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Introduction

“Mathematics is the Queen of the Sciences and Number Theory is the Queen of
Mathematics” - Gauss.

Mechanics 1s a branch of Science which deals with the action of forces on bodies. Mechanics
has two branches called Statics and Dynamics.

Statics 1s the branch of Mechanics which deals with bodies remain at rest under the influence
of forces.

Dynamics is the branch of Mechanics which deals with bodies in motion under the action of
forces.

Definitions:
Space: The region where various events take place is called a space.

Body: A portion of a matter is called a body.
Rigid body: A body consists of innumerable particles in which the distance between any two
particles remains the same in all positions of the body is called a rigid body.

Particle: A particle is a body which is very small whose position at any time coincides with a
point.

Motion: If a body changes its position under the action of forces, then it is said to be in
motion.

Path of a particle: It is the curve joining the different positions of the particle in space while
in motion.

Speed: The rate at which the body describes its path. It is a scalar quantity.

Displacement (vector quantity): It is the change in the positions of a particle in a certain
interval.
Velocity (vector quantity): It is the rate of change of displacement.

Acceleration (vector quantity): It is the rate of change of velocity.

Equilibrium: A body at rest under the action of any number of forces on it is said to be in
equilibrium.

Equilibrium of two forces

Q« > P

If two forces P, Q act on a body such that they have equal magnitude, opposite directions,
same line of action then they are in equilibrium.

Force (vector): Force is any cause which produces or tends to produce a change in the
existing state of rest of a body or of its uniform motion in a straight line. Force is represented
by a straight line (through the point of application) which has both magnitude and direction.

Types of forces: Weight, attraction, repulsion, tension, thrust, friction etc.
By Newton’s third law, action and reaction are always equal and opposite.
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1.

Directions of Normal Reaction ‘R’ at the point of contact.

When a rod AB is in contact with a

R
smooth plane, R is perpendicular to the B
plane at the point of contact A. od

Smooth A  Plane

When a rod AB is resting on a
smooth peg P, R is perpendicular to

the rod at the point of contact P.

When a rod AB is resting on a

R
B
P -Peg
A
R
B
smooth sphere, R is normal to the
sphere at the point of contact C. G
A
Ry
R
B

4. When a rod AB is resting on
the rim of a hemisphere, with

one end A in contact with the
inner surface and C in contact

with the rim. Then the normal
reactions R at A is normal to
the spherical surface and passes

through the centre O, Ry at C is
perpendicular to the rod.

Regular polygon is a polygon with equal sides. Its vertices lie on a

circle.
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UNIT -1
FORCE

Introduction

Forces are represented by straight lines with magnitude and direction. Forces acting on a

rigid body may be represented by straight lines with magnitude and direction passing through the
same point and we say the forces are acting at a point. If A4 P, ,FP5........ are the forces acting

on a rigid body it is easy to find a single force whose effect is same as the combined effect of
PP ... Then the single force is called the resultant. F,P,P; ..... are called the
components of the resultant. In this section we study some theorems and methods to find the
resultant of two or more forces acting at a point.
1.1 Parallelogram law of forces (Fundamental theorem in statics)

If two forces acting at a point be represented in magnitude and direction by the sides of a
parallelogram drawn from the point, their resultant is represented both in magnitude and

direction by the diagonal of the parallelogram drawn through that point.

D C
Q
— — —
AB+ AD= A
A P B ie)P+Q=R
The resultant of two forces acting at a point
D C
R
Q
¢ R a ]
A P B E

Let the two forces P and Q acting at A be represented by AB and AD. Let & be the angle
between them.

ie. ZBAD =«

Complete the parallelogram ABCD.

Then the diagonal AC will represent the resultant.
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Let ZCAB = ¢

Draw CE Lr» to AB.Now BC=AD=Q.
From the right angled A CBE,

N
sinCBE = CE i.e.sing =Q
BC

..CE = Qsina... ... .. (1)
BE BE
CoSx = —_— =
BC QO
..BE = Qcosa ......... (11)
R?=AC? = AE?+ CE? = (AB + BE)* +CE?

= (P+Qcos 05)2 +(Qsina )

= P+ 2PQcosar + Q *
R - P +2pP0cosa +0?)
tang = CL __Osma
AE P+ Qcosa

Result 1 If the forces P and Q are at right angles to each other, then a=90°;

RZ\/P2+Q2 tango:%

Result 2 If the forces are equal (i.e.) Q =P, then

R Z\/Pz +2P? cosa + P? :\/2P2(l+cosa)

= \/2P2.20052 a =2P cosZ
2 2
. a o
. ) 2sin —coS—
Psna sin o 2 2
tanp = = =
P+ Pcosa 1+cosa 2coszg
2
a
= tan —
2
a
1€ =—
)| @ 5
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. a . o
Thus the resultant of two equal forces P, P at an anglea is 2 P cos £y in a direction

bisecting the angle between them.

Result 3 Resultant R is greatest when cos « is greatest.
i.e. when cosa =1 or a=0"
ie) Greatest value of R is R =P +Q.
R is least when cos & is least.

i.e. when cosa= —1 or a = 180 Least value of R is P~Q.

Problem 1

The resultant of two forces P, Q acting at a certain angle i1s X and that of P, R acting at

the same angle is also X. The resultant of Q, R again acting at the same angle is Y, Prove that.

1
P-(C+QR)? = —2QR(Q2+ R) :
O°“+R°-Y
Prove also that, if P+ Q+R=0,Y =X.

Solution:
Let  be the angle between P and Q

Given

X = P’+Q*+2PQcosa  .........(])
X = P’ +R*+2PRCOSQ  wovenn.n. )
Y = Q*+R*+2QRCOS & e (3)

(1)~ (2)gives0= Q>—R?% +2Pcos a(O-R)
re. 0 = (Q-R)(Q+R+2P cosar)

ButQ # RandsoQ—-R #0

+Q+R+2Pcosa =0

cos @ = — O+ . 4)
2P
Substitute (4) in (1),
X* = PP+Q°+2PQ {—(Q;;)Rﬂ:PMQZ_ Q- QR
PP = X +QRieP=(X+ QR)%
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Substitute (4) in (3),

2 _ 2 p2 (O+R
Y Q +R +2QR{ (ZP ﬂ
_ Q2+R2_QR(Q+R)
P
: QR(%JFR) - Q*+R*_Y?
P OR(Q +R)
02 +R>_Y?
IfP+Q+R = 0,thenQ+R= —P,
.. From (4), cosa = —Q+R=£:l
2P 2P 2
1
cos o =— =
2
X2 = PP+R*+PR.. .. ..(5
Y2 = Q*+R’+QR.. .. ..(6)
(5) — (6) gives
X? - Y? = PP-Q**+PR-QR
=P-QP+Q+R)
= (P-Q).0=0
S X=Y

Problem 2

Two forces of given magnitude P and Q act at a point at an angle @ . What will be the

maximum and minimum value of the resultant?

Solution:
1. Maximum value of the resultant = P+Q
11. Minimum value of the resultant = P~ Q.
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Problem 3

The greatest and least magnitudes of the resultant of two forces of constant magnitudes

are R and S respectively. Prove that, when the forces act at an angle 2 ¢, the resultant is of

magnitude \/R2 cos? o+ S? sin? Q

Solution:
Given, R=P + Q, S =P-Q, where P and Q are two forces.
When P and Q are acting at an angle 2¢

Resultant = \/P2 + Q2 +2PQ.cos2¢p

WP +0? )+ 2P0leos? p-sin? )
\/(P2 + Q2 sin? qo+cos2 (p)+ 2PQ(cos2 qp—sin2 (p)
= P2+ 0% +2P0kos? p+ (P2 + 02 ~2PQ)sin2 ¢

= \/R2 cosquJrS2 sinzgo

Problem 4

The resultant of two forces P and Q is at right angles to P. Show that the angle between

the forces is cos_l(— B]
0

Solution:

Let a be the angle between the two forces P and Q. Given ¢ =90

D C
Q &R
a
\ »
A P B

We know, tan @ = _Qsna
P+Qcosa
ie.  tan90° = _Qsna
P+Qcosa
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1 _ Osina
0 P+ Qcosa
S P+Qcosa = 0
) _ P
C.cosa = -—
Q
: —1( P]
La=cos | ——
0
Problem §

The resultant of two forces P and Q is of magnitude P. Show that, if P be doubled, the

new resultant is at right angles to Q and its magnitude will be \/4P2 - Q2 .

Solution:
Let o be the angle between P and Q
D €

¢ >
A Q B
Given, P? = P2+Q2 +2PQcos .
. Q (Q+2Pcos ) =0

s.cosa = _Q
2P
If P is doubled, let R be the new resultant, and ¢ be the angle between Q and R.
~RY* = (2P)? + 0% +2(2P)0.coscx
= 4P2 1 0? +apg - £
2P

4P? + 0% —20% =4P? - 0?

“R=+4P? Q2
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(2P)sin & 2Psma

tangp = 2— =
Q+( P)cosa 0+2P 0
2P
) 2Psin«
1.e. tang =
0
..COS @ = 0 = = 90°
~ Q 1s at right angles to R.

Problem 6

Two equal forces act on a particle, find the angle between them when the square of their
resultant is equal to three times their product.

Solution:

A p B

Let o be the angle between the two equal forces P, P, and let R be their resultant.
- R? = P2+P?42PPcosa

= 2P2(l+cosoz):2P2 XZCOSZ%

i.e.R2 = 4P? cos? @
2
R = 2Pcosz
2
Given, R? = 3x Px P =3P
- 3P = 4P2 cos2 e
2
) 2a 3 a 3
;. Cos” — = — = cos— = —
2 4 2 2
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(94

=30°

= o= 60"

Problem 7
If the resultant of forces 3P, 5P is equal to 7P find
1. the angle between the forces

11. the angle which the resultant makes with the first force.

Solution:

Let a be the angle between 3P, 5P

i. Given (7P)> = (3P)*+ (5P)*+ 2 (3P) (5P) .cosx
49p° = 9P’ +25P*+ 30P’cosa
. 15P2 = 30P? cosa
1
S.cosa = ) =a=60"
11. Let ¢ be the angle between the resultant and 3P.
. tan (D = ﬂ
P+Qcosa
_ S5Psina
3P+5P.cosa
_ 5P.sin 60°
3P +5P.cos60°
5,3
2
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53

tan =
¢ 11

11

L@ = tan_l(ﬂ]

1.2 Triangle of forces
If three forces acting at a point can be represented in magnitude and
direction by the sides of a triangle taken in order, they will be in

equilibrium.

N
Let the forces, P,Q,R act at a point O and be represented in

magnitude and direction by the sides AB,BC,CA of the triangle ABC.

To prove : They will be in equilibrium.
Complete the parallelogram BADC.

P+Q =AB +AD =AB+BC

ie) The resultant of the forces P, Q at O is represented in magnitude
and direction by AC.
The third force R acts at O and it is represented in magnitude and

direction by CA.

Hence P+Q+R =AC+CA =0
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Principle

If two forces acting at a point are represented in magnitude and direction
by two sides of a triangle taken in the same order, the resultant will be
represented in magnitude and direction by the third side taken in the
reverse order.
1.3 Lami’s Theorem
If three forces acting at a point are in equilibrium, each force is proportional to the

sine of the angle between the other two.

X

Proof:

By converse of the triangle of forces, the sides of the triangle OAD
represent the forces P,Q,R in magnitude and direction.

By sine rule in AOAD , we have
0OA AD DO

e 1)
But ZOAD = alt./BOD =180° — ZMON

-.sin ZODA=sin(180° — ZMON)=sin ZMON ........(2)
Also £D0A=180° — ZNOL

~.sin 2D0A =sin180° — ZNOL)=sin ZNOL ....... 3)
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And Z0AD =180° — /BOA =180 — ,LOM

.sin £Z0AD =sin(180° - ZLOM )=sin ZLOM .......(4)
Substitute (2), (3), (4) in (1),
o4 4D DO
sin ZMON _ sin ZNOL _ sin ZLOM
P 0 R
sin ZMON ~ sin ZNOL ~ sin ZLOM
P 0 R

sin( O.R) sin(R,P) sin(P,0Q)

Problem 8

Two forces act on a particle. If the sum and difference of the forces are at right angles to

each other, show that the forces are of equal magnitude.

Solution:

A P B

Let the forces P and Q acting at A be represented in magnitude and direction by the lines
AB and AD. Complete the parallelogram BAD.

Then P+Q= AB+ AD= AC
P-Q =AB-A4D
= AB+DA

+ AB

Il
=/ 2|
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Given AC and DB are at right angles.
The diagonals AC and BD cut at right angles.

.. ABCD must be a rhombus.
..AB = AD.
P=Q.

Problem 9

Let A and B two fixed points on a horizontal line at a distance ¢ apart. Two fine light
strings AC and BC of lengths b and a respectively support a mass at C. Show that the tensions of

the strings are in the ratio b(a2 +c’ —bz): a(b2 +c’ —az)

Solution

Forces Tj, T,, W are acting at C.
By Lami’s theorem,

L . h
sm ZECB sin LECA
Now sin ZECB =sin(180° — ZDCB)

=sin ZDCB
= sin (90" — ZABC)= cos LZABC

sin ZECA =sin(180° — 24CD)
=sin ZACD
= sin (90° — ZBAC)= cos ZBAC
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c+a” -b?
T 3 P . ﬂ_cosB_ 2ca
cos LZABC cosZBAC = Ty cosd (p2,.2_,2
2bc
i ¢ +a? -b? X( 2bc jb(2+a2—b2)
T, 2ca b2 +¢2 — 42 a(b2 +c2 —az)
Problem 10

ABC is a given triangle. Forces P,Q,R acting along the lines OA,OB,OC are in
equilibrium. Prove that

WP :Q: Rzaz(b2 +c’ —a2):l92(c2 +a’ —bz): cz(a2 +b° —cz) if O is the cicumcentre of the
triangle.

. A B o : )
(P:Q:R== cosz : cosz : cos% if O is the incentre of the triangle.

