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Basic Set Theory

A set is a Many that allows itself to

be thought of as a One.

- Georg Cantor

This chapter introduces set theory, mathematical in-
duction, and formalizes the notion of mathematical
functions. The material is mostly elementary. For
those of you new to abstract mathematics elementary
does not mean simple (though much of the material
is fairly simple). Rather, elementary means that the
material requires very little previous education to un-
derstand it. Elementary material can be quite chal-
lenging and some of the material in this chapter, if
not exactly rocket science, may require that you ad-
just you point of view to understand it. The single
most powerful technique in mathematics is to adjust
your point of view until the problem you are trying
to solve becomes simple.

Another point at which this material may diverge
from your previous experience is that it will require
proof. In standard introductory classes in algebra,
trigonometry, and calculus there is currently very lit-
tle emphasis on the discipline of proof. Proof is, how-
ever, the central tool of mathematics. This text is
for a course that is a students formal introduction to
tools and methods of proof.

2.1 Set Theory

A set is a collection of distinct objects. This means
that {1, 2, 3} is a set but {1, 1, 3} is not because 1
appears twice in the second collection. The second
collection is called a multiset. Sets are often specified
with curly brace notation. The set of even integers

can be written:

{2n : n is an integer}

The opening and closing curly braces denote a set, 2n
specifies the members of the set, the colon says “such
that” or “where” and everything following the colon
are conditions that explain or refine the membership.
All correct mathematics can be spoken in English.
The set definition above is spoken “The set of twice
n where n is an integer”.

The only problem with this definition is that we
do not yet have a formal definition of the integers.
The integers are the set of whole numbers, both pos-
itive and negative: {0,±1,±2,±3, . . .}. We now in-
troduce the operations used to manipulate sets, using
the opportunity to practice curly brace notation.

Definition 1The empty set is a set containing no
objects.It iswritten asapairofcurly braceswithnothing
inside{}orbyusingthesymbol∅.

As we shall see, the empty set is a handy object.
It is also quite strange. The set of all humans that
weigh at least eight tons, for example, is the empty
set. Sets whose definition contains a contradiction or
impossibility are often empty.

Definition 2Thesetmembership symbol∈ isused
to say that anobject isamember ofaset.Ithas apartner
symbol /∈ whichisusedtosayanobjectisnotinaset.

Definition 3 We say two sets are equal if they
have exactly the same members.
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Example If

S = {1, 2, 3}

then 3 ∈ S and 4 /∈ S. The set membership symbol
is often used in defining operations that manipulate
sets. The set

T = {2, 3, 1}
is equal to S because they have the same members: 1,
2, and 3. While we usually list the members of a set
in a “standard” order (if one is available) there is no
requirement to do so and sets are indifferent to the
order in which their members are listed.

Definition 4Thecardinality ofaset is itssize.Forafi
nite set,thecardinality ofaset is thenumber ofmembers
it contains . In symbolic notation the size of a set S is
written |S|.Wewill dealwith the ideaofthecardinality of
aninfinitesetlater.

Example 2 Set cardinality

For the set S = {1, 2, 3} we show cardinality by writ-
ing |S| = 3

We now move on to a number of operations on sets.
You are already familiar with several operations on
numbers such as addition, multiplication, and nega-
tion.

Definition2The intersectionoftwosetsSandTisthe
collection ofallobjects thatare inbothsets.It iswrittenS
∩T.Usingcurlybracenotation

S ∩ T = {x : (x ∈ S) and (x ∈ T )}

The symbol and in the above definition is an ex-
ample of a Boolean or logical operation. It is only
true when both the propositions it joins are also true.
It has a symbolic equivalent ∧. This lets us write the
formal definition of intersection more compactly:

S ∩ T = {x : (x ∈ S) ∧ (x ∈ T )}

Example 3 Intersections of sets

Suppose S = {1, 2, 3, 5},
T = {1, 3, 4, 5}, and U = {2, 3, 4, 5}.
Then:

S ∩ T = {1, 3, 5},

S ∩ U = {2, 3, 5}, and

T ∩ U = {3, 4, 5}

Definition 6 IfAand Bare sets and A∩B=∅ then we
saythatAandBaredisjoint,ordisjointsets.

De finition 7 The union of two sets S and T is the
collectionofallobjectsthatareineitherset.ItiswrittenS
∪T.Usingcurlybracenotion

S ∪ T = {x : (x ∈ S) or (x ∈ T )}

The symbol or is another Boolean operation, one that
is true if either of the propositions it joins are true.
Its symbolic equivalent is ∨ which lets us re-write the
definition of union as:

S ∪ T = {x : (x ∈ S) ∨ (x ∈ T )}

Example 2 Unions of sets.

Suppose S = {1, 2, 3}, T = {1, 3, 5}, and U =
{2, 3, 4, 5}.
Then:

S ∪ T = {1, 2, 3, 5},

S ∪ U = {1, 2, 3, 4, 5}, and

T ∪ U = {1, 2, 3, 4, 5}

When performing set theoretic computations, you
should declare the domain in which you are working.
In set theory this is done by declaring a universal set.

Definition 8The universal set , at least for a given
collection of set theoretic computations , is the set of all
possibleobjects.

If we declare our universal set to be the integers then
{ 1

2 , 2
3} is not a well defined set because the objects

used to define it are not members of the universal
set. The symbols { 1

2 , 2
3} do define a set if a universal

set that includes 1
2 and 2

3 is chosen. The problem
arises from the fact that neither of these numbers are
integers. The universal set is commonly written U .
Now that we have the idea of declaring a universal
set we can define another operation on sets.
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Venn Diagrams

A Venn diagram is a way of depicting the relationship
between sets. Each set is shown as a circle and circles
overlap if the sets intersect.

Example 5The following are Venn diagrams for the
intersectionandunionoftwosets.Theshadedpartsofthe
diagramsaretheintersectionsandunionsrespectively.

A∩B

A∪B

Notice that the rectangle containing the diagram is
labeled with a U representing the universal set.

De finition 9 The compliment of a set S is the
collection ofobjects in theuniversal set that arenot inS.
ThecomplimentiswrittenS c.Incurlybracenotation

Sc = {x : (x ∈ U) ∧ (x /∈ S)}

or more compactly as

Sc = {x : x /∈ S}

however it should be apparent that the compliment of
a set always depends on which universal set is chosen.

There is also a Boolean symbol associated with the
complementation operation: the not operation. The

notation for not is ¬. There is not much savings in
space as the definition of compliment becomes

Sc = {x : ¬(x ∈ S)}

Example 6 Set Compliments

(i) Let the universal set be the integers. Then the
compliment of the even integers is the odd inte-
gers.

(ii) Let the universal set be {1, 2, 3, 4, 5}, then the
compliment of S = {1, 2, 3} is Sc = {4, 5} while
the compliment of T = {1, 3, 5} is T c = {2, 4}.

(iii) Let the universal set be the letters {a, e, i, o, u, y}.
Then {y}c = {a, e, i, o, u}.

The Venn diagram for Ac is

Ac

We now have enough set-theory operators to use them
to define more operators quickly. We will continue to
give English and symbolic definitions.

Definition 10Thedifference oftwosetsSandT is the
collection ofobjects inS that arenot inT .Thedifference
iswrittenS−T.Incurlybracenota-tion

S − T = {x : x ∈ (S ∩ (T c))},
or alternately

S − T = {x : (x ∈ S) ∧ (x /∈ T )}

Notice how intersection and complementation can be
used together to create the difference operation and
that the definition can be rephrased to use Boolean
operations. There is a set of rules that reduces the
number of parenthesis required. These are called op-

erator precedence rules.
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(i) Other things being equal, operations are per-
formed left-to-right.

(ii) Operations between parenthesis are done first,
starting with the innermost of nested parenthe-
sis.

(iii) All complimentations are computed next.

(iv) All intersections are done next.

(v) All unions are performed next.

(vi) Tests of set membership and computations,
equality or inequality are performed last.

Special operations like the set difference or the
symmetric difference, defined below, are not included
in the precedence rules and thus always use paren-
thesis.

Example 7 Operator precedence

Since complementation is done before intersection
the symbolic definition of the difference of sets can be
rewritten:

S − T = {x : x ∈ S ∩ T c}
If we were to take the set operations

A ∪ B ∩ Cc

and put in the parenthesis we would get

(A ∪ (B ∩ (Cc)))

Definition11Thesymmetric difference oftwosets
SandT is the set ofobjects that are inoneandonly oneof
the sets .The symmetric difference iswritten S∆T . In
curlybracenotation:

S∆T = {(S − T ) ∪ (T − S)}

Example 8 Symmetric differences

Let S be the set of non-negative multiples of two that
are no more than twenty four. Let T be the non-
negative multiples of three that are no more than
twenty four. Then

S∆T = {2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22}

Another way to think about this is that we need num-
bers that are positive multiples of 2 or 3 (but not both)
that are no more than 24.

Another important tool for working with sets is the
ability to compare them. We have already defined
what it means for two sets to be equal, and so by
implication what it means for them to be unequal.
We now define another comparator for sets.

Definition 12 For two sets S and Twe say that S is a

subsetofT ifeachelementofS isalsoanelementofT .In
formalnotationS⊆Tifforallx∈Swehavex∈T.

If S ⊆ T then we also say T contains S which
can be written T ⊇ S. If S ⊆ T and S 6= T then we
write S ⊂ T and we say S is a proper subset of T .

Example 9 Subsets

If A = {a, b, c} then A has eight different subsets:

∅ {a} {b} {c}

{a, b} {a, c} {b, c} {a, b, c}

Notice that A ⊆ A and in fact each set is a subset of
itself. The empty set ∅ is a subset of every set.

We are now ready to prove our first proposition.
Some new notation is required and we must intro-
duce an important piece of mathematical culture. If
we say “A if and only if B” then we mean that either
A and B are both true or they are both false in any
given circumstance. For example: “an integer x is
even if and only if it is a multiple of 2”. The phrase
“if and only if” is used to establish logical equiva-
lence. Mathematically, “A if and only if B” is a way
of stating that A and B are simply different ways
of saying the same thing. The phrase “if and only
if” is abbreviated iff and is represented symbolically
as the double arrow ⇔. Proving an iff statement is
done by independently demonstrating that each may
be deduced from the other.

Proposition 1 Two sets are equal if and only if
each is a subset of the other. In symbolic notation:

(A = B) ⇔ (A ⊆ B) ∧ (B ⊆ A)

Proof:

Let the two sets in question be A and B. Begin by
assuming that A = B. We know that every set is
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a subset of itself so A ⊆ A. Since A = B we may
substitute into this expression on the left and obtain
B ⊆ A. Similarly we may substitute on the right and
obtain A ⊆ B. We have thus demonstrated that if
A = B then A and B are both subsets of each other,
giving us the first half of the iff.

Assume now that A ⊆ B and B ⊆ A. Then
the definition of subset tells us that any element of
A is an element of B. Similarly any element of B
is an element of A. This means that A and B have
the same elements which satisfies the definition of set
equality. We deduce A = B and we have the second
half of the iff. 2

A note on mathematical grammar: the symbol 2 in-
dicates the end of a proof. On a paper turned in by a
student it is usually taken to mean “I think the proof
ends here”. Any proof should have a 2 to indicate its
end. The student should also note the lack of calcu-
lations in the above proof. If a proof cannot be read
back in (sometimes overly formal) English then it is
probably incorrect. Mathematical symbols should be
used for the sake of brevity or clarity, not to obscure
meaning.

Proposition 2 De Morgan’s Laws Suppose
that S and T are sets. DeMorgan’s Laws state that

(i) (S ∪ T )c = Sc ∩ T c, and

(ii) (S ∩ T )c = Sc ∪ T c.

Proof:

Let x ∈ (S ∪ T )c; then x is not a member of S or
T . Since x is not a member of S we see that x ∈
Sc. Similarly x ∈ T c. Since x is a member of both
these sets we see that x ∈ Sc ∩ T c and we see that
(S ∪ T )c ⊆ Sc ∩ T c. Let y ∈ Sc ∩ T c. Then the
definition of intersection tells us that y ∈ Sc and
y ∈ T c. This in turn lets us deduce that y is not a
member of S ∪ T , since it is not in either set, and
so we see that y ∈ (S ∪ T )c. This demonstrates that
Sc ∩ T c ⊆ (S ∪ T )c. Applying Proposition 2.1 we get
that (S ∪ T )c = Sc ∩ T c and we have proven part (i).
The proof of part (ii) is left as an exercise. 2

In order to prove a mathematical statement you must
prove it is always true. In order to disprove a mathe-
matical statement you need only find a single instance

where it is false. It is thus possible for a false mathe-
matical statement to be “true most of the time”. In
the next chapter we will develop the theory of prime
numbers. For now we will assume the reader has a
modest familiarity with the primes. The statement
“Prime numbers are odd” is false once, because 2 is a
prime number. All the other prime numbers are odd.
The statement is a false one. This very strict defini-
tion of what makes a statement true is a convention
in mathematics. We call 2 a counter example. It is
thus necessary to find only one counter-example to
demonstrate a statement is (mathematically) false.

Example 10 Disproof by counter example

ProvethatthestatementA∪B=A∩Bisfalse.

Let A = {1, 2} and B = {3, 4}. Then A ∩ B = ∅
while A ∪ B = {1, 2, 3, 4}. The sets A and B form a
counter-example to the statement.

Problems

Problem 1Which of the following are sets?As-sume
thataproperuniversal sethasbeenchosenandanswer by
listingthenamesofthecollectionsofob-jectsthataresets
.Warning:at least oneofthese itemshasananswer that,
whilelikely,isnot100%certain.

(i) A = {2, 3, 5, 7, 11, 13, 19}

(ii) B = {A, E, I, O, U}

(iii) C = {√x : x < 0}

(iv) D = {1, 2, A, 5, B, Q, 1, V }

(v) E is the list of first names of people in the 1972
phone book in Lawrence Kansas in the order
they appear in the book. There were more than
35,000 people in Lawrence that year.

(vi) F is a list of the weight, to the nearest kilogram,
of all people that were in Canada at any time in

2007.

(vii) G is a list of all weights, to the nearest kilogram,
that at least one person in Canada had in 2007.
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28 CHAPTER 2. BASIC SET THEORY

Problem 2Suppose thatwehave thesetU={n :0≤n<
100}ofwhole numbers asour universal set.LetPbe the
prime numbers inU , letEbe the even numbers inU ,and

let F = {1,2,3,5,8,13 ,21 ,34 ,55 ,89 }. Describe the
following sets either by listing them or with a careful
Englishsentence.

(i) Ec,

(ii) P ∩ F ,

(iii) P ∩ E,

(iv) F ∩ E ∪ F ∩ Ec, and

(v) F ∪ F c.

Problem3Suppose thatwetake theuniversal setUtobe
theintegers.LetSbetheevenintegers,letTbetheintegers
that can be obtained by tripling any one integer and
adding one to it,and let Vbe the set of numbers that are
wholemultiplesofbothtwoandthree.

(i) Write S, T , and V using symbolic notation.

(ii) Compute S ∩ T , S ∩ V and T ∩ V and give sym-
bolic representations that do not use the symbols
S, T , or V on the right hand side of the equals
sign.

Problem 4 Compute the cardinality of the follow-
ing sets. You may use other texts or the internet.

(i) Two digit positive odd integers.

(ii) Elements present in a sucrose molecule.

(iii) Isotopes of hydrogen that are not radioactive.

(iv) Planets orbiting the same star as the planet you
are standing on that have moons. Assume that
Pluto is a minor planet.

(v) Elements with seven electrons in their valence
shell. Remember that Ununoctium was discov-
ered in 2002 so be sure to use a relatively recent
reference.

(vi) Subsets of S = {a, b, c, d} with cardinality 2.

(vii) Prime numbers whose base-ten digits sum to ten.
Be careful, some have three digits.

Problem5Findanexampleofaninfinitesetthathasafi
nitecomplement,besuretostatetheuniversalset.

Problem6Findanexampleofaninfinitesetthathasan
infinitecomplement,besuretostatetheuni-versalset.

Problem 7Add parenthesis to each of the follow - ing
expressions thatenforce theoperator precedence rulesas
inExample 2.7.Notice that thefirst three de-scribe sets
whilethelastreturnsalogicalvalue(trueoffalse).

(i) A ∪ B ∪ C ∪ D

(ii) A ∪ B ∩ C ∪ D

(iii) Ac ∩ Bc ∪ C

(iv) A ∪ B = A ∩ C

Problem 8 Give the Venn diagrams for the fol-
lowing sets.

(i) A − B (ii) B − A (iii) Ac ∩ B

(iv) A∆B (v) (A∆B)c (vi) Ac ∪ Bc

U

A B

C

7

3

65

4

1 2

0

Problem 9Examine theVenn diagram above .Notice
that every combination of sets has aunique number in
common.Constructasimilarcollectionoffoursets.

Problem 10Read Problem 2.9.Can asystem ofsets of
this sort beconstructed for any number of sets?Explain
yourreasoning.

8
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MATHEMATICAL INDUCTION

Problem 11Suppose we take theuniversal set tobe the
set of non -negative integers .Let E be the set of even

numbers,Obethesetofoddnumbers andF={0,1,2,3,5,
8,13,21,34,89,144, ...}bethesetofFibonacci numbers .
TheFibonacci sequence is0,1,1,2,3,5,8, . . . inwhich the
nexttermisobtained
by adding the previous two.

(i) Prove that the intersection of F with E and O
are both infinite.

(ii) Make a Venn diagram for the sets E, F , and O,
and explain why this is a Mickey-Mouse problem.

Problem12Abinaryoperation⊙ iscommuta-tive if
x⊙y=y⊙x.Anexample ofacommuta-tiveoperation is
multiplication .Subtraction is non - commutative .
Determine ,with proof , if union , inter -section ,set diff
erence,andsymmetricdifferencearecommutative.

Problem13An identity foranoperation⊙ isanobject
isothat,forallobjectsx,i⊙x=x⊙i=x.Find,withproof
, identities for the operations set union and set
intersection.

Problem 14 Prove part (ii) of Proposition 2.2.

Problem 15 Prove that

A ∪ (B ∪ C) = (A ∪ B) ∪ C

Problem 16 Prove that

A ∩ (B ∩ C) = (A ∩ B) ∩ C

Problem 17 Prove that

A∆(B∆C) = (A∆B)∆C

Problem 18 Disprove that

A∆(B ∪ C) = (A∆B) ∪ C

Problem 19Consider thesetS={1,2,3,4}.Foreachk
=0,1,...,4howmanykelementsubsetsdoesShave?

Problem20SupposewehaveasetSwithn≥0elements
.Find aformula for the number ofdifferent subsets ofS
thathavekelements.

Problem 21 For finite sets S and T , prove

|S ∪ T | = |S| + |T | − |S ∩ T |

Mathematical Induction

Mathematical induction is a technique used in prov-
ing mathematical assertions. The basic idea of induc-
tion is that we prove that a statement is true in one
case and then also prove that if it is true in a given
case it is true in the next case. This then permits the
cases for which the statement is true to cascade from
the initial true case. We will start with the mathe-
matical foundations of induction.

We assume that the reader is familiar with the sym-
bols <, >, ≤ and ≥. From this point on we will
denote the set of integers by the symbol Z. The
non-negative integers are called the natural numbers.
The symbol for the set of natural numbers is N. Any
mathematical system rests on a foundation of axioms.
Axioms are things that we simply assume to be true.
We will assume the truth of the following principle,
adopting it as an axiom.

The well-ordering principle: E
¯
very non-empty

set of natural numbers contains a smallest element.

The well ordering principle is an axiom that
agrees with the common sense of most people famil-
iar with the natural numbers. An empty set does
not contain a smallest member because it contains
no members at all. As soon as we have a set of nat-
ural numbers with some members then we can order
those members in the usual fashion. Having ordered
them, one will be smallest. This intuition agreeing
with this latter claim depends strongly on the fact
the integers are “whole numbers” spaced out in in-
crements of one. To see why this is important con-
sider the smallest positive distance. If such a distance
existed, we could cut it in half to obtain a smaller
distance - the quantity contradicts its own existence.
The well-ordering principle can be used to prove the
correctness of induction.

Theorem - Mathematical Induction ISup-pose
thatP(n)isapropositionthatiteithertrueorfalseforany
givennaturalnumbersn.If

(i) P (0) is true and,

(ii) when P (n) is true so is P (n + 1)

Then we may deduce that P (n) is true for any natural
number.

9

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


.Proof

:

Assume that (i) and (ii) are both true state-
ments. Let S be the set of all natural numbers for
which P (n) is false. If S is empty then we are done,
so assume that S is not empty. Then, by the well
ordering principle, S has a least member m. By (i)
above m 6= 0 and so m−1 is a natural number. Since
m is the smallest member of S it follows that P (m−1)
is true. But this means, by (ii) above, that P (m) is
true. We have a contradiction and so our assumption
that S 6= ∅ must be wrong. We deduce S is empty
and that as a consequence P (n) is true for all n ∈ N.
2

The technique used in the above proof is called proof
by contradiction. We start by assuming the logical
opposite of what we want to prove, in this case that
there is some m for which P (m) is false, and from
that assumption we derive an impossibility. If an as-
sumption can be used to demonstrate an impossibility
then it is false and its logical opposite is true.

A nice problem on which to demonstrate mathemat-
ical induction is counting how many subsets a finite
set has.

Proposition3Subsetcounting.AsetSwith
n elements has 2n subsets.

Proof:
First we check that the proposition is true when

n = 0. The empty set has exactly one subset: it-
self. Since 20 = 1 the proposition is true for n = 0.
We now assume the proposition is true for some n.
Suppose that S is a set with n+1 members and that
x ∈ S. Then S−{x} (the set difference of S and a set
{x} containing only x) is a set of n elements and so,
by the assumption, has 2n subsets. Now every subset
of S either contains x or it fails to. Every subset of S
that does not contain x is a subset of S −{x} and so
there are 2n such subsets of S. Every subset of S that
contains x may be obtained in exactly one way from
one that does not by taking the union with {x}. This
means that the number of subsets of S containing or
failing to contain x are equal. This means there are
2n subsets of S containing x. The total number of
subsets of S is thus 2n + 2n = 2n+1. So if we assume
the proposition is true for n we can demonstrate that
it is also true for n + 1. It follows by mathematical

induction that the proposition is true for all natural
numbers. 2

The set of all subsets of a given set is itself an impor-
tant object and so has a name.

Definition13Thesetofallsubsets ofasetS iscalled the

powerset ofS.Thenotation forthepowerset ofS isP(S
).

This definition permits us to rephrase Proposition 2.3
as follows: the power set of a set of n elements has
size 2n.

Theorem 2.1 lets us prove propositions that are true
on the natural numbers, starting at zero. A small
modification of induction can be used to prove state-
ments that are true only for those n ≥ k for any
integer k. All that is needed is to use induction on
a proposition Q(n − k) where Q(n − k) is logically
equivalent to P (n). If Q(n − k) is true for n − k ≥ 0
then P (n) is true for n ≥ k and we have the modified
induction. The practical difference is that we start
with k instead of zero.

Example 11 Prove that n2 ≥ 2n for all n ≥ 2.

