

1

2

UNIT - I

Data representation: Data types – Complements- fixed point and floating point representation

other binary codes. Register Transfer and Microoperations: Register transfer language- Register

transfer- Bus and Memory transfers – Arithmetic, logic and shift micro operations.

Data Representation:Data type

 Registers contain either data or controlinformation

 Control information is a bit or group of bits used to specify the sequenceof

command signals needed for data manipulation

 Data are numbers and other binary-coded information that are operatedon

 Possible data types inregisters:

o Numbers used incomputations

o Letters of the alphabet used in dataprocessing

o Other discrete symbols used for specificpurposes

 All types of data, except binary numbers, are represented in binary-codedform

 A number system of base, or radix, r is a system that uses distinct symbols forr

digits

 Numbers are represented by a string of digitsymbols

 The string of digits 724.5 represents thequantity

7 x 102 + 2 x 101 + 4 x 100 + 5 x10-1

 The string of digits 101101 in the binary number system represents thequantity

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 =45

 (101101)2 =(45)10

 We will also use the octal (radix 8) and hexidecimal (radix 16) numbersystems

(736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 =(478.5)10

(F3)16 = F x 161 + 3 x 160 = (243)10

 Conversion from decimal to radix r system is carried out by separating the

number into its integer and fraction parts and converting each partseparately

 Divide the integer successively by r and accumulate theremainders

 Multiply the fraction successively by r until the fraction becomeszero

3

 Each octal digit corresponds to three binarydigits

 Each hexadecimal digit corresponds to four binarydigits

 Rather than specifying numbers in binary form, refer to them in octal or

hexadecimal and reduce the number of digits by 1/3 or ¼,respectively

4

 A binary code is a group of n bits that assume up to 2ndistinctcombinations

 A four bit code is necessary to represent the ten decimal digits – 6 areunused

 The most popular decimal code is called binary-coded decimal(BCD)

 BCD is different from converting a decimal number tobinary

 For example 99, when converted to binary, is1100011

 99 when represented in BCD is 10011001

5

 The standard alphanumeric binary code isASCII

 This uses seven bits to code 128characters

 Binary codes are required since registers can hold binary informationonly

6

Section 3.2 – Complements

 Complements are used in digital computers for simplifying subtraction and logical

manipulation

 Two types of complements for each base r system: r’s complement and (r – 1)’s

complement

 Given a number N in base r having n digits, the (r – 1)’s complement of N is

defined as (rn– 1) – N

 For decimal, the 9’s complement of N is (10n– 1) –N

 The 9’s complement of 546700 is 999999 – 546700 =453299

7

 The 9’s complement of 453299 is 999999 – 453299 =546700

 For binary, the 1’s complement of N is (2n– 1) –N

 The 1’s complement of 1011001 is 1111111 – 1011001 =0100110

 The 1’s complement is the true complement of the number – just toggle allbits

 The r’s complement of an n-digit number N in base r is defined as rn–N

 This is the same as adding 1 to the (r – 1)’scomplement

 The 10’s complement of 2389 is 7610 + 1 =7611

 The 2’s complement of 101100 is 010011 + 1 =010100

 Subtraction of unsigned n-digit numbers: M –N

o Add M to the r’s complement of N – this resultsin
M + (rn– N) = M – N + rn

o If M N, the sum will produce an end carry rnwhich isdiscarded

o If M <N, the sum does not produce an end carry and is equalto
rn– (N – M), which is the r’s complement of (N – M). To obtain the

answer in a familiar form, take the r’s complement of the sum and place a

negative sign in front.

Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750.

M = 72352

10’s comp.ofN =

+86750Sum = 159282

Discardendcarry = -

100000Answer = 59282

Example for M < N: 13250 – 72532 = -59282

M = 13250

10’s comp.ofN =

+27468Sum = 40718

No end carry

Answer = -59282 (10’s comp. of 40718)

Example for X = 1010100 and Y = 1000011

X =1010100

2’s comp. of Y = +0111101

Sum = 10010001

Discard end carry = -10000000

Answer X – Y = 0010001

Y = 1000011

2’s comp. of X =+0101100
Sum = 1101111

8

No end carry

Answer = -0010001 (2’s comp. of1101111)

Section 3.3 – Fixed-Point Representation

 Positive integers and zero can be represented by unsignednumbers

 Negative numbers must be represented by signed numbers since + and – signs are

not available, only 1’s and 0’s are

 Signed numbers have msb as 0 for positive and 1 for negative – msb is the signbit

 Two ways to designate binary point position in aregister

o Fixed pointposition

o Floating-point representation

 Fixed point position usually uses one of the two followingpositions

o A binary point in the extreme left of the register to make it afraction

o A binary point in the extreme right of the register to make it aninteger

o In both cases, a binary point is not actuallypresent

 The floating-point representations uses a second register to designate the position

of the binary point in the firstregister

 When an integer is positive, the msb, or sign bit, is 0 and the remaining bits

represent themagnitude

 When an integer is negative, the msb, or sign bit, is 1, but the rest of the number

can be represented in one of threeways

o Signed-magnituderepresentation

o Signed-1’s complementrepresentation

o Signed-2’s complementrepresentation

 Consider an 8-bit register and the number+14

o The only way to represent it is00001110

 Consider an 8-bit register and the number–14

o Signedmagnitude: 1 0001110

o Signed1’scomplement: 1 1110001

o Signed2’scomplement: 1 1110010

 Typically use signed 2’scomplement

 Addition of two signed-magnitude numbers follow the normalrules

o If same signs, add the two magnitudes and use the commonsign
o Differing signs, subtract the smaller from the larger and use the sign of the

largermagnitude

o Must compare the signs and magnitudes and then either add orsubtract

 Addition of two signed 2’s complement numbers does not require a comparison or

subtraction – only addition andcomplementation

o Add the two numbers, including their signbits

o Discard any carry out of the sign bitposition

o All negative numbers must be in the 2’s complementform

o If the sum obtained is negative, then it is in 2’s complementform

9

+6 00000110 -6 11111010

+13 00001101 +13 00001101

+19 00010011 +7 00000111

+6 00000110 -6 11111010

-13 11110011 -13 11110011

-7 11111001 -19 11101101

 Subtraction of two signed 2’s complement numbers is asfollows

o Take the 2’s complement form of the subtrahend (including signbit)

o Add it to the minuend (including the signbit)

o A carry out of the sign bit position isdiscarded

 An overflow occurs when two numbers of n digits each are added and the sum

occupies n + 1digits

 Overflows are problems since the width of a register isfinite

 Therefore, a flag is set if this occurs and can be checked by theuser

 Detection of an overflow depends on if the numbers are signed orunsigned

 For unsigned numbers, an overflow is detected from the end carry out of themsb

 For addition of signed numbers, an overflow cannot occur if one is positive and

one is negative – both have to have the samesign

 An overflow can be detected if the carry into the sign bit position and the carry

out of the sign bit position are notequal

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

+150 1 0010110 -150 0 1101010

 The representation of decimal numbers in registers is a function of the binary

code used to represent a decimaldigit

 A 4-bit decimal code requires four flip-flops for each decimaldigit

 This takes much more space than the equivalent binary representation and the

circuits required to perform decimal arithmetic are morecomplex

 Representation of signed decimal numbers in BCD is similar to the representation

of signed numbers in binary

 Either signed magnitude or signed complementsystems

 The sign of a number is represented with fourbits

o 0000 for +

o 1001 for –

 To obtain the 10’s complement of a BCD number, first take the 9’s complement

and then add one to the least significantdigit

 Example: (+375) + (-240) =+135

10

0 375 (0000 0011 01111010)BCD

+9 760 (1001 0111 01100000)BCD

0 135 (0000 0001 00110101)BCD

Section 3.4 – Floating-Point Representation

 The floating-point representation of a number has twoparts

 The first part represents a signed, fixed-point number – themantissa

 The second part designates the position of the binary point – theexponent

 The mantissa may be a fraction or aninteger

 Example: the decimal number +6132.789is

oFraction: +0.6123789

o Exponent: +04

o Equivalent to +0.6132789 x10+4

 A floating-point number is always interpreted to represent m xre

 Example: the binary number +1001.11 (with 8-bit fraction and 6-bitexponent)

o Fraction: 01001110

o Exponent: 000100

o Equivalent to +(.1001110)2 x2+4

 A floating-point number is said to be normalized if the most significant digit of

the mantissa isnonzero

 The decimal number 350 is normalized, 00350 isnot

 The 8-bit number 00011010 is notnormalized

 Normalize it by fraction = 11010000 and exponent =-3

 Normalized numbers provide the maximum possible precision for the floating-

pointnumber

Section 3.5 – Other Binary Codes

 Digital systems can process data in discrete formonly

 Continuous, or analog, information is converted into digital form by means of an

analog-to-digital converter

 The reflected binary or Gray code, is sometimes used for the converted digital

data

 The Gray code changes by only one bit as it sequences from one number to the

next

 Gray code counters are sometimes used to provide the timing sequencesthat

control the operations in a digitalsystem

11

 Binary codes for decimal digits require a minimum of fourbits

 Other codes besides BCD exist to represent decimaldigits

12

 The 2421 code and the excess-3 code are bothself-complementing

 The 9’s complement of each digit is obtained by complementing each bit in the

code

 The 2421 code is a weightedcode

 The bits are multiplied by indicated weights and the sum gives the decimaldigit

 The excess-3 code is obtained from the corresponding BCD code added to3

Section 3.6 – Error Detection Codes

 Transmitted binary information is subject to noise that could change bits 1 to 0

and vice versa

 An error detection code is a binary code that detects digital errors during

transmission

 The detected errors cannot be corrected, but can prompt the data tobe

retransmitted

 The most common error detection code used is the paritybit

 A parity bit is an extra bit included with a binary message to make the total

number of 1’s either odd oreven

 The P(odd) bit is chosen to make the sum of 1’s in all four bitsodd

 The even-parity scheme has the disadvantage of having a bit combination of all

0’s

 Procedure duringtransmission:

o At the sending end, the message is applied to a paritygenerator

o The message, including the parity bit, istransmitted

o At the receiving end, all the incoming bits are applied to a paritychecker

o Any odd number of errors are detected

 Parity generators and checkers are constructed with XOR gates (oddfunction)

 An odd function generates 1 iff an odd number if input variables are1

REGISTER TRANSFER AND MICROOPERATIONS

 Register TransferLanguage

 RegisterTransfer

 Bus And MemoryTransfers

 Types ofMicro-operations

 ArithmeticMicro-operations

 LogicMicro-operations

 ShiftMicro-operations

 Arithmetic Logic ShiftUnit

BASIC DEFINITIONS:

 A digital system is an interconnection of digital hardwaremodules.

 The modules are registers, decoders, arithmetic elements, and controllogic.

 The various modules are interconnected with common data and control paths to form a digital

computer system.

 Digital modules are best defined by the registers they contain and the

operations that are performed on the data stored inthem.

 The operations executed on data stored in registers are calledmicrooperations.

 A microoperationis an elementary operation performed on the information stored in one or more

registers.

 The result of the operation may replace the previous binary

information of a register or may be transferred to anotherregister.

 Examples of microoperations are shift, count, clear, andload.

 The internal hardware organization of a digital computer is best defined

byspecifying:

1. The set of registers it contains and theirfunction.

2. The sequence of microoperations performed on the binary information

stored in theregisters.

3. The control that initiates the sequence ofmicrooperations.

REGISTER TRANSFER LANGUAGE:

 The symbolic notation used to describe the micro-operation transfer among registers is called RTL

(Register TransferLanguage).

 The use of symbols instead of a narrative explanation provides an organized and concise manner

for listing the micro-operation sequences in registers and the control functions that initiatethem.

 A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digitalmodule.

 It is a convenient tool for describing the internal organization of digital computers in concise and

precise manner.

Registers:

 Computer registers are designated by upper case letters (and optionally followed by digits or

letters) to denote the function of theregister.

 For example, the register that holds an address for the memory unit is usually called a memory

address register and is designated by the nameMAR.

 Other designations for registers are PC (for program counter), IR (for instruction register, andR1

(for processor register).

 The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting

from 0 in the rightmost position and increasing the numbers toward theleft.

 Figure 4-1 shows the representation of registers in block diagramform.

 The most common way to represent a register is by a rectangular box with the name ofthe

register inside, as in Fig.4-1(a).

 The individual bits can be distinguished as in(b).

 The numbering of bits in a 16-bit register can be marked on top of the box as shown in(c).

 16-bitregisterispartitionedintotwopartsin (d).Bits0through7areassignedthesymbolL(for low byte)

and bits 8 through 15 are assigned the symbol H (for highbyte).

 The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order

byte and PC (8-15) or PC (H) to the high-orderbyte.

Register Transfer:

 Information transfer from one register to another is designated in symbolic form by means ofa

replacement operator.

 ThestatementR2←R1denotesatransferofthecontentofregisterR1intoregisterR2.

 It designates a replacement of the content of R2 by the content ofR1.

 By definition, the content of the source register R 1 does not change after thetransfer.

 If we want the transfer to occur only under a predetermined control condition then it can be

shown by an if-thenstatement.

if (P=1) then R2← R1

 P is the control signal generated by a controlsection.

 We can separate the control variables from the register transfer operation by specifying a Control

Function.

 Control function is a Boolean variable that is equal to 0 or1.

 control function is included in the statementas

P: R2← R1

 Control condition is terminated by a colon implies transfer operation be executed by the

hardware only ifP=1.

 Every statement written in a register transfer notation implies a hardware construction for

implementing thetransfer.

 Figure 4-2 shows the block diagram that depicts the transfer from R1 toR2.

 The n outputs of register R1 are connected to the n inputs of registerR2.

 The letter n will be used to indicate any number of bits for the register. It will be replaced by an

actual number when the length of the register isknown.

 Register R2 has a load input that is activated by the control variableP.

 It is assumed that the control variable is synchronized with the same clock as the one applied to

theregister.

 As shown in the timing diagram, P is activated in the control section by the rising edge

of a clock pulse at timet.

 The next positive transition of the clock at time t + 1 finds the load input active and the data inputs

of R2 are then loaded into the register in parallel.

 P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition

while P remainsactive.

 Even though the control condition such as P becomes active just after time t, the actual transfer

doesnotoccuruntiltheregisteristriggeredbythenext positivetransitionoftheclockattime

t+1.

 The basic symbols of the register transfer notation are listed in belowtable

Symbol Description Examples

Letters(and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow <-- Denotes transfer of information R2 <-- R1

Comma , Separates two microoperations R2 <-- R1, R1 <-- R2

 A comma is used to separate two or more operations that are executed at the sametime.

 Thestatement

T:R2←R1,R1←R2 (exchangeoperation)

denotes an operation that exchanges the contents of two rgisters during one common clock pulse

provided that T=1.

Bus and Memory Transfers:

 A more efficient scheme for transferring information between registers in a multiple-register

configuration is a Common BusSystem.

 A common bus consists of a set of common lines, one for each bit of aregister.

 Controlsignalsdeterminewhichregisterisselectedbythebusduringeachparticularregister transfer.

 Different ways of constructing a Common BusSystem

 UsingMultiplexers

 Using Tri-state Buffers

Common bus system is with multiplexers:

 The multiplexers select the source register whose binary information is then placed

on thebus.

 The construction of a bus system for four registers is shown in belowFigure.

 The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two

selection inputs, S1 andS0.

 For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled

A1.

 The diagram shows that the bits in the same significant position in each register are connected to

the data inputs of one multiplexer to form one line of thebus.

 Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of

the registers, and similarly for the other twobits.

 The two selection lines Si and So are connected to the selection inputs of all fourmultiplexers.

 The selection lines choose the four bits of one register and transfer them into the four-line

commonbus.

 When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs

that form thebus.

 This causes the bus lines to receive the content of register A since the outputs of this register are

connected to the 0 data inputs of themultiplexers.

 Similarly, register B is selected if S1S0 = 01, and soon.

 Table 4-2 shows the register that is selected by the bus for each of the four possible binary value

of the selectionlines.

 In general a bus systemhas

 multiplex “k”Registers

 eachregisterof“n”bits

 toproduce“n-linebus”

 no. of multiplexers required =n

 size of each multiplexer = k x 1

 When the bus is includes in the statement, the register transfer is symbolized asfollows:

BUS← C, R1← BUS

 The content of register C is placed on the bus, and the content of the bus is loaded into register R1

by activating its load control input. If the bus is known to exist in the system, it may be convenient

just to show the directtransfer.

R1← C

Three-State Bus Buffers:

 A bus system can be constructed with three-state gates instead ofmultiplexers.

 A three-state gate is a digital circuit that exhibits threestates.

 Two of the states are signals equivalent to logic 1 and 0 as in a conventionalgate.

 The third state is a high-impedancestate.

 The high-impedance state behaves like an open circuit, which means that the output is

disconnected and does not have logicsignificance.

 Becauseofthisfeature,alargenumberofthree-stategateoutputscanbeconnectedwithwires

toformacommonbuslinewithoutendangeringloadingeffects.

 The graphic symbol of a three-state buffer gate is shown in Fig.4-4.

 It is distinguished from a normal buffer by having both a normal input and a controlinput.

 The control input determines the output state. When the control input is equal to 1, the output is

enabled and the gate behaves like any conventional buffer, with the output equal to the normal

input.

 When the control input is 0, the output is disabled and the gate goes to a high-impedance state,

regardless of the value in the normalinput.

 The construction of a bus system with three-state buffers is shown in Fig.4

 The outputs of four buffers are connected together to form a single busline.

 Thecontrolinputstothebuffersdeterminewhichofthefournormalinputswillcommunicatewith the

busline.

 No more than one buffer may be in the active state at any given time. The connected buffers must

be controlled so that only one three-state buffer has access to the bus line while all other buffers

are maintained in a high impedancestate.

 One way to ensure that no more than one control input is active at any given time is to use a

decoder, as shown in thediagram.

 When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a

high-impedance state because all four buffers aredisabled.

 When the enable input is active, one of the three-state buffers will be active, depending on the

binary value in the select inputs of thedecoder.

Memory Transfer:

 The transfer of information from a memory word to the outside environment is called aread

operation.

 The transfer of new information to be stored into the memory is called a writeoperation.

 A memory word will be symbolized by the letterM.

 The particular memory word among the many available is selected by the memory address during

thetransfer.

 It is necessary to specify the address of M when writing memory transferoperations.

 This will be done by enclosing the address in square brackets following the letterM.

 Consider a memory unit that receives the address from a register, called the address register,

symbolized byAR.

 The data are transferred to another register, called the data register, symbolized byDR.

 The read operation can be stated asfollows:

Read: DR<- M [AR]

 This causes a transfer of information into DR from the memory word M selected by the address in

AR.

 The write operation transfers the content of a data register to a memory word M selected by the

address. Assume that the input data are in register R1 and the address is inAR.

 The write operation can be stated asfollows:

Write: M [AR] <- R1

Types of Micro-operations:

 Register Transfer Micro-operations:Transfer binary information from one register toanother.

 Arithmetic Micro-operations:Perform arithmetic operation on numeric data stored inregisters.

 Logical Micro-operations:Perform bit manipulation operations on data stored inregisters.

 Shift Micro-operations:Perform shift operations on data stored inregisters.

 RegisterTransferMicro-operationdoesn’tchangetheinformationcontentwhenthebinary

information moves from source register to destinationregister.

 Other three types of micro-operations change the information change the information content

during thetransfer.

Arithmetic Micro-operations:

 The basic arithmetic micro-operationsare

o Addition

o Subtraction

o Increment

o Decrement

o Shift

 The arithmetic Micro-operation defined by the statement below specifies the add micro-

operation.

R3 ← R1 + R2

 It states that the contents of R1 are added to contents of R2 and sum is transferred toR3.

 To implement this statement hardware requires 3 registers and digital component that performs

addition

 Subtraction is most often implemented through complementation andaddition.

 The subtract operation is specified by the followingstatement

R3 ← R1 + R2 + 1

 instead of minus operator, we can write as

 R2isthesymbolforthe1’scomplementofR2

 Adding1to1’scomplementproduces2’scomplement

 AddingthecontentsofR1tothe2'scomplementofR2isequivalenttoR1-R2.

Binary Adder:

 Digitalcircuitthatformsthearithmeticsumof2bitsandthepreviouscarryiscalledFULLADDER.

 Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths iscalled

BINARY ADDER.

 Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binaryadder.

 The augends bits of A and the addend bits of B are designated by subscript numbers from

right to left, with subscript 0 denoting the low-orderbit.

 The carries are connected in a chain through the full-adders. The input carry to the

binaryadderisCoandtheoutputcarryisC4.TheSoutputsofthefull-addersgenerate the

required sumbits.

 An n-bit binary adder requires nfull-adders.

Binary Adder –Subtractor:

 The addition and subtraction operations can be combined into one common circuit by includingan

exclusive-OR gate with eachfull-adder.

 A 4-bit adder-subtractor circuit is shown in Fig.4-7.

 The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the

circuit becomes asubtractor.

 Each exclusive-OR gate receives input M and one of the inputs ofB

 When M = 0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0,

and the circuit performs A plusB.

 When M = 1, we have B xor 1 = B' and Co =1.

 The B inputs are all complemented and a 1 is added through the inputcarry.

 The circuit performs the operation A plus the 2's complement ofB.

Binary Incrementer:

 The increment microoperation adds one to a number in aregister.

 For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it isincremented.

 This can be accomplished by means of half-adders connected incascade.

 The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig.4-8.

 One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other

input is connected to the least significant bit of the number to beincremented.

 The output carry from one half-adder is connected to one of the inputs of the next-higher-order

half-adder.

 The circuit receives the four bits from A0 through A3, adds one to it, and generates the

incremented output in S0 throughS3.

 The output carry C4will be 1 only after incrementing binary 1111. This also causes outputs S0

through S3 to go to0.

 The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram to

include nhalf-adders.

 The least significant bit must have one input connected to logic-1. The other inputs receive the

number to be incremented or the carry from the previousstage.

Arithmetic Circuit:

 The basic component of an arithmetic circuit is the paralleladder.

 By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic

operations.

 The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits

that constitute the 4-bit adder and four multiplexers for choosing differentoperations.

 There are two 4-bit inputs A and B and a 4-bit outputD.

 The four inputs from A go directly to the X inputs of the binaryadder.

 Each of the four inputs from B are connected to the data inputs of themultiplexers.

 The multiplexers data inputs also receive the complement ofB.

 The other two data inputs are connected to logic-0 andlogic-1.

 The four multiplexers are controlled by two selection inputs S1 and S0. The input carry Cin, goes to

the carry input of the FA in the least significant position. The other carries are connected from one

stage to thenext.

 By controlling the value of Y with the two selection inputs S1and S0 and making Cin equal to 0 or

1, it is possible to generate the eight arithmetic microoperations listed in Table44.

Addition:

 When S1S0= 00, the value of B is applied to the Y inputs of theadder.

 If Cir, = 0, the output D=A+B.

 If Cin = 1, output D=A+B +1.

 Both cases perform the add microoperation with or without adding the inputcarry.

Subtraction:

 When S1S0 = 01, the complement of B is applied to the Y inputs of theadder.

 If Cin = 1, then D = A + B + 1. This produces A plus the 2's complement of B,

which is equivalent to a subtraction of A-B.

 When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that

is, A-B-1.

Increment:

 When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs.

The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0 and D = A + 1 when Cin= 1.

 In the first case we have a direct transfer from input A to outputD.

 In the second case, the value of A is incremented by1.

Decrement:

 When S1S0= 11, all l's are inserted into the Y inputs of the adder to produce the decrement

operation D = A -1 when Cin =0.

 This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement of

binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's

complementof1=A—1.WhenCin=1,thenD=A -1+1=A,whichcausesadirecttransferfrom input A to

output D.

Logic Micro-operations:

 Logic microoperations specify binary operations for strings of bits stored inregisters.

 These operations consider each bit of the register separately and treat them as binaryvariables.

 For example, the exclusive-OR microoperation with the contents of two registers RI and R2 is

symbolized by thestatement

 It specifies a logic microoperation to be executed on the individual bits of the registers provided

that the control variable P =1.

List of Logic Microoperations:

 There are 16 different logic operations that can be performed with two binaryvariables.

 They can be determined from all possible truth tables obtained with two binary variables as

shown in Table4-5.

 The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first

column of Table4-6.

 The 16 logic microoperations are derived from these functions by replacing variable x bythe

binary content of register A and variable y by the binary content of registerB.

 The logic micro-operations listed in the second column represent a relationship between the

binary content of two registers A andB.

Hardware Implementation:

 The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers to perform the required logicfunction.

 Although there are 16 logic microoperations, most computers use only four--AND, OR,

XOR (exclusive-OR), and complement from which all others can bederived.

 Figure 4-10 shows one stage of a circuit that generates the four basic logicmicrooperations.

 It consists of four gates and a multiplexer. Each of the four logic operations is generated through a

gate that performs the requiredlogic.

 The outputs of the gates are applied to the data inputs of the multiplexer. The two selection

inputsS1andS0chooseoneofthedatainputsofthemultiplexeranddirectitsvaluetotheoutput.

Some Applications:

 Logic micro-operations are very useful for manipulating individual bits or a portion of a word stored in a

register.

 They can be used to change bit values, delete a group of bits or insert new bits values into aregister.

 The following example shows how the bits of one register (designated by A) are manipulated by logic

microoperations as a function of the bits of another register (designated byB).

 Selectiveset

 The selective-set operation sets to 1 the bits in register A where there are

correspondingl'sinregisterB.Itdoesnotaffectbitpositionsthathave0'sinB.Thefollowing

numerical example clarifies thisoperation:

 The OR microoperation can be used to selectively set bits of aregister.

 Selectivecomplement

 Theselective-complementoperationcomplementsbitsinAwheretherearecorresponding 1's in

B. It does not affect bit positions that have 0's in B. Forexample:

 The exclusive-OR microoperation can be used to selectively complement bits of aregister.

 Selectiveclear

 The selective-clear operation clears to 0 the bits in Aonly where there are

corresponding l's in B. Forexample:

 The corresponding logic microoperationis

 Mask

 The mask operation is similar to the selective-clear operation except that the bits of A are cleared

only where there are corresponding O's in B . The mask operation is an AND micro operation as

seen from the following numericalexample:

 Insert

 The insert operation inserts a new value into a group of bits. This is done by first masking the bits

and then ORing them with the requiredvalue.

 For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost

bits by the value 1001 we first mask the four unwantedbits:

 The mask operation is an AND microoperation and the insert operation is an OR

microoperation.

 Clear

 The clear operation compares the words in A and B and produces an all 0's result if the two

numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown

by the followingexample

Shift Microoperations:

 Shift microoperations are used for serial transfer ofdata.

 The contents of a register can be shifted to the left or theright.

 Duringashift-leftoperationtheserialinputtransfersabitintotherightmostposition.

 Duringashift-rightoperationtheserialinputtransfersabitintotheleftmostposition.

 There are three types of shifts: logical, circular, andarithmetic.

 The symbolic notation for the shift microoperations is shown in Table4-7.

 LogicalShift:

o A logical shift is one that transfers 0 through the serialinput.

o The symbols shland shr for logical shift-left and shift-rightmicrooperations.

o The microoperations that specify a 1-bit shift to the left of the content of register R and a

1-bit shift to the right of the content of register R shown in table4.7.

o The bit transferred to the end position through the serial input is assumed to be 0 during a

logicalshift.

 CircularShift:

o The circular shift (also known as a rotate operation) circulates the bits of the register

around the two ends without loss ofinformation.

o This is accomplished by connecting the serial output of the shift register to its serialinput.

o We will use the symbols ciland cirfor the circular shift left and right,respectively.

 ArithmeticShift:

o An arithmetic shift is a microoperation that shifts a signed binary number to the left or

right.

o An arithmetic shift-left multiplies a signed binary number by2.

o An arithmetic shift-right divides the number by2.

o Arithmetic shifts must leave the sign bit unchanged because the sign of thenumber

remains the same when it is multiplied or divided by2.

Hardware Implementation:

 A combinational circuit shifter can be constructed with multiplexers as shown in Fig.4-12.

 The4-bitshifterhasfourdatainputs,A0throughA3,andfourdataoutputs,H0throughH3.

 There are two serial inputs, one for shift left (IL) and the other for shift right(IR).

 When the selection input S=0 the input data are shifted right (down in thediagram).

 When S = 1, the input data are shifted left (up in thediagram).

 The function table in Fig. 4-12 shows which input goes to each output after theshift.

 A shifter with n data inputs and outputs requires nmultiplexers.

 Thetwoserialinputscanbecontrolledbyanothermultiplexertoprovidethethreepossibletypes of shifts.

Arithmetic Logic Shift Unit:

 Instead of having individual registers performing the microoperations directly, computer systems

employ a number of storage registers connected to a common operational unit called an arithmetic

logic unit, abbreviatedALU.

 The ALU is a combinational circuit so that the entire register transfer operation fromthe

source registers through the ALU and into the destination register can be performed during one clock

pulse period.

 The shift microoperations are often performed in a separate unit, but sometimes the shift unit is

made part of the overallALU.

 The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one

ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig.

4- 13.

 Particular microoperation is selected with inputs S1 and S0. A 4 x 1 multiplexer at the output

chooses between an arithmetic output in Diand a logic output inEi.

 The data in the multiplexer are selected with inputs S3and S2. The other two data inputs to the

multiplexer receive inputs Ai-1 for the shift-right operation and Ai+1 for the shift-leftoperation.

 The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic

operations, and two shiftoperations.

 Each operation is selected with the five variables S3, S2, S1, S0 andCin.

 The input carry Cin is used for selecting an arithmetic operationonly.

 Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic

operations and are selected with S3S2 =00.

 The next four are logic and are selected with S3S2 =01.

 Theinputcarryhasnoeffectduringthelogicoperationsandismarkedwithdon't-carex’s.

 The last two operations are shift operations and are selected with S3S2= 10 and11.

 The other three selection inputs have no effect on theshift.

UNIT - II
Central processing unit: General register and stack organizations- instruction formats -

Addressing modes- Data transfer and manipulation - program control- RISC - Pipelining -

Arithmetic and instruction- RISC pipeline - Vector processing and Array processors.
Components of CPU and their functions:

CPU or Central processing unit is the brain of the computer system. A function of

CPU varies from data processing to controlling input-output devices. Each and every

instruction no matter how complex or simple, it has to go through the CPU. In this article we

will learn various components of CPU and their functions.

The central processing unit is also responsible for storing data or information, intermediate

results and instructions in the memory system. It also controls the operations of all other parts

of the computer system.

Functions of a CPU:

CPU generally performs the arithmetical and logical operations, controlling of

different input-output devices. These operations are performed based on some predefined

algorithms and instructions normally referred as computer programs. A computer program is

a set of instructions written by a human to perform a specific operation by the CPU. A

computer program is normally stored in the memory unit of the Central

Processing Unit.