(11) P : Q : R=a:b:c if O is the ortho centre of the triangle.
(1v) P: Q : R=0OA : OB : OC if O is the centroid of the triangle,

A
Solution:
F
O _\E
B
D c
By Lami’s theorem,
P R
o __RrR (1)

sin ZBOC _sin ZCOA _ sin ZAOB

(i) O is the circumcentre of the A ABC

ZBOC =2/BAC =2A4; ZCOA=2B and ZAOB=2C
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P 0O R
sm24 sm2B sn2C
P 3 0 3 R
" 2sin Acos A 2sin BcosB  2sin CcosC

() =

1.e

2.2 2
But cosAzu and sir1A=2—A

2bc bc
where A is the area of the triangle ABC

ZA(bz +c? —a2)
bc 2bc

s.2sm Acos A=2

2A@2+c2—a2)
b2c?

2A(c2 +a? —bz)

Similarly 2smn Bcos B =

c?a?
2 2 2
2Ala” +b° —
2sm CcosC = (a 2b2 ¢ )
a’b
Substitute in (2)
Pbc? Q.cza2 Ra’b?

2A(b2 +c2 —az): 2A(c2 +a? —bz): 2A(a2 b2 —02)
a’b’c?
2A

P _ 0 _ R
az(b2 +c? —az) bz(c2 +a? —bz) cz(a2 +b? —cz)

Divide by

(ii) O is the in-centre of the triangle,

OB and OC are the bisectors of ZBand £ C
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- 2BOC=1800 B _C _ 1590 _(§+£
22 27

=180 —(900 —éj:%" A
2 2

Similarly LCOA=9OO+§, AAOB=9OO+%
1) = P = 0 = R -
sin| 90° + = | sin[90°+= | sin| 900 +=
2 2 2
. P O R
1.€. = = C’
COS — COS — COS —
2

(iii) O is the ortho-centre of the triangle
AD, BE, CF are the altitudes of the triangle
AFOE is a cyclic quadrilateral.

-~ /FOE +A=180" , . /FOE =180" - 4
. ZBOC =180" — 4

Similarly, £COA=180° — B, Z40B =180° - C
Hence (1) becomes

P 0) R

sin(180° — 4) sin(180° —B) sin(180° —C)
P O R

Le. — =— =—
smA4A smB snC

i.e.zz%zﬁ ( a b ¢ )

c sinA:sinB:sinC
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(iv) O is the centroid of the triangle

ABOC= ACOA=AAOB= %AABC

ABOC = %OB.OC sm ZBOC = %AABC

- sin ZBOC = 224BC.
30B.0C
Similarly, sn ZCOA = 2A4BC . sin ZAOB = 2A4BC
30C.04 30A4.0B

P30B.OC Q.30C.0OA R30A.0B
2AABC 2AABC 2AABC

Hence (1) becomes

1.e. P.OB.OC = Q.0C.0OA = R.OA.OB

Dividing by OA.OB.OC, we get P = Y = R .
04 OB OC
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1.4 Friction

In the previous sections we have studied problems on equilibrium of smooth bodies.
Practically no bodies are perfectly smooth. All bodies are rough to a certain extent. Friction is the
force that opposes the motion of an object. Only because of this friction we are able to travel
along the road by walking or by vehicles. So friction helps motion. It is a tangential force acting
at the point on contact of two bodies. To stop a moving object a force must act in the opposite
direction to the direction of motion. Such force is called a frictional force. For example if you
push your book across your desk, the book will move. The force of the push moves the book. As
the books slides across the desk, it slows down and stops moving. When you ride a bicycle the
contact between the wheel and the road is an example of dynamic friction.

Definition

If two bodies are in contact with one another, the property of the two bodies, by means of
which a force is exerted between them at their point of contact to prevent one body from sliding
on the other, is called friction, the force exerted is called the force of friction.

Types of Friction

There are three types of friction
1) Statical Friction 2) Limiting Friction 3) Dynamical friction.

1. When one body in contact with another is in equilibrium, the friction exerted is just
sufficient to maintain equilibrium is called statical friction.

2. When one body is just on the point of sliding on another, the friction exerted attains its
maximum value and is called limiting friction; the equilibrium 1s said to be limiting equilibrium.

3. When motion ensues by one body sliding over another, the friction exerted is called
dynamical friction.

1.5 Laws of Friction

Friction 1s not a mathematical concept; it is a physical reality.

Law 1 When two bodies are in contact, the direction of friction on one of them at the point of
contact is opposite to the direction in which the point of contact would commence to move.
Law 2 When there is equilibrium, the magnitude of friction is just sufficient to prevent the body

from moving.

19/115


Antony
Textbox

Antony
Typewriter
1.4

Antony
Textbox
1.4

Antony
Textbox
1.5


Law 3 The magnitude of the limiting friction always bears a constant ratio to the normal reaction
and this ratio depends only on the substances of which the bodies are composed.

Law 4 The limiting friction is independent of the extent and shape of the surfaces in contact, so
long as the normal reaction is unaltered.

Law 5 (Law of dynamical Friction)

When motion ensues by one body sliding over the other the direction of friction is
opposite to that of motion; the magnitude of the friction is independent of the velocity of the
point of contact but the ratio of the friction to the normal reaction is slightly less when the body
moves, than when it is in limiting equilibrium.

Friction is a passive force: Explain
1) Friction is only a resisting force.
2) It appears only when necessary to prevent or oppose the motion of the point of contact.
3) It can not produce motion of a body by itself, but maintains relative equilibrium.
4) 1t 1s a self-adjusting force.
5) It assumes magnitude and direction to balance other forces acting on the body.

Hence, friction is purely a passive force.
Co-efficient of friction
The ratio of the limiting friction to the normal reaction is called the co-efficient of

friction. It is denoted by 1

Note: 1) 1 depends on the nature of the materials in contact.

2) Friction is maximum when it is limiting. #R is the maximum value of friction.
F
3) When equilibrium is non-limiting, F' < 4R 1i.e.) z <u

4) Friction ‘F’ takes any value from zero upto uR.

Angle of Friction
B C B C
RA R :
: A E
0 i A :
o] F A 0] UR A
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Let OA = F(Friction), OB =R (Normal reaction) & ﬁf be the resultant of F and R.

IfBéC:Q, tan@zﬂz%zi ........... (1)
OB OB R
As F increases, 0 - increases until F reaches its maximum value #R. In this case,
equilibrium is limiting.
Definition
“When one body is in limiting equilibrium over another, the angle which the resultant reaction

makes with the normal at the point of contact is called the angle of friction and is denoted by A4

VAN
In the limiting equilibrium, BOC = A= angle of friction.

OB OB R
M=tan A

i.e.) The co-efficient of friction is equal to the tangent of the angle of friction.

Cone of Friction

N

A
\ 4

UR o0 wuR
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We know, the greatest angle made by the resultant reaction with the normal is A (angle

of friction) where A = tan_l(,u). Consider the motion of a body at O (its point of contact) with
another. When two bodies are in contact, consider a cone drawn with O as vertex, common
normal as the axis of the cone, A - be the semi-vertical angle of the cone. Now, the resultant
reaction of R and (R will have a direction which lies within the surface or on the surface of the

cone. It can not fall outside the cone. This cone generated by the resultant reaction is called the

cone of friction.

1.6 Equilibrium of a particle on a rough inclined plane.

4o

Let @ - be the inclination of the rough inclined plane, on which a particle of weight W, is
placed at A. Forces acting on the particle are,
1) Weight W vertically downwards
2) Normal reaction R, L r to the plane.
3) Frictional force F, along the plane upwards (Since the body tries to slip down).

Resolving the forces along and perpendicular to the plane,

F=Wsm6@, R=Wcosf

E =tan @
R
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But%<,u Stanf < u

1.e) tanf <tan A

nO<A
When 921,%:tanﬂ,:,u

Hence, it is clear that “when a body is placed on a rough inclined plane and is on the point of
sliding down the plane, the angle of inclination of the plane is equal to the angle of friction.”
Now A is called as the angle of repose.

Thus the angle of repose of a rough inclined plane is equal to the angle friction when

there is no external force act on the body.

1.7 Equilibrium of a body on a rough inclined plane under a force parallel to
the plane.

A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of

friction and 1s acted on by a force parallel to the plane. Find the limits between which the force

must lie.

Proof:
Let & be the inclination of the plane, W be the weight of the body& R be the normal
reaction.

Case 1: Let the body be on the point of slipping down. Therefore R acts upwards along the

plane.

W sin o
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Let P be the force applied to keep the body at rest.

Resolving the forces along and perpendicular to the plane,

S P=W.sma—uW cosa

= W[sin o —tan A.cos o]

- [sin @r.cos A —cos asin A]
cos A

W
= Cosl.sm(a—l)

W.sin(a— 1)

Let A =
cos A

Case ii Let the body be on the point of moving up. Therefore limiting frictional force R acts

downward along the plane.

Let P be the external force applied to keep the body at rest.

Resolving the force,
R=Wcosa; P=uR+Wsmna
S P=puWcosa+Wsna

= [sin Acos & + cos A.sin a]
cos A
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_ sin(a+A)
cos A

W sin(a+A4)

Let P2 =
cos A

If P < A, body will move down the plane. If P > P, body will move up the plane.

.". For equilibrium P must lie between F and P, .

1e) P] >P>P2

1.8 Equilibrium of a body on a rough inclined plane under any force.

Theorem: A body is at rest on a rough inclined plane of inclination & to the horizon, being

acted on by a force making an angle 6 with the plane; to find the limits between which the
force must lie and also to find the magnitude and direction of the least force required to

drag the body up the inclined plane.

Let a be the inclination of the plane, W be the weight of the body, P — be the force acting at an
angle @ with the inclined plane and R — be the normal reaction.

Case i: The body is just on the point of slipping down. Therefore the limiting friction (R acts
upwards.

Resolving the forces along and L 7 to the inclined plane,

PcosO+uR=Wsna .................... (1)
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PsmO+R=Wcosct ..............c........ (2)
S.R=Wcosa—Psm0

()= Pcos @+ u(W cosa— Psin ) =W sin
P(cos@— psin @) =W(sina — ucosa)

W(sin  — prcos )

L P= ‘
cos@ — pusin @

We have p=tanA

W (sin o —tan A.cos cx )

S P= :
cos@—tan A.sin @

(sin crcos A —cos ar.sin 1)
cosf.cos A —sm @.sm A
sin(a — 1)

cos(6+ 1)

sin (o — 4)
cos(0+A)

Let B =W.

Case ii: The body is just on the point of moving up the plane. Therefore IUR acts downwards.

Resolving the forces along and _L 7 to the plane.
PcosO—pR=W.sna ...................... 3)
PsnO@+R=W.cosa ........c.cccenen... 4)
R=Wcosa—Psn 6@

(3)= Pcos@— u(W cosa — Psin @)= W.sina
P(cos@+ usin @) =W (sin o+ cosar)

W (sin o + tan A.cos @)

sP= :
(cos @ + tan A.sin )

W(sin a.cos A +sin A.cos a)
(cos @cos A +sin @.sin l)

_W.sin(a+4)
- cos(6— 1)
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W .sin(or + 1)

Let P, =
o cos(6— 1)

To keep the body in equilibrium, /4 and P, are the limiting values of P.

Find the least force required to drag the body up the inclined plane
We have, P = W.M
cos (49 — /1)

P is least when cos(6— 4) is greatest.
i.e.) When cos(@ — i) =1
i.e.) When 6-41=0
i.e.) When =1

-, Least value of P =W .sin(a+ 1)

Hence the force required to move the body up the plane will be least when it is applied in a
direction making with the inclined plane an angle equal to the angle of friction.
i.e.) “The best angle of traction up a rough inclined plane is the angle of friction”
Problem 1

A particle of weight 30 kgs. resting on a rough horizontal plane is just on the point
motion when acted on by horizontal forces of 6kg wt. and 8kg. wt. at right angles to each other.
Find the coefficient of friction between the particle and the plane and the direction in which the
friction acts.

Solution:
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Let AB =8 and AC = 6 represent the directions of the forces, A being the particle.

The resultant force = \/82 +6% = 10kg. wt. and this acts along AD, making an angle
-1 4) .
cos g with the 8kg force.

Let F be the frictional force. As motion just begins, magnitude of F is equal to that of the
resultant force.

F=10.................. (1)
If R is the normal reaction on the particle,
R=30.....c.cocoiiiii 2)
If p is the coefficient of friction as the equilibrium is limiting, /' = uR
10 1

Problem 2
A body of weight 4 kgs. rests in limiting equilibrium on an inclined plane whose
inclination is 30°. Find the coefficient of friction and the normal reaction.

Solution:

w sin 30°

W cos 300

30°

yW=4kg

Since the body is in limiting equilibrium on the inclined plane, it tries to move in the

downward direction along the inclined plane.
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.". Frictional force (R acts in the upward direction along the inclined plane. Resolving

along and L 7 to the plane,

LR=Wsin30° ...cooovvovenn., (1)
= 4.%:2&
R=W.cos30° ..................... (2)
-4l _5
Ol
1 1
_:> —_——
@ "
tanl:%, A=30°
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UNIT - 11
PARALLEL FORCES

2.1 Parallel forces:

Forces acting along parallel lines are called parallel forces. There are two types of parallel
forces known as like and unlike parallel forces. Since the parallel forces do not meet at a point, in
this chapter we study methods to find the resultant of two like parallel and unlike parallel forces.
Parallel forces acting on a rigid body have a tendency to rotate it about a fixed point. Such
tendency is known as moment of the parallel forces. Here we study the theorem on moments of

forces about a point.

ocC

Definition:

Two parallel forces are said to be like if they act in the same direction, they
are said to be unlike if they act in opposite parallel directions.
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The resultant of two like parallel forces acting on a rigid body

Proof:
Let P and Q be two like parallel forces acting at A and B along the lines AD and BL.At A
and B, introduce two equal and opposite forces F along AG and BN. These two forces F balance

each other and will not affect the system.

Now, R is the resultant of P and F at A and Ry 1s the resultant of Q and F at B as in the
diagram.

