
 

 

 

Block No.8, College Road, Mogappair West, Chennai – 37 

 

Affiliated to the University of Madras 

Approved by the Government of Tamil Nadu 

An ISO 9001:2015 Certified Institution  

 

 

 

 

 

 

DEPARTMENT OF MATHEMATICS 
 

 

 

SUBJECT NAME: MATHEMATICAL STATISTICS II 

SUBJECT CODE: BMA-CSA06 

SEMESTER: VI 

PREPARED BY: PROF.S.C.PREMILA 



 

UNIVERSITY OF MADRAS  
B.Sc. DEGREE COURSE IN MATHEMATICS  
SYLLABUS WITH EFFECT FROM 2020-2021  

  

BMA-CSA06  

ALLIED: MATHEMATICAL STATISTICS-II  

(Common to B.Sc. Maths with Computer Applications)  

  

Learning outcomes:  

Students will acquire knowledge   

• To provide the foundation of statistical analysis used in varied applications.  

• Of  Sampling methods, Tests of significance and testing of hypothesis.  
  

UNIT I  

Sampling theory – Sampling Distributions – Concept of Standard error – Sampling distribution 

based on normal distribution- t, Chi Square and F distributions.  
  

UNIT II  

Point  estimation – Concepts of unbiasedness – consistency – efficiency and sufficiency- Cramer 

Rao inequality – Methods of estimation- Maximum likelihood- moments - minimum square and 
their properties (Statement only).  
  

UNIT III  

Test of significance – Standard error- Large sample test, Exact test based on normal, t, chi-square and  F  

distribution with respect to population  mean/means, proportion/proportions, variance and correlation 

coefficient. Test of independence of attributes based on contingency tables- Goodness of fit based on chi-square.  

  

UNIT IV  

 Analysis of Variance: One way, two way classification concepts &Problems.Interval estimation – Confidence 

intervals for population mean/means- Proportion/proportions and variances based on t, Chi-Square and F.  
  

UNIT V  

Test of hypothesis- Type I and II errors- Power of test – Neymann Pearson lemma- Likelihood ratio test-

concepts of most powerful test- statements and results only-simple problems.  
  

Reference:  

• S.C.Gupta&V.K.Kapoor: Elements of Mathematical Statistics, Sultan Chand & Sons, NewDelhi.  

• Hogg R.V. & Craig A.T. (1988 ): Introduction to Mathematical Statistics, McMillan.  

• Mood A.M. &Graybill F.A. &Boes D.G. (1974): Introduction to theory of Statistics, McGraw Hill.  

• Snedecor G.W. & Cochran W.G(1967) : Statistical Methods, Oxford and IBH.  

• Hoel P.G. (1971) : Introduction to Mathematical Statistics, Wiley.  

• Wilks S.S. Elementary Statistical Analysis, Oxford and IBH.  
  



                                                                        UNIT - 1 
 

In Statistics, the sampling method or sampling technique is the process of studying the 
population by gathering information and analyzing those data. It is the basis of the data where 
the sample space is enormous. The statistical research is of two forms: 

• In the first form, each domain is studied, and the result can be obtained by computing the 
sum of all units. 

• In the second form, only a unit in the field of the survey is taken. It represents the domain. 
The result of these samples extends to the domain. This type of study is known as the 
sample survey. 

In this article, let us discuss the different sampling methods in research such as probability 
sampling and non-probability sampling methods and various methods involved in those two 
approaches in detail. 

What are the sampling methods? 

There are several different sampling techniques available, and they can be subdivided into two 
groups. All these methods of sampling may involve specifically targeting hard or approach to 
reach groups. 

Types of Sampling Method 

In Statistics, there are different sampling techniques available to get relevant results from the 
population. The two different types of sampling methods are:: 

• Probability Sampling 

Non-probability Sampling 

What Is a Sampling Distribution? 

A sampling distribution is a probability distribution of a statistic obtained from a 
larger number of samples drawn from a specific population. The sampling 
distribution of a given population is the distribution of frequencies of a range of 
different outcomes that could possibly occur for a statistic of a population. 

In statistics, a population is the entire pool from which a statistical sample is 
drawn. A population may refer to an entire group of people, objects, events, 
hospital visits, or measurements. A population can thus be said to be an 
aggregate observation of subjects grouped together by a common feature. 

• A sampling distribution is a statistic that is arrived out through repeated 
sampling from a larger population. 

• It describes a range of possible outcomes that of a statistic, such as the 
mean or mode of some variable, as it truly exists a population. 

• The majority of data analyzed by researchers are actually drawn from 
samples, and not populations. 

https://byjus.com/maths/sample-space/
https://www.investopedia.com/terms/p/probabilitydistribution.asp
https://www.investopedia.com/terms/p/population.asp
https://www.investopedia.com/terms/s/statistics.asp
https://www.investopedia.com/terms/s/sample.asp


What Is the Standard Error? 
The standard error (SE) of a statistic is the approximate standard deviation of 
a statistical sample population. The standard error is a statistical term that 
measures the accuracy with which a sample distribution represents a 
population by using standard deviation. In statistics, a sample mean deviates 
from the actual mean of a population; this deviation is the standard error of the 
mean. 

PROPERTIES: 

• The standard error is the approximate standard deviation of a statistical 
sample population. 

• The standard error can include the variation between the calculated 
mean of the population and one which is considered known, or 
accepted as accurate. 

• The more data points involved in the calculations of the mean, the 
smaller the standard error tends to be. 

The T Distribution also called the student’s t-distribution and is used while making assumptions 
about a mean when we don’t know the standard deviation. In probability and statistics, the 
normal distribution is a bell-shaped distribution whose mean is μ and the standard deviation is 
σ. The t-distribution is similar to normal distribution but flatter and shorter than a normal 
distribution. Here, we are going to discuss what is t-distribution, formula, table, properties, and 
applications. 

T- Distribution Definition 

The t-distribution is a hypothetical probability distribution. It is also known as the student’s t-
distribution and used to make presumptions about a mean when the standard deviation is not 
known to us. It is symmetrical, bell-shaped distribution, similar to the standard normal curve. As 
high as the degrees of freedom (df), the closer this distribution will approximate a standard 
normal distribution with a mean of 0 and a standard deviation of 1. 

T Distribution Formula 

A t-distribution is the whole set of t values measured for every possible random sample for 
specific sample size or a particular degree of freedom. It approximates the shape of normal 
distribution. 

Let x have a normal distribution with mean ‘μ’ for the sample of size ‘n’ with sample mean x¯ and 
the sample standard deviation ‘s’, then the t variable has student’s t-distribution with a degree of 
freedom, d.f = n – 1. The formula for t-distribution is given by; 

https://www.investopedia.com/terms/s/sampling-distribution.asp


 

T-Test Assumptions 

1. The first assumption made regarding t-tests concerns the scale of 
measurement. The assumption for a t-test is that the scale of 
measurement applied to the data collected follows a continuous or 
ordinal scale, such as the scores for an IQ test. 

2. The second assumption made is that of a simple random sample, that 
the data is collected from a representative, randomly selected portion of 
the total population. 

3. The third assumption is the data, when plotted, results in a normal 
distribution, bell-shaped distribution curve. When a normal distribution 
is assumed, one can specify a level of probability (alpha level, level of 
significance, p) as a criterion for acceptance. In most cases, a 5% 
value can be assumed. 

4. The fourh assumption is a reasonably large sample size is used. A 
larger sample size means the distribution of results should approach a 
normal bell-shaped curve. 

5. The final assumption is homogeneity of variance. Homogeneous, or 
equal, variance exists when the standard deviations of samples are 
approximately equal. 

