

1

2

Unit 1: Customizing a Form - Writing Simple Programs - Toolbox - Creating

Controls - Name Property - Command Button - Access Keys - Image Controls -

Text Boxes - Labels - Message Boxes - Grid - Editing Tools - Variables - Data

Types - String - Numbers.

Unit-2: Displaying Information - Determinate Loops - Indeterminate

Loops - Conditionals - Built-in Functions - Functions and Procedures.

Unit 3: Lists - Arrays - Sorting and Searching - Records - Control Arrays -

Combo Boxes - Grid Control - Projects with Multiple forms - DoEvents

and Sub Main - Error Trapping.

Unit-4: VB Objects - Dialog Boxes - Common Controls - Menus - MDI

Forms - Testing, Debugging and Optimization - Working with Graphics.

Unit-5 : Monitoring Mouse activity - File Handling - File System Controls

- File System Objects - COM/OLE - automation - DLL Servers - OLE Drag

and Drop.

3

Unit 1

Customizing a Form

Introduction to Visual Basic 6

 Visual Basic, derived from the Basic language, is an object-based and eventdriven programming

language from Microsoft. This language is relatively easy to learn. It enables you to create GUI

(Graphical user interface) applications easily using the Rapid Application Development (RAD)

technique. The one most interesting feature of this language is that it comes with a designer called

Integrated Development Environment (IDE). The easy-to-use tools of the IDE enable you to easily

create buttons, textbox, and other controls for your desktop application.

 Visual Basic 6.0 is a very powerful programming language. It enables GUI application

development, provides access to databases and enables the creation of ActiveX controls. In addition,

Visual Basic 6 is Event-driven because we need to write code in order to perform some tasks in

response to certain events. The events usually comprises but not limited to the user's inputs.

 Some of the events are load, click, double click, drag and drop, pressing the keys and more. We will

learn more about events in later lessons. Therefore, a VB6 Program is made up of many

subprograms, each has its own program code, and each can be executed independently and at the

same time each can be linked together in one way or another.

VB IDE (integrated development environment)

Title bar:

 Title bar is the horizontal bar located at the top of the screen

 It gives the name of the application

 Interaction between the user and the title bar and handled by windows

4

 Everything below the title and menu bars in the windows application is called the “client

area”

Menu bar:

 Selecting items from the pull-down menus listed on a menu bar.

 The menu bar gives the tools needed to develop, test and save the application.

 Some menu items have short cut keys.

 A short cut key is usually a combination of keys

Tool bar:

 The tool bars are customizable

 The four built-in tool bars are in VB. They are standard, Edit, Debug and form editor.

Tool box:

 The tool box is located at the left side of the screen.

 It contains the controls to build the interface for the VB application.

 We can add new components by choosing project -> components

Form window:

 We can customize the form window by adding controls and changing its size

Project explorer

 Visual basic organizes its components into projects.

 Each project can have multiple forms; the code that activates the controls on a form is stored

with the form in separated files.

 The general programming code shared by all the forms can be divided into different

modules.

 The project explorer will display all the customizable forms and general code (module) that

makeup the application.

 Three tools are available at the top of the project explorer window. They are

 View code

 View object

 Toggle folders

 By clicking the view code button, it will display the code associated with that form (or)

object

 Visual basic stores all the files in a project file, they have .vbp extension.

 VB allows to have multiple project at the same time. This is called project group. The

extension of project group is .vbg

5

The properties window:

 The properties window located above the form layout window on the right hand side of the

VB environment.

 By pressing F4, we can make properties window visible.

 The second column of the properties window always indicates the current setting of the

property. Hence the right-hand column of the properties window is called the setting box.

 The default arrangement in the properties is alphabetical. Click the categorized tab in the

properties window to list out the properties based on functionality.

COMMON FORM PROPERTIES:

Caption:

 The caption property sets the title of the form.

Name

 This property is used to identify the control in coding

Appearance

 This property determines whether the form will have a three-dimensional look.

 The default value of this property is 1 for 3d look.

 If the value is 0, then the form will appear flat.

Border Style

There are six values for this property.

1. None

2. Fixed size

3. Sizable

4. Fixed double

5. Fixed tool window

6. Sizable tool window

 If the border style value is 0, then the application (form) will show no border and therefore

no minimize, maximize or control buttons. Because of this, a form created without a border

cannot be moved, resizes. This setting is useful for splash screen.

 If the setting is 1, the user will not be able to resize the window.

 If the value of the border style property is 2(sizable), then the user ca resize the form via the

hot spot located on the boundary of the form.

 If the value is 3-fixe double, then it is used for design a dialog box.

 If the setting is 4- fixed tool window, then it will display the form with a close window, and

the text on the title bar will be display in reduced size.

 If the setting is 5-sizable tool window, it works much like as fixed tool window.

6

Control Box

 Control box are located in the far left corner of the title bar. The changes in the control box

property go into effect only at runtime . we can assign the value either ‘true’ or ‘false’ to the

control box.

Enabled

 If the enabled property set to false, then the form cannot respond to any events.

StartupPosition

 This property decides the initial position of the form at runtime. The default value is 0.

Visible

 Setting the value of this property to false, the form will not bew visible at runtime.

Windowstate

 This property determines how the form will work at runtime there are three possible

settings.

1. Normal (default setting)

2. Minimized (reduce the form into icon)

3. Maximized

Writing Simple Programs

visual basic program to print a string “Hello World”

 The below code will print the string value “Hello

World”. Console.WriteLine(” “) is used to print any value as an output and

the Console.ReadLine() is used to read the next line here we are using it to hold the

screen.

Module Module1

Sub Main()

Console.WriteLine("Hello World")

Console.ReadLine()

End Sub

End Module

Output: Hello World

7

Toolbox

The Toolbox window displays controls that you can add to Visual Studio projects. To

open Toolbox, choose View > Toolbox from the menu bar, or press Ctrl+Alt+X.

You can drag and drop different controls onto the surface of the designer you are

using, and resize and position the controls.

Creating Controls

1. start a new project.

2. Choose ActiveX control from the New Project dialog box.

3. Add a picture box to the usercontrol – it looks like a form without a border.

4. Add a timer with the interval property set to 50.

5. Rename the picture box ‘ScrollBox’ and resize it to about 4000 wide and 700

in height.

6. Rename the usercontrol to ‘ScrollControl’ and resize it so it’s just slightly

larger than the picture box.

7. Select a bitmap for the ‘ToolboxBitmap’ property, this will be the image that

eventually represents your control on the toolbox.

8. Now we’re ready for the code.

Name property

The Name property is a string used by clients to identify, find, or announce an object

for the user. All objects support the Name property. For example, the text on a button

control is its name, while the name for a list box or edit control is the static text that

immediately precedes the control in the tabbing order.

8

Command Button

The CommandButton control is simply a button that we see in our daily-use software.

When the end-user clicks the CommandButton, the program behaves according to the

code assigned in the CommonButton.

PROPERTIES OF COMMAND BUTTON

Name

This property is used to identify the control at coding time. This property determines

the name visual basic uses for the event procedure. The name property for any control

is more important. Microsoft suggests using a prefix to start the name of any control.

For command button the prefix is “cmd”.

The limitations on assigning control name are:

 The name must begin with a letter

 After that we can use any combination of letters, digits and underscores.

 No spaces are allowed

 The name cannot be longer than 40 characters.

Caption

 The caption property determines what the user sees on the face of button.

 The caption property can use any symbols available in a single font.

 The caption on a command button is automatically centered within the button.

Visible

 This property determines whether the command button is visible or not at

runtime. The command button is visible at design time even the visible property is set

to false.

Enabled

 This property determines whether the button can respond to any event. If this

property set to false, VB will not respond to any event concerning that button.

Font

 This property controls which font is used for the caption of the button.

 All the font characteristic – bold, italic, etc. can be set independently for each

command button.

9

Height, Width

 These property define the height and width of the command button.

 We can change the setting for these properties directly from the properties

window.

Disabled Pictures, Down Pictures, Picture, Style

 To display the picture in the command button, set the value of the style

property to 1- graphical.

 The default value of the style property is 0-standard.

 In addition to setting a picture for a command button in tis normal state, we

can set a special picture when the control is disabled (or) when it is clicked.

 The command button allows all the standard picture type (bitmaps, icons,

jpegs, gif, metafile, etc.)

 The command button wont resize itself to fit the image.

Cancel

 A user can activate an escape command button by pressing ‘esc’ key on the

keyboard.

 By setting the cancel property to ‘true ‘, we can make the command button as

escape command button.

Default

 We can set the default command button by setting the value of default property

of the command button to ‘true’.

Access Keys

 To set the access key for a command button place an ampersand (&) in front of

the letter that we want to create the access key, in the caption.

 We can activate the access key by pressing key combination with ALT key.

 It is possible to have the same access key for more than one control.

 An access key is an underlined character in the text of a menu, menu item, or

the label of a control such as a button. With an access key, the user can "click" a

button by pressing the Alt key in combination with the predefined access key.

An access key is an underlined character in the text of a menu, menu item, or

the label of a control such as a button. With an access key, the user can "click" a

button by pressing the Alt key in combination with the predefined access key.

10

 For example, if a button runs a procedure to print a form, and therefore its Text

property is set to "Print," adding an ampersand before the letter "P" causes the

letter "P" to be underlined in the button text at run time. The user can run the

command associated with the button by pressing Alt+P. Controls that cannot

receive focus can't have access keys. Let's say that you have a TextBox

representing the Department name on an entry screen. The Label to the left of

the TextBox duly contains the Caption "Department." If you put an ampersand

(&) in front of the "D" in "Department," the "D" will appear underlined. When

users see this, they will think, of course, that pressing Alt-d will place the cursor

in the TextBox. Unfortunately, the "D" represents an access key for the Label—

and moreover, the Label is incapable of receiving focus.

IMAGE CONTROL

 Imagecontrol hold pictures

 Imagecontrol are user to display icons (or) picture

 The Loadpicture function will reset the value of the picture property

 The most important property of an image control is the stretch property

 This property determines whether the image control adjusts to fit the picture (or)

the picture adjust to fit the control

Image Control: 1) it is not act as container control 2) not use of memory to store the

picture 3) editing of picture is not possible in picture box 4) Not having auto size

property 5) Having stretch property The Image control is a lightweight control that has

no device context (or hDC) or it's own. The Image control lets you display a picture as

part of the data in a form. For example, you might use an Image to display employee

photographs in a personnel form.

The Image lets you crop, size, or zoom a picture, but does not allow you to edit the

contents of the picture. For example, you cannot use the Image to change the colors in

the picture, to make the picture transparent, or to refine the image of the picture. You

must use image editing software for these purposes. The Image supports the following

file formats: *.bmp *.cur *.gif *.ico *.jpg *.wmf

TEXT BOX PROPERTIES

 The text boxes are the primary control for accept input and display output. The

content of the boxes are treated as String. For numeric calculation, transforming a

string into a number using built-in-function is required.

 Microsoft prefix for the name property of a text box is “txt”.

 Special properties of text boxes:

11

Text

 Text property holds the information entered in the text bar.

 The default value for this property is set to text1, text2, and so on.

Alignment

 This property controls how the text is displayed in a text box.

 The default value is 0 – left, which leaves the text left aligned.

 Use 1-right, 2-center are the value for other alignment.

Multiline

 This property determines whether a text box can accept more than one line of

text.

 The limit of the multiline text box is approximately 32000 characters.

 This property usually combined with resetting the value of the scroll bar

property

 If the multiline property is set to “true”, a user can always use the standard

methods in window to move through the text box.

 VB automatically word wraps when the user types more than one line of text.

 Use enter key to separate lines.

Scrollbars

 This property determines whether a text box has horizontal (or) vertical scroll

bar

 These are useful to accept long (or) multiple lines of character from a single

text box box.

