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ALGEBRA

YEAR: 1 SEMESTER: I

Learning Outcomes:
Students will acquire

Basic ideas on Theory of Equations, Matrices and Theory of Numbers.
Knowledge to solve theoretical and applied problems.

UNIT I
Theory of Equations: Polynomial equations with Imaginary and irrational roots- Relation
between roots and coefficients- Symmetric functions of roots in terms of coefficients.

UNIT 1I
Reciprocal equations - Standard form-Increase or Decrease the roots of the given equation -

UNIT II1
Summation of Series : Binomial- Exponential -Logarithmic series (Theorems without proof):

UNIT 1V

Symmetric- Skew Symmetric- Hermitian- Skew Hermitian- Orthogonal Matrices- Eigen
values

& Eigen Vectors- Similar matrices- Cayley - Hamilton Theorem.

UNIT V
Prime number and Composite number - Divisors of a given number N- Euler’s function
(without proof) - Integral part of a real number - Congruences.



UNIT -1 THEORY OF EQUATION

Theory of Equations:

Every equation f(x) = 0 of the n™ degree has n roots

Let f(x) be the polynomial apx" +aix»-1+...+an.
n n roots

We assume that every equation f(x) = 0 has at least one root real or imaginary
Let a1 be a root of f(x) = 0.
Then f(x) is exactly divisible by x - a1, so that
fx) = (x-a1) ¢1(x)
where ¢ 1(x) is arational integral function of degree n - 1.
Again ¢ 1 (x) = 0 has a root real or imaginary and let that root be a,.
Then ¢ 1 (x) is exactly divisible by x - az_so that
p1(x) = (x-a2) ¢2 (%)
where ¢ 2(x) is a rational integral function of degree n - 2.
~f(x) = (x-a1) (x-a2) ¢2 (X).
By continuing in this way, we obtain
f(x) = (x- a1)(x - a2).... (X - an) ¢ n(x)
where ¢ n(X) is of degree n - n, i.e., zero
~ ¢n(X) is a constant.
Equating the coefficients of X" on both sides we get
¢ n(x) = coefficients of x"
= 4ao
~f(x) = a0 (x-a1)(x - az)... (x - an).
Hence the equation f(x) =0 has n roots, since f(x) vanished when x has any one
of the values a1, az, ... an. If x is given any value different from any one of these n roots,

then no factor of f(x) can vanish and the equation is not satisfied. Hence f(x) = 0 cannot have

more than n roots.
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Example. 1. If a be a real root of the cubic equation X+ px® +qx + r =0, of which the
coefficients are real, show that the other two roots of the equation are real, if
p2 >4q + 2pa + 3a’.
Solution.
Since a is a root of the equation, X + px” +gx + r is exactly divisible by x — a.

~Letx + px% +qx +1 = (x - ) (x2 + ax +b).

Equating the coefficients of powers of x on both sides, we get

p=-a+t+a
q=-aa+b
r=—-ba

ra=p+aandb=q+aa =q+a(p+a)
=q+pa+a?
The other two roots of the equation are the roots of
XA (prax+q+pata=0
Which are real if (p+ «)” — 4 (q+ pa+ o) > 0
i.e.,p2 — 2pa—4q - 307 >0
ie., p2 >4q + 2pa + 30C.
Example 2. If X; X2, X3 ... Xn are the roots of the equation (a1 - x) (a2 = x)... (an-x)+ k=
0, then show that a1, a2 ..., an are the roots of the equation
(x1-x) (x2=X%X) ... xn-x) -k =0.
Solution.
Since x;, X2, X3 ... xn are the roots of the equation
(a1-x)(@2-%X) ..(an-x) +k=0
We have
(a1-x)(@-X) . (@an-X)+k =(x1-X) (x2-X) ... Xn —X)
LX1=-xX) (X2-X) ... n-X)-k= (a1-x) (a2 -X) ... (an - X).
~ a1, 4z, as ... anare the roots of

(x1-x) (x2=-X%X) ... (xn-x) -k =0.
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Example. 3. Show that if g, 4, care real, the roots of
1 1 1

E+E+E=% are real.
Solution.
Simplifying we get
X(X+b) (x+c)+x(x+c) (x+a)+x(x+a)(x+Db)
—3x+a(x+b)(x+c)=0
Let f(x) be the expression on the left-hand side. It can easily be seen that £(x) is a
quadratic function of .
~f(—a)=—a(b—a)(c—a)
f(—b)=—Db(c—b) (a—b)
f(—c)=—c(a—c) (b—o0).
Without loss of generally let us assume that a>b> cand a, b, c are all positive.

Then a— b, b — ¢, a— c are positive.

f(=a)=—ve.
f(=b)=+ve.
f(=c)=-ve.

~ The equation has at least one real root between —a and —b, and another between —b and

The equation can have only two roots since f (x) = 0 is a quadratic equation.

~ The roots of the equations are real.

Exercises

I If X'+ 3px + q has a factor of the form X~ 2ax + az, show that q2+ 4p3 = 0.
2. If px3+ gx + r has a factor of the form 4 ax + 1, prove that p2 =pq + .
3. If px5+ qxz + 7 has a factor of the form x°+ ax + 1, prove that

W' =)0 = +a)=p"q"

4. If a, b, c are all positive, show that all the roots of
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5. If a>b>c>dandE, A, B, C, D are positive, show that the equation

A B c D
E+ —+—+—+—=0
x—a x—-b x—c x—d

has no root between a and b, one root between b and ¢ and one between ¢ and d and

if
E >0, there is a root > d and if E < 0, there is a root < a.

6. Ifa <b <c <d, show that the roots of (x —a) (x —¢c) =k (x—b) (x —d)

are real for all values of k.
In an equation with rational coefficients, imaginary roots occur in pairs.

Let the equation be f(x) = 0 and let o + i be an imaginary root of the equation. We

shall show that o — if is also a root.
We have (x —o—ip)(x —a+if)=(x —a)’+ B> ......... (1)
If f(x) is divided by (x — o)’ + [32, let the quotient be Q(x) and the remainder be Rx + R’
Here Q(x) is of degree (n — 2).
X)) ={(x—a)+p*} Q)+ Rx+R' ......... )
Substituting (a. + if) for x in the equation (2), we get
fla+iB) = {( o+ ip —a)* + B>} Q(a+ip) + R(a +ip) + R'
=R(a +ip) + R
But f(a + if) = 0 since a + i} is a root of f(x) = 0.

Therefore

R(a+iB) +R'=0.
Equating to zero the real and imaginary parts

Ra+R'=0and RB=0.
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Since #£#0,R=0andsoR'=0

w f(x) = {(x — ) + B2} Q).

~ o —1p is also a root of f(x) = 0.
Solved Problems

1. Form a rational cubic equation which shall have for roots 1, 3 —v—2.

Solution.

Since 3 —+/—2 is a root of the equation, 3 + vV —2 is also a root. So

we
have to form an equation whose roots are 1,3 —vV—2,3 ++v—2.
Hence the required equationis (x — 1)(x =3 - V=2 )(x -3 +V-=2)

x—-D{x-37+21=0
x—-DE*—6x+11)=0
X —7x> +17x - 11 =0.

2. Solve the equation x* + 4x> + 5x* + 2x — 2 = 0 of which one root is — 1 ++/—1.

Solution.

Imaginary roots occur in pairs. Hence — 1 —v—1 is also a root of the

equation.
Therefore the expression on the left side of equation has the factors
(x+1 —V/=1)x + 1 +V/-1).
The expression on the left side is exactly divisible by (x + 12 +1,1e,x*+2x
+2.
Dividing x* + 4x> + 5x% + 2x — 2 by x> + 2x + 2, we get the quotient X + 2x —
1.

Therefore x* +4x” + 5x* +2x = 2 = (x> +2x + 2)(x* + 2x — 1).
Hence the other roots are obtained from x>+ 2x — 1 = 0.

Thus the other roots are — 1 = /2.

517146


http://www.foxitsoftware.com/shopping

2 2 2
3. Show that xaTa + beﬁ + xCTy — x + =0 has only real roots if a, b, ¢, a, B, y, d are

real.
Solution.
If possible let p + iq be a root. Then p — iq is also root.

Substituting these values for x, we have

a2 bZ 2

c
3 =0 ...... 1
ptig—a + p+iq—p + p+iqg—y P +6=0 ()

a? n b2 + c2 g+ E=0 )
p—ig—a | pig—B  p-iq—y © iq =0 ... )

Substituting (2) from (1), we get

2aiq 2b%iq 2c2iq
(p—a)?+q%  (P-P)+q* (p—v)?+q?

—2ig=0

. a? b2 c?
—2iq {(p—a>2+q2 ot T oo }

Il
(e

This is only possible when q = 0 since the other factor cannot be zero. In that case the
roots are real.

In an equation with rational coefficients irrational roots occur in pairs.

Let f(x) = 0 denotes the equation and suppose that a + v/b is a root of the equation

where a and b are rational and Vb is irrational. We now show that a — Vb is also a root of the

equation

(x-a—-vVb)x—a +Vb)=(x-a*-b .
&)

If f(x) is divided by (x — a)2 — b, let the quotient be Q(x) and the remainder be Rx +

Here Q(x) is a polynomial of degree (n — 2).

Afx)={(x-a’-bl Qx)+Rx+R'" ... )
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Substituting a + Vb for x in (2), we get
fla+ Vb)={(a++vVb—a)’—b} Qaa++b)+R(a+Vb)+R
= R(a+Vb)+R'
but fla+ Vb) =0, since a+ /b is a root of f(x) = 0.
» Ra+R'+RvVb =0.
Equating the rational and irrational parts, we have
Ra+R' =0and R=0.
~R'" =0.
Hence f(x) = {(x — a)* — b}Q(x).
=(x—-a—Vb)(x—a+Vh)Q(x).

~a—+b isaroot of f(x) =0.

Solved Problems

Example 1. Frame an equation with rational coefficients, one of whose root is V5 + /2

Solution.
Then the other roots are V5 — /2, —V/5 + /2, —/5 =2

Hence the required equation is (x—v5 — V2 )(x —V5 + V2)(x +V5 + V2)(x +V/5 — V2)

fed(x—V5Yl -2 {(x /5P’ -21=0
fe.(x* —2xV5 +3)( x* + 2xV/5 +3) =0
fe.(x* +3)—4x%5=0

ie. x*—14x*+9=0.
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Example 2. Solve the equation x'—5x° +4x> +8x—8=0 given that one of the roots is 1

—5.

Solution.

Since the irrational roots occur in pairs, 1 +v/5 is also a root. The factors
corresponding to these roots are
(x—1+/5)x—1=V5),ie(x—1)>-5
ie. x’—2x—4.
Dividing x* — 5x” + 4x + 8x — 8 by x* — 2x — 4, we get the quotient x* — 3x + 2.
Therefore x*—5x +4x* +8x — 8 = (x> — 2x — 4)(x* — 3x + 2)
= (X -2x-4)x-1D(x-2)
The roots of the equation are 1 + V5, 1, 2.

Example 3. Form the equation with rational coefficients whose roots are

@) 1+5/=1,5-+/-1
(i) —V3 +V/-2.

Solution :
(i) 1+5v-1,5—-+v-1

Then the other roots are 1 +5v—1,5—+v—-1,1— 5v-1,5++/-1

Hence the equation is
(x—1+5V/=-1)x-1 — 5V/-1)x—5 — V=1)x =5+ V=1) =0
(= D? - (5V=1)2} {(x - 5) - (v=1)°} =0
(x* = 2x +26) (x> = 10x +26) =0
xt—12x* + 72x* = 312x + 676 = 0.

(ii) —V3 ++-=-2
Then the other roots are —V/3 ++v/—=2, —V3 — V=2,v3 +v/=2,/3 — V-2

(G +v3) = (D} -V3) - (VD) o
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(x> +2V3x + 5)(x* = 2\3x + 5) =0
x' —2x? +25=0.
Example 4. Solve : x* — 4x’ + 8x + 35 = 0 given that 2 + i\3 is a root of it.
Solution.
Since the irrational roots occur in pair, 2 — iV3 is also a root.
The factors corresponding to these roots are (x — 2)* — (i\/3)2
x> —4x +7.
Dividing x* — 4x’ + 8x + 35 by x> — 4x + 7, we get the equation x> + 4x + 5
x4+ 8x +35 = (" —4x + 7)(X* + 4x + 5)

The roots of the equation are 2 + V3, — 2 + i

Example 5.Solve the equation 2x° — 3x + 5x* + 6x° — 27x + 81 = 0 given that one root is v2 —

V-1
Solution.
Then the other roots are V2 — v—1,v2 + V=1, =2 — V=1, =2 + V-1
{(r=v2)" = (PO VD) (D) o
(x> =2V2x +3)(x* + 2V2x +3) =0
x*—2x24+9=0
Dividing 2x° — 3x” + 5x* + 6x° — 27x + 81 by x* — 2x” + 9 we get the equation 2x* — 3x + 9

2x% = 3x° + 5x* + 6x° — 27x + 81 = (x* — 2x* +9)( 2x* — 3x + 9)

The roots of the equation are V2 +/-1,,—V2+V-1,3 (11;\/7)

Exercises

1. Find the equation with rational coefficients whose roots are
(i) 44/3,5+24/-1.
(i) V=1-+05.
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2. Solve the equation x* + 2x> — 5x* + 6x + 2 = 0 given that 1 +v—1 is a root of it

3. Solve the equation X0 —4x’ — 11x* +40xX° + 11x* —4x - 1 =0 given that one root
isv2 — /3.
Answer : 1. ()x* — 10x> — 19x* + 480x — 1392=0,(ii) x* — 8x* + 36 =0, 2. -2 + V/3, 3.
2 4+/3,2 +/5.

Relation between the roots and coefficient of equations.

Let the equation be X" + px"" + p,x™? + ... + pp.iX + pn = 0.If this equation has the

roots oy, O, 03, ..., 0y, then we have

X"+ pix"+ pzxn'2 + ...+ ppaX + Py

=x—o)E—a)...(X—ay)

=x"- Y x" Y ayayx % — LA (=1)" 0y, 0, 03, ..., Oy
=x"— Sx"H Sox" L+ (=1)"S,
Where S; is the sum of the products of the quantities a,, ay, a3, ..., o, taken r at a time.

Equating the coefficients of like powers on both sides, we have

—p1 =S; =sum of the roots.

(—1)2p2 =S, = sum of the products of the roots taken two at a time.
(-1’ps =S3 = sum of the products of the roots taken three at a time.
(~1)"pn =S, = product of the roots.

If the equation is aox" + ax" a4+ . +a,x+a,=0.

Divide each term of the equation by ay.

The equation becomes x™ + L x" ™1 4 22 xn2 .. pIndy 4 I —
ap ap ap ao

and so we have

a,
Qa="a
a;
Za1a2 _a_o
as
Za1a2a3 = —a_o

Oj O 03 ... Oy = (—1)"a—”
ag

These n equations are of no help in the general solution of an equation but they are
often helpful in the solution of numerical equations when some special relation is known to

exist among the roots. The method is illustrated in the examples given below.
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Example 1. Show that the roots of the equation x> + px” + qx + r = 0 are in Arithmetical
progression if 2p3 —9pq + 27r = 0 show that the above condition is satisfied by the equation
x> — 6x* + 13x — 10 = 0. Hence or otherwise solve the equation.
Solution.
Let the roots of the equation x° + px* + qx +r=0be a -, o, o + 5.
We have from the relation of the roots and coefficients
a—-0+tata+d =-p
(@=-8)a+t(a-3d)(a+d)+a(atd)=q
(a—93da(a+d)=-r.

Simplifying these equation, we get

3a=-p ..(1)
30°-8" =q .2
o —ad =-r. ...(3)

From (1), o= —%.

2 2
2_ P _r
From (2), 6 —3(—5) q =51

Substituting these value in (3), we get

56 D)

ie.2p’—9pq+27r=0.

In the equation x* — 6x* + 13x — 10 = 0.

p=-6,q=13,r= —-10.

Therefore 2p3 -9pq+271r= 2(—6)3 -9(-6)13 +27(-10)=0

The condition is satisfied and so the roots of the equation are in arithmetical

progression. In this case the equations (1), (2), (3) become

300= 6
3°-8° =13
o —ad® =10.

a =2,12-8 =13
Therefore &= -1
i.e.,0==1.

The rootsare 2 —1, 2,2 +1.
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Example 2. Find the condition that the roots of the equation ax + 3bx” + 3cx + d = 0 may be
in geometric progression. Solve the equation 27x” + 42x* — 28x — 8 = 0 whose roots are in

geometric progression.

Solution.

. k
Let the roots of the equation be = k, kr.

Therefore £ + k + kr = — 2 (1)
s a

kr—2+k2+ K= Q)

KB=-2 n(3)

a

From (1), k(3+1+7)=-2.

From (2), k? (- +1+7) ==,

Divided one by the other, we get k = —%

S . . )3 d
Substituting this value of k in (3), we get (— 5) =—

Therefore ac® = b’d.

In the equation 27x° + 42x> — 28x —8 =0

k 42
-+k+ kr=——
r 27
k2 28
—+K+ Kr=—2=
r 27

8

K==

27

2

. k= =2

3
Substituting the value of k in(4), we get

2 (1 42
SGrier)--%

3P +10r+3=0
Br+)(r+3)=0
Therefore r = —% orr=-3.

2 2
For both the value of r, the roots are -2, 3
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Example 3. Solve the equation 81x> — 18x” — 36x + 8 = 0 whose roots are in harmonic

progression.
Solution.

Let the roots be a, B, y.

ThenZ = 241
poa v

ie., 2ya =By + of

From the relation between the coefficients and the roots we have

18
G+B+Y:H

—_3
af + Py +ya=—o

8
aBy=—5

From (1) and (3), we get

2yo+yo = —%
- _36
3ya = o

4

Therefore yo=——

27

Substituting this value of ya in (4), we get
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2 2 2
The roots are 53 and — 3

Example 4. If the sum of two roots of the equation x*+ px3 + qx2 + rx + s =0 equals the sum

of the other two, prove that p3 +8r = 4pq.
Solution.
Let the roots of the equation be a, , y and &
Then oa+p =y+95 (D)

From the relation of the coefficients and the roots, we have

atB+y +6 =-p ... (2)
aftay+tad+ By+po+yd = q 0 .l 3)
afy+apd+tayd+ Pyd = —r ... (4)
apyd = s e (5)
From (1) and (2), we get
2@+ )= -p e (6)
(3) can be written as
afp +y5+ (a+ Py +d) = ¢
ie, (ap+yd)+ @+ P*=q ... (7)
(4) can be written as
af(y +8) +yd(a+ B) = —r
(Btyd)a+p) = -r (8)
From (6) and (7), we get
ap+y5+L=q
ap+yd =q L 9)
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From (8), we get

—Z(ap+ y9)

I
|
-

aprys =< (10)

Equating (9) and (10), we get

p> _ 2r
Q-7 = »
4pq—p3=8r
p’ + 8r=4pq.

Example 5. Solve the equation x* — 2x” + 4x* + 6x — 21 = 0 given that two of its roots are

equal in magnitude and opposite in sign.
Solution.
Let the roots of the equation be a, B, y and &
Herey=-95
ie,yt+o=0 . (1)

From the relation of the roots and coefficients

atBry +8 =2 ... )
aptoytad+ Py +pitys = 4 ... 3)
ay tapd+oyd+ Byd = -6 ... (4)
apyd = -21 (5)
from (1) and (2), we get a+B=2 ... (6)

(3) can be written as afp +y6 + (a + B)(y +3) = 4
ofp+yd=4 . (7

(4) can be written as af(y +8) +yd(a+ B) = -6
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vo(a+ B) = -6 ..l 8)
from (6) and (8), we get vo0=-3.....09)
buty+ 8=0 = y=+3, §=—3.
From (7) and (9), we get af =7
~aand f are the roots of x2 —2x + 7 =0.
~oa=1+v=6,p=1 —/=6
Therefore the roots of the equation are + V3, 1 +v—6.

Example 6. Find the condition that the general bi quadratic equation ax’ + 4bx® + 6cx? + 4dx

+ e = 0 may have two pairs of equal roots.
Solution.
Let the roots be a, a, B, p.

From the relations of coefficients and roots

2wﬂB=—% ................ (1)

<f+g2+4a3=% ............ )
2 20p=-2 3)
fBZ=§ ............ 4)
From (1), we get  a+B=—2 ... (5)

a

From (3), we get 2ap(a +p) = — %

anZ% ......... (6)

From (5) and (6), we get that a, B are the roots of the equation x* + %x + % =0

2
soaxt +4bx + 6ex’ +4dx +e = a(x2 + %x + %)
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Comparing coefficients

4b%  2d ad?
6c=a(— —)ande=—
a? +b b2

~ 3abc = a’d + 2b’ and eb® = ad’.

Exercises

Solve the equation 6x> — 11x* + 6x — 1 = 0 whose roots are in harmonic progression.
Find the values of a and b for which the roots of the equation 4x* — 16x° + ax® + bx —
7 = 0 are in arithmetical progression.

The roots of the equation 8x> — 14x* + 7x — 1 = 0 are in geometrical progression. Find
them.

Solve x* — 8x> + 14x” + 8x — 15 = 0, it being given that the sum of two of the roots is
equal to the sum of the other two.

If two roots of the equation x*+ px3 + qx2 + rx + s =0 are equal in value but differ in
sign, show that r* + p’s = pqr.

Show that the four roots, a, B, y and & of the equation x* + px® + qx” + rx + s = 0 will
be connected by the relation a f+vy 6 =0 if pzs +r= 4gs.

Solve the equation xXPooxd 3P+ ax -1 = Ogiven that the product of two of the

roots is unity.

1,4.— 15137ﬂ‘1;f

296

1
Answer : 11,2 3,2a 40r——b 24 0 r—3Z

1
2’

Symmetric function of the roots

If a function involving all the roots of an equation is unaltered in value if any two of

the roots are interchanged, it is called a symmetric function of the roots.