CHI SQUARED TEST 

A chi-squared test (symbolically represented as χ2) is basically a data analysis on the 
basis of observations of a random set of variables. Usually, it is a comparison of two 
statistical data sets. This test was introduced by Karl Pearson in 1900 for categorical 
data analysis and distribution. So it was mentioned as Pearson’s chi-squared test. 

The chi-square test is used to estimate how likely the observations that are made would 
be, by considering the assumption of the null hypothesis as true. 

A hypothesis is a consideration that a given condition or statement might be true, which 
we can test afterwards. Chi-squared tests are usually created from a sum of squared 
falsities or errors over the sample variance. 

Chi-Square Distribution 

When we consider, the null speculation is true, the sampling distribution of the test statistic is 
called as chi-squared distribution. The chi-squared test helps to determine whether there is a 

https://www.investopedia.com/terms/s/simple-random-sample.asp
https://www.investopedia.com/terms/v/variance.asp
https://byjus.com/maths/categorical-data/
https://byjus.com/maths/categorical-data/
https://byjus.com/maths/null-hypothesis/


notable difference between the normal frequencies and the observed frequencies in one or more 
classes or categories. It gives the probability of independent variables. 

Probability 

Density 

Function 

The chi-square distribution results when ν independent variables 

with standard normal distributions are squared and summed. The 

formula for the probability density function of the chi-square 

distribution is 

f(x)=e−x2xν2−12ν2Γ(ν2)forx≥0 

where ν is the shape parameter and Γ is the gamma function. The 

formula for the gamma function is 

Γ(a)=∫∞0ta−1e−tdt 

In a testing context, the chi-square distribution is treated as a 

"standardized distribution" (i.e., no location or scale parameters). 

However, in a distributional modeling context (as with other 

probability distributions), the chi-square distribution itself can be 

transformed with a location parameter, μ, and a scale 

parameter, σ. 

The following is the plot of the chi-square probability density 

function for 4 different values of the shape parameter. 

 

Cumulative 

Distribution 

Function 

The formula for the cumulative distribution function of the chi-square 

distribution is 

F(x)=γ(ν2,x2)Γ(ν2)forx≥0 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PDF
https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#PDF


where Γ is the gamma function defined above and γ is the 

incomplete gamma function. The formula for the incomplete 

gamma function is 

Γx(a)=∫x0ta−1e−tdt 

F Test Formula    
A test statistic which has an F-distribution under the null hypothesis is called an F test. It is 

used to compare statistical models as per the data set provided or available. George W. 

Snedecor, in honour of Sir Ronald A. Fisher, termed this formula as F-test Formula. 

FValue=Varianceofset1Varianceofset2=σ21σ22 

To compare the variance of two different sets of values, the F test formula is used. To be 

applied to F distribution under the null hypothesis, we first need to find out the mean of two 

given observations and then calculate their variance. 

σ2=∑(x–x¯¯¯)2n−1 

Where, 

σ2 = Variance 

x = Values given in a set of data 

x¯¯¯ = Mean of the data 

n = Total number of values 
 

 

 

ESTIMATION 

Estimation, in statistics, any of numerous procedures used to calculate the value of 
some property of a population from observations of a sample drawn from the 
population. A point estimate, for example, is the single number most likely to express 
the value of the property. An interval estimate defines a range within which the value 
of the property can be expected (with a specified degree of confidence) to fall. 

https://www.britannica.com/science/statistics


Estimation, in statistics, any of numerous procedures used to 

calculate the value of some property of a population from 

observations of a sample drawn from the population. 

A point estimate, for example, is the single number most likely to 

express the value of the property.  

An interval estimate defines a range within which the value of the 

property can be expected (with a specified degree of confidence) to 

fall. 

 The 18th-century English theologian and 

mathematician Thomas Bayes was instrumental in the 

development of Bayesian estimation to facilitate revision of 

estimates on the basis of further information. (See Bayes’s 

theorem.) 

 In sequential estimation the experimenter evaluates the 

precision of the estimate during the sampling process, which 

is terminated as soon as the desired degree of precision has 

been achieved. 

The statistical estimation of the population parameter is further divided into two 

types, (i) Point Estimation and (ii) Interval Estimation 

Point Estimation 

The objective of point estimation is to obtain a single number from the sample 

which will represent the unknown value of the population parameter. 

Population parameters (population mean, variance, etc) are estimated from the 

corresponding sample statistics (sample mean, variance, etc). 

A statistic used to estimate a parameter is called a point estimator or simply an 

estimator, the actual numerical value obtained by estimator is called an 

estimate.. 

Interval Estimation 

https://www.britannica.com/science/statistics
https://www.britannica.com/biography/Thomas-Bayes
https://www.britannica.com/science/Bayesian-analysis
https://www.merriam-webster.com/dictionary/facilitate
https://www.britannica.com/topic/Bayess-theorem
https://www.britannica.com/topic/Bayess-theorem
https://www.britannica.com/science/sequential-estimation
https://www.britannica.com/science/sampling-statistics
https://itfeature.com/glossary/variance
https://itfeature.com/glossary/variance


A point estimator (such as sample mean) calculated from the sample 

data provides a single number as an estimate of the population 

parameter, which can not be expected to be exactly equal to the 

population parameter because the mean of a sample taken from a 

population may assume different values for different samples. 

Therefore we estimate an interval/ range  of values (set of values) 

within which the population parameter is expected to lie with a 

certain degree of confidence. This range of values used to estimate a 

population parameter is known as interval estimate or estimate by a 

confidence interval, and is defined by two numbers, between which a 

population parameter is expected to lie. What is an 

estimator? 

In machine learning, an estimator is an equation for picking the “best,” or 
most likely accurate, data model based upon observations in realty. Not to be 
confused with estimation in general, the estimator is the formula that 
evaluates a given quantity (the estimand) and generates an estimate. This 
estimate is then inserted into the deep learning classifier system to determine 
what action to take. 

Uses of Estimators 

By quantifying guesses, estimators are how machine learning in theory is 
implemented in practice. Without the ability to estimate the parameters of a 
dataset (such as the layers in a neural network or the bandwidth in a kernel), 
there would be no way for an AI system to “learn.” 

A simple example of estimators and estimation in practice is the so-called 
“German Tank Problem” from World War Two. The Allies had no way to know 
for sure how many tanks the Germans were building every month. By 
counting the serial numbers of captured or destroyed tanks (the estimand), 
Allied statisticians created an estimator rule. This equation calculated the 
maximum possible number of tanks based upon the sequential serial 
numbers, and apply minimum variance analysis to generate the most likely 
estimate for how many new tanks German was building.  

Types of Estimators 

Estimators come in two broad categories—point and interval. Point equations 
generate single value results, such as standard deviation, that can be plugged 
into a deep learning algorithm’s classifier functions. Interval equations 
generate a range of likely values, such as a confidence interval, for analysis. 

https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/classifier
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/variance
https://deepai.org/machine-learning-glossary-and-terms/standard-deviation
https://deepai.org/machine-learning-glossary-and-terms/confidence-interval


In addition, each estimator rule can be tailored to generate different types of 
estimates: 

• Biased - Either an overestimate or an underestimate. 
• Efficient - Smallest variance analysis. The smallest possible variance is 

referred to as the “best” estimate.  
• Invariant: Less flexible estimates that aren’t easily changed by data 

transformations. 
• Shrinkage: An unprocessed estimate that’s combined with other 

variables to create complex estimates. 
• Sufficient: Estimating the total population’s parameter from a limited 

dataset. 

Unbiased: An exact-match estimate value that neither 

underestimates nor overestimates.  
 

Unbiased and Biased Estimators 

We now define unbiased and biased estimators. We want our estimator to 
match our parameter, in the long run. In more precise language we want the 
expected value of our statistic to equal the parameter. If this is the case, then 
we say that our statistic is an unbiased estimator of the parameter. 

