# MAR GREGORIOS COLLEGE OF ARTS & SCIENCE

Block No.8, College Road, Mogappair West, Chennai – 37

Affiliated to the University of Madras Approved by the Government of Tamil Nadu An ISO 9001:2015 Certified Institution



# **DEPARTMENT OF MATHEMATICS**

SUBJECT NAME: REAL ANALYSIS-I

**SUBJECT CODE: BMA-CSC10** 

**SEMESTER: V** 

PREPARED BY: PROF.S.C.PREMILA

#### **UNIVERSITY OF MADRAS** B.Sc. DEGREE COURSE IN MATHEMATICS SYLLABUS WITH EFFECT FROM 2020-2021

BMA-CSC10

#### CORE-X: REAL ANALYSIS-I (Common to B.Sc. Maths with Computer Applications)

Inst.Hrs: 6 Credits: 4 YEAR: III SEMESTER: V

#### Learning outcomes:

#### Students will acquire knowledge to

- Apply Mathematical concepts and Principles to perform numerical and symbolic computations.
- Understand and perform simple proofs.
- Know how abstract ideas and rigorous methods in Mathematical Analysis can be applied to practical problems.

#### UNIT I

Sets and Functions:Sets and elements- Operations on sets- functions- real valued functions-equivalence- countability - real numbers- least upper bounds.

Chapter 1 Section 1.1 to 1.7

#### UNIT II

Sequences of Real Numbers:Definition of a sequence and subsequence- limit of a sequenceconvergent sequences- divergent sequences- bounded sequences- monotone sequences-

Chapter 2 Section 2.1 to 2.6

#### UNIT III

Operations on convergent sequences- operations on divergent sequences- limit superior and limit inferior- Cauchy sequences. Chapter 2 Section 2.7 to 2.10

#### UNIT IV

Series of Real Numbers: Convergence and divergence- series with non-negative termsalternating series- conditional convergence and absolute convergence- tests for absolute convergence- series whose terms form a non-increasing sequence- the class  $l^2$ Chapter 3 Section 3.1 to 3.4, 3.6, 3.7 and 3.10

#### UNIT V

Limits and Metric Spaces:Limit of a function on a real line-. Metric spaces - Limits in metric spaces.

Continuous Functions on Metric Spaces: Function continuous at a point on the real line-Reformulation-Function continuous on a metric space.

Chapter 4 Section 4.1 to 4.3 Chapter 5 Section 5.1-5.3

#### **UNIVERSITY OF MADRAS** B.Sc. DEGREE COURSE IN MATHEMATICS SYLLABUS WITH EFFECT FROM 2020-2021

#### Contents and Treatment as in

"Methods of Real Analysis" : Richard R. Goldberg (Oxford and IBH Publishing Co.).

#### **Reference**:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostol, Narosa Publishing House.

#### e-Resources:

- 1. <u>https://mathcs.org/analysis/reals/numseq/sequence.html</u>.
- 2. http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/index.html
- 3. http://www.phengkimving.com.

# SETS AND FUNCTIONS

#### 1.1. SETS AND FUNCTIONS.

#### 1.SET

A set is a collection of well-defined object. Notation: sets are usually denoted by capital letter A, B, C...

The elements of a set is denoted by  $a, b, c \dots$ 

#### 2. Subset and Super set

We say that A is a subset of B if  $x \in A \Rightarrow x \in B$ . Notation:  $A \subseteq B$ Note: Here B is called super set A. [Or]  $B \supseteq A$  i.e., B contains A.

#### 3. Proper subset

A is said to be proper subset of B, If (1) A  $\subset$  B (2) A  $\neq$  B

#### 4. Equality of sets

Two sets A and B are said to be equal (i.e., A = B) if f They contains the same elements.

i.e.,  $A=B \iff if x \in A \iff x \in B$ 

i.e., A=B iff (1). A  $\subseteq$ B (2) B  $\subseteq$  A.

#### 5. Power set

The set of all subset of a set A is called the power set of A.

Notation: Power set of A = P(A)

Example: Let  $A = \{1, 2, 3\}$ 

The  $P(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ 

The number of elts in  $P(A)=2^n$ . if n(A)=n

#### 6. Define mapping (OR) function.

A mapping f: A  $\rightarrow$  B is a rule which associate every elements of A,

There exists a unique elt y in B,s.t f(x)=y.

#### Results

R1. The Range of f = f(B) = Image of A under

 $f = \{ y \in \mathbf{B}/y = f(x) \ \forall x \in \mathbf{A} \}$ 

R2. A is called domain set

R3. B is called co-domain.

R4. f is said to be a map if every element as unique image.

#### 7. Define onto map.[OR] Surjection map

We say that f is onto map, if for every elt  $y \in B$ ,  $\exists x \in A$ . such that y = f(x).

[OR]

f is onto map if f(A) = B

(i.e., Range of f - f(A) = B)

f is onto if every elts of B, there is a pre image in A.

#### 8. Constant mapping [OR] many one map

A mapping  $f: A \rightarrow B$  is said to be many one function,

If every element in A is mapped into one element in B.

i.e.,  $\forall x \in A$ ,  $\exists$  unique  $y \in B$ , s.t y = f(x).

#### 9. One-One map:[OR] Injection map

A mapping  $f: A \rightarrow B$  is said to be 1-1 map,

If different elt of A have different image in B.

[if  $a \neq b$  then  $f(a) \neq f(b)$ ]

[OR]

Equal image in B have equal elt in A. [ if f(a) = f(b) then a = b]

#### 10. Define 1-1 Correspondence [OR] Bijection map

A mapping  $f: A \rightarrow B$  is said to be 1-1 correspondence, If f is 1-1 and onto.

#### 11. Define composition of mapping

Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$ , then g of:  $A \rightarrow C$ 

#### 12. Define characteristic function

[A15 N13

Let A 
$$\subset$$
 B then the function  $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ 

Is called characteristic function of A.

Properties. if A, B  $\subseteq$  S. P1.  $\chi_{A \cup B}(x) = \max(\chi_A, \chi_B)$  P.T--A13 P2.  $\chi_{A \cap B}(x) = \min(\chi_A, \chi_B)$ 

- P3.  $\chi_{A-B}(x) = -\chi_A(x) \chi_B(x)$
- P4.  $\chi_{A'}(x) = 1 \chi_A(x)$ .
- P5.  $\chi_{\phi}(x) = 0$ . [Define char fun of empty set-A15]
- P6.  $\chi_s(x) = 1$ .

#### 13.Define the real valued function

A mapping f is said to be real valued function

If the range of f is a subset of R.

Example 1. Let  $f: A \rightarrow R$  is real valued function,

Example2. Let  $f: A \rightarrow C$  is complex valued function.

Let  $f: A \rightarrow R$  and  $g: A \rightarrow R$  be two real valued function, then

1. 
$$(f+g)(x) = f(x) + g(x)$$

2. 
$$(fg)(x) = f(x).g(x)$$

- 3. (f/g)(x) = f(x)/g(x) for  $g(x) \neq 0$ .
- 4.  $\max(f, g) = \max(f(x), g(x))$
- 5.  $\min(f, g) = \min(f(x), g(x))$ .

6. Max 
$$(a, b) = \frac{(a+b) + |a-b|}{2};$$

$$\operatorname{Min}(a, b) = \frac{(a+b) - |a-b|}{2} \text{ true for } a = f \text{ and } b = g.$$

Theorem:1

If f is a function  $f: A \to B$  and X,  $Y \subseteq B$ . Then  $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$ [OR] **P.T** the inverse image of union of two sets = the union of their inverse image.

Proof: Let 'a' be an arbitrary element of  $f^{-1}(X \cup Y)$ i.e.,  $a \in f^{-1}(X \cup Y) \Leftrightarrow f(a) \in X \cup Y$ .  $\Leftrightarrow f(a) \in X \text{ or } f(a) \in Y$   $\Leftrightarrow a \in f^{-1}(X) \text{ or } a \in f^{-1}(Y)$ i.e.,  $a \in f^{-1}(X \cup Y) \Leftrightarrow a \in f^{-1}(X) \cup f^{-1}(Y)$ Hence  $f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$  and  $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$ .  $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$ .

Theorem: 2

Let  $f: A \to B$ , X, Y subset of A, Then  $f(X \cup Y) = f(X) \cup f(Y)$ . [OR]

**P.T the image of union of two sets is the union of their images.** Proof: Let b be any arbitrary elt in  $f(X \cup Y)$ , Then  $\exists a \text{ in } X \cup Y$ . s.t f(a) = b.

Since  $a \in X \cup Y$ .  $\Rightarrow f(a) \in f(X)$  or  $f(a) \in f(Y) \Rightarrow f(a) \in f(X) \cup f(Y)$ .  $\therefore \qquad f(X \cup Y) \subseteq f(X) \cup f(Y) \qquad \dots (1.1)$ Similarly,  $f(X) \cup f(Y) \subseteq f(X \cup Y) \qquad \dots (1.2)$ From (1.1) & (1.2)  $f(X \cup Y) = f(X) \cup f(Y)$ Hence the proof. Theorem: 3

Let  $f: A \rightarrow B, X, Y \subseteq A$ , then  $f(X \cap Y) = f(X) \cap f(Y)$  is true?

Justify your answer.

#### **Proof:**

This is not equal

For example. Let  $X = \{0, -1, -2, -3 \dots\}$  and

 $\mathbf{Y} = \{0, 1, 2, 3, \dots\}$ 

Let  $f: A \rightarrow B$  is defined by  $f(x) = x^2$ 

Here

$$X \cap Y = \{0\} \Longrightarrow f(X \cap Y) = \{0\} \qquad \dots (1.3)$$

But

$$f(X) = \{0, 1, 2, 3, ....\} \text{ and}$$

$$f(Y) = \{0, 1, 2, 3, ....\}$$

$$f(X) \cap f(Y) = \{0, 1, 2, 3 ....\}$$

$$\dots (1.4)$$
From (1.3) & (1.4) f(X \cap Y) \neq f(X) \cap f(Y)

Hence the proof.

#### **PROBLEMS BASED ON FUNCTIONS**

Problem 1.1 Consider the function defined by f(x) = sin x,
-∞ < x < ∞</p>
(i) What is range of f?
(ii) Find the domain of f?

(iii) what is the image of  $\frac{\pi}{2}$  under f.

(iv) Find 
$$f^{-1}(1)$$
  
(v) Find  $f\left(\left[0,\frac{\pi}{6}\right]\right)$ ,  $f\left(\left[\frac{\pi}{6},\frac{\pi}{2}\right]\right)$   
(vi) Let  $A = \left[0,\frac{\pi}{6}\right]$ ,  $B = \left[\frac{5\pi}{6},\pi\right]$  Does  $f(A \cap B) = f(A) \cap f(B)$ ?

#### ©Solution:

- (i). The range of f is [0, 1] (since  $\sin(0) = 0$  and  $\sin \frac{\pi}{2} = 1$ )
- (ii) The domain of f is  $\mathbf{R} = (-\infty, \infty)$  is a real line.
- (iii)  $f(\frac{\pi}{2}) = \sin(\frac{\pi}{2}) = 1.$ (iv)  $f^{-1}(1) = \frac{\pi}{2}.$ (v)  $f\left(\left[0, \frac{\pi}{6}\right]\right) = [\sin 0, \sin \frac{\pi}{6}] = [0, \frac{1}{2}]$ (vi) Given  $A = \begin{bmatrix}0, \frac{\pi}{6}\end{bmatrix}, B = \begin{bmatrix}\frac{5\pi}{6}, \pi\end{bmatrix}$ Then  $A \cap B = \{0\} \Rightarrow f(A \cap B) = \sin 0 = 0 \dots (1.5)$   $f(A) = f\left(\left[0, \frac{\pi}{6}\right]\right) = [\sin 0, \sin \frac{\pi}{6}] = [0, \frac{1}{2}]$   $f(B) = f\left(\left[\frac{5\pi}{6}, \pi\right]\right) = [\sin \frac{5\pi}{6}, \sin \pi]$  = [1/2, 0] = [0, 1/2]  $f(A) \cap f(B) = [0, 1/2] \dots (1.6)$ From (1.5) &(1.6)  $\Rightarrow f(A \cap B) \neq f(A) \cap f(B)$ ?

**Problem 1.2** Let  $f(x) = x^2$ ,  $-\infty < x < \infty$ (i) What is the domain of f. (ii) What is the range of f. (iii) Find the image of 2 under f. (*iv*) Find  $f^{-1}(16)$ (v) Find  $f^{-1}(-7)$ ? (vi) Find f [0, 3] ©Solution: (i) The domain of f is  $\mathbf{R} = (-\infty, \infty)$  is a real line. (ii) The range of f is  $[0, \infty]$ . (iii)  $f(2) = 2^2 = 4$ (iv)  $f^{-1}(16) = 4$ (v)  $f^{-1}(-7)$  there is no number -7 in  $[0, \infty)$ . (vi)  $f[0, 3] = [0^2, 3^2] = [0,9]$ . **Problem 1.3** If  $f(x) = \arcsin x$ ,  $-1 \le x \le 1$ .  $g(x) = tan x, -\infty < x < \infty$ Then  $h = g \circ f$ . Write a simple formula for h?

#### What are the domain of domain and the range of h?

#### ©Solution:

Given 
$$f(x) = \sin^{-1} x$$
,  $-1 \le x \le 1$ .  
 $g(x) = \tan x$ ,  $-\infty < x < \infty$   
Then  $h(x) = (g \circ f)(x) = g(f(x)) = g(\sin^{-1}(x)) = \tan(\sin^{-1}(x))$   
1. The domain of  $h$  is  $-1 \le x \le 1 = [-1,1]$ 

2. The range of h is  $[\tan(\sin^{-1}(-1), \tan(\sin^{-1}(1))]$ 

$$= [\tan(-\frac{\pi}{2}), \tan(\sin^{-1}(1))] = [-\infty, \infty]$$

**Problem 1.4** If 
$$f(x) = 1 + \sin x$$
,  $-\infty < x < \infty$   
 $g(x) = x^2$ , find gof and fog?

©Solution:

(1) 
$$(gof)(x) = g(f(x)) = g(1 + \sin x) = (1 + \sin x)^2$$
.

(2)  $(fog)(x) = f(g(x)) = f(x^2) = 1 + \sin(x^2)$ .

Hint composition of a mapping is not commutative. i.e.,  $(fog) \neq$ (gof).

**Problem 1.5** Let f(x) = 2x,  $-\infty < x < \infty$  can you think of function goh which satisfy the two equations gof = 2gh and hof = $h^2 - g^2?$ 

©Solution:

Given 
$$f(x) = 2x, -\infty < x < \infty$$
  
 $gof = 2gh$  ... (1.7)  
 $hof = h^2 - g^2$  ... (1.8)  
 $(gof)(x) = (2gh)(x)$ 

$$\Rightarrow \qquad g(f(x)) = 2g(x) h(x)$$
$$\Rightarrow \qquad g(2x) = 2g(x) h(x)$$

$$\Rightarrow \qquad g(2x) = 2g(x)h(x)$$

$$\Rightarrow \qquad 2g(x) = 2g(x) h(x)$$

$$h(x) = I(x) [\text{Multiply } g^{-1}] \qquad \dots (1.9)$$
Also,
$$(hof) (x) = (h^2 - g^2) (x)$$

 $h(f(x)) = h^2(x) - g^2(x)$  $\Rightarrow$ 

$$\Rightarrow \qquad h(2x) = h^2(x) - g^2(x)$$
$$\Rightarrow \qquad 2h(x) = h^2(x) - g^2(x)$$

$$\Rightarrow \qquad 2n(x) - n(x) - g(x)$$

Sub h = I, we get,  $2I(x) = I^{2}(x) - g^{2}(x)$ 

. (1.10)

Hence g & h are not satisfied the given equations (1.7) & (1.81.8).

**Problem 1.6** Let f(x) = 2x,  $-\infty < x < \infty$ . Find two functions g & h which satisfy the two equations gof = 2g h and  $hof = h^2 - g^2$ ? Solution:

Given 
$$f(x) = 2x$$
,  $-\infty < x < \infty$ .  
 $gof = 2gh$  ...

$$hof = h^2 - g^2 \dots (1.11)$$

Let  $g(x) = \sin h(x) = \cos x$ 

Sub in  $(1.10) \Rightarrow (gof)(x) = (2gh)(x)$ g(f(x)) = 2g(x)h(x) $\Rightarrow$ g(2x) = 2g(x) h(x) $\Rightarrow$  $\sin 2x = 2.\sin x.\cos x$  is true. .... (1.12)  $\Rightarrow$  $(hof)(x) = (h^2 - g^2)(x)$ Also,  $h(f(x)) = h^2(x) - g^2(x)$  $\Rightarrow$  $h(2x) = h^2(x) - g^2(x)$  $\Rightarrow$  $\cos 2x = \cos^2 x - \sin^2 x$  is true .... (1.13)  $\Rightarrow$ 

Hence Let  $g(x) = \sin h(x) = \cos x$  are satisfies the given two equations (1.10) & (1.11).

**Problem 1.7** If f is a function  $f: A \rightarrow B$  & is the characteristic of  $E \subset B$  of what subset of A is of the characteristic function .Ans:  $f^{-1}(E)$ .

**Problem 1.8** If A and B are subsets of S then -A13. Prove that (i)  $(A \cup B)' = A' \cap B'$ . and (ii)  $(A \cap B)' = A' \cup B'$  [De Morgans' Laws]

Problem 1.9Define functions f + g if  $f: A \rightarrow R \& g: A$  $\rightarrow R. [A16]$ Problem 1.10Give an example of onto functions. A15Problem 1.11When do you say that the functions f is 1-1.A16Problem 1.12When are the two functions f & g are equals.A13Problem 1.13P.T  $f(x) = \cos x, 0 \le x \le \pi, \text{ is } 1\text{-}1\text{-}N14.$ Problem 1.14if  $f(x) = x^2, -\infty < x < \infty$ , find (i)  $f^{-1}(-8)$  -A13 (ii)  $f^{-1}(4)$  -N13.

#### 1.2. COUNTABLE SETS.

#### 1. Define Countable set (Denumerable set). Give an example.

A set A is said to be countable set,

if A is equivalent to set I (the set of all +ve integers)

Ex1. Z-The set of all integer is countable.

Ex2. Q-The set of all rational number is countable.

Note. Equivalent of two sets is there is a 1-1 correspondence between them.

| 2. | Define uncountable set. Give an Example?                              |
|----|-----------------------------------------------------------------------|
|    | A set which is not countable is called uncountable.                   |
|    | Ex1.R-the set of all real number is uncountable                       |
|    | Ex2.The set [0, 1] is uncountable                                     |
|    | Ex3.Q <sup>+</sup> : The set of all irrational number is uncountable. |
| •  |                                                                       |

#### 3. Define cantor set, give an example?

[A

#### N13,14

The cantor set K is the set of all numbers [0, 1] which have a ternary expansion without digit one.

Note: The cantor set K is uncountable. [N13]

#### 4. Explain the construction of Cantor set?

The Cantor set K is obtained in the following way:

Step1.From [0.1] remove the open middle third leaving  $\left| 0, \frac{1}{3} \right|$ 

and 
$$\left[\frac{1}{3}, \frac{2}{3}\right]$$

Step2.From each of  $\begin{bmatrix} 0, \frac{1}{3} \end{bmatrix}$  and  $\begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix}$  remove the open middle third leaving  $\begin{bmatrix} 0, \frac{1}{9} \end{bmatrix}, \begin{bmatrix} \frac{2}{9}, \frac{3}{9} \end{bmatrix}, \begin{bmatrix} \frac{6}{9}, \frac{7}{9} \end{bmatrix} \begin{bmatrix} \frac{8}{9}, \frac{9}{9} \end{bmatrix}$ 

Proceeding s in this way after the nth steps the open middle third is removed from each of  $2^{n-1}$  intervals is of length  $3^{-n+1}$ .

The Total lengths removed at the nth step is  $2^{n-1}$ .  $\frac{1}{3} 3^{-n+1} = \frac{2^{n-1}}{3^n}$ .

Then there remains  $2^n$  intervals each of length  $3^{-n}$  is clear that what remains of [0, 1] after this process is continued and infinitely is the set K.

P1. Is the Cantor set is countable? N13. Ans no, it is uncountable.

#### Thereom:1

P.T. the set of all integer is countable.

**Proof:** 

Let Z be the set of all integer.

i.e., 
$$Z = \{\dots -3, -2, -1, 0, 1, 2, 3 \dots\}$$
  
We define  $f: N \rightarrow Z$  [Here  $N = I = \{1, 2, 3 \dots\}$ 

By 
$$f(n) = \begin{cases} \frac{n-1}{2} & \text{if } n = 1,3,5... \\ -\frac{n}{2} & \text{if } n = 2,4,6.... \end{cases}$$

Clearly f is 1-1 & onto

∴ N & Z are equivalent sets

Hence, Z – The set of all integer is countable

#### Theorem: 2

Prove that Countable union of countable set is countable.

[OR]

If A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> are countable sets, Then  $\bigcup_{n=1}^{\infty} A_n$  is countable.

**Proof:** 

Since  $A_1, A_2, \ldots, A_n$  are the countable sets.

We can write  $A_1 = \{a_{11}, a_{12}, a_{13}, ...\}$   $A_2 = \{a_{21}, a_{22}, a_{23}, ...\}$   $A_3 = \{a_{31}, a_{32}, a_{33}, ...\}$  $A_n = \{a_{n1}, a_{n2}, a_{n3}, ...\}$ 

We define height of  $a_{ij} = i + j$ 

We can arrange the elements of  $\bigcup_{n=1}^{\infty} A_n$  according to the elts height

as follows.

$$a_{11}$$
: of height 2.  
 $a_{12}, a_{21}$ : of height 3.  
 $a_{13}, a_{22}, a_{31}$ : of height 4.

Omitting the element a<sub>ij</sub> which have been already counted.

 $a_{11}$  $a_{12}$  $a_{13}$  $a_{14}$  .....  $a_{21}$  $a_{22}$ *a*<sub>23</sub>  $a_{24}$  .....  $a_{31}$  $a_{32}$ *a*<sub>33</sub> *a*<sub>34</sub>..... *a*<sub>44</sub> .....  $a_{41}$  $a_{42}$  $a_{43}$ Hence  $\bigcup_{n=1}^{\infty} A_n$  is countable.

a

#### Theorem: 3

P.T the set of all rational number is countable.

**Proof:** 

Let 
$$A_n = \{\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots\}$$
 for  $n = 1, 2, 3, \dots$ 

1.15

 $A_n = Q^+$  (The set of all +ve rational number)

Clearly each  $A_n$  is countable.

$$\therefore \mathbf{Q}^+ = \bigcup_{n=1}^{\infty} A_n$$
 is countable.

Similarly,  $Q^-$  = The set of all negative rational number is countable.

 $\Rightarrow Q = Q^+ \bigcup Q^- \bigcup \{0\}$  is countable.

Hence Q = The set of all rational number is countable.

#### Theorem: 4

Prove that the set  $[0,1] = \{x: 0 \le x \le 1\}$  is uncountable.

N13

[A15,16

#### Proof:

Let us assume that [0,1] is countable.

Then  $[0, 1] = \{x_1, x_2, x_3, \ldots\}$ 

Where each number in [0, 1] occurs among any  $x_i$ 's.

We write each  $x_i$  has an infinite decimals as follows

 $x_1 = 0.a_{11}a_{12}a_{13}\ldots$ 

 $x_2 = 0.a_{21}a_{22}a_{23}...$ 

 $x_3 = 0.a_{31}a_{32}a_{33}\ldots$ 

•••••

 $x_n = 0.a_{n1}a_{n2}a_{n3}\ldots$ 

Let  $b_1$  be any integer from 0 to 8, Such that,  $b_1 \neq a_{11}$ 

Let  $b_2$  be any integer from 0 to 8, Such that,  $b_2 \neq a_{22}$ 

Let  $b_3$  be any integer from 0 to 8, Such that,  $b_3 \neq a_{33}$ 

. . . . . . . .

Let  $b_n$  be any integer from 0 to 8, Such that,  $b_n \neq a_{nn}$ 

In general, for each n = 1, 2, 3...

Let  $y = 0.b_1 b_2 b_3....$ 

Then for any *n* 

The decimal expansion of *y* defer from the decimal expansion of  $x_n$  [::  $b_n \neq a_{nn}$ ]

Also, y is unique, (since nor  $b_n=9$ )

Hence  $y \neq x_n \forall n$ . &  $(0 \le y \le 1)$ 

Which is a contradiction

Hence the set [0, 1] is uncountable.

#### Theorem: 5

P.T the set of all real number R is uncountable. [A14]

#### **Proof:**

[For 10 marks write above]

We know that every subset of countable set is countable.

Suppose R is countable set.

Then [0, 1] which is a subset of R must also a countable set.

which is a contradiction to the set [0,1] is uncountable.

Hence R is uncountable.

#### Theorem: 6

P.T the set of all irrational number is uncountable.

**Proof:** 

Since R-the set of real number is uncountable.

Also, Q = The set of rational number is countable.

 $\therefore$  R – Q = The set of all irrational number is uncountable.

#### 1.3. UPPER BOUND AND LOWER BOUND.

#### 1. Define upper bound and lower bound of a set.

Upper bound:

A subset  $A \subset R$  is said to be bounded above,

If  $\exists$  a number  $M \in \mathbb{R}$ , s.t  $x \leq M$ ,  $\forall x \in \mathbb{A}$ .

Then M is called upper bound of A.

Lower bound:

A subset  $A \subset R$  is said to be bounded below,

If  $\exists$  a number  $L \in \mathbb{R}$ , s.t  $x \ge L$ ,  $\forall x \in \mathbb{A}$ .

Then L is called lower bound of A.

#### 2. Define least upper bound. [l.u.b or supremum]

The number M is called the l.u.b for A (or) supremum of A.

If (1) M is an upper bound for A.

(2) <u>No number less than M</u> is an upper bound for A.

#### 3. Define greatest lower bound. [g.l.b or infimum]

The number L is called the g.l.b for A (or) infimum of A.

If (1) L is a lower bound for A.

(2) No number greater than L is an lower bound for A.

4. Define bounded set. [A16]

A subset  $A \subset R$  is said to be bounded,

If If  $\exists$  a numbers L & M  $\in$  R, s.t L  $\leq x \leq$  M,  $\forall x \in$  A. [OR]

A is bounded if it has bounded blow and bounded above.

Note: A subset which is not bounded is called unbounded set.

#### 5. State the least upper bound axiom.

Every non-empty subset A of R which is bounded above has a l.u.b in R.

#### 6. State the properties of Supremum and Infimum.

- (1)  $\operatorname{Sup} (A + B) = \operatorname{Sup}(a) + \operatorname{Sup}(B)$
- (2) Sup(kA) = k.Sup(A)
- (3) Sup(-A) = -inf(A).

Similarly, for infimum.

#### PROBLEMS BASED ON L.U.B AND G.L.B.

#### P1. For S = [0, 1] here l.u.b = 1 & g.l.b = 0.

**P2.** For S =  $\left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \ldots\right\}$  find l.u.b & g.l.b?

Solution:

For the set 
$$n$$
<sup>th</sup> term is  $s_n = \frac{2^n - 1}{2^n}$   
here  $a_n = \frac{2^n - 1}{2^n}$ , nth term

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2^n - 1}{2^n}$$
$$= \lim_{n \to \infty} \frac{2^n \left(1 - \frac{1}{2^n}\right)}{2^n} = (1 - 0)$$
$$\Rightarrow \lim_{n \to \infty} a_n = \frac{1}{2}$$

.

 $\therefore$  g.l.b of A=1/2 & l.u.b of A =1.

$$s_{\infty} = \frac{2^n \left(1 - \frac{1}{2^n}\right)}{2^n} = 1. \text{ And } g.l.b = s_1 = \frac{1}{2}$$

P3. Find g.l.b and l.u.b for the set N of all natural numbers.

#### Solution:

The set N of all natural number integers =  $\{,,,,-2, -1, 0, 1, 2, ...,\}$ Here glb = 1 and there is no lub. Since N is not bounded above.

#### P4. S = (7, 8) here lub is 8 and glb is 7.

But both are not a member of S.

- P5. Find lub and glb for the set {x in  $R/0 \le x \le 2$ }.Ans: glb = 0 and lub = 2.
- P6. Write a lower bound for the set

$$\left\{ \left(1+\frac{1}{n}\right)^n, n=1,2,3...or \ n \in N \right\}$$
 N15.

Solution:

glb= 2 and lub = e.

#### P7. Find lub and glb of the following sets

(i) {
$$\pi$$
 + 1,  $\pi$  + 2,  $\pi$  + 3,....} (ii) { $\pi$  + 1,  $\pi$  +  $\frac{1}{2}$ ,  $\pi$  +  $\frac{1}{3}$ ,....}

Solution:

(i) glb =  $\pi$  +1 and there is no lub [since it is not bounded above]

Glb =  $\pi$  +1 and lub =  $\pi$ . (since  $\frac{1}{\infty}$  =0)

## P8. Give an example of a countable subset of odd whose g.l.b & l.u.b are both in R – A?

Solution:

Let A = The set of all rational number in  $(\sqrt{2}, \sqrt{3})$ .

Here g.l.b of A =  $\sqrt{2}$  and l.u.b of A =  $\sqrt{3}$  both are in R – A.

#### P9. Find the g.l.b for the following set

**(b)**{
$$\pi$$
+1,  $\pi$ +2,  $\pi$ +3,....}

(c) { $\pi$ +1,  $\pi$ +1/2,  $\pi$  + 1/3.,,,}

Solution:

(a) Let A = (7,8); g.l.b of A = 7 & l.u.b of A = 8.

(b) Let A = {  $\pi + 1, \pi + 2, \pi + 3, \dots$  }

Here  $a_n = \pi + n$ ,  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\pi + n) = \infty$ 

 $\therefore$  g.l.b of A =  $\pi$  +1. But no l.u.b

(c) Let A={  $\pi$  +1,  $\pi$  +1/2,  $\pi$  +1/3.,,,,}

Here  $a_n = \pi + n$ ,  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\pi + \frac{1}{n}) = \pi$ .  $\therefore$  g.l.b of  $A = \pi$  & l.u.b of  $A = \pi + 1$ . For the singleton set {5} The g.l.b = l.u.b = 5. Let  $A = \{x/x \text{ is irrational } 1 < 1 + x^3 \le 3\}$ 

#### P10. Find I.u.b & g.l.b?

#### Solution:

Given  

$$A = \{x/x \text{ is irrational, } 1 < 1 + x^3 \le 3\}$$

$$= \{x/x \text{ is irrational, } 0 < x^3 \le 2\}$$
(subtract 1 on both side)

A = {
$$x/x$$
 is irrational,  $0 < x \le \sqrt[3]{3}$  }

- $\therefore$  g.l.b of A = 0 (not in the set) & l.u.b of A =  $\sqrt[3]{3}$ .
- : A is unbounded set.

A is bounded above, but not bounded below.

