.e. 4f0 )  in terms of the values of the function y =
f(x).

3. Set up a difference table of 2( )f x x for 0(1)10x  .  Do the same with the calculated
value 25 of (5)f replaced by 26.  Observe the spread of the error.

4. Calculate 1)2.0(0,
1

1
)( 


 x

x
xf to (a)2 decimal places, (b)3 decimal places and (c)4

decimal places.  Then compare the effect of rounding errors in the corresponding
difference tables.

5. Set up a forward difference table of f(x) = x2 for x = 0(1)10.  Do the same with the
calculated value 25 of f(5)  replaced by 26.  Observe the spread of the error.

6. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cosx 1.000 00 0.995 00 0.980 07 0.955 34 0.921 06 0.877 58

7. Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sinx 0.000 00 0.099
83

0.198
67

0.295
52

0.389
42

0.479

8. Construct the backward difference table, where

( ) sinf x x , x = 1.0(0.1)1.5, 4D.
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9. Show that .2/1EE 

10. Prove that

11.        .2/cosh2and2/sinh2 hDiihDi 

12. Show that the operators ,  , E,  and  commute with each other.

13.Construct the backward difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

cos x 1.000
00

0.995
00

0.980
07

0.955
34

0.921
06

0.877
58

Construct the difference table based on the following table.

x 0.0 0.1 0.2 0.3 0.4 0.5

sin
x

0.000
00

0.099
83

0.198
67

0.295
52

0.389
42

0.479
43

6. Construct the backward difference table, where

f(x) = sin x, x = 1.0(0.1)1.5, 4D.

7. Evaluate   (2 + 3)(E + 2)(3x2 + 2),  interval of differencing being unity.

8. Compute the missing values of ny and ny in the following table:

ny ny 2
ny

-

-

-

5

-

-

-

1

4

13

18

24

-

-

6

-

-

-
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NUMERICAL INTERPOLATION

Consider a single valued continuous function ( )y f x defined over [a,b] where
( )f x is  known explicitly.  It is easy to find the values of ‘y’ for a given set of values of ‘x’ in

[a,b].  i.e., it is possible to get information of all the points ( , )x y where .a x b 

But the converse is not so easy.  That is, using only the points 0 0( , )x y , 1 1( , )x y ,…,
( , )n nx y where , 0,1,2,...,ia x b i n   ,  it is not so easy to find the relation between x and y in
the form ( )y f x explicitly.  That is one of the problem we face in numerical
differentiation or integration.

Now we have first to find a simpler function, say ( )g x , such that ( )f x and ( )g x agree
at the given set of points and accept the value of ( )g x as the required value of ( )f x at some
point x in between a and b. Such a process is called interpolation. If ( )g x is a
polynomial, then the process is called polynomial interpolation.

When a function f(x) is not given explicitly and only values of ( )f x are given at a
set of distinct points called nodes or tabular points, using the interpolated function ( )g x to
the function f(x), the required operations intended for ( )f x , like determination of roots,
differentiation and integration etc. can be carried out. The approximating polynomial ( )g x

can be used to predict the value of ( )f x at a non- tabular point. The deviation of ( )g x from
( )f x , that is ( ) ( )f x g x is called the error of approximation.

Consider a continuous single valued function ( )f x defined on an interval [a, b].
Given the values of the function for n + 1 distinct tabular points 0 1, ,..., nx x x such that

0 1 ... na x x x b     .   The problem of polynomial interpolation is to find a polynomial g(x)
or ( )np x , of degree n, which fits the given data. The interpolation polynomial fitted to a
given data is unique.

If we are given two points satisfying the function such as    0 0 1 1, ; ,x y x y , where

 0 0y f x and  1 1y f x it is possible to fit a unique polynomial of degree 1. If three
distinct points are given, a polynomial of degree not greater than two can be fitted
uniquely.  In general, if n+ 1 distinct points are given, a polynomial of degree not greater
than n can be fitted uniquely.

Interpolation fits a real function to discrete data.   Given the set of tabular values

0 0 1 1( , ), ( , ) ( , ) n nx y x y x y satisfying the relation ( )y f x , where the explicit nature of
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( )f x is not known,  and it is required to find the values of ( )f x corresponding to certain
given values of x in between x0 and xn .  To do this we have first to find a simpler function,
say ( )g x , such that ( )f x and ( )g x agree at the set of tabulated points and accept the value
of ( )g x as the required value of ( )f x at some point x in between x0 and xn .   Such a process
is called interpolation.  If ( )g x is a polynomial, then the process is called polynomial
interpolation.

In interpolation, we have to determine the function ( )g x , in the case that ( )f x is
difficult to be obtained, using the pivotal values 0 0( ),f f x 1 1( )f f x ,. . . , ( )n nf f x .

Linear interpolation

In linear interpolation, we are given with two pivotal values 0 0( )f f x and 1 1( ),f f x

and we approximate the curve of f by a chord (straight line) P1 passing through the points
0 0( , )x f and 1 1( , )x f . Hence the approximate value of f at the intermediate point 0x x rh 

is given by the linear interpolation formula

1 0 1 0 0 0
( ) ( ) ( )f x P x f r f f f r f      

where 0
x x

r
h


 and 10  r .

Example Evaluate ln 9.2 , given that ln 9.0 2.197 and ln 9.5 2.251.

Here x0 = 9.0 , x1 = 9.5, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln 9.0 2.197 and
1 1( ) ln 9.5 2.251.  f f x Now to calculate ln9.2 (9.2), f take 9.2,x so that

0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and hence

1 0 1 0
ln 9.2 (9.2) (9.2) ( ) 2.197 0.4 (2.251 2.197) 2.219f P f r f f        

Example Evaluate f (15), given that f(10) = 46, f(20) = 66.

Here x0 = 10 , x1 = 20, h = x1  x0 =20  10 = 10,

f0 = f(x0)  = 46 and f1 = f(x1) = 66.

Now to calculate f(15), take x = 15, so that

0 15 10 5 0.5
10 10

x x
r

h

    

and hence
1 0 1 0

(15) (15) ( ) 46 0.5 (66 46) 56f P f r f f       

Example Evaluate 1.24
e , given that 1.1

3.0042e  and 1.4
4.0552e  .
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Here x0 = 1.1 , x1 = 1.4, h = x1  x0 =1.41.1 = 0.3, f0 = f(x0) =1.1 and f1 = f(x1) = 1.24.

Now to calculate 1.24
e =f(1.24), take x =1.24, so that 0 1.24 1.1 0.14 0.4667

0.3 0.3

x x
r

h

     and

hence

1.24

1 0 1 0
(1.24) ( ) 3.0042 0.4667(4.0552 3.0042) 3.4933,e P f r f f        while the exact value of 1.24

e is

3.4947.

Quadratic Interpolation

In quadratic interpolation we are given with three pivotal values 0 0 1 1( ), ( ) f f x f f x

and 2 2( )f f x and we approximate the curve of the function f between x0 and x2 = x0 +2h
by the quadratic parabola P2 , which passes through the points 0 0 1 1 2 2( , ), ( , ), ( , )x f x f x f and
obtain the quadratic interpolation formula

2

2 0 0 0

( 1)
( ) ( )

2
r r

f x P x f r f f
     

where 0
x x

r
h


 and 20  r .

ExampleEvaluate ln 9.2, using quadratic interpolation, given that

ln 9.0 = 2.197,    ln 9.5 = 2.251  and   ln10.0 = 2.3026.

Here x0 = 9.0 , x1 = 9.5, x1 = 10.0, h = x1  x0 =9.5  9.0 = 0.5, f0 = f(x0) = ln9.0 = 2.197,
f1 = f(x1) = ln9.5 = 2.251 and f2 = f(x2) = ln10.0 = 2.3026. Now to calculate ln9.2=f(9.2), take

x = 9.2, so that 0 9.2 9.0 0.2 0.4
0.5 0.5

x x
r

h

     and

2

2 0 0 0

( 1)
ln 9.2 (9.2) ( )

2
r r

f P x f r f f
      

To proceed further, we have to construct the following forward difference table.

x f f 2f

9.0 2.1972

0.0541

0.0513
9.5 2.2513

-
0.0028

10.0 2.3026

Hence,
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2

0.4(0.4 1)
ln 9.2 (9.2) (9.2) 2.1972 0.4(0.0541) ( 0.0028)

2
f P

      = 2.2192, which exact to

4D to the exact value of ln 9.2 2.2192.

Example Using the values given in the following table, find cos0.28 by linear interpolation
and by quadratic interpolation and compare the results with the value 0.96106 (exact to
5D)

x ( ) cosf x x
First
difference

Second
difference

0.0 1.00000
-0.01993

-0.05901
0.2 0.98007 -0.03908

0.4 0.92106

Here ( )f x , where 0 0.28x is to determined. In linear interpolation, we need two
consecutive x values and their corresponding f values and first difference.  Here, since
x=0.28 lies in between 0.2 and 0.4, we take x0 = 0.2, x1 = 0.4.  (Attention! Choosing 0 0.2,x

1 0.4x  is very important; taking 0 0.0x would give wrong answer). Then h = x1  x0

=0.40.2 = 0.2, f0 = f(x0) =0.98007 and f1 = f(x1) =0.92106.

Also 0 0.28 0.2 0.08 0.4
0.2 0.2

x x
r

h

     and

1 0 1 0
cos0.28 (0.28) (0.28) ( )    f P f r f f

0.98007 0.4(0.92106 0.98007)  

=  0.95647, correct to 5 D.

In quadratic interpolation, we need three consecutive (equally spaced) x values and
their corresponding f values, first differences and second difference.  Here x0 = 0.0 , x1 =
0.2, x1 = 0.4, h = x1  x0 =0.2  0.0 = 02, f0 =  1.00000, f1 = 0.98007 and f2 = 0.92106,

f0=-0.01993, 2f0=-0.03908 0 0.28 0.00 1.4
0.2

x x
r

h

    and

2

2 0 0 0

( 1)
cos0.28 (0.28)

2
r r

P f r f f
     

  96116.003908.0
2

)14.1(4.1
)1993.0(4.100.1 


 to 5D.
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From the above, it can be seen that quadratic interpolation gives more accurate value.

Newton’s  Forward  Difference  Interpolation  Formula

Using Newton’s forward difference interpolation formula we find the n degree
polynomial Pn which approximates the function f(x) in such a way that Pn and f agrees at
n+1 equally spaced x values, so that 0 0 1 1( ) , ( ) , , ( ) ,  n n n n nP x f P x f P x f where 0 0( ),f f x

1 1( ), , ( )  n nf f x f f x are the values of f in the table.

Newton’s forward difference interpolation formula is

( ) ( )nf x P x 

2

0 0 0 0

( 1). . .( 1)( 1)
. . .

2! !
nr r r nr r

f r f f f
n

         

where 0

0
, , 0

x x
x x rh r r n

h


     .

Derivation of Newton’s forward Formulae for Interpolation

Given the set of ( 1)n values, viz., 0 0 1 1 2 2( , ), ( , ), ( , ),..., ( , )n nx f x f x f x f

of x and f, it is required to find ( )np x , a polynomial of the nth degree such that ( )f x and
( )np x agree at the tabulated points. Let the values of x be equidistant, i.e., let

0 , 0,1,2,...,ix x rh r n  

Since ( )np x is a polynomial of the nth degree, it may be written as

0 1 0 2 0 1

3 0 1 2

0 1 2 1

( ) ( ) ( )( )

( )( )( ) ...

( )( )( )...( )

n

n n

p x a a x x a x x x x

a x x x x x x

a x x x x x x x x 

      
     
     

Imposing now the condition that ( )f x and ( )np x should agree at the set of tabulated
points, we obtain

2 3
1 0 0 0 0 0

0 0 1 2 32 3
1 0

; ; ; ;...; ;
2! 3! !

n

n n

f f f f f f
a f a a a a

x x h h h h n

    
     



Setting 0x x rh  and substituting for 0 1, ,..., ,na a a we obtain the expression.

Remark 1:

Newton’s forward difference formula has the permanence property.  If we add a new set
of value  1 1,n nx y  , to the given set of values, then the forward difference table gets a new
column of (n+1)th forward difference.  Then the Newton’s Forward difference
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Interpolation Formula with the already given values will be added with a new term at the

end,       
1

0 1 01

1.....
1 !

n
n n

x x x x x x y
n h



     

to get the new interpolation formula with the

newly added value.

Remark 2:

Newton’s forward difference interpolation formula is useful for interpolation near the
beginning of a set of tabular values and for extrapolating values of y a short distance
backward, that is left  from 0y .The process of finding the value of y for some value of x
outside the given range is called extrapolation.

Example Using Newton’s forward difference interpolation formula and the following
table evaluate f(15) .

x f(x) f 2f 3f 4f

10 46
20

15

12

8

20 66 -5

-3

-4

2

30 81 -1 -3

40 93

50 101

Here x = 15, x0 = 10, x1 = 20, h = x1  x0 = 20  10 = 10, r = (x  x0)/h = (15–10)/10 = 0.5, f0 =
46, f0 = 20, 2f0 = 5, 3f0 = 2, 4f0 = 3.

Substituting these values in the Newton’s forward difference interpolation formula for
n = 4, we obtain

2 4

4 0 0 0 0

( 1) . . . ( 4 1)( 1)
( ) ( ) . . .

2! 4!
r r rr r

f x P x f r f f f
           ,

so that

(0.5)(0.5 1) (0.5)(0.5 1)(0.5 2)
(15) 46 (0.5)(20) ( 5) (2)

2! 3!
f

  
    

(0.5(0.5 1)(0.5 2)(0.5 3)
( 3)

4!
  

 

= 56.8672, correct to 4 decimal places.
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Example Find a cubic polynomial in x which takes on the values -3, 3, 11, 27, 57 and
107, when x=0, 1, 2, 3, 4 and 5 respectively.

x f(x)  2 3

0 -3
6

8

16

30

50

1 3 2

8

14

20

6

6

6

2 11

3 27

4 57

5 107

Now the required cubic polynomial (polynomial of degree 3) is obtained from Newton’s
forward difference interpolation formula

2 3

3 0 0 0 0

( 1) ( 1)( 3 1)
( ) ( )

2! 3!
r r r r r

f x P x f r f f f
           ,

where r=(x – x0)/h = (x – 0)/1 = x, so that

3

( 1) ( 1)( 3 1)
( ) ( ) 3 (6) (2) (6)

2! 3!
x x x x x

f x P x x
        

or 3 2
( ) 2 7 3f x x x x   

Example Using the Newton’s forward difference interpolation formula evaluate f(2.05)
where xxf )( , using the values:

x 2.0 2.1 2.2 2.3 2.4

x 1.414 214 1.449 138 1.483 240 1.516 575 1.549 193
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The forward difference table is

x x  2 3 4

2.0 1.414 214
0.034 924

0.034 102

0.033 335

0.032 618

2.1 1.449 138 -0.000 822

-0.000 767

-0.000 717

0.000055

0.000050
2.2 1.483 240 0.000 005

2.3 1.516 575

2.4 1.549 193

Here
h

xx
r 0 =(2.05–2.00)/0.1=0.5, so by substituting the values in Newton’s formula (for

4 degree polynomial), we get

4
(2.05) (2.05) 1.414214 (0.5)(0.034924)f P  

(0.5)(0.5 1)
( 0.000822)

2!
 

(0.5)(0.5 1)(0.5 2)
(0.000055)

3!

 


(0.5(0.5 1)(0.5 2)(0.5 3)
(0.000005)

4!

  
 = 1.431783.

Example Find the cubic polynomial which takes the following values;
(1) 24, (3) 120, (5) 336, and (7) 720   f f f f . Hence, or otherwise, obtain the value of (8)f .

We form the difference table:
2 3

1 24

96

3 120 120

216 48

5 336 168

384

7 720

  x y

Here 2h with 0 1,x we have 1 2 x p or ( 1) / 2r x  . Substituting this value of r, we
obtain

1 1 1
2 21( ) 24 (96) (120)

2 2

x x
xf x

          
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1 1 11 2
2 2 2

(48)
6

x x x         
    3 26 11 6.   x x x

To determine (9)f , we put 9x  in the above and obtain (9) 1320.f 

With 0 1,x  9,rx  and 2,h  we have 0 9 1
4

2
rx x

r
h

 
   . Hence

2
0 0 0

( 1)
(9) (9)

2!

r r
f p f r f f


       3

0

( 1) ( 2)

3!

r r r
f

 


4 3 4 3 2
24 4 96 120 48 1320

2 3 2

  
       



Example Using Newton’s forward difference formula, find the sum
3 3 3 31 2 3 ... .    nS n

Solution
3 3 3 3 3

1 1 2 3 ... ( 1)       nS n n

and hence
3

1 ( 1) ,   n nS S n

or
3( 1)  nS n .

it follows that
2 3 3 2

1 ( 2) ( 1) 3 9 7           n n nS S S n n n n

3 23( 1) 9 7 (3 9 7) 6 12         nS n n n n n

4 6( 1) 12 (6 12) 6      nS n n

Since 5 6 ... 0,    n n nS S S is a fourth-degree polynomial in the variable n.

Also,
3 2

1 1 11, (1 1) 8, 3 9 7 19,S S S         

3 4
1 16 12 18, 8.S S     

formula (3) gives (with 0 1f S and 1)r n 

( 1)( 2) ( 1)( 2)( 3)
1 ( 1)(8) (19) (18)

2 6
        n

n n n n n
S n
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( 1)( 2)( 3)( 4)
(6)

24
    n n n n

4 3 21 1 1
4 2 4
  n n n

2
( 1)

2
    

n n

Problem: The population of a country for various years in millions is provided.  Estimate the
population for the year 1898.

Year x: 1891 1901 1911 1921 1931

Population y: 46 66 81 93         101

Solution: Here the interval of difference among the arguments h=10. Since 1898 is at the
beginning of the table values, we use Newton’s forward difference interpolation formula for finding
the population of the year 1898.

The forward differences for the given values are as shown here.

Let x=1898.  Newton’s forward difference interpolation formula is,

      

   

    

2
0 0 0 0 1 02

3
0 1 2 03

0 1 1 0

1 1( )
2!

1 ....
3!

1.....
!

n
n n

f x y x x y x x x x y
h h

x x x x x x y
h

x x x x x x y
n h

         

        

     

x y y 2 y 3 y 4 y

1891

1901

1911

1921

1931

46

66

81

93

101

0 20y 

1 15y 

2 12y 

3 8y 

2
0 5y  

2
1 3y  

2
2 4y  

3
0 2y 

3
1 1y  

4
0 3y  
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Now, substituting the values, we get,

        

     

      

2

3

4

1 1(1898) 46 1898 1891 20 1898 1891 1898 1901 5
10 2!10

11898 1891 1898 1901 1898 1911 2
3!10

11898 1891 1898 1901 1898 1911 1898 1921 3
4!10

f       

    

    

21 91 18837(1898) 46 14 61.178
40 500 40000

f      

Example Values of x (in degrees) and sin x are given in the following table:

(in degrees) sin

15 0.2588190

20 0.3420201

25 0.4226183

30 0.5

35 0.5735764

40 0.6427876

x x

Determine the value of 0sin38 .

Solution

The difference table is
2 3 4 5sin

15 0.2588190

0.0832011

20 0.3420201 0.0026029

0.0805982 0.0006136

25 0.4226183 0.0032165 0.0000248

0.0773817 0.0005888 0.0000041

30 0.5 0.0038053 0.0000289

0.0735764 0.00

35 0.5735764
0.0043652

0.0692112

x x     












05599

40 0.6427876

As 38 is closer to 40nx  than 0 15,x  we use Newton’s backward difference formula with
40nx  and 38x  . This gives
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38 40 2 0.4
5 5

nx x
r

h
      

Hence, using formula, we obtain

0.4( 0.4 1)
(38) 0.6427876 0.4(0.0692112) ( 0.0043652)

2
f

     

( 0.4)( 0.4 1)( 0.4 2)
( 0.0005599)

6
    

 

( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)
(0.0000289)

24
      



( 0.4)( 0.4 1)( 0.4 2)( 0.4 3)( 0.4 4)
(0.0000041)

120
        



0.6427876 0.02768448 0.00052382 0.00003583   

0.00000120

0.6156614

Example Find the missing term in the following table:

( )

0 1

1 3

2 9

3

4 81

x y f x



Explain why the result differs from 33 27?