 The four possible setting for the scroll bar property are

1. None (this will display no scroll bar and this the default value)

2. Horizontal (horizontal text limits inside the text box to a total of 255

characters)

3. Vertical (text box has vertical scroll bars only)

4. Both (text box has both vertical an d horizontal scroll bars)

12

BorderStyle

 The default value of the border style property is 1-fixed single, which give the

single width border to the text box.

 If the value of the border style property 0 – none, the border disappears.

Maxlength

 This determines the maximum number of character that the textbox will

accept.

 Any setting other than 0 will limit the user’s ability to enter data into that

textbox to that number of characters.

Passwordchar

 This property limits the textbox display.

 If the value of this property is set to ‘*’, all the character entered in the box

will display as row asterisks.

Locked

 This property is used to prevent users from changing the contents of the

textbox.

 User can scroll and highlight but won’t be able to change it.

 Its advantage over setting the enabled property to false is that textbox is not

grayed.

LABELS

 Labels are used to display the information but the user cannot be able to

change.

 The most common use for label is to identify a textbox or other controls by

describing its contents.

 Microsoft suggested prefix for the name property of the label is ‘lbl’.

 The enabled property is not often used for labels.

Alignment

 The alignment property for a label has three possible setting.

 The default value is 0 – left, which leaves the text left aligned.

 Use 1-right, 2-center are the value for other alignment.

13

Border Style, Back Style

 The border style property has the same two possible values as textbox.

 The difference is that the default value is 0

 Set the border style property to 1, the label resembles a textbox.

 This property is used for displaying outputs avoids the problem of textboxes

being changed by the user.

 The back style property determines whether the label is transparent or opaque.

Autosize, Wordwrap

 By setting auto size property value to true, labels can b made to grow

automatically in a horizontal direction.

 The default value of this property is set to false

 By setting word-wrap property to true, the label will grow in the vertical

direction.

MESSAGE BOXES

 The message boxes are used to displays information in a dialog box super

imposed on the form.

 The message box will for the user to choose a button before returning to

application.

 Without responding to the message, the user cannot switch to any other forms.

 The simplest form of the message box is

Msgbox “welcome”

 The complete syntax for the msgbox command is,

Msgbox message_dispolayed_in_msbox, type_of_box, title_of_box

 The user can combine three different groups of built-in integer contents to

specify the kind of the message box.

 The three groups are,

 Type of button

 Type of icon

 Default button selected

14

The first group of numbers controls what type of button will be displayed in the

message box.

VALUE

SYMBOLIC CONSTANT DESCRIPTION

0 VbOkOnly Display only the ok button

1 VbOkCancel Display ok and cancel button

2 VbAbortRetryTgnore Display abort, retry and ignore buttons

3 VbYesNoCancel Display yes, no and cancel buttons

4 VbYesNo Display yes, no buttons

5 VbRetryCancel Display retry and cancel buttons

 The second group of numbers control what type of icon will be displayed in the message

box

VALUE SYMBOLIC CONSTANTS DESCRIPTION

16 VbCritical Display critical message icon

32 VbQuestion Display warning query icon

48 VbExclamation Display warning message icon

64 VbInformation Display information message icon

 The next group of numbers controls which button is the default button for the box.

VALUE SYMBOLIC CONSTANTS DESCRIPTION

0 VbDefaultButton1 First button is default

256 VbDefaultButton2 second button is default

512 VbDefaultButton3 third button is default

Example:

Op = Msgbox(“Do you want to delete?”,VbYesNo+VbCritical+VbDefaultButton2,”Delete?”)

If Op= VbYes Then

‘Write the code for Delete

End if

GRID

 The grid is important foir accurately positioning controls

 To control the grid, choose

15

Tools→option and then go to the general page

 The four properties that the user should control the grid are described below

 Show Grid

 The user can turn the grid on or off by changing the show grid setting

 The default setting is on

Grid Width, Grid Height

 The height and width setting is used to set the distance (in twips) between

grid marks

 The default is 120 twips

Align Controls To Grid

 This check box determines whether controls automatically move to the next

grid mark (or) whether they can be placed etween grid marks.

 The alternate way for aligning controls to grid is, choose

Format→align→to grid

VB EDITING TOOLS

THE EDITOR FORMAT PAGE

 Choose tools→ option and click on the editor format tab

 The code colors frame contains list of possible objects that the user can change

(ex: normal text, comment text, keyboard text and so on)

Font List Box

 This will display the complete list of fonts that is already installed in the

system.

Size List Box

 The user can type a point size for the font directly in the size list box

 This option is used to change the font size of the VB environment

Foreground, Background And Indicator List Box

 The three code colors boxes determines the foreground and back ground colors

used for each type of code

 The third list box used for indicators in the margin such as book marks.

16

Sample Box

 This box is used to see a sample text in the font, size and color setting that are

currently set.

THE EDITOR PAGE:

 Auto Syntax Check

 Visual basic automatically check the code when the programmer press

ENTER and there by detect certain kinds of mistakes immediately

Require Variable Declaration

 Keep this option checked always

Tab Width Box

 Use the tab width box to set the number of spaces the user gets when the user

press TAB key

 This can be anything from 1 to 32.

 The default is 4 spaces

 Tf the user have selected text,

 Pressing TAB shift all the text forward one tab stop

 Pressing SHIFT+ TAB all the text back one tab stop

Auto Indent Check Box

 If the auto indent box is checked, pressing ENTER after you use the TAB key

to indent a line makes the subsequent line start at the same place as the line

above it.

 It is useful to make programming structure cleaner

Default To Full Module View

 When this option is checked, the user will see all the code as one unit the code

window

 The user will scroll through the code with arrow keys

 If this option is unchecked, each procedure of code pops up in a separate

window

 Use CTRL+↑ and CTRL+↓ to cycle through the different pieces of code.

17

Procedure Separator

 Use this check box in conjunction with full module view

THE EDIT TOOL BAR

 Many useful editing features have button equivalent on the edit tool bar

 The user can add the eedit tool bar, in the VB environment bu selecting

VIEW → tool bars

 The tools available in tool bar are discussed below

FUNCTION SHORT CUT DESCRIPTION

List properties

methods
[CTRL + J]

Displays a pop-up list box with the

properties and methods for the object

preceding the period

List constants

[CTRL + SHIFT + J]

Display a pop-up list box with the valid

constants

Quick info [CTRL + I]
Gives the syntax for the procedure (or)

method

Parameter Info [CTRL + SHIFT + I]
Provides the parameter list for the current

function call

Complete word [CTRL+SPACEBAR]
Complete the keyword or object when

enough information is there

Intend [TAB]

Indents the selected text one tab stop.

Use editor page to change the no. of spaces

for the tab.

Out end [SHIFT+TAB] Moves the selected text back one tab stop

Toggle break

point
[F9] Used for debugging

Comment block

Used to comment the block of statement

Uncomment

block
Used to uncomment the block of statement

Toggle

bookmark

The editor allows the user to put book mark

at specific places in the code. The user can

jump from one bookmark to another easily

Next bookmark

Move to next bookmark

18

Previous

bookmark
Move to previous bookmark

Clear all book

marks
Used to clear all the bookmarks in the code

VARIABLE

 Variables are used to store information(values)

 When the user use a variable , VB set up an area in the computer’s memory to

store the information

 Variable name can be up to 255 characters

 The first letter of the variable should be an alphabet

 Any combination of letter, numbers and underscore can be given for a variable

name

 The user can not use names reserved by VB

 Choose the meaning variable name

 The naming convention for styling variables name is, use capitals only at the

beginning of the word.

 This convention is called mixed case variable name.

DATA TYPES

The data types available in VB are

1. Boolean

2. Byte

3. Integer

4. Long integer

5. Single precision

6. Double precision

7. Currency

8. String

9. Date

10. Variant

BOOLEAN:

 Use the Boolean data type when you need to store either TRUE or FALSE

19

BYTE:

 This data type was added to VB 5

 It will hold integer values between 0 to 255

INTEGER:

 Integer data type are used to store integer values between -32768 and 32767

 Integer arithmetic is very fast

 The integer variable are capable of holding integer within the range

 Use % sign at the end of integer variable name

LONG INTEGER:

 The long integer variable hold integer value between -2147483648 and 2147483647

 The identifier that the user can use for the variable is the ampersand(&)

 Long integer arithmetic is also fast

SINGLE PRECISION (!):

 This data type is used to store numbers with decimal points

 The range of the number is up to 38 digits

 The calculation will always be approximate for these types of variables

 This is used for numbers with only seven digit accuracy

DOUBLE PRECISION(#):

 The double precision data type is used when the user need up to 16 places of accuracy

 The range is more than 300 digits

 The calculation are also approximately for these variables

 Calculation are relatively slow with double precision numbers

 The identifier used for double for double precision variable is a pound sign.

CURRENCY:

 The currency data type is designed to award certain problems in switching from binary

fractions to decimal fraction.

 The currency data type can have 4 digits to the right of the decimal place and up to 15 to

the left of the decimal point

 Arithmetic calculation will be exact with in this range

 This is the preferred data type to use for financial calculation

20

STRING($):

 The string data type holds characters

 A variable holding a string is called a string variable

 A string variable can hold about 2 billion character

 Due to memory constraint, the no. of characters may vary.

 The most common use of string variables is to store the information contained in a text box.

DATE:

 This is a data type used to store both date and time

 We can store the data value between midnight on Jan 1, 100 and midnight on Dec 31, 9999.

 Use # symbol at the beginning and ending of the data values assignment

Ex:dob= #31-05-1980#

 If the time is not include in the date, VB assumes it is midnight

 We can use AM/PM for assigning time

Ex:dob= #31-05-1980 10:50AM#

UNIT 2

Displaying Information

 VB displays text on a form using ‘print’ function

 The general syntax of print method is

Formname.print expression

 Where expression is any VB expression that VB can convert to a string

 Use Autodraw property of the form to refresh printed text on the form

 Cls is a command used to clear the form

Determinate Loops - Indeterminate Loops

 We can write a Visual Basic procedure that allows the program to run repeatedly

until a condition or a set of conditions is met. This is procedure is known as looping .

Looping is a very useful feature of Visual Basic because it makes repetitive works

easier. There are three kinds of loops in Visual Basic,

the Do...Loop ,the For.......Next loop and the While.....Wend Loop.

21

The Do Loop

The Do Loop statements have four different forms, as shown below:

a)

 Do While condition

 Block of one or more VB statements

Loop

b)

 Do

 Block of one or more VB statements

 Loop While condition

c)

 Do Until condition

 Block of one or more VB statements

 Loop

d)

Do

 Block of one or more VB statements

Loop Until condition

Example 9.1

Do while

counter <=1000

num.Text=counter

counter =counter+1

Loop

* The above example will keep on adding until counter > 1000

The above example can be rewritten as

Do

counter=counter+1

Loop until counter>1000

Exiting the Loop

Sometime we need exit to exit a loop earlier when a certain condition is fulfilled. The

keyword to use is Exit Do. You can examine Example for its usage.

22

Example

Dim sum, n as Integer

Private Sub Form_Activate()

List1.AddItem "n" & vbTab & "sum"

Do

n=n+1

sum=sum+n-resize

List1.AddItem n & vbTab & sum

If n=100 Then

Exit Do

End If

Loop

End Sub

Explanation

In the above example, we compute the summation of 1+2+3+4+……+100. In the

design stage, you need to insert a ListBox into the form for displaying the output,

named List1. The program uses the AddItem method to populate the ListBox. The

statement List1.AddItem "n" & vbTab & "sum" will display the headings in the

ListBox, where it uses the vbTab function to create a space between the headings n

and sum.

