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SOFTWARE TESTING 

UNIT I 

 

What is testing? 

Testing is the process of exercising or evaluating a system or system 

components by manual or automated means to verify that it satisfies specified 

requirements. 

Definition of Software Testing 

Software testing can be stated as the process of verifying and validating that a 

software or application is bug free, meets the technical requirements as guided by 

its design and development and meets the user requirements effectively and 

efficiently with handling all the exceptional and boundary cases. 

The process of software testing aims not only at finding faults in the existing 

software but also at finding measures to improve the software in terms of 

efficiency, accuracy and usability. It mainly aims at measuring specification, 

functionality and performance of a software program or application. 

Software testing can be divided into two steps: 

1. Verification: it refers to the set of tasks that ensure that software correctly 

implements a specific function. 

2. Validation: it refers to a different set of tasks that ensure that the software that 

has been built is traceable to customer requirements. 

Verification: ―Are we building the product right?‖ 

Validation: ―Are we building the right product?‖ 

 

What are different techniques of Software Testing? 

 

Software techniques can be majorly classified into two categories: 

 
1. Black Box Testing: The technique of testing in which the tester doesn’t have 

access to the source code of the software and is conducted at the software 

interface without concerning with the internal logical structure of the software is 

known as black box testing. 

2. White-Box Testing: The technique of testing in which the tester is aware of 

the internal workings of the product, have access to it’s source code and is 

conducted by making sure that all internal operations are performed according to 

the specifications is known as white box testing. 
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Black Box Testing White Box Testing 

Internal workings of an application 

are not required. 

Knowledge of the internal workings is 

must. 

Also known as closed box/data driven 

testing. 

 
Also known as clear box/structural testing. 

End users, testers and developers. Normally done by testers and developers. 

This can only be done by trial and 

error method. 

Data domains and internal boundaries can 

be better tested. 

 

 
What are different levels of software testing? 

Software level testing can be majorly classified into 4 levels: 

1. Unit Testing: A level of the software testing process where individual 

units/components of a software/system are tested. The purpose is to validate that 

each unit of the software performs as designed. 

2. Integration Testing: A level of the software testing process where individual 

units are combined and tested as a group. The purpose of this level of testing is to 

expose faults in the interaction between integrated units. 

 

3. System Testing: A level of the software testing process where a complete, 

integrated system/software is tested. The purpose of this test is to evaluate the 

system’s compliance with the specified requirements. 

4. Acceptance Testing: A level of the software testing process where a system is 

tested for acceptability. The purpose of this test is to evaluate the system’s 

compliance with the business requirements and assess whether it is acceptable for 

delivery. 
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PURPOSE OF TESTING: 
 

 Testing consumes at least half of the time and work required to produce a 

functional program. 

 MYTH: Good programmers write code without bugs. (Its wrong!!!) 
 History says that even well written programs still have 1-3 bugs per 

hundred statements. 
 

Productivity and Quality in software: 
 

o In production of consumer goods and other products, every 

manufacturing stage is subjected to quality control and testing 

from component to final stage. 

o If flaws are discovered at any stage, the product is either 

discarded or cycled back for rework and correction. 

o Productivity is measured by the sum of the costs of the material, 

the rework, and the discarded components, and the cost of 

quality assurance and testing. 

o There is a tradeoff between quality assurance costs and 

manufacturing costs: If sufficient time is not spent in quality 

assurance, the reject rate will be high and so will be the net cost. 

If inspection is good and all errors are caught as they occur, 

inspection costs will dominate, and again the net cost will suffer. 

o Testing and Quality assurance costs for 'manufactured' items can 

be as low as 2% in consumer products or as high as 80% in 

products such as space-ships, nuclear reactors, and aircrafts, 

where failures threaten life. Whereas the manufacturing cost of 

software is trivial. 
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o The biggest part of software cost is the cost of bugs: the cost of 

detecting them, the cost of correcting them, the cost of designing 

tests that discover them, and the cost of running those tests. 

o For software, quality and productivity are indistinguishable 

because the cost of a software copy is trivial. 

 Testing and Test Design are parts of quality assurance should also focus 

on bug prevention. A prevented bug is better than a detected and 

corrected bug. 

 

 Phases in a tester's mental life can be categorised into the following 5 

phases: 
 

 

o Phase 0: (Until 1956: Debugging Oriented) There is no 

difference between testing and debugging. Phase 0 thinking was 

the norm in early days of software development till testing 

emerged as a discipline. 

o Phase 1: (1957-1978: Demonstration Oriented) The purpose 

of testing here is to show that software works. Highlighted 

during the late 1970s. This failed because the probability of 

showing that software   works   'decreases'   as   testing 

increases. i.e. The more you test, the more likely you'ill find a 

bug. 

o Phase 2: (1979-1982: Destruction Oriented) The purpose of 

testing is to show that software doesnt work. This also failed 

because the software will never get released as you will find one 
bug or the other. Also, a bug corrected may also lead to another bug. 

o Phase 3: (1983-1987: Evaluation Oriented) The purpose of 

testing is not to prove anything but to reduce the perceived risk 

of not working to an acceptable value (Statistical Quality 

Control). Notion is that testing does improve the product to the 

extent that testing catches bugs and to the extent that those bugs 

are fixed. The product is released when the confidence on that 

product is high enough. (Note: This is applied to large software 

products with millions of code and years of use.) 

o Phase 4: (1988-2000: Prevention Oriented) Testability is the 

factor considered here. One reason is to reduce the labour of 

testing. Other reason is to check the testable and non-testable 

code. Testable code has fewer bugs than the code that's hard to 

test. Identifying the testing techniques to test the code is the 

main key here. 
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 Test Design: We know that the software code must be designed and 

tested, but many appear to be unaware that tests themselves must be 

designed and tested. Tests should be properly designed and tested before 

applying it to the acutal code. 

 Testing is'nt everything: There are approaches other than testing to create 

better software. Methods other than testing include: 

o Inspection Methods: Methods like walkthroughs, deskchecking, 

formal inspections and code reading appear to be as effective as 

testing but the bugs caught donot completely overlap. 

o Design Style: While designing the software itself, adopting 

stylistic objectives such as testability, openness and clarity can 

do much to prevent bugs. 

o Static Analysis Methods: Includes formal analysis of source 

code during compilation. In earlier days, it is a routine job of the 

programmer to do that. Now, the compilers have taken over that 

job. 

o Languages: The source language can help reduce certain kinds 

of bugs. Programmers find new bugs while using new languages. 

o Development Methodologies and Development 

Environment: The development process and the environment in 

which that methodology is embedded can prevent many kinds of 

bugs. 

 

  Testing Versus Debugging: Many people consider both as same. 

Purpose of testing is to show that a program has bugs. The purpose of 

testing is to find the error or misconception that led to the program's 

failure and to design and implement the program changes that correct the 

error. 

 Debugging usually follows testing, but they differ as to goals, methods 

and most important psychology. The below tab le shows few important 

differences between testing and debugging. 
 
 

Testing Debugging 

Testing starts with known 

conditions, uses predefined 

procedures and has predictable 

outcomes. 

Debugging starts from possibly 

unknown intial conditions and the end 

can not be predicted except 

statistically. 

Testing can and should be 

planned, designed and scheduled. 

Procedure and duration of debugging 

cannot be so constrained. 

Testing is a demonstration of 

error or apparent correctness. 
Debugging is a deductive process. 
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Testing proves a programmer's 

failure. 

Debugging is the programmer's 

vindication (Justification). 

Testing, as executes, should strive 

to be predictable, dull, 

constrained, rigid and inhuman. 

Debugging demands intutive leaps, 

experimentation and freedom. 

Much testing can be done without 

design knowledge. 

Debugging is impossible without 

detailed design knowledge. 

Testing can often be done by an 

outsider. 
Debugging must be done by an insider. 

Much of test execution and design 

can be automated. 
Automated debugging is still a dream. 

MODEL FOR TESTING: 
 

 

 
Above figure is a model of testing process. It includes three models: A model 

of the environment, a model of the program and a model of the expected 

bugs. 
 

 ENVIRONMENT: 

o A Program's environment is the hardware and software required 

to make it run. For online systems, the environment may include 

communication lines, other systems, terminals and operators. 

o The environment also includes all programs that interact with 

and are used to create the program under test - such as OS, 

linkage editor, loader, compiler, utility routines. 

o Because the hardware and firmware are stable, it is not smart to 

blame the environment for bugs. 
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 PROGRAM: 

o Most programs are too complicated to understand in detail. 

o The concept of the program is to be simplified inorder to test it. 

o If simple model of the program doesnot explain the unexpected 

behaviour, we may have to modify that model to include more 

facts and details. And if that fails, we may have to modify the 

program. 

 

 BUGS: 

o Bugs are more insidious (deceiving but harmful) than ever we 

expect them to be. 

o An unexpected test result may lead us to change our notion of 

what a bug is and our model of bugs. 

o Some optimistic notions that many programmers or testers have 

about bugs are usually unable to test effectively and unable to 

justify the dirty tests most programs need. 

 OPTIMISTIC NOTIONS ABOUT BUGS: 

o Benign Bug Hypothesis: The belief that bugs are nice, tame and 

logical. (Benign: Not Dangerous) 

o Bug Locality Hypothesis: The belief that a bug discovered with 

in a component effects only that component's behaviour. 

o Control Bug Dominance: The belief that errors in the control 

structures (if, switch etc) of programs dominate the bugs. 

o Code / Data Separation: The belief that bugs respect the 

separation of code and data. 

o Lingua Salvator Est: The belief that the language syntax and 

semantics (e.g. Structured Coding, Strong typing, etc) eliminates 

most bugs. 

o Corrections Abide: The mistaken belief that a corrected bug 

remains corrected. 

o Silver Bullets: The mistaken belief that X (Language, Design 

method, representation, environment) grants immunity from 

bugs. 

o Sadism Suffices: The common belief (especially by independent 

tester) that a sadistic streak, low cunning, and intuition are 

sufficient to eliminate most bugs. Tough bugs need methodology 

and techniques. 

o Angelic Testers: The belief that testers are better at test design 

than programmers are at code design. 
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 IS COMPLETE TESTING POSSIBLE? 

o If the objective of the testing were to prove that a program is free 

of bugs, then testing not only would be practically impossible, 

but also would be theoretically impossible. 

o Three different approaches can be used to demonstrate that 

a program is correct.They are: 

1. Functional Testing: 

 Every program operates on a finite number of 

inputs. A complete functional test would 

consists of subjecting the program to all 

possible input streams. 

 For each input the routine either accepts the 

stream and produces a correct outcome, 

accepts the stream and produces an incorrect 

outcome, or rejects the stream and tells us that 

it did so. 

 For example, a 10 character input string has 

280 possible input streams and corresponding 

outcomes, so complete functional testing in 

this sense is IMPRACTICAL. 

 But even theoritically, we can't execute a 

purely functional test this way because we 

don't know the length of the string to which 

the system is responding. 

2. Structural Testing: 

 The design should have enough tests to ensure 

that every path through the routine is exercised 

at least once. Right off that's is impossible 

because some loops might never terminate. 

 The number of paths through a small routine 

can be awesome because each loop multiplies 

the path count by the number of times through 

the loop. 

 A small routine can have millions or billions 

of paths, so total Path Testing is usually 

IMPRACTICAL. 
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3. Formal Proofs of Correctness: 
 

 Formal proofs of correctness rely on a 

combination of functional and structural 

concepts. 

 Requirements are stated in a formal language 

(e.g. Mathematics) and each program 

statement is examined and used in a step of an 

inductive proof that the routine will produce 

the correct outcome for all possible input 

sequences. 

 The IMPRACTICAL thing here is that such 

proofs are very expensive and have been 

applied only to numerical routines or to formal 

proofs for crucial software such as system’s 

security kernel or portions of compilers. 

o Each approach leads to the conclusion that complete testing, in 

the sense of a proof is neither theoretically nor practically 

possible. 

 IMPORTANCE OF BUGS: The importance of bugs depends on 

frequency, correction cost, installation cost, and consequences. 

o Frequency: How often does that kind of bug occur? Pay more 

attention to the more frequent bug types. 

o Correction Cost: What does it cost to correct the bug after it is 

found? The cost is the sum of 2 factors: (1) the cost of discovery 

(2) the cost of correction. These costs go up dramatically later in 

the development cycle when the bug is discovered. Correction 

cost also depends on system size. 

o Installation Cost: Installation cost depends on the number of 

installations: small for a single user program but more for 

distributed systems. Fixing one bug and distributing the fix could 

exceed the entire system's development cost. 

o Consequences: What are the consequences of the bug? Bug 

consequences can range from mild to catastrophic. 

 

A reasonable metric for bug importance is 
 

Importance= ($) = Frequence * (Correction cost + 

Installation cost + Consequential cost) 
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 CONSEQUENCES OF BUGS: The consequences of a bug can be 

measure in terms of human rather than machine. Some consequences of a 

bug on a scale of one to ten are: 

1. Mild: The symptoms of the bug offend us aesthetically (gently); 

a misspelled output or a misaligned printout. 

2. Moderate: Outputs are misleading or redundant. The bug 

impacts the system's performance. 

3. Annoying: The system's behaviour because of the bug is 

dehumanizing. E.g. Names are truncated orarbitarily modified. 

4. Disturbing: It refuses to handle legitimate (authorized / legal) 

transactions. The ATM wont give you money. My credit card is 

declared invalid. 

5. Serious: It loses track of its transactions. Not just the transaction 

itself but the fact that the transaction occurred. Accountability is 

lost. 

6. Very Serious: The bug causes the system to do the wrong 

transactions. Instead of losing your paycheck, the system credits 

it to another account or converts deposits to withdrawals. 

7. Extreme: The problems aren't limited to a few users or to few 

transaction types. They are frequent and arbitrary instead of 

sporadic infrequent) or for unusual cases. 

8. Intolerable: Long term unrecoverable corruption of the database 

occurs and the corruption is not easily discovered. Serious 

consideration is given to shutting the system down. 

9. Catastrophic: The decision to shut down is taken out of our 

hands because the system fails. 

10. Infectious: What can be worse than a failed system? One that 

corrupt other systems even though it doesnot fall in itself ; that 

erodes the social physical environment; that melts nuclear 

reactors and starts war. 

 

TAXONOMY OF BUGS: 
 

 There is no universally correct way categorize bugs. The taxonomy is not 

rigid. 