Since four points are given, the given data can be approximated by a third degree
polynomial in x . Hence 4

0 0f  . Substituting 1E   we get, 4
0( 1) 0,E f  which on

simplification yields
4 3 2

0 0 0 0 04 6 4 0    E f E f E f Ef f .

Since 0
r

rE f f the above equation becomes

4 3 2 1 04 6 4 0f f f f f    

Substituting for 0 1 2, ,f f f and 4f in the above, we obtain

3 31f 
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By inspection it can be seen that the tabulated function is 3x and the exact value of (3)f is
27. The error is due to the fact that the exponential function 3x is approximated by means
of a polynomial in x of degree 3.

ExampleThe table below gives the values of tan x for 0.10 0.30x 

t a n

0 . 1 0 0 . 1 0 0 3

0 . 1 5 0 . 1 5 1 1

0 . 2 0 0 . 2 0 2 7

0 . 2 5 0 . 2 5 5 3

0 . 3 0 0 . 3 0 9 3

x y x

Find: (a) tan 0.12 (b) tan 0.26 . (c) tan 0.40 (d) tan 0.50

The table difference is

2 3 4( )

0 .1 0 0 .1 0 0 3

0 .0 5 0 8

0 .1 5 0 .1 5 1 1 0 .0 0 0 8

0 .0 5 1 6 0 .0 0 0 2

0 .2 0 0 .2 0 2 7 0 .0 0 1 0 0 .0 0 0 2

0 .0 5 2 6 0 .0 0 0 4

0 .2 5 0 .2 5 5 3 0 .0 0 1 4

0 .0 5 4 0

0 .3 0 0 .3 0 9 3

x y f x    

a)  To find tan (0.12), we have 0.4r  Hence Newton’s forward difference interpolation
formula gives

0.4(0.4 1)
tan (0.12) 0.1003 0.4(0.0508) (0.0008)

2
  

0.4(0.4 1)(0.4 2)
(0.0002)

6
 

0.4(0.4 1)(0.4 2)(0.4 3)
(0.0002)

24
  

0.1205

b) To find tan (0.26), we use Newton’s backward difference interpolation formula
with
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nx x
r

n




0.26 03

0.05




0.8 

which gives

0.8( 0.8 1)
tan (0.26) 0.3093 0.8(0.0540) (0.0014)

2
    

0.8( 0.8 1)( 0.8 2)
(0.0004)

6
    

0.8( 0.8 1)( 0.8 2)( 0.8 3
(0.0002)

24
       0.2662

Proceeding as in the case (i) above, we obtain

(c) tan 0.40 0.4241, and

(d) tan 0.50 0.5543

The actual values, correct to four decimal places, of tan (0.12), tan(0.26) are respectively
0.1206 and 0.2660. Comparison of the computed and actual values shows that in the first
two cases (i.e., of interpolation) the results obtained are fairly accurate whereas in the last-
two cases (i.e., of extrapolation) the errors are quite considerable. The example therefore
demonstrates the important results that if a tabulated function is other than a polynomial,
then extrapolation very far from the table limits would be dangerous-although
interpolation can be carried out very accurately.

Exercises

1. Using the difference table in exercise 1, compute cos0.75 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value 0.731 69.

2. Using the difference table in exercise 1, compute cos0.28 by Newton’s forward difference
interpolating formula with 1, 2, 3, 4n  and compare with the 5D-value

3. Using the values given in the table, find cos0.28 (in radian measure) by linear interpolation and
by quadratic interpolation and compare the results with the value 0.961 06 (exact to 5D).
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x f(x)=cosx
First
difference

Second
difference

0.0 1.000 00
-0.019 93

-0.059 01

-0.095 72

-0.128 63

-0.156 41

-0.03908

-0.03671

-0.03291

-0.02778

0.2 0.980 07

0.4 0.921 06

0.6 0.825 34

0.8 0.696 71

1.0 0.540 30

4. Find Lagrangian interpolation polynomial for the   function f having
(4) 1, (6) 3, (8) 8, (10) 16f f f f    . Also calculate (7)f .

5. The sales in a particular shop for the last ten years is given in the table:

Year 1996 1998 2000 2002 2004

Sales (in
lakhs)

40
43 48 52 57

Estimate the sales for the year 2001 using Newton’s backward difference interpolating formula.

6. Find (3)f , using Lagrangian interpolation formula  for the function f having

(1) 2, (2) 11, (4) 77f f f   .

7. Find the cubic polynomial which takes the following values:

x 0 1 2 3

( )f x 1 2 1 10

8. Compute sin0.3 and sin0.5 by Everett formula and the following table.

sinx 2

0.
2

0.198 67 -0.007 92

0.
4

0.389 42 -0.015 53

.6 0.564 64 -0.022 50
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Numerical Methods Page 86

9.  The following table gives the distances in nautical miles of the visible horizon for the given
heights in feet above the earth’s surface:

x =height     : 100 150 200 250 300 350 400

y = distance : 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 218 ft (Ans: 15.699)

10. Using the same data as in exercise 9, find the value of y when x = 410ft.
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Consider the initial value problem of first order

0 0( , ), ( ) .y f x y y x y  …(1)

Starting with given 0x and the value of h is chosen so small, we suppose 0 1 2, , ,x x x  be
equally spaced x values (called mesh points) with interval .h

i.e., 1 0 2 1, ,x x h x x h    

Also denote 0 0 1 1 2 2( ), ( ), ( ),y y x y y x y y x   

By separating variables, the differential equation in (1) becomes

( , ) .dy f x y dx ...(1A)

Integrating (1A) from 0x to 1x with respect to x, (at the same time y changes from 0y to

1y ) we get

1 1

0 0

( , )
y x

y x

dy f x y dx 

or
1

1 0

0

( , )
x

y y f x y dx
x

  

or
1

1 0

0

( , )
x

y y f x y dx
x

   …(2)

Assuming that 0 0( , ) ( , )f x y f x y in 0 1,x x x  (2) gives

1 0 0 0 1 0( , )( )y y f x y x x  

or 1 0 0 0( , ).y y h f x y 

Similarly, for the range 1 2 ,x x x  we have

2

2 1

1

( , )
x

y y f x y dx
x

   …(3)

Assuming that 1 1( , ) ( , )f x y f x y in 1 2 ,x x x  (3) gives

2 1 1 1( , ).y y h f x y 
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Proceeding in this way, we obtain the general formula

1 ( , )n n n ny y hf x y   ( 0, 1, )n   …(4)

The above is called the Euler method or Euler-Cauchy method.

Working Rule (Euler method)

Given the initial value problem (1).    Suppose 0 1 2, , ,x x x  be equally spaced x values
with interval .h i.e., 1 0 ,x x h  2 1 ,x x h   Also denote 0 0( ),y y x 1 1( ),y y x 2 2( ),y y x 

Then the iterative formula of Euler method is:

1 ( , )n n n ny y hf x y   ( 0, 1, )n   …(5)

Example Use Euler’s method with h = 0.1 to solve the initial value problem
22 yx

dx

dy
 with (0) 0y  in the range 0 0.5.x 

Here 2 2
0 0( , ) , 0, 0, 0.1.f x y x y x y h    

Hence

1 0 2 1 3 20.2, 0.2, 0.3,x x h x x h x x h         4 3 5 40.4, 0.5.x x h x x h     

We determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in

1 ( , )n n n ny y hf x y  

we obtain
2 2

1 0.1( )n n n ny y x y    ( 0, 1, )n  

2 2
1 0 0 00.1( ) 0 0.1(0 0) 0.y y x y      

2 2 2 2
2 1 1 10.1( ) 0 0.1 (0.1) 0 0.001.y y x y         

2 2 2 2
3 2 2 20.1( ) 0.001 0.1 (0.2) (0.001) 0.005.y y x y         

2 2 2 2
4 3 3 30.1( ) 0.005 0.1 (0.3) (0.005) 0.014.y y x y         

2 2 2 2
5 4 4 40.1( ) 0.014 0.1 (0.4) (0.014) 0.0300196.y y x y         

Hence

(0) 0y  (0.1) 0y  (0.2) 0.001y 

(0.3) 0.005y  (0.4) 0.014y  (0.5) 0.0300196.y 
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Example Using Euler method solve the equation 12  xyy with (0) 0, 0.02y h  for
0.1.x 

Here 0 0( , ) 2 1, 0, 0, 0.02.f x y xy x y h     Hence

1 0 2 1 3 20.02, 0.04, 0.06,x x h x x h x x h         4 3 5 40.08, 0.1.x x h x x h     

We  determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in

1 ( , )n n n ny y hf x y  

we obtain

1 0.02(2 1)n n n ny y x y    ( 0, 1, )n  

1 0 0 00.02(2 1) 0 0.02(0 1) 0.02.y y x y      

2 1 1 10.02(2 1) 0.02 0.02(2 0.02 0.02 1) 0.04y y x y         ,

approximate to 2 places of decimals

3 2 2 20.02(2 1) 0.04 0.02(2 0.04 0.04 1) 0.06y y x y        

4 3 3 30.02(2 1) 0.06 0.02(2 0.06 0.06 1) 0.08y y x y        

5 4 4 40.02(2 1) 0.08 0.02(2 0.08 0.08 1) 0.1y y x y        

Hence

(0) 0y  (0.02) 0.02y  (0.04) 0.04y 

(0.06) 0.06y  (0.08) 0.08y  (0.1) 0.1.y 

That is the approximate value of (0.1)y is 0.1.

Example Given the initial value problem , (0) 0.y x y y    Find the value of y

approximately for 1x  by Euler method in five steps.  Compare the result with the exact
value.

Here 0 0 0( , ) , 0, ( ) (0) 0.f x y x y x y y x y     As we have to calculate the value of y in

five steps, we have to take 0 1 0
0.2.

5
nx x

h
n
 

   Hence

1 0 2 1 3 20.2, 0.4, 0.6,x x h x x h x x h         4 3 5 40.8, 1.0.x x h x x h     

We determine 1 2 3 4 5, , , ,y y y y y using the Euler formula (5).  Substituting the given value in
(5), we obtain

1 0.2( )n n n ny y x y    ( 0, 1, )n  
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The steps are given in the following Table.

Also the exact solution to the linear differential equation y x y   with the initial
condition (0) 0y  can be found out to be

1.xy e x   …(6)

The exact values of y can be evaluated from (6) by substituting the corresponding x

values, in particular,
1 0.2

1 1 1( ) 1 0.2 1 0.000,xy y x e x e        approximately.

The other exact values are also shown in the following table.

n nx

approxi
mate

value of
ny

0.2( )n nx y
Exact
values

Absolute
value

of Error

0 0.0 0.000 0.000 0.000 0.000

1 0.2 0.000 0.040 0.021 0.021

2 0.4 0.040 0.088 0.092 0.052

3 0.6 0.128 0.146 0.222 0.094

4 0.8 0.274 0.215 0.426 0.152

5 1.0 0.489 0.718 0.229

The approximate value of (1.0)y by Euler’s method is 0.489, while exact value is 0.718.

Exercises

In Exercises 1-11, solve the initial value problem using Euler’s method for value of y at
the given point of x with given ( h is given in brackets)

1. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  ( 0.1).h 

2. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  ( 0.02).h 

3. , (0) 1.5yy x y   at the point 0.2x  ( 0.1).h 

4. 1
3 , (0) 1

2
dy

x y y
dx
   at the point 0.2x  ( 0.05).h 

5. , (0) 1y x y xy y     at the point 0.1x  ( 0.02).h 
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6. 21 , (0) 0
dy

y y
dx
   at the point 0.4x  ( 0.2).h 

7. , (0) 1
dy

xy y
dx
  at the point 0.4x  ( 0.2).h 

8. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  ( 0.1).h 

9. 2 , (0) 1y x y y    at the point 0.1x  ( 0.05).h 

10. 2 , (0) 1y xy y   at the point 0.5x  ( 0.1).h 

11. , (0) 1y y y    at the point 0.04x  ( 0.01).h 

In Exercises 12-15, apply Euler’s method.  Do 10 steps.  Also solve the problem exactly.
Compute the errors to see that the method is too inaccurate for practical purposes.

12. 0.1 0, (0) 2, 0.1y y y h    

13. 21
1 , (0) 0, 0.1

2
y y y h    

14. 4 25 0, (0) 1, 0.2y x y y h    

15. 2( ) , (0) 1, 0.1y y x y h    

16. Solve using Euler’s method ( )y x y y x    with (0) 2y  for the range 0.00(0.02)0.06.

17. Solve using Euler’s method 2x
y y

y
   with 1y  at 0x  for 0.5h  on the interval

[0, 1].

18. Using Euler’s method find (0.2)y of the initial value problem 2 , (0) 1,y x y y   

taking 0.1.h 

19. Using Euler’s method find the value of y at the point 2x  in steps of 0.2 of the initial

value problem 2 , (1) 1
dy

xy y
dx
   .

Modified Euler  Method

Modified Euler method is given by the iteration formula

( 1) ( )
1 0 0 0 1 1[ ( , ) ( , )],

2
n nhy y f x y f x y    0, 1, 2,n  

where ( )
1

ny is the nth approximation to 1y . The iteration formula  can be started by
choosing (0)

1y from Euler’s formula

(0)
1 0 0 0( , ).y y hf x y 
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Example Using modified Euler’s method, determine the value of y when  0.1x given
that

   2 ; (0) 1.y x y y (Take  0.05)h

Here 2
0 0( , ) ; 0, 1.f x y x y x y   

(0)
1 0 0 0( , ) 1 0.05(1) 1.05y y hf x y    

  (1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y

  0.051 [ (0, 1) (0.05, 1.05)]
2

f f

   21 0.025[1 (0.05) 1.05]

 1.0513

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

  0.051 [ (0, 1) (0.05, 1.0513)]
2

f f

   21 0.025[1 (0.05) 1.0513]

 1.0513

Hence we take 1 1.0513,y which is correct to four decimal places.

Formula takes the form

   ( 1) ( )
2 1 1 1 2 2[ ( , ) ( , )]

2
n nhy y f x y f x y 0, 1, 2,n  

where we first evaluate (0)
2y using the Euler formula

 (0)
2 1 1 1( , ).y y hf x y

21.0513 0.05 (0.05) 1.0513 1.1040     

  (1) (0)
2 1 1 1 2 2[ ( , ) ( , )]

2
hy y f x y f x y

           
2 20.051 (0.05) 1.0513 (0.1) 1.1040

2

 1.1055
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  (2) (1)
2 1 1 1 2 2[ ( , ) ( , )]

2
hy y f x y f x y

           
2 20.051 (0.05) 1.0513 (0.1) 1.1055

2

 1.1055

Hence we take 2 1.1055y .

Hence  the value of y when  0.1x is 1.1055 correct to four decimal places.

Example Using modified Euler’s method, determine the value of y when 0.2x  given
that

; (0) 1.
dy

x y y
dx
   (Take 0.2)h 

Here 0 0( , ) ; 0, 1.f x y x y x y   

(0)
1 0 0 0( , ) 1 0.2(0 1) 1.2y y hf x y     

  (1) (0)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y

0.21 [1 (0.2 1.2] 1.2295.
2

    

(2) (1)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

0.21 [1 (0.2 1.2295] 1.2309.
2

    

(3) (2)
1 0 0 0 1 1[ ( , ) ( , )]

2
hy y f x y f x y  

0.21 [1 (0.2 1.2309] 1.2309.
2

    

Hence we take 1(0.2) 1.2309.y y  .

Exercises

In Exercises 1-11, solve the initial value problem using modified Euler’s method for value
of y at  the given point of x with given ( h is given in brackets)

1. 1 , (0) 0
dy

y y
dx
   at the point 0.2x  ( 0.1).h 

2. , (0) 1
1

dy y x
y

dx x


 


at the point 0.1x  ( 0.02).h 
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3. , (0) 1.5yy x y   at the point 0.2x  ( 0.1).h 

4. 1
3 , (0) 1

2
dy

x y y
dx
   at the point 0.2x  ( 0.05).h 

5. , (0) 1y x y xy y     at the point 0.1x  ( 0.02).h 

6. 21 , (0) 0
dy

y y
dx
   at the point 0.4x  ( 0.2).h 

7. , (0) 1
dy

xy y
dx
  at the point 0.4x  ( 0.2).h 

8. 1 ln( ), (0) 1
dy

x y y
dx
    at the point 0.2x  ( 0.1).h 

9. 2 , (0) 1y x y y    at the point 0.1x  ( 0.05).h 

10. 2 , (0) 1y xy y   at the point 0.5x  ( 0.1).h 

11. , (0) 1y y y    at the point 0.04x  ( 0.01).h 
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SOLUTION OF  SYSTEMS OF LINEAR EQUATIONS

Solution of system of linear equations

A system of m linear equations in n unknowns x1, x2, .  .  .  , xn is a set of equations of
the form

a1 1 x1 + a1 2 x2 +    .   .   .    + a1 n x n = b1

a2 1 x1 + a2 2 x2 +    .   .   .    + a2 n x n = b2

.  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .   .  .  .

a m 1 x1 + a m 2 x2 +   .   .   .     + a m n x n = b m

where the coefficients a j k and the b j are given numbers.  The system is said to be
homogeneous if all the b j are zero; otherwise, it is said to be non-homogeneous.

The system of linear equations is equivalent to the matrix equation (or the single vector
equation)

Ax b

where the coefficient matrix [ ]i jA a is the m  n matrix and x and b are the column
matrices (vectors) given by:

11 12 1

21 22 2

1 2

...

...
. . ... .

...

n

n

m m mn

a a a
a a aA

a a a

 
 
  
 
 

,
1
2
.
.

x
x

xn

x

 
 
 
 
  

and
1
2
.
.

b
b

bm

b

 
 
 
 
  

A solution of the system is a set of numbers x1, x2, .  .  .  , xn which satisfy all the m
equations, and a solution vector of (1) is a column matrix  whose components constitute a
solution of system.  The method of solving such a system using methods like Cramer’s
rule is impracticable for large systems.  Hence, we use other methods like Gauss
elimination.

Gauss Elimination Method

In the Gauss elimination method, the solution to the system of equations  is obtained
in two stages.  In the first stage, the given system of equations is reduced to an equivalent
upper triangular form using elementary transformations.  In the second stage, the upper
triangular system is solved using back substitution procedure by which we obtain the
solution in the order 1 2 2 1, , , , , .    n n nx x x x x

UNIT 3
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Example Solve the system

1 2 3 42 2 6x x x x    …(1)

1 2 3 46 6 6 12 36x x x x    …(2)

1 2 3 44 3 3 3 1x x x x    …(3)

1 2 3 42 2 10x x x x    …(4)

To eliminate x1 from equations (2), (3) and (4), we subtract suitable multiples of equation
(1) and we get the following system of equations:

(2)  3  (1)  9x2 + 0x3 + 9x4 =  18 …(5)

(3)  2  (1)  x2  x3 5x4 = 13 …(6)

(4)  1  (1)  x2  3x3 +0x4 =    4 …(7)

To eliminate x2 from equations  (6) and (7), subtract suitable multiples of equation (5) and
get the following system of equations:

(6)  (-1/9)(5)  x3 4x4 = 11 …(8)

(7)  (-1/9)(5)   3x3 + x4 = 6 …(9)

To eliminate x2 from equation  (9), subtract 3(8) and get the following equation:

13 x4 = 39 …(10)

From equation (10), x4 = 39/13 = 3; using this value of x4, (9) gives x3 = -1; using these
values of x4 and x3, (7) gives x2 = 1; using all these values (1) gives x1 = 2.  Hence the
solution to the system is x1 = 2, x2 = 1, x3 = 1, x4 = 3.