Produce EA and MB to meet at O. At O, draw YOY! parallel to AB and draw OX
parallel to the direction of P.

Resolve Ry and R 5 at O into their original components. R at O is equal to F along oy!
and P along OX. R at O is equal to F along OY and Q along OX.

The two forces F, F at O cancel each other. The remaining two forces P and Q acting

along OX have the resultant P+Q (sum) along OX.
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Find the position of the resultant
Now, AB and OX meet at C.

Triangles, OAC and AED are similar.

. 0C_4C OC_AC
. = e =
AD ED P F

Triangles OCB and BLM are similar.

oc_CB  0OC_CB
BL IM QO F

FOC=0CB ... (2)
(1) &(2) = P.AC=Q.CB
o AC _ 0
CB P

ie) ‘C’ divides AB internally in the inverse ratio of the forces.

The resultant of two unlike and unequal parallel forces acting on a rigid body:

><—__|O
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Proof:

Let P and Q at A and B be two unequal unlike parallel forces acting along AD and BL.

Let P > Q.

At A and B introduce two equal and opposite forces F along AG and BN. These two balances

each other and will not affect the system.

Let Ry be the resultant of F and P at A and R be the resultant of F and Q at B. as in the

diagram.

Produce EA and MB to meet at O. At O, draw Y’ OY parallel to AB and draw OX parallel to the

direction of P.

Resolve R and R 5 at O into their components. Ry at O is equal to F along QY and P along

XO0. R at O is equal to F along OY and Q along OX.

The two forces F, F at O cancel each other. Now, the remaining forces are P and Q along the

same line but opposite directions.

Hence the resultant is P ~ Q (difference) along XO.

Find the position of the resultant
Now, AB and OX meet at C.
Triangles OCA and EGA are similar.

ocC C4 . OC CA

Triangles OCB and BLM are similar.
ocC CB oCc CB

=——-1, ie)

BL LM 0 F
L FOC=0Q.CB .. (2)

(Dand (2) = | pAC=Q.CB

ie) % :Q

CB P
ie) ‘C’ divides AB externally.

Note : The effect of two equal and unlike parallel forces can not be replaced by a single force.
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The condition of equilibrium of three coplanar parallel forces

P P+Q Q
A cl B
R

Let P, Q, R be the three coplanar parallel forces in equilibrium. Draw a line to meet the
forces P, Q, R at the points A, B, C respectively.
Equilibrium is not possible if all the three forces are in the same direction.
Let P + Q be the resultant of P and Q parallel to P. Hence R must be equal and opposite
toP+Q.
. R=P+Q (in magnitude, opposite in direction)
S P.AC=0Q.CB

P O P+O0 R

CB_ AC CB+AC _ 4B

Hence, = =

CB AC AB

ie) If three parallel forces are in equilibrium then each force is proportional to the distance

between the other two.

Note: The centre of two parallel forces is a fixed point through which their resultant
always passes.
Problem 1
Two men, one stronger than the other, have to remove a block of stone weighing 300 kgs.
with a light pole whose length is 6 metre. The weaker man cannot carry more than 100 kgs.

Where the stone be fastened to the pole, so as just to allow him his full share of weight?
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Solution:

v

100 300 200

Let A be the weaker man bearing 100 kgs., B the stronger man bearing 200 kgs. Let C be
the point on AB where the stone is fastened to the pole, such that AC = x. Then the weight of the
stone acting at C is the resultant of the parallel forces 100 and 200 at A and B respectively.

- 100.AC =200.BC

1.e. 100x =200 (6-x) = 1200 — 200x
- 300x = 1200 or x=4
Hence the stone must be fastened to the pole at the point distant 4 metres from the weaker
man.

Problem 2
Two like parallel forces P and Q act on a rigid body at A and B respectively.
2

a) If Q be changed to — , show that the line of action of the resultant is the same as it would

be if the forces were simply interchanged.
b) If P and Q be interchanged in position, show that the point of application of the resultant will

P—
be displayed along AB through a distance d, where d = 0 AB .

P+0O
Solution:
Pa AQ
I I
A C D B
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Let C — be the centre of the two forces.

ThenP. AC=Q.CB ............. (1)
2
(a) If Q is changed to —, (P remaining the same), let D be the new centre of parallel
forces.

P2
Then PAD=—DB ........ ... 2)

0
QAD=PDB................ 3)

Relation (3) shows that D is the centre of two like parallel forces, with Q at A and P at B.
(b) When the forces P and Q are interchanged in position, D is the new centre of parallel

forces.

LetCD=d
From (3), Q. (AC+CD) = P. (CB — CD)
ie.QAC+Q.d=P.CB-Pd
(Q+P).d=P.CB- Q.AC
=P (AB-AC) - Q (AB - CB)
= (P - Q).AB[-P.AC = Q.CB from (1)]

d = P_Q.AB
P+0O

Problem 3

The position of the resultant of two like parallel forces P and Q is unaltered, when the position of

P and Q are interchanged. Show that P and Q are of equal magnitude.

Solution:
p Q Q p
A A A A
| |
A C B A C B
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Let C be the centre of two like parallel forces P at A and Q at B.

LPAC=QCB ... (1)
When P and Q are interchanged, the centre C is not altered (given)
SLQAC=PCB ... 2)
1 P
W_r_o
2 0 P
. P*=0?
P=+ O
Problem 4

P and Q are like parallel forces. If Q is moved parallel to itself through a distance x, prove that

X
the resultant of P and Q moves through a distance Q .
P+0O
Solution:
A P A Q A Q
| | x
A iC D B B'

Let C be the centre of P and Q at A and B.
< PAC=0CB ........... ()

Let D be the new centre of P at A and Q at B’ such that BB’ = x

ie) P(AC+CD)=Q[DB+ BB'] = Q|(CB—CD)+x]
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(P + Q)CD =(0.x using (1)

wcp-
P+0Q

Problem 5

Two unlike parallel forces P and Q (P>Q) acting on a rigid body at A and B
respectively be interchanged in position, show that the point application of the resultant in AB

P+0 p

will be displayed along AB through a distance

Solution:

Let C be the centre of two unlike parallel forces P at A and Q at B.

" PAC=0QCB ...coccevivvo..... (1)
Let D be the new centre when P and Q are interchanged in position.
2 QAD=PDB .................. 2)

i.e.) Q(4C—CD)=P(DA+ AB)

i.e.) O[(CB—4B)-CD]=P|(AC—CD)+ 4B]
Q.CB—Q.AB—Q.CD = P.AC — P.CD + P.AB
(P— Q).CD = (P + Q)AB using (1)

_P+0
-0

~.CD AB
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Problem 6

A light rod is acted on by three parallel forces P, Q, and R, acting at three points distant
2, 8 and 6 ft. respectively from one end. If the rod is in equilibrium, show that P: Q: R = 1:2:3.

Solution

A P AQ

P, Q, R are parallel forces acting on the rod AD at B, D, C respectively.
Given, AB =2 ft, AD = 8ft, AC = 6ft.
.. BC =4ft, CD = 2ft, BD = 6ft.
For equilibrium of the rod, each force should be proportional to the distance between the other

two.

===—=P:Q:R=2:4:6

ppe
IN\-

R
6

S P:Q:R=1:2:3

2.2 Moment of a force (or) Turning effect of a force
Definition:
The moment of a force about a point is defined as the product of the force and the

perpendicular distance of the point from the line of action of the force.
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Moment of F about O =F x ON=F x p.
Note: Moment of F about O is zero if either F = O (or) ON = O.
i.e.) F =0 (or) AB passes through O.
Hence, moment of a force about any point is zero if either
the force itself is zero (or) the force passes through that point.

Physical significance of the moment of a force
It measures the tendency to rotate the body about the fixed point.

Geometrical Representation of a moment

0) 0)
> [ > ]
A F B N A F N B

Let AB represent the force F both in magnitude and direction and O be any given point.
.. the moment of the force F about O
=FxON=ABxON=2. A AOB
= Twice the area of the triangle AOB
Sign of the moment
If the force tends to turn the body in the anticlockwise direction, moment is positive.

If the force tends to turn the body in the clockwise direction, moment is negative.

Varignon’s Theorem of Moments

The algebraic sum of the moments of two forces about any point in their plane is

equal to the moment of their resultant about that point.
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Proof:
Case 1 Let the forces be parallel and O lies i) Outside AB
P+Q =R

A

I
I
(0] A c B

Let P and Q be the two parallel forces acting at A and B. P + Q be their resultant R acting at C.

such that
PAC=QCB ................ (D)
Algebraic sum of the moments of P and Q about O
=P.0OA + Q.0OB

=Px (OC-AC)+Qx (OC +CB)
= (P +Q).0C-P.AC +Q.CB
= (P+Q).0C using (1)
=R.OC
= moment of R about O.
ii) P and Q are parallel and O lies within AB
A C O B

P R=P+Q Q

Algebraic sum of the moments of P and Q about O
=P.OA-Q.0OB
=P. (OC+CA)-Q. (CB-CO)
=(P+Q).OC +P.CA-Q.CBby (1)
=R.0OC
= moment of R about O.
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Case II iii) P and Q meet at a point and O any point in their plane. O lies outside the angle
BAD

Through O, draw a line parallel to the direction of P, to meet the line of action of Q at D.
Complete the parallelogram ABCD such that AB, AD represent the magnitude of P and Q and
the diagonal AC represents the resultant R of P and Q.

Algebraic sum of the moments of P and Q about O
=2. A AOB+2.A AOD
=2 A ACB+2. AAOD[ .- AAOB = A ACB]
=2 AADC+2 AAOD
=2 (A ADC + A AOD)
=2. AAOC
= Moment of R about O.
iv) O lies inside the angle BAD
Algebraic sum of the moments of P and Q about O:
=2 AAOB-2 A AOD

=2 AACB-2 A AOD D 0 c
=2 AADC -2 A AOD Q R

=2 (A ADC — A AOD)

=2. A AOC A o 8

= moment of R about O.
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Problem 7
Two men carry a load of 224 kg. wt, which hangs from a light pole of length 8 m. each end of
which rests on a shoulder of one of the men. The point from which the load is hung is 2m. nearer
to one man than the other. What is the pressure on each shoulder?

Solution

Rl A A R2

224
AB is the light pole of length 8m. C is the point from which the load of 224 kgs. 1s hung.
Let AC =x. Then BC=8 —x. given (8 —x)—x =2
1.e) 8 —2x =2 0r 2x = 6.
. x=3.1e. AC=3and BC=5.

Let the pressures at A and B be R| and R, kg. wt. respectively. Since the pole is in

equilibrium, the algebraic sum of the moments of the three forces R, Ry and 224 kg. wt. about

any point must be equal to zero.
Taking moments about B,
224CB-R|.AB=0
i.e.224 x5— R x8=0.

_224%5 _ 140.

Rl

Taking moments about A,

R, .AB-224.AC =0.
ie 8R, —224 x3=0.

| 224x3

“R
27 g

84
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Problem 8
A uniform plank of length 2a and weight W is supported horizontally on two vertical

props at a distance b apart. The greatest weight that can be placed at the two ends in succession
without upsetting the plank are W and W, respectively. Show that

M W _b
wW+w, W+W, a

Solution

Let AB be the plank placed upon two vertical props at C and D. CD =b. The weight W of
the plank acts at G, the midpoint of AB,

AG=GB=a

When the weight W is placed at A, the contact with D i1s just broken and the upward reaction at

D is zero.
1 R
A C G D B
Wl WZ

There is upward reaction R at C.

Take moments about C, we have

W,.AC=W.CG
ie. W| (AG - CG)=W.CG
W.AG = (W +W).CG

ie. Wi.a =(W+W;) CG
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When the weight W, is attached at B, there is loose contact at C. The reaction at C becomes

zero. There 1s upward reaction R 5 about D.
Take moments about D, we get
W.GD =W, (GB-GD)

GD (W+W2):W2.GB: W2 .a

CG+GD=CD=b

L ha | Wha
w+w, W+Ww,

m_ W b
w+w, W+W, a

Problem 9
The resultant of three forces P, Q, R, acting along the sides BC, CA, AB of a triangle
ABC passes through the orthocentre. Show that the triangle must be obtuse angled.

If £Z4=120°, and B = C, show that Q+R =P V3.

Solution:
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Let AD, BE and CF be the altitudes of the triangle intersecting at O, the orthocentre.
As the resultant passes through O, moment of the resultant about O = O.
.. Sum of the moments of P, Q, R about O = O

P.OD+Q.OE+R.OF =0 ........... (1)
Inrt. ZdABOD, Z0OBD = ZEBC =90°—-C.
S tan(90°-C) = ob
BD
) OD
re)cotC= ——
BD
OD=BDcotC............. (2)

From rt. ZdAABD, cos B = @
AB

cosC

. From(2),0D = ccos B.cotC = ccos B.

sm C

c
= ——.cosBcosC
sin C

=2R'cos Bcos C(". =2R', R' is the circumradius of the A )

sm C
Similarly OE = 2R'cosCcos 4
and OF = 2R'cos AcosB

Hence (1) becomes
P2R'cos BcosC+Q.2R cosCcos A+ R2R cos Acos B=0

Dividing by 2R'cos Acos Bcos C,
P
- 0 - R__
cosd cosB cosC

Now, P, Q, R being magnitudes of the forces, are all positive.
(3) may hold good, if at least one of the terms must be negative.
Hence one of the cosines must be negative.

1.e) the triangle must be obtuse angled.

If A=120° and the other angles equal, then B =C = 3(0°

Hence (3) becomes
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P 0 R
- -
cos120° cos30° cos30°
P O+R

)

ie.P\3=0+R

=0

0

1.€.

2.3 Couples: Definition

Two equal and unlike parallel forces not acting at the same point are said to constitute a
couple.

Examples of a couple are the forces used in winding a clock or turning tap. Such forces acting
upon a rigid body can have only a rotator effect on the body and they can not produce a motion
of translation.