Let ay, ap, a3,......... a, be the roots of the equation.
fx)=x" +p1xn_1 +p2xn_2 + .+ p,=0.
We have learned that

Si=Za;=—p;

Sy =X a0 =p;
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S3=Xajapo3=—p;3

Without knowing the values of the roots separately in terms of the coefficients, by using the
above relations between the coefficients and the roots of an equation, we can express any

symmetric function of the roots in terms of the coefficients of the equations.

Example 1. If a, B, y are the roots of the equations X+ pX2 +qgx +r=0, Express the value

of X o B in terms of the coefficients.
Solution.
Wehave o+pB+y=-p
af + Py +ya=q
ofy= —r.
T a’p =a’B+ o’y + B+ By +ya+yp
= (ap + By +ya) (a+ B +7y) - 3aPy
=q(p)-3(1)
=3r—pq.

Example 2. If o, B, v, & be the roots of the bi quadratic equation x4 px3 + qx2 +rx+s=0,

Find ()T o, ) S’ By, 3) = o’ B°, @) o’ Band (5) o'
Solution.
The relations between the roots and the coefficients are
at+tP+y+d=—p.
af +ay +ad+Py+P3+y5=q

afy + afd +ayd +Byd=—r
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afyd =s.
Za2=a2+|32+y2+82
= (0t By +8)°—2 (oB+ay +ad+ By + B3 +0)
= (a2 op
=p2—2q.
Z(x2By=(aBy+uB8+ay§+[3y5)(a+B+y+6)—4aByS

=(Z ay) (Z o) -4 apyd

=pr—4s.
2(12 BZZOLZ BZ+U2'Y2+(1282+BZY2+6262+Y262
= (T ap)’ -2 o’ By — 6 aPyd
2
=q -2 (pr—4s)—6s
2
=q —2pr+ 2s.
S’ =2 a’) (S of)— = o’ By
2
=" —29) q—(pr—4s)
2 2
=p°q—2q —pr+4s.
Ta'=C o) 230’ B
2 2 2
=(p"—29)" 2(q"—2pr +2s)
= p4 — 4p2q + 2q2 + 4pr —4s.

Example 3. If a, B, y are the roots of the equation X+ ax’ + bx + ¢ =0, from the equation

whose roots are af, By, and yao.

Solution.
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The relations between the roots and coefficients are
atBft+y=-—a
aff + Py +ya=>b
afy =—c.
The required equation is
(x—ap) (x=Py) (x —yo) =0
e, X' =x” (@B + By +va) (o’By + B’y + o) x— o’By =0
e, x"—x" (B + By +va) +x oy (a+ B +7) — (ay)’ = 0
ie., X —bx’ +acx—¢> =0

Example 4. If a, B, y are the roots of the equation X+ px2 + gx + r =0, from the equation

whose roots are B+ v —2a, Yy + o — 2B, o+  —2y.
Solution.
Wehavea+p+y=—p
af + Py +ya=q
ofy=-r.
In the required equation

S;=Sum oftheroots=P+y—2a+y+oa—-2+a+p—2y

S, = Sum of the products of the roots taken two at a time

=B+y-20)@+ta-20+P+y-20)(a+B-27)+(a+B-2y)(v+ta-
2B)

=(a+pB+vy-3a)(a+p+7y—3p)+2 similar terms

=Cp-30)p-3p)+(p-30)(-p-3y)+(=p-3y) (~p-3P)
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=(+30)(p+3p)+(p+30)(p+3y)+(p+3y)(p+3P)
=3p’+6p (a+B+y)+9 (aB+ By +70)
=3p +6p(-p)+9q
=9q- 3p2.
S5 = Products of the roots
=(B+v-20) (v +o-2p) (a+f-2y)
=(@+Bty-30)(at+tP+y-3p)(atp+y-3y)
=(p-30)(=p-3p) (-p-37)
=—{p +3p" (a+B+7)+9p (aB+ By +yo) +27 oy }
=—{p’+3p’ (-p) +9pq—27r }
—2p® — 9pq+27r
Hence the required equation is
X - S+ Sx—S3=0
i.e., X’ +(99-3p) x — (2p° — 9pq + 27r) = 0.
Example 5. If a, B, v are the roots of the equation x>+ px2 + gx + r =0 prove that

(D (@+B)B+ry)Ny+ta) =r-pq
) o +p’ +y = —p’+3pq-3r.

Solution.
Wehavea+pB+y=—p
af + Py +ya=q
afy=-r.

(D). (a+BX)B+y)y+ta)= [-(+a)p+P)(p+y)]
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Sincea+pB+y=—p ~otpB=—-p-vy

—[p’ +p° (@ + B +7y) +p (af + By +ya) + apy]

~p’+p’ x—p+pq-1]=—[p’—p’+pq—r1]=r-pq.
(). 0’ + B+ -3aPy = (a+ B +y[ o’ + B+ v~ (@B + Py +y0)]
Yad=YalYa®—Yap]+3apy;

But Y a? = (X a)? — 23 af

Therefore Y a® = Y a [(X a)? — 3Y aB] + 3aBy; =—p[p2 —3q] - 3r=—p3 +3pq -
3r.

Example 6. If a, B, v are the roots of the equation x>+ gx + r =0 find the values of

1
By’

B2+y?
@) X7

()X

Solution.

Since a, B, y are the roots of the equation X+ gx+r=0.
Wehavea+B+y=0
af + Py +ya=q
ofy=-r.

Therefore +y=—a

Aoyt [y i) _XeB_a_ 4
(1)'Zﬂ+y Z—a [a t B t y] T

y)Z—ZBy _ Z[“2+2£] . Y ad+42r
B+y —a —a?

BE4y? _ ¢ B+
(2)-Zﬁ+y %

=—2r2%;since§:a =0

1 + 1 _ a?BEHpPy*i4yia’ _ (Rap)?
Bz " y? alply? (apy)?

20y Y. a = Y a’B?;since Y a = 0

But Zaiz = al—z+ since (af + By + yo)? = Y a?p? +
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Example 7. If o, B, y are the roots of the equation X - px2 + gx —r =0 find the value of
B2+y?
.25

2). 2B +y e )%

Solution.

Since a, B, y are the roots of the equation X - px2 +qx—-r=0

We have a+tB+y=rp
af + Py tya=q
afy=r.
B+y? _ BEy? | a?+B% | alty? _ a(B+y?)ty(a?+p%)+B(a’+y?)
1 . = =
()Zﬂy By+aﬁ+ay aBy
_Sa%p
afy

ButY a?f=(af + By + yo)(a + B + y) —3aBy

Ya?B _ (aB +By +ya)(a+ B +y)-3afy _ qp—3r
aBy aBy ro

2).2B+ya )Y =X(a+p+y—-2a)*=X(0p - 22)*=2X[p*+ 4a* — 4ap)

=3p’+4Y a’ —4p Y ap

2
=3p2+4[(2a) —226{3]—41)2
= 3p? + 4p? — 8q — 4p?

= 3p? - 8q.
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Example 8. If o, B, y are the roots of the equation ax’ + bx” + cx + d = Ofind the value of

1
Z a2[;2

Solution.

Since a, B, y are the roots of the equation ax° +bx’ +cx +d=0

We have (x+[3+y=_7

-d
afy =—
b2 c
gL 1 411 _ a2 4p%y? _ @ +B+y2-20eB 4By +yv0) _ () -2(3)
2% a?p? T py? T e a?fPy? (opy )2 (@)
_ b?-2ac
=
Exercises

1. If a, B, y are the roots of the equation x3+pX2+qx+r=O find the value of
3 3 3
(DPB+y-0)y Fyta-P) +@+p-y).

B By, ye
14 a B

2)

2. Ifa, B, vy, 6 are the roots of the equation xt+ px3 + qx2 +1x +5=0,

Evaluate (1) £ o’ By, (2) = (B+a+8)°and (3) T .

r2—2qr

_ 2
Answer : 1. (1).24r—p’, (2).2”’%, 2. (1).pr—4s, (2).3p> — 2q,(3). -
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UNIT - || RECIPROCAL EQUATION

Reciprocal roots.

To transform an equation into another whose roots are the reciprocals of the roots of the

given equation.

Leto; 0oy, 03, ... oy be the roots of the equation

Xn+p1Xn-1 +p2Xn-2+
We have
n n-1 n-2 —
X tpix  tpxx ... Ph=xX—a) (xX—ay)...... X —ay).

1
Put x = —, we have
y

( %)nJF Pl( %)n_lJr pz( %)n_er. oot Pn

Multiplying throughout by y", we have

-1 2
Py T Pu1y F P2y  F ..t pryt+1=0

= (0o o .....an)(ail—y) (al—z—y)(i—y)

Hence the equation

pnyn + pn_lyn'1 + pn_zyn'2 +...... + p1y + 1 =0 has roots L , L Y —

a;  az an

Reciprocal equation.

If an equation remains unaltered when x is changed into its reciprocal, it is called

reciprocal equation.
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Let x"+ plxn'1 + pzxn'2 + +PpnaX Tpn=0. ...... €))

: : . o . 1
be a reciprocal equation. When x is changed into its reciprocal - we get the transformed

equation
n n-1 n-2
PnX T Pp1X T ppox .l +pix+ 1=0
Xt Bnotonl  Prz on2, L PL LT ....(2)
Pn Pn Pn Pn

Since (1) is a reciprocal equation , it must be the same as (2),

Pnot_ Pnz_ Pl andi=pn.
Pn Pn Pn Pn
wopi=1
pn==1
Casei. p,= 1.

Then p,_1 = P1,Pn—2= P2, Pn=3 = P35 -----.

In this case the coefficients of the terms equidistant from the beginning and the end are equal

in magnitude and have the same sign.
Caseii. p,=—1, we have

Pn—1 = —P1,Pn—2 = —P2,...P1 = —Pnl

In this case the terms equidistant from the beginning and the end are equal in magnitude but

different in sign.

Standard form of reciprocal equations.

. . 1 .
If o be a root of a reciprocal equation, — must also be a root, for it is a root of the transformed

equation and the transformed equation is identical with the first equation, Hence the roots of a

reciprocal equation occur in pairs

PRI

I~

1
a’ E’ B’
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When the degree is odd one of its roots must be its own reciprocal.

-1

Y Y
i.e.,y2=1.
Le,y=%1.

If the coefficients have all like signs, then — 1 is a root ; if the coefficients of the
terms equidistant from the first and last have opposite signs, then + 1 is a root. In either case
the degree of an equation can be depressed by unity if we divide the equation by x +1 or by x
— 1. The depressed equation is always a reciprocal equation of even degree with like signs for

its coefficients.

If the degree of a given reciprocal equation is even , say n = 2m and if terms

equidistant from the first and last have opposite signs, then

Pm = — Pm-

i.e., p,n, =0, so that in this type of reciprocal equations, the middle term is absent. Such

an equation may be written as

X1 +plx(x2m'2— H+.....0.
Dividing by x -1 , this reduces to a reciprocal equation of like signs of even degree. Hence
all reciprocal equations may be reduced to an even degree reciprocal equation with like sign,
and so an even degree reciprocal equation with like signs is considered as the standard form

of reciprocal equations.

A reciprocal equation of the standard form can always be depressed to another of half

the dimensions.

It has been shown in the previous article that all reciprocal equations can be reduced
to a standard form, in which the degree is even and the coefficients of terms equidistant from

the beginning and the end are equal and have the same sign.

Let the standard reciprocal equation be

2m-2

2 2m-1
aoxm+a1xm + arx +.....amxm+....+a1x+ao =0.
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Dividing by x" and grouping the terms equally distant from the ends, we have

1 41 1 3
ao(xm +x_m)+ al(xm +xm*1)+'“"+ am_l(x +;)+ an=20
1 1
Letx+; =zand x" +x_r:Xr

We have the relation X, 1=z .X,— X1

Giving r in succession the values 1, 2, 3, ...

We have Xo=z X;— Xo=2°-2
Xs=zX,— X;=23-3z
Xe=zX3— Xp=2z* 472 +2
Xs=zX4— X3=2°-523+ 52

and so on. Substituting these values in the above equation. We get an equation of the mt"

degree in z. To every root of the reduced equation in z, correspond two roots of the reciprocal

. . . 1 .
equation. Thus if k£ be a root of the reduced equation, the quadratic x + i k,ie., x? —kx+

. . k+vVk?— . : .
1 =0 gives the two corresponding roots EEa— of the given reciprocal equation.

Example 1. Find the roots of the equation X+ axt +3x7 +3x7 +4x+1=0.

Solution.

This is a reciprocal equation of odd degree with like signs.
. 5 4 3 2
~ (xt+1)is afactor of X +4x +3x™ +3x” +4x+ 1
The equation can be written as
CAx 3 3 3+ 3xFx+1=0
fe, X (x +1)+ 3 (x +1)+ 3x(x +1)+1(x +1) =0

fe, (x +1) (x" +3x> +3x+ 1) =0.
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x+1=00rx4+3x3+3x+1=0.

Dividing by x’, we get x* + 3x +; + xiz =0

(x2+xi2)+3(x+%)=0.

1 1
Putx +-=2z. - x2+—2=z2—2
X X
w72 -2+3z=0
—3+V17
S 7= .
2

1 —3+v17
Hence x +-—= >
X

ie,2x?+ (=3 + V17)x+2=0

or 2x2+(—3 — \/ﬁ)x+2=0.

From these equations x can be found.

Example 2. Solve the equation 6x° —x' - 43 +43x° +x — 6=0.

Solution.

This is a reciprocal equation of odd degree with unlike signs

Hence x — 1 is a factor of the left- hand side.

The equation can be written as follows:

6x5—6x4+5x4— 5)(3—38)(2 +5x2—5x+6x—6=0

fe, 6x" (x— DF5x(x—1)=38x° (x = I+ 5x(x — )+ 6 (x—1)=0

fe., (x — 1) (6x+ 5= 38x°+ 5x+6) = 0

W Xx—1=00r 6x45x—38x>+5x+6=0.

We have to solve the equation 6X+ 5% — 38x° + 5x + 6 =0,
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6
Dividing by x> 6x” + 5x ~ 38+ > + =0
: 2, 1 1) 13-
ice.. 6(x +x2)+5(x+x) 38=0.

1 1
Putx +-=z. ~ x*+5=22-2
X X

The equation becomes
6(z2-2)+52-38=0
ie., 622 +52-50=0
ie., (2z-5) 3z+10) = 0.

1 5 1 10
X+-=-o X+-=-—
x 2 X 3

ie., 2x—5x+2=0 or 3x>+10x+3=0

e, 2x—-1)(x-2)=0or Bx+1)(x+3)=0

. 1 1
l.e., X=—or2 or -— or-3.
2 3

. 1 1
. The roots of the equation are 1, 2> 2, - 3 and - 3.

Example 3. Solve the equation 6x° — 35%° + 56x" — 56x” +35x — 6= 0.

Solution.

There is no mid-term and this is a reciprocal equation of even degree with unlike
signs. We can easily see that x”— 1 s a factor of the expression on left-hand side of the

equation.
The equation can be written as
6(x°— 1) = 35x(x" — 1)+ 56x°(x* ~ 1) =0

fe, 60— (X +x+1)=35x(x* — 1) + (x> + 1)) + 56x°(x — 1) =0
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ie, (x> 1)(6x"- 355 + 62x”~35x + 6)=0
ie, x=1or —1 or 6x—35x+62x"— 35x+6 = 0.

Dividing by x”, we get 6x”— 35x+ 62 2 + 2= 0.
1
6(x? +)- 35(x + —) +62=0.
X X

1 1
Putx +-=z. =~ x*+5=22-2.
X X

6(z%-2)-352+62=0
ie., 62> —-352-50=0

e, (3z-10)(2z-5)=0

10 5
zZ=— Oor —
3
1 10
X+—-=—or X+—-= -
X 3

ie. 3x—10x+3 =0 or 2x—5x+2=0

e, x=-3)Bx-1)=0or (x-2)2x—-1)=0
. 1 1
1.e., Xx=3 or - or 2 or =—

3 2

1

1
,3,2 and >

. The roots of the equationare 1, -1, 3

Exercises

Solve the following equations:-

1. x"—10x° +26x" — 10x +1=0.

2. x* 43’ —3x —1=0.

3. 2X6—9X5+10X4—3X3+10X2—9X +2=0.
4. 28 +x +x + 1= 123 (x +1).

5. X -5 +5x°—1=0.
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6. X6+2x5+2x4—2xz—2x—1=0.

Answer: 1.3+V8,2+£+3,2.+1,— \/—32 l¥,_l+‘/_4 1, 2_l¥,
R R R

Transformation in general.

Leta;, 0y, ...., oy be the roots of the equations f (x) = 0, it is required to find an equation

whose roots are

¢ (0“1)7 ¢ (("2)7 AR ¢ ((’-n)'
The relation between a root x of f (x) = 0 and a root y of the required equation is y = ¢ (x).

Now if x be eliminated between f (x) =0 and y = ¢ (x), an equation in y is obtained

which is the required equation.

By means of the relations between the roots and coefficients of an equation we can
establish a relation between the corresponding roots given and the required equations. A few

examples will illustrate the methods of procedure.

Example 1. If o, 3, vy are the roots of the equation X+ px2 +gx +r = 0, from the equation

1 1
whose roots are a— ﬁ_ ,3— —, V— —
Y

Solution.

1
We have a——
By

a

apy

a .
=a-—sinceafy=-r
-r
a
=a+ -
r

x
. y—x+:.

-« The required equation is obtained by eliminating x between the equations
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Horner’s method

This method can be used to determine both the commensurable and the
incommensurable roots of a numerical equation. First we shall explain the method for
obtained the positive root. The procedure is to determine the root figure by figure, first the
integral part and then the first decimal place, then the second decimal place and so on until
the root terminates or the root has been obtained to the required degree of approximation. The
main principle involved in this method is diminishing the roots by certain known quantities
by successive transformations. In this method the successive transformations can be exhibited
in a compact form and the roots can be obtained to any number of places of decimals

required.

First we have to find by trial two consecutive integers between which a real positive
root of the equation lies. This will give the integral part of the root. Let it be a first diminish
all the roots of the equation by a. Then the transformed equation will have a root between 0
and 1. In order to avoid decimal in the working, all the roots of this transformed equation are
multiplied by 10. Then the new transformed equation has a root between 0 and 10. By trial
find the integers between which the root lies and thus find the integral part of the root. Let it
be b. Then diminish the roots be b and again multiply the roots by 10 and continue the

process till we get the root to the number of decimal we required.

Example 1. The equation x” — 3x + 1 = 0 has a root between 1 and 2. Calculate it to three

places of decimals.
Solution.

Since the roots lies between 1 and 2, the integral part of the root is 1. Diminish the root of

the equation by 1.

1 0 -3 1
(1
1 1 —2
0 2 [
1 2
2
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3
The transformed equation is x> + 3x* — 1 =0
This equation has therefore a root between 0 and 1.
Multiply the roots of this equation by 10.
Then the equation transforms into x* + 30x* — 1000 = 0

We can easily see that a root of this equation lies between 5 and 6. Diminish the roots of the

equation by 5.
1 30 0 — 1000

(5

5 175 875

35 175 —125

5 200

40 375

5

45

The transformed equation is x> + 45x” + 375x — 125 = 0.

This equation has therefore a root between 0 and 1.

Multiply the roots of the equation by 10.

Then the equation transforms into x> + 450x* + 37500x — 125000 = 0.
We can easily see that a root of this equation lies between 3 and 4.

Diminish the roots of this equation by 3.

1 450 37500 — 125000 @3
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3 1359 116577

453 38859 — 8423
3 1368

456 40227
3

459

The transformed equation is x> + 459x* + 40227x — 8423 = 0.
Multiply the roots be 10.
Then the equation transforms into x> + 4590x” + 4022700x — 8423000 = 0.

We can easily see that a root of this equation lies between 2 and 3.diminish the root be 2

1 4590 4022700 — 8423000 2
2 9184 80637668
—4592 4031884 —359232
2 9188

4594 4041072

4596
The transformed equation is x> + 4596x” + 4041072x — 359232 =0
Multiply the roots by 10. Then the equation transforms into
X’ +45960x” +404107200x — 359232000 = 0

We can easily see that a root of this equation lies between 0 and 1. We can stop with this
since we require the root correct to three decimal places. Thus the root correct to three

decimal places is 1.532. In the actual presentation we need write only the coefficients of the
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various transformed equations omitting completely the powers of x. The series of arithmetical

operations is represented as follows:

1 0 -3 1 (1.5320
1 1 -2
l_ -2 —1000
1 2 875
‘2 0 — 125000
1 175 116577
30 175 — 8423000
5 200 8063768
35 37500 | —359232000
5 1359
0 38859
5 1368
450 4022700
3 9184
753 4031884
3 9188
_26— 401407206
3
4590
2
4592
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4594

45960

Example 2. Find the positive root of the equation x” — 2x° — 3x — 4 = 0 correct to three places

of decimals.
Solution.

by Descartes’ rule of signs, there can be at the most only one positive root and we can easily

see that it lies between 3 and 4. The process is exhibited as follows:

b -3 4 (3.2842
3 3 0
1 0 — 4000
3 12 2688
4 1200 -1312000
3 144 1242752
70 1344 | - 69248000
2 148 64746224
72 149200 — 4501776000
2 6144 3243903688
—j;;—_ 155344 — 1257872312
2 6208
760 16155200
8 31356
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768 16186556

8 31392

776 1621794800

8 157044

7840 1621951844

7848

78520

2

78522
. The roots correct to three decimal places is 3.284
Exercises

1. Find the positive root, correct to two decimal places of the equation x> + 3x” + 2x — 5
=0.

2. Find the real root of x> + 6x = 2 to three places of decimals

3. Find the root between 0 and 1 correct to three places of decimal of the equation x> +
18x —6=0.

4. Find the root of the equation X’ — 5x — 11 = 0 which lies between 2 and 3 correct to

two places of decimals.