Note: The above method can be simplified using the matrix notation. The given system of
equations can be written as

xA b

and the augmented matrix is

2 1 2 1 6

6 6 6 12 36

4 3 3 3 1

2 2 1 1 10

 
  
  
  

which  on successive row transformations give
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2 1 2 1 6

0 9 0 9 18

0 0 1 4 11

0 0 0 13 39

 
  
   
 
 

.

Hence

1

2

3

4

2 1 2 1 6

0 9 0 9 18

0 0 1 4 11

0 0 0 13 39

    
         
      
    

    

x

x

x

x

Back substitution gives

1 2x , 2 1x , 3 1 x , 4 3x

In the example, we had a11  0.  Otherwise we would not have been able to eliminate x1 by
using the equations in the given order.  Hence if a11  0 in the system of equations we
have to reorder the equations (and perhaps even the unknowns in each equation) in a
suitable fashion;  similarly, in the further steps.  Such a situation can be seen in the
following Example.

Example Using Gauss elimination solve:
3 9

2 2 8

5 8

y z

x y z

x z

 

  

  

Here the leading coefficient (i.e., coefficient of x) is 0.  Hence to proceed further we have to
interchange rows 1 and 2, so that

2x  + 2 y  z  = 8                                          …(1)

y    + 3 z   = 9                                          …(2)

 x   + 5 z                = 8                                         …(3)

Elimination of x from last two equations:

2x  + 2 y  z     = 8

y    + 3 z      = 9

(3) +
2

1 (1) y   +
2

9 z     = 12                                         …(4)

Elimination of y from last equation:

2x  + 2 y  z     = 8

y    + 3 z      = 9
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(4)  (2)
2

3 z     = 3                                           …(5)

Hence z  = 2,   y = 9 – 6 = 3,    x = 2.

Hence

2

3 .

2

x

y

z

   
      
      

Partial and Full Pivoting

In each step in the Gauss elimination method, the coefficient of the first unknown
in the first equation is called pivotal coefficient. By the above Example, the Gauss
elimination method fails if any one of the pivotal coefficients becomes zero.  In such a
situation, we rewrite the equations in a different order to avoid zero pivotal coefficient.
Changing the order of equations is called pivoting.

In partial pivoting, if the pivotal coefficient iia happens to be zero or near to zero,
the ith column elements are searched for the numerically largest element.  Let the jth row
(j>i) contains this element, then we interchange the ith equation with the jth equation and
proceed for elimination.  This process is continued whenever pivotal coefficients become
zero during elimination.

In total pivoting, we look for an absolutely largest coefficient in the entire system
and start the elimination with the corresponding variable, using this coefficient as the
pivotal coefficient (for this we have to interchange rows and columns, if necessary);
similarly in the further steps.  Total pivoting, in fact, is more complicated than the partial
pivoting.  Partial pivoting is preferred for hand calculation.

Example Solve the system

1 20.0004 1.402 1.406 x x …(1)

1 20.4003 1.502 2.501 x x …(2)

by Gauss elimination (a) without pivoting (b) with partial pivoting.

(a) without pivoting (choosing the first equation as the pivotal equation)

1 20.0004 1.402 1.406 x x …(1a)

0.40031
(2) (1 )

0.0001
  a 21405 1404  x …(2a)

and so 2
1404

0.9993
1405
 x

and hence from (1a),
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 1
1 0.005

1.406 1.402 0.9993 12.5.
0.0004 0.0004
    x

(b) (with partial pivoting )

Since 11a is small and is nearer to zero as compared with 21a , we accept 21a as the
pivotal coefficient (i.e. second equation becomes the pivotal equation).  To start with we
rearrange the given system as follows:

1 20.4003 1.502 2.501 x x …(3)

1 20.0004 1.402 1.406 x x …(4)

Now by Gauss elimination  the system becomes,

1 20.4003 1.502 2.501 x x …(3a)

0004
(4) (3)

4003



 21.404 1.404x …(4a)

and so 2
1.404

1
1.404
 x

and from (3a) 1
1

(2.501 1.502 1) 10.
0.4003
   x

Example Solve the following system (i) without pivoting (ii) with pivoting

0.0002 0.3003 0.1002x y  . . . (1)

2.0000 3.0000 2.0000.x y  . . . (2)

(i) without pivoting
0.0002 0.3003 0.1002x y 

2
(2) (1)

0002
 


0.3003 2 0.1002 23.000 2.0000
0.0002 0.0002

     
 

y

i.e., 1498.5 499.y 

Now by back substitution, the solution to the system is given by 0.3330y  and 0.5005x  ;

(ii) With pivoting:

Since 11a is small and is nearer to zero as compared with 21a , we accept 21a as the
pivotal coefficient (i.e. second equation becomes the pivotal equation).  To start with we
rearrange the given system as follows:

2.0000 3.0000 2.0000x y  . . . (3)

0.0002 0.3003 0.1002x y  . . . (4)
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0002
(4) (3)

2


  3.0000 0.0002 2 0.00020.3003 0.1002

2 2
     

 
y

which simplifies to
0.3000 0.1000.y 

Hence by bank substitution, the solution is

1
3

y  and 1 .
2

x 

Cholesky Method (Modification of the Gauss method)

Cholesky method, which is a modification of the Gauss method, is based on the result
that any positive definite square matrix A can be represented in the form A = LU, where L
and U are the unique lower and upper triangular matrices.  The method is illustrated
through the following examples.

Example Using Cholesky’s method, solve the system:

x1 + 2x2 +  3x3 =  14

2x1 + 3x2 + 4x3 =  20

3x1 +  4x2 + x3 =  14

(LU decomposition of the coefficient matrix A)

A
1 2 3

2 3 4

3 4 1

 
 
 
  


2 2 1 21

3 3 1 31

( 2) 2

( 3) 3

    
    

R R R m

R R R m

2

1 2 3

~ 0 1

0 0 4

 
  
  




3 3 2 32( 2) 3    R R R m

We take
1 2 3
0 1 2
0 0 4

U
 
   
  

as the upper triangular matrix.

Using the multipliers 21 31 322, 3, 2     m m m , we get the lower triangular matrix as
follows:

21

31 32

1 0 0 1 0 0
1 0 2 1 0

3 2 11
L m

m m

                

.

(Solution of the system)

2

1 2 3

~ 0 1

0 2 8

 
  
  


 
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The given system of equations can be written as

1 0 0

2 1 0

3 2 1

 
 
 
  

1 2 3

0 1 2

0 0 4

 
   
  

1

2

3

 
 
 
  

x

x

x

=
14

20

14

 
 
 
  

. . . (1)

The above can be written as

1 0 0

2 1 0

3 2 1

 
 
 
  

1

2

3

 
 
 
  

y

y

y

=
14

20

14

 
 
 
  

. . . (2)

where

1 2 3

0 1 2

0 0 4

 
   
  

1

2

3

 
 
 
  

x

x

x

=
1

2

3

 
 
 
  

y

y

y

. . . (3)

Solving the system in (2) by forward substitution, we get

1

2

3

 
 
 
  

y

y

y

=
14

8

12

 
  
  

With these values of 1y , 2y , 3y , Eq. (3) can now be solved by back substitution and we
obtain

1

2

3

 
 
 
  

x

x

x

=
1

2

3

 
 
 
  

Example Solve the equations
2 3 9x y z  

2 3 6x y z  

3 2 8x y z  

by LU decomposition.

(LU decomposition of the coefficient matrix A)

Proceeding as in the above example,

2 3 1

1 50
2 2

0 0 18

U

 
 
 
 
  

and

1 0 0

1 1 0
2
3 7 1
2

L

 
 
 
  
 
   
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(Solution of the system)

The given system of equations can be written as

1 0 0 2 3 1 9

1/ 2 1 0 0 1/ 2 5/ 2 6

3/ 2 7 1 0 0 18 8

x

y

z

       
              
              

… (iv)

or, as
1

2

3

1 0 0 9

1/ 2 1 0 6 ,

3/ 2 7 1 8

y

y

y

     
          
          

… (v)

where
1

2

3

2 3 1

0 1/ 2 5/ 2 .

0 0 18

x y

y y

z y

     
          
          

… (vi)

Solving the system in (v) by forward substitution, we get

1 9,y  2
3 ,
2

y  3 5y  .

With these values of 1 2 3, , ,y y y eq. (vi) can now be solved by the back substitution process
and we obtain

35 ,
18

x  29 ,
18

y  5 .
18

z 

Gauss Jordan Method

The method is based on the idea of reducing the given system of equations Ax = b,
to a diagonal system of equations Ix = d, where I is the identity matrix, using elementary
row operations. We know that the solutions of both the systems are identical. This
reduced system gives the solution vector x. This reduction is equivalent to finding the
solution as 1x A b .

In this case, a system of 3 equations in 3 unknowns

11 1 12 2 13 3 1

21 2 22 2 23 3 2

31 2 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

is written as

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

(*)

a a a x b

a a a x b

a a a x b

     
             
          

After some linear transformations, we obtain the 3 × 3 system as
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1 1

2 2

3 3

1 0 0

0 1 0 (**)

0 0 1

x d

x d

x d

    
            
         

To obtain the system as given in (**), first we augment the matrices given is (*) as,

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

 
 
 
  

and after some elementary operations, it

is written as,

1

2

3

1 0 0

0 1 0 (***)

0 0 1

d

d

d

 
     
  

, this helps us to write the given

system as given in (**).  Then it is easy to get the solution of the system as
1 1 2 2 3 3,x d x d and x d   .

Elimination procedure: The first step is same as in Gauss elimination method, which is, we
make the elements below the first pivot in the augmented matrix as zeros, using the
elementary row transformations. From the second step onwards, we make the elements
below and above the pivots as zeros using the elementary row transformations. Lastly, we
divide each row by its pivot so that the final matrix is of the form (***).  Partial pivoting
can also be used in the solution. We may also make the pivots as 1 before performing the
elimination.

Problem: Solve the following system of equations

1 2 3

1 2 3

1 2 3

1

4 3 6

3 5 3 4

x x x

x x x

x x x

  

  

  

using the Gauss-Jordan method without partial pivoting

Solution:

We have the matrix form as

1

2

3

1 1 1 1

4 3 1 6

3 5 3 4

x

x

x

    
         
        

.  Then the augmented matrix is,

1 1 1 1

4 3 1 6

3 5 3 4

 
  
  

(i) To do the eliminations follow the operations,
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R2= R2 – 4R1, and R3= R3 – 3R1.  This gives,

1 1 1 1

0 1 5 2

0 2 0 1

 
   
  

Then,  R1=R1 + R2 and R3 =R3+ 2R2 gives,

1 0 4 3

0 1 5 2

0 0 10 5

 
   
  

R1=R1 – (4/10) R3, R2=R2 – (5/10) R3 gives,

1
1 0 0

1
0 1 0

2
0 0 10 5

 
 
  
 

 
 

Now, making the pivots as 1, R2= ((– R2) and R3= (R3/(– 10))),  we get

1
2
1
2

1 0 0 1

0 1 0

0 0 1

 
 
 
  

Hence,
1

1
2 2

1
3 2

1 0 0 1

0 1 0

0 0 1

x

x

x

   
        
         

Therefore, the solution of the system is,

1 2 3
1 1

1, ,
2 2

x x x    .

Note: The Gauss-Jordan method looks very elegant as the solution is obtained directly.
However, it is computationally more expensive than Gauss elimination. For large n, the
total number of divisions and multiplications for Gauss-Jordan method is almost 1.5 times
the total number of divisions and multiplications required for Gauss elimination. Hence,
we do not normally use this method for the solution of the system of equations.

The most important application of this method is to find the inverse of a non-
singular matrix.  To obtain inverse of a matrix, we start with the augmented matrix of A
with the identity matrix I of the same order.

When the Gauss-Jordan procedure is completed, we obtain, the matrix A
augmented with I, A I   in the form 1I A   , since 1AA I  .
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Example Using Gauss Jordan method solve the system of equations:

x + 2y + z =   8                                              … (1)

2x + 3y + 4z = 20                                            … (2)

4x +  3y + 2z = 16                                             … (3)

[Elimination of  x from Eqs. (2) and (3), using (1)]

x + 2y + z =     8 … (1a)

 y + 2z =    4                                            … (2a)

5y  2z = 16                                        … (3a)

[Elimination of  y  from (1a) and (3a), using (2a)]

x + 5z =  16                                        … (1b)

 y + 2z =    4 … (2b)

 12z = 36                                 … (3b)

[Elimination of  z  from (1b) and (2b), using (3b)]

x =  1                                          … (1c)

 y = 2                                     … (2c)

 12z = 36                                  … (3c)

Hence, x = 1, y = 2, z = 3.

Assignments

1. Apply Gauss elimination method to solve the equations:

2 3 5

4 4 3 3

2 3 1

x y z

x y z

x y z

  

  

   

2. Apply Gauss elimination method to solve the equations:

1 2 3

1 2 3

1 2 3

3 6 16

2 4 3 13

3 2 9

x x x

x x x

x x x

  

  

  

3. Apply Gauss elimination method to solve the equations:
10 2 9

2 20 2 44

2 3 10 22

x y z

x y z

x y z

  

   

   
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4. Apply Gauss elimination method to solve the equations:
10

2 2 17

3 2 17

x y z

x y z

x y z

  

  

  

5. Solve the system, using Gauss elimination method:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 4

7 12

6 5

4 6

x x x x

x x x x

x x x x

x x x x

   

   

    

    

6. Apply Gauss elimination method to solve the equations:
4 5

6 12

3 4

x y z

x y z

x y z

   

   

  

7. Solve the following system, using Cholesky method
10 12

2 10 13

2 2 10 14

x y z

x y z

x y z

  

  

  

8. Solve the following system, using Cholesky method

2 3 5

4 4 3 3

2 3 1

x y z

x y z

x y z

  

  

   

9. Solve the following system, using Cholesky method

2 3 9

2 3 6

3 2 8

x y z

x y z

x y z

  

  

  

10. Solve the following using Cholesky method:

3 1 1 4
1 2 2 3 .
2 1 3 4

x
y
z

     
     

          
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11. Find the inverse of the following matrix using Cholesky method:

1 1 1

1 2 4 .

1 2 2

 
  
  

12. Solve the following system using Gauss Jordan method:
2 3 1

4 5 25

3 4 2

x y z

x y z

x y z

   

  

  

13. Solve the following system using Gauss Jordan method:
2 3 4 7

5 2 2 7

6 3 10 23

x y z

x y z

x y z

  

  

  

MATRIX INVERSION USING GAUSS ELIMINATION

We know that X will be the inverse of an n-square non-singular matrix A if

,AX I …(1)

where I is the n n identity matrix.

Every square non-singular matrix will have an inverse.  Gauss elimination and Gauss-
Jordan methods are popular among many methods available for finding the inverse of a
non-singular matrix.

For the third order matrices, (1) may be written as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

0 1 0 .

0 0 1

     
          
          

a a a x x x

a a a x x x

a a a x x x

Clearly the above equation is equivalent to the three equations

11 12 13 11

21 22 23 21

31 32 33 31

1

0

0

     
          
          

a a a x

a a a x

a a a x

11 12 13 12

21 22 23 22

31 32 33 32

0

1

0

     
          
          

a a a x

a a a x

a a a x
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11 12 13 13

21 22 23 23

31 32 33 33

0

0

1

     
          
          

a a a x

a a a x

a a a x

We can therefore solve each of these systems using Gaussian elimination method and the
result in each case will be the corresponding column of 1.X A We solve all the three
equations simultaneously as illustrated in the following examples.

Example Using Gaussian elimination, find the inverse of the matrix
2 1 1

3 2 3 .

1 4 9

 
   
  

A

In this method, we place an identity matrix, whose order is same as that of A, adjacent to
A which we call augmented matrix.  Then the inverse of A is computed in two stages.  In the
first stage, A is converted into an upper triangular form, using Gaussian elimination
method.

We write the augmented system first and then apply low transformations:

2 1 1 1 0 0

3 2 3 0 1 0

1 4 9 0 0 1

 
 
 
  


3 31

2 2 2

7 17 1
2 2 2

2 1 1 1 0 0

0 1 0

0 0 1

 
  
  

3
2 2 12

1
3 3 12

by

by

R R R

R R R

 
 

 3 31
2 2 2

2 1 1 1 0 0

0 1 0

0 0 2 10 7 1

 
  
   

3 3 21by 7R R R 

The above is equivalent to the following three systems:

3 31
2 2 2

2 1 1 1

0

0 0 2 10

 
  
  

… (1)

31
2 2

2 1 1 0

0 1

0 0 2 7

 
 
 
   

… (2)

31
2 2

2 1 1 0

0 1

0 0 2 1

 
 
 
  

… (3)

Now the matrix equation of the system of equations corresponding to (1) is

11

3 31
212 2 2

31

2 1 1 1

0

0 0 2 10

     
           
          

x

x

x
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which on back substitution gives 31 21 115, 12, 3.    x x x

Similarly using the other two systems other x values are determined and hence the inverse
is given by

5 1
11 12 13 2 2

1 17 3
21 22 23 2 2

7 1
31 32 33 2 2

3

12 .

5



   
      
       

x x x

A x x x

x x x

All these operations are also performed on the adjacently placed identity matrix.

Example Use the Gaussian elimination method to find the inverse of the matrix

1 1 1

4 3 1

3 5 3

 
   
  

A .

At first, we place an identity matrix of the same order adjacent to the given matrix. Thus,
the augmented matrix can be written as

1 1 1 1 0 0

4 3 1 0 1 0

3 5 3 0 0 1

 
  
  

. . . (1)

In order to increase the accuracy of the result, it is essential to employ partial pivoting.
We look for an absolutely largest coefficient in the first column and we use this coefficient
as the pivotal coefficient (for this we have to interchange rows if necessary)

In first column of matrix (1), 4 is the largest element, and hence is the pivotal element.
In order to bring 4 in the first row we interchange the first and second rows and obtain the
augmented matrix in the form

4 3 1 0 1 0

1 1 1 1 0 0

3 5 3 0 0 1

 
 
 
  

. . . (2)

3 1 1
4 4 41 0 0

1 1 1 1 0 0

3 5 3 0 0 1

 
 
 
  


1 1

1
by

4
R R

3 1 1
4 4 4

51 1
4 4 4

15 311
4 4 4

1 0 0

~ 0 1 0

0 0 1

 
  
  

2 2 1

3 3 1

by

by 3

R R R

R R R

 
 

We now search for an absolutely largest coefficient in the second column (and not in
the first row) and we use this coefficient as the pivotal coefficient.  The pivot element is
the max (1/4, 11/4) and is 11/4.  Therefore, we interchange  second and third rows of the
above.
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3 1 1
4 4 4

15 311
4 4 4

51 1
4 4 4

1 0 0

0 0 1

0 1 0

 
  
  

Now, divide R2 by  the pivot element a22 = 11/4, and obtain
3 1 1
4 4 4

15 3 4
11 11 11
51 1

4 4 4

1 0 0

0 1 0

0 1 0

 
  
  

In order to make the entries below 1 in the second column we perform

R3  R3  (1/4)R1 in  the above matrix and obtain
3 1 1
4 4 4

15 3 4
11 11 11
10 2 1
11 11 11

1 0 0

0 1 0

0 0 1

 
  
   

This is equivalent to the following three matrices
3 1
4 4

15
11
10
11

1 0

0 1 0

0 0 1

 
 
 
  

;

3 1 1
4 4 4

15 3
10 11
10 2
11 11

1

0 1

0 0

 
  
  

;

3 1
4 4

15 4
11 11
10 1
11 11

1 0

0 1

0 0

 
 
 
  

Thus we have

11 12 13
1

21 22 23

31 32 33

7 1 2
5 5 5
3 1

0
2 2

11 1 1
10 5 10

x x x

A x x x

x x x



  
   
        
    

  
 

Matrix Inversion using Gauss-Jordan method

This method is similar to Gaussian elimination method for matrix inversion, starting with
the augmented matrix [ ]AI and reducing A to the identity matrix using elementary row
transformations.  The method is illustrated in the following example.