The moment of a couple is the product of either of the two forces of the couple and the
perpendicular distance between them,

The perpendicular distance (p) between the two equal forces P of a couple is called the
arm of the couple. A couple each of whose forces is P and whose arm is p is usually denoted by

(P, p).
A couple is positive when its moment is positive i.e., if the forces of the couple tend to

produce rotation in the anti-clockwise direction and a couple is negative when the forces tend to
produce rotation in the clockwise direction.
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UNIT-III
COUPLES

3.0 INTRODUCTION
In the last unit we have seen that the general method of finding the
resultant of two equal and unlike parallel forces fails i.e. the effects of two
equal and unlike parallel forces cannot be replaced by a single force. A
pair of such forces is called a couple.

3.1 OBJECTIVE
After going through this unit, you will be able to:

Understand what is meant by Couple.
Discuss the theorems on Equilibrium of two couples.
Describe couples in parallel planes.

3.2 COUPLES

Definition. Two equal and

unlike parallel forces not acting n
at the same point are said to

constitute a couple.

are the forces used in winding a
clock or turning a tap. Such
forces acting upon a rigid body can have only a rotatory effect on the body and
they cannot produce a motion of translation.

Examples of a couple ~ A* —— n—> o>

n Fig. 1

Let P, p be the magnitudes of the forces forming a couple and O any
point in their plane.

Draw OAB perpendicular to the forces to meet their lines of action in A
and B.
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The algebraic sum of the moments of the forces about O is
=P.0OB—P.0A
= P.(OB —0A) = P.AB

And this value is independent of the position of O.

Thus the algebraic sum of the moments of the two forces forming a
couple about any point in their plane is constant and is equal to the product of
either of the forces and the perpendicular distance between them. This
algebraic sum measures the total turning effect of the couple upon the body and
is called the moment of the couple.

Thus, the moment of a couple is the product of either of the two forces
of the couple and the perpendicular distance between them.

The perpendicular distance AB(= p) between the two equal forces P of
a couple is called the arm of the couple. A couple each of whose forces is P and
whose arm is p, as in fig. 1 is usually denoted by (P, p).

A couple is positive when its moment is positive i.e. if the forces of the
couple tend to produce rotation in the anticlockwise direction and a couple is
negative when the forces tend to produce rotation in the clockwise direction.

3.3  EQUILIBRIUM OF TWO COUPLES

Theorem.1. If two couples, whose moments are equal and opposite, act in the
same plane upon a rigid body, they balance one another.

Let (P,p) and (Q,q) be two given couples such that Pp = Qq in
magnitude but opposite in sign.

Case 1: Let the forces P and Q be parallel.

Draw a straight line perpendicular to the lines of action of the forces,
meeting them at A, B, C, D as in fig. 2.

Since the moments of the couples are equal, we have
P.AB =Q.CD ...(D)

The downward like parallel forces P at A and Q at D can be
compounded into a single force P + @Q acting at L such that

P.AL = Q.DL (2
(1)-(2) gives

P.(AB — AL) = Q.(CD — DL)
i.e. P.BL=Q.CL ..3)
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Result (3) shows that the resultant of the upward like parallel forces
P at B and Q at C will also pass
through L. The magnitude of this

|
|
+ p resultant is also (P + Q) but it is
* opposite in direction to the
Q | P+Q previous resultant. Thus the two
| resultants balance each other.
A , | D Hence the four forces forming the
C l L B couples are in equilibrium.
| a
p |
v Y
1 P+Q
|
o : Case 2: Let the forces P and Q
| intersect.
Fig. 2
Let the two forces P of the
couple (P,p) meet the two forces Q of D P
the couples (Q, q) at the points A, B, C, N
D. Clearly ABCD is a parallelogram. Q
Let AB represented P on some
scale. R
As the moments of the two A / . P B
couples are equal, we have Fig. 3
P.p=0Q.q oD

Also AB.p = AD. q (each being equal to the area of the || gm. ABCD)...... (2)
(1) + (2) gives

P_2Q

B0 .....3)
(3) shows that the side AD will represent Q on the same scale in which the
side AB represents P.

The two forces P and Q meeting at A can be compounded by llgm.
Law so that

(P+Q)atA=AB +AD = AC
Similarly (P + Q) at C = CD + CB = CA.
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The two resultants AC and CA being equal and opposite cancel each
other.

Hence the four forces forming the couples are in equilibrium.

3.4 EQUIVALENCE OF TWO COUPLES

Theorem 2. Two couples in the same plane whose moments are equal and of
the same sign are equivalent to one another.

Let (P,p) and (Q,q) be two couples in one plane having the same
equal moments in magnitude and direction. Let (R, 7) be a third couple, in the
same plane, whose moment is equal to the moment of either (P,p) or (Q,q)
only in magnitude but opposite in direction. By the previous theorem, the
couple (R,r) will balance the couple (P,p). It will also balance the couple
(Q, q). Hence the effects of the couples (P,p) and (Q, q) must be the same. In
other words, they are equivalent.

This is a fundamental theorem on coplanar couples. Form this, it
follows that a couple in a plane can be replaced by any other couple in the same
plane, provided that the moment of the latter replacing couple is equal in
magnitude and direction to the moment of the first couple. The only important
criterion is that the moment of the new couple must be equal to that of the first
couple in magnitude and sense.

Thus a couple (P,p) may be replaced by a couple (F , P?p) in the same

plane with its constituent forces each equal to F and the arm length begin equal
to P?p_ The moment of the couple is = F P?p = B, moment of the first couple.
Also one force F may be taken to be acting in any line and direction, the other
at the distance P?p begin on that side so as to make the sign of the moment same
as that of (P, p).

Similarly, the couple (P, p) may be replaced by a couple (PTP, x) with a
given arm x anywhere in the plane.

3.5 COUPLES IN PARALLEL PLANES

The effect of a couple upon a rigid body is not altered if it is transferred
to a parallel plane provided its moment remains unchanged in magnitude and
direction.

Consider a couple of forces P at the ends of arm AB in given plane. Let
AL and BM be the line of action of the forces.

In any parallel plane, take a straight line CD equal and parallel toAB.

Then ABCD will be a parallelogram. The diagonals AD and BC will
bisect each other, say at O.
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At O, introduce two equal and opposite forces of magnitude 2P along
EF, parallel to the forces P at A and B. By this, the effect of the given couple is
not altered.

Now the unlike parallel
forces P along AL and 2P along OE
can be compounded into a single

o0 1
2P .
R This resultant force P acts along

. . AD _ 2
force P acting at D, since — = - = +p
B
. . AN /
DN in the second plane. Similarly, N F PR
/
M

the unlike parallel forces P along N
BM and 2P along OF can be N /
compounded into a single force P <_ 7/
acting at C along CK. We are N
therefore left with a couple of /
forces P at the ends of the arm CD / N
in a plane parallel to that of the K/ N

T// E

/

original couple. p

Thus the given couple with '

the arm AB is equivalent to another + P
couple of the same moment in a N
parallel plane, having its arm CD
equal and parallel to AB. Now this
couple with arm CD can be Fig. 4

replaced in its own plane by

another couple, provided the

moment is unchanged in magnitude and direction as in 6.3. Hence we
conclude that a couple in any plane can be replaced by another couple acting
in a parallel plane, provided that the moments of the two couples are the same
in magnitude and sign.

3.6 REPRESENTATION OF A COUPLE BY A VECTOR

From 6.3 and 6.4, it is clear that a couple is not localized in any
particular plane, for it may be replaced by another couple of the same
moment in the same plane or in any parallel plane. Thus the effect of a
couple remains unaltered so long as its moment remains the same in
magnitude and sense, whatever be the magnitude of its constituent forces,
the length of its arm and its position in any one of a set of parallel planes in
which it may be supposed to act.

A couple is therefore completely specified if we know (1) the direction
of the set of parallel plane (ii) the magnitude of its moment (iii) the sense
in which it acts. These three aspects of a couple can be conveniently
represented by a straight line drawn (i) perpendicular to the set of parallel
planes to indicate the direction (ii) of a measured length, to indicate the
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moment of the couple and (iii) in a definite direction, to indicate the sense
of the moment.

3.7 RESULTANT OF A COUPLE AND A PLANE
Theorem 3. The resultant of any number of couples in the same plane on a
rigid body is a single couple whose moment is equal to the algebraic sum
of the moment s of the several couples.

Let (Py,p1), (P2, p2), (P3,p3) etc. be a number of couples acting in the
same plane upon a body. Let AB represent the arm p; of the first couple
(P4, p1) whose component forces P; act along AC and BD.

The moment of the second couple (P, p,) = P,p,. This couple can be replaced
by an equivalent couple, having its arm along AB and having its forces AC and
BD.

If F is the forces of such a replacing couple,

We have F.p; = P,.p,.

)2
oo F = _ZPZ
p1

Fig. 5

Thus the couple P,p, is replaced by another couple whose arm coincides with

AB and whose component forces along AC and BD are magnitude Pzﬂ.
1
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Similarly the couple (P3,p3) is replaced by another couple (%, pl) with the

forces 2223 along AC and BD. This process is repeated for the other couples.

P1

Finally, we get a single couple with the arm AB, each of whose component
forces

P, P:
=P1 +2_PZ+3_P3+
P1 p1

The moment of this resultant couple

P P
2D2 n 3P3

P1 P1

=(P1+ +....>Xp1

= Plpl +P2p2 +P3p3+

= the algebraic sum of the moments of the several couples.

Note. (1) If all the component couples have not the same sign, we have merely
to give each its proper sign and the same proof will apply.

(i1) If all the couples do not lie in the same plane but in different parallel
planes, they can all be transferred into equivalent couples in one plane parallel
to the given planes and then their resultant can be found.

Theorem 4. A couple and a signal force acting on a body cannot be in
equilibrium but they are equivalent to the single force acting at some other
point parallel to its original direction.

Let the given couple be (P,p) and the given force be F lying in the same
plane. Let F act along AC.

Replace the couple (P, p) by another couple whose each force is equal to F. If
x be the length of the arm of this new couple, its moment = F.x = Pp.

_Pp

SX F

Place this couple such that one of its component forces F acts at A along the
line of action of the given force F but in the opposite direction i.e. it acts along
AD. The original force F along AC and the force F along AD balance. We are
left with a force F acting at B parallel to AC, as the statical equivalent of the
system.

Pp

Also AB =x =—

F
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Hence the couple (P,p) and the force F are equivalent to an equal force F,

Fig. 6

) .. o . P ) .. ) )
parallel to its original direction, at a distance Tp from its original line of action.
Theorem. 5. A force acting at any point A of a body is equivalent to an equal

and parallel force acting at any other arbitrary point B of the body, together
with a couple.

A

Let P be a force acting at A along AC and B any arbitrary point. Let p be the

distance of B from AC.

At B, apply two equal and opposite forces each equal and parallel to P along BL.
and BM. These two new forces being equal and opposite, will have no effect on the
body. Of the three forces P along BM and P along AC from a couple and the
remaining is the force P acting at B, parallel to the original force. Thus the statical
equivalent of the original force P at A is an equal and parallel force P at B, together
with a couple whose moment is Pp, where p is the perpendicular distance of B

from AC.

Note. The moment of the couple is equal to the moment of the original force at
A about B.

Theorem 6. If there forces acting on a rigid body be represented in magnitude,
direction and line of action by the sides of a triangle taken in order, they are
equivalent to a couple whose moment is twice the area of the triangle.

Let P, Q, R be three forces acting on a rigid body and represented in
magnitude, direction and line of action by the sides BC, CA, AB of the triangle
ABC taken in order. Through A draw LAM parallel to BC. At A, along AL and
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AM introduce two equal and opposite forces, each equal to P. These two new
forces, being equal and opposite, have no effect on the body.

Now the three forces P along AM, Q along CA, and R along AB act at the
point A and they are completely represented by the sides of the AABC taken in
order. Hence, by the triangle of forces, they are in equilibrium. We are left with
a force P along AL and a force P along BC. These being two equal and
opposite force form a couple whose moment

B P D C
Fig. 8

= P.AD = BC.AD = 2AABC.

Theorem 7. If any number of forces acting on a rigid body be represented
in magnitude, direction and line of action by the sides of a polygon taken
in order, they are equivalent to a couple whose moment is twice the area of
the polygon.

Let the forces be represented completely by the sides AB, BC, CD, DE, EF
and FA of the closed polygon ABCDEF. Join AC, AD and AE.
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Fig. 9

Introduce along AC, AD and AE,
pairs of equal and opposite forces represented completely by these lines. These
new forces do not affect the resultant of the system.

Applying the theorem 6, we have

AB + BC + CA = a couple whose moment is equal to 2AABC.
AC + CD + DA = a couple whose moment is equal to 2AACD.
AD + DE + EA = a couple whose moment is equal to 2AADE.
AE + EF + FA = a couple whose moment is equal to 2AAEF.
Adding vectorically,

AB + BC + CD + DE + EF + FA = resultant of the four couples

= a single couple whose moment is equal to 2(AABC + AACD + AADE +
AAEF)i.e. The resultant is a couple whose moment is equal to twice the area
of the polygon ABCDEF.

Example 8. ABC is an equilateral triangle of side a: D. E. F divide the sides BC,
CA, AB respectively in the ratio 2:1. Three forces each equal to P act at D, E, F
perpendicularly to the sides and outward from the triangle. Prove that they are

. 1
equivalent to a couple of moment 2 Pa.
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Fig. 10 P

Let O be the circumcentre (also the orthocentre) of the equilateral A and
A',B’,C’ the middle points of the sides. 04’ is L to BC.

Applying theorem 5 , the force P acting at D 1 to BC is equivalent to a parallel
force P acting at O along OA together with a couple whose moment

) a a Pa
=P.AD=P.(AC—DC)=P.(§—§)—?

Similarly, the force P acting at E L to CA is replace by a parallel force P acting
at O along OB’ together with a couple whose moment = P?a.

The force P acting at F L to AB is replaced by a parallel force P acting at O
along OC ’ together with a couple whose moment = %a.

The three equal forces P acting O L to the sides of the triangle are in
equilibrium by the perpendicular by the perpendicular triangle of forces.