A CPU mainly consists of ALU (Arithmetic & Logic Unit), Control Unit and Memory

Unit. These 3 units are the primary components of a CPU. Various functions of CPU and

operations are generally performed by these 3 units are described below.

Components of CPU and their functions :

Memory unit(storage component):

The primary job of the memory unit is to store data or instructions and intermediate results.

Memory unit supplies data to the other units of a CPU. In Computer Organization, memory

https://www.csetutor.com/components-of-cpu-and-their-functions/

can be divided into two major parts primary memory and secondary memory. Speed and

power and performance of a memory depends on the size and type of the memory.

When an instruction is processed by the central processing unit, the main memory or the

RAM (Random Access Memory) stores the final result before it is sent to the output device.

All inputs and outputs are intermediate and are transmitted through the main memory.

Control unit (Control Component)

It is the unit which controls all the operations of the different units but does not carry out any

actual data processing operation. Control unit transfers data or instruction among different

units of a computer system. It receives the instructions from the memory, interprets them and

sends the operation to various units as instructed.

Control unit is also responsible for communicating with all input and output devices for

transferring or receiving the instruction from the storage units. So, the control unit is the main

coordinator since it sends signals and find the sequence of instructions to be executed.

Arithmetic and logic unit(Execution Component)

ALU can also be subdivided into 2 sections namely, arithmetic unit and logic unit. It is a

complex digital circuit which consists of registers and which performs arithmetic and logical

operations. Arithmetic sections perform arithmetic operations like addition, subtraction,

multiplication, division etc. All other Complex operations can also be performed by repetition

of these above basic operations.

The logic unit is responsible for performing logical operations such as comparing, selecting,

matching and merging of different data or information.

So basically ALU is the major part of the computer system which handles different

calculations. Depending on the design of ALU it makes the CPU more powerful and efficient.

 A decoder is a combinational logic circuit that converts binary information from the n

coded inputs to a maximum of 2n unique outputs. They are used in a wide variety of

applications, including data demultiplexing, seven segment displays, and memory

address decoding.

 A mutliplexer (Mux) is a device used to select a single line of input from multiple input

lines using control signals. In this diagram, D0 to D3 are input data lines and Y is the output.

General Register organization
Generally CPU has seven general registers. Register organization show how registers

are selected and how data flow between register and ALU. A decoder is used to select a

particular register. The output of each register is connected to two multiplexers to form the

two buses A and B. The selection lines in each multiplexer select the input data for the

particular bus.

The A and B buses form the two inputs of an ALU. The operation select lines decide

the micro operation to be performed by ALU. The result of the micro operation is available at

the output bus. The output bus connected to the inputs of all registers, thus by selecting a

destination register it is possible to store the result in it.

Introduction:

 The main part of the computer that performs the bulk of data-processing operations is

called the central processing unit and is referred to as theCPU.

 The CPU is made up of three major parts, as shown in Fig.8-1.

 The register set stores intermediate data used during the execution of theinstructions.

 The arithmetic logic unit (ALU) performs the required microoperations for executing

theinstructions.

 The control unit supervises the transfer of information among the registers and

instructs the ALU as to which operation toperform.

StackOrganization:
A stack or last-in first-out (LIFO) is useful feature that is included in the CPU of

mostcomputers.

Stack:

 A stack is a storage device that stores information in such a manner that the item

stored last is the first itemretrieved.

 The operation of a stack can be compared to a stack of trays. The last tray placed on

top of the stack is the first to be takenoff.

 In the computer stack is a memory unit with an address register that can count the

addressonly.

 The register that holds the address for the stack is called a stack pointer (SP). It

always points at the top item in the stack.

 The two operations that are performed on stack are the insertion anddeletion.

 The operation of insertion is calledPUSH.

 The operation of deletion is calledPOP.

 These operations are simulated by incrementing and decrementing the stack pointer

register(SP).

Register Stack:

A stack can be placed in a portion of a large memory or it can be organized as a

collection of a finite number of memory words orregisters.

The below figure shows the organization of a 64-word registerstack.

P
ag

e2

 The stack pointer register SP contains a binary number whose value is equal to the

address of the word is currently on top of the stack. Three items are placed in the

stack: A, B, C, in thatorder.

 In above figure C is on top of the stack so that the content of SP is3.

 For removing the top item, the stack is popped by reading the memory word at

address 3 and decrementing the content of stackSP.

 Now the top of the stack is B, so that the content of SP is2.

 Similarly for inserting the new item, the stack is pushed by incrementing SP and

writing a word in the next- higher location in thestack.

 In a 64-word stack, the stack pointer contains 6 bits because 26 =64.

 Since SP has only six bits, it cannot exceed a number greater than 63 (111111

inbinary).

 When 63 is incremented by 1, the result is 0 since 111111 + 1. = 1000000 in binary,

but SP can accommodate only the six least significantbits.

 Then the one-bit register FULL is set to 1, when the stack isfull.

 Similarly when 000000 is decremented by 1, the result is 111111, and then the one-bit

register EMTY is set 1 when the stack is empty ofitems.

 DR is the data register that holds the binary data to be written into or read out of

thestack.

PUSH:

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP

points to the word at address 0 and the stack is marked empty and notfull.

If the stack is not full (if FULL = 0), a new item is inserted with a pushoperation.

 The push operation is implemented with the following sequence ofmicrooperations:

 The stack pointer is incremented so that it points to the address of next-higherword.

 A memory write operation inserts the word from DR the top of thestack.

 The first item stored in the stack is at address1.

 The last item is stored at address0.

 If SP reaches 0, the stack is full of items, so FULL is to1.

 This condition is reached if the top item prior to the last push way location 63 and,

after incrementing SP, the last item is stored in location0.

 Once an item is stored in location 0, there are no more empty registers in the stack, so

the EMTY is cleared to0.

POP:

A new item is deleted from the stack if the stack is not empty (if EMTY =0).

 The pop operation consists of the following sequence of minoperations:

 The top item is read from the stack intoDR.

 The stack pointer is then decremented. If its value reaches zero, the stack is empty, so

EMTY is set1.

 This condition is reached if the item read was in location 1. Once this it is read out, SP

is decremented and reaches the value 0, which is the initial value ofSP.

 If a pop operation reads the item from location 0 and then is decremented, SP changes

to 111111, which is equivalent to decimal 63 in above configuration, the word in

address 0 receives the last item in thestack.

Memory Stack:

In the above discussion a stack can exist as a stand-alone unit. But in the CPU

implementation of a stack is done by assigning a portion of memory to a stack operation and

using a processor register as stackpointer.

The below figure shows a portion computer memory partitioned into three segments:

program, data, and stack.

P
ag

e3

 The program counterPC points at the address of the next instruction inprogram.

 The address register AR points at an array ofdata.

 The stack pointer SP points at the top of thestack.

 The three registers are connected to a common address bus, and either one can

provide an address for memory.

o PC is used during the fetch phase to read aninstruction.

o AR is used during the exec phase to read anoperand.

o SP is used to push or pop items into or fromstack.

As shown in Fig. 8-4, the initial value of SP is 4001 and the stack grows with

decreasingaddresses.

Thus the first item stored in the stack is at address 4000, the second item is stored at address

3999, and the last address that can be used for the stack is3000. No provisions are available

for stack limitchecks. The items in the stack communicate with a data register DR.

A new item is inserted with the push operation as follows:

 SP SP-1

M [SP] DR

 The stack pointer is decremented so that it points at the address of the nextword.

 A memory write operation inserts the word from DR into the top of stack. A new item

is deleted with a pop operation asfollows:

DR M [SP]

 SPSP+1

 The top item is read from the stack into DR. The stack pointer is then decremented to

point at the next item in the stack.

P
ag

e4

 Most computers do not provide hardware to check for stack overflow (full stack) or

underflow (emptystack).

 The stack limits can be checked by using processorregisters:

o one to hold the upper limit (3000 in thiscase)

o Other to hold the lower limit (4001 in thiscase).

 After a push operation, SP compared with the upper-limit register and after a pop

operation, SP is a compared with the lower-limitregister.

 The two microoperations needed for either the push or popare

o An access to memory throughSP

o UpdatingSP.

 The advantage of a memory stack is that the CPU can refer to it without having

specify an address, since the address is always available and automatically updated in

the stackpointer.

Reverse Polish Notation:

A stack organization is very effective for evaluating arithmeticexpressions. The common

arithmetic expressions are written in infix notation, with each operator written between the

operands.

Consider the simple arithmeticexpression.

A*B+C*D

 For evaluating the above expression it is necessary to compute the product A*B, store

this product result while computing C*D, and then sum the twoproducts.

 For doing this type of infix notation, it is necessary to scan back and forth along the

expression to determine the next operation to beperformed.

 The Polish mathematician Lukasiewicz showed that arithmetic expression can be

represented in prefixnotation.

 This representation, often referred to as Polish notation, places the operator before the

operands. So it is also called as prefixnotation.

 The Postfix notation, referred to as reverse Polish notation (RPN), places the operator

after theoperands.

 The following examples demonstrate the three representations

Eg: A+B > Infix notation

+AB > Prefix or Polishnotation

AB+ > Post or reverse Polishnotation

The reverse Polish notation is in a form suitable for stack manipulation. Theexpression

A*B+C*D

Is written in reverse polish notation as

AB* CD* +

And it is evaluated as follows

 Scan the expression from left toright.

 When operator is reached, perform the operation with the two operands found on the

left side of the operator.

P
ag

e5

 Remove the two operands and the operator and replace them by the number obtained

from the result of theoperation.

 Continue to scan the expression and repeat the procedure for every operation

encountered until there are no moreoperators.

For the expression above it find the operator * after A and B. So it perform the operation A*B

and replace A, B and * with theresult.

The next operator is a * and it previous two operands are C and D, so it perform the operation

C*D and places the result in places C, D and*.

The next operator is + and the two operands to be added are the two products, so we add the

two quantities to obtain theresult.

The conversion from infix notation to reverse Polish notation must take into consideration the

operational hierarchy adopted for infixnotation.

This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then

inside outer parentheses, and do multiplication and division operations before addition and

subtractionoperations.

Evaluation of Arithmetic Expressions:

Reverse Polish notation, combined with a stack arrangement of registers, is the most efficient

way known for evaluating arithmeticexpressions.

This procedure is employed in some electronic calculators and also in somecomputer.

The following numerical example may clarify this procedure. Consider the

arithmeticexpression

(3*4) + (5*6)

In reverse polish notation, it is expressed as 34 * 56* +

Now consider the stack operations shown in Fig.8-5.

Each box represents one stack operation and the arrow always points to the top of thestack.

Scanning the expression from left to right, we encounter twooperands.

First the number 3 is pushed into the stack, then the number4.

The next symbol is the multiplication operator*.

This causes a multiplication of the two top most items thestack.

The stack is then popped and the product is placed on top of the stack, replacing the two

originaloperands.

Next we encounter the two operands 5 and 6, so they are pushed into thestack.

The stack operation results from the next * replaces these two numbers by theirproduct.

The last operation causes an arithmetic addition of the two topmost numbers in the stack to

produce the final result of42.

InstructionFormats:

 The format of an instruction is usually depicted in a rectangular box symbolizing the

bits of the instruction as they appear in memory words or in a controlregister.

 The bits of the instruction are divided into groups calledfields.

 The most common fields found in instruction formatsare:

o An operation code field that specifies the operation to beperform

o An address field that designates a memory address or a processorregister.

o A mode field that specifies the way the operand or the effective address

isdetermined.

 Computers may have instructions of several different lengths containing varying

number ofaddresses.

 The number of address fields in the instruct format of a computer depends on the

internal organization of its registers.

 Most computers fall into one of three types of CPUorganizations:

 Single accumulatororganization.

 General registerorganization.

 Stackorganization.

Single Accumulator Organization:

 In an accumulator type organization all the operations are performed with an implied

accumulatorregister.

 The instruction format in this type of computer uses one addressfield.

 For example, the instruction that specifies an arithmetic addition defined by an

assembly language instructionas

ADDX

 Where X is the address of the operand. The ADD instruction in this case results in the

operation AC AC

+M[X]. AC is the accumulator register and M[X] symbolizes the memory word located at

address X.

General register organization:
 The instruction format in this type of computer needs three register addressfields.

 Thus the instruction for an arithmetic addition may be written in an assembly

languageas

ADD R1, R2, R3

 to denote the operation R1 R2 + R3. The number of address fields in the instruction

can be reduced from three to two if the destination register is the same as one of the

source registers.

 Thusthe instructionADDR1,R2woulddenotetheoperationR1 R1

+R2.OnlyregisteraddressesforR1 and R2 need be specified in thisinstruction.

 General register-type computers employ two or three address fields in their

instructionformat.

P
ag

e6

 Each address field may specify a processor register or a memoryword.

 An instruction symbolized by ADD R1, X would specify the operation R1 R1

+M[X].

 It has two address fields, one for register R1 and the other for the memory address X.

Stackorganization:

 The stack-organized CPU has PUSH and POP instructions which require an

addressfield.

 Thus the instruction PUSH X will push the word at address X to the top of thestack.

 The stack pointer is updatedautomatically.

 Operation-type instructions do not need an address field in stack-organizedcomputers.

 This is because the operation is performed on the two items that are on top of

thestack.

 The instruction ADD in a stack computer consists of an operation code only with no

addressfield.

 This operation has the effect of popping the two top numbers from the stack, adding

the numbers, and pushing the sum into thestack.

 There is no need to specify operands with an address field since all operands are

implied to be in thestack.

 Most computers fall into one of the three types oforganizations.

 Some computers combine features from more than one organizationalstructure.

 The influence of the number of addresses on computer programs, we will evaluate the

arithmeticstatement

 X= (A+B) * (C+D)

 Using zero, one, two, or three address instructions and using the symbols ADD, SUB,

MUL and DIV for four arithmetic operations; MOV for the transfer type operations;

and LOAD and STORE for transfer to and from memory and ACregister.

 Assuming that the operands are in memory addresses A, B, C, and D and the result

must be stored in memory ar address X and also the CPU has general purpose

registers R1, R2, R3 andR4.

Three Address Instructions:

 Three-address instruction formats can use each address field to specify either a

processor register or a memoryoperand.

 The program assembly language that evaluates X = (A+B) * (C+D) is shown below,

together with comments that explain the register transfer operation of eachinstruction.

 The symbol M [A] denotes the operand at memory address symbolized byA.

 The advantage of the three-address format is that it results in short programs when

evaluating arithmeticexpressions.

P
ag

e7

 The disadvantage is that the binary-coded instructions require too many bits to specify

threeaddresses.

Two Address Instructions:

 Two-address instructions formats use each address field can specify either a processor

register or memoryword.

 The program to evaluate X = (A+B) * (C+D) is asfollows

The MOV instruction moves or transfers the operands to and from memory and

processorregisters.

 The first symbol listed in an instruction is assumed be both a source and the

destination where the result of the operationtransferred.

One Address Instructions:

 One-address instructions use an implied accumulator (AC) register for all

datamanipulation.

 For multiplication and division there is a need for a second register. But for the basic

discussion we will neglect the second register and assume that the AC contains the

result of alloperations.

 The program to evaluate X=(A+B) * (C+D)is

 All operations are done between the AC register and a memoryoperand.

 T is the address of a temporary memory location required for storing the

intermediateresult.

Zero Address Instructions:

 A stack-organized computer does not use an address field for the instructions ADD

andMUL.