Answers : 1.0.90, 2.0.327, 3. 0.33, 4. 2.99.
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UNIT- 111 SUMMATION OF SERIES

Summation of series using Binomial, Exponential and Logarithmic series.
BINOMIAL SERIES

When n is a positive integer (x + a)" can be expanded as (x + a)" = x" + ,C;. x" la +
nCy. x"72a? +.. + ,C,. x™ 7. a"+...+ a,.. This is known as the binomial theorem for the positive
integer n. When n is a rational number (1 + x)" can be expanded as an infinite series when — 1 <x <'1

(i) |x| < landitis givenby (1 +x)"=1+2+20D 2, 4 1@ D-rdD) oy
11 21 l

This is known as binomial series for (1+ x)" where n is a rational number.
General term

The (r + 1) ™ term in the expansion is often denoted by
Ur+1 or Tr+1 : Ur+1 = nCr x"7a’

We may obtain any particular term by giving r particular values. Thus the first term is
obtained by writing » = 0, the second by writing r = 1 and so on . So the (r +1) ™ term is

called the general term.
Thus we get (x +a)" = X'y ,C.x""ad’
Note:-

(1) The expansion contains (n + 1) terms.

(2) The numbers ,,Cy, nCy ... nCy .....1nC, are called the Binomial Coefficients. They are

sometimes written as Cq , C; , C,,.These binomial coefficients are all integers since ,,C, is

the number of combinations of » things taken r at a time.
(3) SinceCy = C,,,Ci = Cpq, ...... C, = C,_, , the coefficients of terms equidistant

from the beginning and the end of the expansion are equal.
Summation of various series involving Binomial Coefficients

It is convenient to write the Binomial theorem in the form
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(1+ x)" = Cy+Cyx + Cox?+... +C, x"+....C x™.

We can seen in the expansion that the coefficients of terms which are equidistant from

the beginning and the end are equal.

Co=C,=1,Ci= C,_1=n.... and in general.

n!

C=C,_= m

Some important particular cases of the Binomial expansion.
A-x)"1=1+x+x%+x3+...

(1=x)"2=1+2x+3x%+4x3+.....

1
(1-x)3= E{L24—23x4—&4x1+45x3+””}
1
1-x)"* = 5{1.2.3 +2.3.4x +3.4.5x%+ 4.5.6x3+...)

1—-x)"=1+nx+

n(n-ll-l) N n(n+1)(n+2) N

31
13 , 135
(1—-x)fVZ—-l—%—x+~——x2+————x3+ ......
247 246
1 14 , 147
(1—x)"B=1+x+—x+—x>+.....
37 367 3.69

Application of the Binomial theorem to the summation of series.

We have proved when |x| < 1, for all values of n

nm-1) 2 n-DO-2) 5,

Q1+x)"=1+nx+ ol 3 X T

(= = 1= s 2HED 2, 2ODOD) g
2!

3!

1 1 2
A+x)™=1 —nx+$xz—%x3+ ......
n@+l) o n+D0+2) 3

Q1=-x)"=1+nx+ o ar X T
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Solved problems

3
Example 1. Find the sum to infinity of the series 1 + " +

& w
@lwn
+
S w
@ | vt
+
S|~

Solution.

The factors in the numerators form an A.P with common difference 2: we therefore
divide each of these by 2.

Each of the factors in the denominator has 4 for a factor; removing 4 from each will leave a

factorial . Hence we have

Then the series becomes

| +—= x+ n1) x% + nin1(n—2) x3 +

T o TR
=1-x)™"
=17~
=22
Example 2. Sum the series to infinity RIS L S ez
5.10 5.10. 15 5.10.15. 20
Solution.

The numerators form an A.P . with 3 as common difference and the denominators are

factorials, each of whose factors has been multiplied by 5.

~ The series can be written as

41/ 146



_ n(nZ'+1) 2+ n(n+13)'(n+2) N n(n+1)(r:—2)(n+3) e

n(n+1) ,  nm+1)(n+2) ;
21 X 31 x

=1+nx+
=(1-x)"—-1-—nx

_ 3y-1/3 _ 1
=(1+3) 1+ 3.

Ul w
N |-

13 _%
(5) =

. . . 15 | 15.21 = 15.21.27
Example 3. Sum the series to infinity. — + + to.....
16 16.24 16.24.32

Solution.

The factors in the numerator form an A.P. with common difference 6 and those of the

denominator an A.P with common difference 8.

Let S be the sum of the series.

15 15 21 152127

Thens=5(2) + £ (&) + £25, (&)’ .

The factors of the denominators do not begin with 1. Hence one additional factor,
namely unity, has to be introduced into the denominator of each coefficient. The number of

factors in the numerator is to be the same as that of the factors in the denominator. So we

: . . . : 9
have to introduce an additional factor in the numerator also, which factor is clearly e

9 2L o\ 2BAE 2 2B 3
_6%6 666 6666
L 2s=fe(B)aene (S gese (8)7y
6 1.2 (8) 1.2.3 \8 + 1.2.3.4 8 +
Since the index of x in every term must be the same as the number of factors in the

numerator or denominator of the coefficient, we have

15 915 21

g2 9:-_?(9)2+@(2)3+
"6°8 21 \8 3! 8

o
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9 6
Put —=n and x=-.
6 8

9 n(n+1 n(n+1)(n+2
-._Szgxz +wx3+
6 2! 3!

n n(n+1) 2+n(n+1)(n+2)x3+

=1+—+ Xt ———x"+...... —(1+nx)
1! 2! 3!
= (-0 —(1+nx)
—1 &9 _+2 8
(1= = (1+=.3)
(&2 42
- (4) (1 + 8)
7
47
S iy
1 1.3 1.3.5
Example 4. Find the sum of to infinity of the series — — +

24 2432 243240 7

Solution.

Proceeding as in the previous example, we get

1 ) 13 N2 135 3
S :;_(_) 2z (_) , 222 (_) .
3 \8 + 3. 8 3.4.5 \8
In order to express this in the standard binomial form, the factor 1 . 2 must be inserted in
each denominator, and two additional factors must be then inserted in each numerator to

secure that the number of factors in the numerator is the same as that in the denominator. In

order that the factors of the numerator may remain in A.P. the additional factors(which
. 1

should be the same in each term) must be — 207

3 3 1135

2

11 2 31135 3
_3_1g : (E) _ 222 (Z) 427227272 (Z)
27 277712 1.23 '\8 1.2.3.4 " \8 1.2.3.4.5 " \8

The index of x should be the same as the number of factors in the numerator.
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2 2
The series is to be multiplied by (§) .

3 3135 3 1135
v (E) _ 2727272 (Z)‘H 272727272 (3)5+
o\ TG o \g) o

35 _n(+1)(+2) 3 nO+1D)0O+2)(n+3) 4
— = - X'+
128 3! 4!

. i:_ n n(n+1) 2
" 18 1+x)™+{1l-n —2! x“}

_ 2
——a+dvee el B2 (3

-5 3
SAEH - R
8 8 128
179 -55
128 8 °

S = %(179 — 80v5).

Exercises

Find the sum to infinity of the following series:

35 1 3.5.7
(1 ) e S
1.2 "3 4.8.12
(2) 3.18 3.18.33
50 50.100 50.100.150
5 5.7 5.7.9
(3)—+—+ o
3.6 3.69 3.69.12
3 3.7 3.7.11
4) =+ +
18 18.24 18.24.30
1 58 1 5811 1
(5) —.— + — +

3642 369 43  3.6912 44
1.3 1.3.5
23(3') 2@y 2505

(6)
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1
5 10\ /s 2 1 1
Answers: 1. 373 — 3, 2. (7) ~1,3.V3-2, 4.5{8(27) /4 — 17},

2
1) /4 /3 7 23 2
5-5{(5) —g}’ 62 3V

Sum of coefficients.

If f (x) can be expanded as an ascending series in X, we can find the sum of the list

(n+1) coefficients.
Let f(x)=ap+aix+ax? +azx3+....+a,x"+.....
I—x)t=1+x+x%2+ x>+ ...

RACY)

T 1-x

=(ag+ mx + ax? +azx3+ ... tax"+...) . (1+x+ x%2+..)

. . fx
Coefficient of x™ in % =aqyt+a+axt...+a,.

Thus, to find the sum of the first (n+1) coefficients in the expansion of f (x), we have

f
only to find the coefficient of x™ of the expansion of %

Example 1. Find the sum of the coefficients of the first (r +1) term in the expansion of

1- x)_3.
Solution.
. . . ;o : (1-x)73
The required result is the coefficient of x” in the expansion of EEE—

i.e., in the expansion of (1 —x)™*

S 4.5 4.5.6 r+1)(r+2)(r+3
1.e.,1n1+4x+?x2—|—T ..... +( )(3')( )Xr

~ Sum of the (r +1) coefficients in the expansion of

(1- x)_3 S (r+1)(r-|6-2)(r+3).
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Therefore coefficient of x" = coeff.of x*"

=-3+4(-1)"

=-3+4(-1)"

If x is so small that its square and higher powers may be neglected prove that

VIFx(4-3%)°2

g 1o
PYPRYA =4 3 .(nearly)

Solution.

T (430 3/ —l
—1_1”(4 3x) 72 _ 1+ x)1/243/2 (1 — %Tx) 2gl/3 (1 + %x) 3

(8+5x) /3
_ 1 9 5x
=4(14gx+ ) (1-gx+ ) (1-5 4 )
=4 [1 +x G - g - %)] (neglecting x* and higher power of x)
—4 1%
3
2a nn+1) [ 2a \? _ (1+a\"
Show that 1 + n(m) + T (m) + ... = (1_a) .
Solution.
2a
Putm =Y.
Then LHS = 1+ + 2002 4 ..

=(1 —x)_p/q wherep=n;a=1 and§=y. Hence x =Y.

Hence LHS = (1-y)™" = (1-2%) "= (297 = (29)" —rHs

2n@2n+2) | 2n@ni2)@n+d)

2 [ n(n+1)  nm+1)(n+2)
3.6 3.6.9

3.6 3.6.9

[u=y

n
+§+

Prove that 1 + %n +

Solution.

LHS=1 +%(§) + @ @)2 ¥ .

-y

RHS=2" [1 + %(%) +$ (%)2 + ]

IO O

L.HS=R.H.S.

46 / 146



14 1.4.7
+ —_—
9. Sum to infinity the series 1 ctoot s

Solution.

1.4.7
LetS—l+ + m‘l‘ 51015

Therefore S=1 + % (%) + % (%)2 + 1:_|7 (%)3 +

=1 -x)"wherep=1;q=3 andg = % Hence x =~

5
Therefore s~ (1-2) = (2) "= (5"

. /M2 1\t 13/1\°
10. Sum to oo the series (E) +Z(§) +?(§) +

Solution.

Los= (3 5" +20) +
Therefore S = % G) + % G)z + 13_'3 G)B +
=@+ 50 0

sei=1e ()56 56 -

+

=1 -x)"wherep=1;q= 2and—=%
H -2.H s+1—(1——)/

ence x =-. Hence — = >

1 1
= (2) \[_ Hence S = "
3.7 3.7.11
11. Sum to oo the serles—+ m+ 18.24'30+ .......

Solution.
LetS= —+ o+ — 4

18.24 18.24.30
3+ R
S (0 < om0y o 0

%H?%)”“WJ

-1+ PO T )

Therefore

47/ 146



%+ (1 —%+%) =(1 fx)'p/qwherep=5;q=4and§ = %andhencex=

wlN

5
58 17 2 /4-
Therefore E + E = (1 - 5)

58 (1)5/4 17

7273 "7

72 [35/4(72)—17] _n2 [35/4(3)28—17]

~S= 5 72 5 72

_72[3%4(8)-17] _ 72 [827)"4-17
5 72 5 72

1 1
S = E(8(27) /s — 17).
Exponential Series

We will learn some series which can be summed up by exponential series. We have

proved that for all real values of x.
. x x2 x"
ex—1+i+?+---+7+..to . (1)
In particular when x = 1 , we have
1 1 1
€—1+E+Z+“'+;+..to . 2)

and when x = —1 , we have

1

-1 _ 1
€ _1_§+m

1 1
;_l_ ...(—1)n_E+.. to oo L. (3)
Changing x into - x in series (1) , we get
—x _ X x2 x"
ex_1_5+7_...+(—1)”_v-|—--~ .............. “4)

Adding (1) and (4) , we get

X —X

e —e

2

2 4
=1+’;—!+’;—!+---tooo ............... (5)

Subtracting (4) from (1) , we get

X x3 x5
:1—+?+?+"'t000 ............. (6)

X —X

e —e

2
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When x =1, series (5) and (6) become

e+e 1 1 1

> :1+5+z+tooo ............. (7)
e—e 1_1 1 1

2 —;—I—;—I—;-I—" tOOO ............. (8)

Note. It can be verified that e is an irrational number whose value lies between 2 and 3. Further the
value of e correct to four places of decimals is given by e = 2.7183. We shall use these series to

find the sums of certain series. The different methods are illustrated by the following worked

examples..

. 143 | 143+3° | 1+3+3%+3°
Example. Sum the series 1 + o + T + a0 + -+ to co.
Solution.

Let u, be the nt" term of the series and S be the sum to infinity of the series.

143433+ ... +3n1
u, = |
n.
_3"-1 1
3-1 n!
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Exercises

1 1 2 1 1 2
1. Show that (1+Z+Z+"') = (1+;+;+...)

_+_+...
+1
2. Show that ee_

(log, n)?  (log, n)* 1
3. Showthat2 {1+ —otm 4 B +.3=(n+3)

4. Show that TP === 1.

n
If the given series is Y., —q f(n). % where f (n) is a polynomial in n of degree r , we can find
constants ag, aq, ... ... a, so that

f(n)=aptain +an(n—1)...+a,n(n—1) ...(n —r + 1) and then

» X w X" . x™ . x™
n=0f (1) =20 Znmo S+ @1 Znmo gy T T Znmo oy,

=ag.e¥tax.e*+.. .. ta,.x".e*
=(ag+a;x +a,x% +....a,x") e*
3
e (41
Example 1. Sum the series Yo @t xm,

Solution.

Put (n+1)*=A+Bn+Cnn-1)+Dnn-1)n-2).
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Puttingn = 0, 1, 2 and equating the coefficients of n3, we get

A=1,B=7,C=6,D=1.
Let the sum of the series be S.

S = 280 1+7n+6n(n—1)+n(n—1)(n—2) o

n!

— yoo X" w X" o X" o X"
=20 720 oy T O X0 oyt 20 sy

Now Ypi=1+4=+ 4. =e*

n! 11 2!
Z?’o(nx—nn!_x"'%-l'xz_3| =x.e*
Z?(n{lz)! = x? +%+% =x2.¢e"
20 (nx_n3)! = x3 +xl—4!+xz—5!... =x3.¢e"

S=(1+7x+6x%+ x3)e*.

12 12422 12422432

Example 2. Sum the series — + + ... +

1! 2! 3!

Solution.

Let the n'" term of the series be u, and the sum to infinity be S.

124224+4n? _ nm+1)2n+1) 1
n! 6 n!

Then u, =

Letn(n+1)2n+1)=A+Bn+Cn(n—-1)+Dn((n-1)(n-2).

A=0,B=6,C=9,D=-2.

0w 6n+Inn-D+2n(n-1)(n-2) 1
S:Zn=1 6 ;

— (o] 1 3 [e'e] 1 1 [e] 1
= _ _t + —
L1 (n—1)!
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Exercises

1. Show that the sum to infinity of the series
2 i £ 2 i 3 — X (2
24+ TXT XA (x* +5x + 4).
2. Find the sum to infinity of the series

5.7

x3+ ...
3!

3.5 4.6
(1) =x+—x2+
1! 2!

2 3
(2) 1.2+ 23x + 3.4.5+45. "3—

3. Sum to infinity the following series:-

142 14243 1+2+3+4
(D 1+—=+ o =
4 4 4
Q-+ + 4+
1! 2! 3!

3 5 7
(3)1+Z+§+Z+”'"
@By sy
1! 2! 3! 4!
4. Show that
M5+ 432 42 4 1o 0= 13e.
1! 2! 3!

12,22 22,32 32 42

2) + + +....to 00 =27e.
1! 2! 3!
w ni-n+l
(3) Ziier = Se — 1.
Answers : 2.(1).(x> +7x + 8) €, (2). (x* + 4x + 2)e%, 3.(1).376,(2).15@ (3).e +
1,(4). 3e.
Example 1. Sum the series Y%, ot X
xamplie 1. Sum the Serics n=1 ntz

Solution.
Let the sum of the series be S.

(n%+3)(n+1) n

Then S = Z;.lo=1 (n+2)!
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Let M +3)(n+1)=A+B(n+2)+Cn+2)(n+1)+Dn+2)(n+ Dn.

We can easily find that A = =7, B=7,C=—=2and D = 1.

w —7+7(n+2)2(n+2)(n+D)+(n+2)(n+1)n
Then S = Y74 nt2)! Cx™

n

— w _X"
= =7 Znmiggy 7 2= 1(n+1)' 2T+ En- =1(-1)

n
Now Y7y m+2)! 31 + a4 + ?Jr‘ T (n+2)!

§=1ﬁ:%+2—!+2—! (nx+1)!

=1;( —1—x)
n=1 );, :%-l'%-l-.. xn”' + —e* —1
Z:f_1(nx_n1)! x+3161+xz_2'+ (nxnl)I — xeX

e —1 — _ﬁ Tipx _ 1 — _ X _ X
== (e 1—x > )+ x(e 1—x)-2(e" —1)+xe
2(x — 2x? +7x—7)wL = (3x% +2).

5 7
Example 2. Sum the series o + 3 + o +....

Solution.

(2n+3)

th —nTo)
The n*" term u, (Zn—1)!

Put2n+3=A(2n—1) +B.

Then A =1 and B =4.
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u _ 2n—-1+4
no@2n-1)

_ 2n-1 4
2n-1)! (2n-1)!

_ 1 4
(2n-2)! (2n-1)!

4

1 4
T
1 4
B =0T

1l .
23 44 75 _ 1te
!+ : !+..... »

Example 3. Prove that the infinite series I

Solution.

Let u,, be the n'" term of the series and S be the sum of the series to infinity.

1
(n+1)n—
Then u, = (_1)n+1 Tﬂ

— o ayn+l (n+1)2+1
( 1) (n+1)!

Putn? +2n+2=A+B (n+l)+ C (n+1) n.
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A=1,B=1,C=1.

1 1+(+D+m+1n
(m+1)!

—(—qyntt (1 1 1
( 1)71 ’ {(n+1)! + n! + (n—l)!}'

1
(n+1)!

oUp = (_1)n+

1
" (n=1)!

(0] 0] 1 0]
=Y, (-D" I TCO DR T C

11 1,1 4
(n+1)!_2!_3!+4!"" €

Now %%, (—1)™*.

2 (=DM %=%—%+% L=—e 141
Zﬁd_nﬁyoiw 1‘7+%':eq
S=1+e1
_ e+1
e
Exercises
1. Show that
1 £ L S =Ly —3x -3y enia? —3),
(2n—1)

o 1
(2) Zn=1 ryamr ~ 7 (43— 15¢)

2. Sum to infinity the series
(Do+o++2+...
@5+ +=+.

G r+o++=+....
5n+1 e +2_

3. Show that )7’ ont Dl 2

22 2% 26 et
4. Prove that —+ —+ —=
1! 3! 51

e? '
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1 1 1
5. Show that log, 2 — 5; (log, 2)*+ (log, 2)3...... ==

Answer : 2(1)%,(2)% (3e — 29_1),(3).i.

By equating the coefficients of like powers of x in the expansions of function of X in two
different ways, we can derive some identities. The following examples will illustrated the

method:
Example 1. By expanding (e* — 1)" in two ways or otherwise prove that
n —.Ci(n—1)"+,C,(n—2)" —...... =0 where r <n.
What is the sum of the above series when r =n?
Solution.

(e — 1" =e™ — e Dx 4

= 14+nx+

— Gt 1+(n—1)x+

(nx) +"'(n:|)r {(n— 1)x} IO (G023

r!

4G |1+ (n = 2 + 182 2 | .. {n=2x) +]

7!

Coefficient of X" in the expansion of (e* — 1)"

:%{nr —_ ncl(n — 1)r—|—nC2(n — 2)7"}
xn
7+ P — 1)Tl

x  x? xn
- (e )
n

n—1
=x”( + 2 +)
n!

. x | x2
Again (" —1)"=Q+7+5+

n

All terms in the expansion contain x" and the higher power of x.
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~ If r<n, there will be no term containing x" in the expansion.
1
o ;{nr — nCl(n - 1)r+nC2(n — Z)T} =0
ie, n" — ,Ci(n— 1D+ ,C,(n—2) ...=0
If r=n, then

%{"n —aCi(n =D+ —2)"...

. : . 1 n
= Coefficient of x™ in the expansion of x" (F + % + - )

o= Ci(n— D"+ ,C(n—2)"....=n!

Example 2. Show that if a” be the coefficient of x™ in the expansion of e€* | then

1 (1"  2r 3
g, -—{=+=+3].
ri 1! 2! 3!

Hence show that

13 23 33 _
(l)j‘l-;'f'?*‘...—se

4 4 4
(D= +2+31+ =15
1! 2! 3!
Solution.
.2 +.3 4
e =1+e" + 4 (‘33? +E

2x 3x 4x
_ x e e e
=1+e +—2! +—3! +—4! +....

_ x2 X" 1 2%x2 2"x"
—1+(1+x+?+---7+....)+;(1+2x+ Y +"' l ...)
! 3242 3rxr+ N
a(1+3x+ o + - - c )t
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. ., 11" 20 3
Hence the coefficient of x" =— + N + ETE

r! ?
Again
x2 2 43
et* = el+x+7+'~ —e. ex+7+?+...
_ x2  x3 1 2 43 ,
—e.{1+(x+3+;+---) +Z(X+Z+?+'")
+ 1 XZ 3 +
ETCR o RD LR
Coefficient of x3 = e (l + l. 2.1— + l)
30 207720 31

_e _ e
=513+ ="

We have shown that the coefficient of x3

1 (13 23
LB

Y
1 (13 23 33 Se
_<_+_+_+... _ —
31\ 1! 2! 3! 3!
13 23 33 Se
—t =
1! 2! 3! !

Similarly equating the coefficient of x* we get the second result.