Example Find the inverse of the following matrix A by Gauss-Jordan method.

1 1 1

4 3 1 .

3 5 3

A

 
   
  

The augmented matrix is given by

149

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


1 1 1 1 0 0

4 3 1 0 1 0

3 5 3 0 0 1

 
  
  

1 1 1 1 0 0

~ 0 1 5 4 1 0

0 2 0 3 0 1

 
    
  

2 2 1

3 3 1

by 4

by 3

R R R

R R R

 
 

1 1 1 1 0 0

~ 0 1 5 4 1 0

0 2 0 3 0 1

 
  
  

2 2by R R

1 0 4 3 1 0

~ 0 1 5 4 1 0

0 0 10 11 2 1

  
  
   

1 1 2

3 3 2

by

by 2

R R R

R R R

 
 

1 0 4 3 1 0

~ 0 1 5 4 1 0

0 0 1 11/10 1/ 5 1/10

  
  
   

3 3

1
by

10
R R

1 0 0 7 / 5 1/ 5 2 / 5

~ 0 1 0 3/ 2 0 1/ 2

0 0 1 11/10 1/ 5 1/10

 
  
   

1 1 3

2 2 1

by 4

by 5

R R R

R R R

 
 

Thus we have

1

7 1 2
5 5 5
3 1

0 .
2 2

11 1 1
10 5 10

A

  
 
  
 
 

  
 

 Triangulation Method (LU Decomposition Method):

In linear algebra, LU decomposition (also called LU factorization) factorizes a
matrix as the product of a lower triangular matrix and an upper triangular matrix

Let A be a non-singular square matrix. LU decomposition is a decomposition of the
form

A=LU

where L is a lower triangular matrix and U is an upper triangular matrix. This means that
L has only zeros above the diagonal and U has only zeros below the diagonal. For
example, for a 3-by-3 matrix A, its LU decomposition looks like this:
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11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

    
        
        

Consider a system of linear equations,

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

  

  

  

This can be written in the form,

Ax=b,

where
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
   
  

,
1
2
.
.

x
x

xn

x

 
 
 
 
  

and
1
2
.
.

b
b

bm

b

 
 
 
 
  

To solve the system of equations by LU decomposition, first we decompose A as LU,
where,

11 12 13

21 22 23

31 32 33

1 0 0

1 0 0

1 0 0

u u u

L l and U u u

l l u

   
       
      

This gives,

LUx = b.

Let Ux=y.   This implies,   Ly=b.

That is,

1 1

21 2 2

31 32 3 3

1 0 0

1 0

1

y b

l y b

l l y b

     
          
          

Thus,

1 1

21 1 2 2

31 1 32 2 3 3

y b

l y y b

l y l y y b


 

  
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This gives the y values by forward substitution, which means, substitute the value
of 1y given by the first equation in the second and solve 2y , then use these values of

1 2y and y in the third and solve 3y .

Then the system of equations

11 12 13 1 1

22 23 2 2

33 3 3

; 0

0 0

u u u x y

Ux y that is u u x y

u x y

    
         
        

gives the required values of 1 2 3,x x and x as the solution of the original system of linear
equations by backward substitution.

To decompose a matrix
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
   
  

, in the form

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

    
        
        

, we proceed as follows.

On multiplying
11 12 13

21 22 23

31 32 33

1 0 0

1 0 0

1 0 0

u u u

l and u u

l l u

   
   
   
      

, we get,

11 12 13

21 11 21 12 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

u u u

l u l u u l u u

l u l u l u l u l u u

 
   
    

Equating it with the corresponding terms of A, we get,

11 11 12 12 13 13

3121
21 11 21 21 31 11 31 31

11 11

21 12 22 22 22 22 21 12

21 13 23 23 23 23 21 13

31 12 32 22 32 31 13 32 23 33 33 32 33

; ;

;

;

;

,

,

u a u a u a

aa
l u a l l u a l

u u

l u u a u a l u

l u u a u a l u

simililarly

l u l u a l u l u u a gives l and u

  

     

    
    

    

.
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Example: Solve the following system of equations by LU decomposition.

2x+3y+z=9

x+2y+3z=6

3x+y+2z=8.

Solution:

The above system of equations is written as,

2 3 1 9

1 2 3 6

3 1 2 8

x

y

z

     
          
          

To decompose the matrix
2 3 1

1 2 3

3 1 2

 
 
 
  

in the form of LU, we equate the corresponding

terms of A and LU as already illustrated, and obtain

11 12 13

3121
21 31

11 11

22 22 21 12

23 23 21 13

2; 3; 1

1 3
;

2 2

1 1
2 3 ;

2 2
1 5

3 1 ;
2 2

u u u

aa
l l

u u

u a l u

u a l u

  

   

     

     

   

32 31 12
32

22

33 33 33 31 13 32 23

3
1 3

2 7
1
2

3 5 3 35
2 1 7 2 18

2 2 2 2

a l u
l and

u

u u a l u l u

 
   

                   
   

Hence,

51 1
2 2 2
3
2

2 3 1 1 0 0 2 3 1

1 2 3 1 0 0

3 1 2 7 1 0 0 18

    
         
        

This implies,

51 1
2 2 2
3
2

1 0 0 2 3 1 9

1 0 0 6

7 1 0 0 18 8

x

y

z

       
              
              

Consider
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1
51

22 2

3

2 3 1

0

0 0 18

x y

y y

z y

    
          
         

,  then
1

1
22

3
32

1 0 0 9

1 0 6

7 1 8

y

y

y

     
          
         

,

Solving these, we get,
1

3
2 2

3

9

5

y

y

y

   
      
     

That is,

5 31
2 2 2

2 3 1 9

0

0 0 18 5

x

y

z

     
          
          

Now, solving the above expression we obtain the values of x, y and z as a solution
of the given system of equations as,

35
18
29
18
5

18

x

y

z

  
      
     

.

Assignments

1. Using Gauss-Jordan method, find the inverse of the following matrices:

(i)
1 1 3

1 3 3

2 4 4

A

 
   
    

(ii)
1 1 2

1 2 4

2 4 7

B

 
   
  

2. Using Gaussian elimination method, find the inverse of the following matrices:

(i)
0 1 2

1 2 3

3 1 1

A

 
   
  

(ii)
2 0 1

3 2 5

1 1 0

B

 
   
  
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SOLUTION BY ITERATIONS

SOLUTION BY ITERATION: Jacobi’s iteration method and Gauss Seidel iteration method

The methods discussed in the previous section belong to the direct methods for
solving systems of linear equations; these are methods that yield solutions after an
amount of computations that can be specified in advance.

In this section, we discuss indirect or iterative methods in which we start from an
initial value and obtain better and better approximations from a computational cycle
repeated as often as may be necessary, for achieving a required accuracy, so that the
amount of arithmetic depends upon the accuracy required.

Jacobi’s iteration method and Gauss Seidel iteration method

Consider a linear system of n linear equations in n unknowns 1 2, , , nx x x of the form

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

     
          



     











n n

n n

n n

n n n nn n n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

. . . (1)

in which the diagonal elements iia do not vanish.

Now the system (1) can be written as

13 11 12
1 2 3

11 11 11 11

23 22 21
2 1 3

22 22 22 22

3 31 32 2
3 1 2

33 33 33 33

, 11 2
1 2 1




     

     

     



     













n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a

…  (2)

Suppose we start with (0) (0) (0)
1 2, , , nx x x as initial values to the variables 1 2, , , nx x x .  Then

we can find better approximations to 1 2, , , nx x x using the following two iterative
methods:

(i) Jacobi’s iteration method

Jacobi’s iteration method, also called the method of simultaneous displacements, is as follows:
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Step 1:  Determination of first approximation (1) (1) (1)
1 2, , , nx x x using (0) (0) (0)

1 2, , , nx x x .

(1) (0) (0) (0)13 11 12
1 2 3

11 11 11 11

(1) (0) (0) (0)23 22 21
2 1 3

22 22 22 22

(1) (0) (0) (0)3 31 32 2
3 1 2

33 33 33 33

, 1(1) (0) (0) (1 2
1 2 1




    

    

    

    











n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a
0)

















…  (3)

Step 2:  Similarly, (2) (2) (2)
1 2, , , nx x x are evaluated by just replacing (0)

rx in the right hand
sides equations in (3) by (1)

rx .

Step 1:n In general, if ( ) ( ) ( )
1 2, , ,n n n

nx x x are a system of n th approximations, then the next
approximation is given by the formula

( 1) ( ) ( ) ( )13 11 12
1 2 3

11 11 11 11

( 1) ( ) ( ) ( )23 22 21
2 1 3

22 22 22 22

( 1) ( ) ( ) ( )3 31 32 2
3 1 2

33 33 33 22

, 1( 1) ( ) ( )1 2
1 2









    

    

    

    











n n n nn
n

n n n nn
n

n n n nn
n

n nn n nn n n
n

nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x

a a a
( )

1

















n
n

nn

x
a

…  (4)

The system in (4) can also be briefly described as follows:

 ( 1) ( )

1

0,1,2, , 1, 2, ,




     
n

ijr ri
i j

ii iij
j i

ab
x x r i n

a a

A sufficient condition for obtaining a solution by Jacobi’s iteration method is the diagonal
dominance,

i.e.,
1

, 1, 2, , .



  
n

ij
j
j i

a a i nii

i.e., in each row of A the modulus of the diagonal element exceeds the sum of the off
diagonal elements and also the diagonal elements 0iia . If any diagonal element is 0, the
equations can always be re-arranged to satisfy this condition.
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(ii) Gauss Seidel iteration method

A simple modification to Jacobi’s iteration method is given by Gauss-Seidel method.

Step 1 (Gauss-Seidel method):  Determination of first approximation (1) (1) (1)
1 2, , , nx x x using

(0) (0) (0)
1 2, , , nx x x .

(1) (0) (0) (0)13 11 12
1 2 3

11 11 11 11

(1) (1) (0) (0)23 22 21
2 1 3

22 22 22 22

(1) (1) (1) (0)3 31 32 2
3 1 2

33 33 33 33

, 1(1) (1) (1) (1 2
1 2 1




    

    

    

    











n
n

n
n

n
n

n nn n n
n n

nn nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

ab a a
x x x x

a a a a
1)

















…  (5)

Step 1:n In general, if ( ) ( ) ( )
1 2, , ,n n n

nx x x are a system of n th approximations, then the next
approximation is given by the formula

( 1) ( ) ( ) ( )13 11 12
1 2 3

11 11 11 11

( 1) ( 1) ( ) ( )23 22 21
2 1 3

22 22 22 22

( 1) ( 1) ( 1) ( )3 31 32 2
3 1 2

33 33 33 33

( 1) ( 1) ( 11 2
1 2



 

  

  

    

    

    

  









n n n nn
n

n n n nn
n

n n n nn
n

n n nn n n
n

nn nn nn

a ab a
x x x x

a a a a

a ab a
x x x x

a a a a

b a a a
x x x x

a a a a

b a a
x x x

a a a
, 1) ( 1)

1
 














  




n n n

n
nn

a
x

a

…  (6)

(6) can be briefly described as follows:

1
( 1) ( 1) ( )

1 1

( 0,1,2, , 1, 2, , ).


 

  

       
i n

ij ijr r ri
i j j

ii ii iij j i

a ab
x x x r i n

a a a

Remark We note the difference between Jacobi’s method and Gauss-Seidel method.

(Attention! In the following the bold face letters must be carefully noted):

Jacobi’s method: In the first equation of (3), we substitute the initial approximations
(0) (0) (0)
2 3, , , nx x x into the right-hand side and denote the result as (1)

1 .x In the second
equation, we substitute ( ) ( ) (0), , , nx0 0

1 3x x and denote the result as (1)
2 .x In third, we

substitute (0)
nx(0) (0)

1 2, , … ,x x and call the result as (1)
3 .x The process is repeated in this

manner.
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Gauss-Seidel method: In the first equation of (3), we substitute the initial approximation
(0) (0)
2 , , nx x into the right-hand side and denote the result as (1)

1 .x In the second equation,
we substitute ( ) (0) (0)

3, , , nx x1
1x and denote the result as (1)

2 .x In third, we substitute
( ) ( ) (0), , , nx1 1
1 2x x and call the result as (1)

3 .x The process is repeated in this manner and
illustrated below:

Example 11 Solve the following system of equations using (a) Jacobi’s iteration method
and (b) Gauss-Seidel iteration method.

1 2 3 410 2 3x x x x   

1 2 3 42 10 15x x x x    

1 2 3 410 2 27x x x x    

1 2 3 42 10 9x x x x      .

Solution

To solve these equations by the iterative methods, we re-write them as follows:

1 2 3 40.3 0.2 0.1 0.1x x x x   

2 1 3 41.5 0.2 0.1 0.1x x x x   

3 1 2 42.7 0.1 0.1 0.2x x x x   

4 1 2 30.9 0.1 0.1 0.2x x x x    

It can be verified that these equations satisfy the diagonal dominance condition. The
process and given in the following Tables.

Table 1. Jacobi’s Method

31 2 4

1 0.3 1.56 2.886 0.1368

2 0.8869 1.9523 2.9566 0.0248

3 0.9836 1.9899 2.9924 0.0042

4 0.9968 1.9982 2.9987 0.0008

5 0.9994 1.9997 2.9998 0.0001

6 0.9999 1.9999 3.0 0.0
7 1.0 2.0 3.0 0.0

xx x xn










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Table 2. Gauss-Seidel method

From Tables 1 and 2, it is clear that twelve iterations are required by Jacobi’s method to
achieve the same accuracy as seven Gauss-Seidel iterations.

Example 12 Solve by Jacobi’s iteration method, the system of equations

1 2 3

1 2 3

1 2 3

20 7 17

3 20 18

2 3 20 25

x x x

x x x

x x x

  

   

  

Solution The given system of equations can be written as

1 2 3

17 1 7
20 20 20

x x x  

2 1 3

18 3 1
20 20 20

x x x   (3)

3 1 2

25 2 3
20 20 20

x x x  

31 2 4

0 . 3 1 . 5 2 . 7 0 . 91

0 . 7 8 1 . 7 4 2 . 7 0 . 1 82

3 0 . 9 1 . 9 0 8 2 . 9 1 6 0 . 1 0 8

0 . 9 6 2 4 1 . 9 6 0 8 2 . 9 5 9 2 0 . 0 3 64

5 0 . 9 8 4 5 1 . 9 8 4 8 2 . 9 8 5 1 0 . 0 1 5 8

6 0 . 9 9 3 9 1 . 9 9 3 8 2 . 9 9 3 8 0 . 0 0 6

7 0 . 9 9 7 5 1 . 9 9 7 5 2 . 9 9 7 6 0 . 0 0 2 5

8 0 . 9 9 9 0 1 . 9 9 9 0 2 . 9 9 9 0 0 . 0 0 1 0

9 0 . 9 9 9 6 1 . 9 9 9

xx x xn

















6 2 . 9 9 9 6 0 . 0 0 0 4

1 0 0 . 9 9 9 8 1 . 9 9 9 8 2 . 9 9 9 8 0 . 0 0 0 2

0 . 9 9 9 9 1 . 9 9 9 9 2 . 9 9 9 9 0 . 0 0 0 11 1
1 2 1 . 0 2 . 0 3 . 0 0 . 0






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We start from an approximation (0) (0) (0)

1 2 3
0  x x x to 1 2 3, ,x x x respectively.  Substituting

these values on the right sides of equations in (3), we get the first approximation values
(1)

1

17 0.85
20

x   , (1)

2

18 0.90
20

x     and (1)

3

25 1.25
20

x  

Putting these values on the right side of the equations in (2), we obtain the second
approximation values, (2)

1
1.02x  , (2)

2
0.965x   and (2)

3
1.03x  .  Similarly, third approximation

values are (3)

1
1.00125x  , (3)

2
1.0015x   and (3)

3
1.004x  and fourth approximation values are

(4)

1
1.000475x  , (4)

2
0.9999875x   and (4)

3
0.99965x  . It can be seen that the values approach the

exact solution 1 1x  , 2 1x   , 3 1x  .

Example 13 Solve, using Gauss-Seidel iteration method, the system:

x1 - 0.25x2 - 0.25x3 =   50

-0.25x1 + x2 - 0.25x4 =  50

-0.25x1 + x3 - 0.25x4 =  25

-0.25x2 - 0.25x3 + x4 =    25

Solution

The given system of equations can be written as

1 2 3
50 0.25 0.25x x x  

2 1 4
50 0.25 0.25x x x   …(2)

3 1 4
25 0.25 0.25x x x  

4 2 3
25 0.25 0.25x x x  

We start from an approximation (0) (0) (0)

1 2 3
100x x x   to 1 2 3, ,x x x respectively.  Then we get

approximation values as follows:
(1) (0) (0)

1 2 3
50 0.25 0.25 100.00x x x   

(1) (1) (0)

2 1 4
50 0.25 0.25 100.00x x x    (1) (1) (0)

3 1 4
50 0.25 0.25 75.00x x x   

(1) (1) (1)

4 2 3
25 0.25 0.25 68.75x x x   

Now second approximation values are given by:
(2) (1) (1)

1 2 3
50 0.25 0.25 93.75x x x   

(2) (2) (1)

2 1 4
50 0.25 0.25 90.62x x x    (2) (2) (1)

3 1 4
50 0.25 0.25 65.62x x x   

(2) (2) (2)

4 2 3
25 0.25 0.25 64.06x x x    .

160

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Note that the exact solution to the system is

1 2 3 487.5, 62.5x x x x   

Example 14 Using Gauss Siedel iteration solve the following system of equations, in three
steps starting from 1, 1, 1.

10 6x y z  

10 6x y z  

10 6x y z  

Solution 0.6 0.1 0.1x y z  

0.6 0.1 0.1

0.6 0.1 0.1

y x z

z x y

  

  

Step 1 Using x(0) = y(0) = z(0) = 1, we have

x(1) = 0.6  0.1 y(0)  0.1 z(0) = 0.6  0.1  0.1 = 0.4

y(1) = 0.6  0.1 x(1)  0.1 z(0) = 0.6  0.10.4  0.1 = 0.46

z(1) = 0.6  0.1 x(1)  0.1 y(1) = 0.6  0.10.4  0.10.46  = 0.514

Step 2 Using x(1) = 0.4, y(1)= 0.46, z(1) = 0.514, we have

x(2) = 0.6  0.1 y(1)  0.1 z(1) = 0.6  0.1  0.46  0.10.514 = 0.5026

y(2) = 0.6  0.1 x(2)  0.1 z(1) = 0.6  0.10.5026  0.10.514 = 0.49834

z(2) = 0.6  0.1 x(2)  0.1 y(2)

= 0.6  0.10.5026 0.10.49834  = 0.499906

Step 3 Using x(2) = 0.5026, y(2)= 0.49834, z(2) = 0.499906, we have

x(3) = 0.6  0.1 y(2)  0.1 z(2) = 0.6  0.1  0.49834 0.10.499906= 0.5001754

y(3) = 0.6  0.1 x(3)  0.1 z(2)

= 0.6  0.10.5001754 0.10.499906= 0.49999186

z(3) = 0.6  0.1 x(3)  0.1 y(3)

= 0.6  0.10.5001754 0.10.5001754= 0.49996492

We take x  5, y  5, z  5 as the solution of the given system of equations.
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Exercises

1. Apply Gauss Seidel iteration method to solve:
10 2 9x y z  

2 20 2 44x y z   

2 3 10 22x y z   

2. Apply Gauss Seidel iteration method to solve:
1.2 2.1 4.2 9.9x y z  

5.3 6.1 4.7 21.6x y z  

9.2 8.3 15.2x y z  

3. Apply Jacobi’s iteration method to solve:
5 10x y z  

2 10x y z  

5 1x y z   

4. Apply Jacobi’s iteration method to solve:
5 2 12x y z  

4 2 15x y z  

2 5 20x y z  

Answers

1. 1.013, 1.996, 3.001x y z   

2. 2, 3, 4x y z   (Approximately)

3. 13.223, 16.766, 2.306x y z    

4. 2.556, 1.722, 1.005x y z  

5. 1.08, 1.95, 3.16x y z  
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Curve Fitting

• Curve fitting describes techniques to fit curves at points 

between the discrete values to obtain intermediate 

estimates.