**P11.** Find g.l.b & l.u.b (a)  $\left\{1 - \frac{1}{n}, n \in N\right\}$  (b)  $\left\{\frac{3n+2}{2n+1}, n \in N\right\}$ 

(c)  $\{x/-5 < x < 3\}$  (d)  $\{x: x = (-1)^n n, n \in \mathbb{N}\}$  (e)  $\{x: x = 2^n, n \in \mathbb{N}\}$ 

[Note: N = The set of natural no/- =  $\{1, 2, 3, ....\}$ 

Solution:

(a) Let A= 
$$\left\{1 - \frac{1}{n}, n \in N\right\}$$
  
= {0, 1/2, 1/3, 1/4, .....(*n*-1)/*n*, ....}

Here  $a_n = \left(1 - \frac{1}{n}\right)$ ,  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = 1$ ∴ g.l.b of A =0 & l.u.b of A = 1. (b) Let  $A = \left\{\frac{3n+2}{2n+1}, n \in N\right\} = \left\{\frac{5}{3}, \frac{8}{5}, \frac{11}{7}, \dots, \frac{3n+2}{2n+1}, \dots, \frac{3}{2}\right\}$ Here  $a_n = \left(\frac{3n+2}{2n+1}\right)$ ,  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{3n+2}{2n+1}\right) = \lim_{n \to \infty} \frac{n}{n} \left(\frac{3+\frac{2}{n}}{2+\frac{1}{n}}\right) = \frac{3}{2}$ ∴ g.l.b of  $A = \frac{3}{2}$  & l.u.b of  $A = \frac{5}{3}$ . (c) Let  $A = \{x/-5 < x < 3\}, \therefore$  g.l.b of A = -5 & l.u.b of A = 3. (d) Let  $A = \{x: x = (-1)^n n, n \in \mathbb{N}\} = \{-1, 2, -3, 4, -5, \dots, \}$   $= \{-5, -3, -1, 2, 4, 6, \dots, \}$ ∴ g.l.b of A = -5 & l.u.b of A does not exists Hence A is unbounded set. (e) Let  $A = \{x: x = 2^n, n \in \mathbb{N}\} = \{2, 2^2, 2^3, \dots, \}$ ∴ g.l.b of A = 2 & l.u.b of A does not exists.

Hence A is unbounded set.

### SEQUENCE OF REAL NUMBERS

#### 2.1. SEQUENCE OF REAL NUMBERS

#### 1. Define sequence

A sequence  $S = \{s_n\}_{n=1}$  of real numbers is a function from I into R.

#### 2. Define subsequence

A sequence is said to be a subsequence of S, if it contains least one less than S.

Example 1: Let  $S = \{n\}_{n=1} = \{1, 2, 3, ....\}$  is a sequence Also,  $S' = \{n+1\}_{n=1} = \{2, 3, 4, 5, ....\}$  is a subsequence of S. And  $S' = \{2n\}_{n=1} = \{2, 4, 6, ....\}$  is a subsequence of S.

#### 3. Define limit of a sequence

Let  $\{s_n\}_{n=1}$  be a sequence of real numbers.

We say that  $s_n$  approaches to the limit L as n approaches to  $\infty$ .

If  $\forall \in > 0$ ,  $\exists a + ve \text{ integer N}$ , Solve that  $|s_n - L| < \in, \forall n \ge N$ ,

[OR]

 $\lim_{n\to\infty}s_n=\mathrm{L}.$ 

#### 4. Define convergent sequence

A sequence of real number  $\{s_n\}_{n=1}$  is said to convergent to L, If the sequence  $\{s_n\}_{n=1}$  has a limit L.

[OR]

 $\lim_{n \to \infty} s_n = L$  exists finitely.

Example 1: The sequence  $\{1, 1, 1, \ldots\}$  changes to 1.

Example 2: The sequence  $\{1, 1/2, 1/3....\}$  changes to 0

(Since  $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1}{n} = 0$ )

#### 5. Define divergent sequence

A sequence of real numbers  $\{s_n\}_{n=1}$  is said to be divergent,

If the sequence.  $\{s_n\}_{n=1}$  does not have a limit.

i.e.,  $\lim_{n \to \infty} s_n \neq L.$  (not finite).

Example 1: The sequence  $\{n\}_{n=1}$  is diverges.

Since  $\lim_{n\to\infty} s_n = \lim_{n\to\infty} n = \infty$ .

#### 6. Define divergent to minus infinity

Define divergent to minus infinity. [OR] Converges to minus infinite.

A sequence of real number  $- \{s_n\}_{n=1}$  is said to be divergent to infinite.

If for all real number- M > 0,  $\exists a + ve integer N$ ,

Solve that  $s_n \leq -M, \forall n \geq N$ .

[OR]

$$\lim_{n \to \infty} s_n = -\infty.$$
  
Example 1: The sequence  $\left\{ \log \frac{1}{n} \right\}_{n=1}$  diverges to  $-\infty$ .

#### 7. Define oscillating sequence of real numbers

A sequence sequence  $\{s_n\}$  of real numbers is said to be oscillating sequence.

If the sequence  $\{s_n\}$  diverges but not diverges to  $\infty$  and  $-\infty$ .

Example 1: The sequence  $\{(-1)^n\}_{n=1}$  is not diverges to both  $\infty$  and  $-\infty$ .

#### 8. Define bounded sequence

A sequence  $\{s_n\}_{n=1}$  is said to be bounded sequence

if  $\exists a \in \mathbb{R}$ , solve that  $|s_n| < M$ ,  $\forall n \in \mathbb{I}$ .

[OR]

We say that the sequence  $\{s_n\}$  is said to be bounded sequence, if it is both bounded above and below.

#### Note:

- (i) We say that the sequence  $\{s_n\}$  is said to be bounded above, if the range of  $\{s_n\}$  is bounded above.
- (ii) Similarly, We say that the sequence  $\{s_n\}$  is said to be bounded below, if the range of  $\{s_n\}$  is bounded below.

#### **Examples**

Example 1: The oscillating sequence  $\{(-1)^n\}$  is bounded. [Since its range set is  $\{-1, 1\}$ ]

Example 2: The sequence  $\{1, 2, 1, 3, 1, 4...\}$  is an oscillating sequence is not bounded sequence.

[Since it is bounded below by 1, but it has not bounded above.]

#### 9. Define Monotone sequence

Let  $\{s_n\}_{n=1}$  be a sequence of real number

If  $s_1 \le s_2 \le s_3 \le ... \le s_n \le s_{n+1} \le ...$ 

Then  $\{s_n\}_{n=1}$  is called non-decreasing sequence.

If  $s_1 \ge s_2 \ge \dots \le s_n \ge s_{n+1} \ge \dots$ 

Then  $\{s_n\}_{n=1}$  is called non-increasing sequence.

A monotone sequence is a sequence which is either nondecreasing or non-increasing

#### 10. Define limit superior of a sequence {*s<sub>n</sub>*} of all real numbers.

Let  $\{s_n\}_{n=1}$  be a sequence of real number – that is bounded above.

Let  $M_n = l.u.b \{s_n, s_{n+1}, s_{n+2}, \dots\}$ If  $\{M_n\}_{n=1}$  is convergent, then  $\lim_{n \to \infty} \text{Sup } s_n = \lim_{n \to \infty} M_n$ If  $\{M_n\}_{n=1}$  is divergent to  $-\infty$ , then  $\lim_{n \to \infty} \text{Sup } s_n = \infty$ .

#### 11. Define limit Inferior of a sequence $\{s_n\}$ of all real numbers.

Let  $\{s_n\}_{n=1}$  be a sequence of real number- that is bounded below, Let  $m_n = \text{g.l.b} \{s_n, s_{n+1}, s_{n+2}, \dots\}$ (a) If  $\{m_n\}_{n=1}$  is convergent, then  $\lim_{n \to \infty} \inf s_n = \lim_{n \to \infty} m_n$ (b) If  $\{m_n\}_{n=1}$  is divergent to  $\infty$ , then  $\lim_{n \to \infty} \inf s_n = .= \infty$ 

#### 12. Define Cauchy sequence

Let  $\{s_n\}_{n=1}$  be sequence of real number- is Cauchy sequence,

If Given  $\in > 0$ ,  $\exists a + ve integer N$ ,

solve that  $|s_m - s_n| < \in, \forall m, n \ge N$ ,

Example 1: The sequence  $\{1/n\}_{n=1}$  is a Cauchy sequence.

#### Most Important Results in real analysis

**Result 1:** A non-decreasing sequence which is bounded above is convergent.

**Result 2**: A non-increasing sequence which is bounded below is convergent.

**Result 3:** The sequence 
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}$$
 is converges to *e*.

**Result 4:** prove that every subsequence of a convergent sequence converges to the same limit.

**Result 5:** (a) If 0 < x < 1, then the sequence  $\{x^n\}$  converges to 0.

(b) If  $x \ge 1$ , then the sequence  $\{x^n\}$  diverges to infinity.

#### **Example:**

(i) For x = 1/2, the sequence  $\{x^n\}, \lim_{n \to \infty} \frac{1}{2^n} = 0$ .

(ii) For x = 3, The sequence  $\{x^n\}$ ,  $\lim_{n \to \infty} 3^n = \infty$ , it is divergent sequence.

#### 2.2. THEOREMS ON LIMITS

#### Theorem: 1

If  $\{s_n\}_{n=1}$  is a sequence of non-negative real number and if  $\lim_{n \to \infty} s_n = L$ , then  $L \ge 0$ . **Proof:** Given  $\lim_{n \to \infty} s_n = L$  .... (2.1) To prove that,  $L \ge 0$ Let us assume that L < 0. By definition, for consider  $\in = -\frac{L}{2}$   $\therefore |s_n - L| < \in, \forall n \ge N$ . .... (2.2) by (2.1)  $\Rightarrow \therefore |s_n - L| < -\frac{1}{2}, \forall n \ge N$ .  $\Rightarrow -\left(-\frac{L}{2}\right) < s_n - L < \left(-\frac{L}{2}\right), \forall n \ge N$ [Since  $|x| \le a \Longrightarrow -a \le x \le a$ ] Add L, on both sides,  $\frac{3L}{2} < s_n < \frac{L}{2}, \forall n \ge N$ . i.e.  $s_n < \frac{L}{2}, \forall n \ge N$ 

Which is a contradiction to  $\{s_n\}$  is non-negative sequence. Hence,  $L \ge 0$ .

Theorem: 2 (Uniqueness of limits)

#### **Proof:**

To prove that, if L and M are two limits of a convergent sequence  $\{s_n\}_{n=1}$ , then L = M.

We assume that  $L \neq M$ . Let |M - L| > 0,

Let 
$$\in = \frac{|M - L|}{2} > 0$$
 ... (2.3)  
Since  $\lim_{n \to \infty} s_n = L$ , and  $\lim_{n \to \infty} s_n = M$ ,  
 $\therefore \exists a +^{ve}$  integer N<sub>1</sub>, N<sub>2</sub>.  
Solve that  $|s_n - L| < \epsilon$ ,  $\forall n \ge N_1$  ... (2.4)  
 $|s_n - M| < \epsilon$ ,  $\forall n \ge N_2$  ... (2.5)  
Choose N = Max (N<sub>1</sub>, N<sub>2</sub>)  
Then,  
 $|M - L| = |(s_n - L) + (s_n - M)| \le |s_n - L| + |s_n - M| < \epsilon + \epsilon = 2 \epsilon$   
i.e.,  $|M - L| < 2 \epsilon$   
i.e.,  $|M - L| < |M - L|$  by (2.3) – which is a contradiction.

Hence the limit of the sequence is unique.

 $\Rightarrow$  L = M.

#### Theorem: 3

If the sequence  $\{s_n\}_{n=1}$  converges to L, then prove that every subsequence of  $\{s_n\}_{n=1}$  is also converges to L.

[OR]

Prove that every subsequence of a convergent sequence converges to the same limit.

#### Proof

Let  $\{s_n\}_{n=1}$  be a convergent sequence, then  $\lim_{n \to \infty} s_n = L$ . Let  $\{s_n\}_{i=1}$  be a subsequence of  $\{s_n\}_{n=1}$ Since  $\lim_{n \to \infty} s_n = L$ . By definition, given  $\in > 0$ ,  $\exists a + ve$  integer N, solve that  $|s_n - L| < \in$ ,  $\forall n \ge N$ ,  $\Rightarrow |s_{ni} - L| < \in$ ,  $\forall n_i \ge N$ ,  $\Rightarrow \lim_{n \to \infty} s_{ni} = L$ .

Hence every subsequence of  $\{s_n\}$  is also converges to L.

#### Theorem: 4

Prove that every convergent sequence is bounded.

#### **Proof:**

Let  $\{s_n\}_{n=1}$  be a convergent sequence then  $\lim_{n \to \infty} s_n = L$ . By definition, given  $\in = 1$ ,  $\exists$  a N  $\in$  I, Solve that  $|s_n - L| < \in$ ,  $\forall n \ge N$ , Now  $|s_n| = |(s_n - L) + L| \le |s_n - L| + |L| \forall n \ge N$ ,  $\Rightarrow |s_n| \le 1 + |L|, \ \forall \ n \ge N,$ 

Choose M = Max {  $|s_1|, |s_2|, |s_3|, ..., |s_{n-1}|$  }

 $\therefore |s_n| \le M$ ,  $\forall n \ge N$ ,  $\{s_n\}_{n=1}$  is bounded. Hence the proof,

**Result:** Bounded sequence need not be convergent.

Example: Consider the sequence  $\{1, -1, 1, -1, \ldots\}$  it is a bounded sequence, with rang set  $\{-1, 1\}$ .But it is a oscillating sequence.

#### THEOREMS ON MONOTONIC SEQUENCE

#### Theorem: 5

Prove that a non-decreasing sequence which is bounded above is convergent. Give an example.

#### **Proof:**

Let  $\{s_n\}$  be a non-decreasing sequence which is bounded above.

Let A = { $s_1$ ,  $s_2$ ,  $s_3$ . ,,,,,} is a non-empty set which is bounded above.

.:. A has l.u.b say M (by axiom of l.u.b} i.e.,  $M = l.u.b \{s_1, s_2, s_3,...,\}$ 

To prove that  $\lim_{n \to \infty} s_{ni} = \mathbf{M}$ .

By definition of l.u.b

Given  $\in > 0$ 

 $M - \in$  is not an u.b for A.

 $\therefore$  There exists an integer N > 0, solve that  $\underline{s_n} > M - \in \dots (2.7)$ 

Since  $s_n$  is a non-decreasing sequence

... (2.6)

 $(2.7) \Rightarrow s_n > M - \epsilon, \forall n \ge N \qquad \dots (2.8)$ Since M is an u.b for A.  $S_n < M + \epsilon \forall n = 1, 2, 3... \qquad \dots (2.9)$  $\therefore From (2.8) \& (2.9)$  $M - \epsilon < s_n < M + \epsilon, \forall n \ge N,$ Sub M,  $-\epsilon < s_n - M < \epsilon, \forall n \ge N,$  $\Rightarrow |s_n - M| < \epsilon, \forall n \ge N,$  $\therefore \lim_{in \to \infty} s_{ni} = M.$ 

Hence a non-decreasing sequence which is bounded above is convergent.

#### Theorem: 6

Prove that a non-increasing sequence of real number which is bounded below is convergent.

#### **Proof:**

Let  $\{s_n\}$  be a non-increasing sequence which is bounded below.

Let A =  $\{s_1, s_2, s_{3,...,}\}$  is a non-empty set which is bounded below.

 $\therefore \text{ A has g.l.b say L [By axiom of g.l.b]}$ i.e., L = g.l.b {s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>,,,} To prove that  $\lim_{in \to \infty} s_{ni} = \text{L}.$ 

By definition of g.l.b

Given  $\in > 0, L + \in$  is not an l.b for A.

 $\therefore$  There exists an integer N > 0, solve that  $s_n < L + \in . ... (2.11)$ 

Since  $s_n$  is a non-increasing sequence  $(2.11) \Rightarrow s_n < L + \in, \forall n \ge N$  ... (2.12) Since L is an l.b for A.  $S_n > L - \in \forall n = 1, 2, 3...$  ... (2.13)  $\therefore$  From (2.12) and (2.13)  $L - \in \langle s_n < L + \in, \forall n \ge N,$ Sub L,  $- \in \langle s_n - L < \in, \forall n \ge N,$   $\Rightarrow |s_n - L| < \in, \forall n \ge N,$  $\therefore \lim_{in \to \infty} s_{ni} = L.$ 

Hence a non-increasing sequence which is bounded below is convergent.

#### Theorem: 7

Prove that a non-decreasing sequence which is not bounded above is divergent to infinity.

#### **Proof:**

Let  $\{s_n\}$  be a non-decreasing sequence which is not bounded above.

Given M > 0. We can find N  $\in$  I, solve that  $s_n > M$ ,  $\forall n \ge N,...$  (2.14)

Since M is not an upper bound for the sequence  $\{s_n\}$ ,

There must be  $N \in I$ , solve that  $s_n > M$ 

For this N, (2.14) follows from the hypothesis that  $\{s_n\}$  be a non-decreasing sequence.

Hence the proof.

#### Theorem: 8

Prove that a non-increasing sequence which is not bounded below is divergent to minus infinity.

#### Proof:

Let  $\{s_n\}$  be a non-increasing sequence which is not bounded above.

Given M > 0.

We can find N  $\in$  I, solve that  $s_n < M$ ,  $\forall n \ge N$ , ... (2.15)

Since M is not an upper bound for the sequence  $\{s_n\}$ , There must be N  $\in$  I, solve that  $s_N < M$ 

For this N, (2.15) follows from the hypothesis that  $\{s_n\}$  be a non-decreasing seq.

Hence the proof.

#### PROBLEMS BASED ON CONVERGENT SEQUENCE.

**Problem 2.1** Write formula for  $s_n$  for each of the following sequence.

- (i) {2,1, 4, 3, 6, 5, 8, 7, .....} *Ans:*  $s_n = n + 1$  if *n* is odd,  $s_n = n - 1$ , if *n* is even.
- (ii)  $\{1, -1, 1, -1, \ldots\}$

Ans:  $s_n = 1$  if *n* is odd,  $s_n = -1$ , if *n* is even.

(iii) {1, 0, 1, 0, 1.....}

Ans:  $s_n = n + 1$  if n is odd,  $s_n = n - 1$ , if n is even.

(iv)  $\{1, 3, 6, 10, 15, \ldots\}$ 

*Ans:*  $s_n = n(n + 1)/2$ .

(v) 
$$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$
  
Ans:  $s_n = n / (n + 1)$   
Problem 2.2 Test either that the sequence has a limit or not?  
(i)  $\left\{\frac{n^2}{n+5}\right\}_{n=1}$  (ii)  $\left\{\frac{3n}{n+7n^{1/2}}\right\}_{n=1}$  (iii)  $\left\{\frac{3n}{n+7n^2}\right\}_{n=1}$  (iv)  $\left\{n-\frac{1}{n}\right\}_{n=1}$   
©Solution:  
(i)  $\lim_{n\to\infty} \frac{n^2}{n+5} = \lim_{n\to\infty} \frac{n^2(1)}{n\left(1+\frac{5}{n}\right)} = \frac{n}{\left(1+\frac{5}{n}\right)} = \infty$   
Hence the sequence  $\left\{\frac{n^2}{n+5}\right\}_{n=1}$  is divergent sequence.  
(ii)  $\lim_{n\to\infty} \frac{3n}{n+7n^{\frac{1}{2}}} = \lim_{n\to\infty} \frac{n(3)}{n\left(1+\frac{7}{n^{1/2}}\right)} = \lim_{n\to\infty} \frac{3}{\left(1+\frac{7}{n^{1/2}}\right)} = \frac{3}{(1+0)} = 3$   
Hence the sequence  $\left\{\frac{3n}{n+7n^{1/2}}\right\}_{n=1}$  changes to 3.  
(iii)  $\lim_{n\to\infty} \frac{3n}{n+7n^2} = \lim_{n\to\infty} \frac{n(3)}{n^2\left(7+\frac{1}{n}\right)} = \lim_{n\to\infty} \frac{3}{n\left(7+\frac{1}{n}\right)} = 0$   
The sequence  $\left\{\frac{3n}{n+7n^2}\right\}_{n=1}$  changes to 0.  
(iv)  $\lim_{n\to\infty} \left(n-\frac{1}{n}\right) = \infty - 0 = \infty$ . Hence the sequence  $\left\{n-\frac{1}{n}\right\}_{n=1}$  is divergent seq.

#### Home work

- 1. Show that the sequence  $\left\{\frac{n}{n+1}\right\}_{n=1}$  changes to 1. 2. Show that the sequence  $\left\{\frac{n^2}{2n^2+1}\right\}_{n=1}$  changes to 1/2.
- 3. (i) Prove that the sequence {10<sup>7</sup>/n}<sub>n=1</sub> has a limit 0.
  (ii) Prove that the sequence {n/10<sup>7</sup>}<sub>n=1</sub> does not have a limit.

**Problem 2.3** Solve That the sequence 
$$\left\{2-\frac{1}{2^{n-1}}\right\}_{n=1}$$
 changes

#### to 2.

©Solution:

Let 
$$s_n = 2 - \frac{1}{2^{n-1}} \Longrightarrow_{n \to \infty}^{\lim} s_n = \lim_{n \to \infty} \left( 2 - \frac{1}{2^{n-1}} \right) = 2 - 0 = 2.$$

Hence the sequence  $\left\{2-\frac{1}{2^{n-1}}\right\}_{n=1}$  changes to 2.

**Problem 2.4** Prove that 
$$\lim_{n \to \infty} s_n = 0$$
 if  $\{s_n\} = \{1/n\}$  [OR] Test

# for changes of {1/n}

©Solution:

By definition, given  $\in > 0$ . We must find  $N \in I$ , 0 Solve that  $|s_n - L| < \in$ ,  $\forall n \ge N$ . In this case  $\left|\frac{1}{n} - 0\right| < \in$ ,  $\forall n \ge N$ .  $\therefore$  If we choose N, solve that  $\frac{1}{N} < \in$ 

i.e., 
$$\frac{1}{n} \le \frac{1}{N} \le 0$$
,  $\forall n \ge N$ .  
 $\therefore$  If  $N > \frac{1}{\varepsilon}$  for  $N \in I$ ,  
 $\therefore$  (1) holds.

Hence the sequence  $\{s_n\}$  changes to 0.

**Problem 2.5** Using definition of limit SOLVE THAT the sequence  $\{s_n\}$  where  $s_n = \frac{3n}{n+5\sqrt{n}}$  has a lt 3.

<sup>©</sup>Solution:

Let 
$$s_n = \frac{3n}{n+5\sqrt{n}}$$

By definition, given  $\in > 0$ . We can find N  $\in$  I, solve that  $|s_n - L| < \in$ ,  $\forall n \ge N$ 

$$\Rightarrow \left| \frac{3n}{n+5\sqrt{n}} - 3 \right| < \epsilon, \forall \ n \ge N. \qquad \dots (2.16)$$

To prove that (1) holds for  $n \ge N$ .

For 
$$\left|\frac{3n-3n-15\sqrt{n}}{n+5\sqrt{n}}-3\right| <\epsilon, \forall n \ge N.$$
  
 $\Rightarrow \frac{15\sqrt{n}}{n+5\sqrt{n}} <\epsilon, \forall n \ge N.$   
 $\Rightarrow \frac{15\sqrt{n}}{n+5\sqrt{n}} <\frac{15\sqrt{n}}{n} = \frac{15}{\sqrt{n}} <\epsilon, \forall n \ge N.$ 

$$\Rightarrow \frac{225}{\epsilon^2} < n, \forall n \ge \mathbb{N}. \qquad \dots (2.17)$$
  

$$\therefore \text{ We choose N, solve that } N \ge \frac{225}{\epsilon^2}$$
  

$$\therefore (2.17) \text{ holds & consequently (2.16) holds.}$$
  
Hence for any +<sup>ve</sup> integer  $N \ge \frac{225}{\epsilon^2}$ .  

$$\therefore \lim_{n \to \infty} s_n = 3.$$
  
**Problem 2.6** Prove that the sequence  $\left\{\log \frac{1}{n}\right\}_{n=1}$  is divergent  
to  $-\infty$ .  
**Solution:**  
To prove that the sequence  $\left\{\log \frac{1}{n}\right\}_{n=1}$  is divergent to  $-\infty$ .  
i.e. To prove that for given  $\epsilon > 0$ . We can find  $\mathbb{N} \in \mathbb{I}$ ,  
Solve that  $\log \frac{1}{n} < -\mathbb{N}, \forall n \ge \mathbb{N}$   
 $\Rightarrow -\log n < -\mathbb{N}, \forall n \ge \mathbb{N}$   
 $\Rightarrow \log n > \mathbb{M}, \forall n \ge \mathbb{N}$   
 $\Rightarrow n > e^{\mathbb{M}}, \forall n \ge \mathbb{N}$   
We choose  $\mathbb{N} > e^{\mathbb{M}}$   
Then (2.19) holds and Consequently (2.18) holds.

$$\therefore$$
 The sequence  $\left\{\log\frac{1}{n}\right\}_{n=1}$  divergent to  $\infty$ .

$$[OR]$$

$$\lim_{n \to \infty} \log \frac{1}{n} = \lim_{n \to \infty} (-\log n) = \lim_{n \to \infty} -\log n = -\infty.$$
[Problem 2.7] Give an example of a sequence {s<sub>n</sub>} which is not bounded for which  $\lim_{n \to \infty} \frac{s_n}{n} = 0.$ 

©Solution:

Let  $s_n = \sqrt{n}$ , Then  $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sqrt{n} = \infty$ 

Hence the sequence  $\{s_n\} = \{\sqrt{n}\}$  is bounded sequence.

But  $\lim_{n \to \infty} \frac{s_n}{n} = \lim_{n \to \infty} \frac{\sqrt{n}}{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$ 

# OPERATION ON CONVERGENT SEQUENCE

#### 3.1. OPERATION ON CONVERGENT SEQUENCE

#### Theorem: 1

If  $\{s_n\}$  and  $\{t_n\}$  are sequence of<br/>real numbers converges to L &<br/>M respectively.If  $\lim_{in \to \infty} s_n = L$  and  $\lim_{in \to \infty} t_n =$ <br/>MThen the sequence  $\{s_n + t_n\}$ <br/>converges to L + M.Then  $\lim_{in \to \infty} (s_n + t_n) = L + M.$ 

#### **Proof:**

Since  $\lim_{in \to \infty} s_{ni} = L$  and  $\lim_{in \to \infty} s_{ni} = M$ 

By definition, for given  $\in > 0$ .  $\exists a + {}^{ve} integers N_1, N_2$ 

$$|s_n - L| < \frac{\epsilon}{2}, \ \forall \ n \ge N_1,$$
  
 $|s_n - M| < \frac{\epsilon}{2}, \ \forall \ n \ge N_1,$ 

Choose  $N = Max (N_1, N_2)$ 

For 
$$n \ge N$$
,  
 $|(s_n + t_n) - (L + M)| = |(s_n - L) + (s_n - M)|, \forall n \ge N$   
 $\le |s_n - L| + |s_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ 

$$\Rightarrow |(s_n + t_n) - (L + M)| < \in \forall n \ge \mathbb{N}.$$
$$\Rightarrow \lim_{i_n \to \infty} (s_{ni} + t_n) = \mathbb{L} + \mathbb{M}.$$

Hence the sequence  $\{s_n + t_n\}$  is converges to L + M.

#### Theorem: 2

If  $\{s_n\}$  be a sequence of real numbers converges to L, Then the sequence  $\{c. s_n\}$  converges to *c*.L. If  $c \in \mathbb{R}$  and  $\lim_{in \to \infty} s_{ni} = L$ Then  $\lim_{in \to \infty} c.s_{ni} = c.L$ .

#### **Proof:**

Case (1): If c = 0, then the theorem is obvious. Case (2): If  $c \neq 0$ . Since  $\lim_{n \to \infty} s_{ni} = L$ By definition, given  $\in > 0$ .  $\exists N \in I$ , Solve that  $|s_n - L| < \frac{\epsilon}{c}, \forall n \ge N$ ,  $\therefore |cs_n - cL| = |c||s_n - L| \le c \dots \frac{\epsilon}{c}, \forall n \ge N$ ,  $\Rightarrow |cs_n - cL| < \epsilon \forall n \ge N$ ,  $\Rightarrow \lim_{n \to \infty} c \cdot s_{ni} = c \cdot L$ .

Hence the sequence  $\{c.s_n\}$  converges to c.L

#### Corollary

If  $\{s_n\}$  and  $\{t_n\}$  are the sequence of real numbers converges to L & M respectively. Then the sequence  $\{s_n - t_n\}$ converges to L – M. If  $\lim_{in\to\infty} s_n = L$  and  $\lim_{in\to\infty} t_n = M$ Then  $\lim_{in\to\infty} (s_n - t_n) = L - M$ .

#### Proof:

Since  $\lim_{i_n \to \infty} s_n = L$  and  $\lim_{i_n \to \infty} t_n = M$   $\therefore \lim_{i_n \to \infty} (-t_n) = -M$  (by above th)  $\therefore \lim_{i_n \to \infty} (s_n - t_n) = \lim_{i_n \to \infty} [s_n + (-t_n)] = L - M.$ 

#### Theorem: 3

If  $\{s_n\}$  and  $\{t_n\}$  are the sequence of real numbers converges to L and M respectively. Then prove that the sequence  $\{s_n, t_n\}$  converges to L. M. If = L and  $\lim_{in\to\infty} t_n = M$ , Then prove that  $\lim_{in\to\infty} s_n t_n = L \cdot M$ .

#### Proof:

Since 
$$\lim_{n \to \infty} s_n = L$$
 and  $\lim_{n \to \infty} t_n = M$   
 $\therefore \lim_{n \to \infty} (s_n + t_n) = L + M$ .  $\Rightarrow \lim_{n \to \infty} (s_n + t_n)^2 = (L + M)^2$   
And  $\lim_{n \to \infty} (s_n - t_n) = L - M$ .  $\Rightarrow \lim_{n \to \infty} (s_n - t_n)^2 = (L - M)^2$   
 $\therefore s_n t_n = \frac{1}{4} [(s_n + t_n)^2 - (s_n - t_n)^2]$ 

$$\therefore \lim_{n \to \infty} s_n \cdot t_n = \frac{1}{4} \left[ \lim_{n \to \infty} (s_n + t_n)^2 - \lim_{n \to \infty} (s_n - t_n)^2 \right]$$
$$= \frac{1}{4} \left[ (L + M)^2 - (L - M)^2 \right] = \frac{1}{4} \left[ 4LM \right]$$
$$\therefore \lim_{n \to \infty} s_n \cdot t_n = LM.$$

Hence the sequence  $\{s_n t_n\}$  converges to L.M

# Theorem: 4

| If $\{s_n\}$ and $\{t_n\}$ are the sequence of real numbers                                    | If $\lim_{i_n\to\infty} s_n = L$ and $\lim_{i_n\to\infty} t_n = M$ ,  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| converges to L & M respectively.                                                               | Then prove that $\lim_{n \to \infty} \frac{s_n}{t_n} = \frac{L}{M}$ . |
| Then prove that the sequence $\left\{\frac{s_n}{t_n}\right\}_{n=1}$ converges to $\frac{L}{M}$ |                                                                       |

# Proof:

(d) Division Rule.