Notice that 22 = 4 = 2 × 2 so the proposition is true

when n = 2. We next assume that P (n) is true for
some n and we compute:

n2 ≥ 2n

n2 + 2n + 1 ≥ 2n + 2n + 1

(n + 1)2 ≥ 2n + 2n + 1

(n + 1)2 ≥ 2n + 1 + 1

(n + 1)2 ≥ 2n + 2

(n + 1)2 ≥ 2(n + 1)

To move from the third step to the fourth step we
use the fact that 2n > 1 when n ≥ 2. The last step
is P (n + 1), which means we have deduced P (n + 1)
from P (n). Using the modified form of induction we
have proved that n2 ≥ 2n for all n ≥ 2.

It is possible to formalize the procedure for using
mathematical induction into a three-part process.
Once we have a proposition P (n),

10
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MATHEMATICAL INDUCTION

(i) First demonstrate a base case by directly demon-
strating P (k),

(ii) Next make the induction hypothesis that P (n) is
true for some n,

(iii) Finally, starting with the assumption that P (n)
is true, demonstrate P (n + 1).

These steps permit us to deduce that P (n) is true for
all n ≥ k.

Example 12 Using induction, prove

1 + 2 + · · · + n =
1

2
n(n + 1)

In this case P (n) is the statement

1 + 2 + · · · + n =
1

2
n(n + 1)

Base case: 1 = 1
21(1 + 1), so P (1) is true. Induc-

tion hypothesis: for some n,

1 + 2 + · · · + n =
1

2
n(n + 1)

Compute:

1 + 2 + · · · + (n + 1) = 1 + 2 + · · · + n + (n + 1)

=
1

2
n(n + 1) + (n + 1)

=
1

2
(n(n + 1) + 2(n + 1))

=
1

2

(

n2 + 3n + 2
)

=
1

2
(n + 1)(n + 2)

=
1

2
(n + 1)((n + 1) + 1)

and so we have shown that if P (n) is true then so is
P (n + 1). We have thus proven that P (n) is true for
all n ≥ 1 by mathematical induction.

We now introduce sigma notation which makes prob-
lems like the one worked in Example 2.12 easier to
state and manipulate. The symbol

∑

is used to add

up lists of numbers. If we wished to sum some for-
mula f(i) over a range from a to b, that is to say
a ≤ i ≤ b, then we write :

b
∑

i=a

f(i)

On the other hand if S is a set of numbers and we
want to add up f(s) for all s ∈ S we write:

∑

s∈S

f(s)

The result proved in Example 2.12 may be stated in
the following form using sigma notation.

n
∑

i=1

i =
1

2
n(n + 1)

Proposition 4 Suppose that c is a constant and
that f(i) and g(i) are formulas. Then

(i)
∑b

i=a
(f(i) + g(i)) =

∑b

i=a
f(i) +

∑b

i=a
g(i)

(ii)
∑b

i=a
(f(i) − g(i)) =

∑b

i=a
f(i) −∑b

i=a
g(i)

(iii)
∑b

i=a
c · f(i) = c ·∑b

i=a
f(i).

Proof:

Part (i) and (ii) are both simply the associative
law for addition: a+(b+c) = (a+b)+c applied many
times. Part (iii) is a similar multiple application of
the distributive law ca + cb = c(a + b). 2

The sigma notation lets us work with indefinitely long
(and even infinite) sums. There are other similar no-
tations. If A1, A2, . . . , An are sets then the intersec-
tion or union of all these sets can be written:

n
⋂

i=1

Ai

n
⋃

i=1

Ai

Similarly if f(i) is a formula on the integers then

n
∏

i=1

f(i)

is the notation for computing the product f(1) ·f(2) ·
· · · · f(n). This notation is called Pi notation.
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Definition 14Whenwesolve anexpression in-volving
∑

toobtain aformula that does notuse
∑

or
”. . .”as in

Example 2.12 thenwesaywehave found aclosed form

fortheexpression.Example2.12finds
a closed form for

∑n

i=1 i.

At this point we introduce a famous mathematical
sequence in order to create an arena for practicing
proofs by induction.

Definition 15TheFibonacci numbers arede-fined
asfollows.f1 =f2 =1and,forn≥3,fn=fn−1 +fn−2.

Example 13TheFibonacci numbers with fourorfewer
digitsare:f1 =1,f2 =1,f3 =2,f4 =3,f5 =5,f6 =8,f7 =
13,f8 =21,f9 =34,f10 =55,f11 =89,f12 =144,f13 =
233 ,f14 =377 ,f15 =610 ,f16 =987 ,f17 =1597 ,f18 =
2584,f19 =4181,andf20 =6765.

Example 14 Prove that the Fibonacci number f3nis
even.

Solution:

Notice that f3 = 2 and so the proposition is true
when n = 1. Assume that the proposition is true for
some n ≥ 1. Then:

f3(n+1) = f3n+3 (2.1)

= f3n+2 + f3n+1 (2.2)

= f3n+1 + f3n + f3n+1 (2.3)

= 2 · f3n+1 + f3n (2.4)

but this suffices because f3n is even by the induction
hypothesis while 2·f3n+1 is also even. The sum is thus
even and so f3(n+1) is even. If follows by induction
that f3n is even for all n. 2

Problems

Problem22SupposethatS={a,b,c}.Computeandlist
explicitlythemembersofthepowerset,P(S).

Problem 23 Prove that for a finite set X that

|X | ≤ |P(X)|

Problem 24Suppose thatX⊆Ywith |Y |=nand |X |=
m.ComputethenumberofsubsetsofYthatcontainX.

Problem 25 Compute the following sums.

(i)
∑20

i=1 i,

(ii)
∑30

i=10 i, and

(iii)
∑21

i=−20 i.

Problem 26 Using mathematical induction, prove
the following formulas.

(i)
∑n

i=1 1 = n,

(ii)
∑n

i=1 i2 = n(n+1)(2n+1)
6 , and

(iii)
∑n

i=1 i3 = n
2(n+1)2

4 .

Problem 27 If f(i) and g(i) are formulas and c
and d are constants prove that

b
∑

i=a

(c · f(i) + d · g(i)) = c ·
b
∑

i=a

f(i) + d ·
b
∑

i=a

g(i)

Problem 28 Suppose you want to break an n× m
chocolate bar, like the 6×4example shown above , into
piecescorresponding tothesmall squaresshown.Whatis
the minimum number of breaks you can make ?Prove
youransweriscorrect.

Problem 29 Prove by induction that the sum of
the first n odd numbers equals n2.

Problem 30 Compute the sum of the first n pos-
itive even numbers.

Problem 31 Find a closed form for

n
∑

i=1

i2 + 3i + 5

 

12

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Problem32Letf(n,3)bethenumberofsubsetsof{1,2, .
..,n}ofsize3.Usinginduction,provethat
f(n, 3) = 1

6n(n − 1)(n − 2).

Problem 33Suppose that we have sets X1,X2, . . . ,Xn

and Y1, Y2, . . . , Yn such that Xi ⊆ Yi . Prove that the
intersection ofall theXi isasubset of the intersection of
alltheYi:

n
⋂

i=1

Xi ⊆
n
⋂

i=1

Yi

Problem 34Suppose that S1,S2, . . .Snare sets.Prove
thefollowinggeneralizationofDeMorgan’slaws:

(i) (
⋂n

i=1 Si)
c

=
⋃n

i=1 Sc
i
, and

(ii) (
⋃n

i=1 Si)
c

=
⋂n

i=1 Sc
i .

Problem 35 Prove by induction that the Fi-
bonacci number f4n is a multiple of 3.

Problem 36 Prove that if r is a real number r 6= 1
and r 6= 0 then

n
∑

i=0

ri =
1 − rn+1

1 − r

Problem 37 Prove by induction that the Fi-
bonacci number f5n is a multiple of 5.

Problem 38 Prove by induction that the Fi-
bonacci number fn has the value

fn =

√
5

5
·
(

1 +
√

5

2

)n

−
√

5

5
·
(

1 −
√

5

2

)n

Problem 39 Prove that for sufficiently large n the
Fibonacci number fn is the integer closest to

√
5

5

(

1 +
√

5

2

)n

and compute the exact value of f30. Show your work
(i.e. don’t look the result up on the net).

Problem 40 Prove that n(n−1)(n−2)(n−3)
24 is a

whole number for any whole number n.

Problem 41 Consider the statement “All cars are
the same color.” and the following “proof”.

Proof:

We will prove for n ≥ 1 that for any set of n
cars all the cars in the set have the same color.

• Base Case: n=1 If there is only one car then
clearly there is only one color the car can be.

• Inductive Hypothesis: Assume that for any set of
n cars there is only one color.

• Inductive step: Look at any set of n + 1 cars.
Number them: 1, 2, 3, . . . , n, n + 1. Consider the
sets {1, 2, 3, . . . , n} and {2, 3, 4, ..., n + 1}. Each
is a set of only n cars, therefore for each set there
is only one color. But the nth car is in both sets
so the color of the cars in the first set must be the
same as the color of the cars in the second set.
Therefore there must be only one color among all
n + 1 cars.

• The proof follows by induction. 2

What are the problems with this proof?

Functions

In this section we will define functions and extend
much of our ability to work with sets to infinite sets.
There are a number of different types of functions and
so this section contains a great deal of terminology.

Recall that two finite sets are the same size if they
contain the same number of elements. It is possible
to make this idea formal by using functions and, once
the notion is formally defined, it can be applied to
infinite sets.

Definition 16Anordered pair is acollection of two
elements with the added property that one ele -ment
comes first and one element comes second .The set
containing onlyxand y(forx 6=y)iswritten {x,y}.The
orderedpaircontainingxandywithxfirst iswritten (x,y
).Notice thatwhile{x,x} isnotawelldefinedset,(x,x)is
awell definedordered pair because the twocopies ofxare
differentbyvirtueofcomingfirstandsecond.
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The reason for defining ordered pairs at this point
is that it permits us to make an important formal
definition that pervades the rest of mathematics.

Definition17AfunctionfwithdomainSandrange

T isaset ofordered pairs (s,t)with first ele-ment from S
and second element from T that has the property that
every element of S appears exactly once as the first

elementinsomeorderedpair.Wewritef :S→Tforsucha
function.

Example 15 Suppose that A = {a, b, c} and B ={
0, 1} then

f = {(a, 0), (b, 1), (c, 0)}

is a function from A to B. The function f : A → B
can also be specified by saying f(a) = 0, f(b) = 1 and
f(c) = 0.

The set of ordered pairs {(a, 0), (b, 1)} is not a func-
tion from A to B because c is not the first coordi-
nate of any ordered pair. The set of ordered pairs
{(a, 0), (a, 1), (b, 0), (c, 0)} is not a function from A
to B because a appears as the first coordinate of two
different ordered pairs.

In calculus you may have learned the vertical line rule
that states that the graph of a function may not in-
tersect a vertical line at more than one point. This
corresponds to requiring that each point in the do-
main of the function appear in only one ordered pair.
In set theory, all functions are required to state their
domain and range when they are defined. In calculus
functions had a domain that was a subset of the real
numbers and you were sometimes required to identify
the subset.

Example 16This example contrasts theway functions
were treated inatypical calculus course with thewaywe
treattheminsettheory.

Calculus: find the domain of the function

f(x) =
√

x

Since we know that the square root function exists
only for non-negative real numbers the domain is {x :
x ≥ 0}.
Set theory: the function f =

√
x from the non-

negative real numbers to the real numbers is the set

of ordered pairs {(r2, r) : r ≥ 0}. This function is
well defined because each non-negative real number is
the square of some positive real number.

The major contrasts between functions in calculus
and functions in set theory are:

(i) The domain of functions in calculus are often
specified only by implication (you have to know
how all the functions used work) and are almost
always a subset of the real numbers. The domain
in set theory must be explicitly specified and may
be any set at all.

(ii) Functions in calculus typically had graphs that
you could draw and look at. Geometric intuition
driven by the graphs plays a major role in our
understanding of functions. Functions in set the-
ory are seldom graphed and often don’t have a
graph.

A point of similarity between calculus and set the-
ory is that the range of the function is not explicitly
specified. When we have a function f : S → T then
the range of f is a subset of T .

De finition 18 If f is a function then we denote the
domainoffbydom(f)andtherangeoffbyrng(f)

Example17Suppose thatf(n):N →N isde-finedbyf(
n)=2n.Then thedomain andrangeoffarethe integers:
dom(f)=rng(f)=N.Ifwespecify theordered pairs off
weget

f = {(n, 2n) : n ∈ N}

There are actually two definitions of range that are
used in mathematics. The definition we are using, the
set from which second coordinates of ordered pairs in
a function are drawn, is also the definition typically
using in computer science. The other definition is the
set of second coordinates that actually appear in or-
dered pairs. This set, which we will define formally
later, is the image of the function. To make matters
even worse the set we are calling the range of a func-
tion is also called the co-domain. We include these
confusing terminological notes for students that may
try and look up supplemental material.
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De finition 19 Let X,Y,and Z be sets .The com -

position of two functions f :X→ Y and g :Y→ Z is a
functionh :X→Z forwhichh(x)=g(f(x)) forallx∈X .
Wewriteg◦fforthecompositionofgwithf.

The definition of the composition of two functions
requires a little checking to make sure it makes sense.
Since every point must appear as a first coordinate of
an ordered pair in a function, every result of applying
f to an element of X is an element of Y to which g can
be applied. This means that h is a well-defined set of
ordered pairs. Notice that the order of composition is
important - if the sets X , Y , and Z are distinct there
is only one order in which composition even makes
sense.

Example18Supposethatf :N →N isgivenbyf(n)=2n
whileg:N→N isgivenbyg(n)=n+4.Then

(g ◦ f)(n) = 2n + 4

while
(f ◦ g)(n) = 2(n + 4) = 2n + 8

We now start a series of definitions that divide func-
tions into a number of classes. We will arrive at a
point where we can determine if the mapping of a
function is reversible, if there is a function that ex-
actly reverses the action of a given function.

Definition20Afunction f :S→T is injective orone-

to -one if no element of T (no second coordi - nate )
appears inmore thanoneordered pair.Suchafunction is
calledaninjection.

Example 19The function f :N →N given byf(n)=2n
is an injection .The ordered pairs offare (n,2n)and so
any number that appears asasecond coordinate does so
once.

The function g : Z → Z given by g(n) = n2 is not
an injection. To see this notice that g contains the
ordered pairs (1, 1) and (−1, 1) so that 1 appears twice
as the second coordinate of an ordered pair.

Definition 21Afunction f :S→T is surjec -tive or
onto if every element ofTappears in an ordered pair .
Surjectivefunctionsarecalledsurjec-tions.

We use the symbol R for the real numbers. We also
assume familiarity with interval notation for contigu-
ous subsets of the reals. For real numbers a ≤ b

(a, b) is {x : a < x < b}
(a, b] is {x : a < x ≤ b}
[a, b) is {x : a ≤ x < b}
[a, b] is {x : a ≤ x ≤ b}

Example 20Thefunction f :Z →Z givenbyf(n)=5−
n isasurjection .Ifwe setm=5−n thenn=5−m.This
means that ifwe want to find some n so that f (n) is, for
example ,8, then 5−8=−3and we see that f (−3)=8.
This demonstrates that allmhave somensothatf(n)=
m,showing that allmappear as the second coordinate of
anorderedpairinf.

The function g : R → R given by g(x) = x
2

1+x2 is not
a surjection because −1 < g(x) < 1 for all x ∈ R.

Definition 22 A function that is both surjective
and injective is said to be bijective. Bijective func-
tions are called bijections.

Example 21Thefunction f :Z →Z givenbyf(n)=n is
abijection.Allof itsordered pairshave thesamefirstand
second coordinate .This function is called the identity
function.

-15

-10

-5

 0

 5

 10

 15

-3 -2 -1  0  1  2  3

The function g : R → R given by g(x) = x3 − 4x is
not a bijection. It is not too hard to show that it is a
surjection, but it fails to be an injection. The portion
of the graph shown above demonstrates that g(x) takes
on the same value more than once. This means that
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some numbers appear twice as second coordinates of
ordered pairs in g. We can use the graph because g is
a function from the real numbers to the real numbers.

For a function f : S → T to be a bijection every
element of S appears in an ordered pair as the first
member of an ordered pair and every element of T
appears in an ordered pair as the second member of
an ordered pair. Another way to view a bijection is as
a matching of the elements of S and T so that every
element of S is paired with an element of T . For
finite sets this is clearly only possible if the sets are
the same size and, in fact, this is the formal definition
of “same size” for sets.

Definition 23 Two sets Sand Tare defined to be the

same size or to have equal cardinality if there is a
bijectionf:S→T.

Example 22The setsA={a,b,c}andZ={1,2,3}are
thesame size.This isobvious because theyhave thesame
numberofelements, |A|= |Z |=3butwecanconstructan
explicitbijection

f = {(a, 3), (b, 1), (c, 2)}

with each member of A appearing once as a first co-
ordinate and each member of B appearing once as a
second coordinate. This bijection is a witness that A
and B are the same size.

Let E be the set of even integers. Then the function

g : Z → E

in which g(n) = 2n is a bijection. Notice that each
integers can be put into g and that each even integer
has exactly one integer that can be doubled to make it.
The existence of g is a witness that the set of integers
and the set of even integers are the same size. This
may seem a bit bizarre because the set Z − E is the
infinite set of odd integers. In fact one hallmark of an
infinite set is that it can be the same size as a proper
subset. This also means we now have an equality set
for sizes of infinite sets. We will do a good deal more
with this in Chapter 3.

Bijections have another nice property: they can be
unambiguously reversed.

Definition 24The inverse of a function f :S→T is a
function g :T→Ssothat forallx∈S,g(f(x))=xand for
ally∈T,f(g(y))=y.

If a function f has an inverse we use the notation
f−1 for that inverse. Since an exponent of −1 also
means reciprocal in some circumstances this can be
a bit confusing. The notational confusion is resolved
by considering context. So long as we keep firmly in
mind that functions are sets of ordered pairs it is easy
to prove the proposition/definition that follows after
the next example.

Example 23 If E is the set of even integers then the

bijectionf(n)=2n fromZ toEhastheinversef −1 :E→
Z givenbyg(2n)=n.Noticethatdefin-ingtheruleforgas
depending on the argument 2nseamlessly incorporates
thefactthatthedomainofgistheevenintegers.

If g(x) = x

x−1 , shown above with its asymptotes
x = 1 and y = 1 then f is a function from the
set H = R − {1} to itself. The function was cho-
sen to have asymptotes at equal x and y values; this
is a bit unusual. The function g is a bijection. No-
tice that the graph intersects any horizontal or ver-
tical line in at most one point. Every value except
x = 1 may be put into g meaning that g is a function
on H. Since the vertical asymptote goes off to ∞ in
both directions, all values in H come out of g. This
demonstrates g is a bijection. This means that it has
an inverse which we now compute using a standard

16

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


FUNCTIONS

technique from calculus classes.

y =
x

x − 1
y(x − 1) = x

xy − y = x

xy − x = y

x(y − 1) = y

x =
y

y − 1

which tells us that g−1(x) = x

x−1 so g = g−1: the
function is its own inverse.

Proposition 5 A function has an inverse if and
only if it is a bijection.

Proof:
Suppose that f : S → T is a bijection. Then if

g : T → S has ordered pairs that are the exact reverse
of those given by f it is obvious that for all x ∈ S,
g(f(x)) = x, likewise that for all y ∈ T , f(g(y)) = y.
We have that bijections posses inverses. It remains
to show that non-bijections do not have inverses.

If f : S → T is not a bijection then either it is
not a surjection or it is not an injection. If f is not a
surjection then there is some t ∈ T that appears in no
ordered pair of f . This means that no matter what
g(t) is, f(g(t)) 6= t and we fail to have an inverse.
If, on the other hand, f : S → T is a surjection
but fails to be an injection then for some distinct
a, b ∈ S we have that f(a) = t = f(b). For g : T → S
to be an inverse of f we would need g(t) = a and
g(t) = b, forcing t to appear as the first coordinate
of two ordered pairs in g and so rendering g a non-
function. We thus have that non-bijections do not
have inverses. 2

The type of inverse we are discussing above is a two-
sided inverse. The functions f and f−1 are mutually
inverses of one another. It is possible to find a func-
tion that is a one-way inverse of a function so that
f(g(x)) = x but g(f(x)) is not even defined. These
are called one-sided inverses.

Note on mathematical grammar: Recall that when
two notions, such as “bijection” and “has an inverse”
are equivalent we use the phrase “if and only if” (ab-
breviated iff) to phrase a proposition declaring that
the notions are equivalent. A proposition that A iff

B is proven by first assuming A and deducing B and
then separately assuming B and deducing A. The
formal symbol for A iff B is A ⇔ B. Likewise we
have symbols for the ability to deduce B given A,
A ⇒ B and vice-versa B ⇒ A. These symbols are
spoken “A implies B” and “B implies A” respectively.

Proposition6SupposethatX,Y,andZare
sets. If f : X → Y and g : Y → Z are bijections
then so is g ◦ f : X → Z.

Proof: this proof is left as an exercise.

Definition25Supposethatf:A→Bisafunc-
tion. The image of A in B is the subset of B made
of elements that appear as the second element of or-
dered pairs in f . Colloquially the image of f is the set
of elements of B hit by f . We use the notation Im(f)
for images. In other words Im(f ) = {f (a) : a ∈ A}.

Example 24 Iff :N →N is given by the rule f (n)=3n
then the setT={0,3,6, . . .}ofnatural numbers that are
multiplesofthreeistheimageoff.Notation:Im(f)=T.

If g : R → R given by g(x) = x2 then

Im(g) = {y : y ≥ 0, y ∈ R}

There is a name for the set of all ordered pairs drawn
from two sets.

De finition 26 If A and B are sets then the set of all
orderedpairswiththefirstelement fromAandthesecond
fromBiscalledtheCartesianProductofAandB.

The notation for the Cartesian product of A and
B is A × B. using curly brace notation:

A × B = {(a, b) : a ∈ A, b ∈ B}

Example 25 If A = {1, 2} and B = {x, y} then

A × B = {(1, x), (1, y), (2, x), (2, y)}

The Cartesian plane is an example of a Cartesian
product of the real numbers with themselves: R × R.
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.Permutations

In this section we will look at a very useful sort of
function, bijections of finite sets.

Definition 2.27 A permutation is a bijection of a
finite set with itself. Likewise a bijection of a finite
set X with itself is called a permutation of X.

Example 2.26 Let A = {a, b, c} then the possible
permutations of A consist of the following six func-
tions:

{(a,a)(b,b)(c,c)} {(a,a)(b,c)(c,b)}

{(a,b)(b,a)(c,c)} {(a,b)(b,c)(c,a)}

{(a,c)(b,a)(c,b)} {(a,c)(b,b)(c,a)}

Notice that the number of permutations of three ob-
jects does not depend on the identity of those objects.
In fact there are always six permutations of any set of
three objects. We now define a handy function that
uses a rather odd notation. The method of show-
ing permutations in Example 2.26, explicit listing of
ordered pairs, is a bit cumbersome.

Definition28Assumethatwehaveagreedonanorder,e

.g.a,b,c,forthemembersofasetX={a,b,c}.Thenone-
linenotation forapermutation fconsists of listing thefi
rstcoordinate of theordered pairs intheagreed onorder.
ThetableinExample2.26wouldbecome:

abc acb

bac bca

cab cba

in one line notation. Notice the saving of space.De

finition 29 The factorial of a natural number
n is the product

n(n − 1)(n − 2) · · · 3 · 2 · 1 =
n
∏

i=1

i

with the convention that the factorial of 0 is 1. We
denote the factorial of n as n!, spoken ”n factorial”.