 The PUSH and POP instructions, however, need an address field to specify the

operand that communicates with thestack.

 The following program shows how X = (A+B) * (C+D) will be written for a stack-

organizedcomputer.

 (TOS stands for top of stack).

 To evaluate arithmetic expressions in a stack computer, it is necessary to convert the

expression into reverse Polishnotation.

 Thename"zero-

address”isgiventothistypeofcomputerbecauseoftheabsenceofanaddressfieldin the

computationalinstructions.

RISC Instructions:

 The instruction set of a typical RISC processor is use only load and store instructions

for communicating between memory andCPU.

 All other instructions are executed within the registers of CPU without referring

tomemory.

o LOAD and STORE instructions that have one memory and one register

address, and computational type instructions that have three addresses with all

three specifying processorregisters.

 The following is a program to evaluateX=(A+B)*(C+D)

 The load instructions transfer the operands from memory to CPUregister.

 The add and multiply operations are executed with data in the register without

accessingmemory.

 The result of the computations is then stored memory with a store ininstruction.

AddressingModes

 The way the operands are chosen during program execution is dependent on the

addressing mode of the instruction.

 Computers use addressing mode techniques for the purpose of accommodating one or

both of the following provisions:

 To give programming versatility to the user by providing such facilities as pointers to

memory, counters for loop control, indexing of data, and programrelocation.

 To reduce the number of bits in the addressing field of theinstruction

 Most addressing modes modify the address field of the instruction; there are two

modes that need no address field at all. These are implied and immediatemodes.

P
ag

e8

Implied Mode:

 In this mode the operands are specified implicitly in the definition of theinstruction.

o For example, the instruction "complement accumulator" is an implied-mode

instruction because the operand in the accumulator register is implied in the

definition of theinstruction.

 All register reference instructions that use an accumulator are implied

modeinstructions.

 Zero address in a stack organization computer is implied modeinstructions.

Immediate Mode:

 In this mode the operand is specified in the instructionitself.

 In other words an immediate-mode instruction has an operand rather than an

addressfield.

 Immediate-mode instructions are useful for initializing registers to a constantvalue.

 The address field of an instruction may specify either a memory word or a

processorregister.

 When the address specifies a processor register, the instruction is said to be in the

registermode.

Register Mode:

 In this mode the operands are in registers that reside within theCPU.

 The particular register is selected from a register field in theinstruction.

Register Indirect Mode:

 In this mode the instruction specifies a register in CPU whose contents give the

address of the operand inmemory.

 In other words, the selected register contains the address of the operand rather than the

operanditself.

 The advantage of a register indirect mode instruction is that the address field of the

instruction uses few bits to select a register than would have been required to specify a

memory addressdirectly.

Auto-increment or Auto-Decrement Mode:

 This is similar to the register indirect mode except that the register is incremented or

decremented after (or before) its value is used to accessmemory.

 The address field of an instruction is used by the control unit in the CPU to obtain the

operand frommemory.

 Sometimes the value given in the address field is the address of the operand, but

sometimes it is just an address from which the address of the operand iscalculated.

 The basic two mode of addressing used in CPU are direct and indirect addressmode.

Direct Address Mode:

 In this mode the effective address is equal to the address part of theinstruction.

P
ag

e9

 The operand resides in memory and its address is given directly by the address field of

theinstruction.

 In a branch-type instruction the address field specifies the actual branchaddress.

 Indirect Address Mode:

 In this mode the address field of the instruction gives the address where the effective

address is stored inmemory.

 Control fetches the instruction from memory and uses its address part to access

memory again to read the effective address.

 A few addressing modes require that the address field of the instruction be added to

the content of a specific register in theCPU.

 The effective address in these modes is obtained from the followingcomputation:

 Effective address =address part of instruction + content of CPU register

 The CPU register used in the computation may be the program counter, an index

register, or a baseregister.

 We have a different addressing mode which is used for a differentapplication.

Relative Address Mode:

 In this mode the content of the program counter is added to the address part of the

instruction in order to obtain the effectiveaddress.

Indexed Addressing Mode:

 In this mode the content of an index register is added to the address part of the

instruction to obtain the effective address.

 An index register is a special CPU register that contains an indexvalue.

Base Register Addressing Mode:

 In this mode the content of a base register is added to the address part of the

instruction to obtain the effectiveaddress.

 This is similar to the indexed addressing mode except that the register is now called a

base register instead of an indexregister.

Numerical Example:

To show the differences between the various modes, we will show the effect of the addressing

modes on the instruction defined in Fig.8-7.

o The two-word instruction at address 200 and 201 is a "load to AC" instruction

with an address field equal to 500.

 The first word of the instruction specifies the operation code and mode, and the

second word specifies the address part.

 PC has the value 200 for fetching this instruction. The content of processor register

R1 is 400, and the content of an index register XR is100.

 AC receives the operand after the instruction isexecuted.

 In the direct address mode the effective address is the address part of the instruction

500 and the operand to be loaded into AC is500.

 In the immediate mode the second word of the instruction is taken as the operand

rather than an address, so 500 is loaded into AC.

o In the indirect mode the effective address is stored in memory at address 500.

Therefore, the effective address is 800 and the operand is300.

o In the relative mode the effective address is 500 + 202 =702 and the operand

is 325. (the value in PC after the fetch phase and during the execute phase

is202.)

 In the index mode the effective address is XR+ 500 = 100 + 500 = 600 and the

operand is900.

 In the register mode the operand is in R1 and 400 is loaded intoAC.

 In the register indirect mode the effective address is 400, equal to the content of R1

and the operand loaded into AC is700.

 The auto-increment mode is the same as the register indirect mode except that R1 is

incremented to 401 after the execution of theinstruction.

 The auto-decrement mode decrements R1 to 399 prior to the execution of the

instruction. The operand loaded into AC is now450.

Table 8-4 lists the values of the effective address and the operand loaded into AC for the nine

addressing modes.

Data Transfer andManipulation:

Most computer instructions can be classified into threecategories:

 Data transferinstructions

 Data manipulationinstructions

 Program controlinstructions

Data Transfer Instructions:

 Data transfer instructions move data from one place in the computer to another

without changing the data content.

 The most common transfers are between memory and processor registers, between

processor registers and input or output, and between the processor

registersthemselves.

Table 8-5 gives a list of eight data transfer instructions used in manycomputers.

 The load instruction has been used mostly to designate a transfer from memory to a

processor register, usually anaccumulator.

 The store instruction designates a transfer from a processor register intomemory.

 The move instruction has been used in computers with multiple CPU registers to

designate a transfer from one register to another and also between CPU registers and

memory or between two memorywords.

 The exchange instruction swaps information between two registers or a register and a

memoryword.

 The input and output instructions transfer data among processor registers and input or

outputterminals.

 The push and pop instructions transfer data between processor registers and a

memorystack.

 Different computers use different mnemonics symbols for differentiate the

addressingmodes.

 As an example, consider the load to accumulator instruction when used with eight

different addressingmodes.

 Table 8-6 shows the recommended assembly language convention and actual transfer

accomplished in each case

 ADR stands for anaddress.

 NBA a number oroperand.

 X is an indexregister.

 The @ character symbolizes an indirectaddressing.

 R1 is a processorregister.

 AC is the accumulatorregister.

 The $ character before an address makes the address relative to the program

counterPC.

 The # character precedes the operand in an immediate-modeinstruction.

 An indexed mode instruction is recognized by a register that placed in parentheses

after the symbolicaddress.

 The register mode is symbolized by giving the name of a processorregister.

 In the register indirect mode, the name of the register that holds the memory address is

enclosed in parentheses.

 The auto-increment mode is distinguished from the register indirect mode by placing a

plus after the parenthesized register. The auto-decrement mode would use a

minusinstead.

Data Manipulation Instructions:

 Data manipulation instructions perform operations on data and provide the

computational capabilities for the computer.

 The data manipulation instructions in a typical computer are usually divided into three

basictypes:

o Arithmeticinstructions

o Logical and bit manipulationinstructions

o Shiftinstructions

Arithmetic instructions

 The four basic arithmetic operations are addition, subtraction, multiplication

anddivision.

 Most computers provide instructions for all fouroperations.

 Some small computers have only addition and possibly subtraction instructions. The

multiplication and division must then be generated by mean softwaresubroutines.

 A list of typical arithmetic instructions is given in Table8-7.

 The increment instruction adds 1 to the value stored in a register or memoryword.

 A number with all 1's, when incremented, produces a number with all0's.

 The decrement instruction subtracts 1 from a value stored in a register or

memoryword.

 A number with all 0's, when decremented, produces number with all1's.

 The add, subtract, multiply, and divide instructions may be use different types ofdata.

 The data type assumed to be in processor register during the execution of these

arithmetic operations is defined by an operationcode.

 An arithmetic instruction may specify fixed-point or floating-point data, binary or

decimal data, single-precision or double-precisiondata.

 The mnemonics for three add instructions that specify different data types are shown

below. ADDI Add two binary integernumbers

 ADDF Add two floating-point numbers ADDD Add two decimal numbers in BCD

 A special carry flip-flop is used to store the carry from anoperation.

 The instruction "add carry" performs the addition on two operands plus the value of

the carry the previous computation.

 Similarly, the "subtract with borrow" instruction subtracts two words and borrow

which may have resulted from a previous subtractoperation.

 The negate instruction forms the 2's complement number, effectively reversing the

sign of an integer when represented it signed-2's complementform.

 Logical and bit manipulationinstructions

Logical instructions perform binary operations on strings of bits store,registers.

 They are useful for manipulating individual bits or a group of that represent binary-

codedinformation.

 The logical instructions consider each bit of the operand separately and treat it as a

Booleanvariable.

 By proper application of the logical instructions it is possible to change bit values, to

clear a group of bits, or to insert new bit values into operands stored in register

memorywords.

 Some typical logical and bit manipulation instructions are listed in Table8-8.

 The clear instruction causes the specified operand to be replaced by0’s.

 The complement instruction produces the 1's complement by inverting all bits of

theoperand.

 The AND, OR, and XOR instructions produce the corresponding logical operations on

individual bits of the operands.

 The logical instructions can also be used to performing bit manipulationoperations.

 There are three bit manipulation operations possible: a selected bit can cleared to 0, or

can be set to 1, or can be complemented.

 The AND instruction is used to clear a bit or a selected group of bits of anoperand.

 The OR instruction is used to set a bit or a selected group of bits of anoperand.

 Similarly, the XOR instruction is used to selectively complement bits of anoperand.

 Other bit manipulations instructions are included in above table perform the

operations on individual bits such as a carry can be cleared, set, orcomplemented.

P
ag

e1
3

 Another example is a flip-flop that controls the interrupt facility and is either enabled

or disabled by means of bit manipulationinstructions.

ShiftInstructions:

 Shifts are operations in which the bits of a word are moved to the left orright.

 The bit shifted in at the end of the word determines the type of shiftused.

 Shift instructions may specify logical shifts, arithmetic shifts, or rotate-typeoperations.

 In either case the shift may be to the right or to theleft.

Table 8-9 lists four types of shiftinstructions.

 The logical shift inset to the end bitposition.

 The end position is the leftmost bit position for shift rights the rightmost bit position

for the shiftleft.

 Arithmetic shifts usually conform to the rules for signed-2's complementnumbers.

 The arithmetic shift-right instruction must preserve the sign bit in the leftmostposition.

 The sign bit is shifted to the right together with the rest of the number, but the sign bit

itself remains unchanged.

 This is a shift-right operation with the end bit remaining thesame.

 The arithmetic shift-left instruction inserts 0 to the end position and is identical to the

logicalshift-instruction.

 The rotate instructions produce a circular shift. Bits shifted out at one of the word are

not lost as in a logical shift but are circulated back into the otherend.

 The rotate through carry instruction treats a carry bit as an extension of the register

whose word is being rotated.

 Thus a rotate-left through carry instruction transfers the carry bit into the rightmost bit

position of the register, transfers the leftmost bit position into the carry, and at the

same time, shift the entire register to the left.

ProgramControl:

 Program control instructions specify conditions for altering the content of the

programcounter.

 The change in value of the program counter as a result of the execution of a program

control instruction causes a break in the sequence of instructionexecution.

P
ag

e1
4

 Thisinstructionprovidescontrolovertheflowofprogramexecutionandacapabilityforbranc

hingtodifferent programsegments.

 Some typical program control instructions are listed in Table8.10.

 Branch and jump instructions may be conditional orunconditional.

 An unconditional branch instruction causes a branch to the specified address without

anyconditions.

 The conditional branch instruction specifies a condition such as branch if positive or

branch ifzero.

 The skip instruction does not need an address field and is therefore a zero-

addressinstruction.

A conditional skip instruction will skip the next instruction if the condition is met. This is

accomplished by incrementing programcounter. The call and return instructions are used in

conjunction withsubroutines.

The compare instruction forms a subtraction between two operands, but the result of the

operation not retained. However, certain status bit conditions are set as a result ofoperation.

Similarly, the test instruction performs the logical AND of two operands and updates certain

status bits without retaining the result or changing theoperands.

Status Bit Conditions:

 The ALU circuit in the CPU have status register for storing the status bitconditions.

 Status bits are also called condition-code bits or flagbits.

 Figure 8-8 shows block diagram of an 8-bit ALU with a 4-bit statusregister.

 The four status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a

result of an operation performed in theALU.

 Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is0.

 S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the bit is0.

 Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is clear to 0

otherwise. In other words, Z = 1 if the output is zero and Z =0 if the output is notzero.

 Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries equal to 1, and

cleared to 0 otherwise.

 The above status bits are used in conditional jump and branchinstructions.

Subroutine Call and Return:

 A subroutine is self contained sequence of instructions that performs a given

computationaltask.

 Themostcommonnamesusedarecallsubroutine,jumptosubroutine,branchtosubroutine,or

branch and save returnaddress.

 A subroutine is executed by performing twooperations

 Theaddressofthenextinstructionavailableintheprogramcounter(thereturnaddress)isstore

d in a temporary location so the subroutine knows where toreturn

 Control is transferred to the beginning of thesubroutine.

 The last instruction of every subroutine, commonly called return from subroutine,

transfers the return address from the temporary location in the programcounter.

 Different computers use a different temporary location for storing the returnaddress.

 The most efficient way is to store the return address in a memorystack.

 The advantage of using a stack for the return address is that when a succession of

subroutines is called, the sequential return addresses can be pushed into thestack.

 A subroutine call is implemented with the followingmicrooperations:

P
ag

e1
5

 The instruction that returns from the last subroutine is implemented by

themicrooperations:

Program Interrupt:
 Program interrupt refers to the transfer of program control from a currently running

program to another service program as a result of an external or internal

generatedrequest.

 The interrupt procedure is similar to a subroutine call except for threevariations:

 The interrupt is initiated by an internal or externalsignal.

 Address of the interrupt service program is determined by thehardware.

 An interrupt procedure usually stores all the information rather than storing only

PCcontent.

Types of interrupts:

There are three major types of interrupts that cause a break in the normal execution of

aprogram.

They can be classifiedas

 Externalinterrupts:

These comefrominput—output (I/O) devices, from a timing device, from a circuit

monitoring the power supply, or from any other externalsource.

Ex: I/O device requesting transfer of data, I/O device finished transfer of data, elapsed time of

an event, or powerfailure.

 Internalinterrupts:

These arise from illegal or erroneous use of an instruction ordata.

Internal interrupts are also calledtraps.

Ex: interrupts caused by internal error conditions are register overflow, attempt to divide by

zero, an invalid operation code, stack overflow, and protectionviolation.