To prove that  $\lim_{i_n \to \infty} \frac{s_n}{t_n} = \frac{L}{M}$  where  $M \neq 0$ 

We first prove that  $\lim_{i_n \to \infty} \frac{1}{t_n} = \frac{1}{M}$  where  $M \neq 0$ 

i.e. To prove that given  $\in >0, \exists N \in I, 0$ 

Solve that 
$$\left|\frac{1}{t_n} - \frac{1}{M}\right| < \in, \forall n \ge N,$$

Since  $\lim_{in \to \infty} t_n = \mathbf{M}$ 

For, 
$$\epsilon > 0$$
,  $\exists N \in I$ , 0 s.t  $|t_n - M| < \epsilon, \forall n \ge N$ , ... (3.1)  

$$\therefore |M| = |M - t_n + t_n| \le |M - t_n| + |t_n|$$

$$\Rightarrow |M| < \epsilon + |t_n| \text{ by (3.1)}$$

$$\Rightarrow |t_n| > |M| - \epsilon, \forall n \ge N,$$

$$\Rightarrow \frac{1}{|t_n|} < \frac{1}{|M| - \epsilon}, \forall n \ge N$$
... (3.2)

3.5

Given 
$$\in' >0$$
,  $\exists N \in I$   
 $s.t \left| \frac{1}{t_n} - \frac{1}{M} \right| < \left| \frac{t_n - M}{t_n \cdot M} \right| \le \frac{|t_n - M|}{|t_n|M||} < \frac{\epsilon}{(M - \epsilon)} = \epsilon' \text{ (say)}$   
 $\Rightarrow \left| \frac{1}{t_n} - \frac{1}{M} \right| < \epsilon, \forall n \ge N,$   
 $\Rightarrow \lim_{n \to \infty} \frac{1}{t_n} = \frac{1}{M} \text{ where } M \ne 0$   
 $\therefore \lim_{n \to \infty} \frac{s_n}{t_n} = \lim_{n \to \infty} s_n \lim_{n \to \infty} \frac{1}{t_n} = L. \frac{1}{M}$   
 $\Rightarrow \lim_{n \to \infty} \frac{s_n}{t_n} = \frac{L}{M}.$  Hence proved.

Theorem: 5

If 
$$\{s_n\}$$
 be a sequence of real number converges to L,  
Then prove that the sequence  $|If \lim_{n \to \infty} s_n = L$  then prove that  $\lim_{n \to \infty} |s_n| = |L|$   
 $|s_n|_{n=1}^{\infty}$  converges to  $|L|$ 

#### **Proof:**

Since  $\{s_n\}$  converges to L i.e.  $\lim_{n \to \infty} s_n = L$ By definition, given  $\in > 0$ .  $\exists N \in I$ , s.t  $|s_n - L| < \in$ ,  $\forall n \ge N$ W.K.T  $||a| - |b|| \le |a - b|$ ,  $\Rightarrow ||s_n| - |L|| \le |s_n - L| < \in \forall n \ge N$ ,  $\Rightarrow ||s_n| - |L|| < \in, \forall n \ge N$ ,  $\therefore \lim_{n \to \infty} c.s_{ni} = c.L$ . Hence the sequence  $\{|s_n|\}_{n=1}$  converges to |L|

**Result:** But converse is not true.

i.e. if  $\{|s_n|\}_{n=1}$  converges to |L| then need not implies that  $\{s_n\}$  converges to L.

Example 1: Consider the sequence,  $\{s_n\} = \{1, -1, 1, -1, ....\}$ Here  $\{|s_n|\}_{n=1} = \{1, 1, 1, ....\}$ 

But  $\{s_n\}$  converges to 1. Hence the proof.

Example 2: Prove that if  $\{|s_n|\}_{n=1}$  converges to 0, then the sequence.  $\{s_n\}$  converges to 0.

### **Proof:**

Given  $\{|s_n|\}_{n=1}$  converges to 0 i.e.  $\lim_{n \to \infty} |s_n| = 0.$ 

By definition, given  $\in > 0$ .  $\exists N \in I$ ,

s.t 
$$||s_n| - 0| < \epsilon, \forall n \ge N$$
  
 $\Rightarrow |s_n| < \epsilon \forall n \ge N, \Rightarrow |s_n - 0| < \epsilon, \forall n \ge N,$ 

 $\therefore \lim_{i_n \to \infty} = 0.$  Hence then the sequence  $\{s_n\}$  converges to 0.

#### Theorem : 6

If  $\{s_n\}$  and  $\{t_n\}$  are nondecreasing sequence of real numbers converges to L and M respectively and if  $s_n \leq t_n$  $\forall n$ . Then prove that  $L \leq M$ . If  $\lim_{n \to \infty} s_n = L$  and  $\lim_{n \to \infty} t_n = M$ , and if  $s_n \leq t_n \forall n$ . Then prove that  $L \leq M$ .

**Proof:** 

Since 
$$\lim_{i_n \to \infty} s_n = L$$
 and  $\lim_{i_n \to \infty} t_n = M$ ,

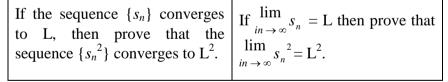
By given if  $s_n \leq t_n \forall n$ 

 $\therefore t_n - s_n \ge 0 \Longrightarrow \{ \therefore t_n - s_n \}$  is a non-negative sequence of real numbers.

 $\Rightarrow \lim_{i_n \to \infty} (s_n - t_n) \ge 0.$  $\Rightarrow (M - L) \ge 0. [By Th]$  $\Rightarrow M \ge L$ 

 $\Rightarrow$  Or L  $\leq$  M. Hence the theorem.

## Theorem: 7



#### **Proof:**

Since  $\{s_n\}$  converges to L i.e.  $\lim_{n \to \infty} s_n = L$ W.K.T every cgt sequence is bounded. For M > 0,  $\exists N \in I$ ,  $\therefore |s_n| < M, \forall n \ge N$ Since  $\{s_n\}$  converges to L. By definition, given  $\in > 0$ .  $\exists N \in I$ , s.t  $|s_n - L| < \epsilon$ ,  $\forall n \ge N$ For  $n \ge N$ ,  $\Rightarrow |s_n^2 - L^2| = |(s_n - L)(s_n + L)|, \forall n \ge N$   $\Rightarrow |s_n^2 - L^2| < \epsilon (M + |L|) = \epsilon' =, \forall n \ge N$   $\Rightarrow |s_n^2 - L^2| < \epsilon', \forall n \ge N$  $\Rightarrow |s_n^2 - L^2| < \epsilon', \forall n \ge N$ 

Hence the sequence.  $\{s_n^2\}$  converges to  $L^2$ .

#### Theorem: 8

(1) If 0 < x < 1, then prove that the sequence  $\{x^n\}$  converges to 0.

(2) If x > 1, then prove that the sequence  $\{x^n\}$  diverges to  $\infty$ .

#### **Proof:**

**Part (1):** If 
$$0 < x < 1$$
, then  $x^{n+1} = x^n$ .  $x < x^n$ .  $[\because \frac{1}{2^2} < \frac{1}{2}]$ 

i.e.  $x^{n+1} < x^n$ ,  $\forall n \in \mathbb{Z}$ .

Hence,  $\{x^n\}$  is an non-increasing sequence.

Since  $x^n > 0$ ,  $\forall n \in \mathbb{Z}$ .

 $\therefore$  { $x^n$ } is a bounded below by zero.

By known result, [W.K.T, Every sequence which is bonded below is convergent.]

The sequence  $\{x^n\}$  converges to 0.

$$\lim_{i_{n \to \infty}} x^{n} = L \text{ (say)} \qquad \dots (3.3)$$

$$\lim_{i_{n \to \infty}} x^{n+1} = \lim_{i_{n \to \infty}} x^{n} \cdot x = x \lim_{i_{n \to \infty}} x^{n} = Lx \text{ by } (3.3)$$

$$\therefore \lim_{i_{n \to \infty}} x^{n+1} = Lx.$$

Hence the sequence  $\{x^{n+1}\}$  converges to L*x*.

But,  $\{x^{n+1}\}$  is a subsequence of  $\{x^n\}$ 

 $\therefore$  Lx = L [Every sequence and its subsequence converges to same limit.]

$$\Rightarrow (x-1) = 0$$
$$\Rightarrow L = 0 (\because x \neq 1)$$

Hence the sequence  $\{x^n\}$  converges to 0 if 0 < x < 1.

**Part (2):** If  $1 < x < \infty$ , then  $x^n < x^{n+1}$ ,  $\forall n \in \mathbb{Z}$ .

[:: for 
$$x = 3, 3^2 < 3^3$$
]

 $\therefore \{x^n\}$  is a non-decreasing sequence.

Also,  $x^n > 1$ ,  $\forall n \in \mathbb{Z}$ .

Now Let us assume that  $\{x^n\}$  is bounded above sequence.

By known result,

{ $x^{n}$ } converges to L. i.e.  $\therefore \lim_{i_{n \to \infty}} x^{n} = L$  (say) ... (3.4)  $\lim_{i_{n \to \infty}} x^{n+1} = \lim_{i_{n \to \infty}} x^{n} \cdot x = x \lim_{i_{n \to \infty}} x^{n} = Lx$  by (3.4)  $\therefore \lim_{in \to \infty} x^{n+1} = \mathbf{L} x.$ 

Hence the sequence  $\{x^{n+1}\}$  converges to L*x*.

But,  $\{x^{n+1}\}$  is a subsequence of  $\{x^n\}$ 

 $\therefore$  Lx = L [Every sequence and its subsequence converges to same limit.]

 $\Rightarrow$ L(x - 1) = 0

 $\Rightarrow$ L = 0 (::  $x \neq 1$ )

Which is a contradiction to  $\{x^n\}$  is not bounded above.

Hence the sequence  $\{x^n\}$  diverges to  $\infty$ , for  $1 < x < \infty$ .

#### 3.2. LIMIT SUPERIMUM AND LIMIT INFIMUM.

1. Define limit superimum of sequence  $\{s_n\}$  of real numbers.

Let  $\{s_n\}$  is a sequence of real numbers that is bounded above.

Let  $M_n = 1.u.b \{s_n, s_{n+1}, ...\}$ 

(a) If {M<sub>n</sub>} converges and we define  $\lim_{n \to \infty} \sup s_n = \lim_{n \to \infty} M_n$ 

(b) If {M<sub>n</sub>} diverges to minus infinity and we define  $\lim_{n \to \infty} \sup s_n =$ 

 $-\infty$ .

#### 2. Define limit infimum of of sequence $\{s_n\}$ of real numbers.

Let  $\{s_n\}$  is a sequence of real numbers that is bounded below.

Let  $m_n = g.l.b \{s_n, s_{n+1},...\}$ 

(a) If  $\{m_n\}$  converges and we define  $\lim_{n \to \infty} \inf s_n = \lim_{n \to \infty} m_n$ 

(b) If  $\{m_n\}$  diverges to infinity and we define  $\lim_{n \to \infty} \inf s_n = \infty$ .

If  $\{s_n\}$  is a convergent sequence of real number. Then prove that  $\lim_{in \to \infty} \sup s_n = \lim_{in \to \infty} \inf s_n = \lim_{in \to \infty} s_n$ 

#### **Proof:**

Let  $\{s_n\}$  be a convergent sequence of real number Let  $\lim_{n \to \infty} s_n = L$ By definition, given  $\in > 0$ .  $\exists$  a N  $\in$  I, s.t  $|s_n - L| < \in$ ,  $\forall n \ge N$  $\Rightarrow - \in < s_n - L < \in, \forall n \ge N$ Add L,  $\Rightarrow$  *L*- $\in < s_n < L + \in$ ,  $\forall n \ge N$ ... (3.5)  $\Rightarrow$ L +  $\in$  is an upper bound for { $s_n, s_{n+1}, s_{n+2}, \dots$ } But  $L \rightarrow \in$  is not an upper bound.  $\Rightarrow$ L- $\in \langle M_n = 1.u.b \{s_n, s_{n+1}, s_{n+2}, \dots \} \langle L + \in, \forall n \geq N$ Apply limit,  $\Rightarrow$  L-  $\in < \lim_{n \to \infty} M_n < L + \in, \forall n \ge N.$ Add (-L), $\Rightarrow$  -  $\in$  < sup  $s_n$  - L <  $\in$ ,  $\forall n \ge N$  $\Rightarrow \lim_{n \to \infty} |\sup s_n - L| < \epsilon, \forall n \ge N$  $\Rightarrow \lim_{n \to \infty} \sup s_n = L$ , for arbitrary  $\in$ . ... (3.6) Similarly, by (3.5),  $\Rightarrow$ L +  $\in$  is an lower bound for { $s_n, s_{n+1}, s_{n+2}, \dots$ } But  $L - \in$  is not an lower bound.  $\Rightarrow \mathbf{L} - \in \langle m_n = g.\mathbf{l}.\mathbf{b}\{s_n, s_{n+1}, s_{n+2}, \dots\} \leq \mathbf{L} + \in, \forall n \geq \mathbf{N}$ Apply limit,  $\Rightarrow$ L -  $\in < \lim_{n \to \infty} m_n <$ L +  $\in$ ,  $\forall n \ge N$ 

Add (-L),  $\Rightarrow$  -  $\in$  < inf  $s_n$  - L <  $\in$  ,  $\forall n \ge N$  $\Rightarrow |\inf s_n - L| < \in, \forall n \ge N$  $\Rightarrow_{n \to \infty}^{\lim} \inf s_n = L$ , for arbitrary  $\in$ . ... (3.7) From (3.5) & (3.6)  $\Rightarrow \lim_{i_n \to \infty} \sup s_n = \lim_{i_n \to \infty} \inf s_n = \lim_{i_n \to \infty} s_n$ Hence the proof. Converse of the above theorem. Theorem: 2 If  $\{s_n\}$  is a sequence of real number and If  $\lim_{in\to\infty} \sup s_n = \lim_{in\to\infty} \inf s_n = L$ Then  $\{s_n\}$  is converges to L. **Proof:** Since  $\lim_{i_n \to \infty} \sup s_n = L$ By definition, given  $\in > 0$ .  $\exists N_1 \in I$ , s.t  $|\sup s_n - L| < \in, \forall n \ge$ Ν  $\Rightarrow - \in < \sup s_n - L < \in, \forall n \ge N$ Add L,  $\Rightarrow L - \in < l.u.b\{s_n, s_{n+1}, s_{n+2}, ...\} < L + \in, \forall n \ge N$  $\Rightarrow s_n < L + \in$ ... (3.8) Also,  $\lim_{i_n \to \infty} \inf s_n = L$ By definition, given  $\in >0$ .  $\exists N_2 \in I$ , s.t  $|\inf s_n - L| < \in, \forall n \ge$  $N_1$  $\Rightarrow - \in < \sup s_n - L < \in, \forall n \ge N$ 

Add L, 
$$\Rightarrow L - \in \langle g.l.b\{s_n, s_{n+1}, s_{n+2}, ...\} \langle L + \in, \forall n \ge N$$
  
 $\Rightarrow L - \in \langle s_n$  ... (3.9)  
Choose N = Max (N<sub>1</sub>, N<sub>2</sub>)  
For  $n \ge N$ , From (3.8) & (3.9)  $\Rightarrow L - \in \langle s_n < L + \in$   
Add (-L),  $\Rightarrow - \in \langle s_n - L < \in, \forall n \ge N$   
 $\Rightarrow |s_n - L| \langle \in, \forall n \ge N$   
 $\Rightarrow \lim_{n \to \infty} s_n = L$ 

Hence the sequence  $\{s_n\}$  converges to L.

#### Theorem: 3

If  $\{s_n\}$  is a bounded sequence of real numbers, then prove that  $\lim_{in \to \infty} \inf s_n \leq \lim_{in \to \infty} \sup s_n.$ 

#### **Proof:**

Let  $\{s_n\}$  be a bounded sequence of real number

$$m_n = \text{g.l.b} \{s_n, s_{n+1}, s_{n+2}, \dots\} \le \text{l.u.b} \{s_n, s_{n+1}, s_{n+2}, \dots\} = M_n.$$
  
 $\Rightarrow m_n \le M_n, \forall n.$ 

Apply limit,  $\Rightarrow \lim_{n \to \infty} m_n \le \lim_{n \to \infty} M_n \Rightarrow \lim_{n \to \infty} \inf s_n \le \lim_{n \to \infty} \sup s_n$ 

Hence the proof.

#### Theorem: 4

If  $\{s_n\}$  &  $\{t_n\}$  be the bounded sequence of real numbers. And if  $s_n \le t_n$ ,  $\forall n$ .

Then prove that

 $\lim_{n \to \infty} \sup s_n \le \lim_{n \to \infty} \sup t_n \text{ and } \lim_{n \to \infty} \inf s_n \ge \lim_{n \to \infty} \inf t_n$ 

#### **Proof:**

Since  $\{s_n\}$  and  $\{t_n\}$  are bounded sequence of real numbers. Also,  $S_n \leq t_n$ ,  $\forall n$ .  $\Rightarrow$ l.u.b $\{s_n, s_{n+1}, s_{n+2}, \dots\} \leq$ l.u.b $\{t_n, t_{n+1}, t_{n+2}, \dots\}$   $\Rightarrow M_n \leq T_n$ ,  $\forall n$ . Apply limit,  $\Rightarrow \lim_{n \to \infty} M_n \leq \lim_{n \to \infty} T_n$   $\Rightarrow \lim_{n \to \infty} \sup s_n \leq \lim_{n \to \infty} \sup t_n$ Also,  $S_n \leq t_n$ ,  $\forall n$ .  $\Rightarrow$ g.l.b $\{s_n, s_{n+1}, s_{n+2}, \dots\} \geq$ g.l.b $\{t_n, t_{n+1}, t_{n+2}, \dots\}$   $\Rightarrow m_n \leq p_n$ ,  $\forall n$ . Apply limit,  $\Rightarrow \lim_{n \to \infty} m_n \geq \lim_{n \to \infty} p_n$  $\Rightarrow \lim_{n \to \infty} \inf s_n \geq \lim_{n \to \infty} \inf t_n$ . Hence the theorem.

#### Theorem: 5

If  $\{s_n\}$  and  $\{t_n\}$  be the bounded sequence of real numbers. Then

(1) 
$$\lim_{n \to \infty} \sup(s_n + t_n) \le \lim_{n \to \infty} \sup s_n + \lim_{n \to \infty} \sup t_n$$
  
(2) 
$$\lim_{n \to \infty} \inf(s_n + t_n) \ge \lim_{n \to \infty} \inf s_n + \lim_{n \to \infty} \inf t_n$$

#### **Proof:**

**Part** (1): Let  $\{s_n\}$  and  $\{t_n\}$  be the bounded sequence of real numbers.

 $\therefore$  l.u.b{ $s_n$ ,  $s_{n+1}$ ,  $s_{n+2}$ ,....} exists and

l.u.b{ $t_n, t_{n+1}, t_{n+2}, ....$ } exists.

Let  $M_n = 1.u.b\{s_n, s_{n+1}, s_{n+2}, \dots\}$   $T_n = 1.u.b\{t_n, t_{n+1}, t_{n+2}, \dots\}$ .  $\Rightarrow s_k \le M_n \forall k \ge n.$ And  $t_k \le T_n \forall k \ge n.$   $\therefore \underline{s_k} + t_k \le M_n + T_n, \forall k. \ge n.$   $\Rightarrow M_n + T_n$  is an upper bound for  $\{(s_n + t_n), (s_{n+1} + t_{n+1}), \dots\}$   $\Rightarrow 1.u.b \{(s_n + t_n), (s_{n+1} + t_{n+1}), \dots\}$ .  $\le M_n + T_n$ Apply limit,  $\Rightarrow \lim_{n \to \infty} l.u.b\{(s_n + t_n), (s_n + t_n), \dots\} \le \lim_{n \to \infty} (M_n + T_n)$   $\Rightarrow \lim_{n \to \infty} \sup(s_n + t_n) \le \lim_{n \to \infty} M_n + \lim_{n \to \infty} T_n$  $\Rightarrow \lim_{n \to \infty} \sup(s_n + t_n) \le \lim_{n \to \infty} \sup s_n + \lim_{n \to \infty} \sup t_n$ 

Hence part (1) is proved.

#### **Part (2):**

Let  $\{s_n\}$  &  $\{t_n\}$  be the bounded sequence of real no/-s.  $\therefore$  g.l.b  $\{s_n, s_{n+1}, s_{n+2}, \dots\}$  exists and g.l.b  $\{t_n, t_{n+1}, t_{n+2}, \dots\}$  exists.

Let  $m_n = g.1.b \{s_n, s_{n+1}, s_{n+2}, \dots\}$   $p_n = g.1.b\{t_n, t_{n+1}, t_{n+2}, \dots\}$ .  $\Rightarrow s_k \ge m_n \forall k. \ge n.$ And  $t_k \ge p_n \forall k. \ge n.$   $\therefore s_k + t_k \ge m_n + p_n, \forall k. \ge n.$  $\Rightarrow m_n + p_n$  is an lower bound for  $\{(s_n + t_n), (s_{n+1} + t_{n+1}), \dots\}$ .  $\Rightarrow$ g.l.b {( $s_n + t_n$ ), ( $s_{n+1} + t_{n+1}$ ).....}  $\geq m_n + p_n$ Apply limit,

$$\Rightarrow \lim_{n \to \infty} g.l.b\{(s_n + t_n), (s_n + t_n), \dots\} \ge \lim_{n \to \infty} (m_n + p_n)$$
$$\Rightarrow \lim_{n \to \infty} \inf(s_n + t_n) \ge \lim_{n \to \infty} m_n + \lim_{n \to \infty} p_n$$

Hence part (2) is proved.

Theorem 6: (without proof)

Let  $\{s_n\}$  be a bounded sequence of real numbers.

If Lt sup  $s_n = M$ .

Then for any  $\in > 0$ ,

 $s_n < M + \in, \forall$ , but finite number of values of *n*.

 $s_n > M - \in$ , for infinitely many values of *n*.

Similarly. for if Lt inf  $s_n = m$ .

Then for any  $\in > 0$ ,

a)  $s_n > m + \in$ ,  $\forall$ , but finite numbers of values of *n*.

b)  $s_n < M - \in$ , for infinitely many values of *n*.

#### Theorem: 7

Prove that any bounded sequence of real number has a convergent subsequence.

#### **Proof:**

Let  $\{s_n\}$  be a bounded sequence of real numbers.

To prove that, we have to construct a convergent subsequence  $\{s_n\}$ .

For, Let  $M = Lt \sup s_n$ ,

For every  $\in > 0$ , Then there are infinitely many values of *n*, s.t  $s_n > M - 1$ . Let  $n_1$  be one such value. i.e.  $n_1 \in I$ , and  $s_n > M - 1$ . Similarly, there are infinitely many values of *n*  $s.t s_n > M - \frac{1}{2}.$ Choose  $n_2 > n$ ,  $\underline{s}_{\underline{n}} > M - \frac{1}{2}$ . Continuing in this way  $s_n \geq \mathbf{M} - \frac{1}{k}, \ \forall \ n_k > \mathbf{n},$ ... (3.10) For  $\in > 0, \exists N \in I$ , s.t  $s_n < M + \in$ ,  $\forall$ , but finite number of values of *n*. i.e.  $s_n < M + \in, \forall$ , but finite number of values of *n*. ... (3.11) For k > N,  $M - \epsilon < M - \frac{1}{k}$  $\Rightarrow$ M -  $\in \langle s_n \langle M + \in, \forall$ , but finite number of values of *n*.  $\Rightarrow - \in \langle s_n - \mathbf{M} \langle + \in , \forall n_k \rangle n.$  $\Rightarrow |s_n - M| < \in, \forall n_k \ge n$  $\Rightarrow \lim_{n \to \infty} s_n = M$ . Hence the sequence  $\{s_n\}$  converges to M.

#### Theorem: 8

Prove that every convergent sequence of real number is a Cauchy sequence.

#### **Proof:**

Let  $\{s_n\}$  be a convergent sequence of real numbers. Let  $\lim_{n \to \infty} s_n = L$ , By definition, given  $\in > 0$ .  $\exists N \in I$ , s.t  $|s_n - L| < \in$ ,  $\forall n \ge N$ . Choose m, n > N.  $|s_n - L| < \in$ ,  $\forall n \ge N$ .  $|s_m - L| < \in$ ,  $\forall m \ge N$ . For m, n > N.  $|s_m - s_m| = |(s_m - L) - (s_n - L)|$   $\leq |s_m - L| + |s_n - L| < \epsilon + \epsilon = 2 \epsilon = \epsilon^{2}$   $\Rightarrow |s_m - s_m| < \epsilon^{2}$ ,  $\forall m, n \ge N$ .  $\Rightarrow \{s_n\}$  is a Cauchy sequence of real numbers. Note: Every Cauchy sequence need not be convergent. \*\*\*\*\*[Every Cauchy sequence is bdd]\*\*\*\*

#### Theorem: 9.

If  $\{s_n\}$  be a Cauchy sequence of real numbers, Then prove that  $\{s_n\}$  is a bounded sequence.

#### **Proof:**

Let  $\{s_n\}$  be a Cauchy sequence of real numbers.

By definition, given  $\in > 0$ .  $\exists N \in I$ , s.t  $|s_m - s_n| < \in, \forall m, n \ge N$ .

$$\Rightarrow |s_m - s_n| < 1, \forall m, n \ge N$$

If 
$$m > N$$
.  $|s_m| = |s_m - s_n + s_n| \le |s_m - s_n| + |s_n|$   
 $|s_m| < 1 + |s_n|$ ,  $\forall m > N$ , n=N  
Let  $M = \max \{ |s_1|, |s_2|, |s_3|, \dots, |s_{n-1}| \}$   
 $\Rightarrow |s_m| < M + 1 + 1 + |s_N| = k \text{ (say)}$   
 $=> |s_m| < k, \forall k \in I.$ 

Hence  $\{s_n\}$  is a bounded sequence.

#### Theorem: 10

Prove that if  $\{s_n\}$  is a Cauchy sequence of real numbers, Then prove that  $\{s_n\}$  is a convergent sequence.

#### **Proof:**

Let  $\{s_n\}$  be a Cauchy sequence of real numbers,

Then  $\{s_n\}$  is a bounded sequence [By previous Theorem 9]  $\lim_{n \to \infty} \sup s_n \text{ and } \lim_{n \to \infty} \inf s_n \text{ exists.}$ To prove that  $\{s_n\}$  is a convergent sequence. i.e. to prove that,  $\lim_{n \to \infty} \sup s_n = \lim_{n \to \infty} \inf s_n$ For Clearly,  $\lim_{n \to \infty} \inf s_n \leq \lim_{n \to \infty} \sup s_n$  ... (3.12) To Claim:  $\lim_{n \to \infty} \sup s_n \leq \lim_{n \to \infty} \inf s_n$ . For since  $\{s_n\}$  is a Cauchy sequence By definition, given  $\epsilon > 0$ .  $\exists N \epsilon I$ , s.t  $|s_m - s_n| < \frac{\epsilon}{2}$ ,  $\forall m, n \geq N$ .

3.19

$$\Rightarrow |s_N - s_n| < \frac{\epsilon}{2}, \forall n \ge N.$$
  

$$\Rightarrow s_N - \frac{\epsilon}{2} < s_n < s_N + \frac{\epsilon}{2}, \forall n \ge N.$$
  

$$\Rightarrow s_N + \frac{\epsilon}{2} \text{ is an upper bound for the set } \{s_n, s_{n+1}, s_{n+2}, \dots\}$$
  
And  $s_N - \frac{\epsilon}{2}$  is an lower bound for the set  $\{s_n, s_{n+1}, s_{n+2}, \dots\}$   

$$\therefore s_N - \frac{\epsilon}{2} < g.l.b \{s_n, s_{n+1}, s_{n+2}, \dots\} \le l.u.b \{s_n, s_{n+1}, s_{n+2}, \dots\} < s_N + \frac{\epsilon}{2}, \forall n \ge N.$$
  

$$\Rightarrow l.u.b \{s_n, s_{n+1}, s_{n+2}, \dots\} - g.l.b \{s_n, s_{n+1}, s_{n+2}, \dots\} \le (s_N + \frac{\epsilon}{2}) - (s_N - \frac{\epsilon}{2})$$
  

$$\Rightarrow M_n - m_n \le \epsilon, \forall n \ge N.$$
  

$$\Rightarrow \lim_{n \to \infty} (M_n - m_n) \le \epsilon$$
  

$$\Rightarrow \lim_{n \to \infty} M_n \le \lim_{n \to \infty} m_n + \epsilon$$
  

$$\Rightarrow \lim_{n \to \infty} \sup s_n \le \lim_{i \to \infty} \inf s_n. \text{ For arbitrary } \epsilon. \qquad \dots (3.13)$$
  
From (3.12) & (3.13)  $\Rightarrow \lim_{i n \to \infty} \sup s_n = \lim_{i n \to \infty} \inf s_n = lim_{n \to \infty} s_n = L,$   

$$\therefore \{s_n\} \text{ is a convergent sequence. Hence the proof.}$$

# Theorem: 11

State and prove Nested interval theorem.

#### Statement

For each  $n \in I$ ,

Let  $I_n = [a_n, b_n]$  be any non-empty closed bounded interval of real numbers.

 $I_n \supset I_{n+1} \supset I_{n+2} \supset \dots$  $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \text{ length of } I_n = 0.$ Then  $\bigcap_{n=1}^{\infty} I_n$  contains (exactly) precisely one point.

#### **Proof:**

By hypothesis (1),  $I_n \supset I_{n+1} \supset I_{n+2} \supset \dots$ 

 $\Rightarrow a_n \leq a_{n+1} \leq b_{n+1} \leq b_n \forall n.$ 

 $\Rightarrow$  The sequence  $\{a_n\}$  is an non-decreasing sequence and the sequence  $\{b_n\}$  is an non-increasing sequence.

But all the points of the sequence  $\{a_n\}$  and  $\{b_n\}$  lies in the interval I<sub>1</sub>.

The sequence  $\{a_n\}$  and  $\{b_n\}$  are bounded above and bounded below respectively.

The sequence  $\{a_n\}$  and  $\{b_n\}$  are convergent sequence [By theorem]

 $\therefore \lim_{n \to \infty} = \mathbf{x}, \lim_{n \to \infty} b_n = \mathbf{y},$ then  $a_n \le x, y \le b_n \forall n$ By hypothesis (2),  $y - x = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = \lim_{n \to \infty} (b_n - a_n) = 0$  (Given)

$$\therefore y - x = 0 \implies y = x.$$
  

$$a_n \le x \le bn, \ \forall \ n \in \mathbf{I},$$
  

$$x_n \in I_n, \ \forall \ n \in \mathbf{I},$$
  

$$\implies x_n \in \bigcap_{n=1}^{\infty} I_n$$

To prove the uniqueness part.

Let 
$$z \neq x \in \bigcap_{n=1}^{\infty} I_n$$
  
Then  $|z - x| \neq 0$   
 $\Rightarrow |z - x| \leq |b_n - a_n|$   
 $\Rightarrow \lim_{n \to \infty} |z - x| \leq \lim_{n \to \infty} |b_n - a_n|$   
 $\Rightarrow \lim_{n \to \infty} |z - x| \leq 0$   
 $\Rightarrow |z - x| = 0$ -which is a contradiction.  
 $\therefore z = x$ .  
Hence  $\bigcap_{n=1}^{\infty} I_n$  contains exactly one point.