The For....Next Loop

The For....Next Loop event procedure is written as follows:

For counter=startNumber to endNumber (Step increment)

 One or more VB statements

Next

Example a

Private Sub Command1_Click()

Dim counter As Integer

For counter = 1 To 10

List1.AddItem counter

Next

End Sub

Example b

Private Sub Command1_Click()

23

Dim counter As Integer

For counter = 1 To 1000 Step 10

counter = counter + 1

Print counter

Next

End Sub

Example c

For counter=1000 to 5 step -5

counter=counter-10

If counter<50 then

Exit For

Else

Print "Keep Counting"

End If

Next

Example d

Private Sub Form_Activate()

For n=1 to 10

If n>6 then

Exit For

Else

Print n

Enf If

Next

End Sub

Sometimes the user might want to get out from the loop before the whole repetitive

process is executed, the command to use is Exit For. To exit a For….Next Loop, you

can place the Exit For statement within the loop; and it is normally used together with

the If…..Then… statement.

The While….Wend Loop

The structure of a While….Wend Loop is very similar to the Do Loop. it takes the

following form:

 While condition

 Statements

 Wend
 The above loop means that while the condition is not met,

the loop will go on. The loop will end when the condition

is met. Let’s examine the program listed in example

24

Example

Dim sum, n As Integer

Private Sub Form_Activate()

List1.AddItem "n" & vbTab & "sum"

While n <> 100

n = n + 1

Sum = Sum + n

List1.AddItem n & vbTab & Sum

Wend
End Sub

 If.....Then.....Else Statements with Operators

To effectively control the VB program flow, we shall use If...Then...Else statement

together with the conditional operators and logical operators.

If conditions Then

VB expressions

Else

VB expressions

End If

Example :

This program simulates a sign in process. If the username and password are correct,

sign in is successful else sign in failed. Start VB6 and insert two textboxes on the

form, rename them UsrTxt and pwTxt, the first textbox is to accept username input

and the second one for password input. For pwTxt, set the PasswordChr(password

characters) property to * so that the password will appear as * instead of the actual

character. We have written the code so that both username and password must be

correct to enable sign in if either one of them incorrect sign in will fail.

The Code

Private Sub OK_Click()

Dim username, password As String

username = "John123"

password = "qwertyupi#@"

25

If UsrTxt.Text = username And pwTxt.Text = password Then

MsgBox ("Sign in sucessful")

ElseIf UsrTxt.Text <> username Or pwTxt.Text <> password Then

MsgBox ("Sign in failed")

End If

End Sub

The Output

Figure 7.1

Select Case

we shall examine another way to control the program flow, that is, the Select

Case control structure. The Select Case control structure is slightly different from the

If....ElseIf control structure .The difference is that the Select Case control structure

can handle conditions with multiple outcomes in an easier manner than

the If...Then...ElseIf control structure.

26

The syntax of the Select Case control structure is shown below:

Select Case expression

 Case value1

 Block of one or more VB statements

 Case value2

 Block of one or more VB Statements

 Case Else

 Block of one or more VB Statements

End Select

Example

Dim grade As String

Private Sub Compute_Click()

grade=txtgrade.Text

Select Case grade

Case "A"

result.Caption="High Distinction"

Case "A-"

result.Caption="Distinction"

Case "B"

result.Caption="Credit"

Case "C"

result.Caption="Pass"

Case Else

result.Caption="Fail"

End Select

End Sub

Built-in Functions

Mathematical Functions

The mathematical functions are very useful and important in programming because

very often we need to deal with mathematical concepts in programming such as

chance and probability, variables, mathematical logics, calculations, coordinates, time

intervals and etc. The common mathematical functions in Visual Basic are Rnd, Sqr,

Int, Abs, Exp, Log, Sin, Cos, Tan , Atn, Fix and Round.

27

The Rnd Function

Rnd is is very useful function for dealing with the concept of chance and probability.

The Rnd function returns a random value between 0 and 1. In Example 11.1. When

you run the program, you will get an output of 10 random numbers between 0 and 1.

Randomize Timer is to randomize the process.

Example Random Number Generation

Private Sub Form_Activate

Dim x as integer

For x=1 to 10

Print Rnd

Next

End Sub

The Numeric Functions

The numeric functions are Int, Sqr, Abs, Exp, Fix, Round and Log.

a) Int is the function that converts a number into an integer by truncating its decimal

part and the resulting integer is the largest integer that is smaller than the number. For

example, Int(2.4)=2, Int(4.8)=4, Int(-4.6)= -5, Int(0.032)=0 and so on.

b) Sqr is the function that computes the square root of a number. For example,

Sqr(4)=2, Sqr(9)=2 and etc.

c) Abs is the function that returns the absolute value of a number. So Abs(-8) = 8 and

Abs(8)= 8.

d) Exp of a number x is the value of ex. For example, Exp(1)=e1 = 2.7182818284590

28

e) Fix and Int are the same if the number is a positive number as both truncate the

decimal part of the number and return an integer. However, when the number is

negative, it will return the smallest integer that is larger than the number. For example,

Fix(-6.34)= -6 while Int(-6.34)=-7.

f) Round is the function that rounds up a number to a certain number of decimal

places. The Format is Round (n, m) which means to round a number n to m decimal

places. For example, Round (7.2567, 2) =7.26

g) Log is the function that returns the natural Logarithm of a number. For example,

Log 10= 2.302585

The Formatting Functions

The Tab function

The syntax of a Tab function is Tab (n); x

The item x will be displayed at a position that is n spaces from the left border of the

output form. There must be a semicolon in between Tab and the items you intend to

display (VB will actually do it for you automatically).

The Space function

The Space function is very closely linked to the Tab function. However, there is a

minor difference. While Tab (n) means the item is placed n spaces from the left border

of the screen, the Space function specifies the number of spaces between two

consecutive items. For example, the procedure

Example 12.2

Private Sub Form_Activate()

Print "Visual"; Space(10);"Basic"

End Sub

Means that the words Visual and Basic will be separated by 10 spaces

The Format function

The Format function is a very powerful formatting function which can display the

numeric values in various forms. There are two types of Format function, one of them

is the built-in or predefined format while another one can be defined by the users.

29

(a) The syntax of the predefined Format function is

Format (n, “style argument”)

where n is a number and the list of style arguments is given in Table

Table : List of Style Arguments

Style

argument
Explanation Example

General

Number

To display the number without having separators

between thousands.

Format(8972.234, "General

Number")=8972.234

Fixed

To display the number without having separators

between thousands and rounds it up to two

decimal places.

Format(8972.2,

"Fixed")=8972.23

Standard

To display the number with separators or

separators between thousands and rounds it up to

two decimal places.

Format(6648972.265,

"Standard")= 6,648,972.27

Currency

To display the number with the dollar sign in

front has separators between thousands as well as

rounding it up to two decimal places.

Format(6648972.265,

"Currency")= $6,648,972.27

Percent

Converts the number to the percentage form and

displays a % sign and rounds it up to two

decimal places.

Format(0.56324,

"Percent")=56.32 %

The syntax of the user-defined Format function is

Format (n, “user’s format”)

Although it is known as user-defined format, we still need to follows certain

formatting styles. Examples of user-defined formatting style are listed in Table

Table: User-Defined Formatting Functions

Format Description Output

Format(781234.576,"0")
Rounds to whole number without separators

between thousands
 781235

 Format(781234.576,"0.0")
Rounds to 1 decimal place without separators

between thousands
 781234.6

30

 Format(781234.576,"0.00")
Rounds to 2 decimal place without separators

between thousands
 781234.58

 Format(781234.576,"#,##0.00")
Rounds to 2 decimal place with separators

between thousands
 781,234.58

 Format(781234.576,"$#,##0.00")
Displays dollar sign and Rounds to 2 decimal

place with separators between thousands
 $781,234.58

 Format(0.576,"0%")
Converts to percentage form without decimal

place
 58%

 Format(0.5768,"0%")
Converts to percentage form with two

decimal places
 57.68%

String Manipulation Functions

The Len Function

The Len function returns an integer value which is the length of a phrase or a

sentence, including the empty spaces. The syntax is

Len (“Phrase”)

For example,

Len (VisualBasic) = 11 and Len (welcome to VB tutorial) = 22

The Len function can also return the number of digits or memory locations of a

number that is stored in the computer. For example,

X=sqr (16)

Y=1234

Z#=10#

Then Len(x)=1, Len(y)=4, and Len (z)=8

The reason why Len(z)=8 is because z# is a double precision number and so it is

allocated more memory spaces.

The Right Function

The Right function extracts the right portion of a phrase. The syntax is

Right (“Phrase”, n)

31

Where n is the starting position from the right of the phrase where the portion of the

phrase is going to be extracted. For example,

 Right(“Visual Basic”, 4) = asic

The Left Function

The Left$ function extract the left portion of a phrase. The syntax is

Left(“Phrase”, n)

Where n is the starting position from the left of the phase where the portion of the phrase is going to

be extracted. For example,

 Left (“Visual Basic”, 4) = Visu

The Ltrim Function

The Ltrim function trims the empty spaces of the left portion of the phrase. The syntax is

Ltrim(“Phrase”)

.For example,

 Ltrim (“ Visual Basic”, 4)= Visual basic

The Rtrim Function

The Rtrim function trims the empty spaces of the right portion of the phrase. The syntax is

Rtrim(“Phrase”)

.For example,

Rtrim (“Visual Basic ”, 4) = Visual basic

The Trim function

The Trim function trims the empty spaces on both side of the phrase. The syntax is

Trim(“Phrase”)

.For example,

Trim (“ Visual Basic ”) = Visual basic

32

The Mid Function

The Mid function extracts a substring from the original phrase or string. It takes the following

format:

Mid(phrase, position, n)

Where position is the starting position of the phrase from which the extraction process will start and

n is the number of characters to be extracted. For example,

Mid(“Visual Basic”, 3, 6) = ual Bas

The InStr function

The InStr function looks for a phrase that is embedded within the original phrase and returns the

starting position of the embedded phrase. The syntax is

Instr (n, original phase, embedded phrase)

Where n is the position where the Instr function will begin to look for the embedded phrase. For

example

Instr(1, “Visual Basic”,” Basic”)=8

The Ucase and the Lcase functions

The Ucase function converts all the characters of a string to capital letters. On the other hand,

the Lcase function converts all the characters of a string to small letters. For example,

Ucase(“Visual Basic”) =VISUAL BASIC

Lcase(“Visual Basic”) =visual basic

The Str and Val functions

The Str is the function that converts a number to a string while the Val function converts a string to

a number. The two functions are important when we need to perform mathematical operations.

The Chr and the Asc functions

The Chr function returns the string that corresponds to an ASCII code while

the Asc function converts an ASCII character or symbol to the corresponding ASCII

code. ASCII stands for “American Standard Code for Information Interchange”.