Example 27 Here are the first few factorials:

n 0 1 2 3 4 5 6 7
n! 1 1 2 6 24 120 720 5040

Proposition 7 The number of permutations of afi
nite set with n elements is n!.

Proof: this proof is left as an exercise.

Notice that one implication of Proposition 2.6 is that
the composition of two permutations is a permuta-
tion. This means that the set of permutations of a
set is closed under functional composition.

Definition 30Afixed point of a function f :S→S is
anyx∈Ssuchthatf(x)=x.Wesaythatffixesx.

Problems

Problem 42 Suppose for finite sets A and B thatf
: A → B is an injective function. Prove that

|B| ≥ |A|

Problem 43Suppose that forfinite setsAandB that f :
A→Bisasurjectivefunction.Provethat|A|≥|B|.

Problem 44 Using functions from the integers to
the integers give an example of

(i) A function that is an injection but not a surjec-
tion.

(ii) A function that is a surjection but not an injec-
tion.

(iii) A function that is neither an injection nor a sur-
jection.

(iv) A bijection that is not the identity function.

Problem 45 For each of the following functions
from the real numbers to the real numbers say if
the function is surjective or injective. It may be
neither.

(i) f(x) = x2 (ii) g(x) = x3

(iii) h(x) =

{ √
x x ≥ 0

−√−x x < 0
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Interlude

The Collatz Conjecture

One of the most interesting features of mathematics is that it is possible to phrase problems
in a few lines that turn out to be incredibly hard. The Collatz conjecture was first posed
in 1937 by Lothar Collatz. Define the function f from the natural numbers to the natural
numbers with the rule

f(n) =

{

3n + 1 n odd
n

2
n even

Collatz’ conjecture is that if you apply f repeatedly to a positive integer then the resulting
sequence of numbers eventually arrives at one. If we start with 17, for example, the result
of repeatedly applying f is:

f(17) = 52, f(52) = 26, f(26) = 13, f(13) = 40, f(40) = 20, f(20) = 10,

f(10) = 5, f(5) = 16, f(16) = 8, f(8) = 4, f(4) = 2, f(2) = 1

The sequences of numbers generated by repeatedly applying f to a natural number are
called hailstone sequences with the collapse of the value when a large power of 2 appears
being analogous to the impact of a hailstone. If we start with the number 27 then 111 steps
are required to reach one and the largest intermediate number is 9232. This quite irregular
behavior of the sequence is not at all apparent in the original phrasing of the problem.

The Collatz conjecture has been checked for numbers up to 5 × 261 (about 5.764 × 1018)
by using a variety of computational tricks. It has not, however, been proven or disproven.
The very simple statement of the problem causes mathematicians to underestimate the
difficulty of the problem. At one point a mathematician suggested that the problem might
have been developed by the Russians as a way to slow American mathematical research.
This was after several of his colleagues spent months working on the problem without
obtaining results.

A simple (but incorrect) argument suggests that hailstone sequences ought to grow indefi-
nitely. Half of all numbers are odd, half are even. The function f slightly more than triples
odd numbers and divides even numbers in half. Thus, on average, f increases the value of
numbers. The problem is this: half of all even numbers are multiples of four and so are
divided in half twice. One-quarter of all even numbers are multiples of eight and so get
divided in half three times, and so on. The net effect of factors that are powers of two is
to defeat the simple argument that f grows “on average”.

19

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


CHAPTER 2. BASIC SET THEORY

Problem46Trueorfalse(andexplain):The
function f(x) = x−1

x+1 is a bijection from the real num-
bers to the real numbers.

Problem 47Find afunction that isan injection of the
integers intotheevenintegers thatdoesnotappear inany
oftheexamplesinthischapter.

Problem 48Suppose thatB⊂Aand that there exists a
bijection f :A→B.What may be reasonably deduced
aboutthesetA?

Problem49SupposethatAandBarefinitesets.
Prove that |A × B| = |A| · |B|.

Problem50Supposethatwedefineh :N →N asfollows.
Ifniseventhenh(n)=n/2butifnisoddthenh(n)=3n+
1.Determineifhisa(i)surjectionor(ii)injection.

Problem 51 Prove proposition 2.6.

Problem 52 Prove or disprove: the composition
of injections is an injection.

Problem 53 Prove or disprove: the composition
of surjections is a surjection.

Problem 54 Prove proposition 2.7.

Problem 55 List all permutations of

X = {1, 2, 3, 4}

using one-line notation.

Problem 56Suppose thatX isaset and that f ,g,andh

arepermutations ofX .Prove that theequa-tionf◦g=h
hasasolutiongforanygivenpermu-tationsfandh.

Problem57ExaminethepermutationfofQ={a,b,c,d
,e}which isbcaed inone line notation .Ifwe create the
series f,f◦f,f◦ (f◦f ), . . .does the identity function ,
abcde ,ever appear in the series ? If so,what is its first
appearance?Ifnot,whynot?

Problem 58 Iff is apermutation of afinite set,prove
that the sequence f, f ◦ f, f ◦ (f ◦ f ), . . .must contain
repeatedelements.

Problem59SupposethatXandYarefinitesetsandthat
|X |= |Y |=n.Provethattherearen!bijectionsofXwithY
.

Problem60SupposethatXandYaresetswith |X |=n, |
Y|=m.CountthenumberoffunctionsfromXtoY.

Problem61SupposethatXandYaresetswith |X |=n, |
Y |=m for m>n.Count the number of injections ofX
intoY.

Problem 62For afinite setSwith asubset Tprove that
thepermutations ofSthathaveallmem-bersofTasfixed
points form a set that is closed under functional
composition.

Problem63Compute thenumberofpermuta-tionsofa
setSwithnmembersthatfixatleastm<npoints.

Problem 64Using any technique at all,estimate the
fractionofpermutations ofann-element setthathaveno
fixedpoints.Thisproblemisintendedasanexploration.

Problem 65LetXbeafinite setwith |X |=n.LetC=X
×X .Howmanysubsets ofChave theproperty thatevery
element ofXappears once as afirst coordinate of some
ordered pair and once as a second coordinate of some
orderedpair?
Problem66AnalternateversionofSigma(∑

)
andPi(

∏

)notationworks byusingasetasanindex.
SoifS={1,

3,5,7}then
∑

s∈S

s = 16 and
∏

s∈S

s = 105

Given all the material so far, give and defend rea-
sonable values for the sum and product of an empty
set.

Problem67Supposethatfα:[0,1]→[0,1]for
−1 < α < ∞ is given by

fα(x) =
(α + 1)x

αx + 1
,

prove that fα is a bijection.

Problem68Find,tofivedecimalsaccuracy:

Ln(200!)

Explain how you obtained the answer.
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∞ + 1

∞ + 1

We conclude the chapter with a brief section that
demonstrates a strange thing that can be accom-
plished with set notation. We choose to represent
the natural numbers 0, 1, 2, . . . by sets that contain
the number of elements counted by the corresponding
natural number. We also choose to do so as simply as
possible, using only curly braces and commas. Given
this the numbers and their corresponding sets are:

0 : {}
1 : {{}} = {0}
2 : {{},{{}}}={0,1}
3 : {{},{{}},{{},{{}}}}={0,1,2}
4 : {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}}}

={0,1,2,3}

The trick for the above representation is this. Zero is
represented by the empty set. One is represented by
the set of the only thing we have constructed - zero,
represented as the empty set. Similarly the represen-
tation of two is the set of the representation of zero
and one (the empty set and the set of the empty set).
This representation is incredibly inefficient but it uses
a very small number of symbols. This representation
also has a useful property. As always, we will start
with a definition.

Definition31Theminimal setrepresenta -tionof
thenaturalnumbersisconstructedasfollows:

(i) Let 0 be represented by the empty set.

(ii) For n > 0 let n be represented by the set
{0, 1, . . . , n − 1}.

The shorthand {0, 1} for {{}, {{}}} is called the sim-
plified notation for the minimal set representation.
We now give the useful property of the minimal set
representation.

Proposition 8 n + 1 = n ∪ {n}

Proof:
This follows directly from Definition 2.31 by consid-
ering the set difference of the representations of n and
n − 1. 2

The definition says that any set of the representations
of consecutive natural numbers, starting at zero, is

the representation of the next natural number. This
permits us to conclude that the set of all natural num-
bers

{0, 1, 2, . . .}
fits the definition of a natural number. Which nat-
ural number is it? It is easy to see, in the minimal
set representation, that for natural numbers m and
n, m < n implies that the representation of m is a
subset of the representation of n. Every finite natural
number is a subset of the set of all natural numbers
and so we conclude that {0, 1, 2, . . .} is an infinite
natural number. The set notation thus permits us to
construct an infinite number.

The set consisting of the representations of all finite
natural numbers is an infinite natural number. The
number has been given the name ω, the lower-case
omega. In addition to being a letter omega tradi-
tionally also means “the last”. The number ω comes
after all the finite natural numbers. If we now apply
Proposition 2.8 we see that

ω ∪ {ω} = ω + 1

This means that we can add one to an infinite num-
ber. Is the resulting number ω +1 a different number
from ω? It turns out the answer is “‘yes”, because
the representations of these numbers are different as
sets.
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42 CHAPTER 2. BASIC SET THEORY

Interlude
Russell’s Paradox

Bertrand Arthur William Russell, 3rd Earl
Russell, OM, FRS (18 May 1872-2 Febru-
ary 1970), commonly known as simply
Bertrand Russell, was a British philoso-
pher, logician, mathematician, historian,
religious skeptic, social reformer, socialist
and pacifist. Although he spent the ma-
jority of his life in England, he was born in
Wales, where he also died.

Let Q be the set of all sets that do not contain themselves as a member. Consider the
question:“Does Q contain itself?” If the answer to this question is no then Q, by definition
must contain itself. If, however, Q contains itself then it is by definition unable to contain
itself. This rather annoying contradiction, constructed by Russell, had a rather amusing
side effect.

Friedrich Frege had just finished the second of a three volume set of works called the Basic

Laws of Arithmetic that was supposed to remove all intuition from mathematics and place
it on a purely logical basis. Russell wrote Frege, explaining his paradox. Frege added
an appendix to his second volume that attempted to avoid Russell’s paradox. The third
volume was never published.

It is possible to resolve Russell’s paradox by being much more careful about what objects
may be defined to be sets; the category of all sets that do not contain themselves gives rise to
no contradiction (it does give rise to an entire field of mathematics, category theory). The
key to resolving the paradox from a set theoretic perspective is that one cannot assume
that, for every property, there is a set of all things satisfying that property. This is a
reason why it is important that a set is properly defined. Another consequence of Russell’s
paradox is a warning that self-referential statements are both potentially interesting and
fairly dangerous, at least on the intellectual plane.

The original phrasing of Russell’s paradox was in terms of normal and abnormal sets. A
set is normal if it fails to contain itself and abnormal otherwise. Consider the set of all
normal sets. If this set is abnormal, it contains itself but by definition the set contains only
normal sets and hence it is itself normal. The normality of this set forces the set to contain
itself, which makes it abnormal. This is simply a rephrasing of the original contradiction.

Puzzle: what does the circuit below have to do with Russell’s paradox and what use is it?
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Basic properties of the integers

Definitions

The natural numbers are the numbers 1, 2, 3, . . . (some authors include zero, as well), and

for shorthand, we will denote the collection of them by N. The integers (a.k.a. the whole

numbers) are the natural numbers, together with zero and the negatives of the natural

numbers, and we will denote them by Z. So,

Z � t. . . ,�2,�1, 0, 1, 2, . . . u.

The integers come equipped with extra structure with which you are all familiar: addition

(�), multiplication (�), and an ordering ( ). I’ll leave addition and multiplication undefined

(but I could define it by starting from even more basic assumptions). As for ordering, I’ll

simply point out that one can give the following definition:

Definition 1.1. Given two integers a, b, we say that a is less than b, written a   b, if there

exists a c P N such that

b � a� c.

2 Basic properties of the integers

In this section, we’ll list some basic properties of the integers that will form the basis of

everything we will prove this semester, i.e. everything we prove this semester will be trace-

able all the way back to these simple properties. In the next section, we will prove some

basic consequences of these properties; you will prove more basic consequences on your first

assignment.

1 Arithmetic properties

We begin with the arithmetic properties, i.e. those related to addition, multiplication, and

the relation between the two.
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(1) if a, b P Z, then a� b P Z (closure under addition)

(2) if a, b P Z, then a � b P Z (closure under multiplication)

(3) if a, b P Z, then a� b � b� a (commutativity of addition)

(4) if a, b P Z, then a � b � b � a (commutativity of multiplication)

(5) if a, b, c P Z, then a� pb� cq � pa� bq � c (associativity of addition)

(6) if a, b, c P Z, then a � pb � cq � pa � bq � c (associativity of multiplication)

(7) there exists an element 0 P Z such that for all a P Z

a� 0 � a (existence of an additive identity)

(8) there exists an element 1 P Z such that for all a P Z

a � 1 � a (existence of a multiplicative identity)

(9) for every a P Z, there is a solution x P Z to

a� x � 0

(namely x � �a) (existence of an additive inverse)

(10) if a, b, c P Z and c � 0, then

a � c � b � c implies a � b (cancellation law)

(11) if a, b, c P Z, then a � pb� cq � a � b� a � c. (distributivity law)

Remark

(a) For properties (1)–(8), there is a property of addition followed by a corresponding

property of multiplication. This breaks down for property (9). The corresponding

property would be that for all a P Z there is a solution x P Z to a � x � 1. But, of

course, this fails, e.g. take a � 2, there is no integer x such that 2x � 1. However, the

cancellation law (10) often serves as a substitute for the lack of multiplicative inverses:

often you just want to divide both sides of an equation by the same quantity, the

cancellation law allows you to do this without actually having to divide.
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(b) Property (9) allows us to define subtraction as follows:

a� b :� a� p�bq,

i.e. subtracting b is defined to be adding its additive inverse.

Ordering properties

The ordering properties are those concerning the relation  .

(12) if a, b ¡ 0, then a� b ¡ 0 (closure of “¡ 0” under addition)

(13) if a, b ¡ 0, then a � b ¡ 0 (closure of “¡ 0” under multiplication)

(14) for any two integers a, b P Z

exactly one of a   b, a � b, or a ¡ b is true (trichotomy law)

(15) Every non-empty set of natural numbers has a least element, i.e. for any S � N, if

S � H, then there is an m P S such that

m ¤ s, for all s P S. (well-ordering property)

Remark

(a) Just to be clear, we write a ¡ b if b   a, and we write a ¤ b if a   b or a � b.

(b) Property (14) suggests a convenient way to prove two numbers a, b are equal: first prove

a ¤ b, then prove b ¤ a. Since it can’t be true that both a   b and b   a, this implies

that a � b.

3 Some basic consequences

Here, we give some examples of some basic consequences of the properties listed above, as well

as their proof. A major reason for including some proofs here is to give you some experience

with proofs, so do read through them and try to understand why they are how they are.

You’ll have a chance to practice similar proofs on the first assignment.
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Proposition 3 The additive identity in Z is unique, i.e. 0 is the only element in Z satis-

fying property (7).

Proof. Let e P Z denote an integer such that a � e � a for all a P Z. In particular, this is

true for a � 0, so

0� e � 0.

Also,

0� e � e� 0 (by commutativity of �)

� e. (since 0 is an additive identity)

Putting these together, we get

0 � 0� e � e

so e � 0. So, any integer satisfying property (7) is necessarily 0.

Can you find a shorter proof of the above?

Proposition 3 Given a P Z, its additive inverse is unique, i.e. the equation a� x � 0 has a

unique solution x P Z.

Proof. Suppose x, y P Z are such that a � x � 0 and a � y � 0. Adding x to both sides of

the second equation gives

a� y � x � x.

By commutativity of addition, definition of x, and the fact that 0 is the additive identity,

a� y � x � a� x� y � 0� y � y.

Combing these two lines gives x � y.

Proposition 3For all a P Z,

0 � a � 0.

Proof. By distributivity,

p0� 0q � b � 0 � b� 0 � b.

Since 0 is an additive identity, 0� 0 � 0, so

p0� 0q � b � 0 � b.
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Combing these two equations yields

0 � b� 0 � b � 0 � b.

Adding �p0 � bq to both sides gives

0 � b � 0,

as desired.

Proposition For all a P Z,

�a � p�1q � a.

Proof. First, we’ll show that p�1q � a is an additive inverse of a. Indeed,

a� p�1q � a � 1 � a� p�1q � a (by (8) and (4))

� p1� p�1qq � a (by distributivity and (3))

� 0 � a (by (7))

� 0, (by proposition 3.3)

as desired. By the uniqueness of additive inverses (proposition 3.2), the result follows.

Proposition Let a, b P Z. If a � b � 0, then a � 0 or b � 0.

Proof. (Proof by contradiction) Since a � b � 0,

a � b� a � b � a � b � 0.

By the uniqueness of additive inverses (proposition 3.2), this implies that

�pa � bq � a � b.

Applying proposition 3.4 (and (8)), gives

p�1q � a � b � 1 � a � b.

If b � 0, we can use the cancellation law to obtain

p�1q � a � 1 � a.
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If a is also not 0, we can apply the cancellation law again to get

�1 � 1.

But 1�1 � 2 P N and hence 1�1 � 0, i.e. 1 � �1. Therefore, the assumption that both a and

b are not zero leads to a contradiction. Therefore, one of them must be zero, as desired.

Proposition Let b P Z. Then b P N if, and only, b ¡ 0.

Proof. pñq: suppose b P N. By (7) and (3),

b � 0� b,

i.e., using definition 1.1 (with a � 0 and c � b), we can say 0   b.

pðq: (contrapositive) suppose b R N, then we want to show that b ¡ 0 is not true. By

definition, Z consists of the natural numbers, 0, and the negatives of the natural numbers.

Since b R N, either b � 0 or there is a P N such that b � �a. If b � 0, then the trichotomy

law implies that you can’t have b ¡ 0. In the second case (b � �a), we have

0 � �a� a � b� a.

In terms of definition 1.1, this means that b   0. By the trichotomy law, b ¡ 0 cannot be

true.

The well-ordering property is a statement about N. More generally, given any “ordered set”

X, we say it is “well-ordered” if every non-empty subset S � X has a least element. Let

a P Z and define the notation

Z¥a :� tb P Z : b ¥ au;

in particular, N � Z¥1. All of these sets are well-ordered.

Proposition Let a P Z, then Z¥a is well-ordered.

Proof. Let S � Z¥a be any non-empty subset. Let

X :� ts� a� 1 : s P Su.

Claim (1). X is a non-empty subset of N.
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Proof of claim (1). X is non-empty since a� a� 1 � 1 P X. To show X � N, it’s enough to

show that for all x P X, x ¡ 0 (by proposition 3.6). By a question on assignment 1,

s ¥ a if, and only if, s� r ¥ a� r for all r P Z. (�)

Using this with r � �a� 1, we get that for all s P S

s� a� 1 ¥ a� a� 1 � 1.

Let x P X, then there is an s P S such that x � s� a� 1. Hence, x ¥ 1.

Since N is well-ordered and X is a non-empty subset of it, there is a least element x0 P X.

Claim (2). s0 :� x0 � a� 1 is a least element of S.

Proof of claim (2). Let s P S. Using p�q again with r � �a� 1,

s ¥ s0 if, and only if s� a� 1 ¥ x0.

By definition of X, s � a � 1 P X, so we know that s � a � 1 ¥ x0. Hence, s ¥ s0, and the

latter is a least element of S.

S was arbitrary, so Z¥a is well-ordered.Proposition

3The integers Z are not well-ordered.

Proof. (Proof by counterexample) We need to find a non-empty subset S of Z which has no

least element. Let’s simply take S � Z (our proposed counterexample). Let’s suppose m P Z

is a least element and derive a contradiction. Since m � pm � 1q � 1, definition 1.1 says

m� 1   m, contradicting the minimality of m. Therefore, S � Z has no least element.
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§2 Boolean Algebra

UNIT 2
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Outline

Introduction
Basic operations
Boolean expressions and truth tables
Basic theorems
Commutative, associative, and distributive 

laws
Simplification theorems
Multiplying out and factoring
DeMorgan’s laws

Introduction

Boolean algebra is the mathematical 
foundation of logic design
George Boole (1847) 

logic + algebra  Boolean algebra

Claude Shannon (1939)
Boolean algebra  logic design
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Introduction

 Boolean (switching) variable x  {0,1}
 0, 1 are abstract symbols

They may correspond to {false, true} in logic, {off, on} of 
a switch, {low voltage, high voltage} of a CMOS circuit, or 
other meanings

 Boolean space {0,1}n

 The configuration space of all possible {0,1} 
assignments to n Boolean variables

E.g., 
the Boolean space spanned by (x1,x2) is {0,1}2 = 
{0,1}{0,1} = {00, 01, 10, 11}

x1

x2

0 1

1

00 10

01 11

Introduction

 Boolean function f(x1, x2, …, xn) is a mapping: 
{0,1}n  {0,1}, where xi’s are Boolean variables

E.g., 

f
x1

x2

x3

y

How many Boolean functions of n variables are there? 

x1x2x3

000
001
010
011
100
101
110
111

y

0

1

32
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Introduction
 There are many different ways to represent a Boolean 

function
 E.g., truth tables, Boolean expressions (formulas), logic 

circuits, Binary Decision Diagrams, combinatorial cubes, ...

f
x1
x2
x3

y

x1x2x3 y

000
001
010
011
100
101
110
111

0
1
0
1
0
1
1
0 x1

x2x3

000 100

111
011

001

110

101

010

0 1 0 1 0 1 1 0

x1

x2 x2

x3 x3 x3x3

Truth table
Combinatorial cube

Binary decision diagram

Introduction

 Different Boolean-function representations have 
their own strengths and weaknesses
 They affect the computational efficiency of Boolean 

manipulations in logic synthesis, hardware/software 
verification, and many other applications

 Truth tables, Boolean expressions, and logic 
circuits will be our main use in representing 
Boolean functions
 Boolean expressions and logic circuits are closely related

They are built up from logic operators and Boolean 
variables
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Basic Operations

Three most basic operations in Boolean 
algebra: {AND, OR, NOT}
 They form a functionally complete set of 

operations, that is, any Boolean functions can 
be constructed using these three operations
(why?)

Are {AND, NOT} functionally complete?