If an estimator is not an unbiased estimator, then it is a biased estimator. 
Although a biased estimator does not have a good alignment of its expected 
value with its parameter, there are many practical instances when a biased 
estimator can be useful. One such case is when a plus four confidence interval 
is used to construct a confidence interval for a population proportion. 

• Example for Means 

• To see how this idea works, we will examine an example that pertains to 
the mean. The statistic 

• (X1 + X2 + . . . + Xn)/n 
• is known as the sample mean. We suppose that the random variables 

are a random sample from the same distribution with mean μ. This 
means that the expected value of each random variable is μ. 

• When we calculate the expected value of our statistic, we see the 
following: 

• E[(X1 + X2 + . . . + Xn)/n] = (E[X1] + E[X2] + . . . + E[Xn])/n = (nE[X1])/n 
= E[X1] = μ. 

• Since the expected value of the statistic matches the parameter that it 
estimated, this means that the sample mean is an unbiased estimator 
for the population mean. 

• ). 



• What is Sufficient Estimator? 

• An estimator of a parameter θ which gives as much information about θ as is 
possible from the sample at hand is called a sufficient estimator. Sufficient 
estimators exist when one can reduce the dimensionality of the observed data 
without loss of information. In A/B testing the most commonly used sufficient 
estimator (of the population mean) is the sample mean (proportion in the case 
of a binomial metric). A conversion rate of any kind is an example of a 
sufficient estimator. 

• In a more formal expression it can be said that a statistic is sufficient with 
respect to an unknown parameter and a given family of probability 
distributions if the sample from which it is calculated gives no additional 
information as to which of those probability distributions produced it than does 
the statistic itself. Thus sufficiency refers to how well an estimator utilizes the 
information in the sample relative to the postulated statistical model. 

• Sufficiency is an important quality in hypothesis testing where we are 
effectively comparing the distribution under the null hypothesis with the 
actually observed distribution. Having a sufficient estimator makes this 
process significantly more manageable, especially for large sample sizes. 

• be calculated from a sample drawn from a larger population. A consistent 
estimator is an estimator with the property that the probability of the estimated 
value and the true value of the population parameter not lying within c units (c is 
any arbitrary positive constant) of each other approaches zero as the sample size 
tends to infinity. 

•  For example, consider a population mean of 10 and an interval of 1 unit either 
side -- the interval from 9 to 11. As samples get larger, the probability that the 
sample mean will fall outside that interval diminishes, and approaches zero 
when the sample gets large enough. For a smaller interval, it takes longer for the 
probability to approach zero. 

 Consistent Estimator 
Consistent Estimator: 
An estimator is a measure or metric intended to be calculated from a sample drawn 
from a larger population. A consistent estimator is an estimator with the property that 
the probability of the estimated value and the true value of the population parameter 
not lying within c units (c is any arbitrary positive constant) of each other approaches 
zero as the sample size tends to infinity.  

For example, consider a population mean of 10 and an interval of 1 unit either side -- 
the interval from 9 to 11. As samples get larger, the probability that the sample mean 
will fall outside that interval diminishes, and approaches zero when the sample gets 
large enough. For a smaller interval, it takes longer for the probability to approach zero. 

https://www.analytics-toolkit.com/glossary/proportion/
https://www.analytics-toolkit.com/glossary/binomial-metric/
https://www.analytics-toolkit.com/glossary/statistic/
https://www.analytics-toolkit.com/glossary/hypothesis-testing/
https://www.analytics-toolkit.com/glossary/null-hypothesis/


•  Efficient Estimator 

• An efficient estimator is the "best possible" or "optimal" estimator of a 
parameter of interest. The definition of "best possible" depends on one's 
choice of a loss function which quantifies the relative degree of undesirability 
of estimation errors of different magnitudes. 

•  When one compares between a given procedure and a notional "best 
possible" procedure the efficiency can be expressed as relative finite-sample 
or asymptotic efficiency (a ratio). The relevance to A/B testing is that the more 
efficient the estimator, the smaller sample size one requires for an A/B test. 

• CRAMER RAO INEQUALITY 

In statistics, the Cramér-Rao inequality, named in honor of Harald Cramér and Calyampudi 
Radhakrishna Rao, expresses a lower bound on the variance of an unbiased statistical estimator, 
based on Fisher information. 

It states that the reciprocal of the Fisher information, , of a parameter , is a lower 

bound on the variance of an unbiased estimator of the parameter (denoted ). 

 

In some cases, no unbiased estimator exists that realizes the lower bound. 

The Cramér-Rao inequality is also known as the Cramér-Rao bounds (CRB) or Cramér-Rao 

lower bounds (CRLB) because it puts a lower bound on the variance of an estimator . 

 

Estimation method  
In the method of Estimation  

▪ a sample  is used to make statements about the probability 

distribution that generated the sample; 

▪ the sample  is regarded as the realization of a random 

vector , whose unknown joint distribution function, denoted 

by , is assumed to belong to a set of distribution functions , 

called statistical model; 

▪ MAXIMUM LIKELIHOOD ESTIMATOR 

▪ It seems reasonable that a good estimate of the unknown 

parameter θ would be the value of θ that maximizes the probability, 

https://www.analytics-toolkit.com/glossary/estimator/
https://www.analytics-toolkit.com/glossary/sample-size/
https://www.analytics-toolkit.com/glossary/a-b-test/
https://psychology.wikia.org/wiki/Statistics
https://psychology.wikia.org/wiki/Harald_Cram%C3%A9r
https://psychology.wikia.org/wiki/Estimator
https://psychology.wikia.org/wiki/Fisher_information
https://psychology.wikia.org/wiki/Fisher_information
https://psychology.wikia.org/wiki/Variance
https://www.statlect.com/fundamentals-of-statistics/statistical-inference#sample
https://www.statlect.com/fundamentals-of-probability/random-vectors
https://www.statlect.com/fundamentals-of-probability/random-vectors
https://www.statlect.com/glossary/joint-distribution-function


errrr... that is, the likelihood... of getting the data we observed. (So, 

do you see from where the name "maximum likelihood" comes?) So, 

that is, in a nutshell, the idea behind the method of maximum 

likelihood estimation. But how would we implement the method in 

practice? Well, suppose we have a random sample X1,X2,⋯,Xn for 

which the probability density (or mass) function of each Xi is f(xi;θ). 

Then, the joint probability mass (or density) function of X1,X2,⋯,Xn, 

which we'll (not so arbitrarily) call L(θ) is: 

▪ L(θ)=P(X1=x1,X2=x2,…,Xn=xn)=f(x1;θ)⋅f(x2;θ)⋯f(xn;θ)=∏i=1nf(xi;θ) 

▪ The first equality is of course just the definition of the joint 

probability mass function. The second equality comes from that fact 

that we have a random sample, which implies by definition that 

the Xi are independent. And, the last equality just uses the shorthand 

mathematical notation of a product of indexed terms. Now, in light of 

the basic idea of maximum likelihood estimation, one reasonable way 

to proceed is to treat the "likelihood function" L(θ) as a function 

of θ, and find the value of θ that maximizes it. 

▪  

▪ Minimum chi-square estimation 
▪ In statistics, minimum variance to be chi-square estimation is a method 

of estimation of unobserved quantities based on observed data.[1] 

▪ In certain chi-square tests, one rejects a null hypothesis about a population 
distribution if a specified test statistic is too large, when that statistic would 
have approximately a chi-square distribution if the null hypothesis is true. In 
minimum chi-square estimation, one finds the values of parameters that make 
that test statistic as small as possible. 

▪ Among the consequences of its use is that the test statistic actually does have 
approximately a chi-square distribution when the sample size is large. 
Generally, one reduces by 1 the number of degrees of freedom for each 
parameter estimated by this method. 