Altogether there are 255 ASCII codes and as many ASCII characters. Some of the

characters may not be displayed as they may represent some actions such as the

pressing of a key or produce a beep sound. The syntax of the Chr function is

33

Chr(charcode)

and the syntax of the Asc function is

Asc(Character)

The following are some examples:

Chr(65)=A, Chr(122)=z, Chr(37)=% , Asc(“B”)=66, Asc(“&”)=38

FUNCTION AND PROCEDURE

 To attach the function with the current form, open the code window, and then

choose tools menu and select add procedure

 The first line of the function is called the header of the function

Public function random1to(x) as integr

Randomize

Random1to – int (x * rnd)+1

End function

Public function add2no (x as integer, y as integer) as single

Add2no=csgl(x+y)

End function

 The keyword public is called as access specifier

 Where x is a parameter in random to function and x, y are the parameter in

add2no function

 In the body of the function, assign a value to the function using its name

For example,

Add2no=csgl(x+y)

 The value the function gets is depends on the parameter

USER DEFINED FUNCTION

The simplest form of a function definition is,

Public function functionName (para1, para2,…)

34

Statements

Function name= expression

===

Statements

===

Function name= expresio0n

End function

Where parameter1, parameter2 ,… are variables

 These variables are referred to as the parameter (or) arguments of the function

 The types of the parameters can specified by type-declaration

 After process the statements, VB sends the information to the function

definition

 The last value assigned to the functionname inside the body of the function is

the result of the function

 Each variable to send to a parameter must be of the same type

SCOPE OF VARIABLES USED IN FUNCTION PROCEDURE

 As with events procedure, the user can setup own local variable inside function procedure

 Any variable declared within the body of the function using ‘dim’ keyword will be local to

the procedure regardless of whether there is a form level variable with the same name

 The parameter of the function are automatically local to the procedure and no need to

declare the parameter inside the procedure

SUB PROCEDURES

 To add new sub procedure, select tools menu and choose add procedure

 The structure of the simplest sub procedure is,

Public sub procedurename()

35

Statements

End sub

 The first line of the sub procedure is called as header

 Public is the access identifier

 The next in the header is the keyword ‘sub’ followed by the procedure name

 The parameters list should be enclosed within the parenthesis

 The ‘end sub’ keyword are used to indicate the end of a general procedure

 The procedure list will be used to communicate between the program and the procedure

 To use the procedure in the main program, the ‘call’ keyword is used

 To use the call keyword, the user must give parenthesis around the argument list

USES OF PROCEDURE AND FUNCTION

PASSING BY REFERENCE, PASSING BY VALUE

 When the user call a function (or) procedure, there are two ways to pass in a variable as an

argument

 They are

 Passing by reference

 Passing by value

 When the user pass an arguments variable by reference, any changes to the corresponding

parameters inside the procedure will change the value of the original argument

 When the user pass an argument by value, then the original variable retains its original

value.

Example:

Sub triple(num as integer)

Num=3*num

Me.print ”inside the procedure the parameter value is ” & num

Me.print

End sub

36

Sub form_load()

Dim amt as integer /* this is local variable to this procedure */

Amt=2

Me.print ”from form load procedure the parameter value is ” & Amt

Me.print

Triple amt

Me.print ”After procedure call the parameter value is ” & Amt

End sub

From parameter pass by value

Change the statement

Triple (Amt)

 Here the variable is passed by reference because it is surrounded by parenthesis

OUTPUT

Call by reference Call by value

Form load 2 2

Inside procedure 6 6

After procedure call 6 2

Unit 3

Arrays

An array is a collection of items of the same data type. All items have the same name

and they are identified by a subscript or index. When you need to work with several

similar data values, you can use array to eliminate the difficulties of declaring so

many variables. For example, if you want to compute the daily sales and sum the sales

amount after 30 days, you don't need to have 30 variables.

Declaring an array

Syntax: Dim Variable_Name(index) As [Type]

Example:

 Dim month(10) As Integer '11 elements '

Or

37

 Dim month(1 to 12) as Integer '12 elements

In the first line, month(10) is a collection of 11 integer values or items. month(0) is

the 1st item and month(10) is the 10th & last item of the array. So 0 and 10 are

respectively the lower bound and upper bound of the array.

In the other line, month(1 to 12) is a collection of 12 integer values or elements or

items where month(1) is the 1st item and month(12) is the last. So 1 and 12 are

respectively the lower bound and upper bound of the array.

Types of array

The array used in the example is a one-dimensional and fixed-size array. An array can

have more than one dimension. The other types of arrays are multidimensional arrays,

Dynamic arrays and Control arrays.

Fixed-Size Array: We know the total number of items the array in the above example

holds. So that is a Fixed-Size array.

The LBound and UBound functions

 The LBound and Ubound functions return the lower bound and upper bound of an

array respectively.

Example:

Private Sub cmdDisplay_Click()

 Dim arr(10) As Integer

a = LBound(arr)

b = UBound(arr)

 MsgBox "Lower bound = " & a & " Upper bound = " & b

 End Sub

Initializing an array

You can use For Loop to initialize an array.

Example:

Dim day(10) As Integer, i As Integer

 For i = 0 To 10

day(i) = InputBox("Enter day value")

38

Next i

You can also initialize each array item separately in the way a variable is initialized.

Static array

Basically, you can create either static or dynamic arrays. Static arrays must include a fixed number

of items, and this number must be known at compile time so that the compiler can set aside the

necessary amount of memory. You create a static array using a Dim statement with a constant

argument:

This is a static array.

 Dim Names(100) As String

Visual Basic starts indexing the array with 0. Therefore, the preceding array actually holds 101

items.

Dynamic Array

In case of a fixed size array, we have seen that the size of the array is fixed or unchanged, but

there may be some situations where you may want to change the array size. A dynamic

arraycan be resized at run time whenever you want.

Declaring dynamic arrays

Declare the array with empty dimension list.

Example : Dim arr() As Integer

1. .

 Resize the array with the ReDim keyword. Example :

2.

ReDim arr(5) As Integer or, ReDim arr(2 To 5) As Integer

LIST

The List class is used to store generic types of collections objects. By using a generic class on

the list, we can store one type of object. The List size can be dynamically different depending on the

need of the application, such as adding, searching or inserting elements into a list.

Sorting and Searching

The ListView control provides the mechanisms for sorting its ms and searching for specific items, To sort the

ListItems in the’ control, you. must assign the value True to the Sorted property. This is a Boolean value that

determines whether the Listltems in the collectipn will be sorted. Two related properties a.rethe So~er . and

SortKey properties. The SortOrder property determines whether the Listltems are sorted in ascending or

descending order, and the SortKey property determines the sorting key. USortKey is 0, the list is sorted

according to the item’s Text property. . If you want to sort the list according to a subitem, assign the

subitem’s Index value . to the SortKey property.

39

It’s common to sort a list when the column header is clicked. For this reason, the SortKey property is

commonly set from within the ColumnClick event to sort the list using the clicked column

Arrays can be searched in two ways: with the BinarySearch method, which works on sorted

arrays and is extremely fast, and with the IndexOf (and LastIndexOf) methods, which work

regardless of the order of the elements. All three methods search for an instance of an item

and return its index, and they’re all reference methods. The IndexOf and LastIndexOf

methods are similar to the methods by the same name of the String class. They return the

index of the first (or last) instance of an object in the array, or the value −1 if the object isn’t

found in the array. Both methods are overloaded, and the simplest form of the IndexOf

method is the following, where arrayName is the name of the array to be searched and object

is the item you’re searching for:

itemIndex = System.Array.IndexOf(arrayName, object)

The LastIndexOf method’s syntax is identical, but the LastIndexOf method starts searching

from the end of the array. If the item you’re searching for is unique in the array, both

methods will return the same index.

Another form of the IndexOf and LastIndexOf methods allows you to begin the search at a

specific index:

This form of the method starts searching in the segment of the array from startIndex to the

end of the array. Finally, you can specify a range of indices in which the search will take

place by using the following form of the method:

itemIndex = System.Array.IndexOf(arrayName, object, startIndex, endIndex)

You can search large arrays more efficiently with the BinarySearch method if the array is

sorted. The simplest form of the BinarySearch method is the following:

System.Array.BinarySearch(arrayName, object)

The BinarySearch method returns an integer value, which is the index of the object you’re searching

for in the array. If the object argument is not found, the method returns a negative value, which is the

negative of the index of the next larger item minus one. This transformation, the negative of a

number minus one, is called the one’s complement, and other languages provide an operator for it:

the tilde (∼). The one’s complement of 10 is −11, and the one’s complement of −3 is 2.

Recordset:

 The current group of records associated with a data control; may be a table recordset , a

dynaset, or a snapshot.

Visual Basic supports 3 kinds of Record Set as follows:-

40

Table Record Set:-

Table Record Set represents a single table as it exist in a Database file. Table Record Set are usually

updatable unless the file is locked or open for read only.

Dynaset:-

 A Dynaset is temporary set of data taken from one or more table in the form one of many

table in the underlined file. A Dynaset may be a query. That was defined in a access of table

of result of joining multiple tables. Like a table, a Dynaset is updatable if file is not locked or

open for read only. Data in Dynaset is live that is any changes made to data as project is

executing will appear in Record Set.

 Snapshots:-

 Snapshot Record Set, like a dynaset, may be taken from one or more table. The difference is

that snapshot is not updatable and also not live. A snapshot is like photograph a picture of

reality a give point.

Control Array
}

You can populate the list box items either from the properties window or at runtime. To add

items to a ComboBox, select the ComboBox control and go to the properties window for the

properties of this control. Click the ellipses (...) button next to the Items property. This opens

the String Collection Editor dialog box, where you can enter the values one at a line.

Properties of the ComboBox Control

The following are some of the commonly used properties of the ComboBox control −

https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

41

Sr.No. Property & Description

1
AllowSelection

Gets a value indicating whether the list enables selection of list items.

2
AutoCompleteCustomSource

Gets or sets a custom System.Collections .Specialized.StringCollection to use when

the AutoCompleteSourceproperty is set to CustomSource.

3
AutoCompleteMode

Gets or sets an option that controls how automatic completion works for the

ComboBox.

4
AutoCompleteSource

Gets or sets a value specifying the source of complete strings used for automatic

completion.

5
DataBindings

Gets the data bindings for the control.

6
DataManager

Gets the CurrencyManager associated with this control.

7
DataSource

Gets or sets the data source for this ComboBox.

8
DropDownHeight

Gets or sets the height in pixels of the drop-down portion of the ComboBox.

9
DropDownStyle

Gets or sets a value specifying the style of the combo box.

10
DropDownWidth

Gets or sets the width of the of the drop-down portion of a combo box.

13
ItemHeight

Gets or sets the height of an item in the combo box.

42

14
Items

Gets an object representing the collection of the items contained in this

ComboBox.

15
MaxDropDownItems

Gets or sets the maximum number of items to be displayed in the drop-down

part of the combo box.

16
MaxLength

Gets or sets the maximum number of characters a user can enter in the

editable area of the combo box.

17
SelectedIndex

Gets or sets the index specifying the currently selected item.

18
SelectedItem

Gets or sets currently selected item in the ComboBox.

19
SelectedText

Gets or sets the text that is selected in the editable portion of a ComboBox.

20
SelectedValue

Gets or sets the value of the member property specified by the ValueMember

property.

Events of the ComboBox Control

The following are some of the commonly used events of the ComboBox control −

Sr.No. Event & Description

1
DropDown

Occurs when the drop-down portion of a combo box is displayed.

2
DropDownClosed

Occurs when the drop-down portion of a combo box is no longer visible.

3
DropDownStyleChanged

Occurs when the DropDownStyle property of the ComboBox has changed.

43

4
SelectedIndexChanged

Occurs when the SelectedIndex property of a ComboBox control has changed.

5
SelectionChangeCommitted

Occurs when the selected item has changed and the change appears in the combo

box.

Grid Control
The Databound grid control in VB 6.0 adds power and flexibility to

your DataBase programs. you can easily provide grid access to any available DataBase.

You can provide simple display only access for used with summary data and on-screen

reports.You can also provide editing capability to your dara grid including modifying only,

add rights or delete rights.

It’s very easy to create a data grid form

A Grid Control-Step-by-Step

STEP 1: Begin a new project and widen the form.You may want to close the Project

Explorer an Form Layout windows and float the properties

window to allow room to work on the wide form.

STEP 2:Add a data control along the bottom of the form.Set the control’s Name property to

datBooks and its DatabaseName property to RnrBooks.mdb.Set the

RescordSource property to Books and verify that the RecordsetType is 1 – Dynaset.

STEP 3:Select project/Components to display the Components dialog box.Then locate

Microsoft Data Bound Grid Control 5.0, select it , and close the dialog box.You should see

the new tool in the toolbox.

STEP 4:Click on the DBGrid tool and draw a large grid on the form.Then , using the

properties window , change the control’s Name property to dgbBooks and its DataSource

property to datBooks.

STEP 5:Create the menu bar. It should have a File menu with only an Exit command.