 A given bug can be put into one or another category depending on its 

history and the programmer's state of mind. 

 The major categories are: (1) Requirements, Features and Functionality 

Bugs (2) Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, 

Integration and System Bugs (6) Test and Test Design Bugs. 
 

 REQUIREMENTS,   FEATURES   AND    FUNCTIONALITY 

BUGS: Various categories in Requirements, Features and Functionlity 
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bugs include: 

1. Requirements and Specifications Bugs: 

 Requirements and specifications developed from them 

can be incomplete ambiguous, or self-contradictory. 

They can be misunderstood or impossible to 

understand. 

 The specifications that don't have flaws in them may 

change while the design is in progress. The features are 

added, modified and deleted. 

 Requirements, especially, as expressed in specifications 

are a major source of expensive bugs. 

 The range is from a few percentage to more than 50%, 

depending on the application and environment. 

 What hurts most about the bugs is that they are the 

earliest to invade the system and the last to leave. 

2. Feature Bugs: 

 Specification problems usually create corresponding 

feature problems. 

 A feature can be wrong, missing, or superfluous 

(serving no useful purpose). A missing feature or case 

is easier to detect and correct. A wrong feature could 

have deep design implications. 

 Removing the features might complicate the software, 

consume more resources, and foster more bugs. 

3. Feature Interaction Bugs: 

 Providing correct, clear, implementable and testable 

feature specifications is not enough. 

 Features usually come in groups or related features. The 

features of each group and the interaction of features 

with in the group are usually well tested. 

 The problem is unpredictable interactions between 

feature groups or even between individual features. For 

example, your telephone is provided with call holding 

and call forwarding. The interactions between these two 

features may have bugs. 

 Every application has its peculiar set of features and a 

much bigger set of unspecified feature interaction 

potentials and therefore result in feature interaction 

bugs. 
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Specification and Feature Bug Remedies: 
 

o Most feature bugs are rooted in human to human communication 

problems. One solution is to use high-level, formal specification 

languages or systems. 

o Such languages and systems provide short term support but in 

the long run, does not solve the problem. 

o Short term Support: Specification languages facilitate 

formalization of requirements and inconsistency and ambiguity 

analysis. 

o Long term Support: Assume that we have a great specification 

language and that can be used to create unambiguous, complete 

specifications with unambiguous complete testsand consistent 

test criteria. 

o The specification problem has been shifted to a higher level but 

not eliminated. 
 

Testing Techniques for functional bugs: Most functional test 

techniques- that is those techniques which are based on a behavioral 

description of software, such as transaction flow testing, syntax testing, 

domain testing, logic testing and state testing are useful in testing 

functional bugs. 
 

 STRUCTURAL BUGS: Various categories in Structural bugs include: 

1. Control and Sequence Bugs: 
 

 Control and sequence bugs include paths left out, 

unreachable code, improper nesting of loops, loop-back 

or loop termination criteria incorrect, missing process 

steps, duplicated processing, unnecessary processing, 

rampaging, GOTO's, ill-conceived (not properly 

planned) switches, sphagetti code, and worst of all, 

pachinko code. 

 One reason for control flow bugs is that this area is 

amenable (supportive) to theoritical treatment. 

 Most of the control flow bugs are easily tested and 

caught in unit testing. 

 Another reason for control flow bugs is that use of old 

code especially ALP & COBOL code are dominated by 

control flow bugs. 

 Control and sequence bugs at all levels are caught by 

testing, especially structural testing, more specifically 

path testing combined with a bottom line functional test 

based on a specification. 
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2. Logic Bugs: 

 Bugs in logic, especially those related to 

misundertanding how case statements and logic 

operators behave singly and combinations 

 Also includes evaluation of boolean expressions in 

deeply nested IF-THEN-ELSE constructs. 

 If the bugs are parts of logical (i.e. boolean) processing 

not related to control flow, they are characterized as 

processing bugs. 

 If the bugs are parts of a logical expression (i.e control- 

flow statement) which is used to direct the control flow, 

then they are categorized as control-flow bugs. 

3. Processing Bugs: 

 Processing bugs include arithmetic bugs, algebraic, 

mathematical function evaluation, algorithm selection 

and general processing. 

 Examples of Processing bugs include: Incorrect 

conversion from one data representation to other, 

                                  ignoring overflow, improper use of grater-than-or-eual  etc 

 Although these bugs are frequent (12%), they tend to be 

caught in good unit testing. 

4. Initialization Bugs: 

 Initialization bugs are common. Initialization bugs can 

be improper and superfluous. 

 Superfluous bugs are generally less harmful but can 

affect performance. 

 Typical initialization bugs include: Forgetting to 

initialize the variables before first use, assuming that 

they are initialized elsewhere, initializing to the wrong 

format, representation or type etc 

 Explicit declaration of all variables, as in Pascal, can 

reduce some initialization problems. 

5. Data-Flow Bugs and Anomalies: 

 Most initialization bugs are special case of data flow 

anamolies. 

 A data flow anomaly occurs where there is a path along 

which we expect to do something unreasonable with 

data, such as using an uninitialized variable, attempting 

to use a variable before it exists, modifying and then 

not storing or using the result, or initializing twice 

without an intermediate use. 
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 DATA BUGS: 

1. Data bugs include all bugs that arise from the specification of 

data objects, their formats, the number of such objects, and their 

initial values. 

2. Data Bugs are atleast as common as bugs in code, but they are 

foten treated as if they didnot exist at all. 

3. Code migrates data: Software is evolving towards programs in 

which more and more of the control and processing functions are 

stored in tables. 

4. Because of this, there is an increasing awareness that bugs in 

code are only half the battle and the data problems should be 

given equal attention. 

5. Dynamic Data Vs Static data: 

 Dynamic data are transitory. Whatever their purpose 

their lifetime is relatively short, typically the processing 

time of one transaction. A storage object may be used 

to hold dynamic data of different types, with different 

formats, attributes and residues. 

 Dynamic data bugs are due to leftover garbage in a 

shared resource. This can be handled in one of the three 

ways: (1) Clean up after the use by the user (2) 

Common Cleanup by the resource manager (3) No 

Clean up 

 Static Data are fixed in form and content. They appear 

in the source code or database directly or indirectly, for 

example a number, a string of characters, or a bit 

pattern. 

 Compile time processing will solve the bugs caused by 

static data. 

6. Information, parameter, and control: Static or dynamic data 

can serve in one of three roles, or in combination of roles: as a 

parameter, for control, or for information. 

7. Content, Structure and Attributes: Content can be an actual 

bit pattern, character string, or number put into a data structure. 

Content is a pure bit pattern and has no meaning unless it is 

interpreted by a hardware or software processor. All data bugs 

result    in    the    corruption    or    misinterpretation     of 

content. Structure relates to the size, shape and numbers that 

describe the data object, that is memory location used to store 

the content. (e.g A two dimensional array). Attributes relates to 

the specification meaning that is the semantics associated with 

the contents of a data object. (e.g. an integer, an alphanumeric 

string, a subroutine). The severity and subtlelty of bugs increases 
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as we go from content to attributes because the things get less 

formal in that direction. 

 

 CODING BUGS: 

1. Coding errors of all kinds can create any of the other kind of 

bugs. 

2. Syntax errors are generally not important in the scheme of things 

if the source language translator has adequate syntax checking. 

3. If a program has many syntax errors, then we should expect 

many logic and coding bugs. 

4. The documentation bugs are also considered as coding bugs 

which may mislead the maintenance programmers. 
 

INTERFACE, INTEGRATION, AND SYSTEM BUGS: 
 

 Various categories of bugs in Interface, Integration, and System Bugs are: 

1. External Interfaces: 

 The external interfaces are the means used to 

communicate with the world. 

 These include devices, actuators, sensors, input 

terminals, printers, and communication lines. 

 The primary design criterion for an interface with 

outside world should be robustness. 

 All external interfaces, human or machine should 

employ a protocol. The protocol may be wrong or 

incorrectly implemented. 

 Other external interface bugs are: invalid timing or 

sequence assumptions related to external signals 

 Misunderstanding external input or output formats. 

 Insufficient tolerance to bad input data. 

2. Internal Interfaces: 

 Internal interfaces are in principle not different from 

external interfaces but they are more controlled. 

 A best example for internal interfaces are 

communicating routines. 

 The external environment is fixed and the system must 

adapt to it but the internal environment, which consists 

of interfaces with other components, can be negotiated. 

 Internal interfaces have the same problem as external 

interfaces. 
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3. Hardware Architecture: 

 Bugs related to hardware architecture originate mostly 

from misunderstanding how the hardware works. 

 Examples of hardware architecture bugs: address 

generation error, i/o device operation / instruction error, 

waiting too long for a response, incorrect interrupt 

handling etc. 

 

 The remedy for hardware architecture and interface 

problems is two fold: (1) Good Programming and 

Testing (2) Centralization of hardware interface 

software in programs written by hardware interface 

specialists. 

4. Operating System Bugs: 

 Program bugs related to the operating system are a 

combination of hardware architecture and interface 

bugs mostly caused by a misunderstanding of what it is 

the operating system does. 

 Use operating system interface specialists, and use 

explicit interface modules or macros for all operating 

system calls. 

 This approach may not eliminate the bugs but at least 

will localize them and make testing easier. 

5. Software Architecture: 

 Software architecture bugs are the kind that called - 

interactive. 

 Routines can pass unit and integration testing without 

revealing such bugs. 

 Many of them depend on load, and their symptoms 

emerge only when the system is stressed. 

 Sample for such bugs: Assumption that there will be no 

interrupts, Failure to block or un block interrupts, 

Assumption that memory and registers were initialized 

or not initialized etc 

 Careful integration of modules and subjecting the final 

system to a stress test are effective methods for these 

bugs. 

6. Control and Sequence Bugs (Systems Level): 

 These bugs include: Ignored timing, Assuming that 

events occur in a specified sequence, Working on data 

before all the data have arrived from disc, Waiting for 

an impossible combination of prerequisites, Missing, 

wrong, redundant or superfluous process steps. 
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 The remedy for these bugs is highly structured 

sequence control. 

 Specialize, internal, sequence control mechanisms are 

helpful. 

 

7. Resource Management Problems: 

 Memory is subdivided into dynamically allocated 

resources such as buffer blocks, queue blocks, task 

control blocks, and overlay buffers. 

 External mass storage units such as discs, are 

subdivided into memory resource pools. 

 Some resource management and usage bugs: Required 

resource not obtained, Wrong resource used, Resource 

is already in use, Resource dead lock etc 

 Resource Management Remedies: A design remedy 

that prevents bugs is always preferable to a test method 

that discovers them. 

 The design remedy in resource management is to keep 

the resource structure simple: the fewest different kinds 

of resources, the fewest pools, and no private resource 

management. 

8. Integration Bugs: 

 Integration bugs are bugs having to do with the 

integration of, and with the interfaces between, working 

and tested components. 

 These bugs results from inconsistencies or 

incompatibilities between components. 

 The communication methods include data structures, 

call sequences, registers, semaphores, communication 

links and protocols results in integration bugs. 

 The integration bugs do not constitute a big bug 

category(9%) they are expensive category because they 

are usually caught late in the game and because they 

force changes in several components and/or data 

structures. 

9. System Bugs: 

 System bugs covering all kinds of bugs that cannot be 

ascribed to a component or to their simple interactions, 

but result from the totality of interactions between 

many components such as programs, data, hardware, 

and the operating systems. 

 There can be no meaningful system testing until there 

has been thorough component and integration testing. 
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 System bugs are infrequent(1.7%) but very important 

because they are often found only after the system has 

been fielded. 

 TEST AND TEST DESIGN BUGS: 

o Testing: testers have no immunity to bugs. Tests require 

complicated scenarios and databases. 

o They require code or the equivalent to execute and consequently 

they can have bugs. 

o Test criteria: if the specification is correct, it is correctly 

interpreted and implemented, and a proper test has been 

designed; but the criterion by which the software's behavior is 

judged may be incorrect or impossible. So, a proper test criteria 

has to be designed. The more complicated the criteria, the 

likelier they are to have bugs. 

o Remedies: The remedies of test bugs are: 

1. Test Debugging: The first remedy for test bugs is 

testing and debugging the tests. Test debugging, when 

compared to program debugging, is easier because 

tests, when properly designed are simpler than 

programs and donot have to make concessions to 

efficiency. 

2. Test Quality Assurance: Programmers have the right 

to ask how quality in independent testing is monitored. 

3. Test Execution Automation: The history of software 

bug removal and prevention is indistinguishable from 

the history of programming automation aids. 

Assemblers, loaders, compilers are developed to reduce 

the incidence of programming and operation errors. 

Test execution bugs are virtually eliminated by various 

test execution automation tools. 

4. Test Design Automation: Just as much of software 

development has been automated, much test design can 

be and has been automated. For a given productivity 

rate, automation reduces the bug count - be it for 

software or be it for tests. 
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UNIT-II 
 

FLOWGRAPHS AND PATH TESTING: 

 

This unit gives an in depth overview of path testing and its applications. 

 

At the end of this unit, the student will be able to: 

 

 Understand the concept of path testing. 

 Identify the components of a control flow diagram and compare the same 

with a flowchart. 

 Represent the control flow graph in the form of a Linked List notation. 

 Understand the path testing and selection criteria and their limitations. 

 Interpret a control flow-graph and demonstrate the complete path testing to 

achieve C1+C2. 

 Classify the predicates and variables as dependent/independent and 

correlated/uncorrelated. 

 Understand the path sensitizing method and classify whether the path is 

achievable or not. 

 Identify the problem due to co-incidental correctness and choose a path 

instrumentation method to overcome the problem. 

 

BASICS OF PATH TESTING: 

 

PATH TESTING: 

 Path Testing is the name given to a family of test techniques based on 

judiciously selecting a set of test paths through the program. 

 If the set of paths are properly chosen then we have achieved some measure 

of test thoroughness. For example, pick enough paths to assure that every 

source statement has been executed at least once. 

 Path testing techniques are the oldest of all structural test techniques. 

 Path testing is most applicable to new software for unit testing. It is a 

structural technique. 

 It requires complete knowledge of the program's structure. 

 It is most often used by programmers to unit test their own code. 

 The effectiveness of path testing rapidly deteriorates as the size of the 

software aggregate under test increases. 
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THE BUG ASSUMPTION: 

 

 The bug assumption for the path testing strategies is that something has gone 

wrong with the software that makes it take a different path than intended. 