Internal and external interrupts are initiated form signals that occur in hardware ofCPU.

 Softwareinterrupts

A software interrupt is initiated by executing aninstruction.

Software interrupt is a special call instruction that behaves like an interrupt rather than a

P
ag

e1
6

subroutine call.

Reduced Instruction SetComputer:
A computer with large number instructions is classified as a complex instruction set

computer, abbreviated as CISC.

The computer which having the fewer instructions is classified as a reduced instruction

setcomputer,

abbreviated as RISC.

CISC Characteristics:

 A large number of instructions--typically from 100 to 250instructions.

 Some instructions that perform specialized tasks and are usedinfrequently.

 A large variety of addressing modes—typically from 5 to 20 differmodes.

 Variable-length instructionformats

 Instructions that manipulate operands inmemory

RISC Characteristics:

 Relatively fewinstructions

 Relatively few addressingmodes

 Memory access limited to load and storeinstructions

 All operations done within the registers of theCPU

 Fixed-length, easily decoded instructionformat

 Single-cycle instructionexecution

 Hardwired rather than microprogrammedcontrol

 A relatively large number of registers in the processorunit

 Efficient instructionpipeline

RISC Pipelines
A RISC processor pipeline operates in much the same way, although the stages in the pipeline

are different. While different processors have different numbers of steps, they are basically

variations of these five, used in the MIPS R3000 processor:

 fetch instructions from memory

 read registers and decode the instruction

 execute the instruction or calculate an address

 access an operand in data memory

 write the result into a register

If you glance back at the diagram of the laundry pipeline, you'll notice that although the

washer finishes in half an hour, the dryer takes an extra ten minutes, and thus the wet clothes

must wait ten minutes for the dryer to free up. Thus, the length of the pipeline is dependent on

the length of the longest step. Because RISC instructions are simpler than those used in pre-

RISC processors (now called CISC, or Complex Instruction Set Computer), they are more

conducive to pipelining. While CISC instructions varied in length, RISC instructions are all

the same length and can be fetched in a single operation. Ideally, each of the stages in a RISC

processor pipeline should take 1 clock cycle so that the processor finishes an instruction each

clock cycle and averages one cycle per instruction (CPI).

INSTRUCTIONPIPELINING

As computer systems evolve, greater performance can be achieved by taking advantage of

improvements in technology, such as faster circuitry, use of multiple registers rather than a

single accumulator, and the use of a cache memory. Another organizational approach is

instruction pipelining in which new inputs are accepted at one end before previously accepted

inputs appear as outputs at the other end.

Figure 3.1a depicts this approach. The pipeline has two independent stages. The first stage

fetches an instruction and buffers it. When the second stage is free, the first stage passes it the

buffered instruction. While the second stage is executing the instruction, the first stage takes

advantage of any unused memory cycles to fetch and buffer the next instruction. This is

called instruction prefetchor fetch overlap.

This process will speed up instruction execution only if the fetch and execute stages were of

equal duration, the instruction cycle time would be halved. However, if we look more closely

at this pipeline (Figure 3.1b), we will see that this doubling of execution rate is unlikely for 3

reasons:

The execution time will generally be longer than the fetch time. Thus, the fetch stage may

have to wait for some time before it can empty itsbuffer.

A conditional branch instruction makes the address of the next instruction to be fetched

unknown. Thus, the fetch stage must wait until it receives the next instruction address from

the execute stage. The execute stage may then have to wait while the next instruction

isfetched.

When a conditional branch instruction is passed on from the fetch to the execute stage, the

fetch stage fetches the next instruction in memory after the branch instruction. Then, if the

branch is not taken, no time is lost .If the branch is taken, the fetched instruction must be

discarded and a new instruction fetched.

To gain further speedup, the pipeline must have more stages. Let us consider the following

decomposition of the instruction processing.

Fetch instruction (FI): Read the next expected instruction into abuffer.

Decode instruction (DI): Determine the opcodeand the operandspecifiers.

Calculate operands (CO): Calculate the effective address of each source operand. This may

involve displacement, register indirect, indirect, or other forms of addresscalculation.

Fetch operands (FO): Fetch each operand frommemory.

Execute instruction (EI): Perform the indicated operation and store the result, if any, in the

specified destination operandlocation.

Write operand (WO): Store the result inmemory.

Figure 3.2 shows that a six-stage pipeline can reduce the execution time for 9 instructions

from 54 time units to 14 time units.

Timing Diagram for Instruction PipelineOperation

FO and WO stages involve a memory access. If the six stages are not of equal duration, there

will be some waiting involved at various pipeline stages. Another difficulty is the conditional

branch instruction, which can invalidate several instruction fetches. A similar unpredictable

event is an interrupt.

Timing Diagram for Instruction Pipeline Operation withinterrupts

Figure 3.3 illustrates the effects of the conditional branch, using the same program as Figure

3.2. Assume that instruction 3 is a conditional branch to instruction 15. Until the instruction is

executed, there is no way of knowing which instruction will come next. The pipeline, in this

example, simply loads the next instruction in sequence (instruction 4) and proceeds.

In Figure 3.2, the branch is not taken. In Figure 3.3, the branch is taken. This is not

determined until the end of time unit 7.At this point, the pipeline must be cleared of

instructions that are not useful. During time unit 8, instruction 15 enters the pipeline.

No instructions complete during time units 9 through 12; this is the performance penalty

incurred because we could not anticipate the branch. Figure 3.4 indicates the logic needed for

pipelining to account for branches and interrupts.

Six-stage CPU InstructionPipeline

Figure 3.5 shows same sequence of events, with time progressing vertically down the figure,

and each row showing the state of the pipeline at a given point in time. In Figure 3.5a (which

corresponds to Figure 3.2), the pipeline is full at time 6, with 6 different instructions in

various stages of execution, and remains full through time 9; we assume that instruction I9 is

the last instruction to be executed. In Figure 3.5b, (which corresponds to Figure 3.3), the

pipeline is full at times 6 and 7. At time 7, instruction 3 is in the execute stage and executes a

branch to instruction 15. At this point, instructions I4 through I7 are flushed from the

pipeline, so that at time 8, only two instructions are in the pipeline, I3 and I15.

For high-performance in pipelining designer must still consider about :

At each stage of the pipeline, there is some overhead involved in moving data from buffer to

buffer and in performing various preparation and delivery functions. This overhead can

appreciably lengthen the total execution time of a singleinstruction.

The amount of control logic required to handle memory and register dependencies and to

optimize the use of the pipeline increases enormously with the number of stages. This can

lead to a situation where the logic controlling the gating between stages is more complex than

the stages being controlled.

Latching delay: It takes time for pipeline buffers to operate and this adds to instructioncycle

time.

Vector Processors

Vector processors are co-processor to general-purpose microprocessor. Vector processors are

generally register-register or memory-memory. A vector instruction is fetched and decoded

and then a certain operation is performed for each element of the operand vectors, whereas in

a normal processor a vector operation needs a loop structure in the code. To make it more

efficient, vector processors chain several vector operations together, i.e., the result from one

vector operation are forwarded to another as operand.

Characteristics of Vector processing
A vector is an ordered set of elements. A vector operand contains an ordered set of n

elements, where n is called the length of the vector. Each element in a vector is a scalar

quantity, which may be floating point number, an integer, a logical value, or a character

(byte).

In vector processing, two successive pairs of elements are processed each clock period. In

dual vector pipes and dual sets of vector functional units allow two pairs of elements to be

processed during the same clock period. As each pair of operations is completed, the results

are delivered to the appropriate elements of the result register. The operation continues until

the number of elements processed is equal to the count specified by the vector length register.

For example: C (1:50) = A (1:50) + B (1:50)

This vector instruction includes the initial addresses of the two source operands, one

destination operand, the length of the vectors and the operation to be performed.

Vector instructions are classified into for basic types:

 F1: V = V f2: V = S

 F3: V * V = V f4: V*S = V

Where V indicates vector operand and S indicates scalar operand. The operations f1 and f2

are unary operations such as vector square root, vector sine, vector complement, vector

summation and so on. On the other hand, operations f3 and f4 are binary operations such as

vector add, vector multiply, vector scalar adds and so on.

In vector processing, identical processes are repeatedly invoked many times, each of which

can be subdivided into subprocesses.

In vector processing, successive operands are fed through the pipeline segments and require

as few buffers and local controls as possible. This parallel vector processing allows the

generation of more than two results per clock period. The parallel vector operations are

automatically initiated either when successive vector instructions use different functional

units and different vector registers, or when successive vector instructions use the result

stream from one vector register as the operand of another operation using different functional

units. This process is known as chaining.

Because of the startup delay in a pipeline, a vector processor performs better with longer

vectors.

Vector processing is usually faster and more efficient than scalar processing because it

reduces the overhead associated with maintenance of the loop control variables.

Vector Instruction Fields

Vector instructions are usually specified by the following fields:

Opcode (operation code):

This field is used to select the functional unit or to reconfigure a multifunctional unit to

perform the specified operation.

Base addresses:
In case of memory reference instruction, this field specifies the base addresses needed for

source operands and result vectors. If the operands and results are located in the vector

register file, the designated vector registers must be specified.

Address increment:
This field specifies the space between the two elements in the main memory. Usually, the

elements are consecutively stored thus the increment is 1. However, with variable increment

higher flexibility can be offered in the applications.

Address offset:
This field specifies the offset to the base address. Using the base address and the offset, the

effective memory address can be calculated. The offset can be either positive or negative.

Vector length:

this field determines the termination of a vector instruction. Vector length affects the

processing efficiency because the additional subdividing is required for long vectors.
Array processor
 A computer/processor that has an architecture especially designed for processing arrays (e.g.

matrices) of numbers. The architecture includes a number of processors (say 64 by 64)

working simultaneously, each handling one element of the array, so that a single operation

can apply to all elements of the array in parallel. To obtain the same effect in a conventional

processor, the operation must be applied to each element of the array sequentially, and so

https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/array#1O11array

consequently much more slowly.

An array processor may be built as a self-contained unit attached to a main computer via an

I/O port or internal bus; alternatively, it may be a distributed array processor where the

processing elements are distributed throughout, and closely linked to, a section of the

computer's memory.

Array processors are very powerful tools for handling problems with a high degree of

parallelism. They do however demand a modified approach to programming. The conversion

of conventional (sequential) programs to serve array processors is not a trivial task, and it is

sometimes necessary to select different (parallel) algorithms to suit the parallel approach.

UNIT - III
Microprocessor Architecture and its Operations - 8085 MPU - 8085 Instruction Set and

Classifications. Programming in 8085: Code conversion - BCD to Binary and Binary to BCD

conversions - ASCII to BCD and BCD to ASCII conversions - Binary to ASCII and ASCII to

Binary conversions.

What is the 8085 Microprocessor?

The 8085 is an 8-bit microprocessor, and it was launched by the Intel team in the year of 1976 with

the help of NMOS technology. This processor is the updated version of the microprocessor. The
configurations of 8085 microprocessor mainly include data bus-8-bit, address bus-16 bit, program

counter-16-bit, stack pointer-16 bit, registers 8-bit, +5V voltage supply, and operates at 3.2 MHz

single segment CLK. The applications of 8085 microprocessor are involved in microwave ovens,
washing machines, gadgets, etc. The features of the 8085 microprocessor are as below:

This microprocessor is an 8-bit device that receives, operates, or outputs 8-bit information in a

simultaneous approach.

 The processor consists of 16-bit and 8-bit address and data lines and so the capacity of the device is
216 which is 64KB of memory.

 This is constructed of a single NMOS chip device and has 6200 transistors

 A total of 246 operational codes and 80 instructions are present

 As the 8085 microprocessor has 8-bit input/output address lines, it has the ability to address 28 =

256 input and output ports.

 This microprocessor is available in a DIP package of 40 pins

 In order to transfer huge information from I/O to memory and from memory to I/O, the processor

shares its bus with the DMA controller.

 It has an approach where it can enhance the interrupt handling mechanism

 An 8085 processor can even be operated as a three-chip microcomputer using the support of IC

8355 and IC 8155 circuits.

 It has an internal clock generator

 It functions on a clock cycle having a duty cycle of 50%

https://www.elprocus.com/microprocessor-history-and-brief-information-about-its-generations/
https://www.elprocus.com/8085-microprocessor-pin-diagram-and-its-description/

The 8085 Microprocessor Architecture

The architecture of the 8085 microprocessor mainly includes the timing & control unit,

Arithmetic and logic unit, decoder, instruction register, interrupt control, a register array,

serial input/output control. The most important part of the microprocessor is the central

processing unit.

Operations of the 8085 Microprocessor

The main operation of ALU is arithmetic as well as logical which includes addition,

increment, subtraction, decrement, logical operations like AND, OR, Ex-OR, complement,

evaluation, left shift or right shift. Both the temporary registers as well as accumulators are

utilized for holding the information throughout the operations then the outcome will be stored

within the accumulator. The different flags are arranged or rearrange based on the outcome of

the operation.

Flag Registers

The flag registers of microprocessor 8085 are classified into five types namely sign, zero,

auxiliary carry, parity and carry. The positions of bit set aside for these types of flags. After

the operation of an ALU, when the result of the most significant bit (D7) is one, then the sign

https://www.elprocus.com/designing-3-line-to-8-line-decoder-demultiplexer/
https://www.elprocus.com/basic-logic-gates-with-truth-tables/

flag will be arranged. When the operation of the ALU outcome is zero then the zero flags will

be set. When the outcome is not zero then the zero flags will be reset.

8085 Microprocessor Flag Registers

In an arithmetic process, whenever a carry is produced with the lesser nibble, then an

auxiliary type carry flag will be set. After an ALU operation, when the outcome has an even

number then the parity flag will be set, or else it is reset. When an arithmetic process outcome

in a carry, then carry flag will be set or else it will be reset. Between the five types of flags,

the AC type flag is employed on the inside intended for BCD arithmetic as well as remaining

four flags are used with the developer to make sure the conditions of the outcome of a

process.

Control and Timing Unit

The control and timing unit coordinates with all the actions of the microprocessor by the

clock and gives the control signals which are required for communication among the

microprocessor as well as peripherals.

Decoder and Instruction Register

As an order is obtained from memory after that it is located in the instruction register, and

encoded & decoded into different device cycles.

Register Array

The general purpose programmable registers are classified into several types apart from the

accumulator such as B, C, D, E, H, & L. These are utilized as 8-bit registers otherwise

coupled to stock up the l6 bit of data. The permitted couples are BC, DE & HL, and the short

term W & Z registers are used in the processor & it cannot be utilized with the developer.

https://www.elprocus.com/wireless-pc-communication-system-using-transceiver/
https://www.elprocus.com/know-about-types-of-registers-in-8051-microcontroller/

Special Purpose Registers

These registers are classified into four types namely program counter, stack pointer,

increment or decrement register, address buffer, or data buffer.

Program Counter

This is the first type of special-purpose register and considers that the instruction is being

performed by the microprocessor. When the ALU completed performing the instruction, then

the microprocessor searches for other instructions to be performed. Thus, there will be a

requirement of holding the next instruction address to be performed in order to conserve time.

Microprocessor increases the program when an instruction is being performed, therefore that

the program counter-position to the next instruction memory address is going to be

performed…

Stack Pointer in 8085

The SP or stack pointer is a 16-bit register and functions similar to a stack, which is

constantly increased or decreased with two throughout the push and pop processes.

Increment or Decrement Register

The 8-bit register contents or else a memory position can be increased or decreased with one.