STEP 6:Create the large label at the top of the form with the form’s title: Book List.Change

the font and size to something like.

https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

44

DoEvents function

Syntax

DoEvents()

The DoEvents function returns an Integer representing the number of open forms in stand-

alone versions of Visual Basic, such as Visual Basic, Professional Edition. DoEvents returns

zero in all other applications.

DoEvents passes control to the operating system. Control is returned after the operating

system has finished processing the events in its queue and all keys in the SendKeys queue

have been sent.

DoEvents is most useful for simple things like allowing a user to cancel a process after it has

started, for example a search for a file. For long-running processes, yielding the processor is

better accomplished by using a Timer or delegating the task to an ActiveX EXE component.

In the latter case, the task can continue completely independent of your application, and the

operating system takes care of multitasking and time slicing.

Any time you temporarily yield the processor within an event procedure, make sure

the procedure is not executed again from a different part of your code before the first call

returns; this could cause unpredictable results. In addition, do not use DoEvents if other

applications could possibly interact with your procedure in unforeseen ways during the time

you have yielded control.

Example

This example uses the DoEvents function to cause execution to yield to the operating system

once every 1000 iterations of the loop. DoEvents returns the number of open Visual Basic

forms, but only when the host application is Visual Basic.

VBCopy
' Create a variable to hold number of Visual Basic forms loaded
' and visible.

Dim I, OpenForms

For I = 1 To 150000 ' Start loop.

 If I Mod 1000 = 0 Then ' If loop has repeated 1000 times.
 OpenForms = DoEvents ' Yield to operating system.

 End If

Next I ' Increment loop counter.

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#integer-data-type
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#procedure

45

Error Trapping

As you are writing your code, Visual Basic informs you of syntactical errors.

However, once the program is running, you may encounter unexpected runtime

errors in many circumstances.

For example, suppose you try to open a text file that the user has deleted.

When a compiled program has an error like this, an error message is displayed and

the program ends.

Although you cannot predict and write code for every possible type of error,

"File Not Found" errors are fairly easy to handle. If you do not write code to work

around the error, you can at least provide a message that makes more sense before

ending the program.

The "On Error" Statement

The most common way to handle error conditions is to use Visual Basic's "On

Error" statement. The "On Error" statement interrupts the normal flow of your

program when

an error occurs and begins executing your error handling code. A typical

use is as follows :

On Error Goto FileOpenError

When this statement is executed, any errors that occur in subsequent statements

cause Visual Basic to stop normal line-by-line execution and jump to the statement

labeled as "FileOpenError".

Labeling Code Lines

Line labels in Visual Basic are similar to the line numbers of early BASIC. In Visual

Basic, line labels can include text if you want, but each label must be unique. They

are followed by a colon (:), as in the following example :

Private Sub Form_Load ()

On Error Goto FileOpenError

 Open "C:\SOMEFILE.TXT" For Unput As #1

 Line Input #1, sData

 Exit Sub

FileOpenError:

 MsgBox "There was a problem opening the file. Stop for coffee!"

 End

End Sub

46

In the preceding sample code, if the "Open" or "Line Input" statements cause an

error, the statements starting at the label "FileOpenError" are executed, causing the

message to be displayed and ending the program.

You should note a few points about the sample code. First, note the location and

style of the error handling routine. It is usually placed near the end of

the subroutine, with the label not indented to indicate a special section of code.

Second, and more important, note the "Exit Sub" statement after the "Open"

statement. It is necessary to prevent the error handler routine from executing even

when the "Open" statement was successful.

Controlling Program Flow After an Error

In the preceding code example, you simply end the program if an error occurs.

However, you can handle the error in several (better) ways :

 Exit the subroutine after informing the user of the error, and allow the

program

to continue running with limited functionality.

 Resume execution with the next statement following the error.

 Provide a way for the user to correct the error and retry the offending

statement.

You can also have multiple labels within a procedure and set the current error

handler

multiple times. For example, you can add a line to the code sample after the "Open"

statement that specifies a new label, "FileInputError". You can also turn off error

handling with the following statement :

On Error Goto 0

The "On Error" statement goes hand in hand with the "Resume" statement. For

example, this statement causes errors to be ignored and the program to proceed

through each line of the code anyway :

On Error Resume Next

You should use the preceding line of code sparingly because it really just ignores

errors rather than handles them. A better use of "Resume" is to go to another

section

of code. as in the following example :

Private Sub Form_Load ()

 On Error Goto FileOpenError

RetryHere:

47

 Open "C:\SOMEFILE.TXT" For Unput As #1

 Line Input #1, sData

 Exit Sub

FileOpenError:

 Dim sMessage As String

 sMessage = "There was a problem opening the file. " & VbCrLf

 sMessage = sMessage & "Press Retry to try again, or Cancel to quit."

 If MsgBox (sMessage, vbRetryCancel + vbCritical, "Error!") = vbRetry Then

 Resume RetryHere

 Else

 End

 End If

End Sub

You can though use "On Error Resume Next" if you are trying to connect to

AutoCAD

Determining The Type of Error

After an error has occurred, your code can find out more information about the

error in several ways :

 Err - Contains a number that represents the error.

 Error - Contains a string describing the error.

 Err Object - Contains error number, description and additional

information.

Also used to raise your own custom errors.

UNIT 4

Dialog boxes

There are many built-in dialog boxes to be used in Windows forms for various tasks like

opening and saving files, printing a page, providing choices for colors, fonts, page setup,

etc., to the user of an application. These built-in dialog boxes reduce the developer's time and

workload.

All of these dialog box control classes inherit from the CommonDialog class and override

the RunDialog() function of the base class to create the specific dialog box.

The RunDialog() function is automatically invoked when a user of a dialog box calls

its ShowDialog() function.

48

The ShowDialog method is used to display all the dialog box controls at run-time. It returns

a value of the type of DialogResult enumeration. The values of DialogResult enumeration

are −

 Abort − returns DialogResult.Abort value, when user clicks an Abort button.

 Cancel − returns DialogResult.Cancel, when user clicks a Cancel button.

 Ignore − returns DialogResult.Ignore, when user clicks an Ignore button.

 No − returns DialogResult.No, when user clicks a No button.

 None − returns nothing and the dialog box continues running.

 OK − returns DialogResult.OK, when user clicks an OK button

 Retry − returns DialogResult.Retry , when user clicks an Retry button

 Yes − returns DialogResult.Yes, when user clicks an Yes button

The following diagram shows the common dialog class inheritance −

All these above-mentioned classes have corresponding controls that could be added from the

Toolbox during design time. You can include relevant functionality of these classes to your

application, either by instantiating the class programmatically or by using relevant controls.

When you double click any of the dialog controls in the toolbox or drag the control onto the

form, it appears in the Component tray at the bottom of the Windows Forms Designer, they

do not directly show up on the form.

The following table lists the commonly used dialog box controls. Click the following links to

check their detail −

Sr.No. Control & Description

1
ColorDialog

It represents a common dialog box that displays available colors along with controls

that enable the user to define custom colors.

https://www.tutorialspoint.com/vb.net/vb.net_color_dialog.htm

49

2
FontDialog

It prompts the user to choose a font from among those installed on the local

computer and lets the user select the font, font size, and color.

3
OpenFileDialog

It prompts the user to open a file and allows the user to select a file to open.

4
SaveFileDialog

It prompts the user to select a location for saving a file and allows the user to

specify the name of the file to save data.

5
PrintDialog

It lets the user to print documents by selecting a printer and choosing which sections

of the document to print from a Windows Forms application.

Microsoft windows common control

To add this control or any external control for VB project and for further understand follow
the
steps:

Steps: Project (Menu) >> Components (Window) >> Controls (Tab) >> Chose Component

First, find and go to "Project" menu and click on it.

Find "Components" option from "Project" menu and click on it. "Components" window will
appear. You can also press (Ctrl + T) from keyboard to open this window.

3.
This window contain 3 Tabs (Controls, Designers, Insertable Objects). Find "Microsoft
Windows Common Control 6.0(SP6)" from "Controls" tab and check it.

https://www.tutorialspoint.com/vb.net/vb.net_font_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_openfile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_savefile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_print_dialog.htm

50

4.

Then click on "OK" or "Apply" butto

51

IMAGE LIST CONTROL IN VB6.0

Image List control:

 An ImageList Control contains a collection of images that can be used by other Windows
 Common Control

 It does not appeare on the form at run time.

 It serve as a container for icon that are accessed by other control such as
ListView,TreeView,TabStrip and ToolBar controls.

http://nextdayexam.blogspot.com/p/image-list-control-in-vb60.html

52

To add Image list control in the tool box:

1.Click on “Start” . Then select “All Programs, Microsoft Visual Studio 6.0 and Microsoft Visual

Basic 6.0.” .

2. Select “Standard EXE” from the list in the New Project dialog box and click on “Open.” Click on

“Project” on the menu bar, then select “Components” from the drop-down menu.

3. Scroll down the list in the box until Microsoft Windows Common Controls 6.0 (SP4) is

visible. Click on the checkbox to select the component and then click on “OK.” All components

show in the Toolbox.

To add Image List control in the form:

 Choose the “ListView1” control from the list of controls in the toolbox. Place the control on the
 form in Visual Basic.

To add images to the image list control:

 Right click on Image control a popup menu is open choose properties option.A Properties Page is
 open .

 Click on Images Tab and insert the image as you want.

 To insert more than one picture then click on Insert Picture Button

LISTVIEW CONTROL

Text: Input of header name

Alignment: Set Alignment (Left, Center, Right)

Width: Increase or decrease width by giving width Value. Key: Type header key value.

Tag: Tag header by giving value.

Icon Index: Define icon index number.

PROGRESS BAR

First we need to find out about Controls, Properties and use. For including this control in VB6.0

Form, you need to find component with given steps:

Project (menu)>> component>> Controls(Tab)>> Microsoft Windows Common Controls

6.0 (SP6)

ProgressBar Scrolling (Bar Style) Options

0 - ccScrollingStandard

1 - ccScrollingSmooth

Style (Bar style Options)

Blocks

53

Continuous

Marquee

StatusBar

A StatusBar control is a frame that can consist of several panels which inform the user of the

status of an application. The StatusBar can be divided up into a maximum of

sixteen Panel objects that are contained in a Panels collection. Various kinds of status data can

be displayed in a panel: text, keyboard states such as Caps Lock, Num Lock, Scroll Lock, and

Kana (on Japanese systems only), the current date, and the current time. The only type of panel

that can be modifed at run-time is a Text panel. The other types update themselves automatically

without you writing any code. Additionally, the control has a "simple" style (set with the Style

property)

The Index property is automatically maintained as you insert or remove panels.

With the Text property (applicable only when the Style of the panel is set to 0 - sbrText), specify any
initial text you want the panel to display.

The Key property is a string that uniquely identifies the panel (as with all collections, a member can

be identified either by its numeric Index property or its string Key property).

The Alignment property lets you specify whether you want the text justified left, center, or right

within the panel.

The Slider control

The Slider control allows you to pick a numeric value by dragging a thumb along a
horizontal or vertical line. You see it in a lot of user interfaces, but it can still be a bit hard
to recognize from the description alone, so here's a very basic example:

54

You can use a TabStrip to view different sets of information for related controls.

For example, the controls might represent information about a daily schedule for a group of

individuals, with each set of information corresponding to a different individual in the group.

TreeView Control
The Tree View control is a Visual Basic version of the control you see used in many programs,

including Explorer and FrontPage, used to list the folders on your hard disk. This control allows

you to add nodes to a tree, each of which can have sub items. Below is an image of the Tree

View control in use.

https://www.developerfusion.com/t/vb6/

55

The Tree View control comes with all editions of Visual Basic, except the standard version.

MDI form

What is an MDI form?

MDI stands for Multiple Document Interface. You have probably seen many MDI applications.

When you want to handle multiple documents, MDI forms are useful in a Windows program.