The three couples having the same moment P?a each in the same direction are
. . Pa Pa

equivalent to a single couple whose moment = 3 X — =5

Example 9. Five equal forces ac along the sides AB, BC, CD, DE, EF of a

regular hexagon. Find the sum of the moments of these forces about a point Q

of AF at a distance x from A. Interpret the result and explain why it is so.

Let a be the length of each side of the regular hexagon. Each interior angle of
the regular hexagon = 120°.

We know that AB||DE, BD||EF and DC||AF,FB L BC,AE and DB are L to
AB.
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Let equal force P act along the sides AB, BC, CD, DF and EF. Q is point on AF
such that AQ = x.

Form Q, draw QL L to EA and QM 1 to BF.
Let AN be 1L to BF.
FB=FN+ NB =acos30°+ acos30°+ 2a cos 30°
AC = AE = BF = 2acos 30°
Moment of P along AB about Q

= P.AL = P.x cos30° (from rt. £d AAQL)

=px? (D)

Moment of P along BC about Q
=P.MB =P.(FB—FM)

= P[2acos 30° — (a — x) cos 30°]
= P[2a — a + x] cos 30°
=Pla+x)% )
Moment of P along CD about Q

=P. AC (v AFIICD and AC is 1 to CD)

= P.2acos30° = P.2a%> = Pav/3 3

Moment of P along DE about Q

= P.EL = P(AE — AL)

= P(2a cos 30° — x cos 30°)
=P2a-x)2 (@)
Moment of P along EF about Q= P. MF

= P(a — x) cos 30°
=p(a_x)§ (5)

Adding up, the sum of the moments of the five forces about Q
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= Px\/2—§+ P(a+x)\/2—§ + Pav3 +P(2a—x)§+P(a—x)%

V3
=P7(x+a+x+2a—x+a—x)

=P % 6a = 3Pa+\/3 = a constant, independent of x.

The sum of the moments of the five forces about any point on the sixth side AF is
constant.

Introduce two equal and opposite forces, each equal to P along the sixth side.
These new forces do not affect the resultant of the system. We have now seven
forces. The moment of the new force P introduced along AF about Q is =0.

The other six forces act along the sides of the hexagon and are represented in
magnitude, direction and line of action by the sides of the hexagon.

Hence by theorem 6.6, they are equivalent to a couple whose moment is = 2 X

area of the hexagon= 2 X 6 X a? %
= 3a%/3 = 3aV3P (as P is represented in magnitude by a).

3.8 ProblemsInvolving Frictional Forces
Problem 1

A uniform ladder is in equilibrium with one end resting on the ground and the
other against a vertical wall; if the ground and wall be both rough, the coefficients of friction

being 4 and g’ respectively, and if the ladder be on the point of slipping at both ends, show

— AR 1=t .,
that €, the inclination of the ladder to the horizon is given by tanf = HA . Find also the
2u
reactions at the wall and ground.
Solution:
u's
r
B 5
G R
g
K HR E A
v
W
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AB 1s the uniform ladder, whose weight W 1s acting at G such that AG = GB.
Forces acting are,

1. Weight W
2. Normal reaction R at A

3. Normal reaction S at B

4. uR

5. u'S

When the ladder is on the point of slipping at both ends, frictional forces /'S, (/R act along
CB, AC respectively.

Since the ladder is in equilibrium resultant is zero.
.". Resolving horizontally and vertically,

S=uR ... (1)

R+uS=wW ... ()

SR+ (uR)=W

RU+pml)=w= | o_ W 4
1+ ppt! R 777

By Varigon’s theorem on moments, taking moments about A
S.BC + 'S AC=W.AE

S.ABsn 0 + p'S.ABcos@ =W.AG.cos O

S.sin @+ p'S.cos @ = W%.COSH [ AG = %}

~.S.sin @ :[%—y'S}cosH

.'.tanHzK—y' = w 1:1+,u,u_ '
28 W — U 2

2| A
1+ pp

o 2 — '

- 2 tant9=1 HA

H 7

Problem 2

In the previous problem, when g =z show that @ =90° —2A, where A is the angle
of friction.
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Solution:
1— !

In the previous problem, we have proved tané = >
Y7,

Put 1= ', we get
2 tan2
l—lu :1 tan 2’,[.#:tanﬁ,]
2u 2tan A

tan @ =

=cot21 = tan(90° - 24)

- tan2A4

ie) tan@=tan(90°—-21) .. | 6=90°-24

Problem 3

A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal

plane and its upper end against an equally rough vertical wall. If 0 be the inclination of the

ladder to the vertical, prove that tan & = 2—'”2 where 4 is the coefficient of friction.

1—pu
Solution:
!
s S/,‘L
r‘v’ \‘
PA \
B| &4 LR
2 MR
{
\
\
G \ AR
)
\
C IR A
W vy

When the ladder AB is in limiting equilibrium, five forces are acting as marked in the figure.
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1) Weight of the ladder W
2) Normal reaction R at A
3) Normal reaction S at B

4) Frictional force 1R
5) frictional force 4§
Let R',S" be the resultant reactions of R, R and S, uS' respectively.

.". We have 3 forces R',S',W . For equilibrium, they must be concurrent at L.
/AN N
In ALAB,LGA=180°-60;ALG=A

N
BLG=90-1,AG:GB=1:1
.". By trigonometrical theorem in A LBA,
(1+1) cot(180°—8)=1.cot(90° — A)—1.cot A

2
—2.cot@=tan A —cotd :tan—/l—l
tan A
2
cot@zl tan~ A
2tan A
T Py
ie _—H S.tan@ = 24
tand  2u 1—,u2
Problem 4

A uniform ladder rests with its lower end on a rough horizontal ground its upper end

against a rough vertical wall, the ground and the wall being equally rough and the angle of

friction being A. Show that the greatest inclination of the ladder to the vertical is 2 1 .

Solution

: 2
In the previous problem, we have proved, tand = # 3 But #=tanA
1—p

tanﬁzﬂztanyu = | -9

1—tan? A

=24
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Problem 5

A ladder which stands on a horizontal ground, leaning against a vertical wall, is so loaded

that its C. G. 1s at a distance a and b from its lower and upper ends respectively. Show that if the

!

ladder is in limiting equilibrium, its inclination @ to the horizontal is given by tan@ = M

(a+b)u

where w1, 4" are the coefficients of friction between the ladder and the ground and the wall
respectively.

Solution:
As in problem 5, five forces are acting on the ladder
Here, AG: GB=a:b
.. By Trigonometrical theorem in ALBA,
(b +a).cot(90 + @)= b.cot(90 — 1')— a.cot 1

1e.) (a + b)(— tané?) =b.tan A —a.cotd

(1)
H _a-bu'

s.tan@ =
a+b (a+b)u

Problem 6

A ladder AB rests with A on a rough horizontal ground and B against an equally rough
vertical wall. The centre of gravity of the ladder divides AB in the ratio a: b. If the ladder is on
the point of slipping, show that the inclination € of the ladder to the ground is given by

a—b,u2

tanf = where 4 is the coefficient of friction.

Solution:

In the previous problem,

Put ¢ =4 in tané’:w a—bu

(a+b),u .‘.tan@zm
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Problem 7

A ladder AB rests with A resting on the ground and B against a vertical wall, the
coefficients of friction of the ground and the wall being u and ' respectively. The centre of
gravity G of the ladder divides AB in the ratio 1: n. If the ladder is on the point of slipping at
both ends, show that its inclination to the ground is given by tan @ = l—n—,u,u'
(n+1)u
Solution:

Puta:b=1:nin problem?7.

S.tand = L=t
(1+n)u

Problem 8

A ladder of length 2/ is in contact with a vertical wall and a horizontal floor, the angle of

friction being A at each contact. If the weight of the ladder acts at a point distant k/ below the

middle point, prove that its limiting inclination @ to the vertical is given by

cotd =cot2A—kcosec2A.

Solution:

Forces are acting as marked in the figure. For equilibrium, the three forces R',S’,W

must be concurrent at L, where W — be the weight of the ladder.
In ALAB,BC=CA=1;CG =kl.
LBG=BC+CG=Il+ki=(1+k)!
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N N
BLG=90°-4,LGA=180°-0

ALG = 25GA = CA-CG =1—ki=(1-k).
BG:GA=(1+k):(1-k)
.". By Trigonometrical theorem in ~ ALBA,
[(1+k)+(1—k)].cot(180° — 8) = (1+ k ).cot(90° — 1) — (1 - k ).cot A.
2(~cot@)=(1+k)tanA—(1—k).cotA
~.2cot@=(1—k)cotA—(1+k)tan 1

(1—k)cot®> A—(1+k)

cot A

(cot2 A— 1)— k(cot2 A+ 1)
cot A

cotl (cot2 A —l)— k.cosec?A
2.cotA

l—tanz/l k{1+cotzﬁ,]

2cotA.tan A 2.cotA
_ 1 i 1+tan? A
(Wj 2.tan% A.cotd
1 —tan? A
1 1

B tan24 - sin 21
1e) cotd =cot21 —k.cosec2A
Problem 9
A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal
plane and with the upper end against a smooth vertical wall. If 6 be the inclination of the ladder

to the vertical, prove that, tan@ =2, where u is the coefficient of friction.
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Solution:

Since the wall is smooth, there is no frictional force. Forces acting on the ladder are 1) its weight

W, i) Frictional force (R )R at A 1v) S at B. For equilibrium, the three forces

W.,R',S mustbe concurrent at L. where R1 is the resultant of R and pR . In triangle LAB,

LGA 21800—9,/12(;:/1,B/I\JG:90°;BG: GA :l:I.AgCZQ
By Trigonometrical theorem in ALAB,
(1+1)cot(180° — ) =1.cot90° —1.cot A

—2.cotf@d=0—-cot A

2 1
"tan@ tanA

stan@d =2tand 1.e) tand =2u

Problem 10

A particle is placed on the outside of a rough sphere whose coefficient of friction is 4.

Show that it will be on the point of motion when the radius from it to the centre makes an angle

tan~! 4 with the vertical.
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Solution:

Let O be the centre, A the highest point of the sphere and B the position of the particle
which is just on the point of motion. Let LAOB =6

The forces acting at B are:
1) the normal reaction R
2) limiting friction R
3) Its weight W,
Since the particle at B is in limiting equilibrium,
Resolving along the normal OB,

R=Wcos@ ..................... (1)
Resolving along the tangent at B,
HR=Wsn@ .................... )

@:,u:tane =

1)

0=tan"! 7,

3.9 Equilibrium of three forces acting on a Rigid Body.

In the previous sections we have studied theorems and problems involving parallel forces
and forces acting at a point. Here we study three important theorems and solved problems on
forces acting on a ngid body and their conditions of equilibrium.

Theorem

If three forces acting on a rigid body are in equilibrium, they must he coplanar.

Proof:
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Let the three forces be P,Q,R
Given : They are acting on a rigid body and in equilibrium.
Take ‘A’ on the force P, and B on the force Q such that AB is not parallel to R.

.. Sum of the moments of P, Q, R about AB=0[.". P,Q, R are in equilibrium]
Now, moment of P and Q about AB =0 [". P and Q intersect AB].
.. Moment of R about AB = 0, Hence R must intersect AB at a point C

Similarly if D is another point on Q such that AD is not parallel to R, we prove, R must
intersect AD at a point E.

Since BC and DE intersect at A, BD, CE, A lie on the same plane. i.e) ‘A’ lies on the
plane formed by Q and R. Since A is an arbitrary point on the force P, every point on the force P
lie on the same plane.

ie) P, Q, R lie on the same plane.

Three Coplanar Forces — theorem
If three coplanar forces acting on a rigid body keep it in equilibrium, they must be either
concurrent or all parallel.
Proof:
Let P, Q, R be the three forces acting on a rigid body keep it in equilibrium.
.. One force must be equal and opposite to the resultant of the other two.
.". they must be parallel or intersect.
Case 1: If P and Q are parallel (like or unlike)
Then the resultant of P and Q is also parallel. Hence R must be parallel to P and Q.
Case 2: If P and Q are not parallel: (intersect)
They meet at O. Therefore, by parallelogram law, the third force R must pass through O.
1.¢) the three forces are concurrent.
Note: A couple and a single force can not be in equilibrium
Conditions of equilibrium
1. If three forces acting at a point are in equilibrium, then each force is proportional to the
sine of the angle between the other two.
2. If three forces in equilibrium are parallel, then each force is proportional to the distance

between the other two
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Two Trigonometrical theorems

BD m
If D is any point on BC of a triangle ABC such that D—Cz— and ZADC =86,
n

4/BAD = a,/DAC = f then

1) (m+n)cotd = m.cotar —n.cot 8 2) (m+n)cot@ = n.cot B—m.cotC.
Proof:
A
) 0
B m D n C

m _BD BD DA

1. Given, — = = .
n DC DA DC
Using, sine formula in A ABD, A ADC,
m _sm ZBAD y sim ZACD

n  sin ZABD  sin ZDAC

m_ sina Xsin(6?+,8)
n_sin(H—a) sin 3

sin & (sin 6.cos 3 +cos 6.sin ,B)

X
sm [ (sin @ cosa —cos f.sm a)
Divide by sm a.sin @.smn [

m _ cot B +cotf

n cota—cot@

m(cot a —cot 49) = n(cot [ +cot 49)

(m + n)cot 0 =m.cotax —n.cot f
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m_BD DA
n

sin ZBAD 8 sm LZACD
sm ZABD sm /ZDAC

sin(@-B)sinC  sinC.sin(6- B)

sin B.sin[180°—(@+C)]  sin B.sin(@+C)

sin C x (sin 6.cos B —cos @sin B)

sin B(sin Ccos@+cosCsin 9)
Divide by sin B sin C sin &
m _ cot B—cot o

n  cot@+cotC
-.m(cot @+ cot C)=n(cot B—cot )

s.(m+n)cotd =ncotB—mcotC

Problem 1

A uniform rod, of length a, hangs against a smooth vertical wall being supported by
means of a string, of length /, tied to one end of the rod, the other end of the string being attached
to a point in the wall: show that the rod can rest inclined to the wall at an angle @ given by

2 2
[ —a
cos? 0= 5
3a
What are the limits of the ratio of a: / in order that equilibrium may be possible?
Solution:
C
T
L
A AN >R
90°
NY
GV
w
I
D B
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AB is the rod of length a, with G its centre of gravity and BC is the string of length /.
The forces acting on the rod are:

(1). Its weight W acting vertically downwards through G.
(11). The reaction R at A which is normal to the wall and therefore horizontal.
111) The tension T of the string along BC.
These three forces in equilibrium not being all parallel, must meet in a point L.
Let the string make an angle & with the vertical.
.. ZACB =a = ZGLB.
ZLGB =180°-0 andZALG =90°, AG:GB=1:1,
Using the trigonometrical theorem in A ALB
(1+1)cot(180°—0) =1.cot90° —1.cota
1.e) —2cotf = —cota

2cot@=cotaxr ..........ou...... (1)
Draw BD L to CA.
From rt. Z/dACDB,BD = BC.sma =[.sma

rt. ZdAABD,BD = ABsmn @ =asin 6

slsna=asné .......... (2)

Eliminate & between (1) and (2).