• Two general approaches for curve fitting:

a) Least –Squares Regression - to fits the shape or a) Least –Squares Regression - to fits the shape or 

general trend by sketch a best line of the data without 

necessarily matching the individual points (figure 

PT5.1, pg 426).

- 2 types of fitting:

i) Linear Regression

ii) Polynomial Regression

UNIT 4
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Figure shows sketches developed from same set 

of data by 3 engineers.
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a) least-squares regression - did not 
attempt to connect the point, but 
characterized the general upward 
trend of the data with a straight line

b) Linear interpolation - Used straight-
line segments or linear 
interpolation to connect the points. 
Very common practice in 
engineering. If the values are close 
to being linear, such approximation 
provides estimates that are 
adequate for many engineering adequate for many engineering 
calculations. However, if the data 
is widely spaced, significant errors
can be introduced by such linear 
interpolation.

c) Curvilinear interpolation - Used 
curves to try to capture suggested 
by the data.

� Our goal here to develop 
systematic and objective 
method deriving such curves.
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a) Least-square Regression 

: i) Linear Regression

• Is used to minimize the discrepancy/differences between the 

data points and the curve plotted. Sometimes, polynomial 

interpolation is inappropriate and may yield unsatisfactory 

results when used to predict intermediate values (see Fig. 

17.1, pg 455).17.1, pg 455).

Fig. 17.1 a): shows 7 

experimentally 

derived data points 

exhibiting significant 

variability. Data 

exhibiting significant 

error.
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Curve Fitting

Linear Regression is fitting a ‘best’ straight line through the points.

The mathematical expression for the straight line is:

y = a0+a1x+e Eq 17.1

where, a1- slope

a - intercepta0 - intercept

e  - error, or residual, between the model 

and the observations

Rearranging the eq. above as:

e = y - a0 - a1x

Thus, the error or residual, is the discrepancy between the true value y

and the approximate value, a0+a1x, predicted by the linear equation.
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Criteria for a ‘best’ Fit

• To know how a “best” fit line through the data is by minimize the sum 

of residual error, given by ;

where; n : total number of points

∑∑
==

−−=
n

i
ii

n

i
i xaaye

1
10

1

)( ----- Eq 17.2

• A strategy to overcome the shortcomings: The sum of the squares of 

the errors between the measured y and the y calculated with the linear 

model is shown in Eq 17.3;

∑ ∑∑
= ==

−−=−==
n

i

n

i
iielimeasuredi

n

i
ir xaayyyeS

1 1

2
10

2
mod,,

1

2 )()( ----- Eq 17.3
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Least-squares fit for a straight line

• To determine values for ao and a1, i) differentiate equation 

17.3 with respect to each coefficient, ii) setting the 

derivations equal to zero (minimize Sr), iii) set ΣΣΣΣao = n.ao to 

give equations 17.4 and 17.5, called as normal equations, 

(refer text book) which can be solved simultaneously for a1

and ao;

( )

xaya

xxn

yxyxn
a

ii

iiii

10

221

−=

−

−
=

∑ ∑
∑ ∑ ∑ ----- Eq 17.6

----- Eq 17.7
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Example 1

Use least-squares regression to fit a straight line to:

x 1 2 3 4 5 6 7

y 0.5 2.5 2.0 4.0 3.5 6.0 5.5y 0.5 2.5 2.0 4.0 3.5 6.0 5.5
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• Two criteria for least-square regression will provide the best estimates 

of ao and a1 called maximum likelihood principle in statistics:

i. The spread of the points around the line of similar magnitude along 

the entire range of the data.

ii. The distribution of these points about the line is normal.

• If these criteria are met, a “standard deviation” for the  regression line 

is given by equation:

---------- Eq. 17.9

sy/x : standard error of estimate

“y/x” : predicted value of y corresponding to a  particular value of x

n -2  : two data derived estimates ao and a1 were used to compute Sr

(we have lost 2 degree of freedom) 

2−
=

n

S
S r

x
y
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• Equation 17.9 is derived from Standard Deviation (Sy) 

about the mean :

-------- (PT5.2, pg 442 )

-------- (PT5.3, pg 442 )

1−
=

n

S
S t

y

∑ −= 2)( yyS it

St : total sum of squares of the residuals between data 

points and the mean.

• Just as the case with the standard deviation, the 

standard error of the estimate quantifies the spread of 

the data.

∑
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Estimation of error in summary
1. Standard Deviation

2. Standard error of the estimate

∑ −=

−
=

2)(

1

yyS

n

S
S

it

t
y

----- (PT5.2, pg 442 )

----- (PT5.3, pg 442 )

2. Standard error of the estimate

where, y/x designates that the error is for a predict value of y 

corresponding to a particular value of x.

2

)(
1 1

2

10

2

−
=

−−==∑ ∑
= =

n
r

S
S

xaayeiS

x
y

n

i

n

i
ir ----- Eq 17.8

----- Eq 17.9
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3. Determination coefficient

t

rt

S

SS
r

−
=2 ----- Eq 17.10

4. Correlation coefficient

∑ ∑ ∑ ∑

∑ ∑ ∑
−−

−
=

−
=

2222 )()(

))((
@

iiii

iiii

t

rt

yynxxn

yxyxn
r

S

SS
r ----- Eq 17.11
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Example 2

Use least-squares regression to fit a straight line to:

x 1 2 3 4 5 6 7

y 0.5 2.5 2.0 4.0 3.5 6.0 5.5

Compute the standard deviation (Sy), the standard error 

of estimate (Sy/x) and the correlation coefficient (r) for 

data above (use Example 1 result) 
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Work with your buddy and lets do 

Quiz 1

Use least-squares regression to fit a straight line to:

Compute the standard error of estimate (Sy/x) and the 

correlation coefficient (r)

x 1 2 3 4 5 6 7 8 9

y 1 1.5 2 3 4 5 8 10 13
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Quiz 2

Compute the standard error of the estimate and the 

correlation coefficient.

x 0.25 0.75 1.25 1.50 2.00x 0.25 0.75 1.25 1.50 2.00

y -0.45 -0.60 0.70 1.88 6.00
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Linearization of Nonlinear 

Relationships

• Linear regression provides a powerful 

technique for fitting the best  line to data, where 

the relationship between the dependent and the relationship between the dependent and 

independent variables is linear.

• But, this is not always the case, thus first step in 

any regression analysis should be to plot and 

visually inspect whether the data is a linear 

model or not.
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Figure 17.8: a) data is ill-suited for linear regression,

b) parabola is preferable.
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• Linear regression is predicated on the fact that the

relationship between the dependent and

independent variables is linear - this is not always

the case.

Nonlinear Relationships 

• Three common examples are:

exponential : y = α1e
β1x

power : y = α2xβ2

saturation - growth - rate : y = α3

x

β3 + x
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• One option for finding the coefficients for a nonlinear fit is 

to linearize it.  For the three common models, this may 

involve taking logarithms or inversion:

Linearization of Nonlinear 

Relationships 

Model Nonlinear Linearized

exponential : y = α1e
β1x ln  y = lnα1 + β1x

power : y = α2xβ2 log  y = logα2 + β2 log x

saturation - growth - rate : y = α3

x

β3 + x

1
y

=
1

α3

+
β3

α3

1
x
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• After linearization, Linear regression can be applied to 

determine the linear relation.

• For example, the linearized exponential equation:  

Linearization of Nonlinear 

Relationships 

xy ln ln βα += xy 11ln ln βα +=

y xa10a
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Figure 17.9: Type of polynomial equations and their linearized

versions, respectively.
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• Fig. 17.9, pg 453 shows population growth of radioactive 

decay behavior.

Fig. 17.9 (a) :   the exponential model

------ (17.12)xey 1

1

βα=

α1 , β1 : constants,  β1 ≠ 0

This model is used in many fields of engineering to 

characterize quantities.

Quantities increase  :  β1 positive

Quantities decrease :  β1 negative 
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Fit an exponential model y = a ebx to:

x 0.4 0.8 1.2 1.6 2.0 2.3

y 750 1000 1400 2000 2700 3750

Example 2

Solution

• Linearized the model into;

ln y = ln a  + bx

y    =  a0 +  a1x ----- (Eq. 17.1)

• Build the table for the parameters used in eqs 17.6 and 17.7,  as 

in example 17.1, pg 444.
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xi yi ln yi xi
2 (xi)(ln yi) 

0.4 750 6.620073 0.16 2.648029

0.8 1000 6.900775 0.64 5.520620

1.2 1400 7.244228 1.44 8.693074

1.6 2000 7.600902 2.56 12.161443

2.0 2700 7.901007 4.00 15.802014

2.3 3750 8.229511 5.29 18.927875

ΣΣΣΣ 8.38.38.38.3 44.49649644.49649644.49649644.496496 14.0914.0914.0914.09 63.75305563.75305563.75305563.753055

416083.7
6

496496.44
ln383333.1

6

3.8

753055.63))(ln(09.14

496496.44ln3.8

6

1 1

2

11

====

==

==

=

∑ ∑

∑∑

= =

==

yx

yxx

yx

n

n

i

n

i
ii

n

i
i

n

i
i

i
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843.0
)3.8()09.14)(6(
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Figure 17.9: Type of polynomial equations and their linearized

versions, respectively.
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Power Equation

• Equation (17.13 ) can be linearized by taking base-10 

logarithm to yield:

-------- (17.13)

-------- (17.16)xy

xy

logloglog
2

2

βα

α β

+=

=

-------- (17.16)

• A plot of log y versus log x will yield a straight line with 

slope of ββββ2 and an intercept of log αααα2.

xy logloglog 22 βα +=
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Example 4

Linearization of a Power equation and fit equation 

(17.13) to the data in table below using a logarithmic 

transformation of the data.

x 1 2 3 4 5

y 0.5 1.7 3.4 5.7 8.4
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xi yi log xi log yi (log xi)
2 (log xi)(log yi)

1 0.5 0 -0.301 0 0

2 1.7 0.301 0.226 0.090601 0.068026

3 3.4 0.477 0.534 0.227529 0.2547183 3.4 0.477 0.534 0.227529 0.254718

4 5.7 0.602 0.753 0.362404 0.453306

5 8.4 0.699 0.922 0.488601 0.644478

ΣΣΣΣ 2.079 2.134 1.169135 1.420528
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134.2
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079.2
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420528.1))(log(log169135.1)(log
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2

11
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yx
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yx
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iii
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i
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n

i
i

b =
nΣ(log x i )(log y i ) − (Σ log x i )( Σ log y i )

nΣ(log x i )
2 − (Σ log x i )

2

b =
(5)(1.420528 ) − (2.079 )(2.134 )

(5)(1.169135 ) − (2.079 ) 2 = 1.75
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• Fig. 17.10 a), pg 455,  is 

a plot of the original 

data in its 

untransformed state, 

while fig. 17.10 b) is a 

plot of the transformed 

data.

• The intercept, log α = • The intercept, log α2 = 

-0.300, and by taking 

the antilogarithm, α2

= 10-0.3 = 0.5.

• The slope is β2 = 1.75, 

consequently, the 

power equation is : y 

= 0.5x1.75
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Figure 17.9: Type of polynomial equations and their linearized

versions, respectively.
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Saturation growth rate equation

• Equation (17.14) can be linearized by inverting it to  yield:

------- (17.14)

------- (17.17)
33

3 111

αα
β

+=
xy










+
=

x

x
y

3

3 β
α

------- (17.17)

• A plot of 1/y versus 1/x will yield a straight line with slope of 

ββββ3/αααα3 and an intercept of 1/αααα3

• In their transformed forms, these models are fit using  linear 

regression in order to evaluate the constant coefficients.

• This model well-suited for characterizing population growth 

under limiting conditions.

33 αα xy
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Example 5

Linearization of a saturation-growth 

rate equation to the data in table below.

x 0.75 2 2.5 4 6 8 8.5

y 0.8 1.3 1.2 1.6 1.7 1.8 1.7
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xi yi 1/ xi 1/ yi (1/xi)2 (1/ xi)(1/yi)

0.75 0.8 1.33333 1.25000 1.7777 1.6666

2 1.3 0.50000 0.76923 0.2500 0.3846

2.5 1.2 0.40000 0.83333 0.1600 0.3333

4 1.6 0.25000 0.62500 0.0625 0.1562

6 1.7 0.16667 0.58823 0.0278 0.0981

8 1.8 0.12500 0.55555 0.0156 0.0694

8.5 1.7 0.11765 0.58823 0.0138 0.10458.5 1.7 0.11765 0.58823 0.0138 0.1045

ΣΣΣΣ 2.89260 5.20940 2.3074 2.8127

5935.0
)8926.2()3074.2)(7(
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Lets do Quiz 3

Fit a power equation  and saturation 

growth rate equation to:

x 1 2 3 4 5 6 7x 1 2 3 4 5 6 7

y 2.1 2.2 2.3 2.4 2.5 2.6 2.7
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Figure 17.8: a) data is ill-suited for linear regression, b) parabola is 
preferable.
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Polynomial Regression

• Another alternative is to fit polynomials to the data using 

polynomial regression.

• The least-squares procedure can be readily extended to fit the 

data to a higher-order polynomial. 

• For example, to fit a second–order polynomial or quadratic:

• The sum of the squares of the residual is:

where n= total number of points

∑
=

−−−=
n

i
iiir xaxaayS

1

22
210 )(

exaxaay +++= 2
210
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• Then, taking the derivative of equation (17.18) with respect to 
each of the unknown coefficients, ao , a1 ,and, a2 of the 
polynomial, as in:

∑

∑

−−−−=

−−−−=

)(2

)(2

2
210

1

2
210

0

iiii
r

iii
r

S

xaxaayx
a

S

xaxaay
a

S

δ

δ
δ

δ
δ

• Setting the equations equal to zero and rearrange to develop set 
of normal equations and by setting ΣΣΣΣao = n.ao

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

∑ ∑ ∑
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S
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• The above 3 equations are linear with 3 unknowns  coefficients (ao , 
a1 ,and, a2) which can be calculated directly from observed data.

• In matrix form:

• The two-dimensional case can be easily extended to an mth-order 


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• The two-dimensional case can be easily extended to an m -order 
polynomial as:

• Thus, standard error for mth-order polynomial :

exaxaxaay m
m +++++= ...2

210

)1(/ +−
=

mn

S
S r

xy ----- 17.20
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Example 6
Fit a second order polynomial to the data in the first 2 columns of 

table 17.4:

xi yi xi
2 xi

3 xi
4 xi yi xi

2 yi

0 2.1 0 0 0 0 0

1 7.7 1 1 1 7.7 7.7

2 13.6 4 8 16 27.2 54.4

• From the given data:

m = 2 Σxi = 15          Σ xi
4 = 979 y = 25.433

n = 6 Σ yi = 152.6    Σ xiyi = 585.6 Σ xi
3 = 225

x = 2.5 Σ xi
2 = 55       Σ xi

2yi = 2488.8

3 27.2 9 27 81 81.6 244.8

4 40.9 16 64 256 163.6 654.4

5 61.1 25 125 625 305.5 1527.5

ΣΣΣΣ 15 152.6 55 225 979 585.6 2488.8
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• Therefore, the simultaneous linear equations are:

• Solving these equations through a technique such as Gauss 
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• Solving these equations through a technique such as Gauss 

elimination gives:

ao = 2.47857, a1 = 2.35929, and a2 = 1.86071

• Therefore, the least-squares quadratic equation for this 

case is:

y = 2.47857 + 2.35929x + 1.86071x2

• To calculate st and sr , build table 17.4 for columns 3 and 

4.
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xi yi (yi- y )2 (yi-ao-a1xi-a2xi
2)2

0 2.1 544.44 0.14332

1 7.7 314.47 1.00286

2 13.6 140.03 1.08158

3 27.2 3.12 0.80491

4 40.9 239.22 0.61951

5 61.1 1272.11 0.09439

Σ 152.6 2513.39 3.74657

74657.3)(

39.2513)(
22

210 =−−−Σ=

=−Σ=

iiir

it

xaxaayS

yyS

The standard error (regression polynomial):

12.1
)12(6

74657.3

)1(
=

+−
=

+−
=

mn

S
S r

x
y
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• The correlation coefficient can be calculated by using equations 

17.10 and 17.11, respectively:

Therefore, r2 = (S – S ) / S =  (2513.39 – 3.74657) / 2513.39

∑ ∑ ∑ ∑

∑ ∑ ∑
−−

−
=

−
=

2222 )()(

))((
@

iiii

iiii

t

rt

yynxxn

yxyxn
r

S

SS
r

t

rt

S

SS
r

−
=2

Therefore, r2 = (St – Sr) / St =  (2513.39 – 3.74657) / 2513.39

r2 =  0.99851

∴The correlation coefficient is, r = 0.99925

• The results indicate that 99.851% of the original  uncertainty has 

been explained by the model. This result supports the conclusion 

that the quadratic equation represents an excellent fit, as evident 

from Fig.17.11.
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Figure 17.11: fit of a second-order polynomial
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Introduction

The problem of numerical integration is to find an approximate value of the integral

 I = 
a

b

�  w(x) f(x) dx

where w(x) > 0 in (a, b) is called the weight function. The function f(x) may be given explicitly
or as a tabulated data. We assume that w(x) and w(x) f(x) are integrable on [a, b]. The limits of
integration may be finite, semi-infinite or infinite. The integral is approximated by a linear
combination of the values of f(x) at the tabular points as

 I = 
a

b

� w(x) f(x) dx = 
k

n

=
∑

0
 λk f(xk)

= λ0 f(x0) + λ1 f(x1) + λ2 f(x2) + ... + λn f(xn).

The tabulated points xk’s are called abscissas, f(xk)’s are called the ordinates and λk’s
are called the weights of the integration rule or quadrature formula (3.26).

We define the error of approximation for a given method as

  Rn(f) = 
a

b

� w(x) f(x) dx – 
k

n

=
∑

0

 λk f(xk).

Order of a method An integration method of the form (3.26) is said to be of order p, if it
produces exact results, that is Rn = 0, for all polynomials of degree less than or equal to p. That
is, it produces exact results for f(x) = 1, x, x2, ...., x p. This implies that

Rn(xm) = 
a

b

�  w(x) xm dx – 
k

n

=
∑

0

 λk xk
m = 0,  for m = 0, 1, 2, …, p.

The error term is obtained for f(x) = x p+1. We define

c = 
a

b

�  w(x) x p+1 dx – 
k

n

=
∑

0

 λk xk
p+1

where c is called the error constant. Then, the error term is given by

UNIT 5 

NUMERICAL INTEGRATION 
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Rn(f) = 
a

b

�  w(x) f(x) dx – 
k

n

=
∑

0

 λkf(xk)

= 
c

p( ) !+ 1
  f (p+1) (ξ), a < ξ < b.