 

 
                                             UNIT III 

TESTS OF SIGNIFICANCE (Large sample)  

INTRODUCTION:  

Any statistical investigation usually deals with the study of some characteristics of a 

collection of objects  

https://en.wikipedia.org/wiki/Estimation
https://en.wikipedia.org/wiki/Minimum_chi-square_estimation#cite_note-1
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Chi-square_distribution
https://en.wikipedia.org/wiki/Sample_size
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)


SAMPLING:  

Definition:  

A finite subset of population is called a sample and the number of objects in a sample is 

called the sample size.  

Some of the important types of sampling are (i) purposive sampling (ii) Random sampling 

(iii) Simple sampling (iv) stratified sampling.  

(i)Purposive sampling:  

 If the sample elements are selected with a definite purpose in mind then the sample selected is 

called purposive sample.  

(ii) Random sampling:  

A random sample is one in which each element of the population has an equal           

chance of inclusion in the sample.  

(iii) Simple sampling:  

Simple sampling is a special type of random sampling in which each element of the 

population has an equal and independent chance of being included in the sample.  

  

(iv) Stratified sampling:  

  The sample which is the aggregate of the sampled individuals of each stratum is called stratified 

sample and the technique of selecting such sample is called stratified sampling.  

TESTS OF SIGNIFICANCE FOR LARGE SAMPLES  

I. Tests for proportion or percentage   

 (A)  Single proportion               (B) Difference of proportions.  

II. Tests for means.  

(A) (i) Test for single mean if standard deviation of the population σ is    

                                 known. (ie) 𝐻0∶𝜇 =𝜇0 ,𝜍  is known.  

(B) (ii) Tests for single mean if σ is not known 𝐻0:𝜇 =𝜇0,σ is      

         unknown.  



(C) (i) Test for equality of means of 2 normal populations with  

          Known standard deviations (ie) 𝐻0:𝜇1 =𝜇2;𝜍1,𝜍2 is known.  

(ii) Test for equality of means of 2 normal populations with same standard    

deviation though unknown 𝐻0:𝜇1 =𝜇2,   𝜍1 =𝜍 =𝜍2.  

III. Test for standard deviations.  

(A) : Test for single standard deviation 𝐻0:𝜍 =𝜍0  

(B) : Test for equality for 2 standard deviation (ie)𝐻0:𝜍1 =𝜍2  

  

 1.  Test of significance for proportions and percentages.  

           I(A) Single proportions.  

            If X is the number success in independent trials with constant probability of 

success P for each trial we have E(X)=nP and V(X)=variance(X)=nPQ  where Q=1-P.    It has 

been proved that for large n,                the binomial distribution tends to a normal 

distribution. Hence for large n,  

𝑋   ~𝑁(𝑛𝑝,𝑛𝑃𝑄)  

  

I (B)Difference of proportions.  

           Suppose we want to compare 2 distinct populations with regard to possession of an 

attributes. Let a sample of size be chosen from the first population and sample of size be 

chosen from the second population.   

Let be number of persons possessing the attribute A in the first sample and  be the number of 

persons possessing the same attribute in the second sample  

  
As before and where  are the proportions in 

the populations. .  

   
An unbiased estimate of population proportion P based on both the samples is  

given by .Suppose the population proportion are given to be 

different (ie) .  



  

Problem:  

A coin is tossed 144 times and a person gets 80 heads. Can we say that the coin is unbiased one?  

Solution:  

Set the null hypothesis : the coin is unbiased. Given n=144.  

Probability of getting a head in a toss P=1/2.HenceQ=1/2.Let X=number of 

successes=number of getting heads=80.  

.  

Since │Z│<1.96. We accept  the hypothesis at 5% level of significance.   

Hence the coin is unbiased.  

Problem:  

A die is thrown 10000 times and a throw of 1 or 2 was obtained 4200 times. On the assumption of 

random throwing do the data indicate an unbiased die?  

Solution:   

  P=Probability of getting 1 or 2=1/3 .Hence   Q=2/3  

Given n=10000,X=4200.The null hypothesis :the die is unbiased.  

  

Since │z│>3, is rejected and hence the die is biased one.  

Problem:  

   A manufacturer claimed that  at least  95% of the equipment which he supplied to a factory 

conformed to specification. An examination of a sample of 200 pieces of  

equipment revealed that 18 were faulty. Test his claim at a significant level of  (i)5%  (ii)1%.  

Solution:  

  Out of a sample of 200 equipments 18 were faulty.  

                                  X=200-80=182  



.  

Set the null hypothesis :P=0.95,Q=0.05. .  

  

(i) Since the alternative hypothesis is left tailed and the significant 

value of Z at 5% level  of significant for left tail is -1.645.  

Z=-2.6<-1.645.  

Hence we accept the null hypothesis at 5% level of significance.  

(ii) The critical value of Z at 1% value of significance for left tailed test is 

2.33 and Z=-2.6<-2.33.Hence is accepted at 1% level.  

Problem:  

A sample of 1000 products from a factory are examined and found to be 2.5% defective. Another 

sample of 1500 similar products from another factory are found to have only 2% defective. Can we 

conclude that the products of the first factory are inferior to those of the second?  

Solution:  

Given  Proportion of defectives in the first factory  

   

Proportion of defective in the second factory   

  

Hence Q=1- 

Null hypothesis   

Test hypothesis   

  
 The difference of proportion is not significant on 5% level. Hence this 

hypothesis is accepted and the two factories are producing similar products. Hence one 

is not inferior to the other.  

Problem:  

A machine puts out 16 imperfect articles in a sample of 500 articles. After the machine overhauled 

it. Puts out 3 defective articles in sample of 100.Has the machine improved?  

Solution:  

Given Proportion defectatives in the first  



sample=16/500=.032  

  
  

  

Set the null hypothesis   

Alternative hypothesis   

  
  

 

  

  

Sine Z<1.645 it is not significant at 5% level of significance. Hence we can  

accept the null hypothesis and conclude that the machine has not been improved.  

  

  

II (B) Test of significance for difference of sample means.  

Consider two different normal populations with  and  and s.d   and  respectively. Let a sample 

of size  be drawn from the first population and an independent sample of size  be drawn from 

the second population. Let  be the mean of the first sample from the first population and  be the 

mean of second sample from the second population. If the sample sizes are large we know  is a 

normal variate with mean  and variance   and  is an independent  

normal variate and normal variate   with mean  and variance  .  

   which can be tested    The test statistic becomes 

at any level of  

significance.  

Problem:  

The number of accidents per day were studied for 144 days in Madras city and for 100 days in Delhi 

city. The mean numbers of accidents and the s.ds were respectively 4.5 and 1.2 for Madras  city and 

5.4 and 1.5 for Delhi city. Is Madras city more prone to accidents than Delhi city?  

Solution:  

        Given .  

.  

 Set the null hypothesis   



.  

 │ │  we reject the hypothesis that the two cities have the same  

accident rates. However since Delhi city has higher  rate of accident than Madras city.  

   Therefore   Delhi  more  prone  to  accidents.  

Problem:  

The mean yields of rice from two places in a district were 210 kgs and 220 kgs per acre from 100 

acres and 150 acres respectively. Can it be regarded that the sample were drawn from the same 

district which has the s.d of 11kgs per acre?  

Solution:  

  
  

  

  
Set the null hypothesis   

  
  

  

  

  
  

.The  value is highly significant and hence we reject the null hypothesis. 

Hence the samples are certainly not from the same district with the s.d 11.  

Test of significance for equality of standard deviations of a normal 

population.  

If we want to test whether the two independent samples with known standard deviations  

have come from the same population with standard deviation σ. Under the hypothesis  

the test statistics is .  