Example 3. Prove that if n is a positive integer

n n(n-1) - (n—-1)(n-2) 3
Xt X =T ¥ T
_ n+1 m+1)(n+2) - m+1D)(m+2)(n+3) 3
=e*{1- T Xt 0 gz X +.....
Solution.

2 3
e? =1+Z+L+L 4+ .
1! 2! 3!
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_X\n_,_ X  n@-1D X Z_n(n—l)(n—z) X3
(1-Zyr =1 -n Ly 20D Gy 20000D) 2ys,

. n n(n-1) -5 (m-1)(n—2) 3
et e T q2.22.32

+ coe
n
= the term independent of y in the product of e¥ (1 — %) )

n .\
ey(l —ﬁ) :ex ey_x M
y . . yn

_ y-x) | y—x)? (y—x)"
=er {1+ 0 O

_ntl _\nt+2
. (y —X)n } (6% xl)! + (6% xz)! oo
=e "

The term containing y™ in the expression

(y—x)n+1 (y—x)"+2
T T
is y" ——n+f1 yr.x +—”+;!C2 yrxZ....

n
Term independent of y in e¥ (1 — s
y

xgq _ n+1C1 n+2C5 . x* _
e*{1 TR Y e}
. (n+1) n+2)(n+1)
= x — — — —
e*{1 0 x + e .

Hence the required result.
Exercises
1. Show that, if n is a positive integer

T R T G R

nx

. . . : e
2. Find the coefficient of x" in the expansion of

P being a positive integer and

find the values of
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()12 422 +3%2+....+n?
2)13+23+3%+....+n
BG)1*+ 2% +....+nt

2,1 12
3. By means of the identity e” 72 = o077 show that

el tamtortar - " Haptartas

1
. _ . . 2 xz x2
[ Left side = term independent of x ine“.e” .e

12 @+)? @)t )
(x+)~ _ X X x
e ' =1+ T + o) PTREAIREEELE

Term independent of x in the above expansion

C c C
201 4 4v2 6L3

=1+ T o + - +.....]

2 2 3 2.
Answer : 2(1).n(n+1)6(2n+1),(2).n (n4+1) ’(3).n(n+1)(6n6(-)l—9n +n 1).

Extra problems

. . 0. be*+ce?*
1. Find the coefficient of x" in (Hee% .
Solution.

a+be*+ce?* —
—n = (a + be* + ce?*)e=3*

=ae 3% + he %X 4 ce X

2 _1\n n 2 _13\n n
=a(1—%+(3;) _...+( D" (3x) +...)+b(1_@+(2x) _..._|_( D" (2x) +"')+C

n! 1! 2! n!

() | @)? (GO
(-G )

. . a+be*+ce?* . -n"
- coefficient of X" in js = [

pET: ——[a3" +b2" +c].

What is the coefficient of x" in the expansion of (1 + x)e'™ in ascending powers of x.
Solution.

(1+x)e™=(1+x)ee

_ x xZ x3 x4 xn—l X"
—e(l+x) |1+ S+ 5+ 5+ 5+ T+ |

Therefore coefficient of x" in (1 +x)e' ™ is =e E— ]
n!  (n—-1)!
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—el-+2]=21+n).

n! n! n

(log2)? = (log2)? .
Prove thatlog 2 ——"—+—-—— - =

N |-

Solution.

Putlog2 =y.

A
Therefore LH.S =y - ETR TR

— (oY _ — 1 _ alog2 _ _l:l
(e’-1)=1-¢ 1-2==

RTTE I 1
2141 6! _e—
Prove that =—5—%—=—
e+1

et
Solution.

1,
slete™)  e211-2¢
%(e—e‘l) e?-1

LHS=

S o Vi o |
(e+1)(e—1) e+1’

2
Show that ifa>1.S=1 +12#+ 1+t;-|i—a

Solution.

2 n-1 n
h 1+a+a“+-+a a
n" term T, = = '
n! nl(a—1)

a

Therefore T, = ( ) — =] e (D

1 n 1
a—1/ Ln! n!

Puttingn=1,2, 3, ... in (1) we get

T=G-5

n-(5)lE-s
=555
Adding we get

s=(EE+5+) - Grarae)]

(e -n-(e-1)=45

a-1"
142 . 14243 3
Prove that S =1 + ——= + —=> 4 ... = 2%,
2! 3! 2
Solution.
1424+
n"term T, = ——%
n!
_ n(n+l) _ n+l
2nl 2(m-1)0
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Let n+ 1 =A+B(n-1).
Puttingn=1andn=0we get A=2; B=1.

_ 24(n-1)
Therefore T, = 2D

1 1
Therefore T, ey + TR (1
Puttingn=1, 2, 3, ... in (1) we get
T] =1
T, = + 2

1
L=2+G)n

1
L=tz

i = LI i r. 1. ..
AddlngwegetS—[l AETRIETR ]+2 [1+11+2!+ ]
Cerle
= e+ze X

. Yoo n—-1 n
Find § = Zn:l (n+2)n! X
Solution.
Here the n™ term T, = nl yn
(n+2)n!
s
T

Now, letn2 — 1 =A + B(n+2) + C(n +2)(n +1).

Weget A=3,B=-3,C=1

1

__3 n_ _3 nygt.on
Therefore T, (n+2)!x (n+1)!x +n!x ...............................

Puttingn =1, 2, 3, ... in (1)we get

3 1
Tl—gx—zx+ﬁx
_3 2 3. 2,12
T2—4|x Thd +2!x
-3,3_3,3,1.3
T; 5|x 4!x +3,x
Adding we get

seifpefee]-ofesee s g

33 xt 3[x%2 | x3 x | x?
Br R TR e ] B R T

x2
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_ x(3_3 )_i 1_ X(3—3x+x2) (x2—6)
€ (x2 x+1 x2+2_e x2 + 2x2 )"

_ 2ex(x2—3x+3)+(x2—6)

2x2
292 292 242
8. Showthat£+£+&+---=27e.
1! 2! 3!
Solution.
2 1 2 1 2
n® term T, = @D _ ntD)

n! (n=1)!
letn(n+1)>=A+Bn-1)+Cn—1)n—-2)+D (- 1)(n-2)n-3)
wegetA=4;B=14;C=8;D=1.

4 14 8 1
Therefore T, = D! + Y + T + i
4
T] :I
4
Tz = ; + 14

4 14
T3:5+F+8

4 14 8
T4:§+;+i+1

Adding we get
Therefore S:4(1 +%+%+m)+14(1+%+%+...)+8(1 +%+%+...)+
(14+5+5+)

=4e +14e +8e + ¢ =27e.

Logarithmic series

B X2 12 3 123 4
log(1+x)—x—i+?x ETRE

2 3 4
X X X
=X——+t—=———+.....
2 3 4

Modification of the logarithmic series.

If —1<x<1, wehave

2 3

log(1+x):x—x7+x?—.....+(—1)""1%+... ......... (1)
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It is convenient to remember the form of the series in the case in which x is negative.

Thus
) =—x —1,2 L3
log(1 —x) X = 3X
il
ie., —10g(1—x)=x+1;x2 +1§x3 +- (2)

Adding the series (1) and (2),
1.3 1.5
log(1+x) —log(1—x) =2x + 2.7%° + Z.Ex + .

1+x x3 x5
1_x—2(x+7+?+---)

ie, log

2 4 6
log(1 +x) +log(1 -0 =—2(+ S+ + )

iyl o1y
log2=1 sts— 2t

Using the different forms of the logarithmic series we can find the sums of the certain series.
The following examples will illustrate the methods of such summation.
1 x2-1 1 x3-1

i _xt 1 1
Example 1. Show that if x>0. log x = ) + 2 r? 3 e

Solution.
2 3
x 1 x 1 x 1 1 1 1 1
== 4+ (=) += (== —_y 4 = - .
RHS. x+1 27 (x+1) 3 '(x+1) {x+1+ 2 " (x+1)?2 + 3 T (x+1)3 }
X X
=—log (1—m) + log (1—m

1 x
=—logm+logx+—1

~tog {(55) + )

=logx .
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The expansion is valid when

is always less than 1.

X 1 X
—~ | < — | < -
|x+1| l'and |x+1| L, |x+1|

1 .
When |x+—1|<1 x4+ 1]1>1,ie.,|x]|>0
When x > 0, the expansion is valid .

Example 2. Show that log V12 =1+ (5 + )7 +

Solution.

Right side expression can be written as

1 1 1 1 1 1
=+ A+ = == =+= .=
3 74 5742 7 743

@O @ @) B 5 B

1 1 1 1 1 1 1
== =t =x Al =P+ =+ =X+ ... Whenx=—
2 4 6 3 5 7 2

1, 5 1 4.1 ¢ 1 1 3 1 ¢ 1 4
=—{x — . X" +t=x i =i xt=x"+=x>+=x"+ ...
2{ +2 3 T } x{ 3 5 7 }
1 1 1+x
=— —log (1—-x%)+—1o .
2 g( ) 2x gl—x
1 1 14+ 1
" The series=—;log (1 —Z)-l-log 1—%—,since x=-.
2

1 3
——;log Z+log3
1 1 3
—;10g9—;10g Z

7loe (5)

log 12

N

=log V12.
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Example 3. If a, b, ¢ denote three consecutive integers, show that

1 1

2ac+1 3 " Rac+1)3

log, b= loge a +L loge

Solution.
T+
Rightside— logea+ logec+ loge Zac +1
2ac+1

ac+1

log (ac) + log

ac+1

=—logac .
2 g ac

= 1; log (ac + 1).
Ifa, b, ¢ denote three consecutive integers thenb =a +1 andb=c—1
~a=b-1; c=b+1.
ac=b%-1 ,ie., ac+1=D>b>

1
7 log (ac+1) = 1; log (b?) = log b.

Exercises

1. Show that
3 5
a+x 2ax 1 2ax 1 2ax
& x a’4+x2 3 a?4x2 5 a?4x?

1 1
+—=.
2x—1 3 " (2x-1)3

1
" 5(2x—1)5

. 1
2. Sum the series + -

1
3. Show that when —1 <x < 3

x3 x> 2x 1 2x 2 1 2x 3
4+ = - (=) += [
2(x + 3 + 5 ) 1-x 2 (1—x) 3 '(1—x)
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4. Show that

h? h* h®
log (x + 2h) =2log (x + h) —log (x) — {(x+h)3 + PTERTRE + SRy + }
5. Show that
1\2 1 1 1
log, (1 +Z) == D T meen?  3agrns o ©
1 1 1

=t —t—
6. Show that log, 3 =1 352 T5gd ot

. 1 1 1\1 1 1\1 . .
Y+ (=) =+ (= =)=+
7. Sum the series (1 + 2) (3 + 4) 5 (5 + 6)92 ..... to infinity.

8. Sum to infinity the series ), (%-i-l + ﬁ) x2nt (x2 <),

1 1 1
9. Prove that }.7° an_l (9n—1 + 92n_1) = Eloge 10.

a1 X _ 1 1+x x —x
Answer : 2. . log (x_l), 7.9log 3 — 12log 2, 8. ” [log — T x(e* +e )].
Series which can be summed up by the logarithmic series.

We can split the general term into partial fractions and using the result

1 1 1
log2=1— By + 3 + 7 + .... We can sum certain series. The following examples will

illustrate the method.

Example 1. Sum the series Z;.?:l (Zn—l)Zlm .

Solution.

Let S be the sum of the series and u,, be the n™ term.

1 1 1 1

2n—-1 2n 2 " 2n+1

1
Then wu, =7

11 1 . 1 1
U =—.——=+—-.=
L 792 2+2 3
11 1 1 1
u = — — — — — —
2 23 4+2 5
11 1 1 1
u P e— — — — — —
3775 T8 T 77
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Adding the last fraction of a term with the first fraction of the next term, we get

1 1 1 1 1 1 1
S=r T2t it ety
1 1 1 1 1 1 1
——;+1—E+§—Z+E—g+7—....
=—15+10g2.

7 9
+

5
. + t+...0= - 1.
Example 2. Show that 123 345 te7 00 =3log2-1

Solution.

Let S be the sum of the series and u,, be the n™ term of the series.

2n+3

Then u, Zm .

Splitting u,, into partial fractions, we get

1 1 1
u,=2.——3.2+1.
2n—1 2n 2n+1

Giving values 1,2,3, ....in u, , we have

1 1 1
Uuq —ZT—3;+1§

-
—
| =

up =2.7—-3.7+1.2

ws=2-3L1431l 31,31
2 3 4 5
1 1 1 1
—2+3(—E+§_Z+ E)
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=243 — 545 = 1)
=243 (log2—1)
=—1+3log2.

Exercises

Show that the sum of the series to infinity

1 1 1
—t—+t—+....=log2
1.2 34 36
1 1 1
2. —+—+—+....=2—log?2.
1.3 25 37 08
1 5 9 13 5
, ==+ = = —3log2.
3 1.23 345 56.7 789 2 3 log
1 5 9 3
4. + = — —log?2
234 456 6.7.8 4 08
If kis a positive integer and |x| <1, then
x2 x x2 x3 x*
e = + + + +o
Zn=1 ntk  1+k  2+k 34k 4+k
1 /xktl k42 k43
=K ( + + °°)
x k+1 k+2 k+3
1 2 4 le+1 k+2 k+3
—— {x+ Tt A E—+ 41
X

xz Xk

1 x2 xk

B 1 x? xk
——x—k{log(l—x)+x+7+....+7}

Similarly 37,5 = - i— { log (1—x) +x}

n
o X 1

2
X
n=175 = oz tleg(I-x)tx + =}

w X' 1 x?  x3
anlm——g{log(l—x)-i-x-i-T—I—?}
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Using these result we can sum certain series. The following examples will illustrate the

method.
E le 1. Sum th 'Z‘”Mx"huq
xample 1. Sum the series Q,,,—1 1D when |x .
Solution.
. on34n?4+1 . .
Split W into partial fractions.
. 1 1,3 1
We have S:Zn=1{(7’l—1)+ > z+ > .m}x”
. 1 oo X 3 @ X"
=Za={ (1= DA D S g g
® {n—Dx"=x?+2x3+3x*+..... 0
=x?2(1+2x+3x%+....0)
2
_ 2 a2 *
x* (1—x) A
oo xn_
n=17——10g(1—x).
w X' 1 x2
Y=ty = 7 tlog(l-x) +x +—}
x? 1 3 x?
S=(1_x)2—;10g(1—x)—ﬁ{10g(1—x)+x+7}.

o (_ 1)n+1 X"

Example 2. Find the sum of the series Y,;—; A DD

Solution.

1 —_—
nn+1)(n+2) B

Let S be the sum of the series

—001_1__1_ 1_1_ _1\n+1 ,.n
S=2i (2' +2'n+2)( D™ x

n n+1
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o (-1 n+l n oo 1n+1 n oo 1n+1 n

n
We have
1 2 3
o (— 1)"+ x" x x x
—=___ - = +
Z - N 5 + 3 log (1 +x)
oo(—l)n+1xn:x__ﬁ+£ :l(x__ﬁ-i-ﬁ )
1 n+1 2 3 4 ...... x 2 3 4----
1
Z;{ log (1+x) + x}
oD _x 2 6 L2 2 )
1T n42 3 4 5 o 23 4

1 x?
—x—z{log(1+x)—x+7}.

1 1 1 x?
- S =—log (1+x) —;{ — log (1+x) +x} + P { log (1+x) —x + - }

1 2 1 3 1
—Elog(l“-x)(l‘l';‘f‘;)—(z‘i‘z)

Exercises

. . . . 1 .
1. Prove that the sum of the infinite series whose n'* term is Lom 18 1—log 2.

1
n(n+1)

2. Sum the series

()Zoon+1 n

1 n(n+2)

© (n+1)
( )21 n(n+3)

n

[e} nZ
O 27 e

3. Show that
3 4 5 3
(D) 153 72322 T3az8 o~ 4logy —L
4. Show that

w 41 1 4
(1) ZT=1 27,.(21,._1) . 321‘ - log 3 3 lOg 2.
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2 3 3

1 (x X X
+§(2—+ 3 + I-I_ )

2

X X . .
=7 + e + terms in x* and higher powers of x.

1 x
Hence y = By + EYR

Exercises

e*—log (e+ex)

1. Evaluate lim,_ >

X

e*—log,(14+x)(1+2x)
5x3 )

2. Evaluate lim,

. . xe*—log (1+x
3. Find lim,_ #
X

log x
x2-3x+2’
(24x)log (14+x)+(2—x)logifl —x)

yy .
x

4. Find the limitas x = 1 of

5. Evaluate lim,_

. 3 1 2
6. Evaluate lim,,_,, (1 + =+ n—3)n .

7. Find the value, when x tends to the limit 1 of the expression
log(x/? — 1) —log(x3/? — 1).

8. Show that when x is small , log {(1 + x) 173 + 1-x) 1/3 is approximately equal
2

X
to log2 — IR

x log i +-)

9. By using the fact that (1 + xz)n =e prove that

x XN—pm _ 1 (x? x4
A+ + A -7 =2e" {1+ (S+5) .

Answer:12,2.55.3.2.4-1,5. —2 6.¢3, 7 log (3).
10 2 3 3

Extra problems.

1. Show that [aa;b] + % [aa;b ’ + % [aa;br +... = log.a — log.b.

Solution.
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Therefore LH.S =x + %xz + §x3 + -

=-log(1 —x)
(152 - 1g(2) - ()
=loga—Ilogh.
=R.H.S.
. Prove that log \/? = (2n1+1) + %(2n1+1)3 +§(2n1+1)5 4o
Solution.
Let ﬁ =X.

1
ThereforeRHS——l g(lﬂ): —log( ton +1>

—
=3log (57) =310 ()

1

—log ML
og |——-

=LH.S.

. Show that — [loglO+27 ;214+; 2321+ ] log 2.
Solution.

LHS= & [3zoglo F(B)+LE) +LE) ...]

= -[t0g1000 — 10g (1 - ;)]
[loglOOO log (125)]

——lo (1000><27)
10 99 125

= % log2'® =log2 =R.H.S.
. Sum to infinity the series (1 + %) + (l + l) (1) + (1 + l) (l) + o

Solution.
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~21og -2 log (£) =2 [1og2 - 310g (2)]

=2[log2 — 3log8 + 3log9]

N w

[log2 —9log2 + 6log3]

I
N w

[6log3 — 8log?2]

=9log3 — 12log2.

! ! 11 .1 _
5. Prove that—+ T +m+ o e
Solution.
PutX:m

Then L.H.S=x+lx2 +lx3 + e
_-log(l—x)——log(l—?)—_log — )

log( ) log(1+ ):%—21—24-%_..‘

=R.H.S.

3

_ x2 x x4 y yZ y3
6. Ify=x-—+——"+provethatx=7+"-+"+
Solution.

2 4
y=x-x7+x?—xr+-~-(i.e)y:10g(1+x)
ef=1+x

Therefore x =¢” -1 = [+ + + ]—1

2 3
Therefore x = %+ y2—1+ 3;_‘ 4o

yZ y3 xZ X3
7. Ifx=y- ?+;—---and |x| <1 show that y = x Tt

Solution.

Thusx=1-¢”
e?'=1-x

-y =log. (1 —x)
y = -log.(l —x)
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10.

2 3
Thereforey=x+%+%+ .

If log (1 — x + x°) be expanded in ascending powers of x in the form a;x + a,x” +a;x° +

prove that a; + ag + ag+........ = % log 2.
Solution.
3
log(1 —x + x*) = log [ =]

=log (1+ x*) — log (1+ x)

332 _1yn—1(,3\" 2
:[x3_(x) +....|_(1) ) +...]_[x_x_+
2 n 2

_ (_1)11—1 . (_1)371—1

Coefficient of x™" is as,

3n
_1yn-1
iy
= (" ] (1)
Puttingn =1, 2, 3, ... in (1) and adding we get
B tagtat .. =3[1— 47— ]

w N
—
Qo
Q
Y

N

. Cx-1 1 x%-1 1 x3-1
ShOWthatle>OlOgX—m+Em Em

Solution.
RHS=(25)+1(2) +3(2) +
() -1 ) -]

—log[l—xx?]—irlog[l—xlj

X

- log [xl?] + log [m

=logx
=L.H.S.

If f(x) = x+§x3 +§x5 + - where -1 <x < 1.

(1) Represent f(x) as a logarithmic function
.. 2x
(i1) Hence prove f(1+x2) =21(x)

Solution. (i) For — 1 <x <1 we have
—x- Ltz l3_Lloay

log(1 +x)=x ;XX ot +

2_1,3_1.4

= e 13 14 .
log(l—x)——x—zx 3X° =X
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11.

12.

log(1 +x) ~log (1 - %) = 2[x + 323 + 225 + |

1+x

f(x):%log [1

—X

2x
.. 2x 1 I+
i) Now, f = -log | —3=
(i) (1+x2) 2 g<1_%2>

—llo (1+x2+2x)
2 g 1+x2—-2x

1+x)2
1—x

=2 f(x).

Sum the series to infinity logze — log e + log ;¢ — log gie + ............

Solution.

logse — log o¢ + log y7¢ — log gje + ............

1 1 1 1
loge.3  log.9 log.27 log.81
1 1 1 1

B log.3 - 2log.3 = 3log.3 N 4log .3

-t _Lrpr ot
_10923[1 2+3 4+ ]

log .2

=£§7 = log,2 X logze = log;2.

Show that (1 +x)' ™ =1+x+x’ +% X’ neglecting and higher powers of x. Also find an

approximate value of (1.01)""".

Solution.
(1 +X)1+X — elog(1+x)1+x

_ e(1+x)log (14x)

~ e(1+x)(x—%x2+%x3)

1.2_1.3
:ex+2x X
21 (rr it - 2e) 4 L (et 1) L (x b a2 - Ly
2 6 2! 2 6 3! 2 6

12 13, 1.2 3 1.3
~1+x+= -x3 + + +
1+x SX°—2x 2!(x x) X
1
= l+x+x2+5x3

Put x = .01 in the result.
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(1.0 =1+ 01+ .0001+§(.000001) =1.0101005.

1,11

1
13. Prove S TRETREY,

+--=2-log2.
Solution.