Basic Operations
NOT

NOT (complement, or inverse)
Notation: “  ”, “ ”,or “”

 Logic gate symbol:

0 = 1
1 = 0

X = 1 if and only if X = 0
X = 0 if and only if X = 1

X X (X, X )
X X
0
1

1
0

NOT-gate, inverter

36
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Basic Operations
AND

AND (conjunction)
Notation: “  ”, “”

 Logic gate symbol:

0  0 = 0
0  1 = 0
1  0 = 0
1  1 = 1

AB C=AB
00
01
10
11

0
0
0
1

A

B
C = AB

AND-gate

Basic Operations
OR

OR (disjunction)
Notation: “+”, “”

 Logic gate symbol: 

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

AB C=A+B
00
01
10
11

0
1
1
1

A

B
C = A+B

OR-gate
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Boolean Expressions & Logic Circuits

AB+C

[A(C+D)]+BE

C
D

(C+D)

A

A(C+D)

B
E

BE

[A(C+D)]'

[A(C+D)]' + BE

B
B'

A AB'

C

(AB'+C)

Boolean Expressions & Logic Circuits 

 Given a Boolean expression, we can construct a 
functionally equivalent logic circuit (not unique)

 Given a logic circuit, we can derive a Boolean 
expression of the corresponding Boolean function

 Given a Boolean expression or logic circuit, we 
can derive the truth table of the corresponding 
Boolean function 
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Boolean Expressions & Logic Circuits

 A Boolean expression (logic circuit) gives a 
unique Boolean function
 The converse is not true, that is, a Boolean function can 

be represented by different Boolean expressions (logic 
circuits)

 A truth table gives a unique Boolean function, 
and vice versa
 Truth tables are canonical in representing Boolean 

functions
 Can use truth tables to show the equivalence of two 

Boolean functions

Boolean Expressions & Truth Tables 

ABC B AB AB+C A+C B+C (A+C)(B+C)

000
001
010
011
100
101
110
111

1
1
0
0
1
1
0
0

0
0
0
0
1
1
0
0

0
1
0
1
1
1
0
1

0
1
0
1
1
1
1
1

1
1
0
1
1
1
0
1

0
1
0
1
1
1
0
1

Truth-table proof of AB+C = (A+C)(B+C)
(equivalence under all truth assignments)
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Basic Theorems of Boolean Algebra

Operations with 0 and 1:

X + 0 = X X  1 = X

X + 1 = 1 X  0 = 0

Idempotent laws
X + X = X X  X = X

dual

Duality: interchange “0” and “1” and interchange “+” and “  ”

Basic Theorems of Boolean Algebra

Involution law
 (X) = X

Laws of complementarity
X + X = 1 X  X = 0

Applications to logic simplification
E.g., (AB+D)E+1 = 1

(AB+D)(AB+D) = 0

43

44

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


Boolean Algebra with Switches

S S = 0, switch open
S = 1, switch closedX Y

X and Y are connected if and only if S = 1

The connectivity between X and Y is a function over S

Boolean Algebra with Switches

A B

A

B

X Y

X and Y are connected if and only if AB = 1

X and Y are connected if and only if A+B = 1
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Boolean Algebra with Switches
Basic Theorems Revisited

Idempotent laws

A A A

A

A

=

A
=

(A  A = A)

(A + A = A)

Boolean Algebra with Switches
Basic Theorems Revisited

Operations with 0 and 1
A

A
=

A

=

(A + 0 = A)

(A + 1 = 1)
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Boolean Algebra with Switches
Basic Theorems Revisited

Laws of complementarity
A

A’ =

(A + A = 1)

A A’
=

(A  A = 0)

Commutative, Associative, and 
Distributive laws

Commutative laws
XY = YX X+Y = Y+X

B

A
=

A

B

B

A
=

A

B
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Commutative, Associative, and 
Distributive laws

Associative laws 
 (XY)Z = X(YZ) = XYZ

(X+Y)+Z = X+(Y+Z) = X+Y+Z

B

A

C = B
A

C

B

A

C = B
A

C

Commutative, Associative, and 
Distributive laws

Distributive laws
X(Y+Z) = XY+XZ X+YZ = (X+Y)(X+Z)

The second equality is valid for Boolean algebra but 
not for ordinary algebra

Proof. 
(X+Y)(X+Z) = 
XX+XZ+YX+YZ = 
X+XZ+XY+YZ = 
X1+XZ+XY+YZ = 
X(1+Z+Y)+YZ = 
X1+YZ = 
X+YZ
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Simplification Theorems

XY + XY = X (X+Y)(X+Y) = X

X+XY = X X(X+Y) = X
Proof. 
X+XY = X1+XY = X(1+Y) = X1 = X
X(X+Y) =XX+XY = X+XY = X

(X+Y)Y = XY XY+Y = X+Y
Proof. 
Y+XY = (Y+X)(Y+Y) = (Y+X)1 = X+Y

Logic Circuit Simplification

F = A(A+B) = AA+AB = 0+AB = AB

Exercise (p.48)
Simplify Z = [A+BC+D+EF] [A+BC+(D+EF)]
Simplify Z = (AB+C)(BD+CE)+(AB+C)

B

A

A
F F

B
A

=
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Multiplying Out and Factoring
 Sum-of-products (SOP), or Disjunctive Normal Form (DNF)

 Sum of products of literals (a literal is a variable x or its 
complement x)
 E.g., abc+abd yes

a+b+c yes
abc yes
a(b+c)+abd no

 Any Boolean function can be represented in the SOP form 
(Why?)

 Product-of-sums (POS), or Conjunctive Normal Form (CNF)
 Product of clauses (a clause is a sum of literals)

 E.g., (a+b+c)(a+d) yes 
(a+b+c) yes
(a)(b)(c) yes
(a+bc)(a+d) no

 Any Boolean function can be represented in the POS form 
(Why?)

Multiplying Out

 SOP
 When multiplying out an expression (to obtain an SOP), 

the 2nd distributive law
(X+Y)(X+Z) = X+YZ
can be applied first when possible to simply the 
expression

E.g.,

(A+BC)(A+D+E) = A+BC(D+E) = A+BCD+BCE

X Y X Z X Z

In contrast to, 
(A+BC)(A+D+E) = A+AD+AE+ABC+BCD+BCE 
= A(1+D+E+BC)+BCD+BCE = A+BCD+BCE

Y
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Factoring

 POS
 Apply distributive laws 

XY+XZ = X(Y+Z) 
X+YZ = (X+Y)(X+Z)
to factor an expression in the POS form
Any expression can be factored to the POS form
An expression cannot be further factored if and only if it is 

in the POS form

E.g.,

(A+BCD) = (A+B)(A+CD) = (A+B)(A+C)(A+D) 

(AB+CD) = (AB+C)(AB+D) = (A+C)(B+C)(A+D)(B+D) 

Exercise (p.51): Factor (CD+CE+GH)

Multiplying Out and Factoring

SOP in AND-OR circuit

B
A

E

C

C
A

D

E

E
D

C

A
B

AB+CDE+ACE A+B+C+DE
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Multiplying Out and Factoring

POS in OR-AND circuit

B
A

E

C

C
A

D

E

E
D

C

A
B

ABC(D+E)(A+B)(C+D+E)(A+C+E)

DeMorgan’s Laws

 Complement by DeMorgan’s laws
 (X+Y) = X  Y
 (X  Y) = X + Y

XY X+Y (X+Y) XY XY (XY) X+Y

00
01
10
11

0
1
1
1

1
0
0
0

1
0
0
0

0
0
0
1

1
1
1
0

1
1
1
0

Proof by truth table
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Generalized DeMorgan’s Laws

 (X1+X2+  +Xn) = X1 X2  Xn
 Complement of sum = product of complements

 (X1 X2  Xn) = X1+X2+  +Xn
 Complement of product = sum of complements

E.g.,

[(A+B)C] = (A+B)+(C) = AB+C 

[(AB+C)D+E] = [(AB+C)D]E = [(AB+C)+D]E = 
[(AB)C+D]E = [(A+B)C+D]E

Duality

 The dual FD of an expression F is formed by 
replacing AND with OR, OR with AND, 0 with 1, 
and 1 with 0
 FD can also be obtained by complementing F and then 

complementing each individual variable

E.g., 
(AB+C)D = (A+B)C

 Equalities are preserved under duality, i.e., 
F = G iff FD = GD (justify prior theorems)
E.g., 
X(Y+Z) = XY+XZ X+YZ = (X+Y)(X+Z)dual
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Applications of Boolean Algebra:Claude Shannon and Circuit

Design

1 Introduction

On virtually the same day in 1847, two major new works on logic were published by prominent
British mathematicians: Formal Logic by Augustus De Morgan (1806–1871) and The Mathematical
Analysis of Logic by George Boole (1815–1864). Both authors sought to stretch the boundaries of
traditional logic by developing a general method for representing and manipulating logically valid
inferences or, as De Morgan explained in an 1847 letter to Boole, to develop ‘mechanical modes of
making transitions, with a notation which represents our head work’ [18, p. 25 ]. In contrast to De
Morgan, however, Boole took the significant step of explicitly adopting algebraic methods for this
purpose. As De Morgan himself later proclaimed, “Mr. Boole’s generalization of the forms of logic
is by far the boldest and most original . . . ” (as quoted in [13, p. 174]).

Boole further developed his bold and original approach to logic in his 1854 publication An In-
vestigation of the Laws of Thought1. In this work, Boole developed a system of symbols (×,+) rep-
resenting operations on classes (or sets) which were symbolically represented by letters. In essence,
his logical multiplication xy corresponded to today’s operation of set intersection, and his logical
addition x + y to today’s operation of set union.2 Using these definitions, Boole then developed
the laws of this ‘Algebra of Logic,’ many of which also held true in ‘standard algebra’. Other laws,
however, differed substantially from those of standard algebra, such as the Idempotent Law3: x2 = x.

As noted by Boole, the Idempotent Law holds in standard algebra only when x = 0 or x = 1. He
further commented [4, p. 47] that for

. . . an Algebra in which the symbols x, y, z, &c. admit indifferently of the values 0 and 1,
and of these values alone . . . the laws, the axioms, and the processes . . . will be identical in
their whole extent with the laws, the axioms, and the processes of an Algebra of Logic.

∗Department of Mathematics and Physics; Colorado State University-Pueblo; Pueblo, CO 81001 - 4901;
janet.barnett@colostate-pueblo.edu.

1For further details on Boole’s work in logic and modifications made to it by John Venn (1834–1923) and C. S.
Peirce (1839–1914), see the project “Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and
C. S. Peirce,” Janet Barnett author.

2For various technical reasons, Boole restricted his use of + to classes which were disjoint. Most of his immediate
followers, however, relaxed this restriction, so that their use of + corresponded exactly to today’s operation of set
union. British mathematician John Venn (1834–1923) discussed this issue in detail in the second (1894) edition of his
Symbolic Logic [20, pp. 42-46]. Ultimately, Venn adopted an unrestricted use of + ‘partly . . . because the voting has gone
this way, and in a matter of procedure there are reasons for not standing out against such a verdict . . . ’.

3For Boole, the Idempotent Law followed directly from the definition of xy as ‘the whole of that class of objects to
which the names or qualities represented by x and y are together applicable ’, from which ‘it follows that if the two symbols
have exactly the same signification, their combination expresses no more than either of the symbols taken alone would do.’
(See[4,p.31].)Selectingthesheepfromtheclassofsheep,forinstance,givesusjusttheclassofsheep,sothatxx=x.

UNIT 3
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In the early twentieth century, this special two-valued ‘arithmetical algebra’ became important in
the axiomatization of boolean algebras; Edward V. Huntington, for example, employed it as a model
for one of three postulate sets for boolean algebra in his 1904 paper Sets of Independent Postulates
for the Algebra of Logic4. In that work, Huntington defined addition and multiplication (which he
denoted by ⊕ and � respectively) by the following tables [10, p. 293]:

⊕ 0 1

0 0 1
1 1 1

� 0 1

0 0 0
1 0 1

For Huntington, these tables defined a completely abstract (i.e., meaningless) system. For Boole,
the equalities represented in these tables (e.g., 1 + 1 = 1)5 would have represented statements about
sets (i.e., the union of the universal set with itself is again the universal set). In this project, we
will see how this same two-valued system was employed in another concrete application of boolean
algebra in the mid-twentieth century: the design and analysis of circuits.

2 Claude Shannon, Boolean Algebra and Circuit Design

The algebraic methods introduced by Boole for the study of logic attracted considerable attention
from mathematicians in the years following publication of Laws of Thought. Alongside various
refinements and extensions made to Boole’s system during this time, mathematics itself underwent
significant changes, becoming both increasingly abstract and more formal in its approach to proof.
In line with this trend came a loosening of the ties between the algebraic system introduced by Boole
and logic as a concrete interpretation of that system. In his classic The Algebra of Logic of 1914, for
example, French mathematician Louis Couturat (1868–1914) went so far as to declare [6, p. 1]:

The formal value of this calculus and its interest for the mathematician are absolutely
independent of the interpretation given it and of the application which can be made of
it to logical problem. In short, we shall discuss it not as logic but as algebra.6

It was not long, however, before individuals interested in problems outside of mathematics proper
gained exposure to boolean algebra and its unique properties, thanks in part to the work of Couturat

4For further details on Huntington’s work , see the project “Boolean Algebra as an Abstract Structure: Edward V.
Huntington and Axiomatization,” Janet Barnett author.

5In Boole’s ‘Algebra of Logic’, the symbols ‘0’ and ‘1’ denoted two special classes: ‘nothing’ (‘empty set’) and
‘universe’ (‘universal set’) respectively. To justify the use of these symbols, Boole used the analogy between the roles
played by these numbers in algebra and the roles played by these special classes in logic [4, p. 47–48]. He argued, for
example, that since 0y = 0 in standard algebra, then ‘. . . we must assign to the symbol 0 such an interpretation that the
class represented by 0y may be identical with the class represented by 0, whatever the class y may be. A little consideration
will show that this condition is satisfied if the symbol 0 represent Nothing.’ A similar analysis of the algebraic equation
1y = y led him to conclude that ‘. . . the class represented by 1 must be “the Universe,” since this is the only class in which
are found all the individuals that exist in any class.’

6Similarly, Huntington opened his 1904 paper with the following declaration [10, p. 288]: “The algebra of symbolic
logic, as developed by Leibniz, Boole, C.S. Peirce, E. Schröder, and others is described by Whitehead as the
only known member of the non-numerical genus of universal algebra. This algebra, although originally studied merely
as a means of handling certain problems in the logic of classes and the logic of propositions, has recently assumed
some importance as an independent calculus; it may therefore be not without interest to consider it from a purely
mathematical or abstract point of view, and to show how the whole algebra, in its abstract form, may be developed
from a selected set of fundamental propositions, or postulates, which shall be independent of each other, and from
which all the other propositions of the algebra can be deduced by purely formal processes. In other words, we are to
considertheconstructionofapurelydeductivetheory,withoutregardtoitspossibleapplications.”
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and other mathematicians interested solely in its formal algebraic structure. A 1949 list of some of
the applications which resulted from that exposure — applications largely undreamed of by Boole
and his Victorian colleagues — included “an axiomatic formulation of biology, the study of neural
networks in the nervous systems, the analysis of insurance policies, probability and set theory, etc.
[16, p. 588]”. The compiler of this list, American mathematician and electrical engineer Claude E.
Shannon (1916–2001), himself gained reknown for a particular application of boolean algebra.

Shannon completed bachelor degrees in both mathematics and electrical engineering at the Uni-
versity of Michigan in 1936. Two years later, at the age of 22, he completed a master’s thesis in
electrical engineering at the Massachusetts Institute of Technology. The idea which inspired his the-
sis work came from his exposure to symbolic logic in an undergraduate philosophy course. Vannever
Bush (1890–1974), dean of engineering at MIT and inventor an early mechanical computer called
the differential analyser machine, was sufficiently impressed by Shannon’s thesis to sponsor its pub-
lication in an engineering journal. This award-winning paper went on to revolutionize the study of
switches and relays, which in turn form the circuitry behind the binary arithmetic of modern comput-
ers.7 Shannon then completed a doctorate in mathematics at MIT with a thesis on the application of
mathematics to genetics, and began his official career as a research mathematician at Bell Laborato-
ries in 1941. His association with Bell Labs, either as full time scientist or as a consultant, continued
until 1971. In 1948, he published yet another ground breaking paper, A Mathematical Theory of
Communication, thereby launching the still flourishing field of information theory. He married in
1949 (he and his wife had four children), and served as a faculty member and researcher at MIT
from 1956 through 1978. His work included important contributions to cryptography, game theory
and computer science; Shannon is also remembered for various mechanical inventions, and for his
successful stock investment strategies. Among his many honors was the first ever Marconi Lifetime
Achievement Award, awarded to him in 2000. By this time, sadly, Shannon suffered significantly
from the effects of Alzheimer’s disease; he died in a nursing home just a year later.

In the 1938 paper based on his master’s thesis, A Symbolic Analysis of Relay and Switching
Circuits, Shannon described the general problem to be solved and his proposed approach to it as
follows [14, p. 713]:

∞∞∞∞∞∞∞∞

In the control and protective circuits of complex electrical systems it is frequently necessary to
make intricate interconnections of relay contacts and switches. Examples of these circuits oc-
cur in automatic telephone exchanges, industrial motor-control equipment, and in almost any
circuits designed to perform complex operations automatically. In this paper a mathematical
analysis of certain of the properties of such networks will be made. . . .

The method of attack on these problems may be described briefly as follows: any circuit is
represented by a set of equations, the terms of the equations corresponding to the various
relays and switches in the circuit. A calculus is developed for manipulating these equations
by simple mathematical processes, most of which are similar to ordinary algebraic algorisms.
This calculus is shown to be exactly analogous to the calculus of propositions used in the
symbolic study of logic.

∞∞∞∞∞∞∞∞

On one level, the key to applying symbolic boolean algebra to relay and switching circuits lay
in the fact that there are only two possible states for such circuits, open and closed, a situation
reminiscent of Boole’s special algebra on two symbols, 0 and 1. In fact, the arithmetical version of

7For more information on the connection of switch/relay circuitry to binary arithmetic, see the project “Arithmetic

Backwards from Shannon to the Chinese Abacus,” Jerry Lodder author.
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Shannon’s postulates for networks as stated in this paper [14, p. 713] is identical to Huntington’s
two-valued model of boolean algebra (see page 2 of this project):

∞∞∞∞∞∞∞∞

Postulates

1. a. 0 · 0 = 0

b. 1 + 1 = 1

2. a. 1 + 0 = 0 + 1 = 1

b. 0 · 1 = 1 · 0 = 0

3. a. 0 + 0 = 0

b. 1 · 1 = 1

4. At any given time either X = 0 or X = 1.

∞∞∞∞∞∞∞∞

In a 1987 interview8 with Omni magazine, Shannon elaborated on the basic underlying analogy
between circuits and boolean algebra in response to the question ‘Was the basic insight that yes/no
can be embodied in on/off switches so trivial? ’ with the following comments [17, p. xxvi]:

∞∞∞∞∞∞∞∞

It’s not so much that a thing is “open” or “closed,” the “yes” or “no” that you mentioned.
The real point is that two things in series are described by the word “and” in logic, so you
would say this “and” this, while two things in parallel are described by the word “or.” The
word “not” connects with the back contact of a relay rather than the front contact. There are
contacts which close when you operate the relay, and there are other contacts which open, so
the word “not” is related to that aspect of relays. All of these things together form a more
complex connection between Boolean algebra, if you like, or symbolic logic, and relay circuits.

The people who had worked with relay circuits were, of course, aware of how to make these
things. But they didn’t have the mathematical apparatus of the Boolean algebra to work with
them, and to do them efficiently. . . .

They all knew the simple fact that if you had two contacts in series both had to be closed to
make a connection through. Or if they are in parallel, if either one is closed the connection is
made. They knew it in that sense, but they didn’t write down equations with plus and times,
where plus is like a parallel connection and times is like a series connection.9

8In this same interview [17, pp. xxv-xxvi], Shannon described the act of making the connection between Boolean
algebra and a relay circuit as “ not the main thing” and declared that “[t]he more important, harder part was working
out the details, how to interleave the topology of the switching circuits, the way the contacts are connected up and so
on, with the Boolean algebra expressions. Working that out was a lot of fun. I think I had more fun doing that than
anything else in my life, creatively speaking. ”

9In the only two scholarly articles which he published on this subject [14, 16], Shannon focused on ‘hindrance’ or
‘impedance’ at a contact as the central physical characteristic, rather than ‘flow’ across the contact resulting from a
connection being made. Under the impedance interpretation, an open circuit is said to have infinite impedance and a
closed circuit is said to have zero impedance; in this interpretation, ‘plus’ corresponds to a series connection (infinite
impedance when either the first or the second contact have infinite impedance: a+b = 1 iff a = 1 or b = 1), while ‘times’
corresponds to a parallel connection (infinite impedance when the first and the second contact have infinite impedance:
a · b = 1 iff a = 1 and b = 1). Owing to the dual principle of Boolean algebra, either interpretation (hindrance or flow)
can be used with equal ease. In the interest of consistency with current textbook writing, we deviate from Shannon’s
original interpretation and base all exercises in this project on the ‘flow’ interpretation as described in Shannon’s 1987
interviewabove;examplesfromShannon’searlierpapersaremodifiedaccordingly.
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∞∞∞∞∞∞∞∞

In other words, the application of Boolean algebra to circuits provided an actual physical repre-
sentation for the corresponding symbolic operations. Diagrams depicting the two types of connections
and the corresponding operations are shown in Figure 1 below. An example of how to represent a
more complicated circuit with an algebraic equation, based on an example from Shannon [16, p. 589],
is shown in Figure 2.

Parallel Connection: X + Y

◦X ◦

◦ Y ◦

Series Connection: X · Y

◦X◦ ◦Y◦

Figure 1

◦X◦
◦ Y ◦

◦Z ◦ ◦X ′◦

◦W ◦

Network for boolean expression W + X · (Y + Z ·X ′)

1. Shannon employed the notation X ′ to represent the ‘negative of X’, or ‘not-X’; thus, the
contact X ′ is closed (connection made between terminal points) whenever the contact X is
open (no connection made between terminal points), and vice versa. Explain why the overall
network in Figure 2 is closed when contact W is closed, regardless of the states of contacts X,
Y and Z. Then determine whether this network is open or closed when contact W is open and
contacts X, Y and Z are closed; explain your conclusion.

2. Represent the network in Figure 3 (adapted from [14, p. 715]) by a Boolean expression, using
+ for parallel connections and · series for connections.

◦W◦
◦W ′◦

◦X ◦ ◦ Y ◦
◦S′◦
◦V ◦ ◦ Y ◦ ◦Z ′◦
◦S ◦ ◦W ′◦ ◦Z◦
◦X ◦ ◦Z ◦

Figure 3: Network for project question 2.

3. Sketch the network represented by the Boolean expression X + Y (Z + W ) + X ′Z, again using
+ for parallel connections and · series for connections.

Shannon used diagrams such as these not only to represent given circuits, but also to illustrate
Boolean algebra identities. The following excerpt gives his description of the basic Boolean identities
for circuits [14, p. 713-714].

∞∞∞∞∞∞∞∞
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X + Y = Y + X (1a)
XY = Y X (1b)
X + (Y + Z) = (X + Y ) + Z (2a)
X(Y Z) = (XY )Z (2b)
X(Y + Z) = XY + XZ (3a)
X + Y Z = (X + Y )(X + Z) (3b)
1 ·X = X (4a)
0 + X = X (4b)
1 + X = 1 (5a)
0 ·X = 0 (5b)

. . .

Due to the associative laws (2a and 2b) parentheses may be omitted in a sum or product of
several terms without ambiguity. . . .

The distributive law (3a) makes it possible to “multiply out” products and to factor sums.
The dual of this theorem (3b), however, is not true in numerical algebra.

. . . The negative of a hindrance X will be written X ′ and is defined as a variable which is
equal to 1 when X equals 0 and equal to 0 when X equals 1. . . . The definition of the
negative of a hindrance gives the following theorems:

X + X ′ = 1 (6a)
XX ′ = 0 (6b)
0′ = 1 (7a)
1′ = 0 (7b)
(X ′)′ = X (8)

∞∞∞∞∞∞∞∞

Many of the laws listed above by Shannon are familiar from standard algebra. The most unfa-
miliar law, perhaps, is his (3b): X + Y Z = (X + Y )(X + Z). The fact that (logical) addition is
distributive over (logical) multiplication was, however, already a familiar boolean algebra property
to Shannon’s predecessors. The following question examines this law from the perspective of circuits.