The bound for the error term is given by

 | Rn (f) | ≤  
| |

( ) !
max | ( )( )c

p
f x

a x b

p

+ ≤ ≤

+

1
1 .

If Rn(x p+1) also becomes zero, then the error term is obtained for  f(x) = x p+2.

Integration Rules Based on Uniform Mesh Spacing

When w(x) = 1 and the nodes xk’s are prescribed and are equispaced with x0 = a, xn = b, where
h = (b – a)/n, the methods (3.26) are called Newton-Cotes integration rules. The weights λk’s
are called Cotes numbers.

We shall now derive some Newton-Cotes formulas. That is, we derive formulas of the
form

 I = 
a

b

�  f(x) dx = 
k

n

=
∑

0
 λk f(xk)

= λ0 f(x0) + λ1 f(x1) + λ2 f(x2) + ... + λn f(xn).

We note that, 
a

b

�  f(x) dx defines the area under the curve y = f(x), above the x-axis,

between the lines x = a, x = b.

Trapezium Rule

This rule is also called the trapezoidal rule. Let the curve
y = f(x), a ≤ x ≤ b, be approximated by the line joining the
points P(a, f(a)), Q(b, f(b)) on the curve (see Fig. 3.1).

Using the Newton’s forward difference formula, the
linear polynomial approximation to f(x), interpolating at
the points P(a, f(a)), Q(b, f(b)), is given by

f(x) = f(x0) + 
1
h

 (x – x0) ∆f(x0) (3.32)

where x0 = a, x1 = b and h = b – a. Substituting in (3.31),
we obtain

I = 
a

b

x

x

x

x

x

x
f x dx f x dx f x dx

h
x x dx f� � � �= = + −�

��
�

��
( ) ( ) ( ) ( )

0

1

0

1

0

1

0 0 0
1

∆

= (x1 – x0) f(x0) + 
1 1

2 0
2

0
0

1

h
x x f

x

x

( )−�
��

�
��

∆

y

O x

Q
P

a b

Fig. 5.1 Trapezium rule.
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= (x1 – x0) f(x0) + 
1

2h
 [f(x1) – f(x0)](x1 – x0)

2

= hf(x0) + 
h
2

 [f(x1) – f(x0)]

= 
h
2

 [f(x1) + f(x0)] = 
( )b a−

2
 [f(b) + f(a)].

The trapezium rule is given by

I = 
a

b

�  f(x) dx = 
h
2

 [f(x1) + f(x0)] = 
( )b a−

2
 [f(b) + f(a)].

Remark  Geometrically, the right hand side of the trapezium rule is the area of the trap-
ezoid with width b – a,  and ordinates f(a) and f(b), which is an approximation  to the area
under the curve y = f(x) above the x-axis and the ordinates x = a and x = b.

Error term in trapezium rule We show that the trapezium rule integrates exactly polyno-

mial of degree .1  ≤  That is, using the definition of error given in (3.27), we show that

 R1(f, x) = 0 for f(x) = 1, x.

Substituting f(x) = 1, x in (3.27), we get

 f(x) = 1: R1(f, x) = 
a

b

�  dx – 
( )b a−

2
 (2) = (b – a) – (b – a) = 0.

  f(x) = x: R1(f, x) = 
a

b

�  x dx – 
( )b a−

2
 (b + a) = 

1
2

 (b2 – a2) – 
1
2

 (b2 – a2) = 0.

Hence, the trapezium rule integrates exactly polynomial of degree ≤ 1, and the method
is of order 1.

Let f(x) = x2. From (3.28), we get

  c = 
a

b

�  x2 dx – 
( )b a−

2
 (b2 + a2) = 

1
3

 (b – a)3 – 
1
2

 (b3 + a2b – ab2 – a3)

= 
1
6

 (a3 – 3a2b + 3ab2 – b3) = – 
1
6

 (b – a)3.

Using (3.29), the expression for the error is given by

R1(f, x) = 
c
2 !

 f ″(ξ) = – 
( )

( ) ( )
b a

f
h

f
−

′′ = − ′′
3 3

12 12
ξ ξ

where a ≤ ξ ≤ b.

The bound for the error is given by

| R1 (f, x) | ≤ ( )
, max | ( )|

b a
M

h
M M f x

a x b

−
= = ′′

≤ ≤

3

2

3

2 212 12
where .
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If the length of the interval [a, b] is large, then b – a is also large and the error expres-
sion given (3.35) becomes meaningless. In this case, we subdivide [a, b] into a number of
subintervals of equal length and apply the trapezium rule to evaluate each integral. The rule
is then called the composite trapezium rule.

Composite trapezium rule Let the interval [a, b] be subdivided into N equal parts of length h.
That is, h = (b – a)/N. The nodal points are given by

a = x0, x1 = x0 + h, x2 = x0 + 2h, ..., xN = x0 + Nh = b.

We write

a

b

x

x

x

x

x

x

x

x
f x dx f x dx f x dx f x dx f x dx

N

N

N

� � � � �= = + + +
−

( ) ( ) ( ) ( ) ... ( )
0 0

1

1

2

1

.

There are N integrals. Using the trapezoidal rule to evaluate each integral, we get the
composite trapezoidal rule as

a

b
f x dx

h
� =( )

2
 [{f(x0) + f(x1)} + {f(x1) + f(x2)} + ... + {f(xN–1) + f(xN)}]

= 
h
2

 [f(x0) + 2{f(x1) + f(x2) + ... + f(xN–1)} + f(xN)].

The composite trapezium rule is also of order 1.

The error expression (3.34) becomes

R1(f, x) = – 
h

f f f x xN N N N

3

1 2 112
[ ( ) ( ) ... ( )], .′′ + ′′ + + ′′ < <−ξ ξ ξ ξ

The bound on the error is given by

 | R1(f, x) | ≤ 
h

f f f N

3

1 212
[| ( )| | ( )| ... | ( )|]′′ + ′′ + + ′′ξ ξ ξ

≤ 
Nh

M
b a h

M
3

2

2

212 12
= −( )

or  | R1(f, x) | ≤ 
( )b a

N
M

− 3

2 2
12

where  M2 = max | ( )|
a x b

f x
≤ ≤

′′  and Nh = b – a.

This expression is a true representation of the error in the trapezium rule. As we increase
the number of intervals, the error decrases.

Remark Geometrically , the right hand side of the composite trapezium rule is the sum of

areas of the N trapezoids with width h, and ordinates f(xi–1) and f(xi), i = 1, 2, ...., N. This sum
is an approximation to the area under the curve y = f(x) above the x-axis and the ordinates
x = a and x = b.
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Remark We have noted that the trapezium rule and the composite  trapezium rule are of
order 1. This can be verified from the error expressions given in (3.34) and (3.37). If f(x) is a
polynomial of degree ≤ 1, then f ″(x) = 0. This result implies that error is zero and the trape-
zium rule produces exact results for polynomials of degree ≤ 1.

Example  1 Derive the trapezium  rule using the Lagrange  linear interpolating  polynomial .

Solution The points on the curve are P(a, f(a)), Q(b, f(b)) (see Fig. 3.1). Lagrange linear inter

-
polation gives

 f(x) = 
( )
( )

( )
( )
( )

( )
x b
a b

f a
x a
b a

f b
−
−

+ −
−

= 
1

( )b a−
 [{f(b) – f(a)} x + {bf(a) – af(b)}].

Substituting in the integral, we get

 I = 
a

b

a

b
f x dx

b a
f b f a x bf a af b dx� �=

−
− + −( )

( )
[{ ( ) ( )} { ( ) ( )}]

1

= 
1 1

2
2 2

( )
{ ( ) ( )} ( ) { ( ) ( )}( )

b a
f b f a b a bf a af b b a

−
− − + − −�

��
�
��

= 
1
2

 (b + a)[ f(b) – f(a)] + bf(a) – af(b)

= 
( )b a−

2
 [f(a) + f(b)]

which is the required trapezium rule.

Example 2 Find the approximate value of I = 
0

1

1� +
dx

x
, using the trapezium rule with 2, 4

and 8 equal subintervals. Using the exact solution, find the absolute errors.

Solution With N = 2, 4 and 8, we have the following step lengths and nodal points.

 N = 2: h = 
b a

N
− = 1

2
.  The nodes are 0, 0.5, 1.0.

 N = 4: h = 
b a

N
− = 1

4
. The nodes are 0, 0.25, 0.5, 0.75, 1.0.

N = 8: h = b a
N
− = 1

8
. The nodes are 0, 0.125, 0.25, 0.375, 0.5, 0.675, 0.75, 0.875, 1.0.
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We have the following tables of values.

N = 2: x 0 0.5 1.0

f(x) 1.0 0.666667 0.5

N = 4: We require the above values. The additional values required are the following:

 x 0.25 0.75

f (x) 0.8 0.571429

N = 8: We require the above values. The additional values required are the following:

x 0.125 0.375 0.625 0.875

f (x) 0.888889 0.727273 0.615385 0.533333

Now, we compute the value of the integral.

N = 2:  I1 = 
h
2

 [f(0) + 2f(0.5) + f(1.0)]

= 0.25 [1.0 + 2(0.666667) + 0.5] = 0.708334.

N = 4: I2 = 
h
2

 [f(0) + 2{f(0.25) + f(0.5) + f(0.75)} + f(1.0)]

= 0.125 [1.0 + 2 {0.8 + 0.666667 + 0.571429} + 0.5] = 0.697024.

N = 8:  I3 = 
h
2

 [f(0) + 2{f(0.125) + f(0.25) + f(0.375) + f(0.5)

+ f(0.625) + f(0.75) + f(0.875)} + f(1.0)]

= 0.0625[1.0 + 2{0.888889 + 0.8 + 0.727273 + 0.666667 + 0.615385

+ 0.571429 + 0.533333} + 0.5] = 0.694122.

The exact value of the integral is I = ln 2 = 0.693147.

The errors in the solutions are the following:

| Exact – I1 | = | 0.693147 – 0.708334 | = 0.015187

| Exact – I2 | = | 0.693147 – 0.697024 | = 0.003877

| Exact – I3 | = | 0.693147 – 0.694122 | = 0.000975.

Example 3 Evaluate I = 
1

2

5 3� +
dx

x
 with 4 and 8 subintervals using the trapezium rule.

Compare with the exact solution and find the absolute errors in the solutions. Comment on the
magnitudes of the errors obtained. Find the bound on the errors.

Solution With N = 4 and 8, we have the following step lengths and nodal points.

N = 4:  h = 
b a

N
− = 1

4
. The nodes are 1, 1.25, 1.5, 1.75, 2.0.
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N = 8: h = 
b a

N
− = 1

8
. The nodes are 1, 1.125, 1.25, 1.375, 1.5, 1.675, 1.75, 1.875, 2.0.

We have the following tables of values.

N = 4:  x 1.0 1.25 1.5 1.75 2.0

f (x) 0.125 0.11429 0.10526 0.09756 0.09091

N = 8: We require the above values. The additional values required are the following.

x 1.125 1.375 1.625 1.875

f(x) 0.11940 0.10959 0.10127 0.09412

Now, we compute the value of the integral.

N = 4:  I1 = 
h
2

 [f(1) + 2 {f(1.25) + f(1.5) + f(1.75)} + f(2.0)]

= 0.125 [0.125 + 2 {0.11429 + 0.10526 + 0.09756} + 0.09091]

= 0.10627.

N = 8: I2  = 
h
2

 [f(1) + 2{f(1.125) + f(1.25) + f(1.375) + f(1.5)

+ f(1.625) + f(1.75) + f(1.875)} + f(2.0)]

= 0.0625 [0.125 + 2{0.11940 + 0.11429 + 0.10959 + 0.10526 + 0.10127

+ 0.09756 + 0.09412} + 0.09091]

= 0.10618.

The exact value of the integral is

 I = 
1
3

5 3
1
3

11 8 010615
1

2

ln ( ) [ln ln ] .+
�

�
�

�

�
� = − =x .

The errors in the solutions are the following:

| Exact – I1 | = | 0.10615 – 0.10627 | = 0.00012.

 | Exact – I2  | = | 0.10615 – 0.10618 | = 0.00003.

We find that | Error in I2 | ≈ 
1
4

 | Error in I1 |.

Bounds for the errors

| Error | ≤ 
( )b a h

M
− 2

212
, where M2 = max

[ , ]1 2
 | f ″(x) |.

We have  f(x) = 
1

5 3
3

5 3
18

5 32 3+
′ = −

+
′′ =

+x
f x

x
f x

x
, ( )

( )
, ( )

( )
.
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 M2 = max
( )[ , ]1 2 3

18
5 3

18
512+

=
x

 = 0.03516.

 h = 0.25: | Error | ≤ 
( . )0 25

12

2

 (0.03516) = 0.00018.

 h = 0.125: | Error | ≤ 
( . )0 125

12

2

 (0.03516) = 0.000046.

Actual errors are smaller than the bounds on the errors.

Example 4 Using the trapezium rule, evaluate the integral  I = 
0

1

2 6 10� + +
dx

x x
, with 2 and

4 subintervals. Compare with the exact solution. Comment on the magnitudes of the errors
obtained.

Solution With N = 2 and 4, we have the following step lengths and nodal points.

N = 2: h = 0.5. The nodes are 0.0, 0.5, 1.0.

N = 4: h = 0.25. The nodes are 0.0, 0.25, 0.5, 0.75, 1.0.

We have the following tables of values.

N = 2: x 0.0 0.5 1.0

f (x) 0.1 0.07547 0.05882

N = 4: We require the above values. The additional values required are the following.

x 0.25 0.75

f (x) 0.08649 0.06639

Now, we compute the value of the integral.

 N = 2:  I1 = 
h
2

 [f(0.0) + 2 f(0.5) + f(1.0)]

= 0.25 [0.1 + 2(0.07547) + 0.05882] = 0.07744.

N = 4:  I2 = 
h
2

 [f(0.0) + 2{f(0.25) + f(0.5) + f(0.75)} + f(1.0)]

= 0.125[0.1 + 2(0.08649 + 0.07547 + 0.06639) + 0.05882] = 0.07694.

The exact value of the integral is

I = 
0

1

2
1

0

1

1 1

3 1
3 4 3 0 07677� + +

= +
�

�
�
�

�

�
�
�

= − =− − −dx

x
x

( )
tan ( ) tan ( ) tan ( ) . .

The errors in the solutions are the following:

| Exact – I1 | = | 0.07677 – 0.07744 | = 0.00067

| Exact – I2 | = | 0.07677 – 0.07694 | = 0.00017.
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We find that

| Error in I2 | ≈ 
1
4

 | Error in I1 |.

Example 5 The velocity of a particle which starts from rest is given by the following table.

t (sec) 0 2 4 6 8 10 12 14 16 18 20

v (ft/sec) 0 16 29 40 46 51 32 18 8 3 0

Evaluate using trapezium rule, the total distance travelled in 20 seconds.

Solution From the definition, we have

 v = 
ds
dt

 , or s = �  v dt.

Starting from rest, the distance travelled in 20 seconds is

s = 
0

20

�  v dt.

The step length is h = 2. Using the trapezium rule, we obtain

s = 
h
2

 [f(0) + 2{f(2) + f(4) + f(6) + f(8) + f(10) + f(12) + f(14)

+ f(16) + f(18)} + f(20)]

= 0 + 2{16 + 29 + 40 + 46 + 51 + 32 + 18 + 8 + 3} + 0 = 486 feet.

Simpson’s 1/3 Rule

In the previous section, we have shown that the trapezium rule of integration integrates exactly
polynomials of degree ≤ 1, that is, the order of the formula is 1. In many science and engineering
applications, we require methods which produce more accurate results. One such method is
the Simpson’s 1/3 rule.

Let the interval [a, b] be subdivided into two equal parts with step length h = (b – a)/2.
We have three abscissas x0 = a, x1 = (a + b)/2, and x2 = b.

Then, P(x0, f(x0)), Q(x1 f(x1)), R(x2, f(x2)) are three points on the curve y = f(x). We
approximate the curve  y = f(x), a ≤ x ≤ b, by the parabola joining the points P, Q, R, that is, we
approximate the given curve by a polynomial of degree 2. Using the Newton’s forward difference
formula, the quadratic polynomial approximation to f(x), interpolating at the points
P(x0, f(x0)), Q(x1 f(x1)), R(x2, f(x2)), is given by

 f(x) = f(x0) + 
1 1

2
0 0 2 0 1

2
0h

x x f x
h

x x x x f x( ) ( ) ( )( ) ( )− + − −∆ ∆ .

Substituting in (3.31), we obtain

a

b

x

x

x

x
f x dx f x dx f x

h
x x f x

h
x x x x f x dx� � �= = + − + − −�

��
�
��

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0

2

0

2

0 0 0 2 0 1
2

0
1 1

2
∆ ∆
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= (x2 – x0) f(x0) + 
1 1

2
2 20

2
0 1 0 0 1

0

2

h
x x f x I hf x h f x I

x

x

( ) ( ) ( ) ( )−�
��

�
��

+ = + +∆ ∆ .

Evaluating I1, we obtain

 I1 = 
1

2 3 22

3

0 1

2

0 1
2

0

0

2

h

x
x x

x
x x x f x

x

x

− + +
�

�
�

�

�
�( ) ( )∆

= 
1

12
2 3 62 2

3
0
3

0 1 2
2

0
2

0 1 2 0
2

0
h

x x x x x x x x x x f x[ ( ) ( )( ) ( )] ( )− − + − + − ∆

= 
1

12
2 3 6

2 2 0 2
2

0 2 0
2

0 1 2 0 0 1
2

0
h

x x x x x x x x x x x x f x( ) [ ( ) ( )( ) ] ( )− + + − + + + ∆ .

Substituting x2 = x0 + 2h, x1 = x0 + h, we obtain

 I1 = 
1

6
2 3 6 4 3 4 6 2 6 60

2
0

2
0
2

0
2

0
2

0
2

0h
x hx h x hx h x hx f x[ ( ) ( ) ] ( )+ + − + + + + ∆

= 
1

6
2

3
2 2

0
2

0h
h f x

h
f x( ) ( ) ( )∆ ∆= .

Hence

  
a

b

x

x
f x dx f x dx hf x h f x

h
f x� �= = + +( ) ( ) ( ) ( ) ( )

0

2
2 2

30 0
2

0∆ ∆

= 
h
3

 [6f(x0) + 6{f(x1) – f(x0)} + {f(x0) – 2f(x1) + f(x2)}]

= 
h
3

 [f(x0) + 4f(x1) + f(x2)]

In terms of the end points, we can also write the formula as

a

b
f x dx

b a
f a f

a b
f x� =

−
+

+�
	


�
�


+
�

�
�

�

�
�( )

( )
( ) ( )

6
4

2 2

This formula is called the Simpson’s 1/3 rule.

We can also evaluate the integral 
x

x
f x dx

0

2

� ( ) , as follows. We have

 
x

x

x

x
f x dx f x

h
x x f x

h
x x x x f x dx

0

2

0

2

0 0 0 2 0 1
2

0
1 1

2� �= + − + − −�
��

�
��

( ) ( ) ( ) ( ) ( )( ) ( )∆ ∆ .
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Let [(x – x0)/h] = s. The limits of integration become:

  for x = x0, s = 0, and for x = x2, s = 2.