# PROBLEMS BASED ON LIMITS OF SEQUENCE

#### P1. Evaluate:-

(i) 
$$\lim_{n \to \infty} \frac{2n}{n+3}$$
 (ii)  $\lim_{n \to \infty} \frac{2n^3 + 5n}{4n^3 + n^2}$  (iii)  $\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$   
(iv)  $\lim_{n \to \infty} \frac{3n^2 - 6n}{5n^2 + 4}$  N13 (v)  $\lim_{n \to \infty} \frac{2n^2 - 5n + 4}{3n^2 + 6n + 11}$ 

(vi) 
$$\lim_{n \to \infty} \frac{n^2}{(n-7)^2 - 6}$$
 (vii)  $\lim_{n \to \infty} \sqrt{n} \left( \sqrt{n+1} - \sqrt{n} \right)$  A16.  
(viii)  $\lim_{n \to \infty} \left( \sqrt{n^2 + n} - n \right)$  (ix)  $\lim_{n \to \infty} \left( 5 + \frac{4}{n^2} \right)$  N15  
(x) Prove that  $\lim_{n \to \infty} \frac{2n^3 + 5n}{8n^3 - 6} = \frac{1}{4}$  (xi)  $\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$ 

Solution

(i) 
$$\lim_{n \to \infty} \frac{2n}{n+3} = \lim_{n \to \infty} \frac{n(2)}{n(1+3/n)} = \lim_{n \to \infty} \frac{(2)}{(1+3/n)}$$
$$= \frac{\lim_{n \to \infty} 2}{\lim_{n \to \infty} (1+3/n)} = \frac{2}{(1+0)} = 2.$$
  
(ii) 
$$\lim_{n \to \infty} \frac{2n^3 + 5n}{4n^3 + n^2} = \lim_{n \to \infty} \frac{n^3 \left(2 + \frac{5}{n^2}\right)}{n^3 \left(4 + \frac{1}{n}\right)} = \lim_{n \to \infty} \frac{\left(2 + \frac{5}{n^2}\right)}{\left(4 + \frac{1}{n}\right)}$$
$$= \frac{\lim_{n \to \infty} \left(2 + \frac{5}{n^2}\right)}{\lim_{n \to \infty} \left(4 + \frac{1}{n}\right)} = \frac{2 + 0}{4 + 0} = \frac{1}{2}.$$
  
(iii) 
$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{n}{n\sqrt{1 + \frac{1}{n^2}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = \frac{1}{\lim_{n \to \infty} \sqrt{1 + \frac{1}{n^2}}}$$
$$= \frac{1}{\sqrt{1 + 0}} = 1.$$
  
[ (iv),(v),(vi) Same as (ii)]

(vi) [For Root sums Multiply Nr & Dr by its conjugates]

$$\begin{split} \lim_{n \to \infty} \sqrt{n} \left( \sqrt{n+1} - \sqrt{n} \right) &= \lim_{n \to \infty} \sqrt{n} \left( \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \right) \\ &= \lim_{n \to \infty} \sqrt{n} \frac{(n+1-n)}{(\sqrt{n+1} + \sqrt{n})} \\ &= \lim_{n \to \infty} \frac{\sqrt{n}}{(\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} \left( \sqrt{1+\frac{1}{n}} + 1 \right)} = \lim_{n \to \infty} \frac{1}{\sqrt{n} \left( \sqrt{1+\frac{1}{n}} + 1 \right)} \\ &= \frac{1}{\lim_{n \to \infty} \left( \sqrt{1+\frac{1}{n}} + 1 \right)} = \frac{1}{(\sqrt{1}+1)} = \frac{1}{2} \, . \end{split}$$

$$(\text{vii)} \lim_{n \to \infty} \left( \sqrt{n^2 + n} - n \right) = \lim_{n \to \infty} \frac{\left( \sqrt{n^2 + n} - n \right)}{\left( \sqrt{n^2 + n} + n \right)} \left( \sqrt{n^2 + n} + n \right) \\ &= \lim_{n \to \infty} \frac{n}{(\sqrt{1^2 + n} + n)} \\ &= \lim_{n \to \infty} \frac{n^2}{n \left( \sqrt{1+\frac{1}{n}} + 1 \right)} = \lim_{n \to \infty} \frac{n}{\left( \sqrt{1+\frac{1}{n}} + 1 \right)} \\ &= \frac{\lim_{n \to \infty} n}{\lim_{n \to \infty} \left( \sqrt{1+\frac{1}{n}} + 1 \right)} = \infty \, . \end{split}$$

Therefore the sequence divergent to  $\infty$ .

P2. If P is a polynomial of degree two, then P.T  $\lim_{n \to \infty} \frac{P(n+1)}{P(n)} = 1.$ 

#### N16.

# Solution:

Let  $P(x) = ax^2 + bx + c$ , (*a*, *b*, *c* are real numbers) be a polynomial of degree two.

Then

$$\begin{split} \lim_{n \to \infty} \frac{P(n+1)}{P(n)} &= \lim_{n \to \infty} \frac{a(n+1)^2 + b(n+1) + c}{an^2 + bn + c} \\ &= \lim_{n \to \infty} \frac{an^2 + (2a+b)n + (a+b+c)}{an^2 + bn + c} \\ &= \lim_{n \to \infty} \frac{n^2 \left[a + (2a+b)\frac{1}{n} + (a+b+c)\frac{1}{n}\right]}{n^2 \left[a + b\frac{1}{n} + c\frac{1}{n}\right]} \\ &= \lim_{n \to \infty} \frac{\left[a + (2a+b)\frac{1}{n} + (a+b+c)\frac{1}{n}\right]}{\left[a + b\frac{1}{n} + c\frac{1}{n}\right]} \\ &= \frac{\lim_{n \to \infty} \left[a + (2a+b)\frac{1}{n} + (a+b+c)\frac{1}{n}\right]}{\lim_{n \to \infty} \left[a + b\frac{1}{n} + c\frac{1}{n}\right]} = \frac{a+0+0}{a+0+0} = 1. \end{split}$$
Hence  $\lim_{n \to \infty} \frac{P(n+1)}{P(n)} = 1.$ 

**P3.** Is a P(x) =  $ax^3 + bx^2 + cx + d$ , *a*, *b*, *c*, *d* are in R.P.T  $\lim_{n \to \infty} \frac{P(n+1)}{P(n)} = 1$ .

Solution:

Given 
$$P(x) = ax^3 + bx^2 + cx + d$$
,  

$$\lim_{n \to \infty} \frac{P(n+1)}{P(n)} = \lim_{n \to \infty} \frac{a(n+1)^3 + b(n+1)^2 + c(n+1) + d}{an^3 + bn^2 + cn + d}$$

$$= \lim_{n \to \infty} \frac{(n+1)^3 \left[a + \frac{b}{(n+1)} + \frac{c}{(n+1)^2} + \frac{d}{(n+1)^3}\right]}{n^3 \left[a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3}\right]}$$

$$= \lim_{n \to \infty} \frac{n^3 \left[1 + \frac{1}{n}\right]^3 \left[a + \frac{b}{(n+1)} + \frac{c}{(n+1)^2} + \frac{d}{(n+1)^3}\right]}{n^3 \left[a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3}\right]}$$

$$= \lim_{n \to \infty} \frac{\left[1 + \frac{1}{n}\right]^3 \left[a + \frac{b}{(n+1)} + \frac{c}{(n+1)^2} + \frac{d}{(n+1)^3}\right]}{\left[a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3}\right]}$$

$$= \frac{\left[1 + 0\right]^3 \left[a + 0 + 0 + 0\right]}{\left[a + 0 + 0 + 0\right]} = \frac{a}{a} = a.$$

$$\therefore \lim_{n \to \infty} \frac{P(n+1)}{P(n)} = a.$$

P4. (UQ)\*\*\*\*S.T the sequence  $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}$  is convergent.

[OR] prove that  $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$ 

Solution:

Let 
$$s_n = \left(1 + \frac{1}{n}\right)^n =$$
  
 $1 + \frac{n}{1!} \left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \dots + \frac{n(n-1)\dots[n-(n-1)]}{k!} \left(\frac{1}{n}\right)^k + \dots$   
For  $k = 1, 2, 3, \dots n$   
The  $(k+1)^{th}$  term is  $\frac{n(n-1)\dots[n-(n-1)]}{k!} \left(\frac{1}{n}\right)^k$   
 $= \frac{n^k}{k!n^k} \left[ \left(1\right) \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left[1 - \frac{(k-1)}{n}\right] \right]$ 

$$= \frac{1}{1.2.3..k} \left[ \left( 1 - \frac{1}{n} \right) \left( 1 - \frac{2}{n} \right) \dots \left[ 1 - \frac{(k-1)}{n} \right] \right]$$

We expand  $s_{n+1}$ , one more term than  $s_n$ .

For 
$$k = 1, 2, 3, ... n$$
  
The  $(k + 2)^{th}$  term is  
$$\frac{1}{1.2.3...k} \left[ \left( 1 - \frac{1}{n+1} \right) \left( 1 - \frac{2}{n+1} \right) ... \left[ 1 - \frac{(k-2)}{n+1} \right] \right]$$

Clearly,  $s_n \leq s_{n+1}$ 

The sequence  $\{s_n\}$  is a non-decreasing sequence.

$$\therefore s_{n} = 1 + \frac{n}{1!} \left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^{2} + \dots + \frac{n(n-1)\dots[n-(n-1)]}{k!} \left(\frac{1}{n}\right)^{k} + \dots + \leq 1 + 1 + \frac{1}{1.2} + \frac{1}{1.2.3} + \dots + \frac{1}{1.2.3\dots n} \leq 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1}{1 - \frac{1}{2}} [s_{n} = 1 + a + a^{2} + \dots + a^{n-1} = 1/1 - r. \leq 1 + \frac{1}{\frac{1}{2}} = 1 + 2 = 3. \therefore s_{n} \leq 3.$$

 $\therefore$  The sequence  $\{s_n\}$  is bounded above by 3.

 $\therefore$  {*s<sub>n</sub>*} is an increasing sequence which is bounded above by 3.

Hence  $\{s_n\}$  is a convergent sequence.

$$\therefore \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = e \text{ [where } 2 < e < 3 \text{ and } e = 2.7182....]$$

Alter Methods.

Let 
$$s_n = \left(1 + \frac{1}{n}\right)^n$$

Then  $\log s_n = \log\left(1 + \frac{1}{n}\right)^n = n \log\left(1 + \frac{1}{n}\right)$ =  $n\left[\frac{1}{n} - \frac{1}{2}\frac{1}{n^2} + \frac{1}{3}\frac{1}{n^3} + \dots\right]$ 

$$\log s_{n} = \left[1 - \frac{1}{2n} + \frac{1}{3n^{2}} - \frac{1}{4n^{3}} + \dots\right]$$

$$s_{n} = e^{\left[1 - \frac{1}{2n} + \frac{1}{3n^{2}} - \frac{1}{4n^{3}} + \dots\right]} = e^{1} \cdot e^{\left[-\frac{1}{2n} + \frac{1}{3n^{2}} - \frac{1}{4n^{3}} + \dots\right]} = e.$$

$$\left[1 + \frac{\left(-\frac{1}{2n} + \frac{1}{3n^{2}} - \frac{1}{4n^{3}} + \dots\right)}{1!} + \frac{\left(-\frac{1}{2n} + \frac{1}{3n^{2}} - \frac{1}{4n^{3}} + \dots\right)^{2}}{2!} + \dots\right]$$

$$s_{n} = e^{\left[1 - \frac{1}{2n} + \frac{1}{3n^{2}} - \dots\right]}$$

$$Apply limit, \lim_{n \to \infty} s_{n} = \lim_{n \to \infty} e^{\left[1 - \frac{1}{2n} + \frac{1}{3n^{2}} - \dots\right]}$$
Hence 
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = e.$$
 where  $2 < e < 3, e = 2.7182.\dots$ 

# P5. Prove that

(i) 
$$\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n+1} = e$$
 (ii)  $\lim_{n \to \infty} \left( 1 + \frac{1}{n+1} \right)^n = e$   
(iii)  $\lim_{n \to \infty} \left( 1 + \frac{2}{n} \right)^n = e^2.$ 

# Solution:

Given 
$$\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n \left( 1 + \frac{1}{n} \right)^n$$
$$= \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right) = e \cdot (1+0) = e$$

# Hence $\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n+1} = e.$ (ii) For $\lim_{n \to \infty} \left( 1 + \frac{1}{n+1} \right)^n$

Put x = n + 1 as  $n \rightarrow \infty$ ,  $x \rightarrow \infty$ 

$$=\lim_{n \to \infty} \left(1 + \frac{1}{x}\right)^{x-1} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{x}\right)^x}{\left(1 + \frac{1}{x}\right)} = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{x}\right)^x}{\lim_{n \to \infty} \left(1 + \frac{1}{x}\right)} = \frac{e}{1} = e.$$

(iii) 
$$\lim_{n \to \infty} \left( 1 + \frac{2}{n} \right) = e^2$$
.

Solution:

$$1 + \frac{2}{n} = \left(1 + \frac{1}{n+1}\right) \left(1 + \frac{1}{n}\right)$$
  
Check  $\left(\frac{n+1+1}{n+1}\right) \left(\frac{n+1}{n}\right) = \left(\frac{n+2}{n+1}\right) \left(\frac{n+1}{n}\right)$   
 $\therefore \lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right)^n \cdot \left(1 + \frac{1}{n}\right)^n$   
 $= \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right)^n \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \cdot e$   
Hence  $\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n = e^2$ .

P6 Prove that if  $a_{n+1} = \sqrt{2 + \sqrt{a_n}}$  for n = 0, 1, 2, 3....

Then  $\{a_n\}$  is convergent and that  $a_n < 2$ ,  $\forall n$ . *Solution:* 

Let 
$$a_{n+1} = \sqrt{2 + \sqrt{a_n}}$$
, for  $n = 0, 1, 2, ...$   
 $a_1 = \sqrt{2}$   
 $a_2 = \sqrt{2 + \sqrt{a_1}} = \sqrt{2 + \sqrt{2}} > \sqrt{2} = a_1$   
 $\Rightarrow a_2 > a_1$   
 $a_3 = \sqrt{2 + \sqrt{a_2}} > \sqrt{2 + \sqrt{a_1}} = a_2 [\because a_2 > a_1]$   
 $\Rightarrow a_3 > a_2$   
 $a_{n+1} > a_n$  for  $n = 0, 1, 2, ...$ 

 $\Rightarrow$  {*a<sub>n</sub>*} is an non-decreasing sequence.

To prove that  $a_n < 2$ .  $\forall n = 1, 2, \dots$ Suppose  $a_n \ge 2$ ,  $\forall n = 1, 2, \dots$  (3.14) Then  $a_n = \sqrt{2 + \sqrt{a_{n-1}}} = \sqrt{2 + \sqrt{2 + \sqrt{a_{n-2}}}}$   $\Rightarrow a_n < \sqrt{2 + \sqrt{2}}$  ... (3.15) From (3.14) and (3.15)  $\Rightarrow 2 \le 0a_n < \sqrt{2 + \sqrt{2}}$ Which is a contradiction to  $2 < \sqrt{2 + \sqrt{2}}$ 

Hence  $a_n < 2$ .  $\forall n = 1, 2, 3...$ 

 $\therefore$  { $a_n$ } is an non-decreasing sequence, which is bounded above by 2.

Hence the sequence  $\{a_n\}$  is convergent.

P7. If 
$$s_n = \sqrt{2}$$
,  $s_{n+1} = \sqrt{2} \sqrt{s_n}$ ,  $\forall n \ge 2$ . Then prove that  $\lim_{n \to \infty} s_n = 2$ .  
Solution:  
Given  $s_n = \sqrt{2}$ ,  $s_{n+1} = \sqrt{2} \sqrt{s_n}$ ,  $\forall n \ge 2$ .  
 $s_1 = \sqrt{2}$ ,  $s_2 = \sqrt{2} \sqrt{s_1} = \sqrt{2} \sqrt{\sqrt{2}} => s_2 > s_1$ .  
Suppose  $s_{n+1} > s_n$   
 $\Rightarrow \sqrt{2} \sqrt{s_{n+1}} > \sqrt{2} \sqrt{s_n}$   
 $\Rightarrow s_{n+2} > s_{n+1} > s_n$   
 $\Rightarrow s_{n+2} > s_n$ ,  $\forall n = 1, 2, 3...$   
 $\Rightarrow \{s_n\}$  is an non-decreasing sequence.  
Also,  $s_1 = \sqrt{2} < 2$ .  
Suppose  $s_2 < 2$ .  
Then  $s_{n+1} = \sqrt{2} \sqrt{s_n}$   
 $\Rightarrow (s_{n+1})^2 = 2 s_n \Rightarrow \lim_{n \to \infty} (s_{n+1})^2 = 2 \lim_{n \to \infty} s_n$   
 $\Rightarrow L^2 = 2L [\because \{s_{n+1}\} \text{ is a subsequence of } \{s_n\} \text{ converges to same limit]} - 2L^2 - 2L = 0 \Rightarrow L(L - 2)$ 

$$\Rightarrow L = 2, [\because L \neq 0 \text{ and } s_1 = \sqrt{2} > 0]$$
  
$$\therefore \lim_{n \to \infty} s_n = 2. \text{ Hence } \{s_n\} \text{ is convergent to } 2.$$

# 3.33

#### PROBLEMS BASED ON LIMIT SUP & LIMIT INF

P8. let  $s_n = (-1)^n$ ,  $n \in I$ , find Lt sup & Lt inf. Solution: Given  $s_n = (-1)^n$ ,  $n \in \mathbf{I}$ .  $S_n = \{-1, 1, -1, 1, -1, \ldots\}$ Here  $M_1 = 1.u.b\{-1, 1, -1, 1, -1, ...\}$  $M_2 = l.u.b \{1, -1, 1, -1, \ldots\}$ Clearly  $M_1 = 1$ ,  $M_2 = 1$ .....  $\therefore$  {M<sub>*n*</sub>} is the sequence consist of 1.  $\therefore \lim_{n \to \infty} M_n = \lim_{n \to \infty} (1) = 1.$ Hence Lt sup  $s_n = 1$ . Also,  $m_1 = g.l.b \{-1, 1, -1, 1, -1, ...\}$  $m_2 = \text{g.l.b} \{1, -1, 1, -1, \ldots\}$ Clearly  $m_1 = -1, m_2 = -1$  $\therefore$  {*m<sub>n</sub>*} is the sequence consist of -1.  $\therefore \lim_{n \to \infty} M_n = \lim_{n \to \infty} (-1) = -1.$ Hence Lt inf  $s_n = -1$ . P9. Find the Lt sup & Lt inf for the following sequence.

1, -1, 1, -2, 1, -3, 1, -4,.... 1, 2, 3, 1, 2, 3, 1, 2, 3.... S<sub>n</sub> = (-n), *n* in I.

$$\left\{\sin\left(\frac{n\pi}{2}\right)\right\}_{n=1}^{n}$$

# Solution:

(a) Given sequence  $\{1, -1, 1, -2, 1, -3, 1, -4...\}$ Here  $M_n = 1.u.b \{1, -1, 1, -2, 1, -3, 1, -4...\} = 1$ .  $\forall n = 1, 2, 3...$  $\therefore \lim_{n \to \infty} M_n = \lim_{n \to \infty} (1) = 1$ . Hence limit sup  $s_n = 1.a$ 

# 4 <u>SERIES OF REAL NUMBERS</u>

#### 4.1. CONVERGENT AND DIVERGENT SERIES

#### 1. Define series of real numbers

The series  $a_1 + a_2 + a_3 + \ldots + a_n + \ldots$  is called an infinite series [or] series.

We denoted by  $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$ 

Then  $s_n = a_1 + a_2 + a_3 + \dots + a_n$  is called the *n*<sup>th</sup> partial sum of the series  $\sum_{n=1}^{\infty} a_n$ .

#### 2. Define convergence of the series

A series  $\sum_{n=1}^{\infty} a_n$  is said to be cges to A

If the seq  $\{s_n\}$  be the  $n^{\text{th}}$  partial sum of the series cges to A.

i.e., If  $\lim_{n \to \infty} s_n = A$ .

#### 3. Define divergence of the series

A series  $\sum_{n=1}^{\infty} a_n$  is said to be dges to  $\infty$ 

If the seq  $\{s_n\}$  be the  $n^{\text{th}}$  partial sum of the series dges to  $\infty$ .

i.e., If  $\lim_{n \to \infty} s_n = \infty$ .

# **Notations:**

- (1) If a series  $\sum_{n=1}^{\infty} a_n$  cges to A  $\Rightarrow \lim_{n \to \infty} s_n = A$ . [Notations  $\sum_{n=1}^{\infty} a_n = A$
- (2) If the series  $\sum_{n=1}^{\infty} a_n$  is a cgt series of non-negative terms, Then  $\sum_{n=1}^{\infty} a_n < +\infty$ .
- (3) If the series  $\sum_{n=1}^{\infty} a_n$  is a dgt series of non-negative terms, Then  $\sum_{n=1}^{\infty} a_n = \infty$ .

Theorem: 1

If 
$$\sum_{n=1}^{\infty} a_n \operatorname{cges}$$
 to A &  $\sum_{n=1}^{\infty} b_n \operatorname{cges}$  to B, Then P.T  
(a)  $\sum_{n=1}^{\infty} (a_n + b_n)$  cges to (A + B); (b) if  $c \in \mathbb{R}$ , then  $\sum_{n=1}^{\infty} c.a_n$  cges to cA; (c)  $\sum_{n=1}^{\infty} (a_n - b_n)$  cges to (A - B)

**Proof:** 

Let  $s_n = a_1 + a_2 + a_3 + \dots + a_n$ 

 $t_n = b_1 + b_2 + b_3 + \dots + b_n$  are the *n*<sup>th</sup> partial sum of the series  $\sum_{n=1}^{\infty} a_n \& \sum_{n=1}^{\infty} b_n$  respectively. By hypothesis,  $\sum_{n=1}^{\infty} a_n$  cges to A &  $\sum_{n=1}^{\infty} b_n$  cges to B, Then  $\lim_{n \to \infty} s_n = A$ , &  $\lim_{n \to \infty} t_n = B$ Let  $u_n = n^{\text{th}}$  partial sum of the series  $\sum_{n=1}^{\infty} (a_n + b_n) = (a_1 + b_1) + (a_2 + b_2) + (a_1 + b_2) + (a_2 + b_2) + (a$  $u_n = (a_1 + a_2 + a_3 + \ldots + a_n) + (b_1 + b_2 + b_3 + \ldots + b_n)$ Then  $u_n = s_n + t_n$  $\Rightarrow$  $\lim_{n \to \infty} u_n = \lim_{n \to \infty} s_n + t_n = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n$  $\Rightarrow$  $\lim_{n \to \infty} u_n = (\mathbf{A} + \mathbf{B})$  $\Rightarrow$ Hence the series  $\sum_{n=1}^{\infty} (a_n + b_n)$  cges to (A + B). Part(b). Let  $c \in \mathbb{R}$ , then  $p_n = n^{\text{th}}$  partial sum of  $\sum_{n=1}^{\infty} c.a_n$ .  $= ca_1 + ca_2 + ca_3 + \ldots + ca_n$  $= c(a_1 + a_2 + a_3 + \dots + a_n) = c.s_n$  $p_n = c.s_n$  $\lim_{n \to \infty} p_n = \lim_{n \to \infty} c.sn = c \lim_{n \to \infty} s_n = c.A$ ...  $\lim_{n \to \infty} p_n = c.A$ Hence the series  $\sum_{n=1}^{\infty} c.a_n$  cges to c.A.

(3) By using (a) & (b)  
Put 
$$c = -1$$
 in (a)  

$$\sum_{n=1}^{\infty} [a_n + (-b_n)] \text{ cges to } A + (-B) = A - B$$
Hence 
$$\sum_{n=1}^{\infty} (a_n - b_n) \text{ cges to } A - B.$$

# Theorem: 2

The necessary condition for the series to be cgt. If  $\sum_{n=1}^{\infty} a_n$  is a cgt series then  $\lim_{n \to \infty} a_n = 0$ .

**Proof:** 

Let 
$$\sum_{n=1}^{\infty} a_n$$
 is a cges to A. i.e.,  $\sum_{n=1}^{\infty} a_n = A$ .

Let  $s_n = a_1 + a_2 + a_3 + \dots + a_n$  be the *n*<sup>th</sup> partial sum of the series  $\sum_{n=1}^{\infty} a_n.$ 

Also,  $s_{n-1} = a_1 + a_2 + a_3 + \dots + a_{n-1}$ Clearly  $\lim_{n \to \infty} s_n = A \& \lim_{n \to \infty} s_{n-1} = A$ 

[:: { $s_{n+1}$ } is a subseq of { $s_n$ } cges to same limit]

$$\therefore s_n - s_{n-1} = (a_1 + a_2 + a_3 + \dots + a_n) - (a_1 + a_2 + a_3 + \dots + a_{n-1})$$

 $\therefore \qquad \qquad \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1}$ 

$$= \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = \mathbf{A} - \mathbf{A} = \mathbf{0}$$

Hence  $\lim_{n \to \infty} a_n = 0.$ 

#### Result

The converse is not true.

i.e., if  $\lim_{n \to \infty} a_n = 0$ , then the series  $\sum_{n=1}^{\infty} a_n$  need not be cgt.

# **Proof:**

Let us consider the series  $\sum_{n=1}^{\infty} \frac{1}{n}$ .

Here 
$$a_n = \frac{1}{n}$$

$$\therefore \qquad \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

But the series  $\sum_{n=1}^{\infty} \frac{1}{n}$  always dges.

#### PROBLEMS BASED ON CONVERGENT AND DIVERGENT SERIES

# **P1. P.T** if $a_1 + a_2 + a_3 + \dots$ cges to s. Then $a_2 + a_3 + \dots$ also cges to

Solution:

 $s - a_{1}$ .

Given 
$$\sum_{n=1}^{\infty} a_n = s$$
,  $\lim_{n \to \infty} a_n = s$   
Let  $s_n = a_1 + a_2 + a_3 + \dots + a_n$ 

Let 
$$\sum_{n=2}^{\infty} a_n = p, \text{ then } t_n = a_2 + a_3 + \dots + a_n,$$
  

$$\therefore \qquad \lim_{n \to \infty} t_n = p,$$
  

$$s_n - t_n = (a_1 + a_2 + a_3 + \dots + a_n) - (a_2 + a_3 + \dots + a_n) = a_1$$
  

$$\therefore \qquad \lim_{n \to \infty} s_n - t_n = \lim_{n \to \infty} a_1 = a_1$$
  

$$\Rightarrow \qquad \lim_{n \to \infty} s_n - \lim_{n \to \infty} t_n = a_1$$
  

$$\Rightarrow \qquad s - p = a_1 \text{ or } p = s - a_1$$
  
Hence the series 
$$\sum_{n=2}^{\infty} a_n \text{ cges to } s - a_1$$

P2. For what value of x does the series  $(1 - x) + (x - x^2) + (x^2 - x^3) + (x^3 - x^4) + \dots$  Cges?

Solution:

Given series  $\sum_{n=1}^{\infty} (x^{n-1} - x^n)$ 

Then the  $n^{\text{th}}$  partial sum

$$s_n = ((1 - x) + (x - x^2) + (x^2 - x^3) + (x^3 - x^4) + \dots + (x^{n-1} - x^n).$$
  
=  $1 - x^n$   
 $\therefore$   $\lim_{n \to \infty} s_n = \lim_{n \to \infty} (1 - x^n)$   
=  $1 - \lim_{n \to \infty} x^n = 1 - 0 = 1 \ [0 \le < x < 1)$ 

The seq  $\{s_n\}$  cges to 1.

Hence the series 
$$\sum_{n=1}^{\infty} (x^{n-1} - x^n)$$
 cges to 1, if  $0 \le x < 1$ .

**P3. P.T** if  $a_1 + a_2 + a_3 + .... \infty$  cges to A. Then  $\frac{1}{2}(a_1 + a_2) + \frac{1}{2}(a_2 + a_3) + \frac{1}{2}(a_3 + a_4) + ....$  Cges. What is the sum of the 2<sup>nd</sup> series.

Solution:

Given  $\sum_{n=2}^{\infty} a_n$  sges to A.

Then the  $n^{\text{th}}$  partial sum  $s_n = a_1 + a_2 + a_3 + \ldots + a_n$ .

Given 2<sup>nd</sup> series is 
$$\sum_{n=1}^{\infty} \frac{1}{2} (a_n + a_{n+1}).$$

Then the  $n^{\text{th}}$  partial sum is

$$p_{n} = \frac{1}{2}(a_{1} + a_{2}) + \frac{1}{2}(a_{2} + a_{3}) + \frac{1}{2}(a_{3} + a_{4}) + \dots + \frac{1}{2}(a_{n-1} + a_{n}) + \frac{1}{2}(a_{n} + a_{n+1})$$

$$= \frac{1}{2}(a_{1} + a_{n+1}) + (a_{2} + a_{2} + a_{3} + \dots + a_{n})$$

$$= (a_{1} + a_{2} + a_{3} + \dots + a_{n}) - \frac{1}{2}(a_{1} - a_{n+1})$$

$$p_{n} = s_{n} - \frac{1}{2}(a_{1} - a_{n+1})$$

$$\therefore \qquad \lim_{n \to \infty} p_{n} = \lim_{n \to \infty} \left[ s_{n} - \frac{1}{2}(a_{1} - a_{n+1}) \right]$$

 $\lim_{n \to \infty} s_n - \lim_{n \to \infty} \frac{1}{2} (a_1 - a_{n+1})$   $\therefore \qquad \lim_{n \to \infty} p_n = A - \frac{1}{2} (a_{1-} a_{n+1})$   $\Rightarrow \{p_n\} \text{ cges to } A - \frac{1}{2} (a_{1-} a_{n+1})$ Hence the 2<sup>nd</sup> series  $\sum_{n=1}^{\infty} \frac{1}{2} (a_n + a_{n+1})$  cges to  $A - \frac{1}{2} (a_{1-} a_{n+1})$ [Or]  $\sum_{n=1}^{\infty} \frac{1}{2} (a_n + a_{n+1}) = A - \frac{1}{2} (a_{1-} a_{n+1})$ 

P4. Test for the series is cgt or dgt:- if cgt find value. (a)  $\sum_{n=1}^{\infty} \frac{1-n}{1+2n}$ (A15) (b)  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$  (c)  $\sum_{n=1}^{\infty} (-1)^n$  (d)  $\sum_{n=1}^{\infty} \log\left(1+\frac{1}{n}\right)$ (e)  $1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\dots$ 

Solution:

(a) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1-n}{1+2n} \quad \text{here } a_n = \frac{1-n}{1+2n} \text{A15}$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1-n}{1+2n}$$
$$= \lim_{n \to \infty} \frac{n\left(\frac{1}{n}-1\right)}{n\left(\frac{1}{n}+2\right)}$$

$$=\lim_{n\to\infty}\frac{\left(\frac{1}{n}-1\right)}{\left(\frac{1}{n}+2\right)}=\frac{(0-1)}{(0+2)}=\frac{-1}{2}\neq 0.$$
  
$$\therefore \lim_{n\to\infty}a_n\neq 0. \text{ Hence the series } \sum_{n=1}^{\infty}\frac{1-n}{1+2n} \text{ diverges.}$$

(c) Prove that the series  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$  converges. Find its value.

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 here  $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$   
 $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 0.$ 

$$\therefore \lim_{n \to \infty} a_n = 0. \text{ Hence the series } \sum_{n=1}^{n} \frac{1}{n(n+1)} \text{ cges}$$

To find value.