4. Figure 4 below (adapted from [16, p. 591]) uses network diagrams to illustrate the distributive
law (3b). Explain why these two circuits are equivalent by discussing what configurations of
open (no connection made) and closed (connection is made) contacts are needed for flow across
the overall network.

X + Y · Z◦X ◦

◦Y ◦ ◦Z ◦

(X + Y ) · (X + Z) ◦X ◦

◦Y ◦

◦X ◦

◦Z ◦

Figure 4: Network for project question 4.
Now complete the table on the following page to show that the two Boolean expression are
equivalent for all possible values of the variables in the boolean algebra on {0, 1}.
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X Y Z Y Z X + Y X + Z X + Y Z (X + Y )(X + Z)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Shannon referred to the proof technique in which all possible cases are directly verified, as is
done in the above table, as the ‘method of perfect induction’ [14, p. 714]. In light of its simplicity,
his 1938 paper included only one proof as an illustration of the technique. As Shannon himself
noted, however, this proof technique is helpful in the context of circuits precisely because ’each
variable is limited to just two values’ [14, p. 714]. Since this is not the case for all boolean algebras,
establishing these identities in general required more sophisticated proof techniques, such as those
used in Huntington’s 1904 paper on the axiomatization of boolean algebra. Because Shannon was
interested in applying the properties of general boolean algebras to the specific two-valued boolean
algebra defined by circuits, he proceeded to show that the two-valued algebra of circuits did, in fact,
satisfy all Huntington’s axioms for a general boolean algebra. As a consequence, any property which
could be proven for a general boolean algebra necessarily held for the specific two-valued algebra of
circuits.

Having established this correspondence, Shannon next listed several other boolean algebra iden-
tities, citing them as immediate consequences of the equivalence between circuits and symbolic logic.
Among the more important of these were the following [14, pp. 714–715]:

∞∞∞∞∞∞∞∞

(X + Y + Z + . . .)′ = X ′ · Y ′ · Z ′ . . . (9a)
(X · Y · Z . . .)′ = X ′ + Y ′ + Z ′ . . . (9b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X = X + X = X + X + X = etc. (14a)
X = X ·X = X ·X ·X = etc. (14b)
X + XY = X (15a)
X(X + Y ) = X (15b)

∞∞∞∞∞∞∞∞

Notice that, as he had already done with the first three postulates for circuits and with the basic
identities (1) - (7), Shannon arranged these additional properties as pairs ‘to emphasize a duality
relationship between the operations of addition and multiplication and the quantities zero and one’ [14,
pp. 713]. Examine these various dual pairs carefully before responding to the following question.
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5. Carefully examine Shannon’s dual pairs of properties (1) - (7), (9), (14) and (15).

(a) Write a short description of how to obtain the dual of a statement.

(b) Illustrate your method by writing the dual of the following expressions. For each, represent
both the original expression and its dual by a network.

(i) X + Y Z (ii) (X + Y )(Z + W ) (iii) XZ ′ + Y + W ′

(c) Consider the network you sketched in part (b) for the expression (i), and determine the
configurations of open (no connection made) and closed (connection is made) contacts that
are needed for flow across the overall network. Then do the same for the network which
represents the dual of expression (i). Comment on how these two sets of configurations
(for the original and for its dual) compare.

This principle of duality was also well-known to Shannon’s predecessors, and served as ‘a char-
acteristic feature of the algebra’ [10, p. 294]. As noted by Shannon, this principle also ‘gives each
theorem a dual theorem, it being necessary to prove only one to establish the both.’ [14, pp. 713].
Thus, as an immediate consequence of the Idempotent Law for Multiplication — Boole’s x2 = x
and Shannon’s Property (14b) — we are able to conclude that the Idempotent Law for Addition
— Shannon’s Property (14a) — is also valid. The following question explores the use of Shannon’s
method of perfect induction and the principle of duality within the context of Shannon’s Identities
(9ab) and (15ab), known as DeMorgan’s Laws and Absorption respectively.

6. This question examines the Laws of Absorption, Shannon’s Properties (15ab), in more detail.

(a) First complete the following table for the first of two Absorption Laws, and comment on
how it proves the validity of this property within the context of circuits.

X Y XY X + XY

0 0

0 1

1 0

1 1

(b) Now complete the following table for the second of two Absorption Laws. Compare this
to the table in part (a), and comment on how these two tables illustrate the ‘ duality
relationship between the operations of addition and multiplication and the quantities zero and
one’.

X Y X + Y X(X + Y )

1 1

1 0

0 1

0 0

(c) Recall that in Boole’s logic of classes, multiplication corresponds to the operation of set
intersection and addition corresponds to the operation of set union. Use this interpretation
to explain why the Absorption Laws are also valid within this interpretation.
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7. This question examines DeMorgan’s Laws [Shannon’s Properties (9ab)] in more detail.

(a) For two variables X and Y , the first of DeMorgan’s Law is the equality: (X+Y )′ = X ′ ·Y ′

Complete the following tables to show that this law holds for circuits by the method of
perfect induction.

X Y X + Y (X + Y )′ X ′ Y ′ X ′ · Y ′

0 0

0 1

1 0

1 1

Then use the principle of duality to explain why the following dual version of DeMorgan’s
Law for two sets is also valid: (X · Y )′ = X ′ + Y ′.

(b) As Shannon remarked, DeMorgan’s Law can be applied to any number of sets. Shannon
also described this generalization as a (mechanical) method by which “the negative of any
function may be obtained by replacing each variable by its negative and interchanging the +
and · rules. . . . For example, the negative of X +Y · (Z +WX ′) will be X ′[Y ′+Z ′(W ′+X)]
[14, p. 715]. ”

(Note that Shannon is using the word ‘negative’ here to mean what is usually referred to
as the complement in current Boolean Algebra usage.)

Without Shannon’s method, negation of complicated expressions requires iterative ap-
plications of the basic two-set version of De Morgan’s Laws: (XY )′ = X ′ + Y ′and
(X + Y )′ = X ′Y ′. For the example considered by Shannon above, for instance, this
iterative method would look as follows:

[X + Y · (Z + WX ′)]′ = X ′ ·
[
Y · (Z + WX ′)

]′︸ ︷︷ ︸
= X ′ ·

[
Y ′ + (Z + WX ′)′︸ ︷︷ ︸

]

= X ′ ·
[
Y ′ + (Z ′ · (WX ′)′︸ ︷︷ ︸)

]
= X ′ · [Y ′ + Z ′ · (W ′ + X ′′)]

= X ′ · [Y ′ + Z ′ · (W ′ + X)]

Re-write each of the following by first using Shannon’s method, and then via the iterative
De Morgan’s Law technique. Which method do you prefer, and why?

(i) [XY ′ + Z]′ (ii) [XW (Y ′ + Z)]′

(c) At one point in his work on general boolean algebras, Huntington showed how De Morgan’s
Laws can be used to define the operation + in terms of the operations · and ′; namely,
X + Y = (X ′ · Y ′)′. Does this mean that all relay networks can be constructed using only

seriesconnections?Explain.
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One of Shannon’s goals in applying boolean algebra to the study of circuits was to use algebraic
techniques to simplify complicated systems, as he described in the following excerpt from his 1949
paper The Synthesis of Two-Terminal Switching Circuits [16, p. 590].

∞∞∞∞∞∞∞∞

By means of Boolean Algebra it is possible to find many circuits equivalent in operating
characteristics to a given circuit. The hindrance of the given circuit is written down and
manipulated according to the rules. Each different resulting expression represents a new
circuit equivalent to the given one. In particular, expressions may be manipulated to eliminate
elements which are unnecessary, resulting in simple circuits.

∞∞∞∞∞∞∞∞

For example, the following computation confirms that the element Z can be eliminated from the
network from Figure 2, a fact which careful examination of the network diagram in Figure 2 also
reveals:

W + X · (Y + Z ·X ′) = W + XY + X(ZX ′) = W + XY + (XX ′)Z = W + XY + 0 · Z = W + XY

◦W◦

◦X ◦ ◦Y ◦

Figure 5: A network equivalent for W + X(Y + Z ·X ′).

8. Use boolean algebra identities, including the law of absorption (Shannon’s properties 15ab) to
show that the networks in Figure 6 are equivalent.

(a)

◦V ◦ ◦W◦ ◦Y◦

◦X ◦ ◦ Z ◦
◦X ◦ ◦Z ◦
◦ Y ′◦
◦W ′◦
◦V ′◦

(b)

◦X◦ ◦Z◦

Figure 6: Networks for project question 7.

9. Write a boolean algebra expression for the network in Figure 7:

◦W ◦ ◦X◦ ◦Y◦
◦Z ′◦

◦S′◦

◦V◦

◦Z◦

Figure7:Networkforprojectquestion8.
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Then use boolean algebra identities to show that the network represented by the following
expression is equivalent to the network in Figure 7:

W · (XY + W ′) · [S′Y Z ′ + V Y Z ′ + SWZ + XZ]

Finally, sketch the network for the expression W · (XY +W ′) · [S′Y Z ′+V Y Z ′+SWZ +XZ],
and comment on the relative simplicity of the two equivalent networks.

To algebraically simplify very complicated networks, such as that in Figure 3 above, Shannon
employed a method of representing Boolean-valued functions dating back to Boole’s own Laws of
Thought [5]. In fact, this method of representation formed the core of Boole’s technique of logical
deduction via algebraic manipulation. In the next section, we examine this method of representing
Boolean-valued functions in the writings of both Boole and Shannon.

3 Boolean Functions and Synthesis of Circuits

In 1892, a supporter of Boole’s approach to logic, W. E. Johnson, wrote [11, p. 3]:

As a material machine is an instrument for economising the exertion of force, so a symbolic
calculus is an instrument for economising the exertion of intelligence. And, employing
the same analogy, the more perfect the calculus, the smaller would be the amount of
intelligence applied as compared with the results produced. . . . It will appear that the
logical calculus stands in a unique relation to intelligence; for it aims at exhibiting, in
a non-intelligent form those same intelligent principles that are actually required for
working it.

The circuits used in modern computing technology also serve as an economizing instrument for the
exertion of both force and intelligence, with Boole’s logical calculus providing the necessary non-
intelligent, mechanical mode for making them work in required ways. In this closing section of this
project, we consider the problem of “synthesis” for circuits: given a specific set of desired inputs and
outputs, construct a network of series and parallel connections corresponding to those values.

The mathematical ideas needed to solve this problem were, in fact, developed by Boole in connec-
tion with problems in logic. Boole’s goal was to take a logical expression that involved any number
of logical variables and represent it as a particular kind of sum. For a logical expression f(x) of just
one variable, the desired sum had the form f(x) = ax + b(1 − x). Boole referred to this process as
“developing f(x)”. The following excerpt shows how Boole developed a method for computing the
coefficients a and b in this sum [5, p. 74].

∞∞∞∞∞∞∞∞

Assume then,

f(x) = ax + b(1− x),

and making x = 1, we have

f(1) = a.
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Again, in the same equation making x = 0, we have

f(0) = b.

Hence, the values of a and b are determined, and substituting them in the first equation, we
have

f(x) = f(1)x + f(0)(1− x);

as the development sought10.

∞∞∞∞∞∞∞∞

Using Shannon’s notation x′ to denote the expression 1 − x, note that this equation can be
re-written as:

f(x) = f(1)x + f(0)x′.

Before looking at a specific example, read Boole’s description of how to develop a function f(x, y) of
two variables [5, p. 74]:

∞∞∞∞∞∞∞∞

. . . we have

f(x, y) = f(1, 1)xy + f(1, 0)x(1− y) + f(0, 1)(1− x)y + f(0, 0)(1− x)(1− y),

for the expansion required. Here f(1, 1) represents what f(x, y) becomes when we make
therein x = 1, y = 1; f(1, 0) represents what f(x, y) becomes when we make therein x = 1,
y = 0, and so on for the rest.

∞∞∞∞∞∞∞∞

10. Using Shannon’s notation of x′ for 1− x, Boole’s expansion of f(x, y) can be written as

f(x, y) = f(1, 1)xy + f(1, 0)xy′ + f(0, 1)x′y + f(0, 0)x′y′.

Use this expansion to verify that the following table of function values defines the function
represented by f(x, y) = xy + x′y.

x y f(x, y)

0 0 0

0 1 1

1 0 0

1 1 1

10Boole included a footnote at this point in which he showed how to derive this same equation by substituting xn = x

into the Taylor’s series expansion of a function f(x) and manipulating the result algebraically.
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11. Use Boole’s notation to write out the eight terms of the expansion for a function of three
variables, f(x, y, z); then translate this into Shannon’s notation.

Shannon also considered this type of expansion for a function f(x1, x2, . . . , xn) of n variables. In
both [14, 16], he noted that the expansion will include 2n terms, where each of these term will have
the form ’Cy1y2y3 . . . yn’ with the coefficient C equal to either 0 or 1 and each yi equal to either xi
or x′i. Today, this form of expansion is referred to as the disjunctive normal form of the function.

As an example, note that the function f(x, y, z) = x′y + y′z′+ xyz is NOT in disjunctive normal
form as it is written, since the variable z is missing from the first term, while the variable x is missing
from the second term. However, we can re-write it as f(x, y, z) = x′yz+x′yz′+xy′z′+x′y′z′+xyz by
noting that x′y = x′yz+x′yz′ and y′z′ = xy′z′+x′y′z′. (Can you see why these two facts are true?).
Although the expression f(x, y, z) = x′yz + x′yz′ + xy′z′ + x′y′z′ + xyz contains only 5 non-zero
terms, note that it is written in disjunctive normal form since the remaining three terms of the fully
expressed disjunctive normal form have zero coefficient, and therefore need not be written out.

The next project question illustrates two methods for finding the disjunctive normal form of any
function, given the function as a boolean expression.

12. Consider the function f(x, y, z) = yz + xy′.

(a) Calculate the values of f(x, y, z) for all eight possible values of (x, y, z), and use these
values in your expansion from project question 11 to find the disjunctive normal form of
f . (You should find four non-zero terms.)

(b) Now use the facts that x + x′ = 1 and z + z′ = 1 to find the disjunctive normal form by
expanding f(x, y, z) = 1 · (yz) + 1 · (xy′).

(c) Which method do you prefer, and why?

The remaining project questions in this section illustrate the use of the disjunctive normal form
to find a boolean expression of any function, given the function as a table of values.

13. Suppose we wish to build a circuit which corresponds to the following table of values for the
function f(x, y, z).

x y z f(x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Use your expansion from project question 11 to find the disjunctive normal form of f , and
simplify your result to show that f(x, y, z) = y + xz′. Then sketch the network corresponding
to y + xz′. How easy would it have been to determine this circuit directly from the table of

values,ratherthanfromitsBooleanexpression?
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14. Find the disjunctive normal form of the function f represented by the following table; simplify
if possible, then use the result to sketch the corresponding network.

x y z f(x, y, z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

15. Find the disjunctive normal form of the function f represented by the following table; simplify
if possible, then use the result to sketch the corresponding network.

x y z f(x, y, z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

16. Describe a general method for finding the disjunctive normal form of a Boolean function f
from its table of values.

17. How would you define the conjunctive normal form of a Boolean function? Give an example,
and discuss possible method(s) for finding this form for a given function in disjunctive normal
form and/or from a table of values.

4 Boolean Functions and the Simplification of Circuits

We now return to the problem of simplifying complicated circuits using boolean algebra. We begin
with an excerpt in which Shannon states the basic theorems he used to simplify boolean functions.
Like Boole, Shannon compared this method to a familiar idea from calculus [14, p. 715].

∞∞∞∞∞∞∞∞

The notation f(X1, X2, . . . Xn) will be used to represent a function. Thus, we have
F (X, Y, Z) = XY + X ′(Y ′ + Z ′). In infinitesimal calculus it is shown that any function
(providing it is continuous and all derivatives are continuous) may be expanded in a Taylor
series. A somewhat similar expansion is possible in the calculus of propositions. To develop
the series expansion of functions first note the following equations.
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f(X1, X2, . . . Xn) = X1 · f(1, X2, . . . Xn) + X ′1f(0, X2, . . . Xn) (10a)
f(X1, X2, . . . Xn) = [f(0, X2, . . . Xn) + X1] · [f(1, X2, . . . Xn) + X ′1] (10b)

These reduce to identities if we let X1 equal either 0 or 1. In these equations the function f
is said to be expanded about X1.

Some other theorems useful in simplifying expressions are given below:
. . .

Xf(X,Y, . . . Z) = Xf(1, Y, . . . Z) (17a)
X + f(X,Y, . . . Z) = X + f(0, Y, . . . Z) (17b)

. . .

All of these theorems may be proved by the method of perfect induction.
. . .

∞∞∞∞∞∞∞∞

18. Verify that Shannon’s identity 10a using his method of perfect induction.
That is, first show that this identity holds in the case X1 = 0, simplifying the right-hand side
as needed, and then verify that this identity holds in the case X1 = 1.

Then provide a similar proof for Shannon’s identity 10b.

19. Verify that Shannon’s identity 17a using his method of perfect induction.
Then provide a similar proof for Shannon’s identity 17b.

We now illustrate how Shannon used the expansion about one variable given in identity 17b to
simplify circuits by considering an example from [14, p. 715] in which Shannon simplifies the circuit
represented by the following boolean expression:11

Xab = W + W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V )

The following excerpt gives Shannon’s simplification with minimal explanation provided; in project
question 20, we examine the derivation in more detail.

∞∞∞∞∞∞∞∞

Xab = W + W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V )
= W + X + Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V )
= W + X + Y + Z · (Z ′ + Y + S′V )

These reductions were made with 17b using first W , then X and Y as the “X” of 17b. Now
multiplying out

Xab = W + X + Y + ZZ ′ + ZY + ZS′V
= W + X + Y + ZS′V

∞∞∞∞∞∞∞∞

11Note that this expression is the dual of the expression for the circuit shown in Figure 3 above.
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20. This question examines Shannon’s simplification for Xab in the preceding excerpt.

Note that Shannon explained the first part of his derivation by saying that ’these reductions
were made with 17b using first W , then X and Y as the “X” of 17b.’ In fact, it seems that
Shannon only used W and then X (but not Y ) as the “X” of 17b. To see this, first recall that
Shannon’s Identity 17b states the following:

X + f(X,Y, . . . Z) = X + f(0, Y, . . . Z) (17b)

(a) We begin by examining how W is used as the “X” in 17b in Shannon’s example above.
Let

f(W,X, Y, Z, S, V ) = W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V )

and note that this gives us

Xab = W + W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V )
= W + f(W,X, Y, Z, S, V )

Explain why f(0, X, Y, Z, S, V ) = (X + Y ) + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V ).

Then use 17b to conclude that Xab = W + X + Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V ).

This completes the first step of Shannon’s derivation in the preceding excerpt.

(b) We now consider how to apply 17b using X as the “X” . Let

g(X,Y, Z, S, V ) = Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V ),

so that by the result of part (a), we now have

Xab = W + [X + g(X,Y, Z, S, V )]

Explain why g(0, Y, Z, S, V ) = Y + Z(S + 1 + Z)(Z ′ + Y + S′V ).

Then use 17b to conclude that Xab = W + X + Y + Z(S + 1 + Z)(Z ′ + Y + S′V ).

Explain why we can now write Xab = W + X + Y + Z(Z ′ + Y + S′V ).

Notice that this corresponds to the last line of the first part of Shannon’s derivation (just
before he multiplied out the last term ), suggesting that Shannon actually only used W
and X (but not Y ) as the “X” of 17b in this example.

(c) Finally, we consider how the derivation would look if Y were used as the “X” in 17b before
multiplying the last term out. Let h(Y, Z, S, V ) = Z(Z ′+Y +S′V ), so that the expression
Xab = W + X + Y + Z(S + 1 + Z)(Z ′ + Y + S′V ) from part (b) becomes:

Xab = W + X + [Y + h(Y,Z, S, V )].

Explain why h(0, Z, S, V ) = Z(Z ′ + S′V ).

Then use 17b to conclude that Xab = W + X + Y + Z(Z ′ + S′V ).

Multiply out the last term and compare the result to Shannon’s own final result.
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21. This question provides a slightly different derivation of Shannon’s simplified form for Xab from
the preceding excerpt, where Xab = W + W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V ).

– Begin by letting f(W,X, Y, Z, S, V ) = W ′(X +Y ) + (X +Z)(S +W ′+Z)(Z ′+Y +S′V ),
so that Xab = W + f(W,X, Y, Z, S, V ).

– Explain why f(0, X, Y, Z, S, V ) = X + Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V ).

– Why can we replace this last expression by X + Y + (X + Z)(Z ′ + Y + S′V )?

– Use the expression f(0, X, Y, Z, S, V ) = X + Y + (X + Z)(Z ′ + Y + S′V ) in identity 17b
to conclude that Xab = W + f(W,X, Y, Z, S, V ) = W +X + Y + (X +Z)(Z ′ + Y + S′V ).

(Up to this point, our derivation corresponds essentially to Shannon’s first step.)

– Now let g(X,Y, Z, S, V ) = Y + (X + Z)(Z ′ + Y + S′V ). Find the value of g(0, Y, Z, S, V )
and use it in identity 17b to conclude that Xab = W + X + Y + ZS′V .

22. The derivation outlined in project question 21, as well as Shannon’s derivation of that same
simplified form, both made use of Shannon’s identity 17b. Try to obtain this same simplified
form by instead using the more standard algebraic process of expansion (i.e., using distributivity
of multiplication over addition), beginning with the original expression W +W ′(X +Y )+(X +
Z)(S + W ′ + Z)(Z ′ + Y + S′V ). Comment on the efficiency of these two approaches.

23. Simplify the following using three applications of 17b (with Z, X ′, and Y ).

Xab = Z + Z ′(X ′ + YW ′X + WSX + V ′Z + X ′W ′)(W + Y Z + Y ′S) + Y Z ′
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Notes to the Instructor

This project is designed for an introductory or intermediate course in discrete or finite mathematics
that considers boolean algebra from either a mathematical or computer science perspective. The
project does assume some (very minimal) familiarity with the set operations of union and intersection.
This pre-requisite material may be gained by completing the companion (Boole) project described
below, through reading a standard textbook treatment of elementary set operations, or via a short
class discussion/lecture. Although no other specific pre-requisite knowledge is necessary for any part
of the project, Sections 3 and 4 do assume slightly higher levels of mathematical maturity on the
part of the students, roughly commensurate with that of a student who has completed Calculus I
(for Section 3) and Calculus II (for Section 4).

Based on an award-winning paper by Claude Shannon, A Symbolic Analysis of Relay and Switch-
ing Circuits, this project begins with a concise overview of two historical antecedents to Shannon’s
work. The first of these is George Boole’s original work on ‘the logic of classes,’ included in part to
provide students with a connection to another concrete example of a boolean algebra on which they
can draw; the second of these is Edward Huntington’s work on the axiomatization of boolean algebras,
included in part to emphasize to students the relationship between abstract axiomatic structures and
concrete models as examples of those structures. Section 2 of the project introduces and develops
the use of boolean expressions to represent parallel and series circuits. Within the concrete context
of the 2-valued boolean algebra associated with these circuits, the standard properties of a boolean
algebra are developed in this section; specific project questions in this section also provide students
with practice in using these identities to simplify and manipulate boolean expressions. In Section
3, the concept of a ‘disjunctive normal form’ for boolean expressions is introduced in the context of
circuit design. Section 4 then explores a more sophisticated method for applying boolean algebra to
the problem of simplifying complicated circuits.