 As an example "GOTO X" where "GOTO Y" had been intended. 

 Structured programming languages prevent many of the bugs targeted by 

path testing: as a consequence the effectiveness for path testing for these 

languages is reduced and for old code in COBOL, ALP, FORTRAN and 

Basic, the path testing is indispensable. 

 

CONTROL FLOW GRAPHS: 

 The control flow graph is a graphical representation of a program's control 

structure. It uses the elements named process blocks, decisions, and 

junctions. 

 The flow graph is similar to the earlier flowchart, with which it is not to be 

confused. 

 Flow Graph Elements: A flow graph contains four different types of 

elements. 

(1) Process Block (2) Decisions (3) Junctions (4) Case Statements 

 

1. Process Block: 

A process block is a sequence of program statements uninterrupted by either 

decisions or junctions. 

It is a sequence of statements such that if any one of statement of the block 

is executed, then all statement thereof is executed. 

Formally, a process block is a piece of straight line code of one statement or 

hundreds of statements. 

A process has one entry and one exit. It can consist of a single statement or 

instruction, a sequence of statements or instructions, a single entry/exit subroutine, 

a macro or function call, or a sequence of these. 

 

2. Decisions: 

A decision is a program point at which the control flow can diverge. 

Machine language conditional branch and conditional skip instructions are 

examples of decisions. 
 

Most of the decisions are two-way but some are three way branches in 

control flow. 
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3. Case Statements: 

A case statement is a multi-way branch or decisions. 

Examples of case statement are a jump table in assembly language, and the 

PASCAL case statement. 

From the point of view of test design, there are no differences between 

Decisions and Case Statements 

 

4. Junctions: 

A junction is a point in the program where the control flow can merge. 

Examples of junctions are: the target of a jump or skip instruction in ALP, a 

label that is a target of GOTO. 
 

 
 

 

CONTROL FLOW GRAPHS Vs. FLOWCHARTS: 

 A program's flow chart resembles a control flow graph. 

 In flow graphs, we don't show the details of what is in a process block. In 

flow charts every part of the process block is drawn. 

 The flowchart focuses on process steps, whereas the flow graph focuses on 

control flow of the program. 

 The act of drawing a control flow graph is a useful tool that can help us 

clarify the control flow and data flow issues. 
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NOTATIONAL EVOULTION: 

The control flow graph is simplified representation of the program's structure. The 

notation changes made in creation of control flow graphs: 

 The process boxes weren't really needed. There is an implied process on 

every line joining junctions and decisions. 

 We don't need to know the specifics of the decisions, just the fact that there 

is a branch. 

 The specific target label names aren't important-just the fact that they exist. 

So we can replace them by simple numbers. 

 To understand this, we will go through an example written in a FORTRAN 

like programming language called Programming Design Language (PDL). 

The program's corresponding flowchart 

 The first step in translating the program to a flowchart is shown in, where we 

have the typical one-for-one classical flowchart. Note that complexity has 

increased, clarity has decreased, and that we had to add auxiliary labels 

(LOOP, XX, and YY), which have no actual program counterpart. 
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Flowchart for the above PDL 
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Simplified Flowgraph Notation 
 

 
 

 

 

 
 

Even Simplified Flowgraph Notation 
 

 

LINKED LIST REPRESENTATION: 

Although graphical representations of flowgraphs are revealing, the details of the 

control flow inside a program they are often inconvenient. 

In linked list representation, each node has a name and there is an entry on the list 

for each link in the flow graph. only the information pertinent to the control flow is 

shown. 
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Linked List representation of Flow Graph: 
 
 

 

 

FLOWGRAPH - PROGRAM CORRESPONDENCE: 

A flow graph is a pictorial representation of a program and not the program 

itself, just as a topographic map. 

You can’t always associate the parts of a program in a unique way with flow 

graph parts because many program structures, such as if-then-else constructs, 

consists of a combination of decisions, junctions, and processes. 

The translation from a flow graph element to a statement and vice versa is 

not always unique. 

 
 

Alternative Flowgraphs for same logic (Statement "IF (A=0) AND (B=1) THEN 

. . ."). 
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An improper translation from flow graph to code during coding can lead to bugs, 

and improper translation during the test design lead to missing test cases and 

causes undiscovered bugs. 

 

FLOWGRAPH AND FLOWCHART GENERATION: 
 

Flowcharts can be 

0. Handwritten by the programmer. 

1. Automatically produced by a flowcharting program based on a mechanical 

analysis of the source code. 

2. Semi automatically produced by a flow charting program based in part on 

structural analysis of the source code and in part on directions given by the 

programmer. 

 

There are relatively few control flow graph generators. 

 

PATH TESTING - PATHS, NODES AND LINKS: 

 

Path: A path through a program is a sequence of instructions or statements that 

starts at an entry, junction, or decision and ends at another, or possibly the same 

junction, decision, or exit. 

A path may go through several junctions, processes, or decisions, one or 

more times. Paths consist of segments. 
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The segment is a link - a single process that lies between two nodes. 

A path segment is succession of consecutive links that belongs to some path. 

The length of path measured by the number of links in it and not by the 

number of the instructions or statements executed along that path. 

The name of a path is the name of the nodes along the path. 

 

FUNDAMENTAL PATH SELECTION CRITERIA: 

 

 There are many paths between the entry and exit of a typical routine. 

 Every decision doubles the number of potential paths. And every loop 

multiplies the number of potential paths by the number of different iteration 

values possible for the loop. 

 
 

Defining complete testing: 

 

0. Exercise every path from entry to exit 

1. Exercise every statement or instruction at least once 

2. Exercise every branch and case statement, in each direction at least once If 

prescription 1 is followed then 2 and 3 are automatically followed. But it is 

impractical for most routines. It can be done for the routines that have no loops, in 

which it is equivalent to 2 and 3 prescriptions. 

 

For X negative, the output is X + A, while for X greater than or equal to zero, the 

output is X + 2A. Following prescription 2 and executing every statement, but not 

every branch, would not reveal the bug in the following incorrect version: 
 

 

A negative value produces the correct answer. Every statement can be executed, 

but if the test cases do not force each branch to be taken, the bug can remain 
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hidden. The next example uses a test based on executing each branch but does not 

force the execution of all statements: 
 

 

The hidden loop around label 100 is not revealed by tests based on prescription 3 

alone because no test forces the execution of statement 100 and the following 

GOTO statement. Furthermore, label 100 is not flagged by the compiler as an 

unreferenced label and the subsequent GOTO does not refer to an undefined label. 

 
 

A Static Analysis (that is, an analysis based on examining the source code or 

structure) cannot determine whether a piece of code is or is not reachable. There 

could be subroutine calls with parameters that are subroutine labels, or in the above 

example there could be a GOTO that targeted label 100 but could never achieve a 

value that would send the program to that label. 

Only a Dynamic Analysis (that is, an analysis based on the code's behavior while 

running - which is to say, to all intents and purposes, testing) can determine 

whether code is reachable or not and therefore distinguish between the ideal 

structure we think we have and the actual, buggy structure. 

 

PATH TESTING CRITERIA: 
 

Any testing strategy based on paths must at least both exercise every 

instruction and take branches in all directions. 

A set of tests that does this is not complete in an absolute sense, but it is 

complete in the sense that anything less must leave something untested. 

So we have explored three different testing criteria or strategies out of a potentially 

infinite family of strategies. 
 

Path Testing (Pinf): 

 Execute all possible control flow paths through the program: typically, this 

is restricted to all possible entry/exit paths through the program. 

 If we achieve this prescription, we are said to have achieved 100% path 

coverage. This is the strongest criterion in the path testing strategy family: it 

is generally impossible to achieve. 
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Statement Testing (P1): 

 Execute all statements in the program at least once under some test. If we do 

enough tests to achieve this, we are said to have achieved 100% statement 

coverage. 

 An alternate equivalent characterization is to say that we have achieved 

100% node coverage. We denote this by C1. 

 This is the weakest criterion in the family: testing less than this for new 

software is unconscionable (unprincipled or cannot be accepted) and should 

be criminalized. 

 

Branch Testing (P2): 

 Execute enough tests to assure that every branch alternative has been 

exercised at least once under some test. 

 If we do enough tests to achieve this prescription, then we have achieved 

100% branch coverage. 

 An alternative characterization is to say that we have achieved 100% link 

coverage. 

 For structured software, branch testing and therefore branch coverage 

strictly includes statement coverage. 

 We denote branch coverage by C2. 

 

Commonsense and Strategies: 

 

 Branch and statement coverage are accepted today as the minimum 

mandatory testing requirement. 

 The question "why not use a judicious sampling of paths?, what is wrong 

with leaving some code, untested?" is ineffectual in the view of common 

sense and experience since: 

(1.) Not testing a piece of a code leaves a residue of bugs in the program in 

proportion to the size of the untested code and the probability of bugs. (2.) 
 

The high probability paths are always thoroughly tested if only to 

demonstrate that the system works properly. 

 

Which paths to be tested? 

 

You must pick enough paths to achieve C1+C2. The question of what is the fewest 

number of such paths is interesting to the designer of test tools that help automate 

the path testing, but it is not crucial to the pragmatic (practical) design of tests. It is 

better to make many simple paths than a few complicated paths. 
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Path Selection Example: 

An example flowgraph to explain path selection 
 

 

Practical Suggestions in Path Testing: 

0. Draw the control flow graph on a single sheet of paper. 

1. Make several copies - as many as you will need for coverage (C1+C2) and 

several more. 

2. Use a yellow highlighting marker to trace paths. Copy the paths onto master 

sheets. 

3. Continue tracing paths until all lines on the master sheet are covered, indicating 

that you appear to have achieved C1+C2. 

 

4. As you trace the paths, create a table that shows the paths, the coverage status of 

each process, and each decision. 

5. The above paths lead to the following table considering 
 

 

After you have traced a covering path set on the master sheet and filled in the table for 

every path, check the following: 

1. Does every decision have a YES and a NO in its column? (C2) 

2. Has every case of all case statements been marked? (C2) 

3. Is every three - way branch (less, equal, greater) covered? (C2) 

4. Is every link (process) covered at least once? (C1) 
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LOOPS: 
 

Cases for a single loop:A Single loop can be covered with two cases: Looping and 

Not looping. But, experience shows that many loop-related bugs are not discovered 

by C1+C2. Bugs hide themselves in corners and congregate at boundaries - in the 

cases of loops, at or around the minimum or maximum number of times the loop 

can be iterated. The minimum number of iterations is often zero, but it need not be. 

CASE 1: Single loop, Zero minimum, N maximum, No excluded values 

0. Try bypassing the loop (zero iterations). If you can't, you either have a bug, or 

zero is not the minimum and you have the wrong case. 

1. Could the loop-control variable be negative? Could it appear to specify a 

negative number of iterations? What happens to such a value? 

2. One pass through the loop. 

3. Two passes through the loop. 

4. A typical number of iterations, unless covered by a previous test. 

5. One less than the maximum number of iterations. 

6. The maximum number of iterations. 

7. Attempt one more than the maximum number of iterations. What prevents the 

loop-control variable from having this value? What will happen with this value if it 

is forced? 

 

CASE 2: Single loop, Non-zero minimum, No excluded values 

8. Try one less than the expected minimum. What happens if the loop control 

variable's value is less than the minimum? What prevents the value from being less 

than the minimum? 

9. The minimum number of iterations. 

10. One more than the minimum number of iterations. 

11. Once, unless covered by a previous test. 

12. Twice, unless covered by a previous test. 

13. A typical value. 

14. One less than the maximum value. 

15. The maximum number of iterations. 

16. Attempt one more than the maximum number of iterations. 

 

CASE 3: Single loops with excluded values 

 Treat single loops with excluded values as two sets of tests consisting of 

loops without excluded values, such as case 1 and 2 above. 

 Example, the total range of the loop control variable was 1 to 20, but that 

values 7,8,9,10 were excluded. The two sets of tests are 1-6 and 11-20. 

 The test cases to attempt would be 0,1,2,4,6,7 for the first range and 

10,11,15,19,20,21 for the second range. 
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Kinds of Loops: There are only three kinds of loops with respect to path testing: 

 

Nested Loops: 

 The number of tests to be performed on nested loops will be the exponent of 

the tests performed on single loops. 

 As we cannot always afford to test all combinations of nested loops' 

iterations values. Here's a tactic used to discard some of these values: 

1. Start at the inner most loop. Set all the outer loops to their minimum values. 

2. Test the minimum, minimum+1, typical, maximum-1 , and maximum for the 

innermost loop, while holding the outer loops at their minimum iteration parameter 

values. Expand the tests as required for out of range and excluded values. 

3. If you've done the outmost loop, GOTO step 5, else move out one loop and set it 

up as in step 

 

2 with all other loops set to typical values. 

4. Continue outward in this manner until all loops have been covered. 

5. Do all the cases for all loops in the nest simultaneously. 

 

Concatenated Loops: 

 Concatenated loops fall between single and nested loops with respect to test 

cases. Two loops are concatenated if it's possible to reach one after exiting 

the other while still on a path from entrance to exit. 

 If the loops cannot be on the same path, then they are not concatenated and 

can be treated as individual loops. 

 

Horrible Loops: 

 A horrible loop is a combination of nested loops, the use of code that jumps 

into and out of loops, intersecting loops, hidden loops, and cross connected 

loops. 

 Makes iteration value selection for test cases an awesome and ugly task, 

which is another reason such structures should be avoided. 
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Loop Testing Time: 

 

 Any kind of loop can lead to long testing time, especially if all the extreme 

value cases are to attempted (Max-1, Max, Max+1). 

 This situation is obviously worse for nested and dependent concatenated 

loops. 

 Consider nested loops in which testing the combination of extreme values 

lead to long test times. Several options to deal with: 
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 Prove that the combined extreme cases are hypothetically possible, they are 

not possible in the real world 

 Put in limits or checks that prevent the combined extreme cases. Then you 

have to test the software that implements such safety measures. 

 

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS: 

 

PREDICATE: The logical function evaluated at a decision is called Predicate. 

The direction taken at a decision depends on the value of decision variable. Some 

examples are: A>0, x+y>=90....... 

PATH PREDICATE: A predicate associated with a path is called a Path 

Predicate. For example, "x is greater than zero", "x+y>=90", "w is either negative 

or equal to 10 is true" is a sequence of predicates whose truth values will cause the 

routine to take a specific path. 