We know that cos ec’@ =1+cot> @ .ooovvvveveeeeeiii, 3)

asin @

(2) =@>sin a =

Substitute (4) and (1) in (3)
12

5 =1+4cot29
a“sin“ @
2.
i.e. —2=sm29+400529:1+3c0529
a
2 2 2
/% —
.'.3c0s2¢9=—2—1= za
a a
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Equilibrium position is possible, if 0052 @ positive and less than 1

12 —a?>0ie 12>aora* <1 oo (6)
2 2

Also <lie. I? —a? <3d%0r 1* < 44>

L ca?<l?
4

1 az 1 a
By (6) & (7 —<—<l==<=x1.
[By©&M] y<y<l=g<]

Problem 2

A beam of weight W hinged at one end is supported at the other end by a string so that

the beam and the string are in a vertical plane and make the same angle @ with the horizon.

. .. W
Show that the reaction at the hinge is T 8+ cosec’d

Solution:
0 Let AB be the beam of weight W and G its centre of
N L gravity.
BC is the string
90°¢
The force acting on the beam are:
a
T 1) Its wt. W acting vertically
B
down wards at G
R 30-6 11) the tension T along BC
111) the reaction R at the hinge A.
G
A 90°
v
w
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For equilibrium (1) , (i1) and (ii1) must meet at L.

BC and AB make the same angle @ with the horizon.
.. They make 90° — @ with the vertical LG,

Le. ZBLG=90°-60=ZLGB

Let ZALG =«

Using trigonometrical theorem in A ALB, AG:GB = 1:1
(1+1)cot(90° - 8) =1.cota —1.cot(90° - 6)

l.e.2 tan@ =cota —tan @

Jtanf=cotaxr ................... (1)

Applying Lami’s theorem at L,

R /4
sin(90° @)  sin(90°— 6 +a)

R _ w __w
cosd sin(90°—49—a) cos(6—a)

1.€.

CR- Wcos@ Wcos@
N cos(@—a) cos@cosa +sin Osin a

_ W cos@
sina(cosfcota +sinf)

W cos®
= By (1
sin a(cos 6.3tan @ + sin ) [By (]

WcosOcoseca W cotf w 2

= - - = .coseca =—cotOVl+cot” o
3sm & +sm 4 4

:%.cotﬁ 1+9tan’ 6

= %\/cot29+ =%\/cot29+1+8
= %\/00860294-8
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Problem 3

A solid cone of height h and semi-vertical angle ¢ is placed with its base flatly against a

smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall.

Show that the greatest possible length of the string is 4 /1 + % tan’ a .

(The centre of gravity of a solid cone lies on its axis and divides it in the ratio 3 : 1 from the
vertex.)

Solution: O

N
L

=
Wall

Let A be the vertex, & height AD = h.

A
Semi-vertical angle D AC =« .

G divides AD in the ratio 3: 1
Length AQ' is greatest, when the cone is just in the point of turning about C.
At that time, normal reaction R must be perpendicular to the wall.
Since, the cone is in equilibrium, the three forces T, W, R must be concurrent at O.

AAOG&AAO'D are similar.

. AO" _AD  h _ﬂ , 4 )
0 - AG (3}[) 3 - AO ZEAO .....................
4
Now, OG = CD.
From AACD,tana:C—D:C—D S.CD=htanca
AD h
S.OG=htana
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From AAOG, AO* = AG? + GO?
3 2
= (Zh) + (h.tanoz)2

2
9h +h*tan’a

_ 9h* +16h° tan’
16

AOZ=} ( +tan2aj

.'.AO:h‘/—+tan a
(1):>A0’_—><h>< /—+tan o
h‘/1+—tan o

A heavy uniform rod of length 2a lies over a smooth peg with one end resting on a smooth

Problem 4

vertical wall. If ¢ is the distance of the peg from the wall and & the inclination of the rod to the

wall, show that ¢ =a sin 39

Solution:
R,
O -
A o, "R,
0
° 4
D
G
W B

76 /115


Antony
Textbox
4


Forces acting on the rod AB are
1) Weight W at G (»L)

i) Reaction R| at A ( L to the wall)

111) Reaction R 5 at the peg P ( L to the rod)

For equilibrium, W, R{,R » must be concurrent at O.

From rightangled triangle ADP

(DP =¢)
. C
O=—— . 1
sm P (1)
From AAOP,sn 0 = AL )
From AOGA,sm 60 = O 3)

(x2)x(B3)=sin3g=S AL, 04 _ ¢ _¢
AP AO AG AG

a

c=asin> 6

Problem 5
A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined

at 60° to the horizontal. If the pressure on this plane is one-half of the weight of the sphere,

prove that the inclination of the other plane to the horizontal is 30°
Solution:
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Let the sphere centre C rest on the inclined planes AM and BN. MA makes 60° with the
horizontal and let NB make an angle & with the horizon.

The forces acting are
1) Reaction R 4 at A perpendicular to the inclined plane AM and to the sphere and
hence passing through C.
11) Reaction R g at B which is normal to the inclined plane BN and to the sphere and
hence passing through C.
111) W, the weight of the sphere acting vertically downwards at C along CL.
Clearly the above three forces meet at C.
Also ZACL =60°and £ZBCL=«
Applying Lami’s theorem,

Ry _ w
sinae sin (60 +a)

Wsin o
Ry=—F—— i, 1
4 sin(60° + o) )

From (1) and (2), we have
Wsin w

sin(60°+a) 2

i.e. 2 sin o =sin(60°+a)=sin 60°cosa +cos60°sin

) ) 3 1 . ) )
i.e. 2 sin a=7cosa+§sma or 4sma:\/§cosa+sma

sin & \/g 1

1.e. 3 sin (l:\/g(ZOSOl or -
cosa 3 3

. 1
ie.tan @ = — or a =30°

V3
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Problem 6

A uniform solid hemisphere of weight W rests with its curved surface on a smooth
horizontal plane. A weight w is suspended from a point on the rim of the hemisphere. If the plane

C e . w
base of the rim is inclined to the horizontal at an angle @, prove that tan = ﬁ

Solution:

Rc

Draw GL perpendicular to OC and BD perpendicular to OC. Base AB is inclined at an angle
0 with the horizontal BD. Forces acting are 1) Reaction R . 11) Weight W at G 111) Weight w

at B.
Since these three forces are parallel, and in equilibrium each force is proportional to the distance

between the other two.

S ww

Now, AOBD = BD = OB cosf =rcosf

r
Here, OG = g, r —radius

GL = OG. sin ¢9=3—8rsinl9

B P

rcosd (?gsm 9)

. tan @ = 8—W
w
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UNIT -1V
CENTER OF MASS

4.1 Center of Gravity

Earth attracts every body by a constant gravitational force (weight of the body). As a body
is composed of many particles so each particle is affected by gravity, hence a large number
of forces are acting on the entire body. The point at which the resultant of these forces acts
is called center of gravity of the body. It can be defined as an imaginary point in a body of
matter where the total weight of the body may be thought to be located.

4.2 Center of Mass

For every system of mass m, there is a unique location in space, where all the mass can be
assumed to be located. This place is called the center of mass, and is defined as point with
respect to which the linear moment of mass m is zero. It is commonly designated by c.m
or C.

Note: Center of mass is independent of gravitational field while center of gravity is affected
by gravitational field.

When the gravitational field is uniform, the center of mass is also its center of gravity but
if the body is lying in varying gravitational fields, the center of gravity will be shifted from
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center of mass towards stronger gravitational field. For example if a stronger gravitational
field is found towards right and a weaker gravitational field is found towards left of a body,
the center of mass is unmoved but the center of gravity will be shifted towards stronger
gravitational field.

Here we will consider only earth’s gravitational field that is uniform, hence the center of
mass will be the center of gravity of the body.

1. Center of Mass of a System of Two Particles

Consider a regular trihedral system and two particle of mass m; and mao, situated at point
P, and P, whose position vectors relative to origin O are 71 and 7. At center of mass, the
linear moment of mass is zero. Mathematically

miT, +mery = 0 ( 4.1)

2. Center of Mass of a Set of n Particles

Consider a regular trihedral system and a set of n particles of masses m1, mo, ..., my, situated
at point Py, P, ..., P,, whose position vectors relative to origin O are 7,753, ..., 7. At center
of mass, the sum of linear moments of all masses is zero. Mathematically

zn:mf' =0 ( 42)
=1

Theorem 4.1. FEvery set of particles has one and only center of mass.

Proof Consider a regular trihedral system and a system of n particles of masses
mi, Mo, ..., My, situated at point Pi, P, ..., P,, whose position vectors relative to origin
O are 71, 7a, ..., T. Suppose C' is a center of mass of the system and 7" be its position vector
relative to O. Then the position vector of P; relative to C is 7; — 7. Then by definition, at
C the sum of moments of all masses is zero.

n
Sl = o
i=1

n n
=1 =1

or we can write

n n
i=1 i=1
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Figure  3: center of mass

therefore
n —
> M
i=1
- ( 4.3)
> my
i=1

( 4.3) gives the position vector of C relative to O. Let C' be an other center of mass
of the system and r’ be its position vector relative to O. Then the position vector of P
relative to C' is 7 — r’. Then by definition, at € the sum of moments of all masses is zero.

n —
Zmi <7_‘; — r') =0
i=1

with the same above reasoning, we can write

From (  4.3) and ( 4.4),we can write

Hence the system has one and only center of mass.
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Example 4.1. Find center of mass of the system consisting of two particles connected

by a massless rod given in the following cases:
(a) Both masses are 1 kg and length of rod is 2 m.

(b) The mass on right from O is 2 kg and the mass on left is 1 kg. The length of rod is

2 m.

(c) Both masses are 1 kg. The mass on right is 1.5 m away from O and mass on left

from O is 1 m away from O.

Solution: The rod is considered to be 1 dimensional object just to understand the
concept. And for one dimensional motion 4, — signs are enough to represent the direction
of a vector.

(a) Both masses are same and length of rod is 2 m.

Let the center of the rod be at the origin. Let one mass is at A with position vector 1 m
and the other mass is at B with position vector —1 m. The system is shown the Fig. 4.
Here n = 2. Using ( 4.3), the center of mass of the system is

1kg o 1kg
o i Q-
-1m Im

Figure  4: System of 2 particles with same masses and same distances

i o S,
R i=1 miry + mara

mi + mg

= 0m
In this case origin is the center of mass.

(b) The mass on right from O is 2 kg and the mass on left from O is 1 kg. The length of
rod is 2 m.
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Let the center of the rod be at the origin. Let the mass of 2 kg is at A with position vector
1 and mass of 1 kg is at B with position vector —1. The system is shown the Fig. 5.
Here n = 2. Using (.4.3), the position vector of center of mass of the system is

1kg o 2kg
B

® | Q.

-1m im

Figure .5: System of 2 particles with different masses and same distances

S miT + mats
Tm —= ———
mi1 + msy
2(1) + 1(-1) 1
1+1 2
= 05m

In this case the center of mass is shifted towards right from origin.

(c) Both masses are 1 kg. The mass on right is 1.5 m away from O and mass on left is
1 m away from O.

Let one mass 1 kg is at A with position vector 1.5 and mass 1 kg is at B with position
vector —1. The system is shown the Fig. 10.6. Here n = 2. Using (10.4.3), the center of

Ikg o 1kg
e ; @ -
-1m 1.5m

Figure 6: System of 2 particles with same masses and different distances

mass of the system is

miT1 + mais

m = m1 + mg
1(1.5) + 1(—1) 05
- 1+1 T2
= 0.25m

In this case the center of mass is shifted towards right from origin.
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3 Cartesian Coordinates of the Center of Mass

Consider a regular trihedral system and a system of n particles of masses m1,mao, ..., my,,
situated at point Py, Ps, ..., Py, whose position vectors relative to origin O are 71,7, ..., .
Then the position vector of P; is

Fio= i tyig + o2k ( 45)

Suppose C' is a center of mass of the system and 7 = (Z, y, Z) be its position vector relative
to O. Then

n

> omix;
=1

T = = ( 4.6)
m;
=1
n
gy = = (4.7)
> m;
=1
n
> Mi%i
A~ m— ( 48)

> i
=1

In case of plane coordinate system, z — coordinate can be ignored considering zy plane and
in case of collinear coordinate system only one coordinate will be sufficient.

Example 2. A mass of 3 kg is located at (0,0), a mass of 4 kg is located at (5,4)

and a mass of 8 kg is located at (—3,3). Find the coordinates of their centre of mass.