Here T, =

n(2n+1)
A B
n 2n+1

T,=

WecanfindA=1;B=-2

Therefore Ty == —— (1)
Puttingn=1,2,3, ... in (1) we get
-1_2
Ti=1-3
~1_2
T2=5-5
1.2
T=3-7
Therefore S=1+%—§+%—---
1= [
=1-[log2-1]
=2-log?2
S ST S _
14. ProveS—ll2 TRy log4 -1
Solution.
— (_1\n—1 1
T ( 1) [n(n+1)]
1 1
We have n(n+l)  n - n+l
4L 1
Tn:(—l)n 1[;—m] ........................... (1)
Puttingn=1, 2, 3, ....in (1) we get
=1 1
Ti=1-3
- _1,1
= —=37+3

771146



T3:

Wl
|
PN

Therefore S=1+2(—%+§_%+...)

=1+20og2-1)

=log4-1.
1\" 1 1 1
15. Prove that log (1 + Z) =1 e T mery?  saees
Solution.
1
Put m =X
Therefore RH.S=1 S X T Xt Xt =

R (N
=(—x—%x2—%x3—---)+(1+%x+%x2+--~)
=—(x a2 453+ )k (x 452 4 5xd 4 )
=log (1 - x) - ~log(l - x)

=(1—%)log(1—x)

=(1-n-Dlog(1 - —=)

- noe(i) =g

=L.H.S.
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UNIT -1V MATRICES

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set
of ‘m’ rows, each row consisting of an ordered set of ‘n’ numbers between [ ] (or) () (or) || ||

1s called a matrix of order m xn.

A, Apyeenne a,
Ay Apyoneen. a,,
Egi| = [aij Jmxn where 1<i<m, 1<j<n.
o P,

Order of the Matrix: The number of rows and columns represents the order of the matrix. It
1s denoted by mxn, where m is number of rows and n is number of columns.

Types of Matrices:

Row Matrix: A Matrix having only one row is called a “Row Matrix”.

Eg: [1 2 3]Ix3

Column Matrix: A Matrix having only one column is called a “Column Matrix” .
1

Eg: |1
2

3x1

Null Matrix: A= [a,j lmm such that ;=0 V 1 and j. Then A 1s called a “Zero Matrix”. It is

denoted by Omxn.
Eo: Opurm 0 00
g Uax3 0 0 0
Rectangular Matrix: If A= [Clij ]mxn , and m# n then the matrix A is called a “Rectangular
Matrix”
1 -1 2], ,
Eg: 1s a 2x3 matrix
2 3 4

Square Matrix: If A= [a[j :|mxn and m = n then A is called a “Square Matrix”.

11
Eg: 1s a 2x2 matrix
2 2

Lower Triangular Matrix: A square Matrix A4, = [a,-j :|mm is said to be lower Triangular

of 4;=0 if1i<j i.e. if all the elements above the principle diagonal are zeros.

4 0 0
Eg: |5 2 0 1s a Lower triangular matrix
73 6

Upper Triangular Matrix: A square Matrix A= |:al~j ]mn 1s said to be upper triangular of

4= 01f1.>]. 1.e. all the elements below the principle diagonal are zeros.
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1 3 8
Eg: |10 4 -5 1s an Upper triangular matrix
0 0 2
Triangle Matrix: A square matrix which is either lower triangular or upper triangular is

called a triangle matrix.

Principal Diagonal of a Matrix: In a square matrix, the set of all ajj, for which 1 = j are
called principal diagonal elements. The line joining the principal diagonal elements is called
principal diagonal.

Note: Principal diagonal exists only in a square matrix.

Diagonal elements in a matrix: A= [ajj]nx, the elements ajj of A for which 1=.

1.€. a11, a2....ann are called the diagonal elements of A

1 2 3
Eg A=, 5 4 diagonal elements are 1, 5, 9
7 8 9

Diagonal Matrix: A Square Matrix is said to be diagonal matrix, if @,; =0 fori#j i.e.all

the elements except the principal diagonal elements are zeros.
Note: 1. Diagonal matrix 1s both lower and upper triangular.

2. 1f di, da....... dn are the diagonal elements in a diagonal matrix it can be

represented as diag [dl, dz,.......,dn]

30 0
Eg:A=diag (3,1,-2)= |o 1 o
0 0 -2

Scalar Matrix: A diagonal matrix whose leading diagonal elements are equal is called a

2 0 0
02 0
00 2

Unit/Identity Matrix: If A = [%] such that a;=1 for 1 = j, and a;;=0 for i+ j then A is

nxn

“Scalar Matrix”. Eg: A=

called a “Identity Matrix” or Unit matrix. It is denoted by /,,

10
Ee L=| Y. 1=lo 1
& 2700 10 °

0 0

Trace of Matrix: The sum of all the diagonal elements of a square matrix A is called Trace

- o O

of a matrix A, and is denoted by Trace A or tr A.
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a h g
Eg:A=|h b f|thentr A=atb+c

g f c
Singular & Non Singular Matrices: A square matrix A is said to be “Singular” if the
determinant of | A | =0, Otherwise A is said to be “Non-singular”.
Note: 1. Only non-singular matrices possess inverse.

2. The product of non-singular matrices 1s also non-singular.

Inverse of a Matrix: Let A be a non-singular matrix of order n if there exist a matrix B
such that AB=BA=I then B is called the inverse of A and is denoted by A™.
If inverse of a matrix exist, it is said to be invertible.
Note: 1. The necessary and sufficient condition for a square matrix to posses inverse is that
|A| # 0.
2 Every Invertible matrix has unique inverse.

3. If A, B are two invertible square matrices then AB is also invertible and

(4B) ' =B'4™
4. 47" = AdjA where detA # 0 ,
det A4

Theorem: The inverse of a Matrix if exists is Unique.

Note: 1. (A=A 2.I'=1

Theorem: If A, B are invertible matrices of the same order, then

(i). (AB)'=B'A"

(i) (A" = (A

Sub Matrix: - A matrix obtained by deleting some of the rows or columns or both from the

given matrix is called a sub matrix of the given matrix.

1 5 6 7
Eg:LetA=|g 9 190 5|-Then {8 ? 10} is a sub matrix of A obtained by deleting first
345
34 5 -1 e

row and 4" column of A.

Minor of a Matrix: Let A be an mxn matrix. The determinant of a square sub matrix of A is
called a minor of the matrix.

Note: If the order of the square sub matrix is ‘t’ then its determinant is called a minor of

order ‘t’.
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1

Eg: A= be a 4x3 matrix

Dhn = W N

1
2
3

7

(@) W NS JRS—

Here B = [g ﬂ 1s a sub-matrix of order ‘2’

|B| =2-3 =-1 is a minor of order 2

2 1 1
AndC=|3 1 2] 1S a sub-matrix of order ‘3’
5 6 7

det C = 2(7-12)-1(21-10)+(18-5) =-9

Properties of trace of a matrix: Let A and B be two square matrices and A be any scalar
Dtr (AA)= A(tr A);2) tr(A+B) =trA + trB ; 3) tr (AB) =tr(BA)

Idempotent Matrix: A square matrix A Such that A>=A then A is called “Idempotent

Matrix”.
A1 O
Eg: A [0 1
Involutary Matrix: A square matrix A such that A = I then A is called an Involutary
Matrix.
A0 1
Eg: A 1 0

Nilpotent Matrix: A square matrix A 1s said to be Nilpotent if there exists a + ve integer n

such that A"= 0 here the least n 1s called the Index of the Nilpotent Matrix.
A1 0
Eg: A [0 0
Transpose of a Matrix: The matrix obtained by interchanging rows and columns of the

given matrix A is called as transpose of the given matrix A. It is denoted by 4" or A!

P r_[1 3
Eg A [3 4] Then A [2 4]
Properties of transpose of a matrix: If A and B are two matrices and A", B’ are their

transposes then
1) (4") =4 ;2)(4+B) =4 +B"; 3) (KA)' =KA" ;4) (AB) =B"A"
Symmetric Matrix: A square matrix A is said to be symmetric if 4" = 4

If 4 :[al.j] then A" :[aﬂ.]nxn where a; =a,

nxn

g

a
Eg: |4, r 1s a symmetric matrix
g

~ & =

c
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Skew-Symmetric Matrix: A square matrix A is said to be Skew symmetric If 4" =— 4.

If 4= [alj] then A" = [aﬂ]m where a; =—a,

nxn Jt

0 a -b
Eg:|_, o | 1saskew—symmetric matrix

b —¢c 0
Note: All the principle diagonal elements of a skew symmetric matrix are always zero.
Since ajj= -a;j = a;j=0
Theorem: Every square matrix can be expressed uniquely as the sum of symmetric and

skew symmetric matrices.

Proof: Let A be a square matrix, A = %(A+A) = (A+AT+A—AT) =

N | =

%(A+AT)+%(A—AT) =P +Q, WhereP=%(A+AT); = %(A—AT)

Thus every square matrix can be expressed as a sum of two matrices.
Consider p’ = B(AJFAT)T :%(AJFAT)T = %(AT +(AT)T)=%(A+AT)=P, since P =P,
P is symmetric
Consider Q7 = F(A —AT)}T = l(A —AT)T = l(AT —(AT)T)= - l(A_Ar)= -Q
2 2 2 2
Since Q" =-0, Q is Skew-symmetric.
To prove the representation is unique: Let A= R+S — (1) be the representation, where R 1s

symmetric and S is skew symmetric. i.e. R" =R, S" =-S
Consider 4" =(R+S)T =R +8"=R-S5 —>(2)

(1)-(2)=>4-4" =2S:>S=%(A—AT)=Q
Therefore every square matrix can be expressed as a sum of a symmetric and a skew

symmetric matrix

Ex. Express the given matrix A as a sum of a symmetric and skew symmetric matrices

2 4 9
where A=|14 7 13
9 5 11
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2 14 3
Solution: 4" =|_—4 7 5

9 3 11
4 10 12 25 6
A+A" =10 14 18 :P:%(A+AT): 5 7 9 |;Pissymmetric
12 18 22 6 9 11
0 -18 6 1 0 -9 3
A-A"=[18 0 8 :>Q=E(A—AT)= 9 0 4|;0is skew—symmetric
6 -8 0 3 —4 0
2 5 6 0 -9 3
Now A=P+Q= |5 7 9 |t|9 ¢ 4
6 9 11 -3 4 0

Orthogonal Matrix: A square matrix A is said to be an Orthogonal Matrix if AAT=ATA=I,
Similarly we can prove that A=A-!; Hence A is an orthogonal matrix.
Note: 1. If A, B are orthogonal matrices, then AB and BA are orthogonal matrices.

2. Inverse and transpose of an orthogonal matrix is also an orthogonal matrix.
Result: If A, B are orthogonal matrices, each of order n then AB and BA are orthogonal
matrices.

Result: The inverse of an orthogonal matrix 1s orthogonal and its transpose 1s also orthogonal

Solved Problems :

cosd smé| .
1. Show that A = is orthogonal.

—sm @ cosd

) cosd sin @ cosd —sin 0
Sol: Given A = _ then AT=| "
—sm @ cosé sin @ cosd

Consider A AT {cos& sin 6 } {cos@ —sinﬁ}
onsider A A" =

—sin 6 cosd sin @ cosd
~ cos’ @+sin’ 0 —cos@sin f+cosfsin§| [1 0
—sin @cos@+cosfsin @  cos’O+sin’ 6 01|
.. A 1s orthogonal matrix.
-1 2 2
2. Prove that the matrix | 7> _1 2 |is orthogonal.
2 2 -1
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-1 2 2 1 2 2

Sol: GivenA=1{» _| » Then A'=1/, , ,
2 2 -1 32 2
_ ; -1 2 27 [-1 2 2 9 0 0] [1
Con31derA.A=é2 q4oall2 21 2 =5090=0
2 2 -1|12 2 -1 00 9 0
=>AAT=1
Similarly AT A =1
Hence A is orthogonal matrix
0 26 ¢
3. Determine the values of a, b, c when |4, p —(| is orthogonal.
a —-b ¢
Sol: - For orthogonal matrix AAT =1
T 0 26 ¢c||0 a a
So, AA =\, p _cllop b —bl=1
a -b c||lc —-c ¢
4b* +c*  2b7 —¢*° -2b* +¢* Lo o
26> —c¢* a*+b*+c? at-b'-c? =I= 01 0
—2b*+c* at-b*-c* at+b*+c? 0 0 1

Solving 2b%-¢? =0, a>-b%-c? =0
We getc= ++/2b a>=b+2b> =3b>
= a= +/3b

From the diagonal elements of [

4b’*+c’=1 = 4b*+2b’=1 (since c’>=2b%) = b L6

N v S _ . b
a= ++/3b iﬁ, b= \/—c +.2b N

2 31
4. Ismatrix | 4 3 1| Orthogonal?
1 9

-3

' 1 2 4 -3
Sol:-GivenA=| 4 3 1| = As1_|3 3 |
1 9
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AAT = ATA =1,

.. Matrix 1s not orthogonal.

Complex matrix: A matrix whose elements are complex numbers is called a complex
matrix.

Conjugate of a complex matrix: A matrix obtained from A on replacing its elements by the

corresponding conjugate complex numbers is called conjugate of a complex matrix. It is
denoted by A
Ifa= [ay.] ,A= [Z] , where a_l.j is the conjugate of a;; .
243 5 - |2-3i 5
Eg: If A= l | then 4= l_ )
6-7i —S5+i 6+71 —5-i

Note: If 4 and B be the conjugate matrices of A and B respectively, then

(i) (4)=A (i) A+B= A+B (iii) (KA)= K 4
Transpose conjugate of a complex matrix: Transpose of conjugate of complex matrix is
called transposed conjugate of complex matrix. It is denoted by 4% or 4" .
Note: If A°and B?be the transposed conjugates of A and B respectively, then

(i) (4°)'=A (ii) (A4+B)’ = A4 + B’

(iii) (K4)" = KA° (iv) (4B)" = 4°B°

Hermitian Matrix: A square matrix A is said to be Hermitian Matrix iff 4° = 4.

4 1430 - 4 1-3i 4 1430
Eg: A= ) then 4= ) and A%=
1-3i 7 1+3i 7 1-3i 7

Note: 1. In Hermitian matrix the principal diagonal elements are real.

2. The Hermitian matrix over the field of Real numbers is nothing but real symmetric matrix.
3. In Hermitian matrix A= [aij] , a; = a_ﬁ Vi, j.

nxn

Skew-Hermitian Matrix: A square matrix A 1s said to be Skew-Hermitian Matrix iff

A’ =-4.

3i 2+i — 32— — i -2-i
Eg: Let A= then A= d \4] =
e {—2+i —i} o {—2—i i }an ) {2—i i }

—\T
B (A) =-A - A is skew-Hermitian matrix.
Note: 1. In Skew-Hermitian matrix the principal diagonal elements are either Zero or Purely

Imaginary.
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2. The Skew- Hermitian matrix over the field of Real numbers is nothing but real

Skew - Symmetric matrix.
3. In Skew-Hermitian matrix A= [a[j] , a; = —a_ﬁ Vi, j.

Unitary Matrix: A Square matrix A is said to be unitary matrix iff

AA? = A°A=Tor A° = 4™

g l[ -4 -2-4
Eg: " "6l2-4 -4

Theoreml: Every square matrix can be uniquely expressed as a sum of Hermitian and

skew — Hermitian Matrices.

A=l(2A)=%(A+A)=%(A+A‘9+A—A9)

Proof: - Let A be a square matrix write . .
A :5(A+A9)+5(A—A‘9)i.eA =P+0

1 1
LetP:E(A+A9);Q:5(A—A9)

Consider P’ :B(Awﬁ)ﬂ :%(A+A6)9 = (A+A4°)=P

Le. P’ = P, P is Hermitian matrix.

1 1 17 ’ 1 4 1 4
(A=A | =2 (A= A) ==~ (4 A°)=—
0 [2< )} (4= 4)= = (-4 =0
le 0’ =—0,0 is skew — Hermitian matrix.

Thus every square matrix can be expressed as a sum of Hermitian & Skew Hermitian

matrices.

To prove such representation is unique:
Let A = R+S------- (1) be another representation of A where R i1s Hermitian matrix &

S 1s skew — Hermitian matrix.
~R=R’,8"=-S
Consider 4° =(R+8)’ =R +S°=R-S—.1le A’=R—4————— )
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()+(2)=> 4+4° :2RieR:%(A+A9):P
0 . 1 P
(1)_(2)314—14 =2Sl€S:§(A_A ):Q

Thus every square matrix can be uniquely expressed as a sum of Hermitian & skew

Hermitian matrices.

Solved Problems :

3 T-4i -245i
1) IfA=|7.4 2 3+; | then show that A is Hermitian and iA is skew-

-2-5 3-i 4
Hermitian.

3 7—4i —-2+5i
Sol: Given A=| 744; -2 3+; | then
-2-5i 3-i 4

3 7440 2-5i 3 T-4i 2450
— —T
A=| 7-4 23— |[And(4) =) 744 2 34
—2+50 3+i 4 -2-5 3-i 4

—\T
A= (A) Hence A is Hermitian matrix.

Let B=1A

. 3 A+Ti —5-2i

LeB= 47 o 143
5-2i 1+3i 4

then

3i  4-Ti —5+2i
B=|-4-7i 2i —1-3i
5+2i 1-3i  —4i

=3 AT 5421 3 4+ —5-2i

—\T

(B) =| 4-7i 20 1=3i| =(=1)\-4+7i -2 -1+3i|=-B
~5+2i —-1-3i —4i 5-2i 1430 4

—\T
- (B) =B
.. B=1A 1s a skew Hermitian matrix.

2). If A and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix.

Sol: Given A and B are Hermitan matrices

< (4) =4 And (B) =Brrrrereees 1)
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Now (4B~ BA) =(4B-BA)

(45-B4)

-~ (B) ~(B4) = (B) (4] ~(4) ()
= BA- AB (By (1))
= —(4B-BA)

Hence AB-BA i1s a skew-Hemitian matrix.

a+ic -b+id

3). Show that A={ } is unitary if and only if a?>+b?+c¢2+d?=1

b+id a-ic

. a+ic —-b+id
Sol: Given A=

b+id a-ic

Then Z:[a—lc —b—ldj|

b—id a-+ic

Hence A° =(Z)T ={ a—ic b—id}

—-b—id a+ic

-b—id a+ic

'AAg_a+ic —-b+id | a—-ic b-id
N |\b+id a-ic

0 a+b+ct+d?

:[a2+b2+cz+d2 0 j

. AA’ =1 ifand only if @® +b* +¢* +d* =1

0 1+2i
—1+2i 0

1 0 0 1+2i
Sol: we have 1 — 4= - )
0 1 —-1+2i 0

1 —1-2i
:{ } And

4)Given that A={ } , show that (1 - A)([ + A)fl is a unitary matrix.

1-2i 1

1 0 0 1+2i
I+A= +
{0 J {—1+2i 0 }
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o1 142
—1+2i 1

. 1 {1 —1—21}
LI+ AT =

T4 1) 1-2 1

1 -1-2i
T6l1-2i 1

Let B=(I—ANI+4)"

o A[ 1 12T 1 2] af1e(-20(-1-20) —1-2i-1-2i
C6|1-2i 1 1-2i 1 | 6] 1-2i+1-2i  (-1-2i)(1-2i)+1

1[ -4 -2-4i
6|2-4i -4

— [ -4 244 —r 1] -4 2+4i
Now B=— . and (B) =— .
6|2+4i 4 6|2+4 4

B(E)T_l 4 2-41[ -4 2+4i
36|2-4i -4 ||-2+4i -4

:L{% 0}:{1 O}:[

36| 0 36 0 1

(3 -5

1.e. B is unitary matrix.

< (1= A)I + A)" is a unitary matrix.

5) Show that the inverse of a unitary matrix is unitary.

Sol: Let A be a unitary matrix. Then 44° =1

-1

ie (AA") ="
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(L) 4" =1
(4 4t =1

Thus A~ is unitary.

Eigen Values and Eigen vectors:

Let A= [%] be a square Matrix. Suppose the linear transformation Y = AX transforms X

nxn

into a scalar multiple of itself 1.e. AX =Y = A X, Then the unknown scalar 4 1s known as an
“Eigen value” of the Matrix A and the corresponding non-zero vector X is known as “Eigen
Vector” of A. Corresponding to Eigen value 4. Thus the Eigen values (or) characteristic
values (or) proper values (or) latent roots are scalars 4 which satisfy the equation.
AX=AXforX#0, AX-AX=0=>(4-A))X =0

Which represents a system of ‘n’ homogeneous equations in ‘n’ variables X X2, ----, Xn this

system of equations has non-trivial solutions If the coefficient matrix (A- A1) is singular i.e.

Uy Gy — = — 4y,

Uy Ay — = = Oy,
|A_i[|:0 :> — — - = = — :0

anl an2 -0 T annfﬂy

Expansion of the determinant is (~1)'A" + KA"™" +K,A"* +-——-+K  is the n" degree of

a polynomial P(A) which is known as “Characteristic Polynomial”. Of A

n
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(D)2 + KA + KA +————+K,=0 is known as “Characteristic Equation”. Thus
the Eigen values of a square Matrix A are the roots of the characteristic equation.

Eg: Let A= [i ;}] X= [_11]

e F e e W R R

Here Characteristic vector of A is [ 1 ] and Characteristic root of A is “1”.

-1
Eigen Value: The roots of the characteristic equation are called Eigen values or characteristic

roots or latent roots or proper values.

Eigen Vector: Let A= [%] be a Matrix of order n. A non-zero vector X is said to be a

characteristic vector (or) Eigen vector of A if there exists a scalar A such that AX =4 X.
Method of finding the Eigen vectors of a matrix.
Let A=[ajj] be a nxn matrix. Let X be an eigen vector of A corresponding to the eigen value A.
Then by definition AX =2AX.
= AX =AMX
= AX-AX=0
> (A-ADX =0 ------- (1)
This is a homogeneous system of n equations in n unknowns.
Will have a non-zero solution X if and only |A-Al| =0
e A-\Alis called characteristic matrix of A
e |A-Al|is a polynomial in A of degree n and is called the characteristic polynomial of A
e |A-A=0 is called the characteristic equation
e Solving characteristic equation of A, we get the roots , 4; 4, A3 ....... 4, These are
called the characteristic roots or eigen values of the matrix.
e Corresponding to each one of these n eigen values, we can find the characteristic
vectors.