The 16-bit register is useful for incrementing or decrementing program counters as well as

stack pointer register content with one. This operation can be performed on any memory

position or any kind of register.

Address-Buffer & Address-Data-Buffer

Address buffer stores the copied information from the memory for the execution. The

memory & I/O chips are associated with these buses; then the CPU can replace the preferred

data by I/O chips and the memory.

Address Bus and Data Bus

The data bus is useful in carrying the related information that is to be stock up. It is bi-

directional, but the address bus indicates the position as to where it must be stored & it is uni-

directional, useful for transmitting the information as well as address input/output devices.

Timing & Control Unit

The timing & control unit can be used to supply the signal to the 8085 microprocessor

architecture for achieving the particular processes. The timing and control units are used to

control the internal as well as external circuits. These are classified into four types namely

control units like RD’ ALE, READY, WR’, status units like S0, S1, and IO/M’, DM like

HLDA, and HOLD unit, RESET units like RST-IN and RST-OUT.

https://www.elprocus.com/types-of-electronic-counters/

Pin Diagram

This 8085 is a 40-pin microprocessor where these are categorized into seven groups. With the

below 8085 microprocessor pin diagram, the functionality and purpose can be known easily.

Data Bus

The pins from 12 to 17 are the data bus pins which are AD0 – AD7, this carries the minimal

considerable 8-bit data and address bus.

Address Bus

The pins from 21 to 28 are the data bus pins which are A8 – A15, this carries the most

considerable 8-bit data and address bus.

Status and the Control Signals

In order to find out the behavior of the operation, these signals are mainly considered. In the

8085 devices, there are 3 each the control and status signals.

RD – This is the signal used for the regulation of READ operation. When the pin moves into

low, it signifies that the chosen memory is read.

WR – This is the signal used for the regulation of WRITE operation. When the pin moves

into low, it signifies that the data bus information is written to the chosen memory location.

ALE – ALE corresponds to Address Latch Enable signal. The ALE signal is high at the time

of the machine’s initial clock cycle and this enables the last 8 bits of the address to get latched

with the memory or external latch.

IO/M – This is the status signal that recognizes whether the address to be allotted for I/O or

for memory devices.

READY – This pin is used to specify whether the peripheral is able to transfer information or

not. When this pin is high, it transfers data and if this is low, the microprocessor device needs

to wait until the pin goes to a high state.

S0 and S1 pins – These pins are the status signals which defines the below operations and

those are:

S0 S1 Functionality

0 0 Halt

1 0 Write

0 1 Read

1 1 Fetch

Clock Signals

CLK – This is the output signal which is pin 37. This is utilized even in other digital

integrated circuits. The frequency of the clock signal is similar to the processor frequency.

X1 and X2 – These are the input signals at pins 1 and 2. These pins have connections with

the external oscillator that operates the device’s internal circuitry system. These pins are used

for the generation of the clock that is required for the microprocessor functionality.

Reset Signals

There are two reset pins which are Reset In and Reset Out at pins 3 and 36.

RESET IN – This pin signifies resetting the program counter to zero. Also, this pin resets the

HLDA flip-flops and IE pins. The control processing unit will be in a reset state till RESET is

not triggered.

RESET OUT – This pin signifies that the CPU is in reset condition.

Serial Input/Output Signals

SID – This is the serial input data line signal. The information that is on this dateline is taken

into the 7th bit of the ACC when the RIM functionality is performed.

SOD – This is the serial output data line signal. The ACC’s 7th bit is the output on the SOD

data line when the SIIM functionality is performed.

Externally Initiated and Interrupts Signals

HLDA – This is the signal for HOLD acknowledgment that signifies the received signal of

HOLD request. When the request is removed, the pin goes to a low state. This is the output

pin.

HOLD – This pin indicates that the other device is in the need to utilize data and address

buses. This is the input pin.

INTA – This pin is the interrupt acknowledgment that is directed by the microprocessor

device after the receival of the INTR pin. This is the output pin.

INTR – This is the interrupt request signal. It has minimal priority when compared with other

interrupt signals.

Interrupt Signal Next instruction location

TRAP 0024

RST 7.5 003C

RST 6.5 0034

RST 5.5 002C

TRAP, RST 5.5, 6.5, 7.5 – These all are the input interrupt pins. When any one of the

interrupt pins are recognized, then the next signal has functioned from the constant position in

the memory based on the below table:

The priority list of these interrupt signals is

TRAP – Highest

RST 7.5 – High

RST 6.5 – Medium

RST 5.5 – Low

INTR – Lowest

The power supply signals are Vcc and Vss which are +5V and ground pins.

8085 Microprocessor Interrupt

Timing Diagram of 8085 Microprocessor

To clearly understand the operation and performance of the microprocessor, the timing

diagram is the most suitable approach. Using the timing diagram, it is easy to know the

system functionality, detailed functionality of every instruction and the execution, and others.

The timing diagram is the graphical portray of instructions is steps corresponding to time.

This signifies the clock cycle, time period, data bus, operation type such as RD/WR/Status,

and clock cycle.

In the 8085 microprocessor architecture, here we will look into the timing diagrams of I/O

RD, I/O WR, memory RD, memory WR, and opcode fetch.

Opcode Fetch
The timing diagram is:

Opcode Fetch in 8085 Microprocessor

I/O Read
The timing diagram is:

https://www.zseries.in/

Input Read

I/O Write

The timing diagram is:

Input Write

Memory Read

The timing diagram is:

Memory Write
The timing diagram is:

https://www.zseries.in/
https://www.zseries.in/

Memory Write in 8085 Microprocessor

For all these timing diagrams, the commonly used terms are:

RD – When it is high, this means the microprocessor reads no data, or when it is low, this

means the microprocessor reads data.

WR – When it is high, this means the microprocessor writes no data, or when it is low, this

means the microprocessor writes data.

IO/M – When it is high, this means the device performs I/O operation, or when it is low, this

means the microprocessor performs memory operation.

ALE – This signal implies valid address availability. When the signal is high, it performs as

an address bus, or when it is low, it performs as a data bus.

S0 and S1 – Signifies the kind of machine cycle that is in progress.

Consider the below table:

Status Signals Control Signals

Machine Cycle IO/M’ S1 S0 RD’ WR’ INTA’

Opcode fetch 0 1 1 0 1 1

Memory Read 0 1 0 0 1 1

Memory Write 0 0 1 1 0 1

Input Read 1 1 0 0 1 1

Input Write 1 0 1 1 0 1

8085 Microprocessor Instruction Set

The instruction set of 8085 microprocessor architecture is nothing but instruction codes used

to achieve an exact task, and instruction sets are categorized into various types namely

control, logical, branching, arithmetic, and data transfer instructions.

8085 Program to convert a two-digit BCD to binary

In this program we will see how to convert BCD numbers to binary equivalent.

https://www.zseries.in/

Problem Statement

A BCD number is stored at location 802BH. Convert the number into its binary equivalent

andstore it to the memory location 802CH.

Discussion

In this problem we are taking a BCD number from the memory and converting it to its

binaryequivalent. At first we are cutting each nibble of the input. So ifthe input is 52 (0101

0010) then we can simply cut it by masking the number by 0FH and F0H. When the Higher

order nibble is cut, thenrotate it to the left four times to transfer it to lower nibble.

Now simply multiply the numbers by using decimal adjust method to get final decimal result.

Input

Address Data

.

.

.

.

.

.

802B 52

.

.

.

.

.

.

Program

Address HEX Codes Labels Mnemonics Comments

8000 31, FF, 80 LXI SP,80FFH Initialize stack pointer

8003 21, 2B, 80 LXI H, 802BH Pointer to the IN-BUFFER

8006 01, 2C, 80 LXI B, 802CH Pointer to the OUT-BUFFER

8009 7E MOV A, M Move the contents of 802BH to A

Address HEX Codes Labels Mnemonics Comments

800A CD, 0F, 80 CALL BCDBIN Subroutine to convert a BCD number to HEX

800D 02 STAX B Store Acc to memory location pointed by BC

800E 76 HLT Terminate the program

800F C5 BCDBIN PUSH B Saving B

8010 47 MOV B, A Copy A to B

8011 E6, 0F ANI 0FH Mask of the most significant four bits

8013 4F MOV C, A Copy A to C

8014 78 MOV A, B Copy B to A

8015 E6, F0 ANI F0H Mask of the least significant four bits

8017 0F RRC Rotate accumulator right 4 times

8018 0F RRC

8019 0F RRC

801A 0F RRC

801B 57 MOV D, A Load the count value to the Reg. D

Address HEX Codes Labels Mnemonics Comments

801C AF XRA A Clear the contents of the accumulator

801D 1E, 0A MVI E, 0AH Initialize Reg. E with 0AH

801F 83 SUM ADD E Add the contents of Reg. E to A

8020 15 DCR D Decrement the count by 1 until 0 is reached

8021 C2, 1F, 80 JNZ SUM

8024 81 ADD C Add the contents of Reg. C to A

8025 C1 POP B Restoring B

8026 C9 RET Returning control to the calling program

Output

Address Data

.

.

.

.

.

.

802C 34

.

.

.

.

.

.

8085 Program to convert an 8-bit binary to BCD

In this program we will see how to convert binary numbers to its BCD equivalent.

Problem Statement

A binary number is store dat location 800H. Convert the number into its BCD equivalent and

store it to the memory location 8050H.

Discussion

Here we are taking a number from the memory, and initializing it as a counter. Now in each

step of this counter we are incrementing the number by 1, and adjust the decimal value. By

this process we are finding the BCD value of binary number or hexadecimal number.

We can use INR instruction to increment the counter in this case but this instruction will not

affect carry flag, so for that reason we have used ADI 10H

Input

Address Data

.

.

.

.

.

.

8000 34

.

.

.

.

.

.

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H,8000H Initialize memory pointer

F003 16, 00 MVI D,00H Clear D- reg for Most significant Byte

Address HEX Codes Labels Mnemonics Comments

F005 AF XRA A Clear Accumulator

F006 4E MOV C, M Get HEX data

F007 C6, 01 LOOP ADI 01H Count the number one by one

F009 27 DAA Adjust for BCD count

F00A D2, 0E, F0 JNC SKIP Jump to SKIP

F00D 14 INR D Increase D

F00E 0D SKIP DCR C Decrease C register

F00F C2, 07, F0 JNZ LOOP Jump to LOOP

F012 6F MOV L, A Load the Least Significant Byte

F013 62 MOV H, D Load the Most Significant Byte

F014 22, 50, 80 SHLD 8050H Store the BCD

F017 76 HLT Terminate the program

Output

Address Data

Address Data

.

.

.

.

.

.

8050 52

.

.

.

.

.

.

8085 code to convert binary number to ASCII code

Problem – Assembly level program in 8085 which converts a binary number into ASCII

number.

Program –
Main routine:

ADDRESS MNEMONICS COMMENTS

2000 LDA 2050 A<-[2050]

2003 CALL 2500 go to address 2500

2006 STA 3050 A->[3050]

2009 LDA 2050 A<-[2050]

200C RLC Rotate the number by one bit to left without carry

200D RLC Rotate the number by one bit to left without carry

200E RLC Rotate the number by one bit to left without carry

200F RLC Rotate the number by one bit to left without carry

ADDRESS MNEMONICS COMMENTS

2010 CALL 2500 go to address 2500

2013 STA 3051 A->[3051]

2016 HLT Terminates the program

Sub routine:

ADDRESS MNEMONICS COMMENTS

2500 ANI 0F A<-[A] AND 0F

2502 CPI 0A [A]-0A

2504 JNC 250A Jump to [250A] if carryflag is 0

2507 ADI 30 A<-[A]+30

2509 RET
Return to the next instruction from where subroutine address was

called in main routine

250A ADI 37 A<-[A]+37

250C RET
Return to the next instruction from where subroutine address was

called in main routine

8085 program to convert 8 bit BCD number into ASCII Code

Now let us see a program of Intel 8085 Microprocessor. This program will convert 8-bit

BCDnumbers to two digit ASCII values.

Problem Statement

Write 8085 Assembly language program where an 8-bit BCD number is stored in memory

location 8050H. Separate each BCD digit and convert it to corresponding ASCII code and

store it to the memory location 8060H and 8061H.

Discussion

In this problem we are using a subroutine to convert one BCD digit(nibble) to its equivalent

ASCII values. As the 8-bit BCD number contains two nibbles, so we can execute this

subroutine to find ASCIIvalues of them. We can get the lower nibble very easily by masking

the upper nibble, and for the upper nibble, we have to mask the lower nibble at first, then

rotate the register content dour times to the right to make, now we can change it to ASCII

values.

Here we will put 26H as input, the program will return 32 and 36. These are the ASCII values

of 2 and 6 respectively.

Note: This program can also take 8-bit binary number to ASCII values.

Input

Address Data

.

.

.

.

.

.

8050 26

.

.

.

.

.

.

Program

Address HEX

Codes

Labels Mnemonics Comments

8000 31, 00, 81 LXI SP, 8100 Initialize SP

8003 21, 50, 80 START LXI H,

8050H

Initialize pointer with the first location of IN-BUFFER

Address HEX

Codes

Labels Mnemonics Comments

8006 11, 60, 80 LXI D,

8060H

Initialize pointer with the first location of OUT-

BUFFER

8009 7E MOV A, M Move the contents of 8050H to A

800A 47 MOV B, A Copy A to B

800B 0F RRC Rotate accumulator right 4 times

800C 0F RRC

800D 0F RRC

800E 0F RRC

800F CD, 1A, 80 CALL ASCII This subroutine converts a binary no. toASCII

8012 12 STAX D Store the contents of the accumulator specified the

contents by DE register pair

8013 13 INX D Go to next location

8014 78 MOV A, B Copy B to A

8015 CD, 1A, 80 CALL ASCII This subroutine converts a binary no. toASCII

8018 12 STAX D Store the contents of the accumulator specified the

contents by DE register pair

Address HEX

Codes

Labels Mnemonics Comments

8019 76 HLT Terminate the program

801A E6, 0F ASCII ANI 0FH Converts a BCD number to its corresponding ASCII

value

+ 48

0 To 9 -----------------à48 To 57

+ 55

A To F -----------------à 65 To 70 + 48

+7

So +48 is common but if the hex digit is between A to F

then +7 is additional.

801C FE, 0A CPI 0AH

801E DA, 23, 80 JC CODE

8021 C6, 07 ADI 07H

8023 C6, 30 CODE ADI 30H

8025 C9 RET Returning control to the calling program

Output

Address Data

.

.

.

.

.

.

Address Data

8060 32

8061 36

.

.

.

.

.

.

8085 code to convert binary number to ASCII code

Now let us see a program of Intel 8085 Microprocessor. This program will convert binary or

hexadecimal number to ASCII values.

Problem Statement

Write 8085 Assembly language program to convert binary or Hexadecimal characters to ASCII

values.

Discussion

We know that the ASCII of number 00H is 30H (48D), and ASCII of 09H is39H (57D). So all other

numbers are in the range 30H to 39H.TheASCII value of 0AH is 41H (65D) and ASCII of 0FH is 46H

(70D), so all other alphabets (B, C, D, E, F) are in the range 41H to 46H.

Here we are providing hexadecimal digit at memory location 8000H, The ASCII equivalent is storing

at location 8001H.

The logic behind HEX to ASCII conversion is very simple. We are just checking whether the number

is in range 0 – 9 or not. When the number is in that range, then the hexadecimal digit is numeric, and

we are just simply adding 30H with it to get the ASCII value. When the number is not in range 0 – 9,

then the number is range A – F,so for that case, we are converting the number to 41H on wards.