We have dx = h ds. Hence,

  
x

x
f x dx h f x s f x s s f x ds

0

2

0

2

0 0
2

0
1
2

1� �= + + −�
��

�
��

( ) ( ) ( ) ( ) ( )∆ ∆

= h s f x
s

f x
s s

f x( ) ( ) ( )0

2

0

3 2
2

0

0

2

2
1
2 3 2

+ + −
�

	

�

�

�

�
�
�

�

�
�
�

∆ ∆

= h 2 2
1
30 0

2
0f x f x f x( ) ( ) ( )+ +�

��
�

��
∆ ∆

= 
h
3

 [6f(x0) + 6{f(x1) – f(x0)} + {f(x0) – 2f(x1) + f(x2)}]

= 
h
3

 [f(x0) + 4f(x1) + f(x2)]

which is the same formula as derived earlier.

Error term in Simpson 1/3 rule. We show that the Simpson’s rule integrates exactly poly-
nomials of degree ≤ 3. That is, using the definition of error given in (3.27), we show that

R2(f, x) = 0 for f(x) = 1, x, x2, x3.

Substituting f(x) = 1, x, x2, x3 in (3.27), we get

f(x) = 1:  R2(f, x) = 
a

b
dx

b a
� −

−( )
6

 (6) = (b – a) – (b – a) = 0.

f(x) = x:  R2(f, x) = 
a

b
x dx

b a
a

a b
b� −

−
+

+�
	


�
�


+
�

�
�

�

�
�

( )
6

4
2

= 
1
2

 (b2 – a2) – 
1
2

 (b2 – a2) = 0.

f(x) = x2:   R2(f, x) = 
a

b
x dx

b a
a

a b
b� −

−
+

+�
	


�
�


+
�

�
�
�

�

�
�
�

2 2
2

2

6
4

2
( )

= 
1
3 3

3 3 2 2( )
( )

[ ]b a
b a

a ab b− − − + +

= 
1
3

1
3

3 3 3 3( ) ( )b a b a− − −  = 0.

f(x) = x3: R2(f, x) = 
a

b
x dx

b a
a

a b
b� −

−
+

+�
	


�
�


+
�

�
�
�

�

�
�
�

3 3
3

3

6
4

2
( )
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= 
1
4

 (b4 – a4) – 
( )b a−

4
 [a3 + a2b + ab2 + b3]

= 
1
4

 (b4 – a4) – 
1
4

 (b4 – a4) = 0.

Hence, the Simpson’s rule integrates exactly polynomials of degree ≤ 3. Therefore, the
method is of order 3. It is interesting to note that the method is one order higher than expected,
since we have approximated f(x) by a polynomial of degree 2 only.

Let f(x) = x4. From (3.28), we get

  c = 
a

b
x dx

b a
a

a b
b� −

−
+

+�
	


�
�


+
�

�
�
�

�

�
�
�

4 4
4

4

6
4

2
( )

= 
1
5

 (b5 – a5) – 
( )b a−

24
 (5a4 + 4a3b + 6a2b2 + 4ab3 + 5b4)

= 
1

120
 [24(b5 – a5) – 5(b – a)(5a4 + 4a3b + 6a2b2 + 4ab3 + 5b4)]

= – 
( )b a−

120
 [b4 – 4ab3 + 6a2b2 – 4a3b + a4)]

= – 
( )b a− 5

120
.

Using (3.29), the expression for the error is given by

R(f, x) = 
c

f
b a

f
h

f
4 2880 90

4
5

4
5

4

!
( )

( )
( ) ( )( ) ( ) ( )ξ ξ ξ= − − = −

since h = (b – a)/2, and a ≤ ξ ≤ b.

Since the method produces exact results, that is, R2(f, x) = 0, when f(x) is a polynomial
of degree ≤ 3, the method is of order 3.

The bound for the error is given by

 | R(f, x) | ≤ 
( )b a

M
h

M
− =

5

4

5

42880 90
, where M4 = max | ( )|( )

a x b
f x

≤ ≤

4 .

As in the case of the trapezium rule, if the length of the interval [a, b] is large, then
b – a is also large and the error expression given in (3.41) becomes meaningless. In this case,
we subdivide [a, b] into a number of subintervals of equal length and apply the Simpson’s 1/3
rule to evaluate each integral. The rule is then called the composite Simpson’s 1/3 rule.

Composite Simpson’s 1/3 rule We note that the Simpson’s rule derived earlier uses three
nodal points. Hence, we subdivide the given interval [a, b] into even number of subintervals of
equal length h. That is, we obtain an odd number of nodal points. We take the even number of
intervals as 2N. The step length is given by h = (b – a)/(2N). The nodal points are given by
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a = x0, x1 = x0 + h, x2 = x0 + 2h, ..., x2N = x0 + 2N h = b.

The given interval is now written as

a

b

x

x

x

x

x

x

x

x
f x dx f x dx f x dx f x dx f x dx

N

N

N

� � � � �= = + + +
−

( ) ( ) ( ) ( ) ... ( ) .
0

2

0

2

2

4

2 2

2

Note that there are N integrals. The limits of each integral contain three nodal points.
Using the Simpson’s 1/3 rule to evaluate each integral, we get the composite Simpson’s 1/3
rule as

 
a

b
f x dx

h
� =( )

3
 [{f(x0) + 4f(x1) + f(x2)} + {f(x2) + 4 f(x3) + f(x4)} + ...

+ {f(x2N–2) + 4f(x2N–1) + f(x2N)}]

= 
h
3

 [f(x0) + 4{f(x1) + f(x3) + ...+ f(x2N–1)} + 2{f(x2) + f(x4) + ...

+ f(x2N–2)} + f(x2N)]

The composite Simpson’s 1/3 rule is also of order 3.

The error expression (3.34) becomes

R(f, x) = – 
h

f f f N

5
4

1
4

2
4

90
[ ( ) ( ) ... ( )]( ) ( ) ( )ξ ξ ξ+ + + ,

where  x0, < ξ1 < x2, x2 < ξ2 < x4, etc.

The bound on the error is given by

| R(f, x) | ≤ 
h

f f f N

5
4

1
4

2
4

90
| ( )| | ( )| ... | ( )|( ) ( ) ( )ξ ξ ξ+ + +

≤ 
Nh

M
b a h

M
5

4

4

490 180
=

−( )

or  | R(f, x) | ≤ 
( )b a

N
M

− 5

4 4
2880

where  M4 = max | ( )( )

a x b
f x

≤ ≤

4 |  and N h = ( b – a)/2.

This expression is a true representation of the error in the Simpson’s 1/3 rule. We observe
that as N increases, the error decreases.

Remark  We have noted that the Simpson 1/3 rule and the composite Simpson’s 1/3 rule are
of order 3. This can be verified from the error expressions given in (3.41) and (3.45). If f(x) is a
polynomial  of  degree  ≤ 3, then  f (4)  (x) = 0. This  result  implies  that  error  is zero  and  the 
composite Simpson’s 1/3 rule produces exact results for polynomials of degree ≤ 3.
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Remark  Note that the number of subintervals is 2N. We can also say that the number of
subintervals is n = 2N and write h = (b – a)/n, where n is even.

Example 6 Find the approximate value of  I = 
0

1

�
dx

x1 +
, using the Simpson’s 1/3 rule with

2, 4 and 8 equal subintervals. Using the exact solution, find the absolute errors.

Solution With n = 2N = 2, 4 and 8, or N = 1, 2, 4 we have the following step lengths and nodal
points.

N = 1:  h = 
b a

N
−

=
2

1
2

. The nodes are 0, 0.5, 1.0.

N = 2:  h = 
b a

N
− =

2
1
4

. The nodes are 0, 0.25, 0.5, 0.75, 1.0.

N = 4: h = 
b a

N
− =

2
1
8

. The nodes are 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0.

We have the following tables of values.

n = 2N = 2: x 0 0.5 1.0

f (x) 1.0 0.666667 0.5

n = 2N = 4: We require the above values. The additional values required are the following.

x 0.25 0.75

f(x) 0.8 0.571429

n = 2N = 8: We require the above values. The additional values required are the following.

x 0.125 0.375 0.625 0.875

f(x) 0.888889 0.727273 0.615385 0.533333

Now, we compute the value of the integral.

n = 2N = 2:  I1 = 
h
3

 [f(0) + 4f(0.5) + f(1.0)]

= 
1
6

 [1.0 + 4(0.666667) + 0.5] = 0.674444.

n = 2N = 4:  I2 = 
h
3

 [f(0) + 4{f(0.25) + f(0.75)} + 2f(0.5) + f(1.0)]

= 
1

12
 [1.0 + 4 {0.8 + 0.571429} + 2(0.666667) + 0.5] = 0.693254.

n = 2N = 8:  I3 = 
h
3

 [f(0) + 4{f(0.125) + f(0.375) + f(0.625) + f(0.875)}

+ 2{f(0.25) + f(0.5) + f(0.75)} + f(1.0)]
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= 
1

24
 [1.0 + 4 {0.888889 + 0.727273 + 0.615385 + 0.533333}

+ 2 {0.8 + 0.666667 + 0.571429} + 0.5]

= 0.693155.

The exact value of the integral is I = ln 2 = 0.693147.

The errors in the solutions are the following:

 | Exact – I1 | = | 0.693147 – 0.694444 | = 0.001297.

 | Exact – I2 | = | 0.693147 – 0.693254 | = 0.000107.

 | Exact – I3 | = | 0.693147 – 0.693155 | = 0.000008.

Example 7 Evaluate I =  
1

2

5 3� +
dx

x
, using the Simpson’s 1/3 rule with 4 and 8 subintervals.

Compare with the exact solution and find the absolute errors in the solutions.

Solution With N = 2N = 4, 8 or N = 2, 4, we have the following step lengths and nodal points.

N = 2: h = 
b a

N
−

=
2

1
4

. The nodes are 1, 1.25, 1.5, 1.75, 2.0.

N = 4: h = 
b a

N
−

=
2

1
8

. The nodes are 1, 1.125, 1.25, 1.375, 1.5, 1.675, 1.75, 1.875, 2.0.

We have the following tables of values.

n = 2N = 4: x 1.0 1.25 1.5 1.75 2.0

f (x) 0.125 0.11429 0.10526 0.09756 0.09091

n = 2N = 8: We require the above values. The additional values required are the following.

x 1.125 1.375 1.625 1.875

f(x) 0.11940 0.10959 0.10127 0.09412

Now, we compute the value of the integral.

n = 2N = 4:  I1 = 
h
3

 [f(1) + 4{(1.25) + f(1.75)} + 2f(1.5) + f(2.0)]

= 
0 25

3
.

 [0.125 + 4{0.11429 + 0.09756} + 2(0.10526) + 0.09091]

= 0.10615.

n = 2N = 8: I2 = 
h
3

 [f(1) + 4{f(1.125) + f(1.375) + f(1.625) + f(1.875)}

+ 2{f(1.25) + f(1.5) + f(1.75)} + f(2.0)]
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= 
0 125

3
.

 [0.125 + 4{0.11940 + 0.10959 + 0.10127 + 0.09412}

+ 2{0.11429 + 0.10526 + 0.09756} + 0.09091]

= 0.10615.

The exact value of the integral is I = 
1
3

 [ln 11 – ln 8] = 0.10615.

The results obtained with n = 2N = 4 and n = 2N = 8 are accurate to all the places.

Example 8 Using Simpson’s 1/3 rule, evaluate the integral I = 
0

1

2 6 10� + +
dx

x x
, with 2 and4 

subintervals. Compare with the exact solution.

Solution With n = 2N = 2 and 4, or N = 1, 2, we have the following step lengths and nodal
points.

N = 1: h = 0.5. The nodes are 0.0, 0.5, 1.0.

N = 2: h = 0.25. The nodes are 0.0, 0.25, 0.5, 0.75, 1.0.

We have the following values of the integrand.

n = 2N = 2: x 0.0 0.5 1.0

f (x) 0.1 0.07547 0.05882

n = 2N = 4: We require the above values. The additional values required are the following.

x 0.25 0.75

f(x) 0.08649 0.06639

Now, we compute the value of the integral.

 n = 2N = 2:  I1 = 
h
3

 [f(0.0) + 4 f(0.5) + f(1.0)]

= 
0 5
3
.

 [0.1 + 4(0.07547) + 0.05882] = 0.07678.

n = 2N = 4:  I2 = 
h
3

 [f(0.0) + 4 {f(0.25) + f(0.75)} + 2 f(0.5) + f(1.0)]

= 
0 25

3
.

 [0.1 + 4(0.08649 + 0.06639) + 2(0.07547) + 0.05882] = 0.07677.

The exact value of the integral is

 I = 
0

1

2
1

0

1

1 1

3 1
3 4 3 0 07677� + +

= +
�

�
�
�

�

�
�
�

= − =− − −dx
x

x
( )

tan ( ) tan ( ) tan ( ) . .
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The errors in the solutions are the following:

 | Exact – I1 | = | 0.07677 – 0.07678 | = 0.00001.

 | Exact – I2 | = | 0.07677 – 0.07677 | = 0.00000.

Example 9 The velocity of a particle which starts from rest is given by the following table.

t (sec) 0 2 4 6 8 10 12 14 16 18 20

v (ft/sec) 0 16 29 40 46 51 32 18 8 3 0

Evaluate using Simpson’s 1/3 rule, the total distance travelled in 20 seconds.

Solution From the definition, we have

v = 
ds
dt

, or s = � v dt.

Starting from rest, the distance travelled in 20 seconds is

s = 
0

20

� v dt.

The step length is h = 2. Using the Simpson’s rule, we obtain

s = 
h
3

 [f(0) + 4{f(2) + f(6) + f(10) + f(14) + f(18)} + 2{f(4) + f(8)

+ f(12) + f(16)} + f(20)]

= 
2
3

 [0 + 4{16 + 40 + 51 + 18 + 3} + 2{29 + 46 + 32 + 8} + 0]

= 494.667 feet.

Simpson’s 3/8 Rule

To derive the Simpson’s 1/3 rule, we have approximated f(x) by a quadratic polynomial. To
derive the Simpson’s 3/8 rule, we approximate f(x) by a cubic polynomial. For interpolating by
a cubic polynomial, we require four nodal points. Hence, we subdivide the given interval [a, b]
into 3 equal parts so that we obtain four nodal points. Let h = (b – a)/3. The nodal points are
given by

x0 = a, x1 = x0 + h, x2 = x0 + 2h, x3 = x0 + 3h.

Using the Newton’s forward difference formula, the cubic polynomial approximation to
f(x), interpolating at the points

P(x0, f(x0)), Q(x1, f(x1)), R(x2, f(x2)), S(x3, f(x3))

is given by
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f(x) = f(x0) + 
1
h

 (x – x0) ∆f(x0) + 
1

2 2h
 (x – x0)(x – x1) ∆

2 f(x0)

+ 
1

6 3h
 (x – x0)(x – x1)(x – x2) ∆

3 f(x0).

Substituting in (3.31), and integrating, we obtain the Simpson’s 3/8 rule as

 
a

b

x

x
f x dx f x dx

h
� �= =( ) ( )

0

3 3
8  [f(x0) + 3f(x1) + 3f(x2) + f(x3)].

The error expression is given by

R3(f, x) = – 
3

80 6480
5 4

5
4

0 3h f
b a

f x x( ) ( )( )
( )

( ),ξ ξ ξ= − < < .

Since the method produces exact results, that is, R3(f, x) = 0, when f(x) is a polynomial
of degree ≤ 3, the method is of order 3.

As in the case of the Simpson’s 1/3 rule, if the length of the interval [a, b] is large, then
b – a is also large and the error expression given in (3.47) becomes meaningless. In this case,
we subdivide [a, b] into a number of subintervals of equal length such that the number of
subintervals is divisible by 3. That is, the number of intervals must be 6 or 9 or 12 etc., so that
we get 7 or 10 or 13 nodal points etc. Then, we apply the Simpson’s 3/8 rule to evaluate each
integral. The rule is then called the composite Simpson’s 3/8 rule. For example, if we divide
[a, b] into 6 parts, then we get the seven nodal points as

 x0 = a, x1 = x0 + h, x2 = x0 + 2h, x3 = x0 + 3h, ..., x6 = x0 + 6h.

The Simpson’s 3/8 rule becomes

 
a

b

x

x

x

x
f x dx f x dx f x dx� � �= +( ) ( ) ( )

0

3

3

6

= 
3
8
h

 [{f(x0) + 3 f(x1) + 3 f(x2) + f(x3)} + {f(x3) + 3f(x4) + 3 f(x5) + f (x6)}]

= 
3
8
h

 [f(x0) + 3 f(x1) + 3 f(x2) + 2 f(x3) + 3 f(x4) + 3 f(x5) + f(x6)]

The error in this composite Simpson’s 3/8 rule becomes

R3(f, x) = – 
3

80
 h5[f (4)(ξ1) + f (4)(ξ2)], x0 < ξ1 < x3, x3 < ξ2 < x6.

In the general case, the bound for the error expression is given by

 | R (f, x) | ≤ C h4 M4

where  M4 = max | ( )|( )

a x b
f x

≤ ≤

4 .
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If f(x) is a polynomial of degree ≤ 3, then f (4) (x) = 0. This result implies that error
expression given in (3.47) or (3.48) is zero and the composite Simpson’s 3/8 rule produces exact
results for polynomials of degree ≤ 3. Therefore, the formula is of order 3, which is same as the
order of the Simpson’s 1/3 rule.

Remark In Simpson’s 3/8th rule, the number of subintervals is n = 3N. Hence, we have

 h = 
b a

N
h

b a
n

− = −
3

, or

where n is a multiple of 3.

Remark  Simpson’s 3/8 rule has some disadvantages. They are the following: (i) The number of 
subintervals  must be divisible  by 3. (ii) It is of the same order as the Simpson’s 1/3 rule,
which only requires that the number of nodal points must be odd. (iii) The error constant c in
the case of Simpson’s 3/8 rule is c = 3/80, which is much larger than the error constant c = 1/90,
in the case of Simpson’s 1/3 rule. Therefore , the error in the case of the Simpson’s 3/8 rule 
is larger than the error in the case Simpson 1/3 rule. Due to these disadvantages, Simpson’s 
3/8 rule is not used in practice.

Example 10 Using the Simpson’s 3/8 rule, evaluate I = 
1

2

5 3� +
dx

x
 with 3 and 6 subintervals.

Compare with the exact solution.

Solution With n = 3N = 3 and 6, we have the following step lengths and nodal points.

n = 3N = 3:  h = 
b a

N
−

=
3

1
3

. The nodes are 1, 4/3, 5/3, 2.0.

n = 3N = 6: h = 
b a

N
−

=
3

1
6

. The nodes are 1, 7/6, 8/6, 9/6, 10/6, 11/6, 2.0

We have the following tables of values.

n = 3N = 3: x 1.0 4/3 5/3 2.0

f (x) 0.125 0.11111 0.10000 0.09091

n = 3N = 6: We require the above values. The additional values required are the following.

x 7/6 9/6 11/6

f(x) 0.11765 0.10526 0.09524

Now, we compute the value of the integral.

n = 3N = 3:  I1 = 
3
8
h

 [f(1) + 3 f(4/3) + 3 f(5/3) + f(2.0)]

= 0.125[0.125 + 3{0.11111 + 0.10000} + 0.09091] = 0.10616.

n = 3N = 6:  I2 = 
3
8
h

 [f(1) + 3{f(7/6) + f(8/6) + f(10/6) + f(11/6)}

+ 2 f(9/6)} + f(2.0)]
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= 
1

16
 [0.125 + 3 {0.11765 + 0.11111 + 0.10000 + 0.09524}

+ 2(0.10526) + 0.09091] = 0.10615.

The exact value of the integral is I = 
1
3

 [log 11 – log 8] = 0.10615.

The magnitude of the error for n = 3 is 0.00001 and for n = 6 the result is correct to all
places.

Romberg Method (Integration)

In order to obtain accurate results, we compute the integrals by trapezium or Simpson’s rules
for a number of values of step lengths, each time reducing the step length. We stop the compu-
tation, when convergence is attained (usually, the magnitude of the difference in successive
values of the integrals obtained by reducing values of the step lengths is less than a given
accuracy). Convergence may be obtained after computing the value of the integral with a number
of step lengths. While computing the value of the integral with a particular step length, the
values of the integral obtained earlier by using larger step lengths were not used. Further,
convergence may be slow.