Procedure to find Eigen values and Eigen vectors

a1 A1 «eveen ain

az1 Q2. Uon . .
Let A= be a given matrix

an1 App wov ven- Ann

Characteristic matrix of Ais A — Al
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an2 ann _/1

Then the characteristic polynomial is |4 — Al

a“-—j, a,, . a,,
say¢(/1):|14_ﬂ|: a,, ay—A .. a,,
anl an2 a,m -1

The characteristic equation is |A-Al| = 0 we solve the @(A) = |A — Al| = 0, we get n roots,
these are called eigen values or latent values or proper values.
Let each one of these eigen values say A their eigen vector X corresponding the given value A
is obtained by solving Homogeneous system

a,-A a, - q, X, 0

0 .. .. .
= and determining the non-trivial solution.

Solved Problems

1. Find the eigen values and the corresponding eigen vectors of [g _24]

Sol: LetA= [g _24]

8—-2 —4]

Characteristic matrix = [A — AI] = [ 5 )

Characteristic equation is |4 — M|=0

- |8;7\ —4 1 _ g

2-Al
B8-0D2-1)+8=0
= 16+2A2—-10A+8=0
= A2 —-10A+24=0
=(A-6)QA-4)=0

= A = 6,4 are eigen values of A
. 8—A =471 % _
Consider the system [ ) 92, (xz) =0

Eigen vector corresponding to A = 4
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Put A = 4 in the above system, we get (42} :g) (2) = (g)

ﬁ4x1—4x2=0———(1) 2x1—2X2=0———(2)
from (1)and (2)we have x; = x,

Letx1= &

Eigen vector is = =a
X, a 1

[ﬂ is a Eigen vector of matrix A, corresponding eigen value 1 = 4

Eigen Vector corresponding to A = 6

put A = 6 in the above system, we get (g :j) (2) _ (8)

=>2x1—4x2:0———(1) 2x1_4x2:O___(2)
from (1) and (2) we have x1 = 2x»

Let x, =a=x, =2«

Eigen vector = =
a 1

[ﬂ is eigen vector of matrix A corresponding eigen value 1 = 6

2
2. Find the eigen values and the corresponding eigen vectors of matrix [0
1
2 0 1
Sol: LetA=]0 2 0
1 0 2
The characteristic equation 1s |A-AI|=0
2—A 0 1
e [A-All=| 0 2—-2 0 |=0
1 0 2—A
=02-02-2D*-0+[-2-M]=0
=2-0)3—A-2)=0
= A-2[-(A—-2)?2-1]=0
= A—-2[-A2+41-3]=0
=2A-2)A-3)A-1)=0
= A=1,2,3

The eigen values of A1s 1, 2, 3.
For finding eigen vector the systemis (A —A)X =0

2—2A 0 1 X1 0
= 0 2—2A 0 X21 =10
1 0 2 =M 1X3 0
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Eigen vector corresponding toA = 1

1 0 171 [* 0
0 1 Of[*2(=|0
1 0 111x3 0

X1 +x3=0
x, =0
X1 +x3=0
X1 = —Xx3,%x, =0
Let x; =«
S>x=—a x=0, x3=a
Xy —a

2= (2]
| x

O is Eigen vector
[ 1

Eigen vector corresponding to A = 2

0 0 11[* 0
0 0 Of [*2=10
1 0 0llLx3 0

Here x; = 0 and x; = 0 and we can take any arbitary value x, i.e x, = a (say)

2] [el=<ll

Eigen vector is [1]

Eigen vector corresponding toA = 3

o

_X1+X3=O

—Xy = 0
X1 — X3 = 0
here by solving we get x; = x3,x, = 0 say x3 =X

X=X, x,=0 ,x3=X

b o 1
x, |=|0|=c|0
X, a 1

95 /146



1
Eigen vector is [0]

1
3 -6 2
3. Find the Eigen values and Eigen vectors of the matrix is -6 7 -4
2 4 3
8 —6 2
Sol: Let 4=|-6 7 -4
2 -4 3
8-1 -6 2
Consider characteristic equation is |A - Al | =0 le.| -6 7-4 -4 (=0
2 -4 3-1

=B-1)[(7-2)(3-2)—(16) |+6[(-6)(3—2)+8]+2[24-2(7-1)]=0
= (8—1)[21-74-34+4>—16 |+ 6[-18+64+8]+2[24-14+21]=0

= (8-1)[ 4> —10A-5]+6[64-10]+2[10+24]=0

=817 —804—40— 2% +104° + 51 +364—60+20+41=0

= -7 +181> -451=0

= A[-A>+181-45]=0

=A1=0 (OR) —A*+181-45=0
= 1=0, A=3, A=15
Eigen Values A =0,3,15

Case (1): If A=0

8 —6 2
-6 7 —4|1X=0
2 -4 3
(8 —6 21][*1 0
-6 7 —4(|X2| =10
L2 —4 311X3 0
= 8x;, —6x, +2x; =0————(1)
—6x,+7x, —4x;, =0————(2)
2x, —4x, +3x, =0————-(3)
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Consider (2) & (3)

X Xy X3

-6 7 —4
2 -4 3
N - S SRR A
21-16 —-18+8 24-14
X _ X X
S T 100
=>x =k, x,=2k, x,=2k
X, k 1
Eigen Vectoris | x, |=| 2k |[=k| 2
b 2k 2

Case (i1): If A =3
[8—21 -6 2

= 5x, —6x, +2x;, =0——————
—6x, +4x, —4x;, =0—————
2x,—4x,+0=0———————
Consider (2) & (3)
X X> X3
6 4 —4
2 —4 O
Y TX %
0—-16 0+8 24-8
M X X
—16 8 16
S W N R S
—2 1 2
X
:>—12=k, -x, =k, x,=2k
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X, —2k —2

Eigen Vectoris | X2 | = —k |=k| —1
X, 2k 2

Case (i11): If A =15

-7 -6 2]
-6 -8 —4 (x=0
2 -4 -12

= —7x, +(—6x,)+2x; =0————(1)
—6x, —8x, —4x;, =0————— 2)
2x, —4x, —12x;,=0————— 3)
Consider (2) & (3)
X X X
6 -8 —4
2 -4 -12
= xl = _xz = x3 :k
96-16 72+8 24+16
A _TH_ %
80 80 40
Dok, 2op, Bk
2 2 1
=>x, =2k, x,=2k, x;=k
X, 2k 2
Eigen Vectoris | x, |=| -2k |=| -2 |k
b k 1

4. Find the Eigen values and the corresponding Eigen vectors of the matrix.

-2 2 3
2 1 -6
-1 -2 -0
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_ -2 2 =3
Sol: Let , _| 5 | _g

-1 -2 -0

The characteristic equation of A 1s |A —Al | =0 1ie. 2 1-4 —6/=0

=(—2-A)-2(1-a)-12]-2[-22-6]-3[2(-2)+(1—-A)]=0
= A +A2°>—-2112-45=0
= (A+3)(A+3)(1-5)=0
— 1=-3,-3,5
The Eigen values are -3,-3, and 5
Case (1): If A= -3

2+3 2 3 x 0
Weget| 2 143 -6 ||x,|=|0

-1 -2 0+43{|x;| |0

1 2 -=3/0

The augment matrix of the systemis | 2 4 —6(0
-1 =2 310

I 2 =30
Performing R, —2R,,R,+ R ,weget [0 0 0|0
00 0/0

Hence we have x, +2x, —3xy =0=x, =—-2x, +3x,

Thus taking x, =k, and x, =k,, we get x, =2k, +3k,;x, =k;;x; =k,

X, -2 3
Hence | x, |=k,| 1 |+k,|0
X, 0 1
-2 3
So| 1 |and| 0 |are the Eigen vectors corresponding to A =-3
0 1

Case (i1): If A =5

=7 2 3\(x 0
Weget| 2 -4 —6|x, =0
-1 -2 -5)\x 0
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= =T7x,+2x, =3x, =0————(1)

2x, —4x, —6x;, =0-———(2)
—x, —2x, = 5x,=0—-———(3)
Consider (2) & (3)
X Xy X5
2 —4 —6
-1 —2 =5
= ! = % = 3 :k3
20-12 -10-6 -4-4
M_TH TS
8 -16 -8 °
M_ TN Th
1 2 -1
X, 1
FEigenvectoris| x, |=| -2 |k,
X, -1

5. Find the Eigen values and Eigen vectors of the matrix A and it’s inverse where

1 3 4
A=|0 2 5
0 0 3

1 3 4

Sol: Given A=[0 2 5

0 0 3

The characteristic equation of “A” is given by ‘A — Al ‘ =0

-4 3 4
=0 2-4 5 |=0
0 0 3-4
= (1—/1)(2—/1)(3—/1) =0
=>A=1,2,3 ie EigenValuesarel 2,3
Note: Inupper A® (or) Lower A" of a square matrix the Eigen values of a diagonal matrix

are just the diagonal elements of the matrix.

Case (1): If A=1
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2(A-Al)x=0

-2 3 4 7[x] Jo
=/ 0 2-2 5 |x|=/0
0 0 3-illx]| |0

je)
(OS]
S

X, 0
=0 1 5| x,|=|0
0 0 2| x 0

=3x,+4x, =0, x, +5x,=0,2x, =0 =x,=k;x,=0,x,=0

X, k, 1
X=|x,|=|0]=|0|k
X, 0 0

Case (11): If A =2
+1-4 3 4 X, 0
= 0 2-4 5 ||x,|=|0
0 0 3= x 0

-1 3 41[x] [0
=0 0 5|x|=]0
0 0 1|lx] |0
-1 3 4| x
=10 0 5(x,(=0
0 0 1]nx 0

= =X, +3x, +4x; =0;5x, =0;x =0

= —x, +3k+4(0)=0=> —x, +3k =0=> x, =3k

X, 3k 3
X=|x,|=| k |=k|1
X, 0 0

Case (i11): If A =3
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| 0

2 3 4][x] [0
=0 -1 5|x/|=l0
0 0 ofx| |0

-2 3 4 I x] [0
=/ 0 2-2 5 |x|=/0
0 3-Ax]| |0

= —2x,+3x, +4x, =0; —x, +5x;, =0; x; =0
Let x,=k

= —Xx, +5x, =0=x, =5k

and —2x, +3x, +4k =0= 2x, +15k+4k =0

= 2x, +19x=0= x, =%k

X, Sk 5
X, k 1
Note: Eigen Val fA'! L1 1z'el1 ! d the Ei t fA"
ote: E1gen values o arc —,—,— L.€l,—,— an € p1gen vectors o are same as
& A3 8

Eigen vectors of the matrix A

6. Determine the Eigen values and Eigen vectors of

B 2_1 B 8 —4
B=2A4"——A+3] where A=
2 2 2

8 4
Sol : — Given thatB:2A—lA+3 = A=
2 2 2

5 8 418 —4 56 -40
we have A~ = AA= -
2 212 2 20 4
_ 2 1
B=24 /6A+3I
{56 —40} 1[8 —4} {1 0}
=2 —— +3
20 4 212 2 0 1
B 112 80 4 -2 N 30
140 -8 |1 1] ]0 3
B 111 -78
139 -6
Characteristic equation of B is |B —Al | =0
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111-4  -78

‘ 39 —-6-1

ie. = A7 +1051-2376=0

= (1-33)(1-72)=0
=>A=33 or 72

‘:o

Eigen Values of B are 33 and 72.
Case (1): If A=33

111-2 -78
= =0
39 —-6-41

78 -781[x, ] [0
- =
39 -39 x,| |0
= 39x, - 78x, =0 = x, =2x,
N _X
—=—==k(sa
5 =7 " Kbaw)

MEi
= =| |k
X, 1
Case (11): If A=72
[111—-4 —78 _o
39 —6-A4]

[111—-72 —78
= X =0
. 39 —6——72}

39 —78
= X =0
39 -—78

39 —7870[x 1 [0
j— =
139 78| x,| |0

= 39x, -78x, =0=x, =2x,

—

X _ X
= —=—=k(sa
E (say)

Properties of Eigen Values:
Theorem 1: The sum of the eigen values of a square matrix 1s equal to its trace and product
of the eigen values is equal to its determinant.

Proof: Characteristic equation of A is |A-AI|=0
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. a a,—A - a ) )
ie. 2 2 *  lexpanding this we get

G, - a,-A
(a,, —2)(ay, —2)--(a,, —A)—ay, (a polynomial of degree n — 2)+ a3 (a polynomial of degree n
2)+...=0

= (—1)”[ "—(ay +ay +....+a, ) +a polynomial of degree(n— 2)]= 0

()" A" +(=1)" (Trace A) A" +a polmomial of degree(n—2)in A =0

If A1, A, ..... A, are the roots of this equation

(-1)"™1Tr(4)
(-nn

Further |A —Al| = (—=1)"A" + ---. +a,

put A = 0 then |A| = a,

D™\ +a, A" T+a, LA"2+ +a,=0
(=D"aq

o

sum of the roots = =Tr(A4)s

Product of the roots =

but ay = |A| = detA
Hence the result

Theorem 2: If & is an eigen value of A corresponding to the eigen vector X, then A™ is eigen

value A" corresponding to the eigen vector X.
Proof: Since % is an eigen value of A corresponding to the eigen value X, we have
9. CI S E—— (1)
Pre multiply (1) by A, A(AX) = A(1X)
(AA)X = (AX)
AXX=2(3X)
A?X= XX
72 is eigen value of A2 with X itself as the corresponding eigen vector. Thus the
theorm 1s true for n=2
Let we assume it is true forn =k
ie. AKX =18 (2)
Premultiplying (2) by A, we get
A(AKX) = A(RKX)
(AAR)X= 2K(AX)= 2K(1X)
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AK+ 1 X= ;-'._K+ 1 X

K+1

11 s eigen value of A% with X itself as the corresponding eigen vector.

Thus, by Mathematical induction. A" is an eigen value of A™
Theorem 3: A Square matrix A and its transpose AT have the same eigen values.
Proof: We have (A- 2AI)T= AT- A1"
=AT- 21
I(A- 2D)T|=|AT- 2] (or)
(A= AT=IAT- 1) | |47|= 4]
|A- 21|=0 if and only if [AT- AT|=0
Hence the theorem.
Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A"'B and
B Al have same eigen values.
Proof: Given A is invertble i.e, A exist
We know that if A and P are the square matrices of order n such that P is non-singular
then A and P! AP have the same eigen values.
Taking A=B A™'and P=A, we have
B A'and A1 (B A™') A have the same eigen values
ie., B Al and (A" B)( A! A) have the same eigen values
ie., B A and (A"! B)I have the same eigen values
ie.,.B A and A"' B have the same eigen values
Theorem 5: If A, A,,........... A, are the eigen values of a matrix A then k A1, k A2, .....k A4

are the eigen value of the matrix KA, where K is a non-zero scalar.
Proof: Let A be a square matrix of order n. Then [KA- 2KI| = |[K (A- A)| = K" |A- Al
Since K0, therefore [KA- 2KI| = 0 if and only if |4 — 4| =0

ie.,KAlisaneigenvalueof KA<if Adis aneigenvalueof A

Thus k 21,k A2 ... k Ay are the eigen values of the matrix KA if
A1, 22... A, are the eigen values of the matrix A
Theorem 6: If i is an eigen values of the matrix A then A+k is an eigen value of the matrix
A+KI
Proof: Let . be an eigen value of A and X the corresponding eigen vector. Then by definition
AX=1X
Now (A+KI) X
=AX+IKX =X + KX
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= O+K) X

Atk is an eigen value of the matrix A+KI.

Theorem 7: If 21, #»... A,are the eigen values of A, then 41— K, % —K, ... 2,—K,
aretheeigen values of thematrix (A — KI), where K is a non — zero scalar
Proof: Since 24, 2, ... A, are the eigen values of A.

The characteristic polynomial of A is

A= A=(h— 2 (-2 .. (ha ) 1

Thus the characteristic polynomial of A-KI is
I(A —KI)— 2| = |A — (k+ )|

= [ M- K] 2= AHK) e [ Aa-( AK) .
=[ M-K)-M)][ (A2-K)-A]ceooiiiiiiiiiiiienn [(Aa-K)-A .
Which shows that the eigen values of A-Klare 4; — K. A4, — K, ........A, — K

Theorem 8: If 2,, A, ... A, are the eigen values of A, find the eigen values of the matrix
(A— D)7
Proof: First we will find the eigen values of the matrix A- AI
Since A4, A, ... A, are the eigen values of A
The characteristics polynomial is
A =0y —K) (g —K) oo (A, —K) ——— ——— (1) where K is scalar
The characteristic polynomial of the matrix (A- AI) is
|A- AI-KI| = |[A-( A+K)]|
= = A+ K] o — A+ K)] o [ 2 —(34K)]
= [Oq =2 = K)] [ =) = K] e[ O — 1) =K))]
Which shows that eigen values of (A- ) are 2, — A, (A, —A) ... 2, — 2
We know that if the eigen values of A are A, A, ... A, then the eigen values of A%are

22,22 .....22 Thus eigen values of (4—Al)* are(4 —A)*,(4, = A)*,...(4, — 1)

Theorem 9: If % is an eigen value of a non-singular matrix A corresponding to the eigen
vector X, then 7! is an eigen value of A and corresponding eigen vector X itself.
Proof: Since A is non-singular and product of the eigen values is equal to |A|, it follows that
none of the eigen values of A 1s 0.

If A is an eigen value of the non-singular matrix A and X is the corresponding eigen

vector 240 and AX= AX.
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premultiplying this with 4!, we get A7'(4X) = 47'( 2X)
SA' DX =A4"'X=IX=24"X
X=X =47 X=X (A#0)
Hence 4'is an eigen value of 4™
Theorem 10: If A is an eigen value of a non-singular matrix A, thenli;| is an Eigen value of

the matrix AdjA.

Proof: Since % is an eigen value of a non-singular matrix, therefore A # 0

Also % is an eigen value of A implies that there exists a non-zero vector X such that
AX = AX - (1)

= (adj A)AX = (Adj A)(AX)

= [(adj A)A]X = A(adj A)X

= lalzx = 2 (adj DX [ (adjid) A = |41

:HXz(ade)Xor(ade)X:MX
A A

Since X 1s a non — zero vector, therefore the relation (1)

Y|
1t 1s clear that 7 1s an eigen value of the matrix Adj A

Theorem 11: If A is an eigen value of an orthogonal matrix A, then % is also an Eigen value 4
Proof: We know that if & is an eigen value of a matrix A, then } is an eigen value of 47!
Since A is an orthogonal matrix, therefore 47! = 4!
" % is an eigen value of A*

But the matrices A and A' have the same eigen values, since the determinants |A- 2I]|
and | A4'- 2I] are same.
Hence % is also an eigen value of A.
Theorem 12: If % is eigen value of A then prove that the eigen value of B = apA*+a;A+axl is
ao A>+ay Map
Proof: If X be the eigen vector corresponding to the eigen valuek, then AX = X --- (1)

Premultiplying by A on both sides
= A(AX) = A(X)
= A7% = AAX) =2(X) = A*X

This shows that A*is an eigen value of A2
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We have B = agA’+aiA+asl
S BX = a0A%aiA+a]) X
= apA? X+aiAX+ar X
= aoh? X+aj AX+a,X = (aph? +a; A+az ) X
(aph? +a; A+ay ) is an eigen value of B and the corresponding eigen vector of B is X.

Theorem 13: Suppose that A and P be square matrices of order n such that P is non singular.
Then A and P'AP have the same eigen values.
Proof: Consider the characteristic equation of P'AP
Itis | (P'AP)-M| = | P'AP-AP'IP| ([ = P'P)
=[P (A-AD) P| = | P! | |A-AT| [P
= |A-M| since [P | |P| =1
Thus the characteristic polynomials of P'AP and A are same. Hence the eigen values of
P'AP and A are same.
Corollary 1: If A and B are square matrices such that A is non-singular, then A"'B and BA™!
have the same eigen values.
Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have
the same eigen values.

Theorem 14: The eigen values of a triangular matrix are just the diagonal elements of the

matrix.
ay Ay ... a,
0 ay... a,, ' .
Proof: Let A = be a triangular matrix of order n
0 0. a,,

The characteristic equation of A is |A- AI|=0

By1-3  Gqg e iy
0 e

e, .. ... |70
0 D"""' a?’!."'.—:"«.

1e, (a11- &) (a2- ) ..... (amn- A)=0

= A=ai,an,.... am

Hence the eigen values of A are aj1, a22,.... ann Which are just the diagonal elements of A.
Note: Similarly we can show that the eigen values of a diagonal matrix are just the diagonal
elements of the matrix.

Theorem 15: The eigen values of a real symmetric matrix are always real.
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Proof: Let % be an eigen value of a real symmetric matrix A and Let X be the corresponding
eigen vector then AX=AX — — — —(1)

X

“‘-I

Take the conjugate AX =

Taking the transpose X~ (4)" = A X"

Since A =Aand AT = A, we have KT A=1X"T

Post multiplying by X, we get 7 AX = AX X ()
Premultiplying (1) with XT , we get X AX = AX X ------ (3)
() —(3)gives (1-2)X X=0but ¥7¥ = 0= 2-2=0

— 1 - A= Ais real. Hence the result follows
Theorem 16: For a real symmetric matrix, the eigen vectors corresponding to two distinct
eigen values are orthogonal.
Proof: Let A1, A2 be eigen values of a symmetric matrix A and let X, Xz be the
corresponding eigen vectors.
Let A1 # A2. We want to show that X; is orthogonal to Xz (i.e., X1 X, = 0)
Sice X, X» are eigen values of A corresponding to the eigen values A1, A> we have
AXi1= Xy - (1) AXo =Xy —-—--—-- (2)
Premultiply (1) by x7
= XTAX, = A, X1X,
Taking transpose to above, we have
= XA ) =2x](x])
ie, X]AX, = A, X] X jmmmmmee 3)s
Premultiplying (2) by X7, we get X] AX, = A, X[ %, — — — — — (4)
Hence from (3) and (4) we get
(A, —A)x[x, =0
= X{X,=0
(o Iy # 20)
X, isorthogonal to X,
Note: If A is an eigen value of A and f(A) is any polynomial in A, then the eigen value of
f(A) is (V) .
Theorem17: The Eigen values of a Hermitian matrix are real.