The nth partial sum is  $s_n = a_1 + a_2 + a_3 + \dots + a_n$ 

$$=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\dots\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)$$
$$=1-\frac{1}{n+1}$$
$$\therefore \lim_{n\to\infty} s_n=\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)=1.$$
the series  $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$  converges to 1.

i.e.,  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ . Hence (c) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n$ , here  $a_n = (-1)^n$   $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n$  limit does not exists. Hence the series  $\sum_{n=1}^{\infty} (-1)^n$  diverges. (d) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \log \left( 1 + \frac{1}{n} \right)$ here  $a_n = \log \left( 1 + \frac{1}{n} \right) = \frac{1}{n} - \frac{1}{2} \frac{1}{n^2} + \frac{1}{3} \frac{1}{n^3} - \frac{1}{2} \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left( \frac{1}{n} - \frac{1}{2} \frac{1}{n^2} + \frac{1}{3} \frac{1}{n^3} - \frac{1}{2} \right) = 0.$ Hence the series  $\sum_{n=1}^{\infty} \log \left( 1 + \frac{1}{n} \right)$  cges. (e) Given series  $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$  Here  $a_n = \frac{1}{2^{n-1}}$   $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left( \frac{1}{2^{n-1}} \right) = 0.$ Hence series  $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$  is convergent.

To find the value.

The nth partial sum is  $s_n = a_1 + a_2 + a_3 + \dots + a_n$ 

$$=1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{n-1}} = a\left(\frac{1-r^{n}}{1-r}\right) = a\left(\frac{1-r^{n}}{1-r}\right)$$
$$=2\left(\frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}\right) = 2\left(1-\frac{1}{2^{n}}\right)$$
$$\therefore \lim_{n \to \infty} s_{n} = \lim_{n \to \infty} 2\left(1-\frac{1}{2^{2}}\right) = 2(1-0) = 2.$$
$$\Rightarrow \text{ the series } 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots \text{ converges to } 2.$$
$$\text{ i.e., } 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots = 2.$$

**P5.** What is the value of k where  $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = k$ ? A13.

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 here  $a_n = \frac{1}{2^n}$   
 $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{2^n}\right) = 0.$   
 $\therefore \lim_{n \to \infty} a_n = 0.$  Hence the series  $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$  cges.

To find value.

The nth partial sum is  $s_n = a_1 + a_{2+} a_{3+\dots+} a_n$ 

$$= 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} = a \left( \frac{1 - r^n}{1 - r} \right) = \left( \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \right)$$
  
$$\therefore \lim_{n \to \infty} s_n = \lim_{n \to \infty} 2 \left( 1 - \frac{1}{2^n} \right) = 2(1 = 0) = 2.$$
  
Hence the series  $\sum_{n=0}^{\infty} \left( \frac{1}{2} \right)^n$  converges to 2.  
i.e.,  $\sum_{n=0}^{\infty} \left( \frac{1}{2} \right)^n = 2.$  Hence  $k = 2.$   
**P6.** A13. Let  $\sum_{n=1}^{\infty} a_n$  be a infinite series where  $a_n = \frac{1}{n(n+1)}$  .if  $s_n = a_1$ 

 $+ a_2 + a_3 + \dots + a_n$ . Then find  $s_{100}$ .

Solution:

Given 
$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
  
 $S_{100} = a_1 + a_2 + a_3 + \dots + a_{99} + a_{100}$   
 $= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{99} - \frac{1}{100}\right) + \left(\frac{1}{100} - \frac{1}{101}\right)$   
 $= 1 - \frac{1}{101} = \frac{100}{101}.$ 

#### 4.2. SERIES WITH NON-NEGATIVE TERMS

#### Theorem: 1

If  $\sum_{n=1}^{\infty} a_n$  is a series of non-negative numbers with  $s_n = a_1 + a_2 + a_3 + \dots + a_n$  Then P.T (a)  $\sum_{n=1}^{\infty} a_n$  cges if seq {s<sub>n</sub>} is bounded. If  $\sum_{n=1}^{\infty} a_n$  dvges, if seq {s<sub>n</sub>} is unbounded. **Proof:** (a) Since  $a_n \ge 0$ .  $\forall n$ . We have  $s_{n+1} = a_1 + a_2 + a_3 + \dots + a_n + a_{n+1} = s_n + a_{n+1} \ge s_n$ .  $\Rightarrow s_{n+1} \ge s_n$ ,  $\forall n$ .  $\Rightarrow$  the seq { $s_n$ } is a non-decreasing seq & bounded.  $\Rightarrow {s_n}$  cges Hence the series  $\sum_{n=2}^{\infty} a_n$  is convergent.

If the seq  $\{s_n\}$  is unbounded.

Then  $\{s_n\}$  is not cgnt.

Hence  $\sum_{n=2}^{\infty} a_n$  is divergent.

#### Theorem: 2

(a) If 
$$0 < x < 1$$
, then  $\sum_{n=0}^{\infty} x^n$  cges to  $\frac{1}{1-x}$  (b) If  $x \ge 1$ , then  $\sum_{n=0}^{\infty} x^n$ 

dges.

# **Proof:**

(b) if If  $x \ge 1$ , then  $x^n \operatorname{cges} \infty$  as  $n \to \infty$ . Hence the series  $\sum_{n=0}^{\infty} x^n$  diverges. [Take  $x = 3, 3^n \to \infty$  as  $n \to \infty$ ] Part(a): Let 0 < x < 1. Let  $s_n = 1 + x + x^2 + x^3 + \ldots + x^n$  be the n<sup>th</sup> partial sum of  $\sum_{n=0}^{\infty} x^n$ .  $\therefore s_n = \frac{1 - x^{n+1}}{1 - x}$  by G.P.  $\therefore \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{1 - x^{n+1}}{1 - x}\right) = \lim_{n \to \infty} \left(\frac{1}{1 - x}\right) - \lim_{n \to \infty} \left(\frac{x^{n+1}}{1 - x}\right)$   $= \frac{1}{1 - x} - 0$ [by known th if 0 < x < 1,  $\lim_{n \to \infty} x^n = 0$ ]  $\therefore \lim_{n \to \infty} s_n = \frac{1}{1 - x}$ . Hence the series  $\sum_{n=0}^{\infty} x^n$  cges to  $\frac{1}{1 - x}$  if 0 < x < 1.

Hence the proof.

#### **Define Alternating series**

The alternating series is of the form

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots$$
 is denoted by 
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n.$$

#### Theorem: 3

State and Prove Leibnitz's Theorem. If  $\{a_n\}$  is a seq of positive no/-s. Such that (a)  $a_1 \ge a_2 \ge a_3 \ge a_n \ge a_{n+1} \ge$  (b)  $\lim a_n = 0$ .

Then the alternating series  $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$  is cges.

#### **Proof:**

Given series 
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n \qquad \dots (4.1)$$

Let  $s_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n$  be the *n*<sup>th</sup> partial sum of (1).

To P.T the seq  $\{s_{2n}\}$  cges.

We have  $s_{2n} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n}$ 

$$\therefore s_{2n+2} = s_{2n} + a_{2n-1} - a_{2n-2}$$

 $\Rightarrow s_{2n+2} - s_{2n} = a_{2n-1} - a_{2n-2} \ge 0$  [by hypothesis (a).]

Also, we have

 $s_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} \le a_1.$ 

[: By (a),  $a_2 \ge a_3 \Longrightarrow a_2 - a_3 \ge 0$ ,  $a_4 - a_5 \ge 0$  and  $a_1$  is max no/-  $a > b \Longrightarrow a - b \ge a$ ]

 $\Rightarrow$   $s_{2n} < a_1$ .  $\forall n$ ,

- $\Rightarrow$  the seq {*s*<sub>2*n*</sub>} is bounded seq.
- $\Rightarrow$  the seq {*s*<sub>2*n*</sub>} is cgt.

 $\therefore \lim_{n \to \infty} s_{2n} = L \text{ (say).}$ 

We have  $s_{2n+1} = s_{2n} + a_{2n+1}$ .

- $\Rightarrow \lim_{n \to \infty} s_{2n+1} = \lim_{n \to \infty} s_{2n} + \lim_{n \to \infty} a_{2n+1}$
- = L + 0 [By hyp (b)  $\lim_{n \to \infty} a_n = 0$ ]

$$\Rightarrow \lim_{n \to \infty} s_{2n+1} = L$$

Since  $\{s_{2n}\}$  &  $\{s_{2n+1}\}$  cges to the same limit L.

$$\Rightarrow \lim_{n \to \infty} s_n = L.$$
$$\Rightarrow \sum_{n=1}^{\infty} (-1)^{n+1} a_n = L.$$

Hence the alternating series  $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$  cges.

Hence the theorem.

Problems based on alternating series.

#### Theorem: 4

S.T the series  $\sum_{n=1}^{\infty} \frac{1}{n}$  diverges.

# **Proof:**

Given series  $\sum_{n=1}^{\infty} \frac{1}{n}$ Let  $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$  be the *n*<sup>th</sup> partial sum of  $\sum_{n=1}^{\infty} \frac{1}{n}$ We now examine the subseq  $s_1, s_2, s_4, s_8, \dots, s_2$  of  $\{s_n\}$ . We have  $s_1 = 1$   $s_2 = 1 + \frac{1}{2} = \frac{3}{2}$   $s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = s_2 + \frac{1}{3} + \frac{1}{4} > \frac{3}{2} + \frac{1}{4} + \frac{1}{4} = 2$ .  $s_8 = s_4 + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > 2 + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{2}$ . In general,  $s_2 > \frac{(n+2)}{2}$  for n = 1, 2, 3...

#### $\Rightarrow$ {*s*<sub>2</sub>} diverges.

 $\Rightarrow$  {*s<sub>n</sub>*} also diverges. [Seq & subseq cges or dges simultaneously]

Hence the series  $\sum_{n=1}^{\infty} \frac{1}{n}$ .

Theorem: 5

S.T the series 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 cges.

# Solution:

Given series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ , Here  $a_n = \frac{1}{n}$ (1) Clearly  $a_n > a_{n+1}$  [ $\because \frac{1}{2} > \frac{1}{3}$ ] (2)  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$   $\therefore$  Leibniz's test true. Hence the series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$  cges.

# Theorem: 6

Solve that the series 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2n-1}$$
 diverges.

Solution:

Given series 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2n-1}$$
 where  $a_n = \frac{n}{2n-1}$   
 $a_1 = 1, a_2 = \frac{2}{3}, a_3 = \frac{3}{5}$ ,

(1) Clearly  $a_1 > a_2 > a_3 > \dots$  holds

(2) 
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{2n - 1} = \lim_{n \to \infty} \frac{n}{n \left(2 - \frac{1}{n}\right)} = \lim_{n \to \infty} \frac{1}{\left(2 - \frac{1}{n}\right)}$$
$$= \frac{1}{(2 - 0)} = \frac{1}{2} \neq 0. \text{ (fails)}$$

Leibniz's Conditions (2) fails.

Hence the series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2n-1}$  diverges.

# HOME WORK

1. Show that the following series do not converges.

- (i)  $1\frac{1}{2} 1\frac{1}{4} + 1\frac{1}{8} 1\frac{1}{16} + \dots$  (ii)  $\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n}$ (iii)  $\sum_{n=0}^{\infty} (-1)^n \frac{3n}{4n-1}$
- 2. Test the series  $\sum_{n=0}^{\infty} (-1)^n \frac{n^2}{n^3+1}$  for convergence. (Ans: cges)
- 3. Prove that:  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{2n-1}$  diverges.

Theorem: 6

Prove that (a) 
$$2 - 2^{\frac{1}{2}} + 2^{\frac{1}{3}} - 2^{\frac{1}{4}} + 2^{\frac{1}{5}} - \dots$$
 diverges.  
(b)  $(1-2) - (1-2^{\frac{1}{2}}) - (1-2^{\frac{1}{3}}) - (1-2^{\frac{1}{4}}) \dots$  converges

Solution:

(a) Given series 
$$2 - 2^{\frac{1}{2}} + 2^{\frac{1}{3}} - 2^{\frac{1}{4}} + 2^{\frac{1}{5}} - \dots$$
  
=  $\sum_{n=1}^{\infty} (-1)^{n+1} 2^{\frac{1}{n}}$  here  $a_n = 2^{\frac{1}{n}}$ .

 $a_{1} = 2, a_{2} = 2^{\frac{1}{2}}, a_{3} = 2^{\frac{1}{3}}$ (1)Clearly  $a_{1} > a_{2} > a_{3} > \dots$  holds
(2)  $\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} 2^{\frac{1}{n}} = 2^{0} = 1 \neq 0.$  (fails)
Leibniz's Conditions (2) fails.
Hence the series  $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot 2^{\frac{1}{n}}$  diverges.
Proof(b) Given series  $(1 - 2) - (1 - 2^{\frac{1}{2}}) - (1 - 2^{\frac{1}{3}}) - (1 - 2^{\frac{1}{4}})$   $= \sum_{n=1}^{\infty} (-1)^{n+1} (1 - 2^{\frac{1}{n}})$ Here  $a_{n} = (1 - 2^{\frac{1}{n}})$   $a_{1} = (1 - 2), a_{2} = (1 - 2^{\frac{1}{2}}), a_{3} = (1 - 2^{\frac{1}{3}})$ holds
(1) Clearly  $a_{1} > a_{2} > a_{3} > \dots$ (2)  $\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} (1 - 2^{\frac{1}{n}}) = (1 - 2^{0}) = (1 - 1) = 0.$   $\therefore$  Leibniz's test true.

Hence the series  $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot (1-2^{\frac{1}{n}})$  converges.

#### Theorem: 7

For what value of p does the series  $\frac{1}{1^p} - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$  cges?

Solution:

Given series 
$$\frac{1}{1^p} - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^p}$$
  
Here  $a_1 = \frac{1}{1^p} = 1$ ,  $a_2 = \frac{1}{2^p}$ ,  $a_3 = \frac{1}{3^p}$ ,  $\dots$ ,  $a_n = \frac{1}{n^p}$   
(1) Clearly  $a_1 > a_2 > a_3 > \dots$  holds  
(2)  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n^p} = 0$  true if  $p > 1$ .  
 $\lim_{n \to \infty} a_n \neq 0$  if  $p \le 1$   
Leibniz's Conditions  
Hence the series  $\frac{1}{1^p} - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$  cges if  $p > 1$ .  
 $\frac{1}{1^p} - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$  dges if  $p \le 1$ .

# 4.3. CONDITIONAL CONVERGENTS.

# 1. Define absolute convergence and conditional convergence.

Let 
$$\sum_{n=1}^{\infty} a_n$$
 be a series of real no/s-.  
(a) if  $\sum_{n=1}^{\infty} |a_n|$  cges, then  $\sum_{n=1}^{\infty} a_n$  is said to be absolute convergent.  
(b) if  $\sum_{n=1}^{\infty} a_n$  cges, but  $\sum_{n=1}^{\infty} |a_n|$  dges, then  $\sum_{n=1}^{\infty} a_n$  is said to be

conditional convergence.

#### Ex1. Give an example of absolute cgt series

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^n} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$$

**Proof:** 

Given series 
$$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$$

Take the absolute value of each term,

The series  $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$  is convergent. Hence the series  $1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$  cges absolutely.

 $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ 

**Proof:** 

Given series  $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$  it is an alternating seq

Which is convergent series.

The absolute value of each term is  $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$  is divergent. Hence the series  $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$  is conditionally convergent.

Define Positive and negative components of a series.

Let 
$$\sum_{n=1}^{\infty} a_n$$
 be a series of real no/s-.  
Let  $p_n = \begin{cases} a_n & \text{if } a_n > 0\\ 0 & \text{if } a_n \le 0 \end{cases}$   
Similarly.  $q_n = \begin{cases} a_n & \text{if } a_n \le 0\\ 0 & \text{if } a_n > 0 \end{cases}$ 

Then  $p_n \& q_n$  are called positive and negative terms of the series.

# Result

R1. 
$$p_n = \max(a_n, 0);$$
  $q_n = \min(a_n, 0)$   
R2.  $\max(a, b) = \frac{(a+b) + |a-b|}{2};$   $\min(a, b) = \frac{(a+b) - |a-b|}{2};$   
Then  $p_n = \frac{a_n + |a_n|}{2};$   $q_n = \frac{a_n - |a_n|}{2}.$ 

Theorem: 8

If 
$$\sum_{n=1}^{\infty} a_n$$
 cges absolutely, then  $\sum_{n=1}^{\infty} a_n$  cges.  
[OR]  
Solve that if  $\sum_{n=1}^{\infty} |a_n|$  cges, then  $\sum_{n=1}^{\infty} a_n$  cges.

Proof:

By hypothesis 
$$\sum_{n=1}^{\infty} |a_n| < \infty$$
 i.e  $\sum_{n=1}^{\infty} |a_n|$  cges.

By def, Let  $t_n = |a_1| + |a_2| + |a_3| + \dots$  be the  $n^{\text{th}}$  partial sum of  $\sum_{n=1}^{\infty} |a_n|$ 

 $\therefore$  the seq { $t_n$ } is cgt.

 $\Rightarrow$  The seq {*t<sub>n</sub>*} is a Cauchy seq

[:: every bdd cgt seq is Cauchy seq]

 $\Rightarrow \text{By def, Given } \in >0, \exists a \text{ N} \in \text{I, S.t } |t_m - t_n| < \in, \forall m, n > \text{N.}$ 

Let  $s_n = a_1 + a_2 + a_3 + \dots + a_n$  be the *n*<sup>th</sup> partial sum of  $\sum_{n=1}^{\infty} a_n$ 

To Prove that:  $\sum_{n=1}^{\infty} a_n$  cges,

i.e., To P.T:  $\{s_n\}$  cgt.

i.e., To P.T:  $\{s_n\}$  is a Cauchy seq.

[: Ever y Cauchy seq is cgt]

For Choose 
$$m > n$$
.  
 $|s_m - s_n| = |a_{n+1} + a_{n+2} + a_{n+3} + \dots + a_m|$   
 $\leq |a_{n+1}| + |a_{n+2}| + |a_{n+2}| + \dots + |a_m| = |t_m - t_n| < \epsilon$   
 $\Rightarrow |s_m - s_n| < \epsilon, \forall m, n > N.$ 

 $\Rightarrow$  the seq {*s<sub>n</sub>*} is a Cauchy seq. Hence the proof.

Result: Converse is not true. Justify your answer.

[OR]

If 
$$\sum_{n=1}^{\infty} a_n$$
 cges then  $\sum_{n=1}^{\infty} |a_n|$  need not be cgt.

# Proof:

Consider the series  $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ here  $a_n = \frac{1}{n}$ ,  $a_1 = 1$ ,  $a_2 = \frac{1}{2}$ ,  $a_3 = \frac{1}{3}$ .  $a_1 > a_2 > a_3 > \dots$  holds.  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0. \text{ (holds)}$  $\therefore$  By Leibniz test true.  $\therefore$  the series  $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$  cges. But  $\sum_{n=1}^{\infty} |a_n| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$  here  $\left|\frac{-1}{2}\right| = \frac{1}{2}$  $= \sum_{n=0}^{\infty} \frac{1}{n}$  is diverges. [By problem-]  $\therefore \sum_{n=1}^{\infty} |a_n|$  is dges. i.e.,  $\sum_{n=1}^{\infty} a_n$  is not absolutely cgt.

# Theorem: 9

(a) if 
$$\sum_{n=1}^{\infty} a_n$$
 cges absolutely, Then both  $\sum_{n=1}^{\infty} p_n$  and  $\sum_{n=1}^{\infty} q_n$  cges  
(b) if  $\sum_{n=1}^{\infty} a_n$  cges conditionally, Then both  $\sum_{n=1}^{\infty} p_n$  and  $\sum_{n=1}^{\infty} q_n$  dges.

**Proof:** 

(a) Let  $\sum_{n=1}^{\infty} a_n$  cges absolutely, Then  $\sum_{n=1}^{\infty} |a_n|$  cges. Let  $p_n = \max(a_n, 0);$  $q_n = \min(a_n, 0)$  $2q_n = a_n - |a_n|$ Then  $2p_n = a_n + |a_n|$ ; Since  $\sum_{n=1}^{\infty} a_n \& \sum_{n=1}^{\infty} |a_n|$  cges  $\Rightarrow \sum_{n=1}^{\infty} (a_n + |a_n|) \operatorname{cges} \Rightarrow \sum_{n=1}^{\infty} 2p_n \operatorname{cges} \Rightarrow \sum_{n=1}^{\infty} p_n \operatorname{cges}.$ similarly,  $\sum_{n=1}^{\infty} (a_n - |a_n|) \operatorname{cges} \Longrightarrow \sum_{n=1}^{\infty} 2q_n \operatorname{cges} \Longrightarrow \sum_{n=1}^{\infty} q_n \operatorname{cges}.$ (b)Let  $\sum_{n=1}^{\infty} a_n$  is conditionally convergent. Then  $\sum_{i=1}^{\infty} a_n$  cges, but  $\sum_{i=1}^{\infty} |a_n|$  dges ... (4.2) Since  $2p_n = a_n + |a_n| \implies |a_n| = 2p_n - a_n$ Suppose  $\sum_{n=1}^{\infty} p_n$  converges.  $\Rightarrow \sum_{n=1}^{\infty} (2p_n - a_n)$  cges.  $\Rightarrow \sum_{n=1}^{\infty} |a_n|$  cges,  $\Rightarrow$  to  $\sum_{n=1}^{\infty} |a_n|$  dges. Hence  $\sum_{n=1}^{\infty} p_n$  diverges.

Also Since  $2q_n = a_n - |a_n| \implies |a_n| = a_n - 2q_n$ Suppose  $\sum_{n=1}^{\infty} q_n$  converges.  $\Rightarrow \sum_{n=1}^{\infty} (a_n - 2q_n)$  cges.  $\Rightarrow \sum_{n=1}^{\infty} |a_n|$  cges, =><= to  $\sum_{n=1}^{\infty} |a_n|$  dges. Hence  $\sum_{n=1}^{\infty} q_n$  diverges.

[Here =><= means which is a contradiction]

#### PROBLEMS BASED ON CONDITIONAL CONVERGENCE.

P1. Classify as to divergent or conditionally cget or absolutely cgt?

$$1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

$$\frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \dots$$

$$1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2^2} + \frac{1}{3} - \frac{1}{2^3} + \frac{1}{4} - \frac{1}{2^4} + \dots$$

#### 4.4. TEST FOR ABSOLUTE CONVERGENCE OF THE SERIES.

1. Define dominance of a series.

We say that 
$$\sum_{n=1}^{\infty} a_n$$
 is dominate the series  $\sum_{n=1}^{\infty} b_n$   
If  $\exists N \in I$ , Solve that  $|a_n| \le |b_n|$ ,  $\forall n$ .  
We shell denotes by  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ , here is dominated by.

Theorem: 10

STATE AND PROVE COMPARISON TEST Statement. (a) If  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$  & if  $\sum_{n=1}^{\infty} b_n$  cges absolutely Then  $\sum_{n=1}^{\infty} a_n$  cges absolutely. (b) If  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$  &  $\sum_{n=1}^{\infty} b_n$  dges, Then  $\sum_{n=1}^{\infty} a_n$  dges.

**Proof:** 

(a) Let 
$$M = \sum_{n=1}^{\infty} |b_n|$$
  
Where  $|a_n| \le |b_n|$ ,  $\forall n \ge N$ .  
If  $s_n = |a_1| + |a_2| + |a_3| + \dots + |a_N| + |a_{N+1}| + \dots |a_n|$   
 $\le |a_1| + |a_2| + |a_3| + \dots + |a_N| + |b_{N+1}| + \dots |b_n|$   
 $\le |a_1| + |a_2| + |a_3| + \dots + |a_N| + M$ 

The seq  $\{s_n\}$  is bounded above  $\Rightarrow$  the seq  $\{s_n\}$  cges.

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ cges } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ cges absolutely.}$$
  
(b) if  $\sum_{n=1}^{\infty} |b_n|$  cges, then by comparison test (a)  
 $\sum_{n=1}^{\infty} |a_n|$  also cges  $\Rightarrow <= \text{to } \sum_{n=1}^{\infty} |b_n|$  dges.

For example

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{2n+3}$$
 and  $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{3n}$   
Clearly the series  $\sum_{n=1}^{\infty} \frac{1}{2n+3}$  is dominated by  $\sum_{n=1}^{\infty} \frac{1}{3n}$   
But  $\sum_{n=1}^{\infty} \frac{1}{3n} \operatorname{dges} = \sum_{n=1}^{\infty} \frac{1}{2n+3} \operatorname{dges}.$ 

Theorem: 11

STATE AND PROVE LIMIT TEST.  
If 
$$\sum_{n=1}^{\infty} b_n$$
 cges absolutely &  $\lim_{n \to \infty} \frac{|a_n|}{|b_n|}$  exists.  
Then  $\sum_{n=1}^{\infty} a_n$  cges absolutely.  
 $\sum_{n=1}^{\infty} |a_n| = \infty$  &  $\lim_{n \to \infty} \frac{|a_n|}{|b_n|}$  exists. Then  $\sum_{n=1}^{\infty} |b_n| = \infty$  (diverges)

Proof:

(a) Since 
$$\lim_{n\to\infty} \frac{|a_n|}{|b_n|}$$
 exsist  

$$\therefore \left\{ \frac{|a_n|}{|b_n|} \right\}_{n=1}$$
 is cges. It is bounded.  
Hence,  $\exists a M > 0$ , Solve that  $\frac{|a_n|}{|b_n|} \le M$ ,  $\forall n \in I$ ,  

$$\Rightarrow |a_n| \le M |b_n|, \quad \forall n \in I,$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \le M \sum_{n=1}^{\infty} |b_n|, \quad \forall n \in I,$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ is dominated by } M \sum_{n=1}^{\infty} |b_n|$$

$$\therefore By \text{ Comparison test}$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ converges } [\because \sum_{n=1}^{\infty} |b_n|] \text{ cges}]$$

$$\Rightarrow \sum_{n=1}^{\infty} a_n \text{ is converges absolutely.}$$
Since  $\therefore \left\{ \frac{|a_n|}{|b_n|} \right\}_{n=1}$  is cges. It is bounded.  

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \le M \sum_{n=1}^{\infty} |b_n|, \quad \forall n \in I,$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \le M \sum_{n=1}^{\infty} |b_n|, \quad \forall n \in I,$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \le M \sum_{n=1}^{\infty} |b_n|, \quad \forall n \in I,$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ is dominated by } M \sum_{n=1}^{\infty} |b_n|$$

4.30

: By Comparison test

$$\Rightarrow$$
 if  $\sum_{n=1}^{\infty} |a_n|$  is diverges then  $\sum_{n=1}^{\infty} |b_n|$  diverges.

Hence the proof.

#### Theorem: 12

#### STATE AND PROVE RATIO TEST.

Statement:

Let  $\sum_{n=1}^{\infty} a_n$  be a series of non-negative real no/-s. Let  $a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$  &  $A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$  so a < A. A < 1, then  $\sum_{n=1}^{\infty} |a_n| < \infty$  (cges) If a > 1. Then  $\sum_{n=1}^{\infty} a_n$  diverges.

If  $a \le 1 \le A$ , then the test fails.

# **Proof:**

(a) Let A < 1. Choose B s.t A < B < 1 ... (4.3)  
Then B = A + 
$$\in$$
 for some  $\in > 0$ .  
Since A =  $\lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$ 

By def, limit sup, Given  $\in >0$ ,  $\exists N \in I$ ,

Solve that  $\left|\frac{a_{n+1}}{a}\right| < A + \in , \forall n \ge N,$ For  $n \geq N$ ,  $\left|\frac{a_{N+1}}{a_N}\right| \le B, \left|\frac{a_{N+2}}{a_{N+1}}\right| \le B. \Longrightarrow \left|\frac{a_{N+1}}{a_N}\right|, \left|\frac{a_{N+2}}{a_{N+1}}\right| = B^2 \Longrightarrow \left|\frac{a_{N+2}}{a_{N+1}}\right| \le B^2.$ For k>0.  $\left|\frac{a_{N+k}}{a_{N+k}}\right| \leq \left|\frac{a_{N+k}}{a_{N+k-1}}\right| \cdot \left|\frac{a_{N+k-1}}{a_{N+k-2}}\right| \cdot \cdot \cdot \cdot \cdot \left|\frac{a_{N+1}}{a_{N}}\right|$  $\Rightarrow \left| \frac{a_{N+k}}{a_N} \right| \leq B^k \Rightarrow \left| a_{N+k} \right| \leq B^k \left| a_N \right| \Rightarrow \sum_{k=1}^{\infty} \left| a_{N+k} \right| \leq B^k \sum_{k=1}^{\infty} \left| a_N \right|.$ Since  $B^k \sum_{k=1}^{\infty} |a_k|$ .cges [o < B < 1]  $\therefore$  By Comparison test,  $\sum_{i=1}^{\infty} |a_n|$ . converges.  $\Rightarrow \sum_{n=1}^{\infty} a_n$  converges absolutely. (b) Let *a* >1. Choose B, s.t a > B > 1. Or 1 < B < a... (4.4) Let  $B = a - \in$  for some  $\in > 0$ . Since  $a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$ 

By def of limit inf, By def, Given  $\in >0$ ,  $\exists N \in I$ ,

Solve that  $\left|\frac{a_{n+1}}{a_n}\right| > a - \epsilon = B$ ,  $\forall n \ge N$ ,  $\Rightarrow |a_{n+1}| > B|a_n| > |a_n|$ . [1 < B < a]  $\Rightarrow \{a_n\}$  is not cges to zero.  $\Rightarrow \lim_{n \to \infty} a_n \neq 0$ . Hence the series  $\sum_{n=1}^{\infty} a_n$  diverges. (c) consider the series  $\sum_{n=1}^{\infty} \frac{1}{n}$  here  $a_n = \frac{1}{n}$   $\therefore \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{n}{n\left(1 + \frac{1}{n}\right)} =$   $\lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = 1/1 = 1 \neq 0$ .  $\therefore a = A = 1$ Hence the series  $\sum_{n=1}^{\infty} a_n$  diverges. If we consider the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 

$$\therefore \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \frac{n^2}{n^2 \left(1 + \frac{1}{n}\right)^2} = \lim_{n \to \infty} \frac{1}{n^2 \left(1 + \frac{1}{n}\right)^2} = \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^2} = 1/1 = 1 \neq 0.$$
  
But the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  cges.  
Hence the ratio test fails.

### Theorem: 13

# STATE AND PROVE ROOT TEST. [OR] CAUCHY ROOT TEST.

- Let  $\sum_{n=1}^{\infty} a_n$  be the series of real numbers. Let  $A = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$ If A < 1, then  $\sum_{n=1}^{\infty} |a_n|$  cges. If A > 1, then  $\sum_{n=1}^{\infty} |a_n|$  dvges.
- If A = 1, the test fails.