Problem:  

The s.d of weight of all students in a first grade college was found to be 4 kgs. Two samples are drawn. 

The s.ds of the weight of  100  undergraduate students is 3.5kgs and 50 post graduate students are 3 

kgs. Test the significance of the difference of standard deviations of the samples at 5% level.  



Solution:  

   Given .  

Set the null hypothesis Then   

  

  

│ │ 1.02<1.96. It is not significant at 5% level of significance.  

Problem:  

The mean production of wheat of a sample of 100 plots is 200kgs per acre with s.d of 10 kgs.  

Another sample of 150 plots gives the mean production of wheat as 220kgs. With s.d of 12kgs. 

Assuming the s.d of the 11kgs for the universe find at 1% level of significance ,whether two results 

are consistent.  

Solution:  

 Given σ=11 and  

  

  size  mean  S.D  

  

Sample 1  
      

  

Sample 2  
      

  

Set the null the hypothesis  and  .For   

  

 │ │ 14.1>3.Hence the two means differ significantly at 5% level even a 1% level.  

For .  

     

 │ │  and │ │ .   

Hence the difference of s.d is significant at 5% level and not significant and 1% level.  

At 1% level the difference between s.d is not significant but between means it is 

significant. Hence we can conclude that at 1% level the two results are not consistent.  



  

TEST OF SIGNIFICANCE (SMALL SAMPLES)  

TEST OF SIGNIFICANCE BASED ON t-DISTRIBUTION (t-test)  

Consider a normal population with mean µ and s.d σ . Let  .   be a random 

sample of size n with mean  and standard deviation s. We know that is the  

standard normal variate N(0,1).  

            Hence the test statistics is in small sample becomes  

. Now let us define .  

  

This follows students‟s t-distribution with n-1 degrees of freedom   

  

1.Test for the difference between the mean of a sample and that of a population   

         Under the null hypothesis  .  

The test  statistic  

 . Which can be tested at any level of significance with n-1  

degrees of freedom.   

II. Test for the difference between the means of two samples   

II.A. If and  are the means of two independent samples of sizes and  from a normal 

.  population with mean µ and standard deviation σ. It found that 

  

Which follows a t-distribution with d.f .  

II.B. suppose the sample sizes are equal (ie) .Then we have    pairs of values. 

Further we assume that the pair are   independent .Then the test statistic  in (1) becomes  

.  

𝑍 = 
𝑥 − 𝜇   
𝜍 

  𝑛   



  is a students  variate with  

 .  

II. (C)   suppose the sample size are equal and if then n pairs of values in this case are not 

independent.  

          The test statistic   to test whether the means of differences is  

significantly different from zero. In this case the d.f is n-1.  

Confidence limits (Fiducial limits). If  is not known and is small then         

1. 95%  confidence limits for µ is   

2. 99% confidence limits for µ is   

  

  

Problem:  

A random sample of 10 boys has the following I.Q (intelligent quotients). 70, 120, 110, 101, 88, 95, 

98, 107, 100. Do these data support the assumption of a population mean of a population mean I.Q 

of 100?  

Solution:  

  Given n=10;     µ=100 .  Set  :   µ=100  

Under  test statistics  where  and  can be calculated from the sample  

data as  and   

.  

Hence 13.54.  

  

              │ │ (nearly).  

  

The table value for 9 d.f at 5% level of significance is =2.26  

𝑡 = 
𝑥 − 𝜇 

𝑠 
  𝑛 − 1   



 │ │ Hence the difference is not significant at 5% level. Hence  may be 

accepted at 5% level hence the data support the assumption of population mean 100.  

Problem:  

It was found that a machine has produced pipes having a thickness .05 mm. to determine whether 

the machine is in proper working order a sample of 10 pipe is chosen for which the mean thickness is 

.53mm and s.d is 0.3mm .test the hypothesis that the machine is in proper working order using a level 

of significance of       (1) .05  (2) .01  

Solution :   

Given µ= .50, =.53; .  

Set the null hypothesis  :µ=50   

Under the null hypothesis the test statistic is   

.  

(i)The table value for d.f at 5% level of significance is =2.26  (ie)│t│=3>

.  

The difference is significant at 5% level of significance.   

The null hypothesis is rejected at 5%level of significance .  

(ii) The table value for  d.f at 1% level of significance is .  

Hence │t│=3< .  

The difference is not significant at 1% level of significant .  

Hence the null hypothesis is accepted at 1% level of significance.   

  

Problem:  

A group of 10 rats fed on a diet A and another group of 8 rats fed on a different diet B recorded the 

following increase in weight in gms.   

  

Diet  

A  

5  6  8  1  12  4  3  9  6  10  

Diet B  2  3  6  8  1  10  2  8  -  -  

Test whether diet A is superior to diet B .  

Solution :  

 Given .  



Mean of the first sample .  

Mean of the second sample .  

Standard deviation and  of the first and second sample can be found as   

  

  

Set the null hypothesis  :    

  

Table value for t at 5% level of significance for  

=2.12.  

 Since t=.875 <  the difference is not significant at 5% level of significance .  

Hence the null hypothesis may be accepted.  

Problem:  

       The table gives the biological values of protein from 6 cows milk and 6 buffalo‟s milk . 

Examine whether the differences are significant .  

Cow‟s milk   Buffalo‟s milk   

1.8  2.0  

2.0  1.8  

1.9  1.8  

1.6  2.0  

1.8  2.1  

1.5  1.9  

  

Solution:  

         Mean value of protein of cow‟s milk =1.6  

         Mean value of protein of buffalo‟s milk =1.9  

         Variance of protein of cow‟s milk =.03  



         Variance of protein in buffalo‟s milk=0.1  

         We notice that the two sets of observations are independent .  

 Given    

.  

 Set null hypothesis . Under this null hypothesis the test statistic is   

and the d.f .  

.  

The table value for d.f at 5% level of significance  

 is 2.23.   

│t│=1.11<2.23.Hence the difference is not significant .  

Hence the hypothesis is accepted .  

Problem:  

Ten soldiers participated in a shooting competition in the first week. After intensive training they 

participated in the competition in the second week. Their scores before and after coaching were given 

as follows.  

Soldiers  1  2  3  4  5  6  7  8  9  10  

Score 

before(x)  

67  24  57  55  63  54  56  68  33  43  

Score 

after(y)  

70  38  58  58  56  67  68  75  42  38  

      

 Do the data indicate that the soldier have been identified by the training ?  

Solution:  

Here we are connected with the same set of the soldiers in the 2 competitions and their scores which 

are related to each other because of the intensive training .we compute the difference in their scores 

and calculate the mean  and the s.d  as follow  

  

  

        

    

           
  

  



67   

     

24
 
  

     

57
 
  

       

55  

     

63  

     

54  

     

56  

     

68  
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43  
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 38  

  

 58  

  

 58  
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 68  
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       -4  

  

       -2  
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        8  

  

        7  

  

        2  

  

        4  

  

-10  

 4  

  

 81  

  

 16  

  

 4  

  

   144  

  

 64  

  

 49  

  

 4  

  

16  

  

100  

     -      -    50     -  482  

𝑧= 50 =5;𝑠2 =  𝑧−𝑧  2 =482 =48.2  
 10 10 10 

 Set the null hypothesis =0.     

Under  the null hypothesis the test statistic is   

The table value for d.f at 55 level of significance is .  

 │ │ .  

The difference is not significant on 5%  level of significance .  

Hence the null hypothesis is accepted .We can conclude that there is no significant 

improvement in the training .  

   

   

  

TEST BASED ON - DISTRIBUTION  

INTRODUCTION:  

The  distribution has number of application in statistics. It has three important 

applications based on    distribution. I. - test for population variance.  