Proof: Let A be Hermitian matrix. If X be the Eigen vector corresponding to the eigen value

A of A, then AX = 1X (1)
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Pre multiplying both sides of (1) by X? ,we get
XPAX =2X°X - )

Taking conjugate transpose of both sides of (2)

1

We get (X°4x) =(2X°x)’

ie XA (x?) =2x°(x* Y} (4BCY = "B’ A° and (KAY =K A’]

(or) X’A°X =AX°X [ (x?) =x,(4) = A} ...... 3)
From (2) and (3), we have
AX°X =AX°X
ie (A-2)X'X=0=4-2=0
:M.:/_%('.'XHX::O)
. Hence A isreal.
Note: The Eigen values of a real symmetric are all real
Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or)
Zero
Proof: Let A be the skew-Hermitian matrix
If X be the Eigen vector corresponding to the Eigen value A of A, then
AX = /IX(or)(iA)X = (iﬂ,)X
From this it follows that i4 1s an Eigen value of 1A
Which is Hermitian (since A is skew-hermitian)
A =4
Now (id) =id® =—=id’ =—i(- A)=id
Hence i 1sreal. Therefore 4 must be either
Zero or purely imaginary.

Hence the Eigen values of skew-Hermitian matrix are purely imaginary or zero
Theorem 18: The Eigen values of an unitary matrix have absolute value 1.
Proof: Let A be a square unitary matrix whose Eigen value is A4 with corresponding eigen
vector X

= AX=1X —(1)

— AX=IX =X A =ix7 —(2)
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—\T
Since A is unitary, we have (A) A=1-(3)

——=T

(1) and (2) given X 4 (AX)=Z/1X X
ie X X=AAX X From(3)
= X x(1-42)=0
Since }TX # 0 ,we must have 1—-11=0
= Ai=1
Since |A|= |/1_|
We must have |4|=1

Note 1: From the above theorem, we have “The characteristic root of an orthogonal matrix 1s
of unit modulus”.
2. The only real eigen values of unitary matrix and orthogonal matrix can be + 1

Theorem 19: Prove that transpose of a unitary matrix is unitary.

Proof: Let A be a unitary matrix, then 4.4° = 4° A=1
where A’ is the transposed conjugate of A.
o (a4) =(4%4) =(1)'
o (447) =(a%4) =(1)
= (A7) A" =4"(4°) =1
= (A A =47 (A7) =1

T . . .
Hence A’ is a unitary matrix.
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Solved Problems:

1 2 3
1. Forthe matrix 4=|0 3 2 | find the Eigen values of 34> +54> —6A4+21
0 0 =2

-4 2 -3
Sol: The Characteristic equation of A is ‘A - /U‘ =0ie. |0 3-12 2 |=0

=(1-2)(3-4)(-2-1) =0

.. Eigen values are 1, 3,-2.

If A is the Eigen value of A. and F (A) is the polynomial in A then the Eigen value of
f(A)isf(A)

Let f(A) =34 +54°-64+21

=~ Eigen Value of f (A) are f (1), £(-2), f(3)

f(1)=3+5-6+2=4

f(-2) = 3(-8)+5(4)-6(-2)+2 = -24+20+12+2 = 10

£(3)=3(27)+5(9)+6(3)+2 = 81+45-18+2 =110

The Eigen values of f (a) are f (A1) =4, 10,110

2. Find the eigen values and eigen vectors of the matrix A and its inverse, where

1 3 4
A=|0 2 &5
0 0 3
1 3 4
Sol: Given A= (0 2 5
0 0 3
The characteristic equation of A 1s given by |A-AI| =0
1—4 3 4
= 0 2—4 5 |=0
0 0 3-4

= (1-Al2-HE-D]=0
= i4i=1,2,3
Charecetstic roots are 1, 2, 3.

Case (i): If A =1
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o=

For A =1, becomes {D

-

=
2 W

= 3x, T 4x;, =0
X, + 5%, =0
2x, =0

=025 0ad x, =«

1

a
X =|0]=2]0 |is the solution where « is arbritary constant
0

0

1

- X'=| 01 is the eigen vector corresponding to A =1

0

Case (1): If A =2

—1 3 4717* 0
ForA=2,becomes |0 0 5| |[X:|=|0

0 0 11l%;s 0
= —xy + 3x, +4x; =0
5%,=0=x,=0
—x,+3x, =0=x, =3x,
Letx, =k
x, =3k
3k 3
X=|k|=k1
0 0
1s the solution where k is arbitrary constant
3
X =11 is the eigen vector corresponding to A =2
0

Case (i11): If A =3

-2 3 4|ux 0
ForA=3,becomes| 0 -1 5|x,|=|0
0 0 Ofx 0

= —2xy+ 3%, T4x, =10
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19
Zk 18
X=| g | =7 [10] 1s the solution, where k/2 is arbitrary constant.
L2
K &=
19
S X =110 s the eigen vector corresponding to 4 =3
2

) _ 1 1
Eigen values of A lare 1, >3

We know Eigen vectors of A™1 are same as eigen vectors of A.

3. Find the eigen values of A={ 3 2“1
241 —i
Sol: we haveA:{ 3i 2+l}
=2+i i
So Z:{ 3 2_11 and AT:[ 3i —2+z}
—2-i i 240 —i

— A=-4"
Thus A is a skew-Hermitian matrix.
. The characteristic equation of A is |4—A1|=0

3i—-A —2+i
-2+ —-i—A

= A" =

= A" -2il+8=0

= A =4i,-2i are the Eigen values of A

1.4
4.Find the eigen valuesof ,_| 2~ 2
REEN
2 2
IEPE) (1.5
Nowd=| 2 2 |and (7f=| 2 2
S R AT S
2 2 L 2 2
—r 1 0]
We can see that 4 .4 = 0 1 =1

Thus A 1s a unitary matrix
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. The characterstic equation is|4—A/| =0

Which gives 4 = £+iland£+li and
2 2 2 2

Hence above A values are Eigen values of A.

Cayley-Hamilton Theorem: Every Square Matrix satisfies its own characteristic equation

To find Inverse of matrix: If A is non-singular Matrix, then A exists, Pre multiplying (1)

above by A we havea 4" +a, A" > +———+a, [+a,4" =0

>

A= ai[aoA”_1 +a, A" +—— —aHlJ

n

To find the powers of A: - Let K be a +ve integer such that K >n

K K-l k-n _
Pre multiplying (1) by A*™ we get a4A" +a A" +———+a, 47" =0
Y P ey Ly
ay

Solved Problems :

1 -2 1
1. S.T the matrix A = [1 —2 3| satisfies its characteristic equation and hence find A™!
0 -1 2

Sol: Characteristic equation of A is det (A-Al) =0

1—A —2 2
=] 1 —2—4 3 |=0
0 -1 2—4
1—4 0 2
1 1—4 3 =0
Cy - CrtCs 0 1—4 2-4
1—4 0 2
(1-4)| 1 1 3 |[=0
0 1 2—4

= XV +r-1=0
By Cayley — Hamilton theorem, we have A3-A>+A-1=0

1 -2 2 -1 0 0 -1 2 =2
A=|1 =2 3| A4 =|-1 -1 2| 4=|-2 2 -1
0 -1 2 -1 0 1 -1 1 0
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A—A+A-T1=[-2 2 =1|-[-1 =1 2[+|1 =2 3|-|0 1 0|

-1 2 =2y |-1 0 O |1 =2 2|11 0 O [D 4] 'D]
-1 1 0 -1 0 110 -1 2| (0 0 1
Multiplying with 4! we get 4> — A +1=4"

-1 0 O] |l =2 2/ (1 0 O [-1 2 =2
A'=|-1 -1 2|-|1 =2 3|+/0 1 0|=|-2 2 -1
-1 0 1|0 -1 2 (0 0 1] (-1 1 O

2. Using Cayley - Hamilton Theorem find the inverse and A* of the matrix

7 2 =2
A=l-6 -1 2]
6 2 -1

7 2 -2

Sol: Let A=|-6 -1 2]

6 2 -1

T-4 2 -2
The characteristic equation is given by |[A-Al|=0 ie,|-6 -1-4 2 (=0
6 2 -1-1
-1
1
—(1+4)

1
(1—A)* 1|0
6

[ S

= V-5V +7,-3=0
By Cayley — Hamilton theorem we have A*-5A%+7A-31=0.....(1)
Multiply with A! we get

1
A"t =-[A% - 54+ 7I]

3
25 8 -8 79 26 =26
A=|-24 -7 8| A4£=|-78 -25 26
24 8 -7 78 26 =25
-3 -2 2
A’lz1 6 5 -2
3
-6 -2 5

multiplying (1) with A ,we get,
A*5A+TA3A=0
A*=5A3-TA’H3A
395 130 —130| | 175 56 =56| | 21 6 —6| roa; g0 -80

=[-390 -125 130 |-[-168 —49 56 |+|-18 =3 6 |_|_240 -79 g0
390 130 -125| | 168 56 -69| |18 6 -3| | 240 80 -79
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2 1 2
3.1f4=| 5 3 3 | Verify Cayley-Hamilton theorem hence find Al

-1 0 2
2 1 2
Sol: - Giventhat 4= 5 3 3
-1 0 -2

The characteristic equation of A is |A-AI|=0

2—A 1 2
re.| 5 3—A 3 =0
-1 0 2=

= (2-A4)[-6-34+24+27 |-1[-10-52+3]+2[0+(3-1)]

= (2-A)[ 2’ -1-6]-1[-52-7]+2[3-x]=0

=217 -21-12-4’ +2,2 +6A+51+7+6-21=0

= -2 +321°+74+1=0

= A -3 -74-1=0————(1)

According to Cayley Hamilton theorem. Square matrix ‘A’ satisfies equation (1)

Substitute A in place of 4

2 1 2
Now 4=|5 3 3
-1 0
2 1 2 1
A =5 3 14 13
-1 0 -2][-1 0
7 5 2 1 2 36 22 23
A =4*4={22 14 13||5 3 3 |=/101 64 60
0 -1 21-10 =2 -7 -3 -7

Now A —=342=74-1=0

36 22 23 21 15 -9 14 -7 14| |-1 0 0 0 0
=101 64 60 |+|-66 —-42 39|+ -35 21 21|+ 0 -1 0O |=/0 O 0|=0
=7 3 -7 0 3 -6 7 0 14 0 0 -1] |0 0 O

Cayley —Hamilton theorem is verified.

To find A™!
—34*-74-1=0

=

Multiply A, we get
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A“(A3—3A2—7A—I):O
= A -34-71-4"=0
=S A'=42-34-71

7 5 3 -6 -3 6| |[-7 0 O
LAT=122 14 13(+[15 -9 9 |+ 0 -7 0
0 -1 2 3 0 6 o o0 -7

6 2 -3
=7 2 4
30411
Check A.A'=1
21 2% 2 3] [1 00
AA'=|5 3 30l7 2 4]={0 1 0|=1
10 2|3 -1 1| g o0 1

I 2
4. Using Cayley — Hamilton theorem, find A3, if 4= { 5 _J

) 1 2
Sol: Given 4 =
2 -1

Characteristic equation of A is |A - Al | =0
= (1-2)(-1-2)-4=0
= A1"-5=0————()
Substitute A in place of 4

A -51=0=> 4" =51

find A°

AP =54 =5(47)(A47)(A4)
=5(51)(51)(51)
= 6251

= A® =6251
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Diagonalization of a Matrix by similarity transformation:

Similar Matrix: A matrix A is said to be similar to the Matrix B if there Exists a non-
singular matrix P such that B= P~' 4P This transformation of A to B is known as “Similarity

Transformation”

Diagonalization of a Matrix:
Let A be a square Matrix. If there exists a non-singular Matrix P and a diagonal Matrix D
such that P'AP=D, then the Matrix A is said to be diagonalizable and D is said to be
“Diagonal” form (or) canonical diagonal form of the Matrix A
Modal Matrix:The modal matrix which diagonalizes A is called the modal Matrix of A and
1s obtained by grouping the Eigen vectors of A into a Square Matrix.
Spectral Matrix: The resulting diagonal Matrix D is known as Spectral Matrix.
In this spectral Matrix D whose principal diagonal elements are the Eigen values of the
Matrix.
Calculation of powers of a matrix:
We can obtain the power of a matrx by using diagonalization
Let A be the square matrix then a non-singular matrix P can be found such that D = P'AP
D’= (P'AP) (P'AP)

=P'A (PP ') AP

=P !A’P  (since PP !=I)
Simlarly D* = P-'A’P
In general D"=P~'A"P........ (1)
To obtain A", Premultiply (1) by P and post multiply by P~!

Then PD"P! = P(P'A"P)P~' = (PP)A" (PP!) = A" = 4" = PD"P""

Hence A"=P |0 4 0 0 P
o o0 0 A

Diagonalization of a matrix:

Theorem: If a square matrix A of order n has n linearly independent eigen vectors
(X1,X2...Xn) corresponding to the n eigen values A1,A2....An respectively then a matrix P can
be found such that P"'AP is a diagonal matrix.

Note: 1. If X,X>...X; are not linearly independent this result is not true.

2. Suppose A is a real symmetric matrix with n pair wise distinct eigen values A4,,4,--- 4, then

the corresponding eigen vectors X1,Xz... Xy are pairwise orthogonal.
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Hence if P = (e1,e2...€n)

Where e1 = (X1 / [|X1]]), €2 = (X2 / ||X2]])....en = (Xn)/ || Xu|| then P will be an orthogonal

matrix.
i.e, PTP=PP'=]
Hence P~'=P7
~PT1AP =D
Solved Problems :
-2 2 -3
1. Determine the modal matrix P of A= [ 2 1 _5l . Verify that P-'AP is a diagonal
-1 -2 0
matrix.
—2—4 2 —3
Sol: The characteristic equation of A is |A-Al| =0 i.e. 2 1-4 —6|=0
-1 -2 -1

which gives (A-5) (\+3)*=0
Thus the eigen values are A=5, A=-3 and A=-3

-7 2 —37 11 0
When A=5 = [ 2 —4 —6] l}' = [D]

-1 -2 =51tz
11
-

—1

By solving above we get X1 =

Similarly, for the given eigen value A= -3 we can have two linearly independent eigen vectors

2 3
X2 = —1] and X; = {G‘
a 1
P =[X; X; X5]
1 2 3
P=|2 —1 0]=modal matrix of A
-1 0 J

Now det P=1(-1)-2(2)+3(0-1) = -8

_,_adjP 1[_1 —2 3]

= =—=|-2 4 &
det P 8 1 -2 _=&
-1 -2 3][-2 2 -3
=—%{—2 4 5”2 1 —6‘
-1 -2 —sll-1 -2 o
L [-5 -10 15
=—§[6 ~12 —lSl
3 6 15
—40 0 0
P‘1AP=—l 0 24 0]
0 0 24
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1 0 0

0 -3 0 ] = diag [5,-3,-3].
0 0 -3

. P71AP=diag [5,-3.-3].

1 0 -1
2. Find a matrix P which transform the matrix A=|1 2 1 ] to diagonal form. Hence
2 2 3
calculate A*.
1—4 0 -1
Sol: Characteristic equation of A is given by [A-AMl|=0 ie.| 1 2—4 1 [=0
2 2 3—4

= (1-)[2-MVB-M)—-2]-0-[2-2(2-M)]=0
=9L—-1)(A—209.—-30=0

=A=1A=2A=3

Thus the eigen values of A are 1, 2, 3.

If x1, X2, X3 be the components of an eigen vector corresponding to the eigen value A, we have

1—24 0 —1 1[*1 4]
1 2—4 1 =10
2 2 3 —Al1l%s 0

Case (1): If A =1

[A-AT] X =

0 0 —177*% 0
1 1 1 [|*%|=|0] 1e, 0.x:70.x2+0.x3=0 and x;+x2+x3=0
2 2 211%3 0

x3=0 and x;+x2+x3=0
x3=0, X1=-x2
x1=1, xo=-1, x3=0
Eigen vector is [1,-1,0]"
Also every non-zero multiple of this vector is an eigen vector corresponding to A=1
For A=2, A=3 we can obtain eigen vector [-2,1,2]" and [-1,1,2]"
1 -2 -1
P= [—1 1 1 ]
Q 2 2

The Matrix P is called modal matrix of A

0 2 -1
pi=_1
-2 2 0
2
-2 -2 -1
1
0—1510—11—2—1
NowP'AP=-1 —-1 o1 2 1 |-1 1 1
1 1%223 o 2 2
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1 =2 =11t o o] O -1
=l—-1 1 10 16 0f|-1 1
0 2 2110 0o 81|-2 -2 -1

-1
2
0

65 86 40
130 130 81

[—49 —50 —40

1 1 3
1 5 1]|and hence diagonalize A
311

3. Determine the modal matrix P for

1 1 3
Sol: Giventhat|1 5 1
3 1 1

1-2 1 3
The characteristic equation of A is [4-4/|=0 ie.| 1 5-4 1 |=0
3

= (1-2)[(5-2)(1-2)-1]-1[(1-2)-3]+3(1-3(5-2))
=(1-4)(5-52-24+2"=1)=(-2-2)+3(1-15+32) =0
= (1-4)(4-64+27)—(-2-2)+3(-14+32)=0
= 4-6A+A7—4A+61" -2 +2+1-42+94=0
= A =TA1*-94+91-36=0
= A =71*-36=0
= 1=-2,3,6
The Eigen Values are -2, 3, and 6
Case (1): If A= -2
= [A-M]X=0

|
N

0

= 3x, +x, +3x;, =0————(1)
X +7x,4+x,=0-———(2)
3x,+x,+3x, =0-———(3)
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From (2) & (3)
x] xz x3
1 7 1
3 1 3
- X _T%H _ X =k
1-21 3-3 21-1
55

X

20 0 20
= x =-20k, x,=0,
x| [-20k -1
20k| 0
x| | 20k 1

x, =20k

S
I
Ryl
I
=]
™
I

Case (ii): If L =3
> [A-M]X =0

-2 1 3| x 0
=211 2 1 X,
31 2||x 0

I
(e

= 2x, +x,+3x,=0————(1)
X +2x,4+x=0-———- ()
3x1 +x2 _2x3 :O____(3)

Consider (1) & (2)

X X X3
-2 1 3
1 21
= xl = _x2 = X3 = k
-6 2-3 —4-1

A _TH N5 g
-5 -5 =5

Case (11): If A=6
= [A-M]X=0
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= —=5x,+x, +3x; =0————(1)
X=X, +x; =0-——(2)
3x,—x,=5x,=0---3)

Consider (2) & (3)
X X X
1 -1 1
3 1 -5
- xl = _x2 = x3 :k
5-1 -5-3 +1+3
N_Th %,
4 8 4
S Y
1 2 1
X, 1
X =x =21k
X, 1
-1 1 1
p=0 -1 2

o] =—1(=1-2)=1(0-2) +1(0 +1)
o] = (~1)(-3)=1(-2)+1=3+2+1=6

-3 2 1
p=0 -2 2
3 21
-3 2 1
Adj(p)=| 0 -2 2
321
p_ledj/O
Al
-3 0 3 -+ 0 £
C’oﬁfactoroﬁfpzl 2 2 2=+ -3 31
© 1 2 1 L i1

124/ 146



-L 0 Mt o1 31 1 1
D=| L+ -1 Lt 5 1]0 -1 2
Lol L3 a1 1
-1 0 1][-1+0+3 1-1+3 1+2+3
=+ -1 3||-1+0+1 1-5+1 1+10+1
L+ 3 ] 3+0+1 3-1+1 3+2+1
-1 0 iff2 3 6] [-2 00
=+ -1 1fo -3 12|=/0 3 0
L1 L2 3 6 0 0 6
1 1 1
4IfA=|0 2 1| Find(a)A®(b) A*
-4 4 3
1 1 1
Sol: Giventhat A=| 0 2 1
-4 4 3

The Characteristic equation of A is |4—11|=0 ie.| o 2.2 1 |=0

= (1-2)[(2-2)(3-2)-4]-1[0+4]+1[0+4(2-41)]=0
= (1-2)[6-24-34+ 4" —4]-4+8-4x=0
= (1-2)[ A’ =54+2]+4-42=0
= A =5A+2-22+527 =24 +4-44=0
= -2 +61"~11A+6=0
=>1=123
The Eigen values are 1, 2, and 3
Case (1): If A =1
[A—A]X =0
1-1 1 1
=0 2-2 1
| —4 4  3-
[0 1 1][*
=0 1 1|[x|=
X3

-4 4 2

X=0

A

0
0
0

X1+X2=0, x1+Xx2=0, -4x1+4x>+2x3=0

Let x3=k, xo+ k=0, xo=-k

= —A4x, +4(—k)+ 2K = 0= —4x, — 2k = 0= —4x, = 2k = X, =_7k
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Case (i1): If A =2
= [A-M]X=0

[1— A 1 1
=> 0 2—7» 1 X=0
—1 1 1
=
_—4 4 1
:—x,+x2+x3=0————(l)
S —
—4x,+4x,+x,=0———(3)
Consider (1) & (3)
X X X
-1 1 1
4 41
SN T SIS S
1-4 —1+4 —4+4
A _Th 5,
-3 3 0

=>x,=-k; x,=-k

X, —k 1 1
=X, |=|-k|=|1 (_k ) X,=|1
)C3 O 0 0

Case (11): I[f A =3
= [A-M]X=0

1—-A 1 1
=> 0 2—x 1 X=0

SN
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= 2x, +x, +x;, =0
—x, +x;, =0
—4x, +4x, =0

Letx, =k and x,=k

= 2x, +x, +x; =0= 2k+x, +A=0=x, =k

x, k 1
X, =x, |=|k|=|1|k
X, k 1
1 1 1
r=[X, X, X;]=|2 1 1
-2 0 1
-1 1 0
pl=l4 -3 -1
-2 2 1
1 0 O 1 0 0
D=p'4P=|0 2 0|=|0 2 O
0O 0 3 0O 0 3

¥ 0 0 1 0 0
D=0 2° 0|=|0 256 0
0 0 3 0 0 656l

(a). A®=PD*P'

1 1 1)1 o 0 -1 1 0
=2 1 1{|l0 256 0 4 -3 -1
-2 0 1]|0 0 e6561||—2 2 1

[—12099 12355 6305
=|—12100 12356 6305
—13120 13120 6561

* 0 o]t 0 0
(). D*=[0 2* 01]=|0 16 0
0 0 3| |0 0 8l

I 1

—

I 0 O0y-1 1 O

A*=PD*P!'=|2 1 1//l0 16 0 4 -3 -1
-2 0 1l0 0 81|22 2 1

1 16 8177=1 1 0 —1+64-162 1-48+162 0-16+81

A=l 2 16 81/l 4 =3 —1| =|-2+64-162 2-48+162 0-16+81

2 0 8I]|—2 2 1 2+0-162 -2-0+162 0-0+81
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—99 115 65
~A*=[-100 116 65
—-160 —-160 81
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UNIT -V

Number Theory

Number theory is a branch of mathematics which helps to study the set of positive whole
numbers, say 1, 2, 3,4, 5, 6,. .., which are also called the set of natural numbers and sometimes
called “higher arithmetic”.