**Proof:** 

(a) Let A= $\lim_{n\to\infty} \sup |a_n|^{\frac{1}{n}}$  Let A < 1, Choose A < B < 1... (4.5) Take  $B = A + \in$  for some  $\in > 0$ ... (4.6) Since  $A = \lim \sup |a_n|^{\frac{1}{n}}$ By def of limit sup, Given  $\in >0$ ,  $\exists N \in I$ , Solve that  $|a_n|^{\frac{1}{n}} < A + \in = \mathbf{B}, \forall n \ge \mathbf{N},$  $\Rightarrow |a_n| < B^n, \forall n \ge N,$  $\Rightarrow \sum_{n=1}^{\infty} |a_n| < \sum_{n=1}^{\infty} B^n$ Now  $\sum_{n=1}^{\infty} B^n$  converges [since B < 1]  $\therefore$  By Comparison test,  $\sum_{k=1}^{\infty} |a_n|$ . converges.  $\Rightarrow \sum_{n=1}^{\infty} a_n$  converges absolutely. (b) Let A > 1. S.t 1 < B < A. Choose  $B = A - \in$  for some  $\in > 0$ . But A =  $\lim_{n\to\infty} \sup |a_n|^{\frac{1}{n}}$ 

By def of limit sup,  $\Rightarrow |a_n|^{\frac{1}{n}} > A - \in$ , for sufficiently many value of *n*,

 $\Rightarrow |a_n|^{\frac{1}{n}} > B > 1, \text{ for sufficiently many value of } n,$   $\Rightarrow |a_n| > 1$   $\therefore \{a_n\} \text{ is not cges to zero.}$   $\Rightarrow \sum_{k=1}^{\infty} a_n. \quad \text{diverges} \Rightarrow \sum_{k=1}^{\infty} a_n. = \infty.$ (c) Consider the two series  $\sum_{k=1}^{\infty} a_n. = \sum_{k=1}^{\infty} \frac{1}{n}.$  the series diverges.  $\sum_{k=1}^{\infty} b_n. = \sum_{k=1}^{\infty} \frac{1}{n^2}. \text{ the series converges.}$   $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}} = 1.$ Also,  $\lim_{n \to \infty} |b_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n^2}\right)^{\frac{1}{n}} = 1.$  $\therefore \text{ Test fails when A = 1.}$ 

#### Theorem: 14

#### STATE AND PROVE POWER TEST.

Let  $\{a_n\}$  be a seq of real numbers.

(a) If 
$$\lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = 0$$
, then  $\sum_{k=1}^{\infty} a_n x^n$ .cges absolutely,  $\forall$  real  $x$ ,

(b) If  $\lim_{n\to\infty} \sup |a_n|^{\frac{1}{n}} = L > 0$ . Then  $\sum_{k=1}^{\infty} a_n x^n$ .cges absolutely for  $|x| < \frac{1}{L}$  & diverges for  $|x| > \frac{1}{L}$ (c) If  $\lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = \infty$  then  $\sum_{k=1}^{\infty} a_n x^n$ . cges only x = 0 & div  $\forall$ 

other *x*.

Note: Here L is called Radius of convergence.

**Proof:** 

Given 
$$\lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = 0$$
 ... (4.7)  

$$\therefore \lim_{n \to \infty} \sup |a_n \cdot x^n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} \cdot |x| = 0 \cdot |x| = 0 < 1$$
[By Poot test]

[By Root test]

$$\therefore \sum_{k=1}^{\infty} a_n x^n \text{.cges absolutely, } \forall \text{ real } x,$$
(b) Let  $\lim_{n \to \infty} \sup |a_n . x^n|^{\frac{1}{n}} = L > 0$  .... (4.8)
$$\therefore \lim_{n \to \infty} \sup |a_n . x^n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} . |x| = L . |x|$$

$$\therefore \text{ By Root Test,}$$

$$\sum_{k=1}^{\infty} a_n x^n \text{.cges absolutely, if } L . |x| < 1 \text{ i.e } |x| < \frac{1}{L}$$

$$\sum_{k=1}^{\infty} a_n x^n . \text{diverges if } L |x| > 1 \text{ i.e } |x| > \frac{1}{L}.$$
(c) Let 
$$\lim_{n \to \infty} \sup |a_n . x^n|^{\frac{1}{n}} = \infty.$$

$$\therefore \lim_{n \to \infty} \sup |a_n . x^n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} . |x| = \infty. |x| = \infty > 1 \text{ if } . |x| \neq 0.$$

$$\therefore \text{ By Root Test,}$$

$$\sum_{k=1}^{\infty} a_n x^n . \text{diverges if } x \neq 0.$$

$$\text{if } x = 0, \ \sum_{k=1}^{\infty} a_n x^n . = a_0 + a_1 x + a_2 x^2 + \dots = a_0 + 0 + 0 + \dots.$$

$$[\because x = 0]$$

### SERIES WHOSE TERMS FORM A NON-INCREASING SEQUENCE.

### Theorem: 14

#### STATE AND PROVE CAUCHY CONDENSATION TEST.

If  $\{a_n\}$  is a non-increasing seq of +ve numbers & if  $\sum_{k=1}^{\infty} 2^n a_{2^n} \cdot \text{cges.}$ Then  $\sum_{n=1}^{\infty} a_n$  cges. [A16 N13

**Proof:** 

We have  $a_1 \le a_2$ .  $a_2 + a_3 \le a_2 + a_2 \le 2a_2$ . [ $\because a_3 \le a_2$ ]  $a_{4} + a_{5} + a_{6} + a_{7} \le 4a_{4} \le 2^{2}a_{4}$   $a_{2} + a_{2+1} + \dots + a_{2-1} \le 2^{n}a_{2}$ i.e.,  $\sum_{k=1}^{2^{n+1}-1} a_{k} \le \sum_{k=0}^{n} 2^{k} a_{2^{k}} \le \sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ . [Sum LHS &RHS] By hypothesis,  $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$  cges.  $\therefore$  By Comparison Test,  $\sum_{n=1}^{\infty} a_{n}$  converges.

Converse of the above theorem.

#### Theorem: 15

If 
$$\{a_n\}$$
 is a non-decreasing seq of +ve numbers &  
 $\sum_{k=1}^{n} 2^k a_{2^k}$  diverges.  
Then  $\sum_{n=1}^{\infty} a_n$  diverges.

## **Proof:**

Given  $a_1 \ge a_2 \ge a_3 \ge \dots \ge a_n \ge$ [A N13 We have  $a_3 + a_4 \ge 2a_2$   $[a_3 \ge a_2]$ And  $a_5 + a_6 + a_7 + a_8 \ge 4a_2$   $[a_5, a_6, a_7 \ge a_8]$ In general,  $a_{2+1} + a_{2+3} + a_{2+3} + \dots + a_2 \ge 2^n . a_2 = \frac{1}{2} [2^{n+1} . a_2]$ Sum LHS & RHS,

4.39

If

$$\Rightarrow \sum_{k=1}^{2^{n+1}} a_k \ge \frac{1}{2} \sum_{k=1}^n 2^{k+1} a_{2^{k+1}} = \sum_{k=2}^n 2^k a_{2^1}$$
  
$$\therefore \text{ By Comparison Test, } \sum_{n=1}^\infty a_n \text{ converges.}$$
  
$$\sum_{k=1}^n 2^k a_{2^1} \text{ diverges} \Rightarrow \sum_{n=1}^\infty a_n \text{ diverges.}$$

Hence the theorem.

### Theorem: 16

If  $\{a_n\}$  is a non-increasing seq of +ve numbers.

If 
$$\sum_{n=1}^{\infty} a_n$$
 cges, then  $\lim_{n \to \infty} n \cdot a_n = 0$ .

**Proof:** 

Let  $s_n = a_1 + a_2 + a_3 + ... + a_n$  be the *n*<sup>th</sup> partial sum of the series  $\sum_{n=1}^{\infty} a_n$ Let  $\sum_{n=1}^{\infty} a_n = A \ (\sum_{n=1}^{\infty} a_n \text{ cges to } A.)$ Then  $\lim_{n \to \infty} s_n = A.= \lim_{n \to \infty} s_{2n}$ . [Seq & subseq cges to same limit]  $\Rightarrow \lim_{n \to \infty} (s_{2n} - s_n) = 0.$  $\Rightarrow s_{2n} - s_n = a_{n+1} + a_{n+2} + ... + a_{2n} \ge a_{2n} + a_{2n} + ... \ge 0.$  [{*a<sub>n</sub>*} is

 $\Rightarrow s_{2n} - s_n = a_{n+1} + a_{n+2} + \dots + a_{2n} \le a_{2n} + a_{2n} + \dots \le 0. [\{a_n\} \text{ non-increasing}\}$ 

$$\Rightarrow 0 \leq \lim_{n \to \infty} n a_{2n} \leq \lim_{n \to \infty} (s_{2n} - s_n) = 0.$$

$$\Rightarrow 0 \leq \lim_{n \to \infty} 2n \cdot a_{2n} \leq 0$$
  

$$\Rightarrow \lim_{n \to \infty} 2n \cdot a_{2n} = 0 \qquad \dots (4.9)$$
  
But  $a_{2n+1} \leq a_{2n}$ , then  $(2n+1)a_{2n+1} \leq \left(\frac{2n+1}{2n}\right)2n \cdot a_{2n}$ .  
By(1) 
$$\Rightarrow \lim_{n \to \infty} (2n+1) \cdot a_{2n+1} = 0 \qquad \dots (4.10)$$
  
From (1) & (2), we get,  $\sum_{n=1}^{\infty} n \cdot a_n = 0$ . For all  $n$ .

### PROBLEMS BASED ON TEST FOR CONVERGECNE OF THE SERIES

Formula for limits theorem.

## **Type-I Comparison Test**

If 
$$\sum_{n=1}^{\infty} |b_n| \operatorname{cges} \& \lim_{n \to \infty} \frac{|a_n|}{|b_n|} \operatorname{exsist}$$
, Then  $\sum_{n=1}^{\infty} |a_n| \operatorname{cges}$ .

**Type-II Ratio Test** 

## [If Factorial is Given Use Ratio Test]

If 
$$a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|$$
 &  $A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|$  so  $a < A$ .  
A<1, then  $\sum_{n=1}^{\infty} |a_n|$  (cges)  
If A >1. Then  $\sum_{n=1}^{\infty} a_n$  diverges.

If A=1, then the test fails.

## Type-III Cauchy Root Test

### [If Power is N Use Root Test]

Let 
$$A = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$$
  
If  $A < 1$ , then  $\sum_{n=1}^{\infty} |a_n|$  cges.  
If  $A > 1$ , then  $\sum_{n=1}^{\infty} |a_n|$  dvges.

If A = 1, the test fails.

## **Type-IV Cauchy condensation Test**

If  $\{a_n\}$  is a non-increasing seq of +ve numbers & if  $\sum_{k=1}^{\infty} 2^n a_{2^n} \cdot \text{cges.}$ Then  $\sum_{n=1}^{\infty} a_n$  cges.

**TYPE-V** Rabee's Test

If 
$$\lim_{n \to \infty} \left[ n \left( \frac{a_n}{a_{n+1}} - 1 \right) \right] = L$$
  
Then (a)  $\sum_{n=1}^{\infty} a_n$  cges if L > 1.  
(b)  $\sum_{n=1}^{\infty} a_n$  dges if L < 1.  
(c) Test fails if L = 1.

Standard limits formulas.

1. 
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
  
2. 
$$\lim_{n \to 0} (1+n)^{\frac{1}{n}} = e \text{ or } \lim_{n \to 0} \left(1+\frac{1}{n}\right)^n = e$$
  
3. 
$$\lim_{n \to \infty} \left(1+\frac{a}{n}\right)^{\frac{1}{n}} = e^a.$$
  
4. 
$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$
  
5. 
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = n \cdot a^{n-1}.$$
  
6. 
$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \log (a/b).$$
  
7. 
$$\lim_{n \to 0} n^n = 1.$$
  
8. 
$$\lim_{n \to \infty} x^n = 0 \text{ if } x < 1,$$
  

$$= \infty \text{ if } x \ge 1.$$

### **TYPE I COMPARISON TEST**

# P1. Examine the convergence of the series.

(i) 
$$\sum_{n=0}^{\infty} \frac{n}{n^2 + n + 6}$$
 (ii)  $\sum_{n=1}^{\infty} \frac{1}{1 + n^2}$  (iii) P.T  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$  cges.  
(iv)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(1 + n^2)}}$  (v)  $\sum_{n=1}^{\infty} \frac{1 + n}{1 + n^2}$  (Div) (vi)  $\sum_{n=1}^{\infty} \frac{2n}{n^2 - 4n + 7}$  (div)

Solution:

(i) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{n}{n^2 + n + 6}$$
,  
Here  $a_n = \frac{n}{n^2 + n + 6} = \frac{n}{n^2 \left(1 + \frac{1}{n} + \frac{6}{n^2}\right)} = \frac{1}{n \left(1 + \frac{1}{n} + \frac{6}{n^2}\right)}$   
Take  $b_n = \frac{1}{n}$   
 $\therefore \frac{a_n}{b_n} = \frac{1}{n \left(1 + \frac{1}{n} + \frac{6}{n^2}\right)} \times \frac{n}{1}$ 

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n} + \frac{6}{n^2}\right)} = \frac{1}{\left(1 + 0 + 0\right)} = 1 \text{ exists.}$$

 $\therefore$  By Comparison Test,  $\sum b_n = \sum \frac{1}{n}$  diverges.

$$\Rightarrow \sum a_n = \sum_{n=0}^{\infty} \frac{n}{n^2 + n + 6}$$
 diverges.

# P2. Test for convergence of the series

(i) 
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots \infty$$
  
(ii)  $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$  [Hint  $a_n = \frac{2n-1}{n(n+1)(n+2)}$   
(iii)  $\frac{1}{2.3.4} + \frac{1}{4.5.6} + \frac{1}{6.7.8} + \dots \infty$  [Hint  $a_n = \frac{1}{2n(2n+1)(2n+2)}$ ]

(iv) 
$$\frac{1}{1.4} + \frac{1}{2.5} + \frac{1}{3.6} + \dots \infty$$
 [Hint: $a_n = \frac{1}{n(n+3)}$   
(v)  $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots \infty$  (x > 0)  
(vi)  $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{n+1}} + \dots$  [Ans:Div]  
(vii)  $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^2}{4^4} + \dots$  Hint :  $a_n = \frac{n^n}{(n+1)^{n+1}}$  [On omitting first term] Take  $b_n = \frac{1}{n}$  Ans:-div

## Solution:

(1). Given series. 
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots \infty$$
  
=  $\sum_{n=0}^{\infty} \frac{1}{n(n+1)(n+2)}$ 

[Hint:- Use  $t_n = a + (n - 1)d$  [ a = First Term , d = Common Difference ]

1, 2, 3, ... = 1 + (n - 1)1 = 1+n - 1 = n  
2, 3, 4, .... 
$$t_n = 2 + (n - 1)1 = 2 + n - 1 = n + 1$$
  
3, 4, 5, ....  $t_n = 3 + (n - 1)1 = 3 + n - 1 = n + 2$ ]  
Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{1}{n(n+1)(n+2)}$ 

Here 
$$a_n = \frac{1}{n(n+1)(n+2)} = \frac{1}{n^3 \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)}$$
  
Take  $b_n = \frac{1}{n^3}$   
 $\therefore \frac{a_n}{b_n} = \frac{1}{n^3 \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)} \times \frac{n^3}{1}$   
 $\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)} = \frac{1}{(1+0)(1+0)} = 1$  exists.

: By Comparison Test,  $\sum b_n = \sum \frac{1}{n^3}$  converges

Hence the series  $\sum a_n = \sum_{n=0}^{\infty} \frac{1}{n(n+1)(n+2)}$  also converges.

## P3. Discus whether the series cges or div?

(i) 
$$\sum_{n=1}^{\infty} \left( \sqrt{n+1} - \sqrt{n} \right)$$
 (ii)  $\sum_{n=0}^{\infty} \left( \sqrt{n^2 + 1} - n \right)$  (Ans:-div)  
(iii)  $\sum_{n=1}^{\infty} \left( \sqrt{n^4 + n} - n^2 \right)$  (iv)  $\sum_{n=1}^{\infty} \left( \sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$   
(v)  $\sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{1+n^2}{1+n^3} \right)$  (vi)  $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots$ 

(vii) Show that the series  $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n^2 + 1} - n)$  is conditionally convergence.

U

Solution:

(i) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left( \sqrt{n+1} - \sqrt{n} \right)$$

here

$$a_{n} = (\sqrt{n+1} - \sqrt{n}) = (\sqrt{n+1} - \sqrt{n}) \times \frac{(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \frac{(n+1-n)}{(\sqrt{n+1} + \sqrt{n})}$$
$$= \frac{1}{(\sqrt{n+1} + \sqrt{n})}$$
$$a_{n} = \frac{1}{\sqrt{n}(\sqrt{1+\frac{1}{n}} + 1)} \qquad \text{Take } b_{n} = \frac{1}{\sqrt{n}}$$
$$\therefore \frac{a_{n}}{b_{n}} = \frac{1}{\sqrt{n}(\sqrt{1+\frac{1}{n}} + 1)} \frac{\sqrt{n}}{1} = \frac{1}{(\sqrt{1+\frac{1}{n}} + 1)}$$
$$\therefore \lim_{n \to \infty} \frac{a_{n}}{b_{n}} = \lim_{n \to \infty} \frac{1}{(\sqrt{1+\frac{1}{n}} + 1)} = \frac{1}{(1+1)} = \frac{1}{2} \text{ exists.}$$
$$\therefore \text{ By Comparison Test, } \sum b_{n} = \sum \frac{1}{\sqrt{n}} \text{ diverges.}$$

 $\therefore$  Where  $p = \frac{1}{2} < 1$ .

Hence the series 
$$\sum a_n = \sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$$
 also diverges.

## Solution:

(vii).Let 
$$\sum_{n=1}^{\infty} (-1)^n a_n = \sum_{n=0}^{\infty} (-1)^n \left(\sqrt{n^2 + 1} - n\right)$$
 be an alternating

series.

here 
$$a_n = (\sqrt{n^2 + 1} - n) = (\sqrt{n^2 + 1} - n) x \frac{(\sqrt{n^2 + 1} + n)}{(\sqrt{n^2 + 1} + n)} = \frac{(n^2 + 1 - n^2)}{(\sqrt{n^2 + 1} + n)}$$
  
 $= \frac{1}{(\sqrt{n^2 + 1} + n)}$   
 $a_n = \frac{1}{(\sqrt{n^2 + 1} + n)}$  and  $a_{n+1} = \frac{1}{(\sqrt{(n+1)^2 + 1} + (n+1))}$ 

Clearly  $a_{n+1} > a_n$  for all n.

Also 
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1} + n} = 0.$$

 $\therefore$  By Leibnitz test, the alternating series  $\sum_{n=1}^{\infty} (-1)^n a_n$  is

convergent.

Let us consider

$$\sum_{n=0}^{\infty} \left| (-1)^n a_n \right| = \sum_{n=0}^{\infty} \left| \frac{(-1)^n}{(\sqrt{n^2 + 1} + n)} \right| = \sum_{n=0}^{\infty} \frac{1}{(\sqrt{n^2 + 1} + n)} = \sum_{n=0}^{\infty} u_n$$

Take 
$$v_n = \frac{1}{n}$$
  

$$\therefore \frac{a_n}{b_n} = \frac{1}{n\left(\sqrt{1 + \frac{1}{n^2} + 1}\right)} \frac{n}{1} = \frac{1}{\left(\sqrt{1 + \frac{1}{n^2} + 1}\right)}$$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{n^2} + 1}\right)} = \frac{1}{(1 + 1)} = \frac{1}{2} \text{ exists.}$$

$$\therefore \text{ By Comparison Test, } \sum b_n = \sum \frac{1}{n} \text{ diverges.}$$

$$\Rightarrow$$
 the series  $\sum u_n = \sum_{n=0}^{\infty} \left| (-1)^n \left( \sqrt{n^2 + 1} - n \right) \right|$  is diverges.

Hence the given series converges conditionally.

**P4.** Test for convergence of the series 
$$\sum_{n=0}^{\infty} n^{-1-\frac{1}{n}}$$
.

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} n^{-1 - \frac{1}{n}}$$
, Here  $a_n = n^{-1 - \frac{1}{n}} = \frac{1}{n! + \frac{1}{n}} = \frac{1}{n! + \frac{1}{n}} = \frac{1}{n! + \frac{1}{n}}$ ,  
Take  $b_n = \frac{1}{n! + \frac{1}{n}}$ ,  
 $a_n = \frac{1}{n! + \frac{1}{n!}} \times \frac{n}{1}$ 

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = 1 \text{ exists.}$$
  

$$\therefore \text{ By Comparison Test, } \sum b_n = \sum \frac{1}{n} \text{ diverges.}$$
  

$$\Rightarrow \sum a_n = \sum_{n=0}^{\infty} n^{-1 - \frac{1}{n}} \text{ diverges.}$$
  
**P5. Test for convergent** (i)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{1}{n}\right)$  (ii)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan\left(\frac{1}{n}\right)$   
(iii)  $\sum_{n=1}^{\infty} \frac{\log(n)}{n}$ 

Solution:

(i): Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{1}{n}\right)$$
  
Here  $a_n = \frac{1}{\sqrt{n}} \sin\left(\frac{1}{n}\right) = \frac{1}{\sqrt{n}} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} \times \frac{1}{n} = \frac{1}{(n)^{\frac{3}{2}}} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$ 

Take  $b_n = \frac{1}{(n)^{\frac{3}{2}}}$ 

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n^{\frac{3}{2}}} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} \times \frac{(n)^{\frac{3}{2}}}{1} = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1 \text{ exists.}$$

 $\therefore$  By Comparison Test,  $\sum b_n = \sum \frac{1}{n^{\frac{3}{2}}}$  converges.

Where  $p = \frac{3}{2} < 1$ .

Hence the series  $\sum a_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{1}{n}\right)$  also converges.

## **TYPE-II RATIO TEST**

### [IF FACTORIAL IS GIVEN USE RATIO TEST]

P1. Using Ratio test discuss the convergence of the series.

(i) 
$$\sum_{n=1}^{\infty} \frac{x^n}{n} (x > 0)$$
 (ii)  $\sum_{n=1}^{\infty} \frac{x^n}{n!} (x > 0)$  [A14] (iii)  $\sum_{n=1}^{\infty} \frac{n!}{n^n}$   
(iv)  $\sum_{n=1}^{\infty} \frac{n^4}{n!}$  (v)  $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} x^n$   
(vi)  $(3-e)(3-e^{1/2})(3-e^{1/3})(3-e^{1/4})....(3-e^{1/n})$   
Discuss the cges of the series  $1 + \frac{(\angle 1)^2}{\angle 2} x + \frac{(\angle 2)^2}{\angle 4} x^2 + \frac{(\angle 3)^2}{\angle 6} x^3 + ....$ 

Solution:

(i) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
,  
Here  $a_n = \frac{x^n}{n}$ ,  $a_{n+1} = \frac{x^{n+1}}{(n+1)}$ 

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)} \times \frac{n}{x^n} = x \cdot \frac{n}{n\left(1 + \frac{1}{n}\right)}$$
$$\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = x \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = x \cdot 1 = x$$

: By Ratio Test,

If 
$$x < 1$$
, Hence the series  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  converges.  
If  $x > 1$ , Hence the series  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  diverges.

If x = 1, The test fails.

(ii) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, if  $x > 0$ .  
Here  $a_n = \frac{x^n}{n!}$ ,  $a_{n+1} = \frac{x^{n+1}}{(n+1)!}$   
 $\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \times \frac{n!}{x^n} = x \cdot \frac{n!}{(n+1)n!} = x \cdot \frac{1}{(n+1)}$   
 $\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = x \cdot \lim_{n \to \infty} \frac{1}{n(1+\frac{1}{n})} = x \cdot 0 = 0 = 0 = A < 1.$ 

: By Ratio Test,

Hence the series  $\sum_{n=1}^{\infty} \frac{x^n}{n!}$  converges.

(iii) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n!}{n^n}$$
,  
Here  $a_n = \frac{n!}{n^n}$ ,  $a_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}$   
 $\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \times \frac{n^n}{n!} = \frac{(n+1).n!}{(n+1)(n+1)^n} \times \frac{n^n}{n!} = \frac{n^n}{(n+1)^n}$   
 $= \frac{n^n}{n^n \left(1 + \frac{1}{n}\right)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$   
 $\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} = A < 1.$  (since  $2 < e < 3$ )

: By Ratio Test, Hence the series  $\sum a_n = \sum_{n=1}^{\infty} \frac{n!}{n^n}$  converges.

(iv) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n^4}{n!}$$
, Here  $a_n = \frac{n^4}{n!}$ ,  $a_{n+1} = \frac{(n+1)^4}{(n+1)!}$   
 $\frac{a_{n+1}}{a_n} = \frac{(n+1)^4}{(n+1)!} \times \frac{n!}{n^4} = \frac{(n+1)^4}{(n+1).n!} \times \frac{n!}{n^4} = \frac{(n+1)^3}{n^4} = \frac{n^3 \left(1 + \frac{1}{n}\right)^3}{n^4}$   
 $= \frac{\left(1 + \frac{1}{n}\right)^3}{n}$ 

$$\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^3}{n} = \frac{1}{\infty} = 0 = A < 1 \text{ [Check-----]}$$
  

$$\therefore \text{ By Ratio Test, Hence the series } \sum a_n = \sum_{n=1}^{\infty} \frac{n^4}{n!} \text{ converges.}$$
  
(v) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} \cdot x^n$ ,  
Here  $a_n = \sqrt{\frac{n}{n+1}} x^n$ ,  $a_{n+1} = \sqrt{\frac{n+1}{n+2}} x^{n+1}$ ,  
 $\frac{a_{n+1}}{a_n} = \sqrt{\frac{n+1}{n+2}} x^{n+1} \sqrt{\frac{n+1}{n}} \frac{1}{x^n} x^n = \frac{(n+1)}{\sqrt{n} \cdot \sqrt{n+2}} \cdot x$   
 $= \frac{n\left(1 + \frac{1}{n}\right)}{n \cdot \sqrt{\left(1 + \frac{2}{n}\right)}} \cdot x = \frac{\left(1 + \frac{1}{n}\right)}{\sqrt{\left(1 + \frac{2}{n}\right)}} \cdot x = \frac{1 \cdot x}{1} = x = A.$ 

 $\therefore$  By Ratio Test, If x < 1,  $\sum a_n$  converges If x > 1,  $\sum a_n$  diverges. If x = 0, the test fails. (vi) Given series  $(3 - e)(3 - e^{1/2})(3 - e^{1/3})(3 - e^{1/4})....(3 - e^{1/n})$ Here  $a_n = (3 - e)(3 - e^{1/2})(3 - e^{1/3})(3 - e^{1/4})...(3 - e^{1/n})$   $a_{n+1} = (3 - e)(3 - e^{1/2})(3 - e^{1/3})(3 - e^{1/4})...(3 - e^{1/n}).(3 - e^{1/(n+1)})$   $\frac{a_{n+1}}{a_n} = 3 - e^{\frac{1}{n+1}}$  $\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (3 - e^{\frac{1}{n+1}}) = (3 - 1) = 3 = A > 1.$ 

∴ By Ratio Test,

the series  $(3 - e)(3 - e^{1/2})(3 - e^{1/3})(3 - e^{1/4})\dots(3 - e^{1/n})$  diverges.

(vii) Hint. 
$$a_n = \frac{(\angle n)^2}{\angle (2n)} x^n$$
, [on omitting the first term.]  

$$\frac{a_{n+1}}{a_n} = \frac{(\angle (n+1))^2 x^{n+1}}{\angle (2n+2)} \qquad \frac{(\angle (2n)}{(\angle n)^2 x^n} = \frac{(n+1)^2 (\angle 2n)}{(2n+2)(2n+1)(\angle 2n)} x \times x^n$$

$$= \frac{x}{2} \frac{n+1}{(2n+1)} \cdot x = \frac{x}{2} \frac{1+\frac{1}{n}}{(2+\frac{1}{n})}$$

$$\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{x}{2} \lim_{n \to \infty} \frac{\left(1+\frac{1}{n}\right)}{\left(2+\frac{1}{n}\right)} = \frac{x}{4} = A < 1.$$

.: By Ratio Test, Hence

(i) the series 
$$\sum_{n=0}^{\infty} \frac{(\angle n)^2}{\angle (2n)} x^n$$
 converges if  $\frac{x}{4} < 1$  i.e.,  $x < 4$   
(ii) the series  $\sum_{n=0}^{\infty} \frac{(\angle n)^2}{\angle (2n)} x^n$  diverges if  $\frac{x}{4} > 1$  i.e.,  $x > 4$ 

(iii) the test fails if x = 4.

P2. For any x > 0. P.T, the series

(i) 
$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots \infty$$
  
(ii)  $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots + \infty$ .  
(iii)  $1 + \frac{x}{2} + \frac{x^2}{5} + \dots + \frac{x^n}{n^2 + 1} + \dots \infty$  (x > 0).  
(iv)  $1 + \frac{x}{3} + \frac{x^2}{5} + \dots + \infty$ .

Solution:

(i). Given series. 
$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots \infty = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$

[Hint:- Use  $t_n = a + (n - 1)d$  [a = First Term, d = Common Difference]

1, 2, 3, ... = 1 + (n - 1)1 = 1 + n - 1 = n  
2, 3, 4, .... 
$$t_n = 2 + (n - 1)1 = 2 + n - 1 = n + 1$$
]  
Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$ 

Here 
$$a_n = \frac{x^n}{n(n+1)}$$
 and  $a_{n+1} = \frac{x^{n+1}}{(n+1)(n+2)}$   
Take  $b_n = \frac{1}{n^3}$   
 $\therefore \frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)(n+2)} \times \frac{n(n+1)}{x^n} = x. \times \frac{n}{(n+2)}$   
 $\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = x. \lim_{n \to \infty} \frac{n}{n(1+\frac{2}{n})} = x. \lim_{n \to \infty} \frac{1}{(1+\frac{2}{n})} = x...1 = x.$ 

∴ By Ratio Test,

If 
$$x < 1$$
, then the series  $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$  convergence.  
If  $x > 1$ , then the series  $\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$  divergence.

If x = 1, then the test fails.

## P3. Prove that the Exponential series

(i) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$$
 cges absolutely.  
(ii)  $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \infty$  converges absolutely for all values of *x*.

(iii) 
$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \infty$$
 cges.

(iv) For x > 0, P.T. the series  $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \infty$  is cges absolutely.

(v) For x > 0, P.T the series  $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \infty$ . is cges

absolutely.

(vi) For what value of x does  $1 + 2x + 3x^2 + \dots$  cges?

Solution:

(i) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$$
, Here  $a_n = \frac{(-1)^{n+1}}{n!}$   
 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(\angle n+1)} \cdot \frac{\angle n}{(-1)^n} \right|$   
 $= \lim_{n \to \infty} \left| \frac{(-1)}{(n+1)} \right| = \lim_{n \to \infty} \frac{1}{(n+1)} = 0 < 1.$   
 $\Rightarrow \sum_{n=1}^{\infty} |a_n|$  Converges.=>  $\sum_{n=1}^{\infty} a_n$  cges absolutely.  
 $\therefore$  By Ratio Test, the series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$  converges absolutely.

(vi) Given series  $1 + 2x + 3x^2 + \dots$  cges?

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (n+1)x^n$$
, Here  $a_n = (n+1)x^n$   
 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)+1)x^{n+1}}{(n+1)x^n} \right|$ .

$$= |x| \lim_{n \to \infty} \left| \frac{n\left(1 + \frac{2}{n}\right)}{n\left(1 + \frac{1}{n}\right)} \right| = |x| \lim_{n \to \infty} \left| \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{1}{n}\right)} \right| = |x|$$

: By Ratio Test, the series  $\sum_{n=1}^{\infty} (n+1)x^n$  converges if <1. & div if |x|>1.