Solution: The given system has three masses and is two dimensional. Here n = 3 Let

m1 = 3kg
ma = 5 k:g
m; = 8 kg

Then
3
Zmi = mp+me+m3=3+5+8
i=1

= 16 kg

Sum of moments of all masses about = axis is
3
Zmil‘i = Mmix1 + moxo + Mms3xr3 = 3(0) + 4(5) + 8(—3)
i=1

= 0420—24=—-4kg.m

85/115


Antony
Textbox

Antony
Textbox

Antony
Textbox

Antony
Textbox

Antony
Textbox

Antony
Textbox


Sum of moments of all masses about y awis is

3
D mayi = mayi + mays + mays = 3(0) +4(4) +8(3)
i=1
= 0416424 =40 kg.m
using ( 4.6), the x coordinate of center of mass are
3
> MiTi
i=1
3
> mi
i=1
—4
= —=-02om

16
using ( 4.7), the y coordinate of center of mass are

3
Z miy;
i=1

3
> m;
i=1
40
= — =2.

16 5m

Hence the centre of mass of the system is located at the point (-0.25, 2.5).

5 Centroid of a Body or System

For a uniform body, the center of mass is called centroid. In this case, if body or system
has n particles of equal masses m; = mg = ... = m,,, situated at point Py, P, ..., P,, then
its center of mass or centroid is

n
> T
7= i=1
n
n n n
(i‘, y’ 2) _ =1 ’ =1 ’ =1 ( 51)
n n n

5.1 Center of Mass of a System of n Particles in Plane or Space

If n mass points are not necessarily on a line but are in a plane or in space with position
vectors 71,79, ...Tn, then its center of mass is

. miT1 + moto + ...mp iy,
Tm = ( 5.2
mi+mo + ..My
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The center of mass of a system of two particles of masses m1,mo is

. m17 + mai
p.oo= AT R ( 5.3)
m1 + mg
But ( 5.3) gives the position vector of the point dividing the directed line segment from
7 to T5 in the ratio mq : my. Hence the center of mass of two particles of masses mi, mo
divides the directed line segment from 7 to 75 in the ratio mj : mo.
In case of two equal masses mi = mgy = m, the centroid is
o 7+ 7%
= g (5.4

Example 5.1. Consider three masses 2,3,4 kg are situated at Py, Ps, P3 having position

vectors 1, 2t — j and 3i 4+ j — 4k. What will be their centroid and center of mass?
Solution The position vector of the centroid is

i+ 20— +3i+ ] —4k
3

T™m =

61 — 4k
3

And the position vector of the center of mass is
2 (z) +3(2%—j) +4(3%+3’—41%)
24344
19 — 7 — 12k
9

Hence the coordinates of the center of mass is (

19
9>

O~

).

1
T

6 Center of Mass of a Continuous Distribution of Matter

The formulae obtained in the preceding article are applicable in the case of discrete systems
only. If we are to find the center of mass of a continuous distribution of matter forming a
body, integration methods explained below are to be employed. First of all consider one
dimensional object.

6.1 Center of Mass of One Dimensional Object

Consider a body (a line or curve) of mass m and length [ in one dimension. We subdivide
the object into n parts. Take a small element of length ds with r be its position vector (see
Fig. 7), then mass of small element is

dm = pds
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Figure  7: Center of mass of 1 dimensional system

Where p is the density of the body. Then the center of mass of the body is

J Fdm

Tam

jf’dm

= = ( 6.1)

m

Where the integration has to be performed over the entire body.

More clearly if one dimensional system is x axis and the mass m is from z; to xg, then its
total length is | = x9 — 1. Consider small element dm having length dx, having position
vector & from the orion. Let p be the its density at 7, then

dm

T

or small element is
dm = pdx

then the center of mass of is
T2

[ Zpdx

1

2
[ pdx

I
|

X
x2
1
= — Zod 6.2
m/mx ( 62)
1
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T2
Where m = [ pdz is the total mass of the body.
1
If the body is homogenous (has uniform distribution of mass), then the center of mass of is

T2
| @dx
_ 1
T2

fd:z:

xr1

2

— % / Fdo ( 63)

x1
Example 6.1. Find center of mass of a uniform rod of mass m kg of length a m.

Solution: A uniform rod of mass m kg of length a m is shown in Fig. 8 Consider a
small element mass dm of width dx at a distance = from origin O. Here

. ) ‘ X-axis

Figure  8: rod of length a

X =z

m = mkg
I = a

gy = 0

To = a
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Since the rod is uniform, using (  6.3) the center of mass of the rod is

N == Q|+
)

Hence the center of mass of the rod is its mid point.

6.2 Center of Mass of Two Dimensional Object

Consider a lamina of mass m and area A in cartesian coordinate system. We subdivide the
lamina into n rectangles by drawing lines parallel to coordinate axes. Take a small rectangle
of area ds (see Fig.  9), then mass of small element is

dm = pds

Let r; = (z;,y;) be any point in it. Then the center of mass of the lamina is

J Fdm
fm = fdm
J Fdm

= £ - ( 6.4)

Where the integration has to be performed over the entire body.

More clearly if two dimensional system is in xy plane and the mass m has dimensions
x1 <x <z and y; <y < yo, then its total area is A = (x9 — x1) (y2 — y1). Consider small
element dm having area dA = dxdy. Let r; = (z;,y;) be any point with density p in it.
Then

_ dm
P = A

or small element is
dm = pdA
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Y 2 dimensional body

Figure 9: Center of mass of 2 dimensional system

Then the center of mass of the lamina is
T2 Y2
[ [ FpdA
z1 Y1
T2 Y2

I [ pdA

Z1 Y1
x2 Y2

[ [ FpdA
1y
= — 6.5
Where m = [ pdA is the total mass of the lamina.

S
If the body homogenous, then the center of mass of the lamina is

T2 Y2

| [ rdA
L Ty
m = Zop

[ faa

1 Y1
T2 Y2
[ [rdA
Z1 Y1
1 ( 6.6)

Where A = f dA is the total area of the lamina.

Example 6.2. Find the center of mass of a uniform rectangular lamina.

Solution
Let OABC be a rectangular lamina of mass m and OA (along x azis) and OB along y azis
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Let OA = 2a and OC = 2b Area of lamina is

A = 4dab

Consider a small element of surface area dA = dxdy at a distance y from x azis Here

Y &
C B
dmt
I« s
2b -
G
i y
0 .
s X o . A X
p—————————————2 23 +————

Figure  10: rectangular lamina

o= (z,y)
m = mkg
A = dab
gy = 0
To = 2a
yi = 0
yo = 2b
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Since lamina is uniform, using (

6.6) the center of mass of the rod is

T2 Y2
[ [rdA
T1 Y1

A
2a 2b
[ [{z,y)dzdy
00

4ab
1 x2 2. 2b o 2b
M)<[2]0 /dy’ 4, /ydy>
0 0

a3

1
i [2a%] (2b), (2a) [26%])
(a,b)

Hence the center of mass or centroid of rectangular lamina is (a, b)

6.3 Center of Mass of Three Dimensional Object

Consider a three dimensional rigid body of mass m and volume V in a regular trihedral
system. We subdivide the lamina into n rectangular parallelepipeds by drawing planes
parallel to coordinate axes. One such parallelepiped of volume ds is shown in Fig. 10.11.

The mass of small element is

Let r; = (x;,yi, z;) be any point within it. Then the

dm = pds

[ Fdm

Jdm

f rdm
m

center of mass of the body is

(

6.7)

Where the integration has to be performed over the entire body, and m = [ dm is the total
S

mass of the body.

More clearly if three dimensional system is in zyz space and the mass m has dimen-
sions 1 <z < 29, y1 <y < yg and 21 < 2z < 29, then its total volume is V =
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Figure  11: Center of mass of 3 dimensional system

(x2 — 1) (y2 —y1) (22 — z1). Consider small element dm having volume dV = dxdydz,
Let r; = (x;,yi, z;) be any point with density p in it. Then
_dm
= av
or small element is
dm = pdV

Then the center of mass of the body is
T2 Y2 22
I I [ 7pav
— . Ti1yr 2z

T'm T2 Y2 22

T [ pdv

1 Y1 21

T2 Y2 22 .

[ [ [7pav

T1 Y1 z1 ( 68)

m

Where m = [ pdV is the total mass of the body.

S
If the body homogenous, then the center of mass of the body is

T2 Y2 22
[ [ [rav
N Ty A
m = Zypmzm
[ [av
r1 Y1 21
x2 Y2 22
[ [ Jrav
L”‘lf ( 6.9)
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Where V = [ dm is the total volume of the body.

Example 6.3. Find the center of mass of a uniform cube.

Solution
Consider a uniform cube of mass m with OA along x azis, OB along y axis and OC along
z axis. Let OA = a, OB = a and OC = a Volume of the cube is

z A
C
(0,0, a)
P
(a, a, a)
A 7
dz
2
sdx |7
7 = (0,a,0)
0,0,0) -
X B Y
¥
A
(a, 0,0)

Figure  12: A cube with edges along coordinate axis.

7 = (z,y,2)
m = mkg
vV = d
g = 0
Ty = a
yi =0
Y2 = a
z1 = 0
Z2a = a
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Since cube is uniform, using (10.6.9) the center of mass of the rod is

T2 Y2 22
[ rav
F — 1 Y1 21
" 4
I [ [{z,y, z)dzdydz
@y = 200
a
= i xz-a/a/adydz [m]a/a/aydydz [$:| /a/azdydz
ad\ 2], "o "o
00 00 00
1 2 . a y2 e @ . a
= a3<[2_ [y}o/dz, (a) [Q]O/dz,a[y}o/zdz>
0 0 0
L /1 g0 1 5.0 o[22]°
= s<2 |y 3e s [2 )
_ L/l lal
ad \2 2 72

Hence the center of mass or centroid of a uniform cube is (3, 5, §)

7 Symmetry and Center of Mass

If a body possesses some sort of symmetry, then it is too much easy to compute the position
of its center of mass. We first explain the concept of symmetry and shall therefore show
how to use this concept in determining the center of mass of a body.

7.1 Symmetry with respect to a Point

A body is said to be symmetric with respect to a point O if and only if corresponding to
every point P of the body there exist a point P’ in the body such that O is the middle
point of the line segment PP’ and p(P) = p(P’), i.e., the density of the body at the points
P and P’ is the same. Such symmetry is called central symmetry and the point O is called
the center of symmetry.

It follows that a uniform body is symmetric with respect to origin O if and only if for every
point P(z,y, z) of the body there exist a point P'(—z, —y, —z) in the body such that O is
the middle point of the line segment PP’ and p(P) = p(P).

Examples

1. A uniform rod is symmetric with respect to its mid point, hence its mid point is center

96 /115


Antony
Textbox

Antony
Textbox


of mass as shown in example 10.6.1.

2. A uniform circular lamina is symmetric with respect to its geometric center.

3. A uniform solid sphere or spherical shell is symmetric with respect to its geometric
center.

7.2 Symmetry with respect to a Line

A body is said to be symmetric with respect to a line [ if and only if corresponding to every
point P of the body there exist a point P’ in the body such that [ bisects the line segment
PP’ perpendicularly and p(P) = p(P"). Such symmetry is called axial symmetry and the
line [ is called the axis of symmetry.

In particular, a uniform body is symmetric with respect to the z axis if and only if for every
point P(z,y, z) of the body there exist a point P'(—z, —y, z) in the body such that z axis
is the right bisector of the line segment PP

Examples

1. A uniform circular cylinder is symmetric with respect to its axis.

2. A uniform solid sphere or spherical shell is symmetric with respect to its axis.

A uniform lamina is symmetric with respect to x axis if and only if for every point P(x,y)
of the body there exist a point P’ (z, —y) of the lamina. In this case its center is the center
of mass as shown in example  6.3.

7.3 Symmetry with respect to a Plane

A body is said to be symmetric with respect to a plane p if and only if corresponding to
every point P of the body there exist a point P’ in the body such that p bisects the line
segment PP’ perpendicularly and p(P) = p(P'). Such symmetry is called axial symmetry
and the line [ is called the axis of symmetry.

In particular, a uniform body is symmetric with respect to the xy plane if and only if for
every point P(z,y, z) of the body there exist a point P’ (x,y, —z) in the body such that zy
plane bisects of the line segment PP’

Examples

1. A uniform solid or hollow ellipsoid is symmetric with respect to each of its principal
planes.

2. A uniform solid sphere or spherical shell is symmetric with respect to each of its diame-
tral plane (planes passing through the center).

8 Centroid of a Plane Region

The centroid C is a point which defines the geometric center of an object. The centroid
coincides with the center of mass or the center of gravity only if the material of the body is
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homogenous (density or specific weight is constant throughout the body). If an object has
an axis of symmetry, then the centroid of object lies on that axis.

Consider the region bounded by the curve y = f(x), the z — awxis, the line x = a and the
line x = b as shown in Fig. 13. Let the density of the region is 1. Then by (10.1.4) the

Figure  13: Plane region.

total mass of the system is the total area of the region
m = A

For uniform distribution of mass the area under the curve is

A = /bf(x)dx

Hence the mass of the region is

b
m = /f(ac)dac

As area under the curve is obtained by using approximation method. In this method the
interval [a, b] is divided into n subintervals of length h. Then h is
h—
h = a ( 81)

n

Let zr, k = 1,2,...n be the endpoints of each subinterval. Next construct a rectangle on
each subinterval and find its area to approximate the area under the curve. On interval
xp—1 < x < xp, the rectangle has height f(zy) and width xp —x,_1 = h. Its area is its mass

dA = hf(zg) =dm

98/115


Antony
Textbox

Antony
Textbox

Antony
Textbox


And its center of mass is its geometric center, given by
h 1
Cr = |xp—=,=f(z
The mass moment about y — axix of this rectangle is

h

dM, = hf(zy) <:ck—2>

We can imagine that center of mass of each rectangle is its geometric center. The mass

moment about y — axix of all n rectangles is

M = 3 s (m- 3]

k=1

Similarly the mass moment about = — axix of all n rectangles is

n

My = Y [nf )

k=1

Taking limit n — oo, the sum of areas of all rectangles approaches to true area under the
curve, and in the same way the moments about y — axiz and x — axix of the rectangles
approaches to true moments of area under the curve. As n — oo, by (10.8.1) h — 0. Hence
Ty — % — xk. Thus for a plane region bounded by y = f(x), the x — azis, the line x = a

and the line x = b, the moments about = — axis is

M = g (s )
k=1

b
_ /a:f(x)dac

and y — axis is

M, = nlijgozn: [hf(mk) (z’“_;ﬂ

k=1

) M, jmf(:c)d:c
T = =
[ f(z)dz
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the y coordinate of center of mass is

b
[ 3 [f (@) dw
VR £l .
J f(z)dx

Example 8.1. Find the center of mass of a plane region bounded by the curve y = \/x,

the x — axis, the line x =1 and the line x = 3.