MULTIWAY BRANCHES: 

 The path taken through a multiway branch such as a computed GOTO's, 

case statement, or jump tables cannot be directly expressed in TRUE/FALSE 

terms. 

 Although, it is possible to describe such alternatives by using multi valued 

logic, an expedient (practical approach) is to express multiway branches as 

an equivalent set of if..then..else statements. 

 For example a three way case statement can be written as: If case=1 DO A1 

ELSE (IF Case=2 DO A2 ELSE DO A3 ENDIF)ENDIF. 

 

INPUTS: 

 In testing, the word input is not restricted to direct inputs, such as variables 

in a subroutine call, but includes all data objects referenced by the routine 

whose values are fixed prior to entering it. 

 For example, inputs in a calling sequence, objects in a data structure, values 

left in registers, or any combination of object types. 

 The input for a particular test is mapped as a one dimensional array called as 

an Input Vector. 

 

PREDICATE INTERPRETATION: 

 The simplest predicate depends only on input variables. 

 For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given the 

values of x1 and x2 the direction taken through the decision is based on the 

predicate is determined at input time and does not depend on processing. 
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 Another example, assume a predicate x1+y>=0 that along a path prior to 

reaching this predicate we had the assignment statement y=x2+7. although 

our predicate depends on processing, we can substitute the symbolic 

expression for y to obtain an equivalent predicate x1+x2+7>=0. 

 The act of symbolic substitution of operations along the path in order to 

express the predicate solely in terms of the input vector is called predicate 

interpretation. 

Sometimes the interpretation may depend on the path; for example, 

INPUT X 

ON X GOTO A, B, C, ... 

A: Z := 7 @ GOTO HEM 

B: Z := -7 @ GOTO HEM 

C: Z := 0 @ GOTO HEM 

......... 

HEM: DO SOMETHING 

......... 

HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM 
 

The predicate interpretation at HEN depends on the path we took through the first 

multiway branch. It yields for the three cases respectively, if Y+7>0, Y-7>0, Y>0. 

of the decisions 

along the selected path after interpretation. 

 

INDEPENDENCE OF VARIABLES AND PREDICATES: 

 The path predicates take on truth values based on the values of input 

variables, either directly or indirectly. 

 If a variable's value does not change as a result of processing, that variable is 

independent of the processing. 

 If the variable's value can change as a result of the processing, the variable is 

process dependent. 

 A predicate whose truth value can change as a result of the processing is said 

to be process dependent and one whose truth value does not change as a 

result of the processing is process independent. 

 Process dependence of a predicate does not always follow from dependence 

of the input variables on which that predicate is based. 
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CORRELATION OF VARIABLES AND PREDICATES: 

 Two variables are correlated if every combination of their values cannot be 

independently specified. 

 Variables whose values can be specified independently without restriction 

are called uncorrelated. 

 A pair of predicates whose outcomes depend on one or more variables in 

common are said to be correlated predicates. For example, the predicate 

X==Y is followed by another predicate X+Y == 8. If we select X and Y 

values to satisfy the first predicate, we might have forced the 2nd predicate's 

truth value to change. 

 Every path through a routine is achievable only if all the predicates in that 

routine are uncorrelated. 

 

PATH PREDICATES EXPRESSIONS: 

 A path predicate expression is a set of boolean expressions, all of which 

must be satisfied to achieve the selected path. 

 Example: 

 

X1+3X2+17>=0 

X3=17 

X4-X1>=14X2 

 Any set of input values that satisfy all of the conditions of the path predicate 

expression will force the routine to the path. 

 Some times a predicate can have an OR in it. 

 Example: 

 

A: X5 > 0 E: X6 < 0 

B: X1 + 3X2 + 17 >= 0 B: X1 + 3X2 + 17 >= 0 

C: X3 = 17 

D: X4 - X1 >= 14X2 

C: X3 = 17 

D: X4 - X1 >= 14X2 

 

Boolean algebra notation to denote the boolean expression: 

 

ABCD+EBCD=(A+E)BCD 
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PREDICATE COVERAGE: 

 Compound Predicate: Predicates of the form A OR B, A AND B and more 

complicated boolean expressions are called as compound predicates. 

 Some times even a simple predicate becomes compound after interpretation. 

Example: the predicate if (x=17) whose opposite branch is if x.NE.17 which 

is equivalent to x>17 . Or. X<17. 

 Predicate coverage is being the achieving of all possible combinations of 

truth values corresponding to the selected path have been explored under 

some test. 

 As achieving the desired direction at a given decision could still hide bugs in 

the associated predicates. 

 

TESTING BLINDNESS: 

 Testing Blindness is a pathological (harmful) situation in which the desired 

path is achieved for the wrong reason. 

 There are three types of Testing Blindness: 

 

1. Assignment Blindness: 

 Assignment blindness occurs when the buggy predicate appears to work 

correctly because the specific value chosen for an assignment statement 

works with both the correct and incorrect predicate. 

 For Example: 

Correct Buggy 

X = 7 

........ 

if Y > 0 

then ... 

X = 7 

........ 

if X+Y > 

0 then ... 

 
2. Equality Blindness: 

 Equality blindness occurs when the path selected by a prior predicate results 

in a value that works both for the correct and buggy predicate. 

 For Example: 

Correct Buggy 

if Y = 2 

then 
........ 

if Y = 2 

then 
........ 

if X+Y > 3 then ..if X > 1 then ... 
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The first predicate if y=2 forces the rest of the path, so that for any positive value 

of x. the path taken at the second predicate will be the same for the correct and 

buggy version. 

 

3. Self Blindness: 

 Self blindness occurs when the buggy predicate is a multiple of the correct 

predicate and as a result is indistinguishable along that path. 

 For Example: 

 
Correct Buggy 

X = A 

........ 

if X-1 > 0 
then ... 

X = A 

........ 

if X+A-2 
> 0 then 

 

The assignment (x=a) makes the predicates multiples of each other, so the direction 

taken is the same for the correct and buggy version. 

 

PATH SENSITIZING: 

REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS: 

 
 

We want to select and test enough paths to achieve a satisfactory notion of test 

completeness such as C1+C2. 

 Extract the programs control flowgraph and select a set of tentative covering 

paths. 

 For any path in that set, interpret the predicates along the path as needed to 

express them in terms of the input vector. In general individual predicates 

are compound or may become compound as a result of interpretation. 

 Trace the path through, multiplying the individual compound predicates to 

achieve a boolean expression such as 

 (A+BC) (D+E) (FGH) (IJ) (K) (l) (L). 

 Multiply out the expression to achieve a sum of products form: 

 

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ KL 
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 Each product term denotes a set of inequalities that if solved will yield an 

input vector that will drive the routine along the designated path. 

 Solve any one of the inequality sets for the chosen path and you have found 

a set of input values for the path. If you can find a solution, then the path is 

achievable. If you cant find a solution to any of the sets of inequalities, the 

path is un achievable. 

 The act of finding a set of solutions to the path predicate expression is called 

PATH SENSITIZATION. 

 
 

HEURISTIC PROCEDURES FOR SENSITIZING PATHS: 

 This is a workable approach, instead of selecting the paths without 

considering how to sensitize, attempt to choose a covering path set that is 

easy to sensitize and pick hard to sensitize paths only as you must to achieve 

coverage. 

 Identify all variables that affect the decision. 

 Classify the predicates as dependent or independent. 

 Start the path selection with un correlated, independent predicates. 

 If coverage has not been achieved using independent uncorrelated 

predicates, extend the path set using correlated predicates. 

 If coverage has not been achieved extend the cases to those that involve 

dependent predicates. 

 Last, use correlated, dependent predicates. 

 

PATH INSTRUMENTATION: 

 

Path instrumentation is what we have to do to confirm that the outcome was 

achieved by the intended path. 

Co-incidental Correctness: The coincidental correctness stands for achieving the 

desired outcome for wrong reason. 
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The above figure is an example of a routine that, for the (unfortunately) chosen 

input value (X = 16), yields the same outcome (Y = 2) no matter which case we 

select. Therefore, the tests chosen this way will not tell us whether we have 

achieved coverage. For example, the five cases could be totally jumbled and still 

the outcome would be the same. Path Instrumentation is what we have to do to 

confirm that the outcome was achieved by the intended path. 

The types of instrumentation methods include: 

 

1. Interpretive Trace Program: 

 An interpretive trace program is one that executes every statement in order 

and records the intermediate values of all calculations, the statement labels 

traversed etc. 

 If we run the tested routine under a trace, then we have all the information 

we need to confirm the outcome and, furthermore, to confirm that it was 

achieved by the intended path. 

 The trouble with traces is that they give us far more information than we 

need. In fact, the typical trace program provides so much information that 

confirming the path from its massive output dump is more work than 

simulating the computer by hand to confirm the path. 

 

2. Traversal Marker or Link Marker: 

 A simple and effective form of instrumentation is called a traversal marker 

or link marker. 

 Name every link by a lower case letter. 
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 Instrument the links so that the link's name is recorded when the link is 

executed. 

 The succession of letters produced in going from the routine's entry to its 

exit should, if there are no bugs, exactly correspond to the path name. 
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Why Single Link Markers aren't enough. 

 
 

Unfortunately, a single link marker may not do the trick because links can be 

chewed by open bugs 

 

 
We intended to traverse the ikm path, but because of a rampaging GOTO in the 

middle of the m link, we go to process B. If coincidental correctness is against us, 

the outcomes will be the same and we won't know about the bug. 

 

Two Link Marker Method: 

 

 The solution to the problem of single link marker method is to implement 

two markers per link: one at the beginning of each link and on at the end. 

 The two link markers now specify the path name and confirm both the 

beginning and end of the link. 

 

Double Link Marker Instrumentation. 
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Link Counter: A less disruptive (and less informative) instrumentation method is 

based on counters. Instead of a unique link name to be pushed into a string when 

the link is traversed, we simply increment a link counter. We now confirm that the 

path length is as expected. The same problem that led us to double link markers 

also leads us to double link counters. 

 

.TRANSACTION FLOWS: 
 

INTRODUCTION: 

 A transaction is a unit of work seen from a system user's point of view. 

 A transaction consists of a sequence of operations, some of which are 

performed by a system, persons or devices that are outside of the system. 

 Transaction begin with Birth-that is they are created as a result of some 

external act. 

 At the conclusion of the transaction's processing, the transaction is no longer 

in the system. 

 Example of a transaction: A transaction for an online information retrieval 

system might consist of the following steps or tasks: 

 Accept input (tentative birth) 

 Validate input (birth) 

 Transmit acknowledgement to requester 

 Do input processing 

 Search file 

 Request directions from user 

 Accept input 

 Validate input 

 Process request 

 Update file 

 Transmit output 

 Record transaction in log and clean up (death) 
 

TRANSACTION FLOW GRAPHS: 

 Transaction flows are introduced as a representation of a system's 

processing. 

 The methods that were applied to control flow graphs are then used for 

functional testing. 

 Transaction flows and transaction flow testing are to the independent system 

tester what control flows are path testing are to the programmer. 

 The transaction flow graph is to create a behavioral model of the program 

that leads to functional testing. 

 The transaction flowgraph is a model of the structure of the system's 

behavior (functionality). 
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 An example of a Transaction Flow is as follows: 

 

 

USAGE: 

 

 Transaction flows are indispensable for specifying requirements of 

complicated systems, especially online systems. 

 A big system such as an air traffic control or airline reservation system, has 

not hundreds, but thousands of different transaction flows. 

 The flows are represented by relatively simple flowgraphs, many of which 

have a single straight-through path. 

 Loops are infrequent compared to control flowgraphs. 

 The most common loop is used to request a retry after user input errors. An 

ATM system, for example, allows the user to try, say three times, and will 

take the card away the fourth time. 

 
 

COMPLICATIONS: 

 In simple cases, the transactions have a unique identity from the time they're 

created to the time they're completed. 

 In many systems the transactions can give birth to others, and transactions 

can also merge. 

 Births:There are three different possible interpretations of the decision 

symbol, or nodes with two or more out links. It can be a Decision, Biosis or 

a Mitosis. 
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1. Decision:Here the transaction will take one alternative or the other alternative 

but not both. (See Figure 3.2 (a)) 

2. Biosis:Here the incoming transaction gives birth to a new transaction, and both 

transaction continue on their separate paths, and the parent retains it identity. (See 

Figure 3.2 (b)) 

3. Mitosis:Here the parent transaction is destroyed and two new transactions are 

created. 
 

 

Mergers: Transaction flow junction points are potentially as troublesome as 

transaction flow splits. There are three types of junctions: (1) Ordinary Junction (2) 

Absorption (3) Conjugation 

0. Ordinary Junction: An ordinary junction which is similar to the junction in a 

control flow graph. A transaction can arrive either on one link or the other. 

1. Absorption: In absorption case, the predator transaction absorbs prey 

transaction. The prey gone but the predator retains its identity 

2. Conjugation: In conjugation case, the two parent transactions merge to form a 

new daughter. In keeping with the biological flavor this case is called as 

conjugation 

 

TRANSACTION FLOW TESTING TECHNIQUES: 

 

GET THE TRANSACTIONS FLOWS: 

 Complicated systems that process a lot of different, complicated transactions 

should have explicit representations of the transactions flows, or the 

equivalent. 

 Transaction flows are like control flow graphs, and consequently we should 

expect to have them in increasing levels of detail. 

 The system's design documentation should contain an overview section that 

details the main transaction flows. 

 Detailed transaction flows are a mandatory pre requisite to the rational 

design of a system's functional test. 
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INSPECTIONS, REVIEWS AND WALKTHROUGHS: 

 Transaction flows are natural agenda for system reviews or inspections. 

 In conducting the walkthroughs, you should: 

 -99% of the 

transaction the system is expected to process. 





how that transaction, directly or indirectly, follows from the requirements. 

 Make transaction flow testing the corner stone of system functional testing 

just as path testing is the corner stone of unit testing. 

 Select additional flow paths for loops, extreme values, and domain 

boundaries. 

 Design more test cases to validate all births and deaths. 

 Publish and distribute the selected test paths through the transaction flows as 

early as possible so that they will exert the maximum beneficial effect on the 

project. 
 

PATH SELECTION: 

 Select a set of covering paths (c1+c2) using the analogous criteria you used 

for structural path testing. 