## P4. (a)Does the ratio test gives any information about the series

$$\left(\frac{1}{2}\right)^{0} + \left(\frac{1}{4}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{4}\right)^{3} + \left(\frac{1}{2}\right)^{4} + \dots$$

(b) Does the series converges?

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \left(\frac{1}{2}\right)^0 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^3 + \left(\frac{1}{2}\right)^4 + \dots,$$

Case(i) When n is odd:- h

here 
$$a_n = \left(\frac{1}{4}\right)^n$$
 and  $a_{n+1} = \left(\frac{1}{2}\right)^{n+1}$ 

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{1}{2}\right)^{n+1}}{\left(\frac{1}{4}\right)^n} \right|.$$

$$= \lim_{n \to \infty} \left| \frac{\left(\frac{1}{2}\right)^{n} \frac{1}{2}}{\left(\frac{1}{2}\right)^{n} \left(\frac{1}{2}\right)^{n}} \right| = \lim_{n \to \infty} \frac{2^{n}}{2} = \lim_{n \to \infty} 2^{n-1} = \infty > 1 \qquad \dots (4.11)$$

Case(ii) When n is even: here  $a_n = \left(\frac{1}{2}\right)^n$  and  $a_{n+1} = \left(\frac{1}{4}\right)^{n+1}$ 

$$\therefore \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{1}{4}\right)^{n+1}}{\left(\frac{1}{2}\right)^n} \right|$$
$$= \lim_{n \to \infty} \left| \frac{\left(\frac{1}{4}\right)^n \frac{1}{4}}{\left(\frac{1}{2}\right)^n} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n \frac{1}{4}}{\left(\frac{1}{2}\right)^n} \right|$$
$$= \lim_{n \to \infty} \frac{1}{2^n} \frac{1}{4} = 0 < 1 \qquad \dots (4.12)$$

## From (i) & (ii)

We see that by Ratio Test, does not give any information

i.e., Ratio Test fails.

(b) Let 
$$\sum_{n=1}^{\infty} a_n = \left(\frac{1}{2}\right)^0 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^3 + \left(\frac{1}{2}\right)^4 + \dots,$$
  
And Let  $\sum_{n=1}^{\infty} b_n = \left(\frac{1}{2}\right)^0 + \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 + \dots,$ 

Clearly  $a_n \leq b_n, \forall n \in \mathbf{I}$ 

$$\therefore \sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n$$
  
But  $\sum_{n=1}^{\infty} b_n$  converges. [It is GP with  $d = 1/2 < 1$ ]  
Hence  $\sum_{n=1}^{\infty} a_n$  converges absolutely.

# P5. P.T the Binomial series

(i) 
$$1 + \mathbf{nx} + \frac{n.x}{1!} + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$
 cge absol  
for  $|x.| < 1$ .

# (ii)Examine the test for cges for the series.

$$x + \frac{1}{2}\frac{x^{3}}{3} + \frac{1.3}{2.3}\frac{x^{3}}{5} + \frac{1.3.5}{2.4.6}\frac{x^{5}}{7} + \dots \text{ cge absolutely for } |x| < 1.$$
(iii)  $\frac{2}{3} + \frac{2.3}{3.5} + \frac{2.3.4}{3.5.7} + \dots$ 
(iv)  $1 + \frac{1}{2}\frac{1}{3} + \frac{1.3}{2.4}\frac{1}{5} + \frac{1.3.5}{2.4.6}\frac{1}{.7} + \dots$ 
(v) Examine the cges of  $\frac{3}{4}\frac{x}{5} + \frac{3.6}{4.7}\frac{x^{2}}{8} + \frac{3.6.9}{4.7.10}\frac{x^{3}}{11} + \dots$ 

### Solution:

(i) Given series  

$$1 + nx + \frac{n \cdot x}{1!} + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$
 for  $|x| < 1$ .

Here 
$$a_{r+1} = \frac{n(n-1)(n-2)....(n-(r-1))}{1.2.3....r} x^r$$
.  
and  $a_r = \frac{n(n-1)(n-2)....(n-r)}{1.2.3....(r-1)}$   

$$\lim_{r \to \infty} \left| \frac{a_{r+1}}{a_r} \right| = \lim_{r \to \infty} \left| \frac{n-r+1}{r} . x \right| = |x| \lim_{r \to \infty} \frac{r}{r} \left( \frac{n+1}{r} - 1 \right)$$

$$= |x| \lim_{r \to \infty} \left( \frac{n+1}{r} - 1 \right) = |x| < 1 \text{ (Given)}$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ Converges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ cges absolutely.}$$

$$\therefore \text{ By Ratio Test, the series } \sum_{r=0}^{\infty} \frac{n(n-1)...(n-r+1)}{r!} . x^r$$

converges absolutely for |x| < 1.

# P6. Examine the convergence or divergence of

(i) 
$$\sum_{n=1}^{\infty} \frac{3}{4+2^n}$$
 (ii)  $\frac{1}{1+x} + \frac{1}{1+2x^2} + \frac{1}{1+3x^3} + \dots$   
(iii)  $\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+3^3} + \dots$  (iv)  $\sum_{0}^{\infty} \frac{n^3 + 1}{2^n + 1}$   
Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{3}{4+2^n}$ , Here  $a_n = \frac{3}{4+2^n}$ ,  $a_{n+1} = \frac{3}{4+2^{n+1}}$   
 $\frac{a_{n+1}}{a_n} = \frac{3}{4+2^{n+1}} \cdot \frac{4+2^n}{3} = \frac{2^n \left(\frac{4}{2^n} + 1\right)}{2^n \left(\frac{4}{2^n} + 2\right)} \cdot = \frac{\left(\frac{4}{2^n} + 1\right)}{\left(\frac{4}{2^n} + 2\right)}$ 

$$\therefore \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\left(\frac{4}{2^n} + 1\right)}{\left(\frac{4}{2^n} + 2\right)} = \frac{(0+1)}{(0+2)} = \frac{1}{2} = A < 1.$$

: By Ratio Test, Hence the series  $\sum_{n=1}^{\infty} \frac{3}{4+2^n}$  converges.

## **TYPE III. CAUCHY ROOT TEST**

## [IF POWER IS N USE ROOT TEST]

P1. Using Root test for the convergence of the following series.

(i)S.T 
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$
 cges for all  $x$  in R.  
(ii) Solve that if  $|x| < 1$ , then  $\sum_{n=1}^{\infty} n^{10000} x^n$  cges absolutely?  
(iii)  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  (iv)  $\sum_{n=1}^{\infty} \frac{n!}{n^n}$  (v)  $\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}$  (vi)  $\sum_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^{2n}}{e^n}$   
(vii)  $\sum_{n=1}^{\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}$   
(viii)  $\sum_{n=1}^{\infty} \frac{x^n}{e^{\sqrt{n}}}, x > 0.$ 

(ix) Show that the series  $\sum_{n=1}^{\infty} \frac{(nx)^n}{\angle n}$  cges if  $x < \frac{1}{e}$  and div if  $x > \frac{1}{e}e$ .

(x) Test for cges of the series  $\sum_{n=1}^{\infty} p^n n^p$ , p > 1.

Solution:

(i) Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{x^n}{n^n}$$
, Here  $a_n = \frac{x^n}{n^n}$ ,  $|a_n|^{\frac{1}{n}} = \left(\frac{x^n}{n^n}\right)^{\frac{1}{n}} = \frac{x}{n}$   
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left|\frac{x}{n}\right| = 0 = A < 1.$   
 $\therefore$  By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$  converges.  
(ii) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n^{10000} x^n$ , Here  $a_n = n^{10000} x^n$ ,  
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} |n^{10000} x^n|^{\frac{1}{n}} = \lim_{n \to \infty} |n^{\frac{1}{n}}|^{10000} |x| = 1.$   $|x| = A < 1.$   
 $\therefore$  By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} n^{10000} x^n$  converges.  
(iii) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{x^n}{n}$ , Here  $a_n = \frac{x^n}{n}$ ,  
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left|\frac{x^n}{n}\right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{|x|}{|n|^{\frac{1}{n}}} = 1.$   $\frac{|x|}{1} = |x| = A < 1.$   
By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  converges.

(iv) Given series 
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
, Here  $a_n = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \dots \frac{n}{n}$   
 $|a_n|^{\frac{1}{n}} = \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \dots \frac{n}{n}\right)^{\frac{1}{n}} = \frac{x}{n}$   
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \dots \frac{n}{n}\right)^{\frac{1}{n}} = A$  (say)

Then

$$\log (L) = \log \left(\lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \dots \frac{n}{n}\right)^{\frac{1}{n}}\right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \left[\log \frac{1}{n} + \log \frac{2}{n} + \log \frac{3}{n} + \dots + \log \frac{n}{n}\right]$$
$$= \lim_{n \to \infty} \frac{1}{n} \left[\sum_{r=1}^{n} \log \left(\frac{r}{n}\right)\right] = \lim_{n \to \infty} \frac{1}{n} \left[\sum_{r=1}^{n} f\left(\frac{r}{n}\right)\right] = \int_{0}^{1} f(x) dx$$

[by summation integration formula]

$$= \int_{0}^{1} \log x dx = [x(\log x - 1)]_{x=0} = -1 - 0 = --1.$$
  
Log A= -1  $\Rightarrow$  A =  $e^{-1} = \frac{1}{e}$ .  
By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} \frac{n!}{n^n}$  converges.  
(v) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(\frac{1}{\log n}\right)^n$ ,

Here 
$$a_n = \left(\frac{1}{\log n}\right)^n$$
,  $|a_n|^{\frac{1}{n}} = \left[\left(\frac{1}{\log n}\right)^n\right]^{\frac{1}{n}} = \frac{1}{\log n}$   
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left|\left(\frac{1}{\log n}\right)^n\right|^{\frac{1}{n}} = \lim_{n \to \infty} \left|\left(\frac{1}{\log n}\right)\right| = \frac{1}{\infty} = 0 = A < 1.$   
 $\therefore$  By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} \left(\frac{1}{\log n}\right)^n$  converges.  
(vi) Given series  $\sum_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^{2n}}{e^n}$  Here  $a_n = \frac{\left(1 + \frac{1}{n}\right)^{2n}}{e^n}$ ,  
 $|a_n|^{\frac{1}{n}} = \left[\frac{\left(1 + \frac{1}{n}\right)^{2n}}{e^n}\right]^{\frac{1}{n}} = \frac{\left(1 + \frac{1}{n}\right)^2}{e} = \frac{1}{e}\left[1 + \frac{1}{n^2} + \frac{2}{n}\right]$   
 $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{e}\left[1 + \frac{1}{n^2} + \frac{2}{n}\right] = \frac{1}{e}\left[1 + 0 + 0\right] = \frac{1}{e} = A < 1.$   
 $\therefore$  By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^{2n}}{e^n}$  converges.  
(vii) Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}$  Here  $a_n = \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}$ ,

$$|a_n|^{\frac{1}{n}} = \left[\frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}\right]^{\frac{1}{n}} = \frac{1}{\left(1+\frac{1}{n}\right)^n}$$
$$\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\left(1+\frac{1}{n}\right)^n} = \frac{1}{e} = A < 1.$$

1

 $\therefore \text{ By Cauchy Root Test, the series } \sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}} \text{ converges.}$ 

(viii) Given series 
$$\sum_{n=1}^{\infty} \frac{x^n}{e^{\sqrt{n}}}$$
, here  $a_n = \frac{x^n}{e^{\sqrt{n}}}$ ,

$$|a_n|^{\frac{1}{n}} = \left(\frac{x^n}{e^{\sqrt{n}}}\right)^{\frac{1}{n}} = \frac{x}{e^{\frac{1}{\sqrt{n}}}}$$

$$\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{x}{e^{\frac{1}{\sqrt{n}}}} = \frac{x}{1} = x = A$$

∴ By Cauchy Root Test,

If 
$$x < 1$$
, the series  $\sum_{n=1}^{\infty} \frac{x^n}{e^{\sqrt{n}}}$  converges.  
If  $x > 1$ , the series  $\sum_{n=1}^{\infty} \frac{x^n}{e^{\sqrt{n}}}$  diverges.

If x = 0, the Test fails.

(x) Test for cges of the series  $\sum_{n=1}^{\infty} p^n n^p$ , p > 1. Let  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} p^n n^p$  here  $a_n = p^n \cdot n^p$   $\therefore \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} |p^n n^p|^{\frac{1}{n}} = p$ .  $\lim_{n \to \infty} \left|n^{\frac{1}{n}}\right|^p = p$ .1=p.  $\therefore$  By Cauchy Root Test, the series  $\sum_{n=1}^{\infty} p^n n^p$  converges if p < 1. & div if p > 1. When p=1,  $\sum_{n=1}^{\infty} n$  which is diverges.

### **TYPE-V CAUCHY CONDENSATION TEST**

**P1.** For what value of p, the series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converges & diverges.

Solution:

Given series 
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
, here  $a_n = \frac{1}{n^p}$ ,  $a_2 = \frac{1}{(2^n)^p}$ 

Clearly  $a_n$  is an non-incerasing seq of +ve terms.

$$\therefore \sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}} = \sum_{n=1}^{\infty} \left[ \left( \frac{1}{2} \right)^{p-1} \right]^n$$
  
Which is converges if  $\left( \frac{1}{2} \right)^{p-1} < 1$ 

i.e., if  $(2)^{1-p} < 1$ i.e., if  $\log(2)^{1-p} < \log(1)$  i.e., if  $(1-p)\log(2) < 0$ . i.e., if (1-p) < 0 [log2 = 0] i.e., if 1 < p i.e., if p > 1. The series diverges if  $\left(\frac{1}{2}\right)^{p-1} \ge 1$ i.e., if  $(2)^{1-p} \ge 1$ i.e., if  $\log(2)^{1-p} \ge \log(1)$  i.e., if  $(1-p).\log(2) \ge 0$ . i.e., if  $(1-p) \ge 0$  i.e., if  $1 \ge p$  i.e.,  $p \le 1$ .  $\therefore \sum_{n=1}^{\infty} 2^n a_{2^n} < \infty$  (cges) if p > 1. And  $\sum_{n=1}^{\infty} 2^n a_{2^n} = \infty$ .

∴ By Cauchy condensation test,

Hence the series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  cges if p > 1. Div if  $p \le 1$ .

**P2.** Show that the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  cges.

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
  
Here  $a_1 = \frac{1}{1^2}$ ,  $a_2 = \frac{1}{2^2}$ ,  $a_3 = \frac{1}{3^2}$ .....  $a_n = \frac{1}{n^2}$ 

Clearly  $a_1 \ge a_2 \ge a_3 \ge \dots$  is a  $\downarrow$  and +ve numbers.

∴ By Cauchy condensation test,

We have 
$$\sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^2} = \sum_{n=1}^{\infty} \frac{1}{(2^n)} < \infty$$
 (cges)  
[ $\because x = 1/2, 0 < x < 1$ ]  
 $\therefore \sum_{n=1}^{\infty} 2^n a_{2^n} < \infty$ , Hence the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  converges.

**P3.** Show that 
$$\sum_{n=1}^{\infty} \frac{1}{(n \log n)}$$
 diverges.

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{(n \log n)}$$
 here  
 $a_n = \frac{1}{n \log n} \& a_{2^n} = \frac{1}{2^n \log 2^n} = \frac{1}{n \cdot 2^n \log 2}$ 

 $\therefore$  By Cauchy condensation test, We have

$$\sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{n \cdot 2^n \cdot \log 2} = \frac{1}{\log 2} \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} = \infty \text{ (diverges)}$$
  
$$\therefore \sum_{n=1}^{\infty} 2^n a_{2^n} = \infty \text{ (diverges)}$$
  
Hence the series 
$$\sum_{n=1}^{\infty} \frac{1}{(n \cdot \log n)} \text{ diverges.}$$

**P4.** Solve that 
$$\sum_{n=1}^{\infty} \frac{1}{(n \log n)^2}$$
 converges.

Solution:

Let 
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{(n \log n)^2}$$
 here  
 $a_n = \frac{1}{(n \log n)^2}$ ,  $a_{2^n} = \frac{1}{(2^n \log 2^n)^2} = \frac{1}{(2^n)^2 (n \log 2)^2}$ 

: By Cauchy condensation test,

We have

$$\sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^2 (n \log 2)^2}$$
$$= \left(\frac{1}{\log 2}\right)^2 \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{1}{n^2} < \infty \text{ (converges)}$$
$$\therefore \sum_{n=1}^{\infty} 2^n a_{2^n} < \infty \text{ (converges)}$$

Hence the series  $\sum_{n=1}^{\infty} \frac{1}{(n \log n)^2}$  converges.

A16.For what value of x does the series  $(1 - x) + (x - x^2) + (x^2 - x^3) + \dots$  cges?

# **5** CLASS *l*<sup>2</sup>

# 1. Define class $l^2$

The class  $l^2$  is the class of all sequences  $s = \{s_n\}_{n=1}$  such that

$$\sum_{n=1}^{\infty} a_n < \infty$$
 (i.e., dges)

Note. The elements of  $l^2$  are sequences.

Ex1.The sequence 0, 0, 0....is clearly an elements of  $l^2$ .

Ex2.the seq 
$$\left\{\frac{1}{n^n}\right\}_{n=1}$$
 is an element of  $l^2$  since  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  cges.

# 2. Define norm in class $l^2$ .

If  $s = \{s_n\}_{n=1}$  is an element of  $l^2$  we define  $||s||_2$  called the norm of s as,

$$\|s\|_{2} = \left(\sum_{n=1}^{\infty} s_{n}^{2}\right)^{\frac{1}{2}}$$

# Theorem: 1

State and Prove Schewarz Inequality.

If  $s = \{s_n\}_{n=1}$  and  $t = \{t_n\}_{n=1}$  are in  $l^2$ , then  $\sum_{n=1}^{\infty} s_n t_n$  is cges absolutely and  $\left|\sum_{n=1}^{\infty} s_n t_n\right| \le \left(\sum_{n=1}^{\infty} s_n^2\right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{\infty} t_n^2\right)^{\frac{1}{2}}$ 

# **Proof:**

Let us assume that at least one  $s_n$  say  $s_N \neq 0$ , otherwise the theorem is trivial.

For fixed  $n \ge N$  and any  $x \in \mathbb{R}$ , we have  $\sum_{k=1}^{n} (xs_k + t_k)^2 \ge 0$ .

$$\Rightarrow x^{2} \sum_{k=1}^{n} {s_{k}}^{2} + 2x \sum_{k=1}^{n} {s_{k}} t_{k} + \sum_{k=1}^{n} {t_{k}}^{2} \ge 0$$

This is of the form,  $Ax^2+Bx+C \ge 0$ .

Where 
$$A = \sum_{k=1}^{n} {s_k}^2 \ge 0$$
,  $B = \sum_{k=1}^{n} {s_k} t_k$ ,  $C = \sum_{k=1}^{n} {t_k}^2$ 

From the Calculus, the minimum value of  $Ax^2 + Bx + C$  (A  $\ge 0$ ) occur

when 
$$x = -\frac{B}{2A}$$
  
Setting  $x = \frac{B}{2A}$ , we get,  
 $A\left(-\frac{B}{2A}\right)^2 + B\left(-\frac{B}{2A}\right) + C \ge 0 \Rightarrow \frac{B^2}{4A} - \frac{B^2}{2A} + C \ge 0$   
 $X4A, \Rightarrow B^2 - 2B^2 + 4AC \ge 0$   
 $\Rightarrow -B^2 \ge -4AC \Rightarrow B^2 \le 4AC$ 

$$\Rightarrow \left(\sum_{k=1}^{n} s_{k} t_{k}\right)^{2} \leq \left(\sum_{k=1}^{n} s_{k}^{2}\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} t_{k}^{2}\right)^{\frac{1}{2}} \dots (5.1)$$

Replacing  $s_k, t_k$  by  $|s_k t_k|$  in (5.1)

we obtain, 
$$\left|\sum_{n=1}^{\infty} s_n t_n\right| \le \left(\sum_{n=1}^{\infty} s_n^2\right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{\infty} t_n^2\right)^{\frac{1}{2}}$$

Thus, the seq of partial sums of  $\sum_{k=1}^{\infty} |s_k t_k|$  is bounded.

Hence 
$$\sum_{k=1}^{\infty} |s_k t_k| < \infty \implies \sum_{k=1}^{\infty} s_k t_k$$
 cges. Letting *n* to infinity in (2),

We obtain (1).

# Theorem: 2

State and Prove Minkowski Inequality.

If 
$$s = \{s_n\}_{n=1}$$
 and  $t = \{t_n\}_{n=1}$  are in  $l^2$ , then  $s + t = \{s_n + t_n\}_{n=1}$  is in  $l^2$   
and  $\left(\sum_{n=1}^{\infty} (s_n + t_n)^2\right)^{\frac{1}{2}} \le \left(\sum_{n=1}^{\infty} s_n^2\right)^{\frac{1}{2}} + \left(\sum_{n=1}^{\infty} t_n^2\right)^{\frac{1}{2}}$ 

Proof:

Given 
$$s = \{s_n\}_{n=1}^{\infty}$$
 and  $t = \{t_n\}_{n=1}^{\infty}$  are in  $l^2$   
By def,  $\sum_{n=1}^{\infty} s_n^2$  and  $\sum_{n=1}^{\infty} t_n^2$  converges.  
 $\Rightarrow \sum_{n=1}^{\infty} s_n t_n$  converges (by Schewarz inequality)

$$\therefore \sum_{n=1}^{\infty} (s_n + t_n)^2 = \sum_{n=1}^{\infty} s_n^2 + 2\sum_{n=1}^{\infty} s_n t_n + \sum_{n=1}^{\infty} t_n^2$$
$$\sum_{n=1}^{\infty} (s_n + t_n)^2 \le \sum_{n=1}^{\infty} s_n^2 + 2\left(\sum_{n=1}^{\infty} s_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} t_n^2\right)^{\frac{1}{2}} + \sum_{n=1}^{\infty} t_n^2$$

By Schewarz inq

$$\sum_{n=1}^{\infty} (s_n + t_n)^2 \le \left[ \left( \sum_{n=1}^{\infty} s_n^2 \right)^{\frac{1}{2}} + \left( \sum_{n=1}^{\infty} t_n^2 \right)^{\frac{1}{2}} \right]^2$$
$$\Rightarrow \left( \sum_{n=1}^{\infty} (s_n + t_n)^2 \right)^{\frac{1}{2}} \le \left( \sum_{n=1}^{\infty} s_n^2 \right)^{\frac{1}{2}} + \left( \sum_{n=1}^{\infty} t_n^2 \right)^{\frac{1}{2}}$$

[By taking square root on both sides]

# 5.1. LIMITS OF A FUNCTION ON REAL LINE.

# What is difference between limit of a seq and limit of function?

| Limit of<br>Sequence in<br>Real line R                                                                                                            | Limit of a function in<br>R                                                                                                                 | Limit of a function in<br>Metric space                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| If Given $\in >0$ ,<br>$\exists N \in I$ ,<br>Solve that<br>$ s_n - L  < \in$ ,<br>$\forall n \ge N$ .<br>[OR]<br>$\lim_{n \to \infty} s_n = L$ . | If Given $\in >0, \exists \delta > 0$<br>Solve that<br>$ f(x) - L  < \in,$<br>$\forall 0 <  x - a  < \delta.$<br>$\lim_{x \to a} f(x) = L.$ | If Given $\in >0, \exists \delta > 0$<br>Solve that<br>$\rho_2(f(x),L) < \in,$<br>$\forall \rho_1(x,a) < \delta.$<br>$\lim_{x \to a} f(x) = L.$ |

Real Analysis

| $S = \{s_n\}$ | f(x) |  |
|---------------|------|--|
| E             | E    |  |
| Ν             | δ    |  |
| Ν             | x    |  |
| А             | 8    |  |

#### 1. Define limit of a function on a real line

We say that f(x) approaches to L in R as x approaches a.

If Given  $\in >0$ ,  $\exists \delta > 0$  Solve that  $|f(x) - L| < \in, \forall 0 < |x - a| < \delta$ . [OR]

 $\lim_{x \to a} f(x) = L$ 

## 2. Define right hand limit of a function

We say that  $f(x) \rightarrow$  to L in R as  $x \rightarrow$  a from right, If Given  $\in >0$ ,  $\exists \delta > 0$  s.t  $|f(x) - L| < \in, \forall a < x < a + \delta$ .

[OR]

 $\operatorname{RHL} = \lim_{x \to a^+} f(x) = \operatorname{L}$ 

Is called right hand limit of f(x) at a.

#### 3. Define left hand limit of a function

We say that  $f(x) \rightarrow L$  in R as  $x \rightarrow a$  from left,

If Given  $\in >0$ ,  $\exists \delta > 0$  Solve that  $|f(x) - L| < \in, \forall a - \delta < x < a$ .

[OR]

LHL =  $\lim_{x \to a^+} f(x)$  =L.

Is called left hand limit of f(x) at a.

In General:  $\lim_{x \to a} f(x) = L$  if  $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ .

#### 4. Define Increasing function on J

If *f* is a real valued function in an interval  $J \subset R$ . We say that *f* is increasing on J, if  $f(x) \le f(y), x \le y, \forall x, y \in J$ 

f is strictly increasing on J, if  $f(x) < f(y), x \le y \ \forall x, y \in J$ 

f is decreasing on J, f $f(x) \ge f(y), \forall x < y.$ in J

f is strictly decreasing on J, if f(x) > f(y),  $\forall x < y$  in J.

In our book -

Non-increasing means decreasing.

Non-decreasing means increasing.

#### Algebra of Limits

#### Theorem: 3

If  $\lim_{x \to a} f(x) = L \& \lim_{x \to a} g(x) = M$ Then (a)  $\lim_{x \to a} [f(x) + g(x)] = L + M$ . (b)  $\lim_{x \to a} [f(x) - g(x)] = L - M$ . (c)  $\lim_{x \to a} [f(x) \cdot g(x)] = L$ .M.

[P.T limit of the product is the product of limits] A13.

(d) 
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \text{ where } M \neq 0$$

Given  $\lim_{x \to a} f(x) = L$ . &  $\lim_{x \to a} g(x) = M$ . By def, Given  $\in >0$ ,  $\exists \delta_1 > 0$  Solve that  $|f(x) - L| < \epsilon, \forall 0 < |x - a| < \delta_1$ ... (5.2) & Given  $\in >0$ ,  $\exists \delta_2 > 0$  Solve that  $|g(x) - M| \leq \epsilon, \forall 0 < |x - a| < \delta_2$ ... (5.3) Choose  $\delta = \min(\delta_1, \delta_2)$ For  $0 < |x-a| < \delta$ . We have |[f(x) + g(x)] - [L + M]| = |[f(x) - L] + [g(x) - M]| $\leq |f(x) - L| + |g(x) - M| \leq \epsilon + \epsilon = 2 \epsilon = \epsilon'$  $\Rightarrow \|[f(x) + g(x)] - [L + M]\| < \epsilon', \forall 0 < |x - a| < \delta$  $\Rightarrow \lim [f(x) + g(x)] = L + M.$  $\Rightarrow \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$  .Hence the proof. Similarly (b) (c) Choose  $\delta = \min(\delta_1, \delta_2)$ For  $0 < |x-a| < \delta$ . We have [[f(x).g(x)] - [L.M]] = [f(x)g(x) - g(x)L + g(x)L - LM]Add & Sub g(x)L.

 $\leq \left| g(x)[f(x) - L] + L[g(x) - M] \right|$ 

$$\boxed{5.8} \qquad Class l2}$$

$$\leq |g(x)||f(x) - L| + |L||g(x) - M| \qquad \dots (5.4)$$
Since  $\lim_{x \to a} g(x) = M$ 
For,  $\in =1, \exists \delta_3 > 0$  Solve that
$$|g(x) - M| < =1, \forall 0 < |x - a| < \delta_3 \qquad \dots (5.5)$$
Also  $|g(x)| = |g(x) - M + M| \le |g(x) - M| + |M| < 1 + |M|$  by (4)s
$$|g(x)| < 1 + |M| \qquad \dots (5.6)$$
Choose  $\delta = \min(\delta_1, \delta_2, \delta_3)$ 
From (3),
$$|[f(x).g(x)] - [L.M]|$$

$$\leq |g(x)||f(x) - L| + |L||g(x) - M| \le [1 + |M| \in +|L| \in by (4) \& (5).$$

$$\Rightarrow |[f(x).g(x)] - [L.M]| \le k \in =\epsilon' \text{ where } k = 1 + |M| + |L|$$

$$\Rightarrow \lim_{x \to a} f(x).g(x) = L.M.$$

$$\Rightarrow \lim_{x \to a} f(x).g(x) = L.M.$$

$$\Rightarrow \lim_{x \to a} f(x).g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \text{ Hence the proof.}$$
(d) Division Rule. To P.T  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$  where  $M \neq 0$ 
i.e., To Prove that
Given  $\epsilon > 0, \exists \delta > 0$  s.t  $\left| \frac{1}{g(x)} - \frac{1}{M} \right| < \epsilon, \forall 0 < |x - a| < \delta$ .

Since 
$$\lim_{x \to a} g(x) = M$$
  
For,  $\epsilon > 0$ ,  $\exists \delta_3 > 0$  s.t  $|g(x) - M| < \epsilon$ ,  $\forall 0 < |x - a| < \delta \dots (5.7)$   
 $\therefore |\mathbf{M}| = |M - g(x) + g(x)| \le |g(x) - M| + |M|$   
 $\Rightarrow |M| < \epsilon + |g(x)| \quad by(1)$   
 $\Rightarrow |g(x)| > |M| - \epsilon$ ,  $\forall 0 < |x - a| < \delta$ .  
 $\Rightarrow \frac{1}{|g(x)|} < \frac{1}{M - \epsilon}$ ,  $\forall 0 < |x - a| < \delta$ ....(5.8)  
Given  $\epsilon' > 0$ ,  $\exists \delta > 0$  s.t  
 $\left| \frac{1}{g(x)} - \frac{1}{M} \right| = \left| \frac{g(x) - M}{g(x)M} \right| \le \frac{|g(x) - M|}{|g(x)||M|} < \frac{\epsilon}{(M - \epsilon)|M|} = \epsilon'$  (Say)  
 $\Rightarrow \left| \frac{1}{g(x)} - \frac{1}{M} \right| < \epsilon', \forall 0 < |x - a| < \delta$ .  
 $\Rightarrow \lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$  where  $\mathbf{M} \neq 0$   
 $\therefore \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} \frac{1}{g(x)} = \mathbf{L} \cdot \frac{1}{M}$   
 $\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = = \frac{L}{M}$ . Hence Proved.

Theorem: 4

(a)Let f be non-decreasing function on the bounded open interval (a, b), Then  $\lim_{x \to b^-} f(x)$  exists.

(b) If f is bounded below on (a, b), Then  $\lim_{x \to a^+} f(x)$  exists.