In the program at first we are clearing the carry flag. Then subtracting 0AHfrom the given number. If

the value is numeric, then after subtraction the result will be negative, so the carry flag will beset.

Now by checking the carry status we can just add 30H with the value to get ASCII value.

In other hand when the result of subtraction is positive or 0, then we are adding 41H with the result of

the subtraction.

Input

first input

Address Data

.

.

.

.

.

.

8000 0A

.

.

.

.

.

.

second input

Address Data

.

.

.

.

.

.

8000 05

.

.

.

.

.

.

third input

Address Data

.

.

.

.

.

.

8000 0F

. .

Address Data

.

.
.
.

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H, 8000H Load address of the number

F003 7E MOV A,M Load Acc with the data from memory

F004 47 MOV B,A Copy the number into B

F005 37 STC Set CarryFlag

F006 3F CMC ComplementCarry Flag

F007 D6, 0A SUI 0AH Subtract 0AHfrom A

F009 DA, 11, F0 JC NUM When carry is present, A is numeric

F00C C6, 41 ADI 41H Add 41H forAlphabet

F00E C3, 14, F0 JMP STORE Jump to store the value

F011 78 NUM MOV A, B Get back B toA

F012 C6 ADI 30H Add 30H withA to get ASCII

F014 23 STORE INX H Point to next location to store address

Address HEX Codes Labels Mnemonics Comments

F015 77 MOV M,A Store A to memory location pointed by HL pair

F016 76 HLT Terminate the program

Output

first output

Address Data

.

.

.

.

.

.

8001 41

.

.

.

.

.

.

second output

Address Data

.

.

.

.

.

.

8001 35

.

.

.

.

.

.

third output

Address Data

.

.

.

.

.

.

8001 46

.

.

.

.

.

.

Program to convert ASCII to binary in 8085 Microprocessor

Here we will see one 8085 program, the program will convert ASCII to binary values.

Problem Statement−

 Write an 8085 Assembly level program to convert ASCII to binary or Hexadecimal character

equivalent values.

Discussion−

The ASCII of number 00H is 30H (48D), and ASCII of 09H is 39H (57D). So all other numbers are in
the range 30H to 39H. The ASCII value of 0AH is 41H (65D) and ASCII of 0FH is 46H (70D), so all

other alphabets (B, C, D, E, F) are in the range 41H to 46H.

Here the logic is simple. We will check whether the ASCII value is less than 58H (ASCII of 9 + 1)
When the number is less 58, then it is numeric value. So we simply subtract 30H from the ASCII

value, and when it is greater than 58H, then it is alphabetical value. So for that we are subtracting

37H.

Input

first input

Address Data

… …

8000 41

Address Data

… …

second input

Address Data

… …

8000 35

… …

third input

Address Data

… …

8000 46

… …

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H, 8000H Load address of the number

F003 7E MOV A,M Load ASCII data to Acc from memory

Address HEX Codes Labels Mnemonics Comments

F004 FE, 58 CPI 58H Compare with ASCII(9) + 1

F006 D2, 0E, F0 JNC NUM The input is numeric

F009 D6, 37 SUI 37H Subtract offset to get Alphabetic character

F00B C3, 10, F0 JMP STORE Store the result

F00E D6, 30 NUM SUI 30H Subtract 30 to get numeric value

F010 23 STORE INX H Point to next location

F011 77 MOV M,A Store Acc content to memory

F012 76 HLT Terminate the program

Output

first output

Address Data

… …

8001 0A

… …

Second Output

Address Data

… …

8001 05

… …

 third output

Address Data

… …

8001 0F

… …

UNIT - IV

Programming in 8085:BCD Arithmetic - BCD addition and Subtraction - Multibyte Addition

and Subtraction - Multiplication and Division. Interrupts: The 8085 Interrupt – 8085 Vectored

Interrupts BCD Addition

In this program we will see how to add two 8-bit BCD numbers.

Problem Statement

Write 8085 Assembly language program to add two 8-bit BCD number stored in memory

location 8000H – 8001H.

Discussion

This task is too simple. Here we are taking the numbers from memory and after adding we

need to put DAA instruction to adjust the accumulator content to decimal form. The DAA

will check the AC and CY flags to adjust a number to its decimal form.

Input

Address Data

... ...

8000 99

8001 25

... ...

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 21, 00, 80 LXI

H,8000H

Point to first operand

F003 7E MOV A, M Load A with first operand

F004 23 INX H Point to next operand

F005 86 ADD M Add Acc and memory element

F006 27 DAA Adjust decimal

F007 21, 50, 80 LXI

H,8050H

Locate destination address

F00A 77 MOV M, A Store the result into memory

Address HEX

Codes

Labels Mnemonics Comments

F00B D2, 12, F0 JNC DONE If CY = 0, jump to Done

F00E 3E, 01 MVI A, 01H Load 01H into Acc

F010 23 INX H Point to next location

F011 77 MOV M,A Store the carry

F012 76 DONE HLT Terminate the program

Output

Address Data

... ...

8050 25

8051 01

... ...

BCD subtractions

Here we will see how to perform BCD subtractions using 8085.

Problem Statement

Write 8085 Assembly language program to perform BCD subtractions of tow numbers stored

at location 8001 and 8002. The result will be stored at 8050 and 8051.

Discussion

To subtract two BCD numbers, we are going to use the 10s complement method. Taking the

first number and storing into B, Load 99 into A then subtract the number to get the 9’s

complement. After that add 1 with the result to get 10’s complement. We cannot increase

using INR instruction. This does not effect on CY flag. So we have to use ADI 01. Then

DAA instruction will be used to adjust the decimal. Then if the result is negative we are

storing FF as upper byte, otherwise 00 as upper byte.

Input

Address Data

... ...

8000 01

8001 97

8002 88

... ...

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 01, 80 LXI H,8001H Point to get the choice

F003 46 MOV B,M Load operand to B

F004 3E, 99 MVI A,99H Load A with 99H

F006 23 INX H Point to next operand

Address HEX Codes Labels Mnemonics Comments

F007 96 SUB M Subtract M from A

F008 C6, 01 ADI 01H Add 01H to get 10's complement

F00A 80 ADD B Add B with A

F00B 27 DAA Adjust decimal

F00C 6F MOV L,A Store A to L

F00D DA, 3A, F0 JC SKP2 If CY = 1, jump to SKP2

F010 26, FF MVI H,FFH Load H with FFH

F012 C3, 62, F0 JMP STORE Store result

F015 26, 00 SKP2 MVI H,00H Clear HL

F017 22, 50, 80 STORE SHLD 8050H Store result from HL

F01A 76 HLT Terminate the program

Output

Address Data

... ...

Address Data

8050 09

8051 00

... ...

8085 Program to Add two multi-byte BCD numbers

Now let us see a program of Intel 8085 Microprocessor. This program is mainly for adding

multi-digit BCD (Binary Coded Decimal) numbers.

Problem Statement

Write 8085 Assembly language program to add two multi-byte BCD (Binary Coded Decimal)

numbers.

Discussion

We are using 4-byte BCD numbers. The numbers are stored into the memory at location

8501H and8505H. One additional information is stored at location 8500H. In this place, we

are storing the byte count. The result is stored at location 85F0H.

The HL pair is storing the address of first operand bytes, the DE is storing the address of

second operand bytes. C is holding the byte count. We are using the stack to store the

intermediate bytes of the result. After completion of the addition operation, we are popping

from the stack and storing into the destination.

Input

Address Data

.

.

.

.

.

.

8500 04

Address Data

8501 19

8502 68

8503 12

8504 85

8505 88

8506 25

8507 17

8508 20

.

.

.

.

.

.

Program

Address HEX

Codes

Labels Mnemonics Comments

F000 31,00,

20

 LXI SP,

2000H

Initialize Stack Pointer

F003 21,00,

85

 LXI

H,8500H

load memory address to get byte count

Address HEX

Codes

Labels Mnemonics Comments

F006 4E MOV C,M load memory content into C register

F007 06,00 MVI B,00H clear B register

F009 21,01,

85

 LXI H,

8501H

load first argument address

F00C 11,05,

85

 LXI D,

8505H

load second argument address

F00F 1A LOOP LDAX D load DE with second operand address

F010 8E ADC M Add memory content and carry with Acc

F011 27 DAA Decimal adjust the acc content

F012 F5 PUSH PSW Store the accumulator content into the stack

F013 4 INR B increase b after pushing into a stack

F014 23 INX H Increase HL pair to point next address

F015 13 INX D Increase DE pair to point next address

F016 0D DCR C Decrease c to while all bytes are not exhausted

F017 C2,0F,

F0

 JNZ LOOP When bytes are not considered, loop again

Address HEX

Codes

Labels Mnemonics Comments

F01A D2,21,

F0

 JNC SKIP when carry = 0, jump to store

F01D 3E,01 MVIA, 01H when carry = 1, push it into stack

F01F F5 PUSH PSW Store the accumulator content into the stack

F020 04 INR B increase b after pushing into the stack

F021 21,F0,

85

SKIP LXIH,

85F0H

load the destination pointer

F024 F1 L1 POP PSW pop AF to get back bytes from the stack

F025 77 MOV M, A store Acc data at the memory location pointed

by HL

F026 23 INX H Increase HL pair to point next address

F027 05 DCR B Decrease B

F028 C2,24,

F0

 JNZ L1 Goto L1 to store stack contents

F02B 76 HLT Terminate the program

Output

Address Data

Address Data

.

.

.

.

.

.

85F0 01

85F1 05

85F2 29

85F3 94

85F4 07

.

.

.

.

.

.

Program for subtraction of multi-byte BCD numbers in 8085 Microprocessor

Here we will see one program that can perform subtraction for multi-byte BCD numbers

using 8085 microprocessor.

Problem Statement −

Write an 8085 Assembly language program to subtract two multi-byte BCD numbers.

Discussion −

The numbers are stored into memory, and one additional information is stored. It will show

us the byte count of the multi-byte BCD number. Here we are choosing 3-byte BCD numbers.

They are stored at location 8001H to 8003H, and another number is stored at location 8004H

to 8006H. The location 8000H is holding the byte count. In this case the byte count is 03H.

For the subtraction we are using the 10’s complement method for subtraction.

In this case the numbers are: 672173 – 275188 = 376985

Input

Address Data

… …

8000 03

8001 73

8002 21

8003 67

8004 88

8005 51

8006 27

… …

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H,8000H Point to get the count

F003 4E MOV C,M Get the count to C

Address HEX Codes Labels Mnemonics Comments

F004 11, 01, 80 LXI D,8001H Point to first number

F007 21, 04, 80 LXI H,8004H Point to second number

F00A 37 STC Set the carry flag

F00B 3E, 99 LOOP MVI A,99H Load 99H into A

F00D CE,00 ACI 00H Add 00H and Carry with A

F00F 96 SUB M Subtract M from A

F010 EB XCHG Exchange DE and HL

F011 86 ADD M Add M to A

F012 27 DAA Decimal adjust

F013 77 MOV M,A Store A to memory

F014 EB XCHG Exchange DE and HL

F015 23 INX H Point to next location by HL

F016 13 INX D Point to next location by DE

F017 0D DCR C Decrease C by 1

Address HEX Codes Labels Mnemonics Comments

F018 C2, 0B, F0 JNZ LOOP Jump to LOOP if Z = 0

F01B 76 HLT Terminate the program

Output

Address Data

… …

8001 85

8002 69

8003 37

… …

8085 Program to multiply two 2-digit BCD numbers

Now let us see a program of Intel 8085 Microprocessor. This program will find the

multiplication result of two BCD numbers.

Problem Statement

Write 8085 Assembly language program to find two BCD number multiplication. The

numbers are stored at location 8000H and 8001H.

Discussion

In this program the data are taken from 8000H and 8001H. The result is stored at location

8050H and 8051H.

As we know that 8085 has no multiply instruction so we have to use repetitive addition

method. In this process after each addition we are adjusting the accumulator value to get

decimal equivalent. When carry is present, we are incrementing the value of MS-Byte. We

can use INR instruction for incrementing, but here ADI 01H is used. The INR instruction

does not affect the CY flag so we need ADI instruction.

Input

first input

Address Data

.

.

.

.

.

.

8000 12

8001 20

.

.

.

.

.

.

second input

Address Data

.

.

.

.

.

.

8000 27

8001 03

. .

Address Data

.

.

.

.

Program

Address HEX Codes Labels Mnemonics Comments

F000 21, 00, 80 LXI H,8000H Load first operand address

F003 46 MOV B, M Store first operand to B

F004 23 INX H Increase HLpair

F005 4E MOV C, M Store second operand to register C

F006 1E, 00 MVI E, 00H Clear register E

F008 63 MOV H, E Clear H register

F009 7B MOV A, E Clear A register

F00A B9 CMP C Compare C with A

F00B CA, 23, F0 JZ DONE When Z = 0,jump to DONE

F00E 80 LOOP ADD B Add B with A

F00F 27 DAA Decimal Adjust

Address HEX Codes Labels Mnemonics Comments

F010 57 MOV D, A Store A to D

F011 D2, 19, F0 JNC NINC Jump tp NINC

F014 7C MOV A, H Store H to A

F015 C6, 01 ADI 01H Increase A by1

F017 27 DAA DecimalAdjust

F018 67 MOV H, A Restore H from A

F019 7B NINC MOV A, E Load E to A

F01A C6, 01 ADI 01H Increase A by1

F01C 27 DAA Decimal adjust

F01D 5F MOV E, A Restore E from A

F01E B9 CMP C Compare C with A

F01F 7A MOV A,D Load D to A

F020 C2, 0E, F0 JNZ LOOP Jump to LOOP

F023 6F DONE MOV L, A Load A to L

Address HEX Codes Labels Mnemonics Comments

F024 22, 50, 80 SHLD 8050H Store HL pair at location 8050 and 8051

F027 76 HLT Terminate the program

Output

first output

Address Data

.

.

.

.

.

.

8050 40

8051 02

.

.

.

.

.

.

second output

Address Data

.

.

.

.

.

.

8050 81

Address Data

8051 00

.

.

.

.

.

.

8085 Program to Divide two 8 Bit numbers

In this program, we will see how to divide two 8-bit numbers using 8085 microprocessor.

Problem Statement

Write 8085 Assembly language program to divide two 8-bit numbers and store the result at

locations 8020H and 8021H.

Discussion

The 8085 has no division operation. To get the result of the division, we should use the

repetitive subtraction method.

By using this program, we will get the quotient and the remainder. 8020H will hold the

quotient, and 8021H will hold the remainder.

We are saving the data at location 8000H and 8001H. The result is storing at location 8050H

and 8051H.

Input

The Dividend: 0EH

The Divisor 04H

The Quotient will be 3, and the remainder will be 2

Program

Address HEX

Codes

Labels Mnemonics Comments

Address HEX

Codes

Labels Mnemonics Comments

F000 21,0E, 00 START LXIH,0CH Load 8-bit dividend in HL register pair

F003 06,04 MVIB,04H Load divisor in B to perform num1 / num2

F005 0E,08 MVIC, 08 Initialize the counter

F007 29 UP DADH Shifting left by 1 bit HL = HL + HL

F008 7C MOVA, H Load H in A

F009 90 SUB B perform A = A – B

F00A DA,0F, F0 JC DOWN If MSB < divisor then shift to left

F00D 67 MOVH, A If MSB > divisor, store the current value of A

in H

F00E 2C INR L Tracking quotient

F00F 0D DOWN DCRC Decrement the counter

F010 C2,07, F0 JNZ UP If not exhausted then go again

F013 22,20, 80 SHLD 8020 Store the result at 8020 H

F016 76 HLT Stop

Output

Address Data

.