 Select a covering set of paths based on functionally sensible transactions as 

you would for control flow graphs. 

 Try to find the most tortuous, longest, strangest path from the entry to the 

exit of the transaction flow. 

 

PATH SENSITIZATION: 

 Most of the normal paths are very easy to sensitize-80% - 95% transaction 

flow coverage (c1+c2) is usually easy to achieve. 

 The remaining small percentage is often very difficult. 

 Sensitization is the act of defining the transaction. If there are sensitization 

problems on the easy paths, then bet on either a bug in transaction flows or a 

design bug. 

 

PATH INSTRUMENTATION: 

 Instrumentation plays a bigger role in transaction flow testing than in unit 

path testing. 

 The information of the path taken for a given transaction must be kept with 

that transaction and can be recorded by a central transaction dispatcher or by 

the individual processing modules. 

 In some systems, such traces are provided by the operating systems or a 

running log. 
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                    Unit-3 

DATA FLOW TESTING: 

 Data flow testing is the name given to a family of test strategies based on 

selecting paths through the program's control flow in order to explore 

sequences of events related to the status of data objects. 

 For example, pick enough paths to assure that every data object has been 

initialized prior to use or that all defined objects have been used for 

something. 

 

Motivation: 

It is our belief that, just as one would not feel confident about a program 

without executing every statement in it as part of some test, one should not feel 

confident about a program without having seen the effect of using the value 

produced by each and every computation. 

 

DATA FLOW MACHINES: 

There are two types of data flow machines with different architectures. (1) Von 

Neumann machnes (2) Multi-instruction, multi-data machines (MIMD). 

 

Von Neumann Machine Architecture: 

 Most computers today are von-neumann machines. 

 This architecture features interchangeable storage of instructions and data in 

the same memory units. 

 

 

 The Von Neumann machine Architecture executes one instruction at a time 

in the following, micro instruction sequence: 

1. Fetch instruction from memory 

2. Interpret instruction 

3. Fetch operands 

4. Process or Execute 

5. Store result 

6. Increment program counter 

7. GOTO 1 

 

Multi-instruction, Multi-data machines (MIMD) Architecture: 

 These machines can fetch several instructions and objects in parallel. 

 They can also do arithmetic and logical operations simultaneously on 

different data objects. 

 The decision of how to sequence them depends on the compiler. 
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BUG ASSUMPTION: 

 The bug assumption for data-flow testing strategies is that control flow is 

generally correct and that something has gone wrong with the software so 

that data objects are not available when they should be, or silly things are 

being done to data objects. 

 Also, if there is a control-flow problem, we expect it to have symptoms that 

can be detected by data-flow analysis. 

 Although we'll be doing data-flow testing, we won't be using data 

flowgraphs as such. Rather, we'll use an ordinary control flowgraph 

annotated to show what happens to the data objects of interest at the 

moment. 

 
 

DATA FLOW GRAPHS: 

The data flow graph is a graph consisting of nodes and directed links. 
 
 

 
 

We will use an control graph to show what happens to data objects of 

interest at that moment. 

Our objective is to expose deviations between the data flows we have and 

the data flows we want. 

 

Data Object State and Usage: 

Data Objects can be created, killed and used. 

 

 They can be used in two distinct ways: (1) In a Calculation (2) As a part of a 

Control Flow Predicate. 

 The following symbols denote these possibilities: 
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1. Defined: d - defined, created, initialized etc 

2. Killed or undefined: k - killed, undefined, released etc 

3. Usage: u - used for something (c - used in Calculations, p - used in a predicate) 

 

1. Defined (d): 

 An object is defined explicitly when it appears in a data declaration. 

 Or implicitly when it appears on the left hand side of the assignment. 

 It is also to be used to mean that a file has been opened. 

 A dynamically allocated object has been allocated. 

 Something is pushed on to the stack. 

 A record written. 

 

2. Killed or Undefined (k): 

An object is killed on undefined when it is released or otherwise made unavailable. 

3. Usage (u): 

 When its contents are no longer known with certitude (with aboslute 

certainity / perfectness). 

 Release of dynamically allocated objects back to the availability pool. 

 Return of records. 

 The old top of the stack after it is popped. 

 An assignment statement can kill and redefine immediately. For example, if 

A had been previously defined and we do a new assignment such as A : = 

17, we have killed A's previous value and redefined A 

 

 A variable is used for computation (c) when it appears on the right hand side 

of an assignment statement. 

 A file record is read or written. 

 It is used in a Predicate (p) when it appears directly in a predicate. 

 

DATA FLOW ANOMALIES: 

An anomaly is denoted by a two-character sequence of actions. 

For example, ku means that the object is killed and then used, where as dd means 

that the object is defined twice without an intervening usage. 

What is an anomaly is depend on the application. 
 

There are nine possible two-letter combinations for d, k and u. some are bugs, 

some are suspicious, and some are okay. 

0. dd :- probably harmless but suspicious. Why define the object twice without an 

intervening usage? 
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1. dk :- probably a bug. Why define the object without using it? 

2. du :- the normal case. The object is defined and then used. 

3. kd :- normal situation. An object is killed and then redefined. 

4. kk :- harmless but probably buggy. Did you want to be sure it was really killed? 

5. ku :- a bug. the object doesnot exist. 

6. ud :- usually not a bug because the language permits reassignment at almost any 

time. 

7. uk :- normal situation. 

8. uu :- normal situation. 

 

In addition to the two letter situations, there are six single letter situations. 

We will use a leading dash to mean that nothing of interest (d,k,u) occurs prior to 

the action noted along the entry-exit path of interest. 

A trailing dash to mean that nothing happens after the point of interest to the exit. 

They possible anomalies are: 

0. -k :- possibly anomalous because from the entrance to this point on the path, the 

variable had not been defined. We are killing a variable that does not exist. 

1. -d :- okay. This is just the first definition along this path. 

2. -u :- possibly anomalous. Not anomalous if the variable is global and has been 

previously defined. 

3. k- :- not anomalous. The last thing done on this path was to kill the variable. 

4. d- :- possibly anomalous. The variable was defined and not used on this path. 

But this could be a global definition. 

5. u- :- not anomalous. The variable was used but not killed on this path. Although 

this sequence is not anomalous, it signals a frequent kind of bug. If d and k mean 

dynamic storage allocation and return respectively, this could be an instance in 

which a dynamically allocated object was not returned to the pool after use. 

 

DATA FLOW ANOMALY STATE GRAPH: 

Data flow anomaly model prescribes that an object can be in one of four distinct 

states: 

0. K :- undefined, previously killed, doesnot exist 

1. D :- defined but not yet used for anything 

2. U :- has been used for computation or in predicate 

3. A :- anomalous 
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These capital letters (K,D,U,A) denote the state of the variable and should not be 

confused with the program action, denoted by lower case letters. 

 

 

STATIC Vs DYNAMIC ANOMALY DETECTION: 

Static analysis is analysis done on source code without actually executing it. For 

example: source code syntax error detection is the static analysis result. 

Dynamic analysis is done on the fly as the program is being executed and is based 

on intermediate values that result from the program's execution. For example: a 

division by zero warning is the dynamic result. 

If a problem, such as a data flow anomaly, can be detected by static analysis 

methods, then it doesnot belongs in testing - it belongs in the language processor. 

There is actually a lot more static analysis for data flow analysis for data flow 

anomalies going on in current language processors. 

For example, language processors which force variable declarations can detect (-u) 

and (ku) anomalies. 

But still there are many things for which current notions of static analysis are 

INADEQUATE. 

Why Static Analysis isn't enough? There are many things for which current 

notions of static analysis are inadequate. They are: 

Dead Variables:Although it is often possible to prove that a variable is dead or 

alive at a given point in the program, the general problem is unsolvable. 

Arrays:Arrays are problematic in that the array is defined or killed as a single 

object, but reference is to specific locations within the array. Array pointers are 

usually dynamically calculated, so there's no way to do a static analysis to validate 

the pointer value. In many languages, dynamically allocated arrays contain garbage 

unless explicitly initialized and therefore, -u anomalies are possible. 

Records and Pointers:The array problem and the difficulty with 
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pointers is a special case of multipart data structures. We have the same problem 

with records and the pointers to them. Also, in many applications we create files 

and their names dynamically and there's no way to determine, without execution, 

whether such objects are in the proper state on a given path or, for that matter, 

whether they exist at all. 

Dynamic Subroutine and Function Names in a Call:subroutine or function 

name is a dynamic variable in a call. What is passed, or a combination of 

subroutine names and data objects, is constructed on a specific path. There's no 

way, without executing the path, to determine whether the call is correct or not. 

False Anomalies:Anomalies are specific to paths. Even a "clear bug" such as ku 

may not be a bug if the path along which the anomaly exists is unachievable. Such 

"anomalies" are false anomalies. Unfortunately, the problem of determining 

whether a path is or is not achievable is unsolvable. 

Recoverable Anomalies and Alternate State Graphs:What constitutes an 

anomaly depends on context, application, and semantics. How does the compiler 

know which model I have in mind? It can't because the definition of "anomaly" is 

not fundamental. The language processor must have a built-in anomaly definition 

with which you may or may not (with good reason) agree. 

Concurrency, Interrupts, System Issues:As soon as we get away from the simple 

single-task uniprocessor environment and start thinking in terms of systems, most 

anomaly issues become vastly more complicated. How often do we define or create 

data objects at an interrupt level so that they can be processed by a lower-priority 

routine? Interrupts can make the "correct" anomalous and the "anomalous" correct. 

True concurrency (as in an MIMD machine) and pseudo concurrency (as in 

multiprocessing) systems can do the same to us. Much of integration and system 

testing is aimed at detecting data-flow anomalies that cannot be detected in the 

context of a single routine. 

 

Although static analysis methods have limits, they are worth using and a 

continuing trend in language processor design has been better static analysis 

methods, especially for data flow anomaly detection. That's good because it means 

there's less for us to do as testers and we have far too much to do as it is. 

 

DATA FLOW MODEL: 

 

The data flow model is based on the program's control flow graph - Don't confuse 

that with the program's data flowgraph.. 
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Here we annotate each link with symbols (for example, d, k, u, c, p) or sequences 

of symbols (for example, dd, du, ddd) that denote the sequence of data operations 

on that link with respect to the variable of interest. Such annotations are called link 

weights. 

The control flow graph structure is same for every variable: it is the weights that 

change. 

 

Components of the model: 

0. To every statement there is a node, whose name is unique. Every node has at 

least one out link and at least one in link except for exit nodes and entry nodes. 

1. Exit nodes are dummy nodes placed at the outgoing arrowheads of exit 

statements (e.g., END, RETURN), to complete the graph. Similarly, entry nodes 

are dummy nodes placed at entry statements (e.g., BEGIN) for the same reason. 

2. The outlink of simple statements (statements with only one outlink) are 

weighted by the proper sequence of data-flow actions for that statement. Note that 

the sequence can consist of more than one letter. For example, the assignment 

statement A:= A + B in most languages is weighted by cd or possibly ckd for 

variable A. Languages that permit multiple simultaneous assignments and/or 

compound statements can have anomalies within the statement. The sequence must 

correspond to the order in which the object code will be executed for that variable. 

3. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are weighted with 

the p - use(s) on every outlink, appropriate to that outlink. 

4. Every sequence of simple statements (e.g., a sequence of nodes with one inlink 

and one outlink) can be replaced by a pair of nodes that has, as weights on the link 

between them, the concatenation of link weights. 

5. If there are several data-flow actions on a given link for a given variable, then 

the weight of the link is denoted by the sequence of actions on that link for that 

variable. 

6. Conversely, a link with several data-flow actions on it can be replaced by a 

succession of equivalent links, each of which has at most one data-flow action for 

any variable. 
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Program Example (PDL) 

 

 

Unannotated flowgraph 
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Control flowgraph annotated for X and Y data flows. 
 

 

 

 

 

 

 

 

 

 

 

Control 

flowgraph annotated for Z data flow. 
 

 

STRATEGIES OF DATA FLOW TESTING: 

INTRODUCTION: 

 Data Flow Testing Strategies are structural strategies. 

 In contrast to the path-testing strategies, data-flow strategies take into 

account what happens to data objects on the links in addition to the raw 

connectivity of the graph. 

 In other words, data flow strategies require data-flow link weights 

(d,k,u,c,p). 

 Data Flow Testing Strategies are based on selecting test path segments (also 

called sub paths) that satisfy some characteristic of data flows for all data 

objects. 

 For example, all subpaths that contain a d (or u, k, du, dk). 

 A strategy X is stronger than another strategy Y if all test cases produced 

under Y are included in those produced under X - conversely for weaker. 
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TERMINOLOGY: 

1. Definition-Clear Path Segment, with respect to variable X, is a connected 

sequence of links such that X is (possibly) defined on the first link and not 

redefined or killed on any subsequent link of that path segment. ll paths in Figure 

3.9 are definition clear because variables X and Y are defined only on the first link 

(1,3) and not thereafter. In Figure 3.10, we have a more complicated situation. The 

following path segments are definition-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7), 

(7,8,9,10), (7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition- clear because 

the variable is defined on (1,3) and again on (4,5). For practice, try finding all the 

definition-clear subpaths for this routine (i.e., for all variables). 

 

2. Loop-Free Path Segment is a path segment for which every node in it is visited 

atmost once. For Example, path (4,5,6,7,8,10) in Figure 3.10 is loop free, but path 

(10,11,4,5,6,7,8,10,11,12) is not because nodes 10 and 11 are each visited twice. 

 

3. Simple path segment is a path segment in which at most one node is visited 

twice. For example, in Figure 3.10, (7,4,5,6,7) is a simple path segment. A simple 

path segment is either loop-free or if there is a loop, only one node is involved. 

 
 

4. A du path from node i to k is a path segment such that if the last link has a 

computational use of X, then the path is simple and definition-clear; if the 

penultimate (last but one) node is j - that is, the path is (i,p,q,...,r,s,t,j,k) and link 

(j,k) has a predicate use - then the path from i to j is both loop-free and definition- 

clear. 

 

STRATEGIES: The structural test strategies discussed below are based on the 

program's control flowgraph. They differ in the extent to which predicate uses 

and/or computational uses of variables are included in the test set. Various types of 

data flow testing strategies in decreasing order of their effectiveness are: 

0. All - du Paths (ADUP): The all-du-paths (ADUP) strategy is the strongest data- 

flow testing strategy discussed here. It requires that every du path from every 

definition of every variable to every use of that definition be exercised under some 

test. 
 