II. -test to test the goodness of fit.  



III. -test to test the independence of attributes.  

  -TEST.   

-test for population variance  

  Let  be a random sample from a normal population with variance .Set  

the null hypothesis . Then the test statistic is   

where  is the variance of  the sample. Then  defined above follows a  

distribution with  degrees of freedom.  

Problem:  

A random sample of size 25from a population gives the sample standard deviation 8.5.Test the 

hypothesis that the population s.d is 10.  

Solution:  

Given σ=10,n=25,s=8.5   

.  

The table value of  for 24 d.f =36.415 at 5% level of significance.  

It is not a significant. Hence the null hypothesis is accepted.  

  

  

  

Problem: 

    Test the hypothesis that σ=8 given that s=10 for a random sample of size 51.  

Solution:  

Given =51,σ=8,s=10.  

Let .  

.  

Since   

               =2.58  

│ │ .  

Hence the difference is significant at 5% level of significance and hence the hypothesis is 

rejected at 5% level of significance.  



  

-TEST TO TEST THE GOODNESS OF FIT  

  The  -distribution can be used to test the goodness of fit. This test can also be applied to 

test for compatibility of observed frequencies and theoretical frequencies. Let  

 be the observed frequencies and  be the corresponding expected  

frequencies such that  where N is the number of members in the 

population.  

Define  .It is a  variable with n-1 degrees of freedom.  

  

  

  

  

Problem: 

The theory predicts that the proportion of an object available in four groups A,B,C,D should be  

9:3:3:1. In an experiment among 1600 items of this object the members in the four groups were 

882,313,287 and188.use -test to verify whether the experimental result support the theory.  

Solution:  

The observed frequencies  are 882,313,287,118.  

=882+313+287+118=1600  

The expected frequencies are in the ratio 9:3:3:1.  

 The expected frequencies   are  900,300,300,100.  

=1600= .  

.  

           

Degrees of Table value of  for 3 d.f at 5% level of significance is 7.851.  



Calculated =4.7266<7.852=table value of .It is not significant. Hence the null 

hypothesis may be accepted at 5% level of significance and hence we may conclude that experiment 

results support the theory.  

Problem:    

Fit a poisson distribution for the following data and test the goodness of fit.  

x  0  1  2  3  4  5  6  Total  

f  273  70  30  7  7  2  1  390  

  

  

Solution: 

       

     .  

  The theoretical frequencies of the poisson distribution are given by  

.  

freedom =4-1 =3 .  

The expected frequencies are by   

  ………………….,  

                      .  

Thus the observed and expected frequencies can be shown below  

  273  70  30  7  7  2  1  390  

  236.4  118.2  29.5  4.9  .6  .1  0  389.7  

  

Since  the sum of the expected frequencies  is 389.7.It can be adjusted in the last two 

frequencies by adding .3.  

    

273  

  

70  

  

30  

  

17  

  

390  



  236.4  118.2    

29.5  

  

5.9  

  

390  

  

Set up the null hypothesis :Poisson distribution can be fitted well.  

The test statistics is  

.  

Degrees of freedom=7-1-1-3=2.  

The table value of 2 d.f. at  5% level is 5.99.  

Since  =46.3>5.99=The table value of  it is much significant at 5% level of significance.  

Hence the hypothesis is rejected at 5% level and hence the poisson distribution is not a good fit to 

the data.  

UNIT IV 

 ANALYSIS OF VARIANCEWhat Does the Analysis of 

Variance Reveal? 
The ANOVA test is the initial step in analyzing factors that affect a given data 
set. Once the test is finished, an analyst performs additional testing on the 
methodical factors that measurably contribute to the data set's inconsistency. 
The analyst utilizes the ANOVA test results in an f-test to generate additional 
data that aligns with the proposed regression models. 

The ANOVA test allows a comparison of more than two groups at the same 
time to determine whether a relationship exists between them. The result of 
the ANOVA formula, the F statistic (also called the F-ratio), allows for the 
analysis of multiple groups of data to determine the variability between 
samples and within samples. 

If no real difference exists between the tested groups, which is called the null 
hypothesis, the result of the ANOVA's F-ratio statistic will be close to 1. The 
distribution of all possible values of the F statistic is the F-distribution. This is 
actually a group of distribution functions, with two characteristic numbers, 
called the numerator degrees of freedom and the denominator degrees of 
freedom. 

https://www.investopedia.com/terms/r/regression.asp
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• Analysis of variance, or ANOVA, is a statistical method that separates 
observed variance data into different components to use for additional 
tests. 

• A one-way ANOVA is used for three or more groups of data, to gain 
information about the relationship between the dependent and 
independent variables. 

• If no true variance exists between the groups, the ANOVA's F-ratio 
should equal close to 1. 

Example of How to Use ANOVA 
A researcher might, for example, test students from multiple colleges to see if 
students from one of the colleges consistently outperform students from the 
other colleges. In a business application, an R&D researcher might test two 
different processes of creating a product to see if one process is better than 
the other in terms of cost efficiency. 

The type of ANOVA test used depends on a number of factors. It is applied 
when data needs to be experimental. Analysis of variance is employed if there 
is no access to statistical software resulting in computing ANOVA by hand. It 
is simple to use and best suited for small samples. With many experimental 
designs, the sample sizes have to be the same for the various factor level 
combinations. 

ANOVA is helpful for testing three or more variables. It is similar to multiple 
two-sample t-tests. However, it results in fewer type I errors and is appropriate 
for a range of issues. ANOVA groups differences by comparing the means of 
each group and includes spreading out the variance into diverse sources. It is 
employed with subjects, test groups, between groups and within groups. 

One-Way ANOVA Versus Two-Way ANOVA 
There are two main types of ANOVA: one-way (or unidirectional) and two-way. 
There also variations of ANOVA. 

 For example, MANOVA (multivariate ANOVA) differs from ANOVA as the 
former tests for multiple dependent variables simultaneously while the latter 
assesses only one dependent variable at a time. One-way or two-way refers 
to the number of independent variables in your analysis of variance test. A 
one-way ANOVA evaluates the impact of a sole factor on a sole response 
variable. It determines whether all the samples are the same. The one-way 
ANOVA is used to determine whether there are any statistically significant 
differences between the means of three or more independent (unrelated) 
groups. 

A two-way ANOVA is an extension of the one-way ANOVA. With a one-way, 
you have one independent variable affecting a dependent variable. With a 
two-way ANOVA, there are two independents. For example, a two-way 
ANOVA allows a company to compare worker productivity based on two 

https://www.investopedia.com/terms/t/t-test.asp
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independent variables, such as salary and skill set. It is utilized to observe the 
interaction between the two factors and tests the effect of two factors at the 
same time. 

ANOVA Table 
• ANOVA table is a tabular form of all the data and calculations 

performed during the test. 

• This makes it more convenient for the observation and 
calculation of data. 

The following is the ANOVA table for two-way ANOVA: 

 

In the table, 
c= number of columns 

r= number of rows 
T= the total of the values of individual items 



Tj= the sum of the values in the column 
Ti= the sum of the values in the row 

• The ANOVA table shows the statistics used to test hypotheses 
about the population means. 

• Here, the F-ratios for rows and columns are compared with their 
corresponding table values, for the given degree of freedom and 

given level of significance. 
• If the calculated F-ratio is found to be equal or higher than its 

table value, the differences or variation among the columns are 
considered significant. 

• A similar process is employed for rows to determine the 
significance of the variation. 

 

 Interval Estimation (Confidence Intervals) 

Let X1X1, X2X2, X3X3, ......, XnXn be a random sample from a distribution with a 

parameter θθ that is to be estimated. Suppose that we have 

observed X1=x1X1=x1, X2=x2X2=x2, ⋯⋯, Xn=xnXn=xn. So far, we have discussed point 

estimation for θθ. The point estimate θ^θ^ alone does not give much information about θθ. 