How to add an MDI form to the current project?

http://en.wikipedia.org/wiki/Multiple_document_interface#Application_examples
http://2.bp.blogspot.com/-WYqzcJ83DmQ/UQEd2r7w-mI/AAAAAAAAAnc/BCYcB5cjo5U/s1600/add+MDI+form.jpg

56

Project -> Add MDI form. Click Project from the menu bar, and click Add MDI form. It's

simple! Remember, a project can have only one MDI form.

Restrictions of the MDI form

1. You can have only one MDI form per project.

2. You can't place most controls on an MDI form. The only controls that can be placed on

the surface of the MDI form are Menus, Timer, CommonDialog, PictureBox, ToolBar, and

StatusBar.

These restrictions are there because MDI forms are the special type of forms, especially used to

handle multiple child forms.

How does the MDI form work?

There can be only one MDI parent form in a project with one or more MDI child forms (or

simply child forms).

 MDI child form: To add a child form, you have to add a regular form, and set the

MDIchild property to True. You can have many child forms and can show an MDI child form
using the Show method.

 AutoShowChildren property of an MDI form: The default value of

the AutoShowChildren property is True. When it is True, the MDI child forms are displayed

once they are loaded. When the value is False only then you can keep it hidden after loading,
otherwise not.

 Restrictions of the MDI child forms:

 1. You can't display an MDI child form outside its parent.

 2. You can't display a menu bar on the MDI child form.

Now coming to the point - how the MDI form works. The parent form contains a menu bar on

top of it. From there, the user opens or creates a new document. In this way, the user

accomplishes his/her work in one or multiple documents, then saves and closes the document

(form). You can create instances of a single form in the code using the Set keyword (Using

the object variables).

'Inside the MDIForm module

Private Sub mnuFileNew_Click()

 Dim frm As New Form1

 frm.Show

End Sub

 ActiveForm property: This is the Object type read-only property of the MDI form.

You can apply this property to one of the children. For example, you can close the active form
using this property from the Close menu command of the menu bar.

'In the MDI form

Private Sub mnuFileClose_Click()

 If Not (ActiveForm Is Nothing) Then Unload ActiveForm

End Sub

http://www.vbtutes.com/2012/09/lesson-62-menus.html

57

Parent and Child Menus

MDI Form cannot contain objects other than child Forms, but MDI Forms can have their own

menus. However, because most of the operations of the application have meaning only if there is at

least one child Form open, there's a peculiarity about the MDI Forms. The MDI Form usually has a

menu with two commands to load a new child Form and to quit the application. The child Form can

have any number of commands in its menu, according to the application. When the child Form is

loaded, the child Form's menu replaces the original menu on the MDI Form

Following example illustrates the above explanation.

* Open a new Project and name the Form as Menu.frm and save the Project as Menu.vbp

* Design a menu that has the following structure.

<> MDIMenu Menu caption

 MDIOpen opens a new child Form

 MDIExit terminates the application

* Then design the following menu for the child Form

<> ChildMenu Menu caption

 Child Open opens a new child Form

 Child Save saves the document in the active child Form

 Child Close Closes the active child Form

Debugging And Testing

In w0riting VB software, three types of errors can occur:

 Syntax errors (Compile errors)

 Run-time errors

 Logic errors

Syntax errors

These are grammatical errors in the formulation of statements and are picked up by

the interpreter while you are typing in the code (providing the syntax checking option

- under environment options - is set to yes). In the example below the syntax of the

assignment statement is incorrect - the property of Label1 is missing (the statement

should be Label1.Caption = current_day). Visual Basic has signalled this error at

design time by placing the cursor at the point of omission and displaying a pop up

error message.

58

Run-time errors

These are errors that cannot be detected until the program is running. The syntax of

the statements is correct, but on execution they cause a situation to arise that results in a

crash or an undefined value. Error handlers can be used to trap such errors and deal with

them (these are beyond the scope of this course).

Examples of run-time errors are attempted division by zero or trying to access a non-

existent object as in the example below (where Label2 has not been created).

Logic errors

These are errors that cause the program to behave incorrectly. They generally arise

through failure on the part of the programmer to arrive at a correct algorithm for the task.

Typical problems might be incorrect ordering of statements, failure to initialise or re-

initialise a variable, assignment to an incorrect variable, use of ‘<’ instead of ‘<=’, use of

‘and’ instead of ‘or’, or omission of a crucial step in the processing. Logic errors may lurk

in a program even when it appears to work - they may only surface under certain

conditions. This is why careful testing is so important.

Using debugging tools

Debugging tools are designed to help with:

 Stopping the execution of a program at specific points Detecting run-time
and logic errors

59

 Understanding the behaviour of error-free code

Program errors can be very tricky to isolate. Sometimes they occur at the end of a long series of

calculations or after many iterations of a loop. Programs execute very quickly and there is

generally no opportunity to verify exactly what has been executed unless you build in

diagnostic statements (such as print statements added to produce a trail, or to display

intermediate calculations).

Using Break Mode

At design time you can change the interface or code but the effect on the executing

program cannot be seen until run time. At run time you can observe the behaviour of the

program, but not change it.

Break mode halts execution of the software and gives a snapshot of its state at a particular

moment. Variable and property settings are preserved and may be inspected. In break

mode you can:

 Observe the state of the interface.

 Determine which procedures are active.

 Control which statement will be executed next.

 Watch the values of variables and properties.

Using the Debug window

Sometimes debugging requires analysis of what is happening to data. A problem may

have been traced to the value of a variable or property but you need to know where

the incorrect assignment occurred. The Debug window lets you display the value of

variables either while a program is running or after it has been halted. The window

consists of two panes:

1. Watch pane

Located directly beneath the Debug window title bar, this pane is visible only if

you have selected a watch expression to be monitored during code execution.

The displayed information includes the context of the watch expression, the

expression itself and its value at the time of the transition to break mode. If the

context of the expression is not in scope when going to break mode, the current

value is not displayed.

60

2. Immediate pane

Located below the title bar, or below the Watch pane if it is displayed, the Immediate

pane is where you enter code to execute it immediately. While working in the Immediate

pane:

o You can execute only one line of code at a time.

o You can type or paste a line of code and press to run it.

o You cannot save code, but you can copy and paste it into the Code

 window.
o In Break mode, a statement in the Debug window is executed in the

context displayed in the Debug window title bar. For example, if you

type Print variable name your output is the value of a local variable. This is the same as if

the Print method had actually occurred in the procedure you were executing when the

program halted.

The Debug window can do different things depending on what mode Visual Basic is

in:

Break Mode

When execution of a program has been temporarily halted and VB is in Break mode

the Debug window can be used to execute single line commands entered by the user.

For example, the user can click on the Debug window, type ‘Print Time$’, and hit .

The result is the current system time is displayed in the Debug window. Almost any

line of code can be executed from the Debug window. You can also use the Debug

window to monitor the value of expressions you have selected as watch expressions.

Run time Mode

At run time, although you can’t enter statements into the Debug window, you can use

it to display internal values without printing them to the actual forms. The Debug

window is an object which has a single Print method. For example, the following line

will send the name of the font used in ‘Label1’ to the debug window at run time:

Debug.Print Label1.FontName

Variables or constants can also be printed in the same way:

Debug.Print intCurrentDay
Debug.Print "Reached here in the code"

61

Working with graphics

Working with graphics is easy in Visual Basic 6. VB6 gives you the flexibility and power to make graphical

applications in easy steps. It is rich in graphics related features. The built-in methods, properties and events

allow you to use these features most effectively.

In this tutorial, you will learn about various graphic methods, properties and techniques. The graphic

methods and properties let you perform some graphical operations. More specifically, they allow you to

draw points, lines, circles, rectangles, ellipses and other shapes. You will also learn how to display text and

images. Finally, this tutorial introduces you to the Paint event.

This tutorial is for the beginner learners. So the concepts are presented in the simplest way possible. Code

examples have been used wherever they became necessary.

Graphic methods

The graphic methods allow you to draw on the form and the PictureBox control. In Visual Basic 6,

graphic methods are only supported by the form object and the PictureBox control. However, the

later versions of Visual Basic allow you to use them with other objects and controls.

First of all, the graphic methods in this section are discussed only to give you a basic idea about

them. Later in this tutorial, I will show you how to use them in your code to perform certain

operations like printing text, drawing shapes etc.

The common graphic methods are explained below.

 Print: Print is the simplest graphic method in Visual Basic 6. This method has been used

throughout the earlier versions of the language. It prints some text on the form or on the

PictureBox control. It displays texts.

 Cls: The Cls method is another simple graphic method that is used to clear the surface of the

form or the PictureBox control. If some texts are present, you can use the Cls method to

remove the texts. It clears any drawing created by the graphic methods.

 Point: The Point method returns the color value from an image for a pixel at a particular

point. This method is generally used to retrieve color values from bitmaps.

 Refresh: The refresh method redraws a control or object. In other words, it refreshes the

control. Generally, controls are refreshed automatically most of the times. But in some cases,

you need to refresh a control’s appearance manually by explicitly invoking the Refresh

method.

62

 PSet: The PSet method sets the color of a single pixel on the form. This method is used to

draw points.

 Line: The Line method draws a line. Using the Line method, you can also draw other

geometric shapes such as rectangle, triangle etc.

 Circle: The Circle method draws a circle. Using the Circle method, you can also draw other

geometric shapes such ellipses, arcs etc.

 PaintPicture: The PaintPicture method displays an image on the form at run-time.

 TextHeight: The TextHeight method returns the height of a string on the form at run-time.

 TextWidth: The TextWidth method returns the width of a string on the form at run-time.

The LoadPicture function

The LoadPicture function loads a picture to the form or to the PictureBox control. It sets the picture to the control in

order to display it. The function takes the file path as an argument. The LoadPicture function allows you to set

pictures at run-time.

Example:

Code:

Picture1 = LoadPicture(“C:\MyPic.JPG”)

Here, Picture1 is the PictureBox control. When this code is executed the picture is loaded and set to the PictureBox

control. If Visual Basic cannot find the picture in the specified location, it throws a run-time error ‘53’.

The RGB function

The RGB function returns an integer, a color code which is used to set colors in Visual Basic code. The RGB color

code is a combination of red, green and blue colors. Consider the following example to understand RGB function in

VB6.

Example:

Code:

Form1.BackColor = RGB (120, 87, 55)

The RGB color is set as the background color of the form object. The first, second and the third arguments represent

red, green and blue colors respectively. The color value is an integer. These values are in a range of 0 to 255. So you

can use any value between 0 and 255 to obtain a color.

Graphic properties

The graphic properties are useful while working with the graphic methods. Some of the form's properties and some of

the PictureBox's properties are the graphics properties.

The common graphic properties are discussed in this section. You’ll learn more about them using code examples later

in this tutorial.

63

Consider the following graphic properties.

 DrawMode: The DrawMode property sets the mode of drawing for the appearance of output from

the graphic methods. In the DrawMode property, you can choose from a variety of values.

 DrawStyle: The DrawStyle property sets the line style of any drawing from any graphic methods. It

allows you to draw shapes of different line styles such as solid, dotted, dashed shapes etc.

 DrawWidth: The DrawWidth property sets the line width of any drawing from any graphic methods.

While drawing shapes, you can control the thickness of the lines using this property.

 FillColor: The FillColor property is used to fill any shapes with a color. You may use the symbolic

color constants to fill your shapes. You may also use the color codes as well as the RGB function.

 FillStyle: The FillStyle property lets you fill shapes in a particular filling style.

 ForeColor: The ForeColor property is used to set or return the foreground color.

 AutoRedraw: Set the AutoRedraw property to True to get a persistent graphics when you’re calling

the graphic methods from any event, but not from the Paint event.

 ClipControls: Set the ClipControls property to True to make the graphic methods repaint an object.

 Picture: The Picture property is used to set a picture. Pictures can be set both at design time and run-

time.