Number theory helps to study the relationships between different sorts of numbers. Natural
numbers are separated into a variety of times. Here are some of the familiar and unfamiliar
examples with quick number theory introduction.

Applications of Number Theory

Here are some of the most important number theory applications. Number theory is used to find
some of the important divisibility tests, whether a given integer m divides the integer n. Number
theory have countless applications in mathematics as well in practical applications such as

Security System like in banking securities
E-commerce websites

Coding theory

Barcodes

Making of modular designs

Memory management system
Authentication system

It is also defined in hash functions, linear congruences, Pseudo random numbers and fast
arithmetic operations.

Problems
1. Find the Greatest Common Divisor(G.C.D ) of a number 30 and 52
Solution:
Divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30
Divisors of 52 are 1, 2, 4, 13, 26, 52
The common divisors in 30 and 52 is 2

Therefore, the G. C.D of 30 and 52 is 2
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g.c.d (30,52)=2

2. Find the common factors of 10 and 16
Solution:

Factors of 10 are:

2x5=10

I1x10=10

Therefore, the factors are 1, 2, 5 and 10

Factors of 16 are

4x4=16
Ix16=16
2x8=16

Therefore, the factors of 16 are as follows: 1, 2, 4, 8, 16
Then, the common factors are 1 and 2.

3. Show that the greatest factor of a number is the number itself.
Solution:

Assume the number 24

The factors of 24 are

1 x24=24

12x2=24

8x3=24

6x4=24

The factors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24

From this, we can say that 24 is the greatest factor of a number 24.
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Hence proved

1. Prime Numbers

A prime number is the one which has exactly two factors, which means, it can be divided by only
“1” and itself. But “1” is not a prime number.

Example of Prime Number

3 is a prime number because 3 can be divided by only two number’s i.e. 1 and 3 itself.

3/1=3

3/3=1

In the same way, 2, 5, 7, 11, 13, 17 are prime numbers.

Composite Numbers

A composite number has more than two factors, which means apart from getting divided by
number 1 and itself, it can also be divided by at least one integer or number. We don’t consider
‘1’ as a composite number.

Example of Composite Number

12 is a composite number because it can be divided by 1,2,3,4,6 and 12. So, the number ‘12’ has
6 factors.

12/1 =12

12/2 =6

12/3 =4

12/4 =3

12/6 =2

12/12 =1

Coprime Numbers

The coprime-numbers_or mutually primes or relatively primes are the two numbers which have
only one common factor, which is 1. Let us understand the concept with an example.

Suppose there are two numbers, 14 and 15. Find whether both are coprime or not.
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The factors of 14 are 1,2 and 7

The factors of 15 are 1, 3 and 5.

For both the numbers, we can see, the common factor is 1. Therefore, 14 and 15 are coprime
numbers. But if we consider another number say, 21, whose factors are 1, 3 and 7. Then, 21 is
neither a coprime for 14 nor for 15.

Problems:

1: Check whether 13 and 31 are co-prime.

Solution:

13 and 31 are two prime numbers; therefore, they are co-prime to each other. (Property 2)
The factors of 13 are 1, 13 and the factors of 31 are 1, 31.

They have only 1 as their common factor. So, they are coprime numbers.

2: Check whether 150 and 295 are coprimes.

Solution:

Given two number are: 150 and 295

150 and 295 are divisible by 5.
From the properties of coprime numbers, 150 and 295 are not coprime.

Alternatively,
150=2x3x5x%x5
295 =5x%59

HCF(150,295)=5#1
Therefore, 150 and 295 are not coprime.

Sieve of Eratosthenes

The ancient Greek mathematician, poet, and scientist Eratosthenes (third century BCE)
suggested a relatively method of determining all prime numbers up to a certain number.
Eratosthenes was a chief librarian in the famous Library of Alexandria, and made scholarly
contributions to several fields.

Among his other contributions, he is known for having been the first person to calculate the
circumference of the Earth.

To find all prime numbers up to a certain number, Eratosthenes developed what later became
known as the Sieve of Eratosthenes. To help illustrate his method,

2 3 4 5 6 7 8 9 10
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11 12 13 14 15 16 17 18 19 20
21 2223 24 25 26 27 28 29 30

We consider how we might find all prime numbers up to 30. For our purposes, we ignore the
number 1, for a reason that will become momentarily clear. We begin by circling 2 and then
crossing off all subsequent numbers that are multiples of 2. We then find the next smallest
number that is not crossed out, which in the case is 3. Since 3 is not crossed out, it must not
be a multiple and continue the process till 30.

@ ® 4+ ® 5 @ s 9 10
@ 12 @ 14 15 16 @ 18 @ =20
2t 22 @ 24 25 26 27 28 @ 30
Divisibility
A basic concept that arises in studying numbers, especially in studying prime and composite

numbers, is that of divisibility. The numbers 18 and 24 can be “evenly divided” by 2 and 3,
but not by 5 or 7. The following definition makes this idea precise

Definition 12.

We say that a divides b if there exists some integer KEZ such that b=kxa. We write a/b to
indicate that a divides b; we write atb if a does not divide b

Divisor of a given number N
Let N =p%qPc" ...p,q.r be primes and a,b,c be integers . Then t

the number of divisors of N= (a + 1)(b + 1)(c + 1) [the divisor include 1 and the number
itself].

pa+1_1 qb+1_1 TC+1_1

Sum of all divisoris S = . . )
p—-1 q-1 r—1

Problems:

1. Find the number of divisor of 720

Solution:
Now, 720 =2*x 32 x 5!

So, the number of integral divisors of 720 are.
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G+ x2+1)x(A+1)=5%x3x2=30.

. Find the number of divisor of 480

Solution:

Now, 480 = 2° x 3! x 5!

So, the number of integral divisors of 480 are.

G+ x(I+D)xA+1)=6x2x2=24,

. Find the number of divisor and sum of all the divisors of 360.
Solution:

Now, 360 = 2* x 3% x 5!

So, the number of integral divisors of 360 are.

B+DH)x2+1)x(1+1)=4x3x2=24,

23+1_1 32+1_1 51+1_1

Sum of all divisoris S = . . )
2—-1 3-1 5-1

=22 2_1170,
1 2 4

2 . Euler’s Function
Definition:

The Euler’s Function is the number of positive integers less than N and prime to it.it
is denoted by (N).

In general 9(N) = N (1 - %) (1 - i) (1 - %)

Notes:
1. (N) =¢@(a)p(b)if N = ab, aand b are prime to one another.
2. If pisprime then p(p™) =p" (1 - %)

Problems:
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1. Find the number of integer lessthan 210 and prime to it.
Solution:

210 =2 x 3 x 5% 7.

We know that ¢(N) = (1 - —) (1 — _) (1 _ _)

p(210)=210(1-2)(1-3)(1-3)(1-3) = 8.

2. Find the number of integer lessthan 210 and prime to it.

Solution:

720=2x3 x5

We know that ¢ (N) = (1 — —) (1 — E) (1 — ;)

0(720) =720 (1-2) (1-3)(1-3) = 192
Integral part of a real number

1 =3+ % , 3 is the integral part, % is the fractional part.
2.

N|]ON [N

1 : : 1. :
=4+ P 4 is the integral part, S 1s the fractional part.

Highest power of a prime number p contained in n!.

Highest power of p is n! is =[§] + [%] + -+ [p,?_l].

Problems:
1. Find the highest power of 7 is 1000!

Solution:

[1000 — 142

[142] ~ 20
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20]_2
| =

Highest power of p is n! is =[§] + [%] + -+ [p,?_l].

= 142+20+2 =164

716%is the highest power of 7 in 1000!.

2. With how many zero does 61! end?
Solution:

Let us find the highest power of 2 and 5 in 61!

—| =30

—|=15

The highest power of 2in 61! =30+ 15+ 7 + 1 = 56.

61]_12
=| =
12]_2
=| =
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The highest power of 5in 61!=12+2=14.
The highest power of 10in 61!=14.

61! Will end in 14 zeros.

3. Congruence

3.1 Basic properties of congruence

Definition 3.1.1. Let n be a fixed positive integer. Two integers a and b are said to

be congruent modulo n, symbolized by
a = b(mod n)

if n divides the difference a — b; that is, provided that a — b = kn for some integer k.

Theorem 3.1.2. For arbitrary integers a and b, a = b(mod n) if and only if a and b

leave the same nonnegative remainder when divided by n.

Proof. First take a = b(mod n), so that a = b+ kn for some integer k. Upon
division by n, b leaves a certain remainder r; that is, b = gn + r, where 0 < r < n.

Therefore,
a=b+kn=(n+r)+kn=(¢+kn+r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = ¢yn + r and b = ¢gan + r, with the

same remainder r (0 < r < n). Then

a—b=(qan+r)—(@n+r)=(n—qhn
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whence nja — b. In the language of congruences, we have a = b(mod n). O

Example 3.1.3. Because the integers —56 and —11 can be expressed in the form
—56=(=7)9+7 —11=(-2)9+7

with the same remainder 7, Theorem 3.1.2 tells us that —56 = —11(mod 9). Going in
the other direction, the congruence —31 = 11(mod 7) implies that —31 and 11 have

the same remainder when divided by 7; this is clear from the relations

—31=(=5)7+4  11=17+14

Theorem 3.1.4. Let n > 1 be fixed and a,b, c,d be arbitrary integers. Then the

following properties hold:
(a) a = a(mod n).
(b) If a = b(mod n), then b = a(mod n).
(c) If a =0b(mod n) and b = c(mod n), then a = c¢(mod n).

(d) If a = b(mod n) and ¢ = d(mod n), then a + ¢ = b+ d(mod n) and
ac = bd(mod n).

(e) If a =0b(mod n), then a+ ¢ =0b+ ¢(mod n) and ac = be(mod n).

(f) If a = b(mod n), then ak = bk(mod n) for any positive integer k.

Proof. For any integer a, we have a —a = 0 - n, so that a = a(mod n). Now if
a = b(mod n), then a — b = kn for some integer k. Hence, b —a = —(kn) = (—k)n
and because —k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a = b(mod n) and also
b = ¢(mod n). Then there exist integers h and k satisfying a —b = hn and b — ¢ = kn.
It follows that

a—c=(a—b)+(b—c)=hn+kn=(h+k)n
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which is @ = ¢(mod n) in congruence notation.
In the same vein, if a = b(mod n) and ¢ = d(mod n), then we are assured that
a —b=Fkin and ¢ — d = kon for some choice of k; and ky. Adding these equations, we

obtain

(a+c)—(b+4d) (@ —0b)+ (c—d)

= leL + kgn = (k’l + ]CQ)TL

or, as a congruence statement, a + ¢ = b+ d(mod n). As regards the second assertion

of property (d), note that
ac = (b+ kin)(d + kon) = bd + (bky + dky + kikan)n

Because bky + dki + k1kon is an integer, this says that ac — bd is divisible by n,
whence ac = bd(mod n).

The proof of property (e) is covered by (d) and the fact that ¢ = c¢(mod n). Finally,
we obtain property (f) by making an induction argument. The statement certainly
holds for £ = 1, and we will assume it is true for some fixed k. From (d), we know
that a = b(mod n) and a* = V*(mod n) together imply that aa® = bb*(mod n), or
equivalently a*™! = b¥*1(mod n). This is the form the statement should take for

k + 1, and so the induction step is complete. O

Example 3.1.5. Show that 41 divides 220 — 1. We begin by noting that

25 = —9(mod 41), whence (25)* = (—9)*(mod 41) by Theorem 3.1.4(f); in other
words, 220 = 81 - 81(mod 41). But 81 = —1(mod 41), and so 81 - 81 = 1(mod 41).
Using parts (b) and (e) of Theorem 3.1.4, we finally arrive at

220 —1=81-81—-1=1-—1=0(mod 41)

Thus, 41]2%° — 1, as desired.

Example 3.1.6. For another example in the same spirit, suppose that we are asked

to find the remainder obtained upon dividing the sum
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42043+ 40 4 - - - + 99! + 100!

by 12. Without the aid of congruences this would be an awesome calculation. The

observation that starts us off is that 4! = 24 = 0(mod12); thus, for k > 4,
Kl=41-5-6---k=0-5-6---k = 0(mod 12)

In this way, we find that
2043+ 4l 441000 =11+ 2! 4+ 3 + 0+ --- 4+ 0 = 9(mod 12)

Accordingly, the sum in question leaves a remainder of 9 when divided by 12.

Theorem 3.1.7. If ca = cb(mod n), then a = b(mod n/d), where d = ged(c,n).

Proof. By hypothesis, we can write
cla—b)=ca—cb=kn

for some integer k. Knowing that gcd(c,n) = d, there exist relatively prime integers r
and s satisfying ¢ = dr, n = ds. When these values are substituted in the displayed

equation and the common factor d canceled, the net result is
r(a —b) = ks

Hence, s|r(a —b) and ged(r, s) = 1. Euclid’s lemma yields s|a — b, which may be

recast as a = b(mod s); in other words, a = b(mod n/d). O

Corollary 3.1.8. If ca = ¢b(mod n) and ged(c,n) = 1, then a = b(modn).

Corollary 3.1.9. If ca = ¢b(mod p) and p 1 ¢, where p is a prime number, then

a = b(mod p).

Proof. The conditions p 1 ¢ and p a prime imply that ged(c,p) = 1. O
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Example 3.1.10. Consider the congruence 33 = 15(mod 9) or, if one prefers,
311 =3-5(mod 9). Because ged(3,9) = 3, Theorem 3.1.7 leads to the conclusion
that 11 = 5(mod 3).

A further illustration is given by the congruence —35 = 45(mod 8), which is the same

as 5 (=7) =5-9(mod 8). The integers 5 and 8 being relatively prime, we may cancel

the factor 5 to obtain a correct congruence —7 = 9(mod 8).

4.1 Fermat’s Little Theorem and Pseudo primes

Theorem 4.1.1 (Fermat’s theorem). Let p be a prime and suppose that p|a. Then
a?~! = 1(mod p).

Proof. We begin by considering the first p — 1 positive multiples of a; that is, the

integers
a,2a,3a, -, (p—1a

None of these numbers is congruent modulo p to any other, nor is any congruent to

zero. Indeed, if it happened that
ra=salmodp) 1<r<s<p-1

then a could be canceled to give r = s(mod p), which is impossible. Therefore, the
previous set of integers must be congruent modulo p to 1,2,3,--- | p — 1, taken in

some order. Multiplying all these congruences together, we find that
a-2a-3a---(p—1a=1-2-3---(p—1)(mod p)

whence

a*tp—1)!'= (p—1)(mod p)
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Once (p — 1)! is canceled from both sides of the preceding congruence (this is possible
because since p|(p — 1)!), our line of reasoning culminates in the statement that

a?~' = 1(mod p), which is Fermat’s theorem. O

Corollary 4.1.2. Ifp is a prime, then a? = a(mod p) for any integer a.

Proof. When pla, the statement obviously holds; for, in this setting,
a? =0 = a(mod p). If p1a, then according to Fermat’s theorem, we have
a?~! = 1(mod p). When this congruence is multiplied by a, the conclusion

a? = a(mod p) follows. O

Lemma 4.1.3. If p and q are distinct primes with a? = a(mod q) and a? = a(mod p),

then a?? = a(mod pq).

Proof. The last corollary tells us that (a?)? = a?(mod p), whereas a? = a(mod p)
holds by hypothesis. Combining these congruences, we obtain a?? = a(mod p) or, in
different terms, p|a?? — a. In an entirely similar manner, g|a?? — a. Corollary 2 to

Theorem 1.4.8 now yields pq|a?? — a, which can be recast as a?? = a(mod pq). O

Theorem 4.1.4. If n is an odd pseudo prime, then M, = 2" — 1 is a larger one.

Proof. Because n is a composite number, we can write n = rs, with 1 <7 < s < n.
Then, according to Problem 21, Section 2.3, 2" — 1|2" — 1, or equivalently 2" — 1|M,,,
making M,, composite. By our hypotheses, 2" = 2(mod n); hence 2" — 2 = kn for
some integer k. It follows that

2Mn—1 — 22"—2 — 2kn

This yields

2]V[n71 —_ 2kn -1
= (2" — 1) pont=2) o 1)
= M, (20D ponh=2) o )

= 0(mod M,)
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We see immediately that 2M» — 2 = 0(mod M,,), in light of which M,, is a pseudo

prime. O

Theorem 4.1.5. Let n be a composite square-free integer, say, n = p1ps - - - p,, where
the p; are distinct primes. If p; — 1|n — 1 fori =1,2,--- ,r, then n is an absolute pseudo

prime.

Proof. Suppose that a is an integer satisfying gcd(a,n) = 1, so that ged(a,p;) =1

for each i. Then Fermat’s theorem yields p;|a?~* — 1. From the divisibility hypothesis
pi — 1|n — 1, we have p;|a™™! — 1, and therefore p;|a™ — a for all @ and ¢ = 1,2, 7.
As a result of Corollary 2 to Theorem 1.4.8, we end up with n|a™ — a, which makes n

an absolute pseudo prime. a

4.2 Wilson’s Theorem

Theorem 4.2.1 (Wilson). If p is a prime, then (p — 1)! = —1(mod p).

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take p > 3.

Suppose that a is any one of the p — 1 positive integers
172a3)"' P — 1

and consider the linear congruence ax = 1(mod p). Then ged(a,p) = 1. By Theorem
3.3.1, this congruence admits a unique solution modulo p; hence, there is a unique
integer @', with 1 < a' < p — 1, satisfying aa’ = 1(mod p).
Because p is prime, a = o’ if and only if a = 1 or a = p — 1. Indeed, the congruence
a®> = 1(mod p) is equivalent to (a — 1) - (a + 1) = 0(mod p). Therefore, either
a — 1= 0(mod p), in which case a = 1, or a + 1 = 0(mod p), in which case a = p — 1.
If we omit the numbers 1 and p — 1, the effect is to group the remaining integers
2,3,---,p— 2 into pairs a, a’, where a # d/, such that their product aa’ = 1(mod p).
When these (p — 3)/2 congruences are multiplied together and the factors rearranged,

we get
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2-3---(p—2) = 1(mod p)
or rather
(p—2)! = 1(mod p)
Now multiply by p — 1 to obtain the congruence
(p—1!'=p—1=—1(mod p)

as was to be proved. O

Example 4.2.2. A concrete example should help to clarify the proof of Wilson’s
theorem. Specifically, let us take p = 13. It is possible to divide the integers
2,3,---,11 into (p — 3)/2 = 5 pairs, each product of which is congruent to 1 modulo

13. To write these congruences out explicitly:

2-7 = 1(mod 13

3-9 = 1(mod 13

( )

( )

4-10 = 1(mod 13)
5.8 = 1(mod 13)
( )

6-11 = 1(mod 13

Multiplying these congruences gives the result
11'=(2-7)(3-9)(4-10)(5-8)(6 - 11) = 1(mod 13)
and so
12! = 12 = —1(mod 13)

Thus, (p — 1)! = —1(mod p), with p = 13.

Theorem 4.2.3. The quadratic congruence x> + 1 = 0(mod p), where p is an odd

prime, has a solution if and only if p = 1(mod 4).
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Proof. Let a be any solution of 2% + 1 = 0(mod p), so that a? = —1(mod p).

Because p 1 a, the outcome of applying Fermat’s theorem is
1=ar! = (a®)P /2 = (—=1)?Y2(mod p)
The possibility that p = 4k + 3 for some k does not arise. If it did, we would have
(—1)P=D/2 = (—1)2%k+1 = ]

hence, 1 = —1(mod p). The net result of this is that p|2, which is patently false.
Therefore, p must be of the form 4k + 1.

Now for the opposite direction. In the product

(p-D'=1-2-- 22 . B2 (p—2)(p—1)

we have the congruences

p—1 = —1(mod p)
p—2 = —2(mod p)

+1 -1
pT = —pT(mod D)

Rearranging the factors produces

(p—1)!

1.(—1).2.(—2)...p;1.<_p;1)(m0dp)

(_1)(194)/2 <1 L. .. p%l>2 (mod p)

because there are (p — 1)/2 minus signs involved. It is at this point that Wilson’s

theorem can be brought to bear; for, (p — 1)! = —1(mod p), whence

—1=(-1)-0/2 [(”—1)!]2 (mod p)

2
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If we assume that p is of the form 4k + 1, then (—1)®~1/2 = 1, leaving us with the

congruence
-1= [(”;1)!]2 (mod p)

The conclusion is that the integer [(p — 1)/2]! satisfies the quadratic congruence

22 + 1 = 0(mod p).
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