Since many of the concepts in this project are developed through the exercises, instructors are
advised to work through all exercises in advance in order to determine which, if any, she may
wish to omit. To complete the project in its entirety requires approximately four 50-minute class
periods. Section 4 could easily be omitted for those who wish to have students study only the more
fundamental concepts of boolean algebra, or for use with students who do not yet have the necessary
level of mathematical maturity for the later sections. Both sections 3 and 4 could also be omitted
for similar reasons. Instructors who do elect to complete Section 4 are advised to have students also
complete Section 3.

Two other projects on boolean algebra are available as companions to this project, either or both
of which could also be used independently of this project. The first companion project “Origins of
Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce,” is suitable as
a preliminary to either the Huntington project or to the Shannon project. Without explicitly intro-
ducing modern notation for operations on sets (until the concluding section), that project develops
a modern understanding of these operations and their basic properties within the context of early
efforts to develop a symbolic algebra for logic. By steadily increasing the level of abstraction, that
project also lays the ground work for a more abstract discussion of boolean algebra as a discrete
structure, and explores a variety of other mathematical themes, including the notion of an inverse
operation, issues related to mathematical notation, and standards of rigor and proof.

The second companion project “Boolean Algebra as an Abstract Structure: Edward V. Hunting-
ton and Axiomatization” could be used either as a preliminary to or as a follow-up to the Shannon
project on circuit design. That project explores the early axiomatization of boolean algebra as an
abstract structure, based on Huntington’s 1904 paper Sets of Independent Postulates for the Algebra
ofLogic.Inadditiontointroducingthenowstandardaxiomsforthebooleanalgebrastructure,the

80

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db


project illustrates how to use these postulates to prove some basic properties of boolean algebras.
Specific project questions also provide students with practice in using symbolic notation, and en-
courage them to analyze the logical structure of quantified statements. The project also examines
Huntington’s use of the two-valued Boolean algebra on K = {0, 1} — first studied by George Boole
in his work on the logic of classes — as a model to establish the independence and consistency of one
of his postulate sets. The final section of the project discusses modern (undergraduate) notation and
axioms for boolean algebras, and provides several practice exercises to reinforce the ideas developed
in the earlier sections.

Implementation with students of any of these projects may be accomplished through individually
assigned work, small group work and/or whole class discussion; a combination of these instructional
strategies is recommended in order to take advantage of the variety of questions included in the
project.
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Combinatorics

1 Pigeonhole Principle

The Pigeonhole Principle is an obvious but powerful tool in solving many combinatorial problems.

We will prove its mathematical form first.

Theorem1.[PigeonholePrinciple,PHP]LetAbeafinitesetandletf :A→{1,2,...,n}beafunction.Letp1,

...,pn∈N.If|A|>p1+···+pn,thenthereexistsi∈{1,2,...,n}suchthat|f −1(i)|>pi.

Proof. On the contrary, suppose that for each i ∈ {1, 2, . . . , n}, |f−1(i)| ≤ pi. As A is a disjoint union

of the sets f−1(i), we have |A| = ∑n
i=1 |f−1(i)| ≤ p1 + · · ·+ pn < |A|, a contradiction.

The elements of A are thought of as pigeons and the elements of B as pigeon holes; so that the

principle is commonly formulated in the following forms, which come in handy in particular problems.

Discussion 2. [Pigeonhole principle (PHP)]

PHP1. If n+ 1 pigeons stay in n holes then there is a hole with at least two pigeons.

PHP2. If kn+ 1 pigeons stay in n holes then there is a hole with at least k + 1 pigeons.

PHP3. If p1 + · · · + pn + 1 pigeons stay in n holes then there exists i, 1 ≤ i ≤ n such that the i-th

hole contains at least pi + 1 pigeons.

Example 3.1.Consider atournament ofn>1players,where each pair plays exactly once and each player

wins at least once.Then,there are two players with the same number ofwins.Ans:Number ofwins

variesfrom1ton−1andtherearenplayers.

2. A bag contains 5 red, 8 blue, 12 green and 7 yellow marbles. The least number of marbles to be

chosen to ensure that there are

(a) at least 4 marbles of the same color is 13,

(b) at least 7 marbles of the same color is 24,

(c) at least 4 red or at least 7 of any other color is 22.

3. In a group of 6 people, prove that there are three mutual friends or three mutual strangers.

Ans: Let a be a person in the group. Let F be the set of friends of a and S the set of strangers

to a. Clearly |S|+ |F | = 5. By PHP either |F | ≥ 3 or |S| ≥ 3.

Case 1: |F | ≥ 3. If any two in F are friends then those two along with a are three mutual

friends. Else F is a set of mutual strangers of size at least 3.

UNIT 4
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Case 2: |S| ≥ 3. If any pair in S are strangers then those two along with a are three mutual

strangers. Else S becomes a set of mutual friends of size at least 3.

4. Let {x1, . . . , x9} ⊆ N with
9∑
i=1

xi = 30. Then, prove that there exist i, j, k ∈ {1, 2, . . . , 9} with

xi + xj + xk ≥ 12.

Ans: Note that

9∑
i=1

xi

9 = 30
9 = 3 + 3

9 . Now use PHP to conclude that there are at least 3 xi’s

that are ≥ 4. Hence, the required result follows.

5. Each point of the plane is colored red or blue, then prove that there exist two points of the same

color which are at a distance of 1 unit.

Ans: Take a point, say P . Draw a unit circle with P as the center. If all the points on the

circumference have the same color then we are done. Else, the circumference contains a point

which has the same color as that of P .

6. If 7 points are chosen inside or on the unit circle, then there is a pair of points which are at a

distance at most 1.

Ans: Divide the circle into 6 equal sectors by drawing radii so that angle between two consecutive

radii is π/3. By PHP there is a sector containing at least two points. The distance between these

two points is at most 1.

7. If n+ 1 integers are selected from {1, 2, . . . , 2n}, then there are two, where one of them divides

the other.

Ans: Each number has the form 2ks, where s = 2m + 1 is an odd number. There are n odd

numbers. If we select n+1 numbers from S, by PHP some two of them (say, x, y) have the same

odd part, that is, x = 2is and y = 2js. If i ≤ j, then x|y, otherwise y|x.

8. Given any n integers, n ≥ 1012 integers, prove that there is a pair that either differ by, or sum

to, a multiple of 2021. Is this true if we replace 1012 by 1011?

Ans: Consider some 1012 integers out of the given ones, say, n1, n2, . . . , n1012. Write S =

{n1− nk, n1 + nk : k = 2, . . . , 1012}. Then, |S| = 2022 and hence, at least two of them will have

the same remainder when divided by 2021. Then, consider their difference.

The question in the second part has negative answer. For, consider {0, 1, 2, . . . , 1010}.
9. Prove that there exist two powers of 3 whose difference is divisible by 2021.

Ans: Let S = {1 = 30, 3, 32, 33, . . . , 32021}. Then, |S| = 2022. As the remainders of any integer

when divided by 2021 is 0, 1, 2, . . . , 2020, by PHP, there is a pair which has the same remainder.

Hence, 2021 divides 3j − 3i for some i, j.

10. Prove that there exists a power of three that ends with 0001.

Ans: Let S = {1 = 30, 3, 32, 33, . . .}. Now, divide each element of S by 104. As |S| > 104, by

PHP, there exist i > j such that the remainders of 3i and 3j , when divided by 104, are equal.

But gcd(104, 3) = 1 and thus, 104 divides 3` − 1. Then 3` − 1 = s · 104 for some positive integer

s. That is, 3` = s · 104 + 1 from which the result follows.

11. Suppose that f(x) is a polynomial with integer coefficients. If f(x) = 5 for three distinct integers,

then for no integer x, f(x) can be equal to 4.

Ans: Let f(x) = 5, for x ∈ {a, b, c}. If f(d) = 4, for an integer d, then (d−a)|f(d)−f(a) = −1.

So, a = d± 1. Similarly b, c = d± 1. By PHP two of a, b, c are the same, a contradiction.
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Alternate. If f is an integer polynomial and f(m) = 0 for some integer m, then using the

factor/remainder theorem f(x) = (x−m)g(x) for some integer polynomial g. For our problem,

we see that f(x) = (x− a)(x− b)(x− c)g(x) + 5, where g is an integer polynomial. If f(n) = 4,

then (n− a), (n− b), (n− c)| − 1, so that (n− a), (n− b), (n− c) ∈ {1,−1}. By PHP some two

of them are the same, a contradiction.

Theorem 4.Let r1,r2, · · · ,rmn+1be asequence ofmn+1distinct real numbers .Then,prove that there isa

subsequence ofm+ 1 numbers which is increasing or there is a subsequence of n+ 1 numbers which is

decreasing.

Does the above statement hold for every collection of mn distinct numbers?

Proof. Define li to be the maximum length of an increasing subsequence starting at ri. If some

li ≥ m + 1 then we have nothing to prove. So, let 1 ≤ li ≤ m. Since (li) is a sequence of mn + 1

integers, by PHP, there is one number which repeats at least n+1 times. Let li1 = li2 = · · · = lin+1 = s,

where i1 < i2 < · · · < in+1. Notice that ri1 > ri2 , because if ri1 < ri2 , then ‘ri1 together with the

increasing sequence of length s starting with ri2 ’ gives an increasing sequence of length s+1. Similarly,

ri2 > ri3 > · · · > rin+1 and hence the required result holds.

Alternate. Let S = {r1, r2, · · · , rmn+1} and define a map f : S → Z × Z by f(ri) = (s, t), for

1 ≤ i ≤ mn+ 1, where s equals the length of the largest increasing subsequence starting with ri and

t equals the length of the largest decreasing subsequence ending at ri. Now, if either s ≥ m + 1 or

t ≥ n + 1, we are done. If not, then note that 1 ≤ s ≤ m and 1 ≤ t ≤ n. So, the number of tuples

(s, t) is at most mn. Thus, the mn + 1 distinct numbers are being mapped to mn tuples and hence

by PHP there are two numbers ri 6= rj such that f(ri) = f(rj). Now, proceed as in the previous case

to get the required result.

The above statement is FALSE. Consider the sequence:

n, n− 1, · · · , 1, 2n, 2n− 1, . . . , n+ 1, 3n, 3n− 1, · · · , 2n+ 1, · · · ,mn,mn− 1, · · · ,mn− n+ 1.

Theorem 5. Corresponding to each irrational number a, there exist infinitely many rational

numbers p
q such that |a− p

q | < 1
q2

.

Proof. It is enough to show that there are infinitely many (p, q) ∈ Z2 with |qa − p| < 1
q . As a is

irrational, for every m ∈ N, 0 < ia − biac < 1, for i = 1, . . . ,m + 1. Hence, by PHP there exist i, j

with i < j such that

|(j − i)a− (bjac − biac)| < 1

m
≤ 1

j − i .

Then, the pair (p1, q1) = (bjac − biac, j − i) satisfies the required property. To generate another pair,

find m2 such that
1

m2
< |a− p1

q1
|

and proceed as before to get (p2, q2) such that |q2a− p2| < 1
m2
≤ 1

q2
. Since |a− p2

q2
| < 1

m2
< |a− p1

q1
|,

we have p1
q1
6= p2

q2
. Now use induction to get the required result.

Theorem 6. Let α be a positive irrational number. Then prove that S = {m+ nα : m,n ∈ Z} is

dense in R.

Proof. Consider any open interval (a, b). By Archimedean property, there exists n ∈ N such that
1
n < b − a. Observe that 0 < rk = kα − bkαc < 1, k = 1, . . . , n + 1. By PHP, some two satisfy
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0 < ri − rj < 1/n. Then x = ri − rj = (i− j)α+
(
bjαc − biαc

)
∈ S. Let p be the smallest integer so

that px > a. If px ≥ b, then (a, b) ⊆
(
(p − 1)x, px

)
and so b − a ≤ x < 1

n , which is not possible. So,

px ∈ (a, b) and px ∈ S as well. Thus, (a.b) ∩ S 6= ∅.

Exercise 71. Consider the poset (X = P({1, 2, 3, 4}),⊆). Write 6 maximal chains P1, . . . P6

(need not be disjoint) such that ∪
i
Pi = X. Let A1, . . . , A7 be 7 distinct subsets of {1, 2, 3, 4}.

Use PHP, to prove that there exist i, j such that Ai, Aj ∈ Pk, for some k. That is, {A1, . . . , A7}
cannot be an anti-chain. Conclude that this holds as the width of the poset is 6.

2. Suppose that f(x) is a polynomial with integer coefficients. If

(a) f(x) = 14 for three distinct integers, then for no integer x, f(x) can be equal to 15.

(b) f(x) = 11 for five distinct integers, then for no integer x, f(x) can be equal to 9.

3. There are 7 distinct real numbers. Is it possible to select two of them, say x and y such that

0 < x−y
1+xy <

1√
3
?

4. If n is odd then for any permutation p of {1, 2, . . . , n} the product
n∏
i=1

(
i− p(i)

)
is even.

5. Five points are chosen at the nodes of a square lattice (view Z × Z). Why is it certain that a

mid-point of some two of them is a lattice point?

6. Choose 5 points at random inside an equilateral triangle of side 2 units. Show that there exist

two points that are away from each other by at most 1 unit.

7. Take 25 points on a plane satisfying ‘among any three of them there is a pair at a distance less

than 1’. Then, some circle of unit radius contains at least 13 of the given points.

8. If each point of a circle is colored either red or blue, then show that there exists an isosceles

triangle with vertices of the same color.

9. Each point of the plane is colored red or blue, then prove the following.

(a) There is an equilateral triangle all of whose vertices have the same color.

(b) There is a rectangle all of whose vertices have the same color.

10. Show that among any 6 integers from {1, 2, . . . , 10}, there exists a pair with odd sum.

11. Any 14-subset of {1, 2, . . . , 46} has four elements a, b, c, d such that a+ b = c+ d.

12. Show that if 9 of the 12 chairs in a row are filled, then some 3 consecutive chairs are filled. Will

8 work?

13. Show that every n-sequence of integers has a consecutive subsequence with sum divisible by n.

14. Let n > 3 and S ⊆ {1, 2, . . . , n} of size m = bn+2
2 c + 1. Then, there exist a, b, c ∈ S such that

a+ b = c.

15. Let a, b ∈ N, a < b. Given more than half of the integers in the set {1, 2, . . . , a + b}, there is a

pair which differ by either a or b.

16. Consider a chess board with two of the diagonally opposite corners removed. Is it possible to

cover the board with pieces of rectangular dominoes whose size is exactly two board squares?

17. Mark the centers of all squares of an 8 × 8 chess board. Is it possible to cut the board with 13

straight lines not passing through any center, so that every piece had at most 1 center?

18. Fifteen squirrels have 104 nuts. Then, some two squirrels have equal number of nuts.
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19. Let {x1, x2, . . . , xn} ⊆ Z. Prove that there exist 1 ≤ i ≤ j ≤ n such that xi+xi+1 + · · ·+xj−1 +xj

is a multiple of 2021, whenever n ≥ 2021.

20. Let A and B be two discs, each having 2n equal sectors. On disc A, n sectors are colored red and

n are colored blue. The sectors of disc B are colored arbitrarily with red and blue colors. Show

that there is a way of putting the two discs, one above the other, so that at least n corresponding

sectors have the same colors.

21. Show that there is a non-zero integer multiple of
√

2021 whose decimal representation has 2022

consecutive zeroes after the first decimal point.

22. If more than half of the subsets of {1, 2, . . . , n} are selected, then some two of the selected subsets

have the property that one is a subset of the other.

23. Suppose we are given any ten 4-subsets of {1, 2, . . . , 11}. Then, show that some two of them have

at least 2 elements in common.

24. A person takes at least one aspirin a day for 30 days. If he takes 45 aspirin altogether then prove

that in some sequence of consecutive days he takes exactly 14 aspirins.

25. If 58 entries of a 14× 14 matrix are 1 and the remaining entries are 0, then prove that there is

a 2× 2 submatrix with all entries 1.

26. Let A and B be two finite non-empty sets with B = {b1, b2, . . . , bm}. Let f : A → B be any

function. Then, for any non-negative integers a1, a2, . . . , am if |A| = a1 + a2 + · · ·+ am −m+ 1

then prove that there exists an i, 1 ≤ i ≤ m such that |f−1(bi)| ≥ ai.

27. Each of the given 9 lines cuts a given square into two quadrilaterals whose areas are in the ratio

2 : 3. Prove that at least three of these lines pass through the same point.

28. Let S ⊆ {1, 2, . . . , 100} be a 10-set. Then, some two disjoint subsets of S have equal sum.

29. Prove that corresponding to each n ∈ N, n odd, there exists an ` ∈ N such that n divides 2`− 1.

30. Does there exist a multiple of 2021 that is formed using only the digits

(a) 2? Justify your answer.

(b) 2 and 3 and the number of 2’s and 3’s are equal? Justify your answer.

31. Each natural number has a multiple of the form 9 · · · 90 · · · 0, with at least one 9.

6.2 Principle of Inclusion and Exclusion

We start this section with the following example.

Example 1. How many natural numbers n ≤ 1000 are not divisible by any of 2, 3?

Ans: Let A2 = {n ∈ N|n ≤ 1000, 2|n} and A3 = {n ∈ N|n ≤ 1000, 3|n}. Then, |A2 ∪ A3| =

|A2|+ |A3| − |A2 ∩A3| = 500 + 333− 166 = 667. So, the required answer is 1000− 667 = 333.

We now generalize the above idea whenever we have 3 or more sets.

Theorem 2. [Principle of Inclusion and Exclusion, PIE] Let A1, · · · , An be finite subsets of aset

U . Then, ∣∣ n∪
i=1

Ai
∣∣ =

n∑
k=1

(−1)k+1

[ ∑
1≤i1<···<ik≤n

∣∣Ai1 ∩ · · · ∩Aik ∣∣].
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Or equivalently, the number of elements of U which are in none of A1, A2, . . . , An equals

∣∣U \ n∪
i=1

Ai
∣∣ = |U | −

n∑
k=1

(−1)k
[ ∑

1≤i1<···<ik≤n

∣∣Ai1 ∩ · · · ∩Aik ∣∣].
Proof. Let x /∈ n∪

i=1
Ai. Then, we show that inclusion of x in some Ai contributes (increases the value)

1 to both sides of Equation (6.1). So, assume that x is included only in the sets A1, · · · , Ar. Then,

the contribution of x to |Ai1 ∩ · · · ∩ Aik | is 1 if and only if {i1, . . . , ik} ⊆ {1, 2, . . . , r}. Hence, the

contribution of x to
∑

1≤i1<···<ik≤n
|Ai1 ∩ · · · ∩ Aik | is C(r, k). Thus, the contribution of x to the right

hand side of Equation (6.1) is

C(r, 1)− C(r, 2) + C(r, 3)− · · ·+ (−1)r+1C(r, r) = 1.

The element x clearly contributes 1 to the left hand side of Equation (6.1) and hence the required

result follows. The proof of the equivalent condition is left for the readers.

Example 3. How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?

Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N|n ≤ 10000, i|n}. Therefore, the required answer is

10000− |A2 ∪A3 ∪A5 ∪A7| = 2285.

Definition 4. [Euler Totient Function] For a fixed n ∈ N, the Euler’s totient function isdefi

ned as ϕ(n) = |{k ∈ N : k ≤ n, gcd(k, n) = 1}|.

Thus, ϕ(n) is the number of natural numbers less than or equal to n and relatively prime to n.

For instance, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 3, ϕ(12) = 4, etc.

Theorem 5. Let p1, . . . , pk be the distinct prime divisors of n. Then

ϕ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

Proof. For 1 ≤ i ≤ k, let Ai = {m ∈ N : m ≤ n, pi|m}. Then, |Ai| =
n

pi
, |Ai ∩Aj | =

n

pipj
, and so on.

By PIE,

ϕ(n) = n− |∪
i
Ai| = n

[
1−

k∑
i=1

1

pi
+

∑
1≤i<j≤k

1

pipj
− · · ·+ (−1)k

1

p1p2 · · · pk

]
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)

Definition6.[Derangement]Aderangementofobjects inafinitesetS isapermuta-tion/arrangementσ

onS such that for each x,σ(x) 6=x.The number ofderangements of{1,2, . . . ,n} isdenoted byDnwith the

conventionthatD0=1.

For example, 2, 1, 4, 3 is a derangement of 1, 2, 3, 4, but 2, 3, 1, 4 is not a derangement of 1, 2, 3, 4.

If a sequence (xn) converges to some limit `, we say that xn is approximately ` for large values of

n, and write xn ≈ `.

Theorem7.Forn∈N,Dn=n!
n∑
k=0

(−1)k

k!
. Consequently,

Dn

n!
≈ 1

e
.
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Proof. For each i, 1 ≤ i ≤ n, let Ai be the set of arrangements σ such that σ(i) = i. Then, verify that

|Ai| = (n− 1)!, |Ai ∩Aj | = (n− 2)! and so on. Thus,

| ∪
i
Ai| = n.(n− 1)!− C(n, 2)(n− 2)! + · · ·+ (−1)n−1C(n, n)0! = n!

n∑
k=1

(−1)k−1

k!
.

So, Dn = n!− |∪
i
Ai| = n!

n∑
k=0

(−1)k

k! . Since
∞∑
k=0

(−1)k

k! = e−1, it follows that lim
n→∞

Dn

n!
=

1

e
.

Example 8. How many square-free integers do not exceed n for a given n ∈ N?

Answer: Let P = {p1, · · · , ps} be the set of primes not exceeding
√
n and for 1 ≤ i ≤ s, let Ai be the

set of integers between 1 and n that are multiples of p2
i . Then

|Ai| =
⌊ n
p2
i

⌋
, |Ai ∩Aj | =

⌊ n

p2
i p

2
j

⌋
, · · ·

So, the number of square-free integers not greater than n is

n− | s∪
i=1

Ai| = n−
s∑
i=1

⌊ n
p2
i

⌋
+

∑
1≤i<j≤s

⌊ n

p2
i p

2
j

⌋
−

∑
1≤i<j<k≤s

⌊ n

p2
i p

2
jp

2
k

⌋
+ · · ·

For n = 100, we have P = {2, 3, 5, 7}. So, the number of square-free integers not exceeding 100 is

100−
⌊100

4

⌋
−
⌊100

9

⌋
−
⌊100

25

⌋
−
⌊100

49

⌋
+
⌊100

36

⌋
+
⌊100

100

⌋
= 61.

Exercise 9.1.Inaschool there are 12 students who take an art courseA,20who take abiology courseB,20

whotakeachemistrycourseCand8whotakeadancecourseD.Thereare5studentswhotakebothAand

B,7studentswhotakebothAandC,4studentswhotakebothAandD,16studentswhotakebothBandC

,4studentswhotakebothBandDand3studentswhotakewhotakebothCandD.Thereare3whotakeA,

BandC ;2who takeA,BandD;3who takeA,CandD;and2who takeB,CandD.Finally there are2 in

allfourcoursesandfurther71studentswhohavenottakenanyofthesecourses.Findthetotalnumberof

students.