Run-time graphic properties

CurrentX and CurrentY are the run-time properties which are used to set and return the position of a shape or

point at run-time.

 CurrentX: The CurrentX property sets or returns the horizontal coordinate or X-coordinate of the

current graphic position at run-time.

 CurrentY: The CurrentY property sets or returns the vertical coordinate or Y-coordinate of the

current graphic position at run-time.

Unit 5

Monitoring Mouse activity

Events are basically a user action like key press, clicks, mouse movements, etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are

examples of events. An event is an action that calls a function or may cause another event. Event

handlers are functions that tell how to respond to an event.

64

VB.Net is an event-driven language. There are mainly two types of events −

 Mouse events

 Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the various

mouse events related with a Control class −

 MouseDown − it occurs when a mouse button is pressed

 MouseEnter − it occurs when the mouse pointer enters the control

 MouseHover − it occurs when the mouse pointer hovers over the control

 MouseLeave − it occurs when the mouse pointer leaves the control

 MouseMove − it occurs when the mouse pointer moves over the control

 MouseUp − it occurs when the mouse pointer is over the control and the mouse button is

released

 MouseWheel − it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties −

 Buttons − indicates the mouse button pressed

 Clicks − indicates the number of clicks

 Delta − indicates the number of detents the mouse wheel rotated

 X − indicates the x-coordinate of mouse click

 Y − indicates the y-coordinate of mouse click

File Handling

A file is a collection of data stored in a disk with a specific name and a directory path. When a file

is opened for reading or writing, it becomes a stream.

The stream is basically the sequence of bytes passing through the communication path. There are

two main streams: the input stream and the output stream. The input stream is used for reading

data from file (read operation) and the output stream is used for writing into the file (write

operation).

65

VB I/O Classes

The System.IO namespace has various classes that are used for performing various operations with files,

like creating and deleting files, reading from or writing to a file, closing a file, etc.

The following table shows some commonly used non-abstract classes in the System.IO namespace −

I/O Class Description

BinaryReader Reads primitive data from a binary stream.

BinaryWriter Writes primitive data in binary format.

BufferedStream A temporary storage for a stream of bytes.

Directory Helps in manipulating a directory structure.

DirectoryInfo Used for performing operations on directories.

DriveInfo Provides information for the drives.

File Helps in manipulating files.

FileInfo Used for performing operations on files.

FileStream Used to read from and write to any location in a file.

MemoryStream Used for random access of streamed data stored in memory.

Path Performs operations on path information.

StreamReader Used for reading characters from a byte stream.

66

StreamWriter Is used for writing characters to a stream.

StringReader Is used for reading from a string buffer.

StringWriter Is used for writing into a string buffer.

The FileStream Class

The FileStream class in the System.IO namespace helps in reading from, writing to and closing

files. This class derives from the abstract class Stream.

You need to create a FileStream object to create a new file or open an existing file. The syntax for

creating a FileStream object is as follows −

Dim <object_name> As FileStream = New FileStream(<file_name>, <FileMode Enumerator>,

<FileAccess Enumerator>, <FileShare Enumerator>)

For example, for creating a FileStream object F for reading a file named sample.txt −

Dim f1 As FileStream = New FileStream("sample.txt", FileMode.OpenOrCreate,

FileAccess.ReadWrite)

Parameter Description

FileMode
The FileMode enumerator defines various methods for opening files. The members of

the FileMode enumerator are −

 Append − It opens an existing file and puts cursor at the end of file, or creates

the file, if the file does not exist.

 Create − It creates a new file.

 CreateNew − It specifies to the operating system that it should create a new

file.

 Open − It opens an existing file.

 OpenOrCreate − It specifies to the operating system that it should open a file

if it exists, otherwise it should create a new file.

 Truncate − It opens an existing file and truncates its size to zero bytes.

FileAccess
FileAccess enumerators have members: Read, ReadWrite and Write.

67

FileShare
FileShare enumerators have the following members −

 Inheritable − It allows a file handle to pass inheritance to the child processes

 None − It declines sharing of the current file

 Read − It allows opening the file for reading

 ReadWrite − It allows opening the file for reading and writing

 Write − It allows opening the file for writing

Example

The following program demonstrates use of the FileStream class −

Imports System.IO

Module fileProg

 Sub Main()

 Dim f1 As FileStream = New FileStream("sample.txt", _ FileMode.OpenOrCreate, FileAccess.ReadWrite)

 Dim i As Integer

 For i = 0 To 20

 f1.WriteByte(CByte(i))

 Next i

 f1.Position = 0

 For i = 0 To 20

 Console.Write("{0} ", f1.ReadByte())

 Next i

 f1.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result −

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1

File Controls

Three of the controls on the ToolBox let you access the computer's file system. They are DriveListBox,
DirListBox and FileListBox controls (see below figure) , which are the basic blocks for building dialog boxes

that display the host computer's file system. Using these controls, user can traverse the host computer's file

system, locate any folder or files on any hard disk, even on network drives.

the DriveListBox control is a combobox-like control that's automatically filled with your drive's letters and volume

labels. The DirListBox is a special list box that displays a directory tree. The FileListBox control is a special-purpose

68

ListBox control that displays all the files in a given directory, optionally filtering them based on their names,

extensions, and attributes.

These controls often work together on the same form; when the user selects a drive in a DriveListBox, the DirListBox

control is updated to show the directory tree on that drive. When the user selects a path in the DirListBox control, the

FileListBox control is filled with the list of files in that directory. These actions don't happen automatically,

however—you must write code to get the job done.

After you place a DriveListBox and a DirListBox control on a form's surface, you usually don't have to set any of

their properties; in fact, these controls don't expose any special property, not in the Properties window at least. The

FileListBox control, on the other hand, exposes one property that you can set at design time—the Pattern property.

This property indicates which files are to be shown in the list area: Its default value is *.* (all files), but you can enter
whatever specification you need, and you can also enter multiple specifications using the semicolon as a separator.

You can also set this property at run time, as in the following line of code:

File1.Pattern = "*.txt;*.doc;*.rtf"

Following figure shows three files controls are used in the design of Forms that let users explore the entire structure of

their hard disks.

 DriveListBox : Displays the names of the drives within and connected to the PC. The basic

property of this control is the drive property, which set the drive to be initially selected in the control

or returns the user's selection.

 DirListBox : Displays the folders of current Drive. The basic property of this control is the Path

property, which is the name of the folder whose sub folders are displayed in the control.

 FileListBox : Displays the files of the current folder. The basic property of this control is also

called Path, and it's the path name of the folder whose files are displayed.

The three File controls are not tied to one another. If you place all three of them on a Form, you will see the

names of all the folders under the current folder, and so on. Each time you select a folder in the DirlistBox

by double clicking its name, its sub folders are displayed. Similarly , the FileListBox control will display the

names of all files in the current folder. Selecting a drive in the DriveListBox control, however this doesn't

affect the contents of the DirListBox.

69

To connect to the File controls, you must assign the appropriate values to the properties. To compel the

DirListBox to display the folders of the selected drive in the DriveListBox, you must make sure that each

time the user selects another drive, the Path property of the DirListBox control matches the Drive property

of the DriveListBox.

File System Objects
The File System Object (FSO) object model provides an object-based tool for working with folders and

files. Using "object.method" syntax, it exposes a comprehensive set of properties and methods to perform

file system operations such as creating, moving, deleting, and providing information about folders and files.

The FSO also provides methods for reading and writing sequential text files, however it does NOT have

methods for processing binary or random files.

The FSO is (or should be) used primarily with VBScript. VBScript is a scripting language used with ASP

for web development; VBScript is also used for Windows scripting. (Windows scripting files, which have a

".vbs" extension, can be thought of as a modern-day replacement for the MS-DOS "BAT" files used in the

days of yore). VBScript is a pared-down version of Visual Basic, and as such does not have all of the

functionality of "VB proper". One of the things missing in VBScript is the set of native VB file processing

statements and functions discussed in the last several topics – so in VBScript, the FSO must be used to

manipulate files and folders. However, VB proper can make use of the FSO in addition to its native file

processing commands.

There are some trade-offs in using the FSO with Visual Basic. On the one hand, the FSO can make certain

tasks easier to program with smoother and less arcane syntax than the native VB statements. On the other

hand, using the FSO requires adding an additional dependancy to your project, it is slower, it does not

support the reading or writing of random and binary files, and it can be disabled by system administrators

concerned about security.

70

To use the FSO with your VB project, you must add a reference to "Microsoft Scripting Runtime" (which is

the system file "SCRRUN.DLL"). To do this, from the VB IDE, first go to the Project menu, and

select References, as shown below:

From the References dialog box, check Microsoft Scripting Runtime, as shown below, and click OK.
 The tables below show the various objects, properties, and methods available with the FSO.

FSO Objects

Object Description

FileSystemObject The FSO itself, highest level of the FSO object model. Allows the programmer to

interact with Files, Folders and Drives. The programmer can use the FSO objects to

create directories, move files, determine whether or not a Drive exists, etc.

Drive The Drive object is used to examine information on disk, CD-ROM, RAM disk, and
network drives; the Drives collection provides a list of physical and logical drives on

the system.

File object The File object is used to examine and manipulate files; the Files collection provides a

list of files in a folder.

Folder object The Folder object is used to examine and manipulate folders; the Folders collection

provides a list of subfolders in a folder.

TextStream object Used to read and write text files.

Property of the FileSystemObject

Property Description

Drives Returns a Drives collection, which is a list of physical and logical drives on the system.

Methods of the FileSystemObject

Method Description

BuildPath Appends file path information to an existing file path.

CopyFile Copies files from one location to another.

CopyFolder Copies folders and their contents from one location to another.

CreateFolder Creates a folder.

CreateTextFile Creates a text file and returns a TextStream object.

DeleteFile Deletes a file.

DeleteFolder Deletes a folder and all of its contents.

DriveExists Determines if a drive exists.

FileExists Determines if a file exists.

FolderExists Determines if a folder exists.

GetAbsolutePathName Returns the full path to a file or folder.

GetBaseName Returns the base name of a file or folder.

GetDrive Returns a drive object.

GetDriveName Returns a drive name.

GetExtensionName Returns a file extension from a path.

GetFile Returns a file object.

71

GetFileName Returns a filename from a path.

GetFolder Returns a folder object.

GetParentFolderName Returns the parent folder name from a path.

GetSpecialFolder Returns an object pointer to a special folder.

GetTempName Returns a temporary (randomly generated) file or folder name that can be used with

CreateTextFile.

MoveFile Moves files from one location to another.

MoveFolder Moves folders and their contents from one location to another.

OpenTextFile Opens an existing text file and returns a TextStream object.

Properties of the Drive Object

Property Description

AvailableSpace The amount of available Drive space in bytes.

DriveLetter A string containing the letter of the Drive without a colon (e.g., "C").

DriveType An integer value indicating the Drive type. Possible values are 0 (Unknown), 1
(Removable), 2 (Fixed), 3 (Remote), 4 (CD-ROM) and 5 (RAM Disk).

FileSystem A string indicating the file system Drive description ("FAT", "FAT32", "NTFS", etc.).

FreeSpace Same as AvailableSpace .

IsReady A Boolean indicating whether or not a Drive is ready for use.

Path A string containing the Drive's path (e.g., "C:\")

RootFolder A Folder object containing the root folder of Drive.

SerialNumber A long value containing the Drive serial number.

ShareName With network drives, returns a string containing the network share name.

TotalSize The total Drive size in bytes.

VolumeName A string value containing the Drive volume name.

Properties of the Folder Object

Property Description

Attributes An integer value indicating Folder's attributes. Possible values are 0 (Normal), 1

(ReadOnly), 3 (Hidden), 4 (System), 8 (Volume), 16 (Directory), 32 (Archive), 64
(Alias), and 128 (Compressed).

DateCreated The date the folder was created.