Romberg method is a powerful tool which uses the method of extrapolation.

We compute the value of the integral with a number of step lengths using the same
method. Usually, we start with a coarse step length, then reduce the step lengths and re-
compute the value of the integral. The sequence of these values converges to the exact value of
the integral. Romberg method uses these values of the integral obtained with various step
lengths, to refine the solution such that the new values are of higher order. That is, as if the
results are obtained using a higher order method than the order of the method used. The
extrapolation method is derived by studying the error of the method that is being used.

Let us derive the Romberg method for the trapezium and Simpson’s rules.

Romberg method for the trapezium rule

Let the integral

 I = 
a

b
f x dx� ( )

be computed by the composite trapezium rule. Let I denote the exact value of the integral

and TI  denote the value obtained by the composite trapezium rule.

The error, I – IT , in the composite trapezium rule in computing the integral is given by

 I – IT = c1h
2 + c2h

4 + c3h6 + ...

or  I = IT + c1h
2 + c2h

4 + c3h
6 + ...

where c1, c2, c3, ... are independent of h.

To illustrate the extrapolation procedure, first consider two error terms.

 I = IT + c1h2 + c2h
4.
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Let I  be evaluated using two step lengths h and qh, 0 < q < 1. Let these values be
denoted by IT (h) and IT(qh). The error equations become

 I = IT(h) + c1h2 + c2h
4. (3.51)

  I = IT(qh) + c1q
2h2 + c2q

4h4. (3.52)

From (3.51), we obtain

 I – IT(h) = c1h
2 + c2h

4. (3.53)

From (3.52), we obtain

 I – IT  (qh) = c1q
2h2 + c2q4h4. (3.54)

Multiply (3.53) by q2 to obtain

q2 [I – IT (h)] = c1q
2h2 + c2q2h4. (3.55)

Eliminating c1q2h2 from (3.54) and (3.55), we obtain

(1 – q2)I – IT (qh) + q2IT(h) = c2q
2h4(q2 – 1).

Solving for I, we obtain

I = 
I qh q I h

q
T T( ) ( )

( )

−
−

2

21
 – c2q

2h4.

Note that the error term on the right hand side is now of order O(h4).

Neglecting the O(h4) error term, we obtain the new approximation to the value of the
integral as

I ≈ I h
I qh q I h

q
T

T T( ) ( )
( ) ( )

( )
1

2

21
=

−
−

. (3.56)

We note that this value is obtained by suitably using the values of the integral obtained
with step lengths h and qh, 0 < q  < 1. This computed result is of order, O(h4), which is higher
than the order of the trapezium rule, which is of O(h2).

For q = 1/2, that is, computations are done with step lengths h and h/2, the formula
(3.56) simplifies to

 I h
I h I h

T
T T(1) ( )

( / ) ( / ) ( )
( / )

≈
−
−

2 14
1 1 4

= 
4 2

4 1
4 2

3
I h I h I h I hT T T T( / ) ( ) ( / ) ( )−

−
=

−
. (3.57)

In practical applications, we normally use the sequence of step lengths h, h/2, h/22, h/23, ...

Suppose, the integral is computed using the step lengths h, h/2, h/22. Using the results
obtained with the step lengths h/2, h/22, we get
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 I h
I h I h

T
T T( ) ( / )

( / ) ( / ) ( / )
( / )

1 2
4 1 4 2

1 1 4
≈ −

−

= 
4 4 2

4 1
4 4 2

3
I h I h I h I hT T T T( / ) ( / ) ( / ) ( / )−

−
= −

.

Both the resultsI h I hT T
( ) ( )( ), ( / )1 1 2  are of order, O(h4). Now, we can eliminate the O(h4)

terms of these two results to obtain a result of next higher order, O(h6). The multiplicative
factor is now (1/2)4 = 1/16. The formula becomes

I h
I h I h I h I h

T
T T T T( )
( ) ( ) ( ) ( )

( )
( / ) ( ) ( / ) ( )2

1 1 1 116 2
16 1

16 2
15

≈
−

−
=

−
.

Therefore, we obtain the Romberg extrapolation procedure for the composite trapezium
rule as

 I h
I h I h

T
m

m
T
m

T
m

m
( )

( ) ( )

( )
( / ) ( )

≈
−

−

− −4 2
4 1

1 1

,  m = 1, 2, ...

where  I h I hT T
( ) ( ) ( )0 = .

The computed result is of order O(h2m+2).

The extrapolations using three step lengths h, h/2, h/22, are given in Table 3.1.

Table 1. Romberg method for trapezium rule.

Step Value of I Value of I Value of I

Length O(h2) O(h4) O(h6)

 h I(h)

 I h
I h I h( ) ( )
( / ) ( )1 4 2

3
= −

 h/2 I(h/2) I h
I h I h( )

( ) ( )
( )

( / ) ( )2
1 116 2

15
= −

 I h
I h I h( ) ( / )
( / ) ( / )1 2

4 4 2
3

= −

h/4 I(h/4)

Note that the most accurate values are the values at the end of each column.

Romberg method for the Simpson’s 1/3 rule We can apply the same procedure as in trape-
zium rule to obtain the Romberg’s extrapolation procedure for the Simpson’s 1/3 rule.

Let I denote the exact value of the integral and IS denote the value obtained by the
composite Simpson’s 1/3 rule.
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The error, I – IS, in the composite Simpson’s 1/3 rule in computing the integral is given by

 I – IS = c1h
4 + c2h

6 + c3h
8 + ...

or  I = IS + c1h4 + c2h
6 + c3h

8 + ...

As in the trapezium rule, to illustrate the extrapolation procedure, first consider two
error terms.

 I = IS + c1h
4 + c2h6.

Let I be evaluated using two step lengths h and qh, 0 < q < 1. Let these values be
denoted by IS(h) and IS(qh). The error equations become

 I = IS(h) + c1h
4 + c2h6.

I = IS(qh) + c1q
4h4 + c2q

6h6.

From (3.63), we obtain

I – IS(h) = c1h
4 + c2h

6.

From (3.64), we obtain

 I – IS(qh) = c1q4h4 + c2q
6h6.

Multiply (3.65) by q4 to obtain

 q4[I – IS(h)] = c1q4h4 + c2q
4h6.

Eliminating c1q4h4 from (3.66) and (3.67), we obtain

(1 – q4)I – IS(qh) + q4 IS(h) = c2q
4h6 (q2 – 1).

Note that the error term on the right hand side is now of order O(h6). Solving for I, we
obtain

 I = 
I qh q I h

q
c q

q
S S( ) ( )

( )

−
−

−
+

4

4
2

4

21 1
 h6.

Neglecting the O(h6) error term, we obtain the new approximation to the value of the
integral as

 I ≈ I h
I qh q I h

qS
S S( ) ( )

( ) ( )

( )
1

4

41
=

−
−

.

Again, we note that this value is obtained by suitably using the values of the integral
obtained with step lengths h and qh, 0 < q < 1. This computed result is of order, O(h6), which
is higher than the order of the Simpson’s 1/3 rule, which is of O(h4).

For q = 1/2, that is, computations are done with step lengths h and h/2, the formula
(3.68) simplifies to

I h
I h I h

S
S S( ) ( )

( / ) ( / ) ( )
( / )

1 2 1 16
1 1 16

≈
−
−
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= 
16 2

16 1
16 2

15
I h I h I h I hS S S S( / ) ( ) ( / ) ( )−

−
=

−
.

In practical applications, we normally use the sequence of step lengths h, h/2, h/22,
h/23, ...

Suppose, the integral is computed using the step lengths h, h/2, h/22. Using the results
obtained with the step lengths  h/2, h/22, we get

I h
I h I h

S
S S( ) ( / )

( / ) ( / ) ( / )
( / )

1 2
4 116 2

1 1 16
≈

−
−

= 
16 4 2

16 1
16 4 2

15
I h I h I h I hS S S S( / ) ( / ) ( / ) ( / )−

−
=

−
.

Both the results I h I hT T
( ) ( )( ), ( / )1 1 2  are of order, O(h6). Now, we can eliminate the O(h6)

terms of these two results to obtain a result of next higher order, O(h8). The multiplicative
factor is now (1/2)6 = 1/64. The formula becomes

 I h
I h I h I h I h

S
S S S S( )
( ) ( ) ( ) ( )

( )
( / ) ( ) ( / ) ( )2

1 1 1 164 2
64 1

64 2
63

≈
−

−
=

−
.

Therefore, we obtain the Romberg extrapolation procedure for the composite Simpson’s
1/3 rule as

  I h
I h I h

S
m

m
S
m

S
m

m
( )

( ) ( )

( )
( / ) ( )

≈
−

−

+ − −

+

4 2

4 1

1 1 1

1
, m = 1, 2, ...

where  I hS
( ) ( )0  = IS(h).

The computed result is of order O(h2m+4).

The extrapolations using three step lengths h, h/2, h/22, are given in Table 3.2.

Table 2. Romberg method for Simpson’s 1/3 rule.

Step Value of I Value of I Value of I

Length O(h4) O(h6) O(h8)

h I(h)

I h
I h I h( ) ( )
( / ) ( )1 16 2

15
= −

h/2 I(h/2) I(2) (h) = 
64 2

63

1 1I h I h( ) ( )( / ) ( )−

 I h
I h I h( ) ( / )
( / ) ( / )1 2

16 4 2
15

= −

h/4 I(h/4)
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Note that the most accurate values are the values at the end of each column.

Example 11 The approximations  to the values of the integrals  in Examples  3.12 and 3.13
were obtained using the trapezium rule. Apply the Romberg’s method to improve the
approximations to the values of the integrals.

Solution In Example 3.12, the given integral is

 I = 
0

1

1� +
dx

x

The approximations using the trapezium rule to the integral with various values of the
step lengths were obtained as follows.

h = 1/2, N = 2: I = 0.708334; h = 1/4, N = 4: I = 0.697024.

h = 1/8, N = 8: I = 0.694122.

We have   I
I I( ) ( / )
( / ) ( / ) ( . ) .1 1 2

4 1 4 1 2
3

4 0 697024 0 708334
3

= − = −  = 0.693254

 I
I I( ) ( / )
( / ) ( / ) ( . ) .1 1 4

4 1 8 1 4
3

4 0 694122 0 697024
3

= − = −
 = 0.693155.

 I
I I( )

( ) ( )

( / )
( / ) ( / ) ( . ) .2

1 1

1 2
16 1 4 12

15
16 0 693155 0 693254

15
= − = −

 = 0.693148.

The results are tabulated in Table 3.3.

Magnitude of the error is

| I – 0.693148 | = | 0.693147 – 0.693148 | = 0.000001.

Table 3. Romberg method. Example 3.21.

Step Value of I Value of I Value of I

Length O(h2) O(h4) O(h6)

1/2 0.708334

 0.693254

1/4  0.697024  0.693148

 0.693155

1/8 0.694122

In Example 3.13, the given integral is

I = 
1

2

5 3� +
dx

x
.

The approximations using the trapezium rule to the integral with various values of the
step lengths were obtained as follows.

h = 1/4, N = 4: I = 0.10627; h = 1/8, N = 8: I = 0.10618.
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We have  I
I I(1) ( / )
( / ) ( / ) ( . ) .

1 4
4 1 8 14

3
4 010618 010627

3
=

−
=

−
 = 0.10615.

Since the exact value is I = 0.10615, the result is correct to all places.

Example 12 The approximation  to the value of the integral in Examples 3.16 was obtained
using the Simpson’s 1/3 rule. Apply the Romberg’s method to improve the approximation to the
value of the integral.

Solution In Example 3.16, the given integral is

I = 
0

1

1� +
dx

x
.

The approximations using the Simpson’s 1/3 rule to the integral with various values of
the step lengths were obtained as follows.

h = 1/2, n = 2N = 2: I = 0.694444; h = 1/4, n = 2N = 4: I = 693254;

h = 1/8, n = 2N = 8: I = 693155.

We have  I
I I( ) ( / )
( / ) ( / ) ( . ) .1 1 2

16 1 4 12
15

16 0 693254 0 694444
15

= − = −
 = 0.693175

   I
I I( ) ( / )
( / ) ( / ) ( . ) .1 1 4

16 18 1 4
15

16 0 693155 0 693254
15

= − = −
 = 0.693148

 I
I I( )

(1) (1)

( / )
( / ) ( / ) ( . ) .2 12

64 14 12
63

64 0 693148 0 693175
63

= − = −
 = 0.693148.

The results are tabulated in Table 3.4.

Magnitude of the error is

| I – 0.693148 | = | 0.693147 – 0.693148 | = 0.000001.

Table 3 Romberg method. Example 3.22.

Step Value of I Value of I Value of I

Length O(h4) O(h6) O(h8)

 1/2 0.694444

 0.693175

1/4  0.693254  0.693148

 0.693148

1/8 0.693155
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 REVIEW QUESTIONS

1. What is the order of the trapezium rule for integrating 
a

b
f x dx� ( ) ? What is the expres-

sion for the error term?

 Solution The order of the trapezium rule is 1. The expression for the error term is

Error = – 
( )

( ) ( ),
b a

f
h

f a b
−

′′ = − ′′ ≤ ≤
3 3

12 12
ξ ξ ξwhere .

2. When does the trapezium rule for integrating  
a

b
f x dx� ( )  gives exact results?

 Solution Trapezium rule gives exact results when f(x) is a polynomial of degree ≤ 1.

3. What is the restriction in the number of nodal points, required for using the trapezium

rule for integrating 
a

b
f x dx� ( ) ?

 Solution There is no restriction in the number of nodal points, required for using the
trapezium rule.

4. What is the geometric representation of the trapezium rule for integrating 
a

b
f x dx� ( ) ?

 Solution Geometrically, the right hand side of the trapezium rule is the area of the
trapezoid with width b – a, and ordinates f(a) and f(b), which is an approximation to the
area under the curve y = f(x) above the x-axis and the ordinates x = a, and x = b.

5. State the composite trapezium rule for integrating 
a

b
f x dx� ( ) , and give the bound on the

error.

 Solution The composite trapezium rule is given by

a

b
f x dx� ( )  = 

h
2

 [f(x0) + 2{f(x1) + f(x2) + ... + f(xn–1)} + f(xn)]

 where nh = (b – a ). The bound on the error is given by

| Error | ≤ 
nh

M
b a h3

2

2

12 12
= −( )

 M2

 where M2 = max | ( )|
a x b

f x
≤ ≤

′′   and nh = b – a.

6. What is the geometric representation of the composite trapezium rule for integrating

a

b
f x dx� ( ) ?

Solution Geometrically, the right hand side of the composite trapezium rule is the sum
of areas of the n trapezoids with width h, and ordinates f(xi–1) and f(xi) i = 1, 2, ..., n. This
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sum is an approximation to the area under the curve y = f(x) above the x-axis and the
ordinates x = a and x = b.

7. How can you deduce that the trapezium rule and the composite trapezium rule produce
exact results for polynomials of degree less than or equal to 1?

Solution The expression for the error in the trapezium rule is given by

R1(f, x) = – 
h

f
3

12
′′( )ξ

and the expression for the error in the composite trapezium rule is given by

R1(f, x) = – 
h3

12
 [f ″(ξ1) + f ″(ξ2) + ... + f ″(ξn)], xn–1 < ξn < ξn.

If f(x) is a polynomial of degree ≤ 1, then f ″(x) = 0. This result implies that error is zero
and the trapezium rule produces exact results for polynomials of degree ≤ 1.

8. When does the Simpson’s 1/3 rule for integrating 
a

b
f x dx� ( )  gives exact results?

Solution Simpson’s 1/3 rule gives exact results when f(x) is a polynomial of degree ≤ 3.

9. What is the restriction in the number of nodal points, required for using the Simpson’s

1/3 rule for integrating 
a

b
f x dx� ( ) ?

Solution The number of nodal points must be odd for using the Simpson’s 1/3 rule or
the number of subintervals must be even.

10. State the composite Simpson’s 1/3 rule for integrating 
a

b
f x dx� ( ) , and give the bound on

the error.

Solution Let n = 2N be the number of subintervals. The composite Simpson’s 1/3 rule
is given by

a

b
f x dx� ( )  = 

h
3

 [{f(x0) + 4f(x1) + f(x2)} + {f(x2) + 4f(x3) + f(x4)} + ...

+ {f(x2N–2) + 4 f(x2N–1) + f(x2N)}]

= 
h
3

 [f(x0) + 4{f(x1) + f(x3) + ... + f(x2N–1)}

+ 2{f(x2) + f(x4) + ... + f(x2N–2)} + f(x2N)]

 The bound on the error is given by

| R(f, x) | ≤ 
h

f f f N

5
4

1
4

2
4

90
| ( )| | ( )| ... | ( )|( ) ( ) ( )ξ ξ ξ+ + +

≤ 
Nh

M
b a h5

4

4

90 180
=

−( )
 M4
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 where x0 < ξ1 < x2 , x2 < ξ2 < x4, etc., M4 = max | ( )|( )

a x b
f x

≤ ≤

4  and N h = (b – a)/2.

11. How can you deduce that the Simpson’s 1/3 rule and the composite Simpson’s 1/3 rule
produce exact results for polynomials of degree less than or equal to 3?

 Solution The expression for the error in the Simpson’s 1/3 rule is given by

R(f, x) = 
c

f
b a

f
h

f
4 2880 90

4
5

4
5

4

!
( )

( )
( ) ( )( ) ( ) ( )ξ ξ ξ= − − = −

 where h = (b – a)/2, and a ≤ ξ ≤ b.

 The expression for the error in the composite Simpson’s 1/3 rule is given by

R(f, x) = – 
h

f f f N

5
4

1
4

2
4

90
[ ( ) ( ) ... ( )]( ) ( ) ( )ξ ξ ξ+ + +

 where  x0 < ξ1 < x2 , x2 < ξ2 < x4, etc.

 If f(x) is a polynomial of degree ≤ 3, then f(4)(x) = 0.  This result implies that error is zero
and the Simpson 1/3 rule produces exact results for polynomials of degree ≤ 3.

12. What is the restriction in the number of nodal points, required for using the Simpson’s

3/8 rule for integrating 
a

b
f x dx� ( ) ?

 Solution The number of subintervals must be divisible by 3.
13. What are the disadvantages of the Simpson’s 3/8 rule compared with the Simpson’s 1/3

rule?

 Solution The disadvantages are the following: (i) The number of subintervals must be
divisible by 3. (ii) It is of the same order as the Simpson’s 1/3 rule, which only requires
that the number of nodal points must be odd. (iii) The error constant c in the case of
Simpson’s 3/8 rule is c = 3/80, which is much larger than the error constant c = 1/90, in
the case of Simpson’s 1/3 rule. Therefore, the error in the case of the Simpson’s 3/8 rule
is larger than the error in the case Simpson 1/3 rule.

14. Explain why we need the Romberg method.

 Solution In order to obtain accurate results, we compute the integrals by trapezium
or Simpson’s rules for a number of values of step lengths, each time reducing the step
length. We stop the computation, when convergence is attained (usually, the magnitude
of the difference between successive values of the integrals obtained with the reducing
values of the step lengths is less than a given accuracy). Convergence may be obtained
after computing the value of the integral with a number of step lengths. While computing
the value of the integral with a particular step length, the values of the integral obtained
earlier by using larger step lengths were not used. Further, convergence may be slow.
Romberg method is a powerful tool which uses the method of extrapolation. Romberg
method uses these computed values of the integrals obtained with various step lengths,
to refine the solution such that the new values are of higher order. That is, as if they are
obtained using a higher order method than the order of the method used.
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