In particular, without additional information, we do not know how close θ^θ^ is to the real θθ. 

Here, we will introduce the concept of interval estimation. In this approach, instead of giving 

just one value θ^θ^ as the estimate for θθ, we will produce an interval that is likely to include 

the true value of θθ. Thus, instead of saying 

θ^=34.25,θ^=34.25, 

we might report the interval 

[θ^l,θ^h]=[30.69,37.81],[θ^l,θ^h]=[30.69,37.81], 

which we hope includes the real value of θθ. That is, we produce two estimates for θθ, a high 

estimate θ^hθ^h and a low estimate θ^lθ^l. In interval estimation, there are two important 

concepts. One is the length of the reported interval, θ^h−θ^lθ^h−θ^l. The length of the 

interval shows the precision with which we can estimate θθ. The smaller the interval, the 

higher the precision with which we can estimate θθ. The second important factor is 

the confidence level that shows how confident we are about the interval. The confidence level 

is the probability that the interval that we construct includes the real value of θθ. Therefore, 

high confidence levels are desirable. We will discuss these concepts in this section. 

 

Confidence Interval 

In Statistics, a confidence interval is a kind of interval calculation, obtained from the 

observed data that holds the actual value of the unknown parameter. It is associated with the 

confidence level that quantifies the confidence level in which the interval estimates the 

deterministic parameter. Also, we can say, it is based on Standard Normal Distribution, 

https://byjus.com/maths/standard-normal-distribution/


where Z value is the z-score. Here, let us look at the definition, formula, table, and the 

calculation of the confidence level in detail. 

Confidence Interval Definition 

The confidence level represents the proportion (frequency) of acceptable confidence intervals 

that contain the true value of the unknown parameter. In other terms, the confidence intervals 

are evaluated using the given confidence level from an endless number of independent 

samples. So that the proportion of the range contains the true value of the parameter that will 

be equal to the confidence level. 

Mostly, the confidence level is selected before examining the data. The commonly used 

confidence level is 95% confidence level. However, other confidence levels are also used, 

such as 90% and 99% confidence levels. 

Confidence Interval Formula 

The confidence interval is based on the mean and standard deviation. Thus, the formula to 

find CI is 

X̄ ± Zα/2 × [ σ / √n ] 

Where 

X̄ = Mean 

Z = Confidence coefficient 

α = Confidence level 

σ = Standard deviation 

N = sample space 

The value after the ± symbol is known as the margin of error. 

Note: This interval is only accurate when the population distribution is normal. But, in the 

case of large samples from other population distributions, the interval is almost accurate by 

the Central Limit Theorem. 

Confidence Interval Table 

The confidence interval table for Z values are given as follows 

Confidence Interval Z Value 

80% 1.282 

85% 1.440 

90% 1.645 

95% 1.960 

https://byjus.com/maths/standard-deviation/
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99% 2.576 

99.5% 2.807 

99.9% 3.291 

How to Calculate Confidence Interval? 

To calculate the confidence interval, go through the following procedure. 

Step 1: Find the number of observations n(sample space), mean X̄, and the standard deviation 

σ. 

Step 2: Decide the confidence interval of your choice. It should be either 95% or 99%. Then 

find the Z value for the corresponding confidence interval given 

Step 3: Finally, substitute all the values in the formula. 

Confidence Interval Example 

Question: In a tree, there are hundreds of apples. You are randomly choosing 46 apples 

with a mean of 86 and a standard deviation of 6.2. Determine that the apples are big 

enough. 

Solution: 

Given: Mean, X̄ = 86 

Standard deviation, σ = 6.2 

Number of observations, n = 46 

Take the confidence level as 95%. Therefore, the value of z = 1.960 (from the table) 

The formula to find the confidence interval is 

X̄ ± Zα/2 × [ σ / √n ] 

Now, substitute the values in the formula, we get 

86 ± 1.960 × [ 6.2 / √46 ] 

86 ± 1.960 × [ 6.2 / 6.78] 

86 ± 1.960 × 0.914 

86 ± 1.79 

Here, the margin of error is 1.79 

Therefore, all the hundreds of apples are likely to be between in the range of 84. 21 and 

87.79. 

Independent Samples 



Depending on the sample types and whether or not the population standard deviation 

is known will depend on whether we employ either a z-test or t-test. 

Suppose the population standard deviation is known, which is highly unlikely. 

In that case, we will use a z-test and follow the following formula for constructing a 

confidence interval for the difference of means. 

 
Confidence Interval Formula For Two Sample Mean 

But for two independent random samples where the standard deviation is unknown, and the 

sample size is sufficiently large, then we will have to use a t-test, which involves a t-

distribution with degrees of freedom, as well as the possibility of pooled variances. 

 
Formula For Two Sample Mean With Unknown Standard Deviation 



 
                                           UNIT V 

TESTING OF HYPOTHESIS 

Hypothesis Testing Formula 

We run a hypothesis test that helps statisticians determine if the evidence are enough in a 

sample data to conclude that a research condition is true or false for the entire population. For 

finding out hypothesis of a given sample, we conduct a Z-test. Usually, in Hypothesis testing, 

we compare two sets by comparing against a synthetic data set and idealized model. 

The Z test formula is given as: 



z=x¯¯¯−μσn−−√ 

Where, 

x¯¯¯ is the sample mean 

μ is the population mean 

σ is the standard deviation and n is the sample size. 

Solved Examples 

Question: What will be the z value when the given parameters are sample mean = 600, 

population mean = 585, the standard deviation is 100 and the sample size is 150? 

Solution: 

Given parameters are, 

Sample mean, x¯ = 600 

Population mean, μ = 585, 

Standard deviation, σ = 100 

Sample size, n = 150 

The formula for hypothesis testing is given as, 

z=x¯¯¯−μσn√ 

z=600−585100150√ 

=1.837Hypothesis Definition 
In Statistics, the determination of the variation between the group of data due to true variation 

is done by hypothesis testing. The sample data are taken from the population parameter based 

on the assumptions. The hypothesis can be classified into various types. In this article, let us 

discuss the hypothesis definition, various types of hypothesis and the significance of 

hypothesis testing, which are explained in detail. 

Hypothesis Definition in Statistics 

In Statistics, a hypothesis is defined as a formal statement, which gives the explanation about 

the relationship between the two or more variables of the specified population. It helps the 

researcher to translate the given problem to a clear explanation for the outcome of the study. 

It clearly explains and predicts the expected outcome. It indicates the types of experimental 

design and directs the study of the research process. 

Types of Hypothesis 

The hypothesis can be broadly classified into different types. They are: 

Simple Hypothesis 

A simple hypothesis is a hypothesis that there exists a relationship between two variables. 

One is called a dependent variable, and the other is called an independent variable. 

Complex Hypothesis 

A complex hypothesis is used when there is a relationship between the existing variables. In 

this hypothesis, the dependent and independent variables are more than two. 

Null Hypothesis 
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In the null hypothesis, there is no significant difference between the populations specified in 

the experiments, due to any experimental or sampling error. The null hypothesis is denoted 

by H0. 

Alternative Hypothesis 

In an alternative hypothesis, the simple observations are easily influenced by some random 

cause. It is denoted by the Ha or H1. 

Empirical Hypothesis 

An empirical hypothesis is formed by the experiments and based on the evidence. 

Statistical Hypothesis 

In a statistical hypothesis, the statement should be logical or illogical, and the hypothesis is 

verified statistically. 

Apart from these types of hypothesis, some other hypotheses are directional and non-

directional hypothesis, associated hypothesis, casual hypothesis. 