DateLastAccessed The date the folder was last accessed.

DateLastModified The date the folder was last modified.

Drive The Drive where the folder is located.

IsRootFolder A Boolean indicating whether or not a Folder is the root folder.

Name A string containing the Folder's name.

ParentFolder A string containing the Folder's parent folder name.

Path A string containing the Folder's path.

ShortName A string containing the Folder's name expressed as an MS-DOS compliant ("8.3")

short name.

ShortPath A string containing the Folder's path expressed as a short (MS-DOS compliant) path.

Size The total size in bytes of all subfolders and files.

Type A string containing the Folder type (e.g., "File Folder").

72

Methods of the Folder Object

Method Description

Delete Deletes the Folder. Same as DeleteFolder of FileSystemObject.

Move Moves the Folder. Same as MoveFolder of FileSystemObject.

Copy Copies the Folder. Same as CopyFolder of FileSystemObject.

Properties of the File Object

Property Description

Attributes An integer value indicating File's attributes. Possible values are 0 (Normal), 1

(ReadOnly), 3 (Hidden), 4 (System), 8 (Volume), 16 (Directory), 32 (Archive), 64
(Alias), and 128 (Compressed).

DateCreated The date the file was created.

DateLastAccessed The date the file was last accessed.

DateLastModified The date the file was last modified.

Drive The Drive where the file is located.

Name A string containing the File's name.

ParentFolder The Folder object of the file's parent folder.

Path A string containing the File's path.

ShortName A string containing the File's name expressed as a short (MS-DOS compliant "8.3")

name.

ShortPath A string containing the File's path expressed as a short (MS-DOS compliant) path.

Size The total size in bytes of the file.

Type A string containing the File type (e.g., "Microsoft Word Document").

Methods of the File Object

Method Description

Delete Deletes the File. Same as DeleteFile of FileSystemObject.

Move Moves the File. Same as MoveFile of FileSystemObject.

Copy Copies the File. Same as CopyFile of FileSystemObject.

CreateTextFile Returns a TextStream object that can be used to work with the newly created file.

OpenAsTextStream Opens an existing text file and returns a TextStream object.

73

Once you have done the above, you can use the FSO in your VB project. In your code, you must declare an object

variable for the FSO and instantiate it. The most concise way of doing this is use the "New" keyword in your

declaration, as shown below. (Note: The "Scripting." qualifier is optional here.)

COM/OLE

OLE definition is that, OLE (pronounced as oh-leh) was originally mean as ‘object linking and

embedding‘, it is a Microsoft compound document technology based on Component Object

Model (COM), It is introduced into Microsoft Windows 3.1. ‘OLE (object linking and

embedding)‘ gives all Windows applications a standard way to create compound documents that

create objects within one microsoft application and embed them into other document. OLE object

meaning is graphic,spreadsheet,msword, etc. that can be embedded into a document called the

“container application.” If the object allowed to be edited, the application associated with it is

called “server application“.

One of the key point is that OLE transformed software development from procedural programming

languages to object-oriented programming.we can create self-contained Modules, or objects

With the help of OLE, that simplify programming approach to building large applications. OLE

Means that objects created from different formats that can be linked and embedding application

data. The basic example of OLE is that, When we can insert Excel spreadsheet into a Word

application.

74

We’ll be covering the following topics in this tutorial:

 OLE Embedding Meaning

 OLE Linking Meaning

OLE Embedding Meaning

The Definition of Embedding meaning is that if One window application document contains a copy of other

window application document,if Changes made that affect only the application document that contains it.

An object might be a passage of formatted text, a part of a spreadsheet, some sounds, or a picture.

Unlike information that you copy from one document and paste into another the standard way, a linked or

embedded object retains a connection to the application that originally created it. You can return to that

application to edit the object whenever you want to just by double-clicking on the object-you don’t have to

bother with finding the icon for the application, loading the right file, and so on. Better yet, the changes you

make automatically appear in the document where you linked or embedded the object.

When you embed an object, you place a copy of the information into your document. This copy is

connected to the original application, but not to a particular document in that application. The only

advantage to embedding an object instead of copying the information the ordinary way is that you can edit

the object more conveniently.

OLE only works if both applications involved have been designed to use it, and even then it may

only work in one direction (like, you can link a graphic into a text document, but not text into a

https://ecomputernotes.com/visual-basic/basic-of-visual-basic/ole#OLE_Embedding_Meaning
https://ecomputernotes.com/visual-basic/basic-of-visual-basic/ole#OLE_Linking_Meaning
https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

75

graphic document). And it doesn’t work exactly the same way in every application. Even so, it’s

easier and more consistent than the old method, called DDE.

OLE Linking Meaning

Linking means that the container application that contains a pointer to the original file,when the

linked object is changed, the original document that link is automatically updated.

OLE Automation

Some applications provide objects that support OLE Automation. You can use Visual Basic

to manipulate the data in these objects through programming. Some objects that support OLE

Automation also support linking and embedding. If an object in an OLE container control

supports OLE Automation, you can access its properties and methods using the Object

property. If you draw the object directly on a form or create it in - code, you can directly

access the properties and methods of the object.\

Dynamic Link Libraries (DLL)

A DLL file is often given a ".dll" file name suffix. DLL files are dynamically linked with the

program that uses them during program execution rather than being compiled into the main

program.

The advantage of DLL files is space is saved in random access memory (RAM) because the

files don't get loaded into RAM together with the main program. When a DLL file is needed, it

is loaded and run. For example, as long as a user is editing a document in Microsoft Word, the

printer DLL file does not need to be loaded into RAM. If the user decides to print the document,

the Word application causes the printer DLL file to be loaded and run.

A program is separated into modules when using a DLL. With modularized components, a

program can be sold by module, have faster load times and be updated without altering other

parts of the program. DLLs help operating systems and programs run faster, use memory

efficiently and take up less disk space.

https://whatis.techtarget.com/definition/compiler
https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://whatis.techtarget.com/definition/operating-system-OS
https://searchstorage.techtarget.com/definition/hard-disk

76

DLL advantages

The following list describes some of the advantages that are provided when a program uses a DLL:

 Uses fewer resources

When multiple programs use the same library of functions, a DLL can reduce the duplication of

code that is loaded on the disk and in physical memory. It can greatly influence the performance of

not just the program that is running in the foreground, but also other programs that are running on

the Windows operating system.

 Promotes modular architecture

A DLL helps promote developing modular programs. It helps you develop large programs that

require multiple language versions or a program that requires modular architecture. An example of

a modular program is an accounting program that has many modules that can be dynamically

loaded at run time.

 Eases deployment and installation

When a function within a DLL needs an update or a fix, the deployment and installation of the DLL

does not require the program to be relinked with the DLL. Additionally, if multiple programs use

the same DLL, the multiple programs will all benefit from the update or the fix. This issue may

more frequently occur when you use a third-party DLL that is regularly updated or fixed.

OLE Drag and Drop

The drag-and-drop feature of OLE is primarily a shortcut for copying and pasting data. When you

use the Clipboard to copy or paste data, a number of steps are required. You select the data, and

choose Cut or Copy from the Edit menu. Then you move to the destination app or window, and

place the cursor in the target location. Finally, you choose Edit > Paste from the menu.

The OLE drag-and-drop feature is different from the File Manager drag-and-drop mechanism. The

File Manager can only handle filenames, and is designed specifically to pass filenames to

applications. Drag and drop in OLE is much more general. It allows you to drag and drop any data

that could also be placed on the Clipboard.

When you use OLE drag and drop, you remove two steps from the process. You select the data

from the source window (the "drop source"), then you drag it to the destination (the "drop target").

You drop it by releasing the mouse button. The operation eliminates the need for menus, and it's

quicker than the copy/paste sequence. There's only one requirement: Both the drop source and drop

target must be open, and at least partially visible on the screen.

77

Using OLE drag and drop, data can be transferred easily from one location to another: Within a

document, between different documents, or between applications. It may be implemented in either a

container or a server application. Any application could be a drop source, a drop target, or both. If

an application implements both drop-source and drop-target support, you can drag and drop

between child windows, or within one window. This feature makes your application much easier to

use.

The Data objects and data sources (OLE) articles explain how to implement data transfer in your

applications.

Implement a drop target

It takes slightly more work to implement a drop target than a drop source, but it's still relatively simple.

To implement an OLE drop target

1. If it isn't already there, add a call to AfxOleInit in your application's InitInstance member function. This

call is required to initialize the OLE libraries.

2. Add a member variable to each view in the application that you want to be a drop target. This

member variable must be of type COleDropTarget or a class derived from it.

3. From your view class's function that handles the WM_CREATE message (typically OnCreate), call

the new member variable's Register member function. Revoke will be called automatically for you when your

view is destroyed.

4. Override the following functions. If you want the same behavior throughout your application,

override these functions in your view class. If you want to modify behavior in isolated cases or want to

enable dropping on non-CView windows, override these functions in your COleDropTarget-derived class.

T AB L E 1

Override To allow

O nDragEnter Drop operations to occur in the window. Called when the cursor first enters the window.

OnDragLeave Special behavior when the drag operation leaves the specified window.

OnDragOver Drop operations to occur in the window. Called when the cursor is being dragged across the

window.

OnDrop Handling of data being dropped into the specified window.

OnScrollBy Special behavior for when scrolling is necessary in the target window.

https://docs.microsoft.com/en-us/cpp/mfc/data-objects-and-data-sources-ole?view=msvc-160

78

Customize drag and drop

The default implementation of the drag-and-drop feature is sufficient for most applications.

However, some applications may require you to change this standard behavior. This section

explains the steps necessary to change these defaults. You can use this technique to make

applications that don't support compound documents into drop sources.

If you're customizing standard OLE drag-and-drop behavior, or you have a non-OLE application,

you must create a COleDataSource object to contain the data. When the user starts a drag-and-drop

operation, your code should call the DoDragDrop function from this object instead of from other

classes that support drag-and-drop operations.

You can override the following functions to customize drag-and-drop operations:

Override To customize

OnBeginDrag How the drag operation begins after you call DoDragDrop.

GiveFeedback Visual feedback, such as cursor appearance, for different drop

results.

QueryContinueDrag The termination of a drag-and-drop operation. This function

enables you to check modifier key states during the drag

operation.

	visual basic program to print a string “Hello World”
	The Do Loop
	a)
	b)
	c)
	d)
	Example 9.1

	Exiting the Loop
	Example
	The For....Next Loop
	Example a
	Example b
	Example c
	Example d

	The While….Wend Loop
	Example

	If.....Then.....Else Statements with Operators
	Example :
	The Code
	The Output
	Figure 7.1

	Select Case
	Example

	Built-in Functions
	Mathematical Functions
	The Rnd Function
	Example Random Number Generation
	The Numeric Functions

	The Formatting Functions
	The Tab function
	The Space function
	Example 12.2
	The Format function
	Table : List of Style Arguments
	Table: User-Defined Formatting Functions

	String Manipulation Functions
	The Len Function
	The Right Function
	The Left Function
	The Ltrim Function
	The Rtrim Function
	The Trim function
	The Mid Function
	The InStr function
	The Ucase and the Lcase functions
	The Str and Val functions
	The Chr and the Asc functions
	Properties of the ComboBox Control
	Events of the ComboBox Control

	DoEvents function
	Syntax
	Example
	Error Trapping

	How to add an MDI form to the current project?
	Restrictions of the MDI form
	How does the MDI form work?
	The LoadPicture function
	Run-time graphic properties CurrentX and CurrentY are the run-time properties which are used to set and return the position of a shape or point at run-time.

	Handling Mouse Events
	VB I/O Classes
	The FileStream Class
	Example (1)
	OLE Embedding Meaning
	OLE Linking Meaning

	Dynamic Link Libraries (DLL)
	DLL advantages
	Implement a drop target
	To implement an OLE drop target

	Customize drag and drop