For variable X and Y:In Figure 3.9, because variables X and Y are used only on 

link (1,3), any test that starts at the entry satisfies this criterion (for variables X and 

Y, but not for all variables as required by the strategy). 
 

For variable Z: The situation for variable Z (Figure 3.10) is more complicated 

because the variable is redefined in many places. For the definition on link (1,3) 

we must exercise paths that include subpaths (1,3,4) and (1,3,5). The definition on 

link (4,5) is covered by any path that includes (5,6), such as subpath (1,3,4,5,6, ...).  

The (5,6) definition requires paths that include subpaths (5,6,7,4) and (5,6,7,8). 
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For variable V: Variable V (Figure 3.11) is defined only once on link (1,3). 

Because V has a predicate use at node 12 and the subsequent path to the end must 

be forced for both directions at node 12, the all-du-paths strategy for this variable 

requires that we exercise all loop-free entry/exit paths and at least one path that 

includes the loop caused by (11,4). Note that we must test paths that include both 

subpaths (3,4,5) and (3,5) even though neither of these has V definitions. They 

must be included because they provide alternate du paths to the V use on link (5,6). 

Although (7,4) is not used in the test set for variable V, it will be included in the 

test set that covers the predicate uses of array variable V() and U. 

The all-du-paths strategy is a strong criterion, but it does not take as many tests as 

it might seem at first because any one test simultaneously satisfies the criterion for 

several definitions and uses of several different variables. 

 

1. All Uses Startegy (AU):The all uses strategy is that at least one definition clear 

path from every definition of every variable to every use of that definition be 

exercised under some test. Just as we reduced our ambitions by stepping down 

from all paths (P) to branch coverage (C2), say, we can reduce the number of test 

cases by asking that the test set should include at least one path segment from 

every definition to every use that can be reached by that definition. 

 

For variable V: In Figure 3.11, ADUP requires that we include subpaths (3,4,5) 

and (3,5) in some test because subsequent uses of V, such as on link (5,6), can be 

reached by either alternative. In AU either (3,4,5) or (3,5) can be used to start 

paths, but we don't have to use both. Similarly, we can skip the (8,10) link if we've 

included the (8,9,10) subpath. Note the hole. We must include (8,9,10) in some test 

cases because that's the only way to reach the c use at link (9,10) - but suppose our 

bug for variable V is on link (8,10) after all? Find a covering set of paths under AU 

for Figure 3.11. 

 

2. All p-uses/some c-uses strategy (APU+C) : For every variable and every 

definition of that variable, include at least one definition free path from the 

definition to every predicate use; if there are definitions of the variables that are 

not covered by the above prescription, then add computational use test cases as 

required to cover every definition. 

 

For variable Z:In Figure 3.10, for APU+C we can select paths that all take the 

upper link (12,13) and therefore we do not cover the c-use of Z: but that's okay 

according to the strategy's definition because every definition is covered. Links 

(1,3), (4,5), (5,6), and (7,8) must be included because they contain definitions for 

variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6), and (9,10) must be included 

because they contain predicate uses of Z. Find a covering set of test cases under 

APU+C for all variables in this example - it only takes two tests. 
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For variable V:In Figure 3.11, APU+C is achieved for V by 

(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and 

(1,3,5,6,7,8,10,11,12[lower], 13,2). Note 

that the c-use at (9,10) need not be included under the APU+C criterion. 

 

3. All c-uses/some p-uses strategy (ACU+P) : The all c-uses/some p-uses strategy 

(ACU+P) is to first ensure coverage by computational use cases and if any 

definition is not covered by the previously selected paths, add such predicate use 

cases as are needed to assure that every definition is included in some test. 

4.  
For variable Z: In Figure 3.10, ACU+P coverage is achieved for Z by path 

(1,3,4,5,6,7,8,10, 11,12,13[lower], 2), but the predicate uses of several definitions 

are not covered. Specifically, the (1,3) definition is not covered for the (3,5) p-use, 

the (7,8) definition is not covered for the (8,9), (9,6) and (9, 10) p-uses. 

The above examples imply that APU+C is stronger than branch coverage but 

ACU+P may be weaker than, or incomparable to, branch coverage. 

 

5. All Definitions Strategy (AD) : The all definitions strategy asks only every 

definition of every variable be covered by atleast one use of that variable, be that 

use a computational use or a predicate use. 
 

For variable Z: Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z, 

whereas any entry/exit path satisfies it for variable V. 

From the definition of this strategy we would expect it to be weaker than both 

ACU+P and APU+C. 

 

6. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The 

all predicate uses strategy is derived from APU+C strategy by dropping the 

requirement that we include a c-use for the variable if there are no p-uses for the 

variable. The all computational uses strategy is derived from ACU+P strategy by 

dropping the requirement that we include a p- use for the variable if there are no c- 

uses for the variable. 

 

It is intuitively obvious that ACU should be weaker than ACU+P and that APU 

should be weaker than APU+C. 

 

ORDERING THE STRATEGIES: 

The below figure compares path-flow and data-flow testing strategies. The arrows 

denote that the strategy at the arrow's tail is stronger than the strategy at the arrow's 

head. 
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SLICING AND DICING: 

 A (static) program slice is a part of a program (e.g., a selected set of 

statements) defined with respect to a given variable X (where X is a simple 

variable or a data vector) and a statement i: it is the set of all statements that 

could (potentially, under static analysis) affect the value of X at statement i - 

where the influence of a faulty statement could result from an improper 

computational use or predicate use of some other variables at prior 

statements.

 If X is incorrect at statement i, it follows that the bug must be in the program 

slice for X with respect to i

 A program dice is a part of a slice in which all statements which are known 

to be correct have been removed.

 In other words, a dice is obtained from a slice by incorporating information 

obtained through testing or experiment (e.g., debugging).

 The debugger first limits her scope to those prior statements that could have 

caused the faulty value at statement i (the slice) and then eliminates from 

further consideration those statements that testing has shown to be correct.

 Debugging can be modeled as an iterative procedure in which slices are 

further refined by dicing, where the dicing information is obtained from ad 

hoc tests aimed primarily at eliminating possibilities. Debugging ends when 

the dice has been reduced to the one faulty statement.

 Dynamic slicing is a refinement of static slicing in which only statements on 

achievable paths to the statement in question are included.
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DOMAIN TESTING: 
 

 INTRODUCTION:

o Domain:In mathematics, domain is a set of possible values of an 

independant variable or the variables of a function. 

o Programs as input data classifiers: domain testing attempts to 

determine whether the classification is or is not correct. 

o Domain testing can be based on specifications or equivalent 

implementation information. 

o If domain testing is based on specifications, it is a functional test 

technique. 

o If domain testing is based implementation details, it is a 

structural test technique. 

o For example, you're doing domain testing when you check 

extreme values of an input variable. 
 

All inputs to a program can be considered as if they are 

numbers. For example, a character string can be treated as a 

number by concatenating bits and looking at them as if they 

were a binary integer. This is the view in domain testing, which 

is why this strategy has a mathematical flavor. 

 

 THE MODEL: The following figure is a schematic representation of

domain testing. 

 

Schematic Representation of Domain Testing. 
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 A DOMAIN IS A SET:

o An input domain is a set. 

o If the source language supports set definitions (E.g. PASCAL set 

types and C enumerated types) less testing is needed because the 

compiler does much of it for us. 

o Domain testing does not work well with arbitrary discrete sets of 

data objects. 

o Domain for a loop-free program corresponds to a set of numbers 

defined over the input vector. 

 DOMAINS, PATHS AND PREDICATES:

o In domain testing, predicates are assumed to be interpreted in 

terms of input vector variables. 

o If domain testing is applied to structure, then predicate 

interpretation must be based on actual paths through the routine - 

that is, based on the implementation control flowgraph. 

o Conversely, if domain testing is applied to specifications, 

interpretation is based on a specified data flowgraph for the 

routine; but usually, as is the nature of specifications, no 

interpretation is needed because the domains are specified 

directly. 

o For every domain, there is at least one path through the routine. 

o There may be more than one path if the domain consists of 

disconnected parts or if the domain is defined by the union of 

two or more domains. 

o Domains are defined their boundaries. Domain boundaries are 

also where most domain bugs occur. 

o For every boundary there is at least one predicate that specifies 

what numbers belong to the domain and what numbers don't. 

For example, in the statement IF x>0 THEN ALPHA ELSE 

BETA we know that numbers greater than zero belong to 

ALPHA processing domain(s) while zero and smaller numbers 

belong to BETA domain(s). 

o A domain may have one or more boundaries - no matter how 

many variables define it. 
 

For example, if the predicate is x2 + y2 < 16, the domain is the 

inside of a circle of radius 4 about the origin. Similarly, we could 

define a spherical domain with one boundary but in three 

variables. 

o Domains are usually defined by many boundary segments and 

therefore by many predicates. i.e. the set of interpreted 

predicates traversed on that path (i.e., the path's predicate 
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expression) defines the domain's boundaries. 
 

A DOMAIN CLOSURE: 
 

 A domain boundary is closed with respect to a domain if the points on the 

boundary belong to the domain.

 If the boundary points belong to some other domain, the boundary is said 

to be open.

 Figure 4.2 shows three situations for a one-dimensional domain - i.e., a 

domain defined over one input variable; call it x

 The importance of domain closure is that incorrect closure bugs are 

frequent domain bugs. For example, x >= 0 when x > 0 was intended.

 

 
 

 DOMAIN DIMENSIONALITY:

o Every input variable adds one dimension to the domain. 

o One variable defines domains on a number line. 

o Two variables define planar domains. 

o Three variables define solid domains. 

o Every new predicate slices through previously defined domains 

and cuts them in half. 

o Every boundary slices through the input vector space with a 

dimensionality which is less than the dimensionality of the 

space. 

o Thus, planes are cut by lines and points, volumes by planes, lines 

and points and n-spaces by hyperplanes. 

 BUG ASSUMPTION:

o The bug assumption for the domain testing is that processing is 

okay but the domain definition is wrong. 

o An incorrectly implemented domain means that boundaries are 

wrong, which may in turn mean that control flow predicates are 

wrong. 
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o Many different bugs can result in domain errors. Some of them 

are: 

Domain Errors: 

 Double Zero Representation :In computers or 

Languages that have a distinct positive and negative 

zero, boundary errors for negative zero are common. 

 

 Floating point zero check:A floating point number can 

equal zero only if the previous definition of that number 

set it to zero or if it is subtracted from it self or 

multiplied by zero. So the floating point zero check to 

be done against a epsilon value. 

 Contradictory domains:An implemented domain can 

never be ambiguous or contradictory, but a specified 

domain can. A contradictory domain specification 

means that at least two supposedly distinct domains 

overlap. 

 Ambiguous domains:Ambiguous domains means that 

union of the domains is incomplete. That is there are 

missing domains or holes in the specified domains. Not 

specifying what happens to points on the domain 

boundary is a common ambiguity. 

 Overspecified Domains:he domain can be overloaded 

with so many conditions that the result is a null domain. 

Another way to put it is to say that the domain's path is 

unachievable. 

 Boundary Errors:Errors caused in and around the 

boundary of a domain. Example, boundary closure bug, 

shifted, tilted, missing, extra boundary. 

 Closure Reversal:A common bug. The predicate is 

defined in terms of >=. The programmer chooses to 

implement the logical complement and incorrectly uses 

<= for the new predicate; i.e., x >= 0 is incorrectly 

negated as x <= 0, thereby shifting boundary values to 

adjacent domains. 

 Faulty Logic:Compound predicates (especially) are 

subject to faulty logic transformations and improper 

simplification. If the predicates define domain 

boundaries, all kinds of domain bugs can result from 

faulty logic manipulations. 



66 
 

 LINEAR AND NON LINEAR BOUNDARIES:

o Nice domain boundaries are defined by linear inequalities or 

equations. 

o The impact on testing stems from the fact that it takes only two 

points to determine a straight line and three points to determine a 

plane and in general n+1 points to determine a n-dimensional 

hyper plane. 

o In practice more than 99.99% of all boundary predicates are 

either linear or can be linearized by simple variable 

transformations. 

 COMPLETE BOUNDARIES:

o Nice domain boundaries are complete in that they span the 

number space from plus to minus infinity in all dimensions. 

o Figure shows some incomplete boundaries. Boundaries A and E 

have gaps. 

o Such boundaries can come about because the path that 

hypothetically corresponds to them is unachievable, because 

inputs are constrained in such a way that such values can't exist, 

because of compound predicates that define a single boundary, 

or because redundant predicates convert such boundary values 

into a null set. 

o The advantage of complete boundaries is that one set of tests is 

needed to confirm the boundary no matter how many domains it 

bounds. 

o If the boundary is chopped up and has holes in it, then every 

segment of that boundary must be tested for every domain it 

bounds. 
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DOMAIN TESTING: 
 

 DOMAIN TESTING STRATEGY: The domain-testing strategy is 

simple, although possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain 

testing concentrates test points on or near boundaries. 

2. Classify what can go wrong with boundaries, then define a test 

strategy for each case. Pick enough points to test for all 

recognized kinds of boundary errors. 

3. Because every boundary serves at least two different domains, 

test points used to check one domain can also be used to check 

adjacent domains. Remove redundant test points. 

4. Run the tests and by posttest analysis (the tedious part) 

determine if any boundaries are faulty and if so, how. 

5. Run enough tests to verify every boundary of every domain. 
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 DOMAIN BUGS AND HOW TO TEST FOR THEM:

o An interior point (Figure 4.10) is a point in the domain such 

that all points within an arbitrarily small distance (called an 

epsilon neighborhood) are also in the domain. 

o A boundary point is one such that within an epsilon 

neighborhood there are points both in the domain and not in the 

domain. 

o An extreme point is a point that does not lie between any two 

other arbitrary but distinct points of a (convex) domain. 

 

Interior, Boundary and Extreme points. 
 

 

 

 

 

 

 An on point is a point on the boundary.

 If the domain boundary is closed, an off point is a point near the 

boundary but in the adjacent domain.

 If the boundary is open, an off point is a point near the boundary but in 

the domain being tested; see Figure 4.11. You can remember this by the 

acronym COOOOI: Closed Off Outside, Open Off Inside.
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Figure shows generic domain bugs: closure bug, shifted boundaries, tilted 

boundaries, extra boundary, missing boundary. 
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PROCEDURE FOR TESTING: The procedure is conceptually is straight 

forward. It can be done by hand for two dimensions and for a few domains and 

practically impossible for more than two variables. 
 