2. Let n ∈ N. Using PIE, show that S(n, r) =
1

r!

r−1∑
i=0

(−1)iC(r, i)(r − i)n.

3. Show that
m∑
k=0

(−1)kC(m, k)(m− k)n =

{
n! if m = n

0 if m > n.

4. Determine the number of 10-letter words over English alphabet that do not contain all the vowels.

5. Let m,n ∈ N with gcd(m,n) = 1 Prove that ϕ(mn) = ϕ(m)ϕ(n).

6. Determine all natural numbers n satisfying ϕ(n) = 13.

7. Determine all natural numbers n satisfying ϕ(n) = 12.

8. For each fixed n ∈ N, use mathematical induction to prove that
∑
d|n
ϕ(d) = n.

9. For each fixed n ∈ N, use mathematical induction to prove that
∑
d|n
ϕ(d) = n.

10. A function f : N→ N is said to be multiplicative if f(nm) = f(n)f(m), whenever gcd(n,m) =

1. Let f, g : N → N be functions satisfying f(n) =
∑
d|n
g(d) and f(1) = g(1) = 1. If f is

multiplicative then use induction to show that g is also multiplicative.
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11. Show that for n ≥ 2, Dn = bn!
e + 1

2c.

12. Prove combinatorially:
n∑
i=0

C(n, i)Dn−i = n!.

13. Find the number of non-negative integer solutions of a + b + c + d = 27, where 1 ≤ a ≤ 5, 2 ≤
b ≤ 7, 3 ≤ c ≤ 9, 4 ≤ d ≤ 11.

14. Let x be a natural number less than or equal to 9999999.

(a) Find the number of x’s for which the sum of the digits in x equals 30.

(b) How many of the solutions obtained in the first part consist of 7 digits?

15. In how many ways the digits 0, 1, . . . , 9 can be arranged so that the digit i is never followed

immediately by i+ 1.

16. Determine the number of strings of length 15 that use some or all of the digits 0, 1, . . . , 9, so that

no string contains all the 10 digits.

17. Determine the number of ways of permuting the 26 letters of the English alphabet so that none

of the patterns lazy, run, show and pet occurs.

18. Let S = {(n1, n2, n3)|ni ∈ N,
∑
ni = 15}. Evaluate

∑
(n1,n2,n3)∈S

15!

n1!n2!n3!
.

19. Each of the 9 senior students said: ‘the number of junior students I want to help is exactly one’.

There were 4 junior students a, b, c, d, who wanted their help. The allocation was done randomly.

What is the probability that either a has exactly two seniors to help him or b has exactly 3 seniors

tohelphimorchasnoseniorstohelphim?

Generating Functions

This is one of the strongest tools in combinatorics. We start with the definition of formal power series

over Q and develop the theory of generating functions. This is then used to get closed form expressions

for some known recurrence relations and are then further used to get some binomial identities.

Definition.1.1.Analgebraicexpressionoftheformf(x)=∑
n≥0

anx
n,wherean∈Qforall

n ≥ 0, is called a formal power series in the indeterminate x over C and is denoted by Q[[x]].

By cf[xn, f ], we denote the coefficient of xn in f , e.g., cf

[
xn,

∑
n≥0

anx
n

]
= an.

2. Two elements f, g ∈ Q[[x]] are said to be equal if cf[xn, f ] = cf[xn, g] for all n ≥ 0.

3. Let f(x) =
∑
n≥0

anx
n and g(x) =

∑
n≥0

bnx
n be elements in Q[[x]]. Then, their

(a) sum/addition is defined by cf[xn, f + g] = cf[xn, f ] + cf[xn, g].

(b) scalar multiplication is defined by cf[xn, αf ] = αcf[xn, f ].

Thus, with the above operations, the class of formal power series Q[[x]] over Q, is a vector

space which is isomorphic to the space of all sequences.

(c) One also defines the product (called the Cauchy product) by cf[xn, f · g] = cn =
n∑
k=0

akbn−k.

Before proceeding further, we consider the following examples.
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Example3.2.1.Howmanywordsofsize8canbeformedwith6copiesofAand6copiesof

B?

Ans:
6∑

k=2

C(8, k), as we just need to choose k places for A, where 2 ≤ k ≤ 6.

Alternate. In any such word, we need m many A’s and n many B’s with m + n = 8, m ≤ 6

and n ≤ 6. Also, the number of words with m many A’s and n many B’s is
8!

m!n!
.

We identify this number with
8!xmyn

m!n!
and note that this is a term of degree 8 in

8!
[
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!

][
1 + y +

y2

2!
+
y3

3!
+
y4

4!
+
y5

5!
+
y6

6!

]
.

If we replace y by x, then our answer is

8!cf
[
x8, (1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! )(1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! )
]

= 8!cf
[
x8, (x

2

2! + x3

3! + x4

4! + x5

5! + x6

6! )(x
2

2! + x3

3! + x4

4! + x5

5! + x6

6! )
]

= 8!cf
[
x8, (x

2

2! + x3

3! + · · · )(x22! + x3

3! + · · · )
]

= 8!cf
[
x8, (ex − 1− x)2 = e2x + 1 + x2 − 2xex − 2ex + 2x

]
= 8!

(
28

8! − 2
7! − 2

8!

)
= 238.

2. How many anagrams (rearrangements) are there of the word MISSISSIPPI?

Ans: Using basic counting, the answer is
11!

4!4!2!
.

Alternate. For another understanding, note that
11!

4!4!2!
= 11! × cf

[
x11, x

x4

4!

x4

4!

x2

2!

]
. Here

the numbers 1 = cf[x, x] ,
1

4!
= cf

[
x4,

x4

4!

]
,

1

4!
= cf

[
x4,

x4

4!

]
and

1

2!
= cf

[
x2,

x2

2!

]
correspond

to the number of occurrences of M, I, S and P , respectively. Hence, the readers should note that

11!

4!4!2!
= 11!cf

[
x11,

(
1 + x

)(
1 + x+

x2

2!
+
x3

3!
+
x4

4!

)2(
1 + x+

x2

2!

)]
, or

11!

4!4!2!
= 11!cf

[
x11,

(
x+

x2

2!
+ · · ·

)(x4

4!
+
x5

5!
+ · · ·

)2(x2

2!
+
x3

3!
+ · · ·

)]

3. How many multi-subsets of size 4 of the multiset {E,X,A,M, I,N,A, T, I,O,N} are there?

Ans: By direct counting the answer is

C(5, 4) + C(5, 3)C(3, 1) + [C(5, 2)C(3, 2) + C(5, 2)C(3, 1)]

+[C(5, 1)C(3, 3) + C(5, 1)C(3, 1)C(2, 1)] + [C(5, 0)C(3, 2) + C(5, 0)C(3, 1)] = 136.

Alternate. It is as good as asking how many A’s are you including and how many E’s, etc.

Suppose that we are considering A2EM (means {A,A,E,M}). But this is a term of degree 4 in

(1 +A+A2)(1 + E)(1 + I + I2)(1 +M)(1 +N +N2)(1 +O)(1 + T )(1 +X).

So their number is nothing but

cf
[
x4, (1 + x)5(1 + x+ x2)3

]
=

cf
[
x4, (1 + 5x+ 10x2 + 10x3 + 5x4 + · · · )(1 + 3x+ 6x2 + 7x3 + 6x4 + · · · )

]
= 136.
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4. How many non-negative integer solutions of u+ v + w + t = 10 are there?

Ans: Note that u can take any value from 0 to 10 which corresponds to 1+x+ · · ·+x10. Hence,

the required answer is

cf
[
x10, (1 + x+ x2 + · · · )4 = (1− x)−4

]
= C(13, 10) =

4 · 5 · · · · 13

10!
.

Definition 6.3.3. [Generating Functions] Let (bn) = (b0, b1, b2, . . . , ) be a sequence of integers.

Then,

1. the ordinary generating function (ogf) is the formal power series

b0 + b1x+ b2x
2 + b3x

3 + · · · , and

2. the exponential generating function (egf) is the formal power series

b0 + b1x+ b2
x2

2!
+ b3

x3

3!
+ · · · .

If the sequence has finitely many elements then the generating functions have finitely many terms.

Example 6.3.4. What is the number of non-negative integer solutions of 2a+ 3b+ 5c = r, r ∈ N0?

Ans: Note that a ∈ N0 and hence 2a corresponds to the formal power series 1 + x2 + x4 + · · · .
Thus, we need to consider the ogf

(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) =
1

(1− x2)(1− x3)(1− x5)
.

Hence, the required answer is cf

[
xr,

1

(1− x2)(1− x3)(1− x5)

]
.

Remark 3.5. 1. Let f(x) = ∑
n≥0

an
xn

n!
, g(x) =

∑
n≥0

bn
xn

n!
∈ Q[[x]]. Then, in case of egf, their

product equals
∑
n≥0

dn
xn

n!
, where dn =

n∑
k=0

C(n, k)akbn−k, for n ≥ 0.

2. Note that ee
x−1 ∈ Q[[x]] as ey =

∑
n≥0

yn

n!
implies that ee

x−1 =
∑
n≥0

(ex − 1)n

n!
and

cf
[
xm, ee

x−1
]

= cf

xm,∑
n≥0

(ex − 1)n

n!

 =

m∑
n=0

cf

[
xm,

(ex − 1)n

n!

]
. (6.2)

That is, for each m ≥ 0, cf
[
xm, ee

x−1
]

is a sum of a finite number of rational numbers. Whereas,

the expression ee
x 6∈ Q[[x]] as computing cf

[
xm, ee

x]
, for all m ≥ 0, requires infinitely many

computations.

3. Recall that if f(x) =
∑
n≥0

anx
n, g(x) =

∑
n≥0

bnx
n ∈ Q[[x]] then the composition

(f ◦ g)(x) = f(g(x)) =
∑
n≥0

an(g(x))n =
∑
n≥0

an(
∑
m≥0

bmx
m)n

may not be defined (just to compute the constant term of the composition, one may have to

look at an infinite sum of rational numbers). For example, let f(x) = ex and g(x) = x+ 1. Note

that g(0) = 1 6= 0. Here, (f ◦ g)(x) = f(g(x)) = f(x + 1) = ex+1. So, as function f ◦ g is well

defined, but there is no formal procedure to write ex+1 as
∑
k≥0

akx
k ∈ Q[[x]] (i.e., with ak ∈ Q)

and hence ex+1 is not a formal power series over Q.
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With the algebraic operations as defined in Definition 6.3.1.3, it can be checked that Q[[x]] forms

a Commutative Ring with identity, where the identity element is given by the formal power series

f(x) = 1. In this ring, the element f(x) =
∑
n≥0

anx
n is said to have a reciprocal if there exists

another element g(x) =
∑
n≥0

bnx
n ∈ Q[[x]] such that f(x) · g(x) = 1. So, the question arises, under

what conditions on cf[xn, f ], can we find g(x) ∈ Q[[x]] such that f(x)g(x) = 1. The answer to this

question is given in the following proposition.

Proposition 3.6. The reciprocal of f ∈ Q[[x]] exists if and only if cf[x0, f] 6= 0. Further, if

an ∈ Q, for all n then an ∈ Q, for all n.

Proof. Let g(x) =
∑
n≥0 bnx

n ∈ Q[[x]] be the reciprocal of f(x) =
∑
n≥0 anx

n. Then, f(x)g(x) = 1 if and

only if cf
[
x0, f · g

]
= 1 and cf[xn, f · g] = 0, for all n ≥ 1.

But, by definition of the Cauchy product, cf
[
x0, f · g

]
= a0b0. Hence, if a0 = cf

[
x0, f

]
= 0

then cf
[
x0, f · g

]
= 0 and thus, f cannot have a reciprocal. However, if a0 6= 0, then the coefficients

cf[xn, g] = bn’s can be recursively obtained as follows:

b0 = 1/a0 as 1 = c0 = a0b0;

b1 = −(a1b0)/a0 as 0 = c1 = a0b1 + a1b0;

b2 = −(a2b0 + a1b1)/a0 as 0 = c2 = a0b2 + a1b1 + a2b0; and in general, if we have computed bk, for

k ≤ r, then using 0 = cr+1 = ar+1b0 + arb1 + · · ·+ a1br + a0br+1, we get

br+1 = −(ar+1b0 + arb1 + · · ·+ a1br)/a0.

Hence, the required result follows.

The next result gives the condition under which the composition (f ◦ g)(x) is well defined.

Proposition 3.7. Let f, g ∈ Q[[x]]. Then, the composition (f ◦ g)(x) ∈ Q[[x]] if either f is a

polynomial or cf[x0, g(x)] = 0. Moreover, if cf[x0, f(x)] = 0, then there exists g ∈ Q[[x]], with

cf [x0, g(x)]= 0, such that (f ◦ g)(x) = x. Furthermore, (g ◦ f)(x) ∈ Q[[x]] and (g ◦ f)(x) = x.

Proof. As (f ◦ g)(x) ∈ Q[[x]], let (f ◦ g)(x) =
∑n≥0

cnx
n and suppose that either f is a polynomial or

cf
[
x0, g(x)

]
= 0. Then, to compute ck = cf

[
xk, (f ◦ g)(x)

]
, for k ≥ 0, one just needs to consider the

terms
k∑

n=0
an(g(x))n, whenever f(x) =

∑
n≥0

anx
n. Hence, each ck ∈ Q and thus, (f ◦ g)(x) ∈ Q[[x]].

This completes the proof of the first part. We leave the proof of the other part for the reader.

The proof of the next result is left for the reader.

Proposition 3.8. [Basic facts] Recall the following statements from Binomial theorem.

1. cf
[
xn, (1− x)−1 = (1 + x+ x2 + · · · )

]
= 1.

2. (a0 + a1x+ · · · )(1 + x+ x2 + · · · ) = a0 + (a0 + a1)x+ (a0 + a1 + a2)x2 + · · · .
3. cf

[
xn, (1− x)−r = (1 + x+ x2 + · · · )r

]
= C(n+ r − 1, n). Thus,

(1− x)−5 = C(4, 4) + C(5, 4)x+ C(6, 4)x2 + · · · .

4. (1− xm)n = 1− C(n, 1)xm + C(n, 2)x2m − · · ·+ (−1)nxnm.

5. (1 + x+ x2 + · · ·+ xm−1)n =

(
1− xm
1− x

)n
= (1− xm)n(1 + x+ x2 + · · · )n.

We now define the formal differentiation in Q[[x]] and give some important results. The proof is

left for the reader.
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Definition3.9.Letf(x)=∑
n≥0

anx
n∈Q[[x]].

1. [Formal Differentiation] Then, the formal differentiation of f(x), denoted f ′(x), is defined by

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

∑
n≥1

nanx
n−1.

2. [Formal Integration] Then, the formal integration of f(x), denoted
∫
f(x), is defined by∫

f(x)dx = α+ a0x+
a1

2
x2 + · · ·+ an

n+ 1
xn+1 + · · · = α+

∑
n≥0

an
n+ 1

xn+1.

Proposition 3.10. [ogf: tricks] Let g(x), h(x) be the ogf’s for the sequences (an), (bn), respectively.

Then, the following are true.

1. Ag(x) +Bh(x) is the ogf for (Aan +Bbn).

2. (1− x)g(x) is the ogf for the sequence a0, a1 − a0, a2 − a1, · · · .

3. (1 + x+ x2 + · · · )g(x) = (1− x)−1g(x) is the ogf for (Mn), where Mn = an + an−1 + · · ·+ a0.

4. g(x)h(x) is the ogf for (cn), where cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0.

5. xf ′(x) is the ogf for nan, n = 1, 2, . . ..

Example 3.11. 1. Let ar = 1 for all r ≥ 0. Then, the ogf of the sequence (ar) equals 1 + x +x

2 + · · · = (1− x)−1 = f(x). So, for r ≥ 0, the ogf for

(a) ar = r for all r ≥ 1 is xf ′(x) and

(b) ar = r2 for all r ≥ 1 is x
(
f ′(x) + xf ′′(x)

)
.

(c) Using the above two examples, the ogf of the sequence ar = 3r + 5r2 for all r ≥ 1 is

3xf ′(x) + 5
(
xf ′(x) + x2f ′′(x)

)
= 8x(1− x)−2 + 10x2(1− x)−3.

2. Determine the number of ways to distribute 50 coins among 30 students so that no student gets

more than 4 coins equals

cf
[
x50, (1 + x+ x2 + x3 + x4)30

]
= cf

[
x50, (1− x5)30(1− x)−30

]
= cf

[
x50, (1− x5)30

(
C(29, 29) + C(30, 29)x+ C(31, 29)x2 + · · ·

)]
= C(79, 50)− 30C(74, 45) + C(30, 2)C(69, 40) + · · ·

=
10∑
i=0

(−1)iC(30, i)C(79− 5i, 29).

3. For n, r ∈ N, determine the number of solutions to y1 + · · ·+ yn = r with yi ∈ N0, 1 ≤ i ≤ n.

Ans: Recall that this number equals C(r + n− 1, r) (see Theorem 5.3.1).

Alternate. We can think of the problem as follows: the above system can be interpreted as

coming from the monomial xr, where r = y1 + · · ·+yn. Thus, the problem reduces to finding the

coefficients of xyk of a formal power series, for yk ≥ 0. Now, recall that cf
[
xyk , (1− x)−1

]
= 1.

Hence, the question reduces to computing

cf

[
xr,

1

(1− x)(1− x) · · · (1− x)

]
= cf

[
xr,

1

(1− x)n

]
= C(r + n− 1, r).
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4. Evaluate S :=
∞∑
k=0

k

2k
=

1

2
+

2

22
+

3

23
+ · · · .

Ans: Note that

2S = 1 +
2

2
+

3

22
+

4

23
+ · · ·

S = 0 +
1

2
+

2

22
+

3

23
+ · · ·

S = 1 +
1

2
+

1

22
+

1

23
+ · · · = 2.

Alternate. Put f(x) = (1 − x)−1. Then, it has 1 as its radius of convergence and within this

radius, the derivative is the same as the power series obtained by term by term differentiation.

Thus, f ′(x) = 1 + 2x+ 3x2 + · · · has 1 as its radius of convergence. Hence,

S =
1

2
f ′(1/2) = 2.

Alternate. Alternately (rearranging terms of an absolutely convergent series) it is

1
2 +
1
4 + 1

4 +
1
8 + 1

8 + 1
8 +

...

1 + 1
2 + · · · = 2.

Exercise3.12.1.Determineaclosedformexpressionfor∑
n≥0

nxn∈Q[[x]].Orinotherwords,

write
∑
n≥0

nxn =
p(x)

q(x)
, where p(x), q(x) are polynomials with integer coefficients.

2. Determine the sum of the first N positive integers.

3. Determine the sum of the squares of the first N positive integers.

4. Determine a closed form expression for
∑
n≥0

n2 + 5n+ 16

n!
.

5. Determine a closed form expression for
N∑
k=1

k3.

6. For n, r ∈ N determine the number of non-negative solutions to x1 + 2x2 + · · ·+ nxn = r in the

unknowns xi’s.

7. Determine
∞∑
k=0

1
2k
C(n+ k − 1, k).

8. Find the number of non-negative integer solutions of a+ b+ c+ d+ e = 27, satisfying

(a) 3 ≤ a ≤ 8,

(b) 3 ≤ a, b, c, d ≤ 8

(c) c is a multiple of 3 and e is a multiple of 4.

9. Determine the number of ways in which 150 voters can cast their 150 votes for 5 candidates such

that no candidate gets more than 30 votes.

10. Verify the following table of formal power series.
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Table of Formal Power Series

ex =
∑
k≥0

xk

k!
(1 + x)n =

∑
r≥0

C(n, k)xk, n ∈ N0

cos(x) =
∑
r≥0

(−1)rx2r

(2r)!
sin(x) =

∑
r≥0

(−1)rx2r+1

(2r + 1)!

cosh(x) =
∑
r≥0

x2r

(2r)!
sinh(x) =

∑
r≥0

x2r+1

(2r + 1)!

Radius of convergence: |x| < 1

log(1− x) = − ∑
k≥1

xk

k
1

1− x =
∑
k≥0

xk
1

(1− x)n
=

∑
k≥0

C(n+ k − 1, k)xk, n ∈ N
(1 + x)n

xr
=

∑
k≥−r

C(n, r + k)xk
xn

(1− x)n+1
=

∑
k≥0

C(k, n)xk, n ∈ N0

Radius of convergence: |x| < 1

4
1√

1− 4x
=

∑
k≥0

C(2k, k)xk
1−
√

1− 4x

2x
=

∑
k≥0

1

k + 1
C(2k, k)xk

11. Find the ogf of the Fibonacci sequence (Fn)n≥0 := (1, 1, 2, 3, . . .)? Hence, show that for n ≥ 1,

Fn is the number of ways to write n as a sum of 1’s and 2’s.

12. Take a natural number n. Find

C(n, 0)2n − C(n− 1, 1)2n−2 + C(n− 2, 2)2n−4 − C(n− 3, 3)2n−6 + · · · .

13. We know (1− x)−2 = 1 + 2x+ 3x2 + · · · . Also,

(1− x)−2 = (1 + x2 − 2x)−1 = (1− [2x− x2])−1 = 1 + [2x− x2] + [2x− x2]2 + · · · .

So, can you verify this identity, i.e., the coefficient of xn in the later expression is actually n+1?

Generating Functions and Partitions of n

Recall from Page 95 that a partition of n into k parts is a tuple (n1, · · · , nk) ∈ Nk written in non-

increasing order, that is, n1 ≥ n2 ≥ · · · ≥ nk, such that n1 + n + 2 + · · · + nk = n. Also, recall that

πn is the number of distinct partitions of n. The following result due to Euler gives the generating

function of πn.

Theorem 3.13. [Euler: partition of n] The generating function for πn is

ε(x) = (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xn + x2n + · · · ) =
1

(1− x)(1− x2) · · · (1− xn)
.

Proof. Note that any partition λ of n has m1 copies of 1, m2 copies of 2 and so on till mn copies of n,

wheremi ∈ N0 for 1 ≤ i ≤ n and
n∑
i=1

mi = n. Hence, λ uniquely corresponds to (x1)m1(x2)m2 · · · (xn)mn

in the word-expansion of

(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xn + x2n + · · · ).

Thus, πn = cf[xn, ε(x)].

The next result is the same idea as Theorem 6.3.13 and hence the proof is omitted.
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Theorem3.14.Thenumberofpartitionsofnwithentriesatmostriscf

[
xn,

r∏
i=1

1
1−xi

]
.

Corollary 3.15. Fix n, r ∈ N. Then, the ogf for the number of partitions of n into at most r parts,

is 1
(1−x)(1−x2)···(1−xr) .

Proof. Note that by using Ferrer’s diagram (taking conjugate) we see that the number of partitions

of n into at most r parts is same as the number of partitions of n with entries at most r. So, by

Theorem 6.3.14, this number is cf

[
xn,

r∏
i=1

1
1−xi

]
.

Theorem 3.16. [ogf of πn(r)] Fix n, r ∈ N. Then, the ogf for πn(r), the number of partitions of n

into r parts, is xr

(1−x)(1−x2)···(1−xr) .

Proof. Consider a partition (λ1, . . . , λr) of n. So, n ≥ r. Assume that λ1, . . . , λk > 1 and λk+1, . . . , λr =

1. Then (λ1 − 1, . . . , λk − 1) is a partition of n− r into at most r parts.

Conversely, if (µ1, . . . , µk), k ≤ r, is a partition of n− r into at most r parts, then (µ1 + 1, . . . , µk +

1, 1, . . . , 1), where the number of 1’s is r − k times, is an r partition of n.