Characteristics of Hypothesis 

The important characteristics of the hypothesis are: 

• The hypothesis should be short and precise 

• It should be specific 

• A hypothesis must be related to the existing body of knowledge 

• It should be capable of verification  
 

Type I and Type II errors are subjected to the result of the null hypothesis. In case of type I 

or type-1 error, the null hypothesis is rejected though it is true whereas type II or type-2 error, 

the null hypothesis is not rejected even when the alternative hypothesis is true. Both the error 

type-i and type-ii are also known as “false negative”. A lot of statistical theory rotates around 

the reduction of one or both of these errors, still, the total elimination of both is explained as a 

statistical impossibility. 

Type I Error 

A type I error appears when the null hypothesis (H0) of an experiment is true, but still, it is 

rejected. It is stating something which is not present or a false hit. A type I error is often 

called a false positive (an event that shows that a given condition is present when it is absent). 

In words of community tales, a person may see the bear when there is none (raising a false 

alarm) where the null hypothesis (H0) contains the statement: “There is no bear”. 

The type I error significance level or rate level is the probability of refusing the null 

hypothesis given that it is true. It is represented by Greek letter α (alpha) and is also known as 

alpha level. Usually, the significance level or the probability of type i error is set to 0.05 

(5%), assuming that it is satisfactory to have a 5% probability of inaccurately rejecting the 

null hypothesis. 

https://byjus.com/maths/null-hypothesis/


Type II Error 

A type II error appears when the null hypothesis is false but mistakenly fails to be refused. It 

is losing to state what is present and a miss. A type II error is also known as false negative 

(where a real hit was rejected by the test and is observed as a miss), in an experiment 

checking for a condition with a final outcome of true or false. 

A type II error is assigned when a true alternative hypothesis is not acknowledged. In other 

words, an examiner may miss discovering the bear when in fact a bear is present (hence fails 

in raising the alarm). Again, H0, the null hypothesis, consists of the statement that, “There is 

no bear”, wherein, if a wolf is indeed present, is a type II error on the part of the investigator. 

Here, the bear either exists or does not exist within given circumstances, the question arises 

here is if it is correctly identified or not, either missing detecting it when it is present, or 

identifying it when it is not present. 

The rate level of the type II error is represented by the Greek letter β (beta) and linked to the 

power of a test (which equals 1−β). 

Table of Type I and Type II Error 

The relationship between truth or false of the null hypothesis and outcomes or result of the 

test is given in the tabular form: 

Error Types When H0 is True When H0 is False 

Don’t Reject Correct Decision (True negative) 

Probability = 1 – α 

Type II Error (False negative) 

Probability = β 

Reject Type II Error (False Positive) 

Probability = α 

Correct Decision (True Positive) 

Probability = 1 – β 

Type I and Type II Errors Example 

Check out some real-life examples to understand the type-i and type-ii error in the null 

hypothesis. 

Example 1: Let us consider a null hypothesis – A man is not guilty of a crime. 

Then in this case: 

Type I error (False Positive) Type II error (False Negative) 

He is condemned to crime, though he is not 

guilty or committed the crime. 

He is condemned not guilty when the court actually does 

commit the crime by letting the guilty one go free. 

Example 2: Null hypothesis- A patient’s signs after treatment A, are the same from a 

placebo. 

Type I error (False Positive) Type II error (False Negative) 
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Treatment A is more efficient than the 

placebo 

Treatment A is more powerful than placebo even though it truly is 

more efficient. 

 POWER OF THE TEST 

The probability of correctly rejecting H0 when it is false is known as the power of the test. The 

larger it is, the better. Suppose you want to calculate the power of a hypothesis test on a 

population mean when the standard deviation is known. Before calculating the power of a test, 

you need the following: 

• The previously claimed value of 

 

in the null hypothesis, 

 

• The one-sided inequality of the alternative hypothesis (either < or >), for example, 

 

• The mean of the observed values 

 

• The population standard deviation 

 

• The sample size (denoted n) 

• The level of significance  

 

A Likelihood Ratio Test 

The likelihood ratio test is a test of the sufficiency of a smaller model versus a more 
complex model. The null hypothesis of the test states that the smaller model provides as 
good a fit for the data as the larger model. If the null hypothesis is rejected, then the 
alternative, larger model provides a significant improvement over the smaller model. 



To use the likelihood ratio test, the null hypothesis model must be a model nested 
within, that is, a special case of, the alternative hypothesis model. 

 For example, the scaled identity structure is a special case of the compound symmetry 
structure, and compound symmetry is a special case of the unstructured matrix. 
However, the autoregressive and compound symmetry structures are not special cases 
of each other. 

The likelihood ratio test can be used to test repeated effect or random effect covariance 
structures, or both at the same time.  

For example, it is possible to test a model that has an identity structure for a random 
effect and an autoregressive structure for the repeated effect, versus a model that has a 
compound symmetry structure for the random effect and an unstructured matrix for the 
repeated effect. Simply make sure that the covariance structure for each effect in one 
model is nested within the covariance structures for the effects in the other model. 

e Neyman Pearson Lemma is all well and good for deriving the best 

hypothesis tests for testing a simple null hypothesis against a simple 

alternative hypothesis, but the reality is that we typically are interested in 

testing a simple null hypothesis, such as H0:μ=10 against a composite 

alternative hypothesis, such as HA:μ>10. The good news is that we can 

extend the Neyman Pearson Lemma to account for composite alternative 

hypotheses, providing we take into account each simple alternative 

specified in H_A. Doing so creates what is called a uniformly most 

powerful (or UMP) test. 

Uniformly Most Powerful (UMP) test 

A test defined by a critical region C of size α is a uniformly most 

powerful (UMP) test if it is a most powerful test against each simple 

alternative in the alternative hypothesis HA. The critical region C is 

called a uniformly most powerful critical region of size α. 

Let's demonstrate by returning to the normal example from the previous 

page, but this time specifying a composite alternative hypothesis. 

Example  

Suppose X1,X2,:,Xn is a random sample from a normal population with 

mean μ and variance 16. Find the test with the best critical region, that is, 

find the uniformly most powerful test, with a sample size of n=16 and a 

significance level α = 0.05 to test the simple null 

hypothesis H0:μ=10 against the composite alternative hypothesis HA:μ>10. 

Answer 



For each simple alternative in HA,μ=μa, say, the ratio of the likelihood 

functions is: 

L(10)L(μα)=(32π)−16/2exp[−(1/32)∑i=116(xi−10)2](32π)−16/2exp[−(1/32)∑i

=116(xi−μα)2]≤k 

Simplifying, we get: 

exp[−(132)(∑i=116(xi−10)2−∑i=116(xi−μα)2)]≤k 

And, simplifying yet more, we get: 

 

Taking the natural logarithm of both sides of the inequality, collecting like 

terms, and multiplying through by 32, we get: 

−2(μα−10)∑xi+16(μα2−102)≤32ln(k) 

Moving the constant term on the left-side of the inequality to the right-

side, and dividing through by −16(2(μα−10)), we get: 

116∑xi≥−116(2(μα−10))(32ln(k)−16(μα2−102))=k∗ 

In summary, we have shown that the ratio of the likelihoods is small, that is: 

L(10)L(μα)≤k 

if and only if: 

x¯≥k∗ 

Therefore, the best critical region of size α for testing H0:μ=10 against each 

simple alternative HA:μ=μa, where μa>10, is given by: 

C={(x1,x1,...,xn):x¯≥k∗} 

where k∗ is selected such that the probability of committing a Type I error 

is α, that is: 

α=P(X¯≥k∗) when μ=10 



Because the critical region C defines a test that is most powerful against 

each simple alternative μa>10, this is a uniformly most powerful test, 

and C is a uniformly most powerful critical region of size α. 

 

 