1. Identify input variables. 

2. Identify variable which appear in domain defining predicates, 

such as control flow predicates. 

3. Interpret all domain predicates in terms of input variables. 

4. For p binary predicates, there are at most 2p combinations of 

TRUE-FALSE values and therefore, at most 2p domains. Find 

the set of all non-null domains. The result is a Boolean 

expression in the predicates consisting a set of AND terms 

joined by OR's. For example ABC+DEF+GHI...... Where the 

capital letters denote predicates. Each product term is a set of 

linear inequality that defines a domain or a part of multiply 

connected domains. 

5. Solve these inequalities to find all the extreme points of each 

domain using any of the linear programming methods. 
 

DOMAIN AND INTERFACE TESTING 

INTRODUCTION: 

 Recall that we defined integration testing as testing the 

correctness of the interface between two otherwise 

correct components. 

 Components A and B have been demonstrated to satisfy 

their component tests, and as part of the act of 

integrating them we want to investigate possible 

inconsistencies across their interface. 

 Interface between any two components is considered as 

a subroutine call. 

 We're looking for bugs in that "call" when we do 

interface testing. 

 Let's assume that the call sequence is correct and that 

there are no type incompatibilities. 
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 For a single variable, the domain span is the set of 

numbers between (and including) the smallest value 

and the largest value. For every input variable we want 

(at least): compatible domain spans and compatible 

closures (Compatible but need not be Equal). 

o DOMAINS AND RANGE: 

 The set of output values produced by a function is 

called the range of the function, in   contrast   with 

the domain, which is the set of input values over which 

the function is defined. 

 For most testing, our aim has been to specify input 

values and to predict and/or confirm output values that 

result from those inputs. 

 Interface testing requires that we select the output 

values of the calling routine i.e. caller's range must be 

compatible with the called routine's domain. 

 An interface test consists of exploring the correctness of 

the following mappings: 

  caller domain --> caller range (caller 

unit test) 

caller range --> called domain 

(integration test) 

  called domain --> called range (called 

unit test) 

 

CLOSURE COMPATIBILITY: 
 

 Assume that the caller's range and the called domain 

span the same numbers - for example, 0 to 17. 

 Figure 4.16 shows the four ways in which the caller's 

range closure and the called's domain closure can agree. 

 The thick line means closed and the thin line means 

open. Figure shows the four cases consisting of 

domains that are closed both on top (17) and bottom 

(0), open top and closed bottom, closed top and open 

bottom, and open top and bottom. 
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SPAN COMPATIBILITY: 
 

 
 INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

o For interface testing, bugs are more likely to concern single 

variables rather than peculiar combinations of two or more 

variables. 

o Test every input variable independently of other input variables 

to confirm compatibility of the caller's range and the called 

routine's domain span and closure of every domain defined for 

that variable. 

o There are two boundaries to test and it's a one-dimensional 

domain; therefore, it requires one on and one off point per 

boundary or a total of two on points and two off points for the 

domain - pick the off points appropriate to the closure 

(COOOOI). 

o Start with the called routine's domains and generate test points in 

accordance to the domain-testing strategy used for that routine in 

component testing. 

o Unless you're a mathematical whiz you won't be able to do this 

without tools for more than one variable at a time. 
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Unit-4 
 
 

Software Testing Metrics 
 

 

Software Testing Metrics are the quantitative measures used to estimate the 

progress, quality, productivity and health of the software testing process. The goal 

of software testing metrics is to improve the efficiency and effectiveness in the 

software testing process and to help make better decisions for further testing 

process by providing reliable data about the testing process. 

A Metric defines in quantitative terms the degree to which a system, system 

component, or process possesses a given attribute. The ideal example to understand 

metrics would be a weekly mileage of a car compared to its ideal mileage 

recommended by the manufacturer. 
 
 
 

 
Linguistic Metrics: Based on measuring properties of program text without interpreting what the 

text means. – E.g., LOC. 
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Structural Metrics: Based on structural relations between the objects in a program. – E.g., 

number of nodes and links in a control flowgraph. 

Lines of code (LOC) 
 

• LOC is used as a measure of software complexity. 
 

• This metric is just as good as source listing weight if we assume consistency w.r.t. paper and 

font size. • Makes as much sense (or nonsense) to say: – ―This is a 2 pound program‖ 

• as it is to say: – ―This is a 100,000 line program.‖ 
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McCabe Cyclomatic Complexity 

McCabe's cyclomatic complexity is a software quality metric that quantifies the complexity of a 

software program. Complexity is inferred by measuring the number of linearly independent paths 

through the program. The higher the number the more complex the code. 

The Significance of the McCabe Number 

Measurement of McCabe's cyclomatic complexity metric ensures that developers are sensitive to 

the fact that programs with high McCabe numbers (e.g. > 10) are likely to be difficult to 

understand and therefore have a higher probability of containing defects. The cyclomatic 

complexity number also indicates the number of test cases that would have to be written to 

execute all paths in a program. 

Calculating the McCabe Number 

Cyclomatic complexity is derived from the control flow graph of a program as follows: 

Cyclomatic complexity (CC) = E - N + 2P 

Where: 

P = number of disconnected parts of the flow graph (e.g. a calling program and a subroutine) 

E = number of edges (transfers of control) 

N = number of nodes (sequential group of statements containing only one transfer of control) 

McCabe Cyclomatic Complexity 

(Alias: McCabe number) 

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it. 

- Alan Perlis, American Scientist 

McCabe's cyclomatic complexity is a software quality metric that quantifies the complexity of a 

software program. Complexity is inferred by measuring the number of linearly independent paths 

through the program. The higher the number the more complex the code. 
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The Significance of the McCabe Number 

Measurement of McCabe's cyclomatic complexity metric ensures that developers are sensitive to 

the fact that programs with high McCabe numbers (e.g. > 10) are likely to be difficult to 

understand and therefore have a higher probability of containing defects. The cyclomatic 

complexity number also indicates the number of test cases that would have to be written to 

execute all paths in a program. 

Calculating the McCabe Number 

Cyclomatic complexity is derived from the control flow graph of a program as follows: 

Cyclomatic complexity (CC) = E - N + 2P 

Where: 

P = number of disconnected parts of the flow graph (e.g. a calling program and a subroutine) 

E = number of edges (transfers of control) 

N = number of nodes (sequential group of statements containing only one transfer of control) 

Examples of McCabe Number Calculations 

Halstead's Software Metrics 

According to Halstead's "A computer program is an implementation of an algorithm considered 

to be a collection of tokens which can be classified as either operators or operand." 

The basic measures are 

 
n1 = count of unique operators. 

n2 = count of unique operands. 

N1 = count of total occurrences of operators. 

N2 = count of total occurrence of operands. 

 

In terms of the total tokens used, the size of the program can be expressed as N = N1 + N2. 
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Estimated Program Length 

 

According to Halstead, The first Hypothesis of software science is that the length of a well- 

structured program is a function only of the number of unique operators and operands. 

 

N=N1+N2 

 

And estimated program length is denoted by N^ 

N^ = n1log2n1 + n2log2n2 

The following alternate expressions have been published to estimate program length: 

 
o NJ = log2 (n1!) + log2 (n2!) 

o NB = n1 * log2n2 + n2 * log2n1 

o NC = n1 * sqrt(n1) + n2 * sqrt(n2) 

o NS = (n * log2n) / 2 

 

 

PATH PRODUCTS AND PATH EXPRESSION: 
 

PATH PRODUCTS: 
 

 Normally flow graphs used to denote only control flow connectivity.

 The simplest weight we can give to a link is a name.

 Using link names as weights, we then convert the graphical flow graph 

into an equivalent algebraic like expressions which denotes the set of all 

possible paths from entry to exit for the flow graph.

 Every link of a graph can be given a name.

 The link name will be denoted by lower case italic letters.

 In tracing a path or path segment through a flow graph, you traverse a 

succession of link names.

 The name of the path or path segment that corresponds to those links is 

expressed naturally by concatenating those link names.

 For example, if you traverse links a,b,c and d along some path, the name 

for that path segment is abcd. This path name is also called a path 

product.
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 PATH EXPRESSION:

o Consider a pair of nodes in a graph and the set of paths between 

those node. 

o Denote that set of paths by Upper case letter such as X,Y. From 

Figure 5.1c, the members of the path set can be listed as follows: 
 

ac, abc, abbc, abbbc, abbbbc............. 
 

o Alternatively, the same set of paths can be denoted by : 

ac+abc+abbc+abbbc+abbbbc+........... 

o The + sign is understood to mean "or" between the two nodes of 

interest, paths ac, or abc, or abbc, and so on can be taken. 

o Any expression that consists of path names and "OR"s and 

which denotes a set of paths between two nodes is called a "Path 

Expression." 



79 
 

 PATH PRODUCTS:

o The name of a path that consists of two successive path segments 

is conveniently expressed by the concatenation or Path 

Product of the segment names. 

o For example, if X and Y are defined as X=abcde,Y=fghij,then 

the path corresponding to X followed by Y is denoted by 
 

XY=abcdefghij 
 

o Similarly, 

o YX=fghijabcde 

o aX=aabcde 

o Xa=abcdea 

XaX=abcdeaabcde 
 

 If X and Y represent sets of paths or path expressions, their product 

represents the set of paths that can be obtained by following every 

element of X by any element of Y in all possible ways. For example,

 X = abc + def + ghi

 Y = uvw + z

 

Then, 
 

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz 

 RULE 1: A(BC)=(AB)C=ABC

 

where A,B,C are path names, set of path names or path expressions. 
 

 The zeroth power of a link name, path product, or path expression is also 

needed for completeness. It is denoted by the numeral "1" and denotes the 

"path" whose length is zero - that is, the path that doesn't have any links.

 a0 = 1 

X0 = 1

PATH SUMS: 
 

 The "+" sign was used to denote the fact that path names were part of the 

same set of paths.

 The "PATH SUM" denotes paths in parallel between nodes.
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 Links a and b in Figure 5.1a are parallel paths and are denoted by a + b. 

Similarly, links c and d are parallel paths between the next two nodes and 

are denoted by c + d.

 The set of all paths between nodes 1 and 2 can be thought of as a set of 

parallel paths and denoted by eacf+eadf+ebcf+ebdf.

 If X and Y are sets of paths that lie between the same pair of nodes, then 

X+Y denotes the UNION of those set of paths.
 

 

 

RULE 2: X+Y=Y+X 

RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z 
 

 

 DISTRIBUTIVE LAWS:

o The product and sum operations are distributive, and the 

ordinary rules of multiplication apply; that is 
 

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD 
 

o Applying these rules to the below Figure 5.1a yields 

e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf 

ABSORPTION RULE: 
 

o If X and Y denote the same set of paths, then the union of these 

sets is unchanged; consequently, 
 

RULE 5: X+X=X (Absorption Rule) 
 

o If a set consists of paths names and a member of that set is added 

to it, the "new" name, which is already in that set of names, 

contributes nothing and can be ignored. 



81 
 

o For example, 

o if X=a+aa+abc+abcd+def then 

X+a = X+aa = X+abc = X+abcd = X+def = X 
 

It follows that any arbitrary sum of identical path expressions reduces to the 

same path expression. 
 

LOOPS: 

 

Loops can be understood as an infinite set of parallel paths. Say that the loop 

consists of a single link b. then the set of all paths through that loop point is 

b0+b1+b2+b3+b4+b5+.............. 
 

 

The path expression for the above figure is denoted by the notation: 

ab*c=ac+abc+abbc+abbbc+................ 

Syntax Testing 

 System inputs must be validated. Internal and external inputs conform to 

formats: – Textual format of data input from users. – File formats. – 

Database schemata.

 Data formats can be mechanically converted into many input data validation 

tests.

 Such a conversion is easy when the input is expressed in a formal notation 

such as BNF (Backus-Naur Form).
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Syntax Testing Steps 

 Identify the target language or format.

 Define the syntax of the language, formally, in a notation such as BNF.

 Test and Debug the syntax: – Test the ―normal‖ conditions by covering the 

BNF syntax graph of the input language. (minimum requirement) – Test the

―garbage‖ conditions by testing the system against invalid data. (high 

payoff) 

 

 
How to Find the Syntax 

 Every input has a syntax.

 The syntax may be:

– formally specified 

– undocumented 

– just understood 

 … but it does exist!

 Testers need a formal specification to test the syntax and create useful

―garbage‖. 

 
BNF 

Syntax is defined in BNF as a set of definitions. Each definition may in-turn refer 

to other definitions or to itself. 

The LHS of a definition is the name given to the collection of objects on the RHS. 

– ::= means ―is defined as‖. 

– | means ―or‖. 

– * means ―zero or more occurrences‖. 

 

– + means ―one or more occurrences‖. 

 Test Case Generation 

There are three possible kinds of incorrect actions: 

– Recognizer does not recognize a good string. 
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– Recognizer accepts a bad string. 

– Recognizer crashes during attempt to recognize a string. 

• Even small BNF specifications lead to many good strings and far more bad 

strings. 

• There is neither time nor need to test all strings. 

Testing Strategy 

 Create one error at a time, while keeping all other components of the input 

string correct.

 Once a complete set of tests has been specified for single errors, do the same 

for double errors, then triple, errors, ...

 Focus on one level at a time and keep the level above and below as correct 

as you can.

 
Delimiter Errors 

Delimiters are characters or strings placed between two fields to denote where one 

ends and the other begin. 

• Delimiter Problems: 

– Missing delimiter. e.g., (x+y 

– Wrong delimiter. e.g., (x+y] 

– Not a delimiter. e.g., (x+y 1 

 

– Poorly matched delimiters. e.g., (x+y)) 

 
Sources of Syntax 

 Designer-Tester Cooperation

 Manuals

 Help Screens

 Design Documents

 Prototypes

 Programmer Interviews

 Experimental (hacking)
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Unit-5 : 

Logic Based Testing 
 

 

 INTRODUCTION:

o The functional requirements of many programs can be specified 

by decision tables, which provide a useful basis for program and 

test design. 

o Consistency and completeness can be analyzed by using boolean 

algebra, which can also be used as a basis for test design. 