.

.

.

.

.

8020 03

8021 02

.

.

.

.

.

.

Interrupts in 8085 microprocessor and its type:
When microprocessor receives any interrupt signal from peripheral(s) which are requesting

its services, it stops its current execution and program control is transferred to a sub-routine

by generating CALL signal and after executing subroutine by generating RET signal again

program control is transferred to main program from where it had stopped. When

microprocessor receives interrupt signals (INTR), it sends an acknowledgement (INTA) to

the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters.

• Hardware and Software Interrupts –

When microprocessors receive interrupt signals through pins (hardware) of microprocessor,

they are known as Hardware Interrupts. There are 5 Hardware Interrupts in 8085

microprocessor. They are – INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Software Interrupts are those which are inserted in between the program which means these

are mnemonics of microprocessor. There are 8 software interrupts in 8085 microprocessor.

They are – RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6, RST 7.

 • Vectored and Non-Vectored Interrupts –

Vectored Interrupts are those which have fixed vector address (starting address of sub-

routine) and after executing these, program control is transferred to that address.

Non-Vectored Interrupts (Scalar Interrupt) are those in which vector address is not

predefined. The interrupting device gives the address of sub-routine for these interrupts.

INTR is the only non-vectored interrupt in 8085 microprocessor.

• Maskable and Non-Maskable Interrupts –

Maskable Interrupts are those which can be disabled or ignored by the microprocessor. These

interrupts are either edge-triggered or level-triggered, so they can be disabled. INTR, RST

7.5, RST 6.5, RST 5.5 are maskable interrupts in 8085 microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored by microprocessor.

TRAP is a non-maskable interrupt. It consists of both level as well as edge triggering and is

used in critical power failure conditions.

UNIT - V
Direct Memory Access(DMA)and 8257 DMA controller - 8255A Programmable Peripheral

Interface. Basic features of Advanced Microprocessors - Pentium - I3 , I5 and I7

Direct Memory Access (DMA) transfers the block of data between

the memory and peripheral devices of the system, without the participation of

the processor. The unit that controls the activity of accessing memory directly is called

a DMA controller

What is DMA and Why it is used?

Direct memory access (DMA) is a mode of data transfer between the memory and I/O

devices. This happens without the involvement of the processor. We have two other

methods of data transfer, programmed I/O and Interrupt driven I/O. Let’s revise each and

get acknowledge with their drawbacks.

In programmed I/O, the processor keeps on scanning whether any device is ready for data

transfer. If an I/O device is ready, the processor fully dedicates itself in transferring the data

between I/O and memory. It transfers data at a high rate, but it can’t get involved in any

other activity during data transfer. This is the major drawback of programmed I/O.

In Interrupt driven I/O, whenever the device is ready for data transfer, then it raises

an interrupt to processor. Processor completes executing its ongoing instruction and saves

its current state. It then switches to data transfer which causes a delay. Here, the processor

doesn’t keep scanning for peripherals ready for data transfer. But, it is fully involved in the

data transfer process. So, it is also not an effective way of data transfer.

The above two modes of data transfer are not useful for transferring a large block of data.

But, the DMA controller completes this task at a faster rate and is also effective for transfer of

large data block.

The DMA controller transfers the data in three modes:

1. Burst Mode: Here, once the DMA controller gains the charge of the system bus, then it

releases the system bus only after completion of data transfer. Till then the CPU has to wait

for the system buses.

2. Cycle Stealing Mode: In this mode, the DMA controller forces the CPU to stop its operation

and relinquish the control over the bus for a short term to DMA controller. After

the transfer of every byte, the DMA controller releases the bus and then again requests for

the system bus. In this way, the DMA controller steals the clock cycle for transferring every

byte.

3. Transparent Mode: Here, the DMA controller takes the charge of system bus only if

the processor does not require the system bus.

Direct Memory Access Controller & it’s Working

DMA controller is a hardware unit that allows I/O devices to access memory directly

without the participation of the processor. Here, we will discuss the working of the DMA

controller. Below we have the diagram of DMA controller that explains its working:

1. Whenever an I/O device wants to transfer the data to or from memory, it sends the DMA

request (DRQ) to the DMA controller. DMA controller accepts this DRQ and asks the CPU

to hold for a few clock cycles by sending it the Hold request (HLD).

2. CPU receives the Hold request (HLD) from DMA controller and relinquishes the bus and

sends the Hold acknowledgement (HLDA) to DMA controller.

3. After receiving the Hold acknowledgement (HLDA), DMA controller acknowledges I/O

device (DACK) that the data transfer can be performed and DMA controller takes the charge

of the system bus and transfers the data to or from memory.

4. When the data transfer is accomplished, the DMA raise an interrupt to let know the

processor that the task of data transfer is finished and the processor can take control over the

bus again and start processing where it has left.

Now the DMA controller can be a separate unit that is shared by various I/O devices, or it can

also be a part of the I/O device interface.

Direct Memory Access Diagram

After exploring the working of DMA controller, let us discuss the block diagram of the DMA

controller. Below we have a block diagram of DMA controller.

Whenever a processor is requested to read or write a block of data, i.e. transfer a block of

data, it instructs the DMA controller by sending the following information.

1. The first information is whether the data has to be read from memory or the data has to be

written to the memory. It passes this information via read or write control lines that is

between the processor and DMA controllers control logic unit.

2. The processor also provides the starting address of/ for the data block in the memory, from

where the data block in memory has to be read or where the data block has to be written in

memory. DMA controller stores this in its address register. It is also called the starting

address register.

3. The processor also sends the word count, i.e. how many words are to be read or written. It

stores this information in the data count or the word count register.

4. The most important is the address of I/O device that wants to read or write data. This

information is stored in the data register.

Direct Memory Access Advantages and Disadvantages

Advantages:

1. Transferring the data without the involvement of the processor will speed up the read-write

task.

2. DMA reduces the clock cycle requires to read or write a block of data.

3. Implementing DMA also reduces the overhead of the processor.

Disadvantages

1. As it is a hardware unit, it would cost to implement a DMA controller in the system.

2. Cache coherence problem can occur while using DMA controller.

8255A PROGRAMMABLE PERIPHERAL INTERFACE

The 8255A is a general purpose programmable I/O device designed to transfer the data from

I/O to interrupt I/O under certain conditions as required. It can be used with almost any

microprocessor.

It consists of three 8-bit bidirectional I/O ports (24I/O lines) which can be configured as per

the requirement.

Ports of 8255A

8255A has three ports, i.e., PORT A, PORT B, and PORT C.

 Port A contains one 8-bit output latch/buffer and one 8-bit input buffer.

 Port B is similar to PORT A.

 Port C can be split into two parts, i.e. PORT C lower (PC0-PC3) and PORT C

upper (PC7-PC4) by the control word.

These three ports are further divided into two groups, i.e. Group A includes PORT A and

upper PORT C. Group B includes PORT B and lower PORT C. These two groups can be

programmed in three different modes, i.e. the first mode is named as mode 0, the second mode

is named as Mode 1 and the third mode is named as Mode 2.

Operating Modes

8255A has three different operating modes −

 Mode 0 − In this mode, Port A and B is used as two 8-bit ports and Port C as two

4-bit ports. Each port can be programmed in either input mode or output mode

where outputs are latched and inputs are not latched. Ports do not have interrupt

capability.

 Mode 1 − In this mode, Port A and B is used as 8-bit I/O ports. They can be

configured as either input or output ports. Each port uses three lines from port C

as handshake signals. Inputs and outputs are latched.

 Mode 2 − In this mode, Port A can be configured as the bidirectional port and

Port B either in Mode 0 or Mode 1. Port A uses five signals from Port C as

handshake signals for data transfer. The remaining three signals from Port C can

be used either as simple I/O or as handshake for port B.

Features of 8255A

The prominent features of 8255A are as follows −

 It consists of 3 8-bit IO ports i.e. PA, PB, and PC.

 Address/data bus must be externally demux'd.

 It is TTL compatible.

 It has improved DC driving capability.

Features of Pentium Processors:
 It is a highly integrated device containing about 1.2 million transistors.

Wider Data Bus Width: The Pentium processors have a wider data bus width. The data bus width has

been increased from 32-bit to 64-bit to improve the data transfer rate.

Faster Floating Point Unit: Faster algorithm provides up to ten times speed-up for common

operations including add, multiply and load.

 Improved Cache Structure: Pentium processors include separate code and data caches integrated on-

chip to meet performance goals.

Dual Integer Processor: Pentium processor has integer processor. It allows execution of two

instructions per clock.

Branch Prediction Logic: The Pentium uses the technique called branch prediction to check whether

a branch will be valid or invalid.

Data Integrity and Error Detection: The Pentium processors have added significant data integrity and

error detection capability.

Super Scalar Processor: Processors capable to parallel instruction execution of multiple instructions
are known as super scalar processors.

The Pentium III
The Pentium III The Pentium III microprocessor is an improved version of the Pentium II

microprocessor. Even though it is newer than the Pentium II, it is still based on the Pentium Pro

architecture.
The salient architectural features are:

1. P-III CPU has been developed using 0.25 micron technology and includes over 9.5 million

transistors. It has three versions operating at 450 MHz, 500 MHz and 550 MHz which are
commercially available.

2. P-III incorporates multiple branch prediction algorithms.

3. Seventy new instructions have been added to Pentium III. These instructions are useful in advanced

imaging, speech processing and multimedia applications.
4. Dual independent bus architecture increases bandwidth.

5. P-III employs dynamic execution technology.

6. A 512Kbyte unified, non-blocking level 2 cache has been used.
7. Eight 64-bit wide Intel MMX registers along with a set of 57 instructions for multimedia

applications are available.

Features of Core i5 Processor

Here, are important features of Core i5 Processor:

 i5 processors offer an ability to work with integrated Memory, which helps to hence

the performance of the applications.

 It increases the Memory speed up to 1333 MHz

 i5 processors have a rapid performance rate. So, it can perform at the maximum CPU

rate of 3.6 GHz

 Turbo technology present in the i5 Processor helps you to boost up the working speed

of the computational systems.

 I5 processer uses 64-bit architecture for the users for reliable working.

Advantages of i5 processors

Here, are pros/benefits of using i5 processors:

 It has a high-speed performing rate so that system are able to perform at the maximum

CPU rate of 3.6 GHz

 Turbo technology is present in the device which helps you to boost up the working

speed

 It offers 64-bit architecture to get reliable working.

Disadvantages of i5 processors

Here, cons/drawback of Cori i5 Processor

 Not support high data visualization technology for users to view high-quality images

and video graphics.

 Power consumption of core-i7 is not better compared to the core-2 duo processor type.

 It demands newer motherboards.

 i5 Processor is sensitive to higher voltages.

Features of Core i7 Processor

Here, are essential features of Core i7 Processor:

 Supports 64-bit execution

 Front Side bus Speed include 2GH

 High speed working with the multitasking feature

 i7 offers a feature of hyper-threading technology

 Support DDR3 main memory

Advantages of Core i7 Processor

Here, are pros/benefits of Core i7 Processor

 Very fast processing speed

 Offer highly reliable cooling system

 Four cores allow for handling software that requires lots of computations.

 Provide high data visualization to users that help them to get high-quality images and

video graphics.

 The ideal Processor for gaming enthusiasts and digital artists

Disadvantages of Core i7 Processors

Here, are cons/drawbacks of using i7 Processors

 Relatively costly Processor

 Power consumption is high compared to other processors.

 i7 processors work only with DDR3 Memory, which means that users upgrading from

DDR2 will require to have a new motherboard.

 Not many software needed for multithreading, which means the average users do not

get much performance gain.

	Data Representation:Data type
	Section 3.2 – Complements
	Section 3.3 – Fixed-Point Representation
	Section 3.4 – Floating-Point Representation
	Section 3.5 – Other Binary Codes
	Section 3.6 – Error Detection Codes
	BASIC DEFINITIONS:
	REGISTER TRANSFER LANGUAGE:
	Registers:
	Register Transfer:
	if (P=1) then R2← R1
	P: R2← R1

	Bus and Memory Transfers:
	Common bus system is with multiplexers:
	BUS← C, R1← BUS
	R1← C

	Memory Transfer:
	Read: DR<- M [AR]
	Write: M [AR] <- R1

	Arithmetic Micro-operations:
	R3 ← R1 + R2
	R3 ← R1 + R2 + 1
	Binary Adder:
	BINARY ADDER.

	Binary Adder –Subtractor:
	Binary Incrementer:

	Arithmetic Circuit:
	Addition:
	Subtraction:
	Increment:
	Decrement:
	List of Logic Microoperations:
	Hardware Implementation:

	Shift Microoperations:
	 LogicalShift:
	 CircularShift:
	 ArithmeticShift:
	Hardware Implementation:
	Arithmetic Logic Shift Unit:
	Microprocessor Architecture and its Operations - 8085 MPU - 8085 Instruction Set and Classifications. Programming in 8085: Code conversion - BCD to Binary and Binary to BCD conversions - ASCII to BCD and BCD to ASCII conversions - Binary to ASCII and ...
	What is the 8085 Microprocessor?
	The 8085 Microprocessor Architecture
	Operations of the 8085 Microprocessor
	Flag Registers
	Control and Timing Unit
	Register Array
	Special Purpose Registers
	Program Counter
	Stack Pointer in 8085
	Increment or Decrement Register
	Address-Buffer & Address-Data-Buffer
	Address Bus and Data Bus
	Timing & Control Unit

	Pin Diagram
	Data Bus
	Address Bus
	Status and the Control Signals
	Clock Signals
	Reset Signals
	Serial Input/Output Signals
	Externally Initiated and Interrupts Signals

	Timing Diagram of 8085 Microprocessor
	8085 Microprocessor Instruction Set

	8085 Program to convert a two-digit BCD to binary
	Problem Statement
	Discussion
	Input
	Program
	Output

	8085 Program to convert an 8-bit binary to BCD
	Problem Statement
	Discussion
	Input
	Program
	Output

	8085 code to convert binary number to ASCII code
	8085 program to convert 8 bit BCD number into ASCII Code
	Problem Statement
	Discussion
	Input
	Program
	Output

	8085 code to convert binary number to ASCII code (1)
	Problem Statement
	Discussion
	Input
	Program
	Output

	Program to convert ASCII to binary in 8085 Microprocessor
	Input
	Program
	Output
	Problem Statement
	Discussion
	Input
	Program
	Output

	Problem Statement
	Discussion
	Input (1)
	Program (1)
	Output (1)

	8085 Program to Add two multi-byte BCD numbers
	Problem Statement
	Discussion
	Input
	Program
	Output

	Program for subtraction of multi-byte BCD numbers in 8085 Microprocessor
	Input
	Program
	Output

	8085 Program to multiply two 2-digit BCD numbers
	Problem Statement
	Discussion
	Input
	Program
	Output

	8085 Program to Divide two 8 Bit numbers
	Problem Statement
	Discussion
	Input
	Program
	Output
	What is DMA and Why it is used?
	Direct Memory Access Controller & it’s Working
	Direct Memory Access Diagram
	Direct Memory Access Advantages and Disadvantages
	Advantages:
	Disadvantages

	Ports of 8255A
	Operating Modes
	Features of 8255A
	Features of Core i5 Processor
	Advantages of i5 processors
	Disadvantages of i5 processors
	Features of Core i7 Processor
	Advantages of Core i7 Processor
	Disadvantages of Core i7 Processors