Solution
The given data is

&H
—
8
N~—

|

w =

2
Il
8
=

> L
|

The plane region bounded by the curve y = \/z, the x — axis, the line z = 1 and the line
x = 3 is shown in Fig. 14. The area of the region is

Figure  14: Plane region.
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Using (

Using (

1
S

= 2.8 units®

8.2) the mass moments about = — axis is

M, =

1

= 5.8 units®

8.3) the mass moments about y — azis is

b

u, = [
a

3

[/ (@) de

N =
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Using ( 8.4) the = coordinate of center of mass is

b
7 M, {xf(x)da:
X = _—= b
m
ff(a:)dx
_ 58
238
= 2.1 units

Using ( 8.5) the y coordinate of center of mass is

b
o, Jf@)? da
Yy = W: b
[ f(z)dz
2
28
= 0.7 units

Hence the center of mass is (2.1,0.7) unit.
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Exercises

1. The density of glass of mass 10kg is 3140 kg/m?. Determine its volume.

2. A mass of 5 kg is located at (1,0, —1), a mass of 4 kg is located at (2,5,4) and a mass
of 2 kg is located at (4, —3,1). Find the coordinates of their centre of mass.

3. A square of side a has particles of masses 1 kg, 2 kg, 3 kg, 4 kg at its vertices. Find
the center of mass of the system.

4. Find the center of mass of a uniform rectangular lamina whose center is the origin of
the coordinate system.

5. Find the center of mass of a uniform triangular lamina.
6. Find the center of mass of a uniform circular disc whose center

(a) is the origin of the coordinate system.
(b) lies on x axis of the coordinate system and passing through the origin.

(c) lies on y axis of the coordinate system and passing through the origin.
7. Find the center of mass of a uniform elliptic disc whose center lies on the origin.
8. Find the center of mass of a plane region bounded by

(a) lines y =2z, y = —2x and = = 2.
(b) the curve y = \/z, the © — axis and the line z = 4.

(c) the curve y = 22, the x — axis and the lines z = 1,2 = 2.
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UNIT -V
HANGING STRINGS

1. Equilibrium of Strings

When a uniform string or chain hangs freely between two points not in the same vertical
line, the curve in which it hangs under the action of gravity is called a catenary. If the weight

per unit length of the chain or string is constant, the catenary is called the uniform or common

catenary.
2. Equation of the common catenary:

A uniform heavy inextensible string hangs freely under the action of gravity, to find the

equation of the curve which it forms.
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Let ACB be a uniform heavy flexible cord attached to two points A and B at the same
level, C being the lowest, of the cord. Draw CO vertical, OX horizontal and take OX as X axis
and OC as Y axis. Let P be any point of the string so that the length of the are CP =s

Let o be the weight per unit length of the chain.

Consider the equilibrium of the portion CP of the chain.

The forces acting on it are:

(1) Tension Ty acting along the tangent at C and which is therefore horizontal.

(1)  Tension T acting at P along the tangent at P making an angle ¥ with OX.

(1)  Its weight ws acting vertically downwards through the C.G. of the arc CP.

For equilibrium, these three forces must be concurrent.

Hence the line of action of the weight ws must pass through the point of the
intersection of T and T,,.

Resolving horizontally and vertically, we have

Tcos¥W=T,... ... (1)

Dividing (2) by (1), tan ¥ = “T“—s
0

Now it will be convenient to write the value of T, the tension at the lowest point,
as To=wc ... ... (3) where c 1s a constant. This means that we assume T, to be equal to the

weight of an unknown length ¢ of the cable.
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Thentan ¥ =2 =2
wcC

~S=ctan¥ ... ... ... 4)
Equation (4) s called the intrinsic equation of the catenary.
It gives the relation between the length of the area of the curve from the lowest point to
any other point on the curve and the inclination of the tangent at the latter point.
To obtain the certesian equation of the catenary,

We use the equation (4) and the relations

d . d )

% =sin ¥ and % = tan ¥ which are true for any curve.
d dy ds

Now &L =& &5

War 4 aw
=sin ¥ %c tan W
= sin csec”¥ = csec ¥ tan ¥
~y=fcsecYtan ¥ d¥ + A
=csec ¥ + S

If y=cwhen ¥ =0, then ¢ = csec0 + A

~A=0
Hencey=csec¥ ... ... ... %)
~y'=csec ¥ =¢’ (1 +tan’ ¥)
=c?+s?. .. (6)
2_.2

L—tanp=2=x"
d c c

dy _d_x

y2—cZ ¢

Whenx=0,y=c¢
ie.cooh'1=0+BorB=0

e ()

1.e.y=ccos h (E) ...... (7)
(7) 1s the Cartesian equation to the catenary.

We can also find the relation connecting s and x.
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Differentiating (7).

d . x 1 . X
2 —csinhX = =sinhZ
dx c ¢ c

d .
From (4), s =ctan ¥ = c. % = csinh § ... (8)
Definitions:
The Cartesian equation to the catenary is y = ccosh % . cosh % 1s an even function of x. Hence

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.

This line of symmetry is called the axis of the catenary.

Since c is the only constant, in the equation, it is called the parameter of the catenary and
it determines the size of the curve.
The lowest point C is called the vertex of the catenary. The horizontal line at the depth ¢

below the vertex (which is taken by us the x — axis) is called the directrix of the catenary.

If the two points A and B from where the string is suspended are in a horizontal line, then
the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below
AB) is called the sag.

3. Tension at any point:

We have derived the equations

TcosW=Tp... ... ... ... (1)

And TsinW=ws............(2)

We have also put Tp =wc ... ... ... 3)

Equation (3) shows that the tension at the lowest point is a constant and is equal to the
weight of a portion of the string whose length is equal to the parameter of the catenary. From the
equation (1), we find that the horizontal component of the tension at any point on the curve is
equal to the tension at the lowest point and hence is a constant.

From equation (2), we deduce that the vertical component of the tension at any point is
equal to ws 1.e. equal to the weight of the portion of the string lying between the vertex and the

point. (- s = are CP)
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Squaring (1) and (2) and then adding,
TP =T+ w's’
=w'c’+w’d’
=w(c?+5%)
=w’y” using equation (6) of page 377
“T=wy ... .o....(4)
Thus the tension at any point is proportional to the height of the point above the origin. It is

equal to the weight of a portion of the string whose length is equal to the height of the point
above the directrix.

Important Corollary:

Suppose a long chains is thrown over two smooth pegs A and B and is in equilibrium

with the portions AN and BN’ hanging vertically. The potion BCA of the chain will from a
catenary.

The tension of the chain is unaltered by passing overt the smooth peg A. The
tension at A can be calculated by two methods.

On one side (i.e. from the catenary portion), Tension at A = w.y where y is the height of
A above the directrix.

On the other side, tension at A = weight of the free part AN hanging down

=w. AN
~ y=AN

In other words, N is on the directrix of the catenary.

Similarly N’ is on the directrix.

Hence if a long chain is thrown over two smooth pegs and is in equilibrium, the free ends
must reach the directrix of the catenary formed by it.
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Important Formulae:

The Cartesian coordinates of a point P on the catenary are (X, y) and its intrinsic
coordinates are (s, V). Hence there are four variable quantities we can have a relation connecting
any two of them. There will be 4C, = 6 such relations, most of them having been already
derived. We shall derive the remaining. It is worthwhile to collect these results for ready
reference.

(1) The relation connecting x and y is
y = ccosh % ...... (D)
and this 1s the Cartesian equation to the catenary.

(1)  The relation connecting s and ¥ is
(1)  The relation connecting y and ¥ is

(iv)  The relation connecting y and s is

(v) The relation connecting s and x is
s = csinh =
c
(vi)  We have y = ccosh % and y = csec Y,
~ sec ¥ = cosh %
2 % = cosh -1(sec'V)
= log(sec¥ + Vsec?¥ — 1

= log(sec¥ + tan¥)
=~ x =clog (sec¥ + tan¥) ... ... (6)
This relation can also be obtained thus:
de _dx ds
d¥  ds’ d¥

d . dx
=cos V. o (ctan V) since = ~cos Y for any curve

=cos V. Csec2¥ — csecV
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Integrating, x = [ csec ¥ d¥ + D
= clog (sec?¥ +ran¥?) + D
At the lowest point, ¥ =0 and x =0
~ 0 =clog (secO+tan0 + D
1e.0=D
~ x= clog (sec? + tan V)

(vi1)  The tension at any point =wy ... ... (7), where y 1s the distance of the point from the
directrix.
(vii1)) The tension at the lowest point =wc ... ... (8)

sinh™ x = log(x+VxZ + 1)
cosh™ x = log(x+Vx?% — 1)

4. Geometrical Properties of the Common catenary:

b s i

Let P be any point on the catenary y = ccosh % .

PT is the tangent meeting the directrix (i.e. the x axis) at T.
angle PTX =¥
PM (=y) 1s the ordinate of P and PG is the normal at P.
Draw MN L1 to PT.
From APMN. MN =PMcos¥
=ycos¥
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=csec¥ cos ¥
=c=constant

1.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of

the catenary is constant.
Again tan ¥ = % = %

~PN=ctan ¥ = § arc CP

PM’ = NM’ + PN?

~ y* = ¢*+s?, a relation already obtained.

If 1s the radius of curvature of the catenary at P,

__ds

o= (ctan W) = csec™¥

Let the normal at P cut the x axis at G.

Then PG. cos W =PM =y

~ PG =—2— = csec?. sec? = csec’¥
cosy¥
P = PG

Hence the radius of curvature at any point on the catenary is numerically equal to the
length of the normal intercepted between the curve and the directrix, but they are drawn in
opposite directions.

Problem 1
A uniform chain of length 1 is to be suspended from two points in the same horizontal

line so that either terminal tension is n times that at the lowest point. Show that the span must be

1 2 —
Ny log(n+ Vvns —1
Solution:

Tension at A = wyu
And tension at C = w.yc since T =wy at any point
Now w.ys = n.w.yc
“Y4 = HYc =NnC

Buty, = ccosthA = nc

X
~cosh=2 = n
C
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or xTA = cosh’n = log (n+Vn? — 1)
ZXp = clog(ntvnd —1) ... ... ... (1)
We have to find c.

y2 A = c+s? A> Sa denoting the length of CA.
2
= 2+ IZ (as total length = 1)

. 12
1.€. n2c2 = c2+z

12
T 4(m?-1)
12

2
orc

Substituting (2) in (1),
12
XA = 2—m lOg (Il+ m)
~span AB = 2xp = %_1) log (n++vn? —1)

Problem 2
A box kite is flying at a height h with a length | of wire paid out, and with the vertex of

the catenary on the ground. Show that at the kite, the inclination of the wire to the ground is

w(1%+h?)
2h

w(12=h?2

1 h . : _
2 tan™ n and that its tensions there and at the ground are and ) where w is the

weight of the wire per unit of length.

Solution:
Y A
h
C l L
C
—X
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C i1s the vertex of the catenary CA, A being the kite. The origin O is taken at a depth ¢
below C.

Thenys = c+handsy, = arc CA=/
Since y* = ¢* +s%, we have (c+h)’ = >+ I

ie W 2ch = P

_ 12_h2
orc= —=—......... (1)
We know thats=ctan W ... ... ........ .... 2)
Applying (2) at the point A, we have
[=c.tan ¥,
s~ Tan W = % = 122—h2 substituting for ¢ from (1)
h
2(3)
= — ... ... 3
T )
2tan >
Buttan¥ = —=% ... ... 4)
1-tan?—

Comparing (3) and (4), we find that

y _ h

tan;atA—l
Y -1h
-5 tan i

1h
or VatA= 2tan17

The tension at A = w.yu

= w.(ct+h)

_ 12—h? _ w(l*+h?)

a W( T h) ~ 2n
Problem 3

A uniform chain of length 1 is to have its extremities fixed at two points in the same

= log (3+ /8 in order that the tension at each
support shall be three times that at the lowest point.

: . 1
horizontal line. Show that the span must be
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Solution:

Put n = 3 in problem number 13.

Problem 4

A uniform chain of length 1 is suspended from two points A, B in the same horizontal

line. If the tension A is twice that at the lowest point, show that the span AB is % log (2++/3)

Solution:

Put n = 2 in problem number 13.

Problem 5
A uniform chain of length 2/ hangs between two points A and B on the same level. The

tension both at A and B is five times that at the lowest point. Show that the horizontal distance

between A and B is % log (5+2/3)

Solution:
Put n = 5 and length = 2/ in problem number 13.
Problem 6
If T is the tension at any point P and Ty is the tension at the lowest point C then prove
that T? — To® = W? where W is the weight of the arc CP of the string.
Solution:

Given T is the tension at P. Let w be the weight per unit length and y is the ordinate of P.

Then T = wy.

Also Ty = wc

AT TR = why? — Wi
=W (y' - o)
= Wi
= W?
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5. Suspension Bridges:

In the case of a suspension bridge the main load is the weight of the roadway. We have
two chains hung up so as to be parallel, their ends being firmly fixed to supports. From different
points of these chains, hang supporting chains or rods which carry the roadway of the bridge.
These supporting rods are spaced at equal horizontal distances from one another and so carry
equal loads. The weight of the chain itself and the weights of the supporting rods may be
neglected in comparison with that of the horizontal roadway. The weight supported by each of
the rods may therefore be taken to be the weight of equal portions of the roadway. Hence the

figure of each chain of a suspension bridge approximates very closely to that of a parabola.
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