#### **Proof:**

(a) Given f is bounded & f is increasing on (a, b). Let M = l.u.b f(x),  $x \in (a, b)$ By def of l.u.b, Given  $\in > 0$ , M- $\in$  is not an upper bound of f(x) in (a, b).  $\exists y \in (a, b), s.t f(y) > M \in$ Let  $v = b - \delta$  where  $\delta > 0$ .  $\Rightarrow$  M -  $\in \langle f(b - \delta), \forall b - \delta \langle x \langle b \rangle$  $\Rightarrow$  M -  $\in \langle f(b - \delta) \rangle \langle f(x), \forall b - \delta \rangle \langle x \rangle \langle b \rangle$ [:: f is an increasing fun]  $\Rightarrow$  M -  $\in \langle f(x), \forall b - \delta \langle x \langle b \rangle$ ... (5.9) since M = l.u.b  $f(x) \Rightarrow f(x) < M + \in \forall b - \delta < x < b$ ... (5.10) From (1) & (2)  $\Rightarrow$  M -  $\in < f(x) <$  M +  $\in \forall b - \delta < x < b$  $\Rightarrow -\in \langle f(x) - \mathbf{M} \langle \in, \forall b - \delta \langle x \rangle \rangle$  $\Rightarrow |f(x) - M| < \epsilon, \forall b - \delta < x < b$  $\Rightarrow \lim f(x) = M$ . Hence (a) is proved. For (b). if f is bounded below on (a, b)And f is increasing on (a, b)similarly we can prove that  $\lim_{x \to \infty} f(x) = m = g.l.b f(x)$ , Let m = g.l.b f(x), x in (a, b)

By def, g.l.b, Given  $\in > 0$ , M +  $\in$  is not an upper bound of f(x) in (a, b).

 $\exists y \in (a, b), s.t f(y) < M + \in$ Let  $y = b - \delta$  where  $\delta > 0$ .  $\Rightarrow f(a + \delta) < M + \epsilon, \forall a < x < a + \delta$  $\Rightarrow f(a) < f(x) < f(a + \delta) < M + \epsilon$  $\forall a < x < a + \delta$ [:: f is an increasing fun]  $\Rightarrow f(x) < \mathbf{M} + \in \forall a < x < a + \delta$ ... (5.11) since M = l.u.b  $f(x) \Rightarrow f(x) > M - \in$ ,  $\forall a < x < a + \delta$ ... (5.12) From (1) & (2)  $\Rightarrow$  M -  $\in < f(x) <$  M +  $\in$ ,  $\forall a < x < a + \delta$  $\Rightarrow -\epsilon < f(x) - M < \epsilon, \forall a < x < a + \delta$  $\Rightarrow |f(x) - M| < \epsilon, \forall a < x < a + \delta$  $\Rightarrow \lim f(x) = m$ . Hence (b) is proved.  $x \rightarrow a^+$ 

#### Theorem: 5

Let f be a non-increasing (dec) function on the bounded open interval (a, b)

If f is bounded above on (a, b), then  $\lim_{x \to a} f(x)$  exists.

If f is bounded below on (a, b), then  $\lim_{x \to a} f(x)$  exists.

#### **Proof:**

Take f(x) = -g(x)

Then g(x) will be non-decreasing.

 $\therefore$  By Previous theorem , applied to the function g.

We prove then to f.

Corollary:

If f is a monotonic function on the open interval (a, b)

If 
$$c \in (a, b)$$
, then P.T  $\lim_{x \to c^+} f(x)$  and  $\lim_{x \to c^-} f(x)$  both exists.

#### **Proof:**

Case(i) f is increasing, choose  $\delta > 0$ . s.t  $(c - \delta, c + \delta) < (a, b)$ Since f is increasing, f is bounded above on  $(c - \delta, c)$  by f(c)By theorem,  $\lim_{x \to \infty} f(x)$  exists ... (5.13)  $x \rightarrow c$ Since f is increasing, f is bounded below on  $(c, c + \delta)$  by f(c)By theorem,  $\lim_{x\to c^+} f(x)$  exists ... (5.14) Case(ii) f is decreasing, Since f decreasing, f is bounded below on  $(c - \delta, c)$  by f(c) $\therefore$  By the,  $\lim_{x \to \infty} f(x)$  exists ... (5.15) Since f is decreasing, f is bounded above on  $(c, c + \delta)$  $\therefore$  By the,  $\lim_{x \to \infty} f(x)$  exists.

 $x \rightarrow c^+$ 

#### PROBLEMS BASED ON LIMIT OF A FUNCTIONS

**P1.** Evaluate:  $\lim_{x\to 3} (x^2 + 2x) = 15$  using definition of limit.

Solution:

Let  $f(x) = x^2 + 2x$ , L = 15, a = 3. Given  $\in >0$ , To find  $\delta > 0$ . Solve that  $|(x^2 + 2x) - 15| < \epsilon$ ,  $\forall 0 < |x - 3| < \delta$  ... (5.16) Take  $\delta < 1$ ,  $0 < |x - 3| < 1 \Rightarrow -1 < x - 3 < 1 \Rightarrow 2 < x < 4 \Rightarrow$   $x \in (2,4)$   $\Rightarrow x + 5 \in (7,9) \Rightarrow |x + 5| < 9$   $\therefore |(x^2 + 2x) - 15| = |(x + 5)(x - 3)| = |x + 5||x - 3| < 9\delta$  if  $\delta < 1$ . Choose  $\delta = \min(1, \epsilon/9)$   $\therefore |(x^2 + 2x) - 15| < 9\delta < \epsilon$ ,  $\forall 0 < |x - 3| < \delta$ . Hence  $\lim_{x \to 3} (x^2 + 2x) = 15$  is verified.

**P2.** Evaluate:  $\lim_{x\to 1} \sqrt{x+3} = 2$ , using definition of limit.

Solution:

Let 
$$f(x) = \sqrt{x+3}$$
,  $L = 2$ ,  $a = 1$ .  
Given  $\in >0$ , To find  $\delta > 0$ .  
s.t  $\left|\sqrt{x+3}-2\right| \le \epsilon$ ,  $\forall 0 < |x-1| < \delta$ .

i.e., 
$$\frac{\left|\sqrt{x+3}-2\right|\left|\sqrt{x+3}+2\right|}{\left|\sqrt{x+3}+2\right|} < \varepsilon, \forall \ 0 < |x-1| < \delta.$$
  
i.e., 
$$\frac{\left|(x+3)-4\right|}{\left|\sqrt{x+3}+2\right|} < \varepsilon, \forall \ 0 < |x-1| < \delta.$$
  
i.e., 
$$\frac{|x-1|}{\left|\sqrt{x+3}+2\right|} < \varepsilon, \forall \ 0 < |x-1| < \delta.$$
  
Take  $\delta < 1, \ 0 < |x-1| < 1 \Rightarrow -1 < x - 1 < 1 \Rightarrow 0 < x < 2$   
 $\Rightarrow x \in (0,2) \Rightarrow \sqrt{x+3}+2 > \sqrt{3}+2$   
 $\Rightarrow \frac{1}{\sqrt{x+3}+2} < \frac{1}{\sqrt{3}+2}$   
 $\Rightarrow \frac{|x-1|}{\sqrt{x+3}+2} < \frac{\delta}{\sqrt{3}+2}$   
 $\therefore |(x^2+2x)-15|=|(x+5)(x-3)|=|x+5||x-3| < 9\delta \text{ if } \delta < 1.$   
Take  $\delta = \varepsilon.(\sqrt{3}+2).$   
Choose  $\delta = \min(1, \varepsilon.(\sqrt{3}+2))$   
 $|\sqrt{x+3}-2| < \varepsilon, \forall \ 0 < |x-1| < \delta \text{ is true.}$   
 $\lim_{x \to 1} \sqrt{x+3}=2.$ 

- 1. Define metric space. Give an example?
  - [A13,14,15

N16

Let M be a non-empty set.

A function  $\rho$ : MxM- $\rightarrow$ [0,  $\infty$ ] is called a metric space for m,

If the following conditions are satisfied.

M1.  $\rho(x, y) = 0$  if  $x = y, \forall x, y \in M$ .

M2.  $\rho(x, y) > 0 \forall x, y \in M$ .

M3.  $\rho(x, y) = \rho(y, x)$  [Symmetric axiom]

M4.  $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ .[Triangular inequality]

Then the ordered pair < M,  $\rho$  > is called a metric space.

#### Give an Example of Metric space. A15, 13.

1. The function  $\rho: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty]$  is defined by

 $\rho(x, y) = |x - y|, \forall x, y \in \mathbb{R}.$ 

Then  $\langle \mathbf{R}, \rho \rangle$  is called absolute value metric space on the real line.

#### **Proof:**

To prove:  $\langle R, \rho \rangle$  is a metric space. For all  $x, y \in R$ , M1.  $\rho(x, x) = |x - x| = 0, \forall x \in R$ . M2.  $\rho(x, y) = |x - y| > 0, \forall x, y \in R$ . M3.  $\rho(x, y) = |x - y| = |y - x| = \rho(y, x)$  [Symmetric is true]

M4. 
$$\rho(x, y) = |x - y| \le |x - z| + |z - y| \le \rho(x, z) + \rho(z, y)$$

[Triangular inequality]

Hence < R,  $\rho$  > is called a metric space.

Example2. Define discrete metric space  $R_d$ .

We define a function  $d: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty]$  by  $\begin{bmatrix} 1 & \text{if } x \neq y \end{bmatrix}$ 

$$d(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x = y \end{cases}, \ \forall x, y \in \mathbb{R}.$$

Then  $\langle \mathbf{R}, d \rangle = \mathbf{R}_{d}$  is called the discrete metric space.

# **Proof:**

To Prove:  $\langle \mathbf{R}, d \rangle$  is a metric space. For all  $x, y \in \mathbf{R}$ , M1. d(x, x) = 0 (given) is true. M2. d(x, y) = 1 > 0 (given) is true. M3.when x = y, d(x, y) = 0 = d(y, x)when  $x \neq y, d(x, y) = 1 = d(y, x)$  [Symmetric is true] M4. Case(i) when x = y = z. Then d(x, y) = 0, d(x, z) = 0, d(z, y) = 0Clearly  $d(x, y) \leq d(x, z) + d(z, y)$  is true. Case(ii) when  $x = y \neq z$ . d(x, y) = 0, d(x, z) = 1, d(z, y) = 1, Clearly  $d(x, y) \leq d(x, z) + d(z, y)$  is true. Case(iii) when  $x \neq y \neq z$ . d(x, y) = 1, d(x, z) = 1, d(z, y) = 1, Clearly  $d(x, y) \le d(x, z) + d(z, y)$  is true.

Hence  $\langle \mathbf{R}, d \rangle = \mathbf{R}_d$  is a metric space.

Example3. Show that R<sup>n</sup> is a Metric space.

[A14,15

N14

R<sup>n</sup> = n-dimensional Euclidian Space

Let R<sup>n</sup>=The set of all n-tuples of real numbers.

For  $n \in I$ , if  $x = (x_1, x_2,...,x_n)$  and  $y = (y_1, y_2,...,y_n)$  are two ordered n-tuples of real numbers.

We define 
$$\rho(x, y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{\frac{1}{2}}$$

[For n = 2,  $\rho(x, y)$  is distance formula in Cartesian plane]

(i) Clearly  $\rho(x, y) = 0$  if x = y

(ii)  $\rho(x, y) > 0$ . since distance is always positive.

By def  $\rho(x, y) = \rho(y, x)$  [Symmetric is true]

Triangular inequality.

Let  $z = (z_1, z_2, ..., z_n)$ 

To Prove:  $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ 

Let  $x_k - z_k = a_k$  and  $y_k - z_k = b_k$  for k = 1, 2, 3...n.

Then 
$$\rho(x, z) = \left[\sum_{k=1}^{n} (x_k - z_k)^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^{n} a_k^2\right]^{\frac{1}{2}}$$
  
 $\rho(z, y) = \left[\sum_{k=1}^{n} (y_k - z_k)^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^{n} b_k^2\right]^{\frac{1}{2}}$ 

$$\rho(x, y) = \left[\sum_{k=1}^{n} (x_{k} - y_{k})^{2}\right]^{\frac{1}{2}}$$
$$= \left[\sum_{k=1}^{n} (a_{k} + b_{k})^{2}\right]^{\frac{1}{2}} \le \left[\sum_{k=1}^{n} a_{k}^{2}\right]^{\frac{1}{2}} + \left[\sum_{k=1}^{n} b_{k}^{2}\right]^{\frac{1}{2}}$$

1

[Minkowski inequality]

$$= \left[\sum_{k=1}^{n} (x_{k} - z_{k})^{2}\right]^{\frac{1}{2}} + \left[\sum_{k=1}^{n} (y_{k} - z_{k})^{2}\right]^{\frac{1}{2}}$$

$$\Rightarrow \rho(x, y) \le \rho(x, z) + \rho(z, y)$$

 $\Rightarrow \rho$  satisfies all conditions for metric space.

Hence R<sup>n</sup>=n-tuples of Euclidean Space is a Metric space.

#### 5.3. LIMITS IN METRIC SPACE

# 1. Define limit of a seq in Metric space

Let  $\langle M, \rho \rangle$ , be a metric space. and Let  $\{s_n\}$  be a seq of points M.

We say that  $s_n$  approaches L as n approaches infinity If Given  $\in >0$ ,  $\exists N \in I$ , s.t  $\rho(s_n, L) < \in, \forall n \ge N$ .

[OR]

 $\lim_{n\to\infty}s_n=L.$ 

#### 2. Define convergence seq on a metric space

Let <M,  $\rho >$ , be a metric space and Let  $\{s_n\}$  be a seq of points M.

We say that  $\{s_n\}_{n=1}$  is said to be convergent to L,

If the seq  $\{s_n\}_{n=1}$  has a limit L.

 $\lim s_n = L$ . exists finitely.

#### 3. Define Cauchy seq in a Metric space

Let < M,  $\rho >$ , be a metric space. and Let  $\{s_n\}$  be a seq of points

[OR]

M.

We say that  $\{s_n\}$  is said to be Cauchy seq,

If Given  $\in >0$ ,  $\exists N \in I$ , s.t  $\rho(s_m, s_n) < \in, \forall m, n \ge N$ .

#### 4. Define limit of function in a metric space.

Let <M<sub>1</sub>,  $\rho_1 >$ , <M<sub>2</sub>,  $\rho_2 >$  be two metric spaces.

If  $f: M_1 \rightarrow M_2$ .

We say that f(x) approaches L (L in M<sub>2</sub>) as x approaches a (a in M<sub>1</sub>),

If given  $\in > 0$ ,  $\exists \delta > 0$  s.t  $\rho_2(f(x),L) < \in, \forall 0 < \rho_1(x,a) < \delta$ .

```
[OR]
```

 $\lim_{x \to a} f(x) = L.$ 

[Cges seq  $\Rightarrow$  Cauchy seq in metric space]

#### Theorem: 6

Let  $\langle M, \rho \rangle$  be a metric space. If  $\{s_n\}$  is a convergent seq of points in M, then Prove that  $\{s_n\}$  is cauchy seq.

Let  $\{s_n\}$  be a convergence seq of points in M i.e.,  $\lim_{x\to a} f(x) = L$  exists.

By def, By def,

Given 
$$\in >0$$
,  $\exists \delta_1 > 0$  s.t  $\rho(s_n, L) < \frac{\epsilon}{2}, \forall n \ge .N$  ... (5.17)

Hence if  $m, n \ge N$ 

We have  $\rho(s_m, s_n) \le \rho(s_m, L) + \rho(L, s_n)$  [by Triangular Lamina]  $\rho(s_m, s_n) \le \rho(s_m, L) + \rho(s_n, L)$  [By symmetric]

$$\Rightarrow \rho(s_m, s_n) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \forall m, n \geq .N$$

 $\Rightarrow$  {*s<sub>n</sub>*} is a cauchy seq of points in M.

#### Theorem: 7

If <M,  $\rho >$  be a metric space and let a be a point in M.

Let f and g be real –valued function whose domains are subsets of M.

If 
$$\lim_{x \to a} f(x) = L$$
 and  $\lim_{x \to a} g(x) = N$   
Then Prove that: (i)  $\lim_{x \to a} [f(x) + g(x)] = L + N$   
(ii)  $\lim_{x \to a} [f(x) - g(x)] = L - N$   
(iii)  $\lim_{x \to a} [f(x) \cdot g(x)] = L \cdot N$   
(iv)  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{N}$  where  $N \neq 0$ .

**Proof:** Given  $\lim_{x \to a} f(x) = L$ . &  $\lim_{x \to a} g(x) = M$ . By def, Given  $\in >0$ ,  $\exists \delta_1 > 0$  s.t $|f(x) - L| < \in, \forall 0 < \rho(x, a) < \delta_1 \dots$  (5.18) & Given  $\in >0$ ,  $\exists \delta_2 > 0$  s.t  $|g(x) - M| < \epsilon, \forall 0 < \rho(x, a) < \delta_2 \dots$ (5.19)(a)Choose  $\delta = \min(\delta_1, \delta_2)$ For  $0 < \rho(x, a) < \delta$ . We have |[f(x) + g(x)] - [L + M]| = |[f(x) - L] + [g(x) - M]| $\leq |f(x) - L| + |g(x) - M| \leq \epsilon + \epsilon = 2 \epsilon = \epsilon'$  $\Rightarrow |[f(x) + g(x)] - [L + M]| < \epsilon', \forall 0 < \rho(x, a) < \delta$  $\Rightarrow \lim_{x \to a} \left[ f(x) + g(x) \right] = L + M.$  $\Rightarrow \lim_{x \to a} \left[ f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$  .Hence the proof. Similarly (b) (c) Choose  $\delta = \min(\delta_1, \delta_2)$ For  $0 < \rho(x, a) < \delta$ . We have [[f(x).g(x)] - [L.M]] = [f(x)g(x) - g(x)L + g(x)L - LM]Add & Sub g(x)L.  $\leq \left| g(x)[f(x) - L] + L[g(x) - M] \right|$ 

 $\leq |g(x)||f(x) - L| + |L||g(x) - M|$ ... (5.20) Since  $\lim_{x \to \infty} g(x) = M$ For,  $\in =1, \exists \delta_3 > 0 \text{ s.t } |g(x) - M| < \in =1,$  $\forall 0 < \rho(x,a) < \delta_3$ ... (5.21) Also  $|g(x)| = |g(x) - M + M| \le |g(x) - M| + |M| < 1 + |M|$  by (4) |g(x)| < 1 + |M|... (5.22) Choose  $\delta = \min(\delta_1, \delta_2, \delta_3)$ From (3), [f(x).g(x)] - [L.M] $\leq |g(x)||f(x) - L| + |L||g(x) - M| \leq |1 + |M| \in +|L| \in by (4) \& (5).$  $\Rightarrow |[f(x).g(x)] - [L.M]| \le k \in = \epsilon' \text{ where } k = 1 + |M| + |L|$  $\Rightarrow \lim f(x).g(x) = \text{L.M.}$  $\Rightarrow \lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$  Hence the proof. (d) Division Rule. To P.T  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$  where  $M \neq 0$ We first prove that:  $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$  where  $M \neq 0$ i.e., To P.T Given  $\in >0, \exists \delta > 0$ s.t  $\left|\frac{1}{\rho(x)} - \frac{1}{M}\right| < \epsilon, \forall 0 < \rho(x, a) < \delta$ .

Since 
$$\lim_{x \to a} g(x) = M$$
  
For,  $\in >0$ ,  $\exists \delta_3 > 0$  s.t  $|g(x) - M| < \epsilon$ ,  
 $\forall 0 < \rho(x, a) < \delta \dots (5.23)$   
 $\therefore |\mathbf{M}| = |M - g(x) + g(x)| \le |g(x) - M| + |M|$   
 $\Rightarrow |M| < \epsilon + |g(x)| \quad by(1)$   
 $\Rightarrow |g(x)| > |M| - \epsilon , \forall 0 < \rho(x, a) < \delta$ .  
 $\Rightarrow \frac{1}{|g(x)|} < \frac{1}{M - \epsilon} , \forall 0 < \rho(x, a) < \delta$  .... (5.24)  
Given  $\epsilon' > 0$ ,  $\exists \delta > 0$   
s.t  $\left|\frac{1}{g(x)} - \frac{1}{M}\right| = \left|\frac{g(x) - M}{g(x)M}\right| \le \frac{|g(x) - M|}{|g(x)||M|} < \frac{\epsilon}{(M - \epsilon)|M|} = \epsilon'$  (Say)  
 $\Rightarrow \left|\frac{1}{g(x)} - \frac{1}{M}\right| < \epsilon', \forall 0 < \rho(x, a) < \delta$ .  
 $\Rightarrow \lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$  where  $M \neq 0$   
 $\therefore \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} \frac{1}{g(x)} = L \cdot \frac{1}{M}$   
 $\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = = \frac{L}{M}$ . Hence Proved.

# 5.4. CONTINUOUS FUNCTION ON A METRIC SPACE.

1. Define continuous function at a point on a real line A real valued function f is continuous at  $a \in R$ .

If Given  $\in >0$ ,  $\exists \delta > 0$  s.t  $|f(x) - f(a)| < \in, \forall 0 < \rho(x, a) < \delta$ 

[OR]

 $\lim_{x\to a} f(x) = f(a)$ 

#### 2. Define continuous function on a metric space

Let <M<sub>1</sub>,  $\rho_1$  > and <M<sub>2</sub>,  $\rho_1$  > be two metric spaces.

Let  $f: M_1 \rightarrow M_2$ 

We say that the function f is continuous at  $a \in M$ .

If Given  $\in >0$ ,  $\exists \delta > 0$  s.t  $\rho_2(f(x), f(a)) < \in, \forall 0 < \rho_1(x, a) < \delta$ [OR]

 $\lim_{x \to a} f(x) = f(a).$  in Metric space M.

Define Open ball in a real line

 $B[a, r] = \{x \in \mathbb{R}/|x-a| < r\} = \text{the set of all } x \text{ s.t open ball of radius } r \text{ about } a.$ 

Define open ball in a metric space.

Let <M,  $\rho >$  be a metric space. If  $a \in$  M and r > 0,

Then B[a, r] is defined to be the set of all points in M whose distance to a is less than r.

i.e.,  $B[a, r] = \{x \in M | \rho(x, a) < r\}$  is called a open ball of radius *r* about *a*.

#### Theorem: 8

If the real valued functions f and g are continuous at  $a \in \mathbb{R}$ , then (i) (f + g), (f - g), (fg) and  $(f/g) g \neq 0$  are also continuous at  $a \in \mathbb{R}$ .

Since f and g are continuous at  $a \in \mathbb{R}$ . By def,  $\lim_{x \to a} f(x) = f(a)$  and  $\lim_{x \to a} g(x) = g(a)$ .  $\lim_{x \to a} [(f + g)(x)] = \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) =$  f(a) + g(a) = (f + g)(a)  $\Rightarrow \lim_{x \to a} [(f + g)(x)] = (f + g)(a)$   $\therefore (f + g)$  is continuous at  $a \in \mathbb{R}$ . Similarly (i)  $\lim_{x \to a} [(f \cdot g)(x)] = \lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) =$   $f(a) \cdot g(a) = (f \cdot g)(a)$   $\Rightarrow \lim_{x \to a} [(f \cdot g)(x)] = (f \cdot g)(a)$   $\therefore (f \cdot g)$  is continuous at  $a \in \mathbb{R}$ . (iv)  $\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = \left(\frac{f}{g}\right)(a)$ 

 $\therefore$  (*f*/*g*)  $g \neq 0$  is continuous at  $a \in \mathbb{R}$ .

#### Theorem: 9

If f is continuous at  $a \in \mathbb{R}$ . Then Prove that cf is continuous at  $a \in \mathbb{R}$ .

Since f is continuous at 
$$a \in \mathbb{R}$$
.  
By def,  $\lim_{x \to a} f(x) = f(a)$   
 $\lim_{x \to a} [(cf)(x)] = \lim_{x \to a} [cf(x)] = c$ .  $\lim_{x \to a} f(x) = c \cdot f(a) = (cf)(a)$   
 $\Rightarrow \lim_{x \to a} [(cf)(x)] = (cf)(a)$   
 $\therefore cf$  is continuous at  $a \in \mathbb{R}$ .

#### Theorem: 10

If f is continuous at  $a \in \mathbb{R}$ . Then Prove that |f| is continuous at  $a \in \mathbb{R}$ .

Since *f* is continuous at 
$$a \in \mathbb{R}$$
.  
By def, If Given  $\in >0$ ,  $\exists \delta > 0$   
s.t  $|f(x) - f(a)| < \in, \forall 0 < \rho(x, a) < \delta$   
For  $0 < \rho(x, a) < \delta$ , We have  
 $||f|(x) - |f|(a)| = ||f(x)| - |f(a)|| < |f(x) - f(a)| < \in$   
 $\Rightarrow ||f|(x) - |f|(a)| < \in, \forall 0 < \rho(x, a) < \delta$   
 $\Rightarrow |f|$  is continuous at  $a \in \mathbb{R}$ .

# Theorem: 11

If f and g are real valued functions.

If f is continuous at a and g is continuous at f(a), Then Prove that (gof) is continuous at  $a \in \mathbb{R}$ .

Let f(a) = b. and y = f(x). Since g is continuous at b. By def, Given  $\in >0$ ,  $\exists \eta > 0$ s.t  $|g(y) - g(a)| < \in, \forall 0 < |y - b| < \delta$  ... (5.25) Again, f is continuous at a. By def, Given  $\eta > 0$ ,  $\exists \delta > 0$  such that  $\Rightarrow |f(x) - f(a)| < \eta, \forall 0 < |x - a| < \delta$ 

$$\Rightarrow |f(x) - b| < \eta, \forall 0 < |x - a| < \delta$$
  

$$\Rightarrow |g(y) - g(b)| < \epsilon, \forall 0 < |x - a| < \delta$$
  

$$\Rightarrow |g(f(x)) - g(f(a))| < \epsilon, \forall 0 < |x - a| < \delta \text{ by (1)}$$
  

$$\Rightarrow |(gof)(x) - (gof)(a)| < \epsilon, \forall 0 < |x - a| < \delta$$
  

$$\Rightarrow (gof) \text{ is continuous at a in R.}$$

Theorem: 12

If f is continuous at a in R if Given  $\in >0$ ,  $\exists \delta > 0$ s.t  $f^{-1}(B[f(a), \in ]) \supset B[a, \delta]$ 

#### [OR]

The real valued function f is continuous at  $a \in \mathbb{R}$  if and only if the inverse image under f of any open ball  $B[f(a), \in]$  contains an open ball

 $B[a, \delta]$  about a.

Let f be a continuous at  $a \in \mathbb{R}$ Given  $\in >0$ ,  $\exists \delta > 0$  s.t  $|f(x) - f(a)| < \epsilon, \forall 0 < \rho(x, a) < \delta$   $x \in \mathbb{B}[a, \delta] \Rightarrow f(x)\mathbb{B}[f(a), \epsilon] \Rightarrow x \in f^{-1}(\mathbb{B}[f(a), \epsilon])$  $f^{-1}(\mathbb{B}[f(a), \epsilon]) \supset \mathbb{B}[a, \delta]$ 

Hence the proof.

# Theorem: 13

Prove that f is conts at  $a \in \mathbb{R}$  if  $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = f(a)$ [OR]

The real-valued function f is conts at  $a \in \mathbb{R}$  if Whenever  $\{x_n\}$  is a seq of real no/-s cges to a, then the seq  $\{f(x_n)\}$  cges to f(a)

# **Proof:**

Let us assume that *f* is conts at  $a \in \mathbb{R}$  and  $\{x_n\}$  be a seq cges to *a*. Since *f* is conts at *a*.

By def, Given 
$$\in >0$$
,  $\exists \delta > 0$ , s.t  $f^{-1}(B[f(a), \in]) \supset B[a, \delta]$   
i.e.,  $f(B[a, \delta]) \subset B[f(a), \in]$  ... (5.26)  
also since  $\{x_n\}$  cges to  $a$ .  
By def, Given  $\delta > 0$ ,  $\exists N \in I$ , s.t  $|x_n - a| < \delta$ ,  $\forall n \ge N$ ,  
 $\Rightarrow x_n \in B[a, \delta]$ ,  $\forall n \ge N$ ,  
 $\Rightarrow f(x_n) \in f(B[a, \delta] \subset B[f(a), \in])$  by (1),  $\forall n \ge N$ ,  
 $\Rightarrow f(x_n) \in B[f(a), \in], \forall n \ge N$ ,  
 $\Rightarrow |f(x_n) - f(a)| < \in, \forall n \ge N$ ,

 $\Rightarrow \{f(x_n)\} \text{ converges to } f(a)$   $\Rightarrow \lim_{n \to \infty} f(x_n) = f(a)$ Conversely. We assume that if  $\lim_{n \to \infty} x_n = a$  and  $\lim_{n \to \infty} f(x_n) = f(a) \qquad \dots (5.27)$ Then To Prove that: f is continuous at  $a \in \mathbb{R}$ . For Let us assume that the contrary.

We assume that for some  $\in >0$ ,

The inverse image under f of  $B = B[f(a), \in]$  contains no open ball  $B[a, \delta]$  at a.

In particular,

$$f^{-1}(B)$$
 does not contains B[ $a, \frac{1}{n}$ ] for any  $n = 1, 2, 3, ...$ 

Then for such n

There is a point  $x_n \in B[a, \frac{1}{n}]$ , such that  $f(x_n) \notin B[f(a), \in ]$ .

$$\Rightarrow |x_n - a| < \frac{1}{n} \text{ but } |f(x_n) - f(a)| > \in$$

$$\Rightarrow \lim_{n \to \infty} x_n = a \text{ but } \lim_{n \to \infty} f(x_n) \neq f(a)$$

This is a contradiction to (2),

Hence f is continuous at  $a \in \mathbb{R}$ .

Hence the proof.

Easy proof of Theorem.4 using theorem5.

#### Theorem: 14

If f and g are real valued functions.

If f is continuous at a and g is continuous at f(a), then Prove that (gof) is continuous at  $a \in \mathbb{R}$ .

#### **Proof:**

Let  $\{x_n\}$  be a seq of real numbers such that  $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = f(a)$ 

[by f is continuous at a]

[By g is conts at f(a)]

$$\Rightarrow \lim_{n\to\infty} g(f(x_n) = g(f(a)))$$

$$\Rightarrow \lim_{n \to \infty} (gof)(x_n) = (gof)(a)$$

 $\Rightarrow$  gof is continuous at a in M<sub>1</sub>.

#### PROBLEMS ABED ON CONTINUOUS OF A FUNCTIONS

Hint. f is conts at a (i)  $\lim_{x\to a} f(x)$  exists (ii) f(a) exists

(iii) 
$$\lim_{x \to a} f(x) = f(a)$$

If at least one is not true, then f is not conts at a.

#### P1. Check the continuity of the function?

(i) 
$$f(x) = \frac{\sin x}{x}, x \in \mathbb{R}, x \neq 0.$$

The function is not defined at x = 0. Hence f is not conts at x = 0.

(ii)  $g(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$ Clearly  $\lim_{x \to 0} \frac{\sin x}{x} = 1 = g(0)$ . Hence g is conts at x = 0. (iii)  $\chi(x) = 1$  if  $x = 0, x \in \mathbb{R}, x$  is rational = 0 if  $x \neq 0, x \in \mathbb{R}, x$  is irrational Here  $\lim_{x \to 0} \chi(x)$  does not exists. Hence  $\chi(x)$  is not conts at x = 0. A13. If  $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ k & \text{if } x = 0 \end{cases}$  is conts, then find k?  $f(x) = x^2 + 2x, x \in \mathbb{R}.$ Clearly f is conts at x = 3.