Boolean algebra is trivialized by using Karnaugh-Veitch 

charts. 

o "Logic" is one of the most often used words in programmers' 

vocabularies but one of their least used techniques. 

o Boolean algebra is to logic as arithmetic is to mathematics. 

Without it, the tester or programmer is cut off from many test 

and design techniques and tools that incorporate those 

techniques. 

o Logic has been, for several decades, the primary tool of 

hardware logic designers. 

o Many test methods developed for hardware logic can be adapted 

to software logic testing. Because hardware testing automation is 

10 to 15 years ahead of software testing automation, hardware 

testing methods and its associated theory is a fertile ground for 

software testing methods. 

o As programming and test techniques have improved, the bugs 

have shifted closer to the process front end, to requirements and 

their specifications. These bugs range from 8% to 30% of the 

total and because they're first-in and last-out, they're the costliest 

of all. 

o The trouble with specifications is that they're hard to express. 

o Boolean algebra (also known as the sentential calculus) is the 

most basic of all logic systems. 

o Higher-order logic systems are needed and used for formal 

specifications. 

o Much of logical analysis can be and is embedded in tools. But 

these tools incorporate methods to simplify, transform, and 
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check specifications, and the methods are to a large extent based 

on boolean algebra. 
 

KNOWLEDGE BASED SYSTEM: 
 

 The knowledge-based system (also expert system, or 

"artificial intelligence" system) has become the 

programming construct of choice for many applications 

that were once considered very difficult. 

 Knowledge-based systems incorporate knowledge from 

a knowledge domain such as medicine, law, or civil 

engineering into a database. The data can then be 

queried and interacted with to provide solutions to 

problems in that domain. 

 One implementation of knowledge-based systems is to 

incorporate the expert's knowledge into a set of rules. 

The user can then provide data and ask questions based 

on that data. 

 The user's data is processed through the rule base to 

yield conclusions (tentative or definite) and requests for 

more data. The processing is done by a program called 

the inference engine. 

 Understanding knowledge-based systems and their 

validation problems requires an understanding of 

formal logic. 

o Decision tables are extensively used in business data processing; 

Decision-table preprocessors as extensions to COBOL are in 

common use; boolean algebra is embedded in the 

implementation of these processors. 

o Although programmed tools are nice to have, most of the 

benefits of boolean algebra can be reaped by wholly manual 

means if you have the right conceptual tool: the Karnaugh- 

Veitch diagram is that conceptual tool. 
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DECISION TABLES: 
 

 

 



 It consists of four areas called the condition stub, the condition entry, the 

action stub, and the action entry.

 Each column of the table is a rule that specifies the conditions under 

which the actions named in the action stub will take place.

 The condition stub is a list of names of conditions. 

A more general decision table can be as below:
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 A rule specifies whether a condition should or should not be met for the 

rule to be satisfied. "YES" means that the condition must be met, "NO" 

means that the condition must not be met, and "I" means that the 

condition plays no part in the rule, or it is immaterial to that rule.

 The action stub names the actions the routine will take or initiate if the 

rule is satisfied. If the action entry is "YES", the action will take place; if 

"NO", the action will not take place.

 The    table    in    Figure    6.1     can    be    translated     as    follows:

 

Action 1 will take place if conditions 1 and 2 are met and if conditions 3 

and 4 are not met (rule 1) or if conditions 1, 3, and 4 are met (rule 2). 

 "Condition" is another word for predicate.

 Decision-table uses "condition" and "satisfied" or "met". Let us use 

"predicate" and TRUE / FALSE.

 Now the above translations become:

1. Action 1 will be taken if predicates 1 and 2 are true and if 

predicates 3 and 4 are false (rule 1), or if predicates 1, 3, and 4 

are true (rule 2). 

2. Action 2 will be taken if the predicates are all false, (rule 3). 

3. Action 3 will take place if predicate 1 is false and predicate 4 is 

true (rule 4). 
 

DECISION-TABLE PROCESSORS: 
 

o Decision tables can be automatically translated into code and, as 

such, are a higher-order language 

o If the rule is satisfied, the corresponding action takes place 

o Otherwise, rule 2 is tried. This process continues until either a 

satisfied rule results in an action or no rule is satisfied and the 

default action is taken 

o Decision tables have become a useful tool in the programmers 

kit, in business data processing. 
 

DECISION-TABLES AS BASIS FOR TEST CASE DESIGN: 
 

5. The specification is given as a decision table or can be easily 

converted into one. 

6. The order in which the predicates are evaluated does not affect 

interpretation of the rules or the resulting action - i.e., an 

arbitrary permutation of the predicate order will not, or should 

not, affect which action takes place. 

7. The order in which the rules are evaluated does not affect the 

resulting action - i.e., an arbitrary permutation of rules will not, 

or should not, affect which action takes place. 
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8. Once a rule is satisfied and an action selected, no other rule need 

be examined. 

9. If several actions can result from satisfying a rule, the order in 

which the actions are executed doesn't matter 
 

DECISION-TABLES AND STRUCTURE: 
 

o Decision tables can also be used to examine a program's 

structure. 

o Figure 6.4 shows a program segment that consists of a decision 

tree. 

o These decisions, in various combinations, can lead to actions 1, 

2, or 3 

 

 
 
 

 

 If the decision appears on a path, put in a YES or NO as appropriate. If 

the decision does not appear on the path, put in an I, Rule 1 does not 

contain decision C, therefore its entries are: YES, YES, I, YES.

 The corresponding decision table is shown in Table

 

 
 

 RULE 

1 

RULE 

2 

RULE 

3 

RULE 

4 

RULE 

5 

RULE 

6 
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CONDITION 

A 

CONDITION 

B 

CONDITION 

C 

CONDITION 

D 

 
 

YES 

YES 

I 

YES 

 
 

YES 

NO I 

I 

 
 

YES 

YES 

I 

NO 

 
 

NO 

I 

YES 

I 

 
 

NO 

I 

NO 

YES 

 
 

NO 

I 

NO 

NO 

ACTION 1 

ACTION 2 

ACTION 3 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

YES 

 

KV CHARTS 

INTRODUCTION: 

 If you had to deal with expressions in four, five, or six 

variables, you could get bogged down in the algebra 

and make as many errors in designing test cases as there 

are bugs in the routine you're testing. 

 Karnaugh-Veitch chart reduces boolean algebraic 

manipulations to graphical trivia. 

 Beyond six variables these diagrams get cumbersome 

and may not be effective. 
 

SINGLE VARIABLE: 
 

 Figure 6.6 shows all the boolean functions of a single 

variable and their equivalent representation as a KV 

chart. 
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 The charts show all possible truth values that the variable A can have.



 A "1" means the variable’s value is "1" or TRUE. A "0" means that the 

variable's value is 0 or FALSE.

 The entry in the box (0 or 1) specifies whether the function that the chart 

represents is true or false for that value of the variable.

 We usually do not explicitly put in 0 entries but specify only the 

conditions under which the function is true.
 

STATES, STATE GRAPHS AND TRANSITION TESTING 

OBJECTIVE: 

To know how state testing strategies are based on the use of finite state machine 

models for software structure, software behavior, or specifications of software 

behavior. 

Introduction: 

The finite state machine is as fundamental to software engineering as Boolean 

algebra to logic. 

Finite state machines can also be implemented as table driven software, in which 

case they are a powerful design option. 
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State Graphs: 

OBJECTIVE: 

State graph is used to represent states, links, and transitions from one state to 

involves a program that detects the character sequence ―in the graph. 

1. A state is defined as : ― A combination of circumstances or attributes belonging 

for the time being to a person or thing.‖ 

2. For example, a moving automobile whose engine is running can have the 

following states with respect to its transmission 

1. Reverse gear 

2. Neutral gear 

3. First gear 

 

4. Second gear 

5. Third gear 

6. Fourth gear State graph – 

For example, a program that detects the character sequence ―ZCZC‖ can be in the 

following states. 

7. Neither ZCZC nor any part of it has been detected. 

8. Z has been detected. 

9. ZC has been detected. 

10. ZCZ has been detected. 

11. ZCZC has been detected. 
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States are represented by Nodes. 

State are numbered or may identified by words or whatever else is convenient 
 

1. Inputs and Transition: 

1. Whatever is being modeled is subjected to inputs. As a result of those inputs, the 

state changes, or is said to have made a Transition. 

2. Transition are denoted by links that join the states. 

3. The input that causes the transition are marked on the link; That is, the inputs are 

link weights. 

4. There is one outlink from every state for every input. 

5. If several inputs in a state cause a transition to the same subsequent state, 

instead of drawing a bunch of parallel links we can abbreviate the notation by 

listing the several inputs as in: ―input1, input2, input3………‖. 

6. A finite state machine is an abstract device that can be represented by a state 

graphhaving a finite number of states and a finite number of transitions between 

states. 

2. Outputs 

1. An output can be associated with any link. 

2. Out puts are denoted by letters or words and are separated from inputs by a slash 

as follows: ―input/output‖. 

3. As always, output denotes anything of interest that’s observable and is not 

restricted to explicit outputs by devices 
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4. Outputs are also link weights. 

5. If every input associated with a transition causes the same output, then denoted 

it as: ―input1, input2, input3  ................ /output‖ 

3. State Tables: 

1. Big state graphs are cluttered and hard to follow. 
 

2. It’s more convenient to represent the state graph as a table (the state table or 

state transition table) that specifies the states, the inputs, the transitions and the 

outputs. 

3. The following conventions are used: 

 Each row of the table corresponds to a state. 

 Each column corresponds to an input condition. 

 The box at the intersection of a row and a column specifies the 

next state (the transition) and the output, if any. 
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4. Time versus Sequence: 

 State graphs don’t represent time they represent sequence. 

 A transition might take microseconds or centuries; 

 A system could be in one state for milliseconds and another for years the 

state graph would be the same because it has no notion of time. 

 Although the finite state machines model can be elaborated to include 

notions of time in addition to sequence, such as time Petri Nets. 

5. Software Implementation 

Implementation and Operation: 

1. There are four tables involved: 

2. A table or process that encodes the input values into a compactlist 

(INPUT_CODE_TABLE). 

3. A table that specifies the next state for every combination of state and input code 

(TRANSITION_TABLE). 

4. A table or case statement that specifies the output or output code, if any, 

associated with every state-input combination (OUTPUT_TABLE). 

5. A table that stores the present state of every device or process that uses the 

same state table—e.g., one entry per tape transport (DEVICE_TABLE). 

6. The routine operates as follows, where # means concatenation: BEGIN 

a) PRESENT_STATE := DEVICE_TABLE(DEVICE_NAME) 

b) ACCEPT INPUT_VALUE 

c) INPUT_CODE := INPUT_CODE_TABLE(INPUT_VALUE) 

d) POINTER := INPUT_CODE#PRESENT STATE 

e) NEW_STATE := TRANSITION_TABLE(POINTER) 

f) OUTPUT_CODE := OUTPUT_TABLE(POINTER) 

g) CALL OUTPUT_HANDLER(OUTPUT_CODE) 

h) DEVICE_TABLE(DEVICE_ NAME) := NEW_STATE END 

State Codes and State-Symbol Product: 

1. The term state-symbol product is used to mean the value obtained by any 

scheme used to convert the combined state and input code into a pointer to a 

compact table without holes. 
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2. ―state codes‖ in the context of finite-state machines, we mean the (possibly) 

hypothetical integer used to denote the state and not the actual form of the state 

code that could result from an encoding process. 

Good State graphs and bad State graphs 

OBJECTIVE: student should find out state graphs which are reachable and non 

reachable states according to the given specifications or not. To check how 

equivalent states are possible with set of inputs and outputs 

Here are some principles for judging: 

1. The total number of states is equal to the product of the possibilities of factors 

that make up the state. 

2. For every state and input there is exactly one transition specified to exactly one, 

possibly the same, state. 

3. For every transition there is one output action specified. The output could be 

trivial, but at least one output does something sensible. 

4. For every state there is a sequence of inputs that will drive the system back to 

the same state. 

Number of states: 

1. The number of states in a state graph is the number of states we choose to 

recognize or model. 

2. In practice, the state is directly or indirectly recorded as a combination of values 

of variables that appear in the data base. 

3. Find the number of states as follows: 

Impossible States: 

 Sometimes some combinations of factors may appear to be impossible. 

 The discrepancy between the programmer’s state count and the tester’s state 

count is often due to a difference of opinion concerning ―impossible states‖. 
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 A robust piece of software will not ignore impossible states but will 

recognize them and invoke an illogical condition handler when they appear 

to have occurred 

Unreachable States: 

 An unreachable state is like unreachable code. 

 A state that no input sequence can reach. 

 An unreachable state is not impossible, just as unreachable code is not 

impossible 

 There may be transitions from unreachable state to other states; there usually 

because the state became unreachable as a result of incorrect transition. 

Dead States: 

1. A dead state is a state that once entered cannot be left. 

2. This is not necessarily a bug but it is suspicious. 

 
STATE TESTING 

 Impacts of Bugs: 

 Wrong number of states. 

 Wrong transition for a given state-input combination. 

 Wrong output for a given transition. 

 Pairs of states or sets of states that are inadvertently made equivalent (factor 

lost). 

 States or sets of states that are split to create inequivalent duplicates. 

 States or sets of states that have become dead. 

 States or sets of states that have become unreachable. 

 

Principles of State Testing: The starting point of state testing is: 

1. Define a set of covering input sequences that get back to the initial state when 

starting from the initial state. 

2. For each step in each input sequence, define the expected next state, the 

expected transition, and the expected output code. A set of tests, then, consists of 

three sets of sequences: 
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1. Input sequences. 2. Corresponding transitions or next-state names. 3. Output 

sequences. 

Limitations and Extensions 

1. State transition coverage in a state graph model does not guarantee complete 

testing. 

2. How defines a hierarchy of paths and methods for combining paths to produce 

covers of state graphs. 

3. The simplest is called a ―0 switch‖ which corresponds to testing each transition 

individually. 

4. The next level consists of testing transitions sequences consisting of two 

transitions called ―1 switches‖. 

5. The maximum length switch is ―n1 switch‖ where there are n number of states 

6. A set of input sequences that provide coverage of all nodes and links is a 

mandatory minimum requirement. 

7. In executing state tests, it is essential that means be provided (e.g., 

instrumentation software) to record the sequence of states (e.g., transitions) 

resulting from the input sequence and not just the outputs that result from the input 

sequence. 

 

***** 
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