Thus, the number of r partitions of n is the same as the number of partitions of n − r with at

most r parts. Thus, by Corollary 6.3.15 the required number is cf
[
xn−r, 1

(1−x)(1−x2)···(1−xr)

]
. Hence,

the ogf for πn(r) is
xr

(1− x)(1− x2) · · · (1− xr) .

Exercise 3.17. 1. For n, r ∈ N, prove that πn(r) is the number of partitions of n+C(r, 2) intor

unequal parts.

2. Let P,M ⊆ N and f(n) be the number of partitions of n where parts are from P and multiplicities

are from M . Find the generating function for the numbers f(n).

Theorem 3.18. Suppose there are k types of objects.

1. If there is an unlimited supply of each object, then the egf of the number of r-permutations is

ekx.

2. If there are mi copies of i-th object, then the egf of the number of r-permutations is(
1 + x+

x2

2!
+ · · ·+ xm1

m1!

)
· · ·
(

1 + x+
x2

2!
+ · · ·+ xmk

mk!

)
.

3. Moreover, n!S(r, n) is the coefficient of xr

r! in (ex − 1)n.

Proof.

1. Since there are unlimited supply of each object, the egf for each object corresponds to ex =

1 + x+ · · ·+ xn

n!
+ · · · . Hence, the required result follows.

2. Similar to the first part.

3. Recall that n!S(r, n) is the number of surjections from {1, 2, . . . , r} to X = {s1, · · · , sn}. Each

surjection can be viewed as a word of length r of elements of X, with each si appearing at least

once. Thus, we need a selection of ki ∈ N copies of si, with
n∑
i=1

ki = r. Also, by Exercise 5.4.7.8,

this number equals C(r; k1, · · · , kn). Hence,

n!S(r, n) = r!cf

[
xr,

(
x+

x2

2!
+
x3

3!
+ · · ·

)n]
= cf

[
xr

r!
, (ex − 1)n

]
.
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Example 3.19. 1. In how many ways can you get Rs 2007 using denominations 1, 10, 100, 1000

only?

Ans: cf

[
x2007,

1

(1− x)(1− x10)(1− x100)(1− x1000)

]
.

2. If we use at most 9 of each denomination in Part 1, then this number is

cf

[
x2007,

(
9∑
i=1

xi

)(
9∑
i=1

x10i

)(
9∑
i=1

x100i

)(
9∑
i=1

x1000i

)]
= cf

[
x2007,

1− x10000

1− x

]
= 1.

3. Every natural number has a unique base-r representation (r ≥ 2). Note that Part 2 corresponds

to the case r = 10.

4. Consider n integers k1 < k2 < · · · < kn with gcd(k1, . . . , kn) = 1. Then, the number of

natural numbers not having a partition using {k1, . . . , kn} is finite. Determining the largest such

integer (Frobenius number) is the coin problem/ money changing problem. The general

problem is NP-hard. No closed form formula is known for n > 3.

Some times we have a way to obtain a recurrence relation from the generating function. This is

important and hence study the next example carefully.

Example3.20.1.SupposeF=
1

(1− x)(1− x10)(1− x100)(1− x1000)
=
∑
n≥0

anx
n. Then, tak-

ing log and differentiating, we get

F ′ = F

[
1

1− x +
10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]
.

So,

nan = cf
[
xn−1, F ′

]
= cf

[
xn−1, F

[
1

1− x +
10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]]
=

n∑
k=1

an−kbk,

where

bk = cf

[
xk−1,

[
1

1− x +
10x9

1− x10
+

100x99

1− x100
+

1000x999

1− x1000

]]
=


1 if 10 - k
11 if 10|k, 100 - k
111 if 100|k, 1000 - k
1111 else.

2. We know that lim
n→∞

n∑
k=1

1
k =∞. What about lim

n→∞

n∑
k=1

1
pk

, where pk is the k-th prime?

Ans: For n > 1, let sn =
n∑
k=1

1
k . Then, note that

sn ≤
(

1 +
1

2
+

1

4
+ · · ·

)(
1 +

1

3
+

1

9
+ · · ·

)
· · ·
(

1 +
1

pn
+

1

p2
n

+ · · ·
)

=

n∏
k=1

(1 +
1

pk − 1
).

Thus,

log sn ≤ log

(
n∏
k=1

(1 +
1

pk − 1
)

)
≤

n∑
k=1

log(1 +
1

pk − 1
) ≤

n∑
k=1

1

pk − 1
≤ 1 +

n−1∑
k=1

1

pk
.

As n→∞, we see that lim
n→∞

n∑
i=1

1
pi

=∞ as lim
n→∞

log sn =∞.
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3. Let X be the set of natural numbers with only prime divisors 2, 3, 5, 7. Then,

1 +
∑
n∈X

1

n
= (1 +

1

2
+

1

4
+ · · · )(1 +

1

3
+

1

9
+ · · · ) · · · (1 +

1

7
+

1

49
+ · · · ) =

2

1

3

2

5

4

7

6
=

35

8
.

Exercise3.21.1.Letσ(n)=∑
d|n

d,forn∈N.Then,provethatnπn=
n∑
k=1

πn−kσ(k).

2. A Durfee square is the largest square in a Ferrer’s diagram. Find the generating function for the

number of self conjugate partitions of n with a fixed size k of the corresponding Durfee square.

Show that (1 + x)(1 + x3) · · · = 1 +

∞∑
k=1

xk
2

(1− x2)(1− x4) · · · (1− x2k)
.

3. Show that the number of partitions of n into distinct terms is the same as the number of partitions

of n into odd terms.

4. Find the number of r-digit binary numbers that can be formed using an even number of 0s and

an even number of 1s.

5. Find the egf of the number of words of size r using A,B,C,D,E,

(a) if the word has all the letters and the letter A appears an even many times.

(b) if the word has all the letters and the first letter of the word appears an even number of

times.

6. A permutation σ of {1, 2, . . . , n} is said to be connected if there does not exist k, 1 ≤ k < n

such that σ takes {1, 2, . . . , k} to itself. Let cn denote the number of connected permutations of

{1, 2, . . . , n} (convention: c0 = 0), then show that

n∑
k=1

ck(n− k)! = n!.

Hence, derive the relationship between the generating functions of (n!) and (cn).

7. Let f(n, r) be the number of partitions of n where each part repeats less than r times. Let g(n, r)

be the number of partition of n where no part is divisible by r. Show that f(n, r) = g(n, r).

8. Find the number of 9-sequences that can be formed using 0, 1, 2, 3 in each case:

(a) The sequence has an even number of 0s.

(b) The sequence has an odd number of 1s and an even number of 0s.

(c) No digit appears exactly twice.

Recurrence Relation

Definition 4.1. [Recurrence Relation] A recurrence relation is a way of recursively defining

the terms of a sequence as a function of preceding terms together with certain initial conditions.

Example 4.2. an = 3 +2an−1 for n ≥ 1 with the initial condition a0 = 1 is a recurrence relation.

Note that it completely determines the sequence (an) = {1, 5, 13, 29, 61, . . .}.

Definition4.3. [DifferenceEquation]Forasequence (an),thefirstdifferenced(an)isan−an−1.Thek-

thdifferencedk(an)=dk−1(an)−dk−1(an−1).Adifferenceequation isanequationinvolvingananditsdi

fferences.

Example 4.4. 1. an − d2(an) = 5 is a difference equation. But, note that it doesn’t give a

recurrence relation as we don’t have any initial condition(s).
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2. Every recurrence relation can be expressed as a difference equation. The difference equation

corresponding to the recurrence relation an = 3 + 2an−1 is an = 3 + 2(an − d(an)).

Definition 4.5. [Solution of a Recurrence Relation] A solution of a recurrence relation is a

function u(n), generally denoted by un, satisfying the recurrence relation.

Example 4.6. 1. u(n) = 2n+2 − 3 is a solution of an = 3 + 2an−1 with a0 = 1.

2. The Fibonacci sequence is given by an = an−1 + an−2 for n ≥ 2 with a0 = 0, a1 = 1. Use(
1+
√

5
2

)2
= 3+

√
5

2 and
(

1−
√

5
2

)2
= 3−

√
5

2 to verify that an =
1√
5

((
1+
√

5
2

)n
−
(

1−
√

5
2

)n)
is a

solution of the recurrence relation that defines the Fibonacci sequence.

Definition 4.7. [LNRC/LHRC] A recurrence relation is called a linear nonhomogeneous

recurrence relation with constant coefficients (LNRC) of order r if, for a known function f

an = c1an−1 + · · ·+ cran−r + f(n), where ci ∈ R for 1 ≤ i ≤ r, cr 6= 0. (6.3)

If f = 0, then Equation (6.3) is homogeneous and is called the associated linear homogeneous

recurrence relation with constant coefficients (LHRC).

Theorem 4.8. For k ∈ N and 1 ≤ i ≤ k, let fi be known functions. Consider the k number of

LNRC

an = c1an−1 + · · ·+ cran−r + fi(n) for i = 1, . . . , k, (6.4)

with the same set of initial conditions. If ui(n) is a solution of the i-th recurrence relation, then

an = c1an−1 + · · ·+ cran−r +

k∑
i=1

αifi(n) (6.5)

with the same set of initial conditions has
k∑
i=1

αiui(n) as it solution.

Proof. The proof is left as an exercise for the reader.

De finition 4.9. [Characteristic Equation ]The equation xr− c1xr−1− · · ·− cr= 0 is called the

characteristic equationoftheLHRCan=c1an−1+ · · ·+cran−rwithcr 6=0.Therootsofthecharacteristic

equationarecalledthecharacteristicrootsoftheLHRC.

Observe that if an = xn is a solution of the LHRC an = c1an−1 + · · · + cran−r with cr 6= 0, then

either x = 0 or x is a characteristic root. Further, if x1, . . . , xr are the characteristic roots, then

an = xni is a solution of the LHRC. It follows that an =
r∑
i=1

αix
n
i for αi ∈ R is a solution of the given

LHRC. We show that the latter form of a solution is a general solution so that a given set of initial

conditions may be satisfied.

Theorem4.10.[GeneralSolution:DistinctRoots]Ifthecharacteristicrootsx1,...,xrofan

LHRC are distinct, then every solution of the LHRC is a linear combination of xn1 , . . . , x
n
r . Moreover,

the solution is unique if r consecutive initial conditions are given.

Proof. Let u(n) be any solution of a given LHRC an = c1an−1 + · · ·+ cran−r. That is,

u(n) =

r∑
j=1

cju(n− j) = c1u(n− 1) + · · ·+ cru(n− r).
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RECURRENCE RELATION

We show that there exist α1, . . . , αr ∈ R such that u(n) =
r∑
i=1

αix
n
i for all n ∈W. We first consider a

smaller problem, that is, whether the first r values of u(n) can be expressed in this form. The answer

will be affirmative provided we can determine the constants α1, . . . , αr so that u(n) =
r∑
i=1

αix
n
i for

n = 0, 1, . . . , r− 1. To explore this, substitute n = 0, 1, . . . , r− 1 to obtain the following linear system

in the unknowns α1, . . . , αr : 
u(0)
u(1)

...
u(r − 1)

 =


1 · · · 1
x1 · · · xr

. . .

xr−1
1 · · · xr−1

r



α1

α2
...
αr

.
Since the above r× r matrix (commonly known as the Vandermonde matrix) is invertible, there exist

α1, . . . , αr such that u(n) =
r∑
i=1

αix
n
i for 0 ≤ n ≤ r− 1. Hence, we have proved the result for the first

r values of u(n). So, let us assume that u(n) =
r∑
i=1

αix
n
i for 0 ≤ n < k, where k ≥ r. Notice that for

n = k, xki is a solution of the given LHRC. So, xki =
r∑
j=1

cjx
k−j
i . Then

u(k) =

r∑
j=1

cju(k − j) =
r∑
j=1

cj

r∑
i=1

αix
k−j
i =

r∑
i=1

αi

r∑
j=1

cjx
k−j
i =

r∑
i=1

αix
k
i .

Hence by PMI, u(n) =
r∑
i=1

αix
n
i for all n.

For uniqueness, suppose u(n) and v(n) are solutions of the LHRC satisfying the r initial conditions

u(i) = v(i) = ai for 0 ≤ i ≤ r − 1. Write y(n) = u(n) − v(n). Then y(n) satisfies the same LHRC

with intial conditions y(1) = · · · = y(r) = 0. By what we have just proved, y(n) =
r∑
i=1

γix
n
i for some

constants γ1, . . . , γr. Treating γis as unknowns, and substituting n = 0, 1, . . . , r − 1, we arrive at a

linear system as above, where u is replaced by y. Since the system matrix there is invertible, it leads

to the unique solution γ1 = · · · = γr = 0. In turn, we obtain y(n) = 0 for all n. That is, u(n) = v(n)

for all n.

Notice that the characteristic roots are, in general, complex numbers, so that the constants in the

linear combination can be complex numbers.

Example4.11.1.Solvean−4an−2=0forn≥2witha0=1anda1=1.Ans:Thecharacteristicequationisx2

−4=0.Asthecharacteristic rootsx=±2aredistinct,thegeneral solution isan=α(−2)n+β2n.The

initialconditionsgiveα+β=1and2β−2α=1.Hence,
α = 1

4 , β = 3
4 . Thus, the unique solutions is an = 2n−2

(
3 + (−1)n

)
.

2. Solve an = 3an−1 +4an−2 for n ≥ 2 with a0 = 1 and a1 = c, a constant. Ans: The characteristic

equation is x2−3x−4 = 0. The characteristic roots are −1 and 4; they are distinct. The general

solution is an = α(−1)n + β 4n. The initial conditions imply α = 4−c
5 and β = 1+c

5 . Thus, the

unique general solution is an = 1
5

(
(4− c)(−1)n + (1 + c)4n

)
.

3. Solve the Fibonacci recurrence an = an−1 + an−2 with initial conditions a0 = 0, a1 = 1. Ans:

The characteristic equation x2 − x − 1 = 0 gives distinct characteristic roots as 1±
√

5
2 . So,

the general solution is an = α
(

1+
√

5
2

)n
+ β

(
1−
√

5
2

)n
. Using the initial conditions, we get α =

1/
√

5, β = −α = −1/
√

5. Hence, the required solution is

an =
1√
5

[(
1 +
√

5

2

)n
−
(

1−
√

5

2

)n]
.
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4. Solve the recurrence relation an + an−2 = 0 with the initial conditions a0 = a1 = 2. Ans: The

characteristic equation is x2 +1 = 0 with distinct characteristic roots as ±i. The general solution

is in the form an = α in + β (−i)n. Initial conditions imply that α+ β = 2 and α i− β i = 2. So,

α = 1− i and β = 1 + i. Then an = (1− i)in + (1 + i)(−i)n.
5. Consider a triangle with vertices (a1, b1) = (0, 0), (a2, b2) = (5, 0) and (a3, b3) = (3, 7). For

n > 3, define (an, bn) as the centroid of the triangle formed by (an−1, bn−1), (an−2, bn−2) and

(an−3, bn−3). Does the sequence ((an, bn)) converge? If so, to what limit?

Ans: Note that the sequence ((an, bn)) converges if and only if both the sequences (an) and (bn)

converge. We will first show that (an) converges.

Let M1 = max{a1, a2, a3} and m1 = min{a1, a2, a3}. Notice that m1 ≤ a1, a2, a3 ≤M1. Hence,

m1 ≤
a1 + a2 + a3

3
≤ 2M1 +m1

3
, i.e., m1 ≤ a4 ≤

2M1 +m1

3
;

m1 ≤
a2 + a3 + a4

3
≤ 2M1 + a4

3
≤ 8M1 +m1

9
, i.e., m1 ≤ a5 ≤

8M1 +m1

9
; and

m1 ≤
a3 + a4 + a5

3
≤ 26M1 +m1

27
, i.e., m1 ≤ a6 ≤

26M1 +m1

27
.

As 2M1+m1
3 ≤ 8M1+m1

9 ≤ 26M1+m1
27 , we see that

m1 ≤ a4, a5, a6 ≤
26M1 +m1

27
.

Let M2 = max{a4, a5, a6} and m2 = min{a4, a5, a6}. Then

[m2,M2] ⊆ [m1,M1] and length([m2,M2]) ≤ 26

27
length([m1,M1]).

Similarly, taking Mn = max{a3n+1, a3n+2, a3n+3} and mn = min{a3n+1, a3n+2, a3n+3}, we get a

nested sequence of nonempty closed intervals

[m1,M1] ⊇ [m2,M2] ⊇ [m3,M3] ⊇ · · ·

with diameters going to zero. By nested interval theorem,
∞∩
i=1

[mi,Mi] is a singleton set, say, {l}.
Note that, [mn+1,Mn+1] contains all the terms a3n+1, a3n+2, a3n+3, a3n+4, . . .. It now follows

that lim
n→∞

an = l. Thus, lim
n→∞

an+1+2an+2+3an+3

6 = l. But notice that,

a1 + 2a2 + 3a3

6
=
a2 + 2a3 + 3a4

6
=
a3 + 2a4 + 3a5

6
= · · · .

Thus l = a1+2a2+3a3
6 . Thus, the limit to the original question is (19/6, 7/2).

* How did we guess the formula? To see that write

3a4 = a1 + a2 + a3

3a5 = a2 + a3 + a4

...

3an+3 = an + an+1 + an+2

3(a4 + a5 + · · ·+ an+3) = a1 + 2a2 + 3(a3 + · · ·+ an) + 2an+1 + an+2

Cancelling, we get an+1 + 2an+2 + 3an+3 = a1 + 2a2 + 3a3, which is what we required.

Alternate. This method is of interest to us. Note that we have the LHRC

an =
an−1 + an−2 + an−3

3
, n > 3.
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So, the characteristic equation is 3x3 − x2 − x − 1 = 0. Observe that 1 is a root. We now see

that 3x3 − x2 − x− 1 = (x− 1) (3x2 + 2x+ 1) and so the other two roots are

α :=
−2 +

√
4− 12

6
=
−1 + i

√
2

3
and β :=

−1− i
√

2

3
.

Hence, by Theorem 6.4.10, there exist constants a, b, c ∈ C such that

an = a(1)n−1 + b(α)n−1 + c(β)n−1.

As |α| = |β| = 1√
3
< 1, we see that an → a. Using the initial conditions, we get1 1 1

1 α β
1 α2 β2

ab
c

 =

a1

a2

a3

.
Solving for a gives a = a1+2a2+3a3

6 .

Theorem 4.12. [General Solution: Multiple Roots] Given an LHRC, let t be a characteristic

root of multiplicity s. Then u(n) = tn
(
s−1∑
i=0

αin
i

)
is a solution (called a basic solution). Moreover,

if t1, . . . , tk are the distinct characteristic roots with multiplicities s1, . . . , sk, respectively, then every

solution is a sum of the k corresponding basic solutions.

Proof. It is given that t is a zero of the polynomial F = xr − c1x
r−1 − · · · − cr of multiplicity s. Put

G0 = xn−rF = xn − c1x
n−1 − · · · − crxn−r

G1 = xG′0 = nxn − c1(n− 1)xn−1 − · · · − cr(n− r)xn−r

G2 = xG′1 = n2xn − c1(n− 1)2xn−1 − · · · − cr(n− r)2xn−r

... =
...

Gs−1 = xG′s−2 = ns−1xn − c1(n− 1)s−1xn−1 − · · · − cr(n− r)s−1xn−r

Note that each of G0, G1, . . . , Gs−1 has a zero at t, i.e., for i = 0, 1, . . . , s− 1, we have

Gi(t) = tnni − c1t
n−1(n− 1)i − . . .− crtn−r(n− r)i = 0.

Thus, for any choice of αi ∈ R, 0 ≤ i ≤ s− 1, if one defines P (k) =
s−1∑
i=1

kiαi, for k ≥ 0 then

0 =
s−1∑
i=0

αiGi(t) = tnP (n)− c1t
n−1P (n− 1)− · · · − crtn−rP (n− r).

Hence, by definition u(n) − c1u(n − 1) − · · · − cru(n − r) = 0. Therefore, u(n) is a solution of the

LHRC.

Now, the second statement follows from Theorem 6.4.10.

Example 4.13. Suppose that an LHRC has roots 2, 2, 3, 3, 3. Then, the general solution is given

by 2n(α1 + nα2) + 3n(β1 + nβ2 + n2β3).

Consider the LNRC in Equation (6.3). If vn and wn are solutions of the LNRC, then un := wn−vn
satisfies the associated LHRC. That is, wn = un + vn shows that any solution wn can be expressed as

a solution of the associated LHRC plus a solution vn of the LNRC. We summarize this finding in the

next theorem.
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Theorem4.14.[LNRC]Consider theLNRCinEquation(6.3).Letunbeageneralsolutionoftheassociated

LHRC.Ifvnisa(particular)solutionoftheLNRC,thenan=un+vnisageneralsolutionoftheLNRC.

Remark 4.15.Theorem 6.4.14 implies that inorder toobtain ageneral solution ofan LNRC ,we need to

solve the associated LHRC for ageneral solution and also obtain aparticular solution of the same LNRC.

UnlikeanLHRC,nogeneralalgorithmisavailable toobtainaparticular solutionofanLNRC.Insomecases,

heuristic methods can beused toobtain aparticular solution .Iff(n)=anornkora linear combination of

these,thenaparticularsolutioncanbeeasilyobtained.

Obtaining particular solution after knowledge of the characteristic roots.

1. If f(n) = an and a is not a root of LHRC, then v(n) = can.

2. If f(n) = an and a is a root of LHRC of multiplicity t, then v(n) = cntan.

3. If f(n) = nk and 1 is not a root of LHRC, then use v(n) = c0 + c1n+ · · ·+ ckn
k.

4. If f(n) = nk and 1 is a root of LHRC of multiplicity t, then

v(n) = nt(c0 + c1n+ · · ·+ ckn
k).

Example 4.16. 1. Solve an = 3an−1 + 2n for n ≥ 1 with a0 = 1.

Ans: Observe that 3 is the characteristic root of the associated LHRC (an = 3an−1). Thus,

the general solution of LHRC is un = 3nα. Note that 1 is not a characteristic root and hence a

particular solution is a+nb, where a and b are to be computed using a+nb = 3(a+(n−1)b)+2n.

This gives a = −3/2 and b = −1. Hence, an = 3nα− n− 3/2. Using a0 = 1, check that α = 5/2.

2. Solve an = 3an−1 − 2an−2 + 3 (5)n for n ≥ 3 with a1 = 1, a2 = 2.

Ans: The associated LHRC (an = 3an−1 − 2an−2) has the characteristic roots 1 and 2. Thus,

the general solution of the LHRC is un = α1n + β 2n. Notice that 5 is not a characteristic root.

So, vn = c 5n is a particular solution of LNRC. That is, c 5n = 3c 5n−1−2c 5n−2 +3 (5)n. It gives

c = 25/4. Hence, the general solution of LNRC is in the form an = α+ β 2n + (25/4)5n. One can

then determine α and β from the initial conditions.

3. In the previous example, take f(n) = 3(2n). Trying c (2)n as a particular solution, we have 4c =

6c−2c+12. This is absurd. The reason is that 2 is a characteristic root of the associated LHRC.

Now, with the choice of c n(2)n as a particular solution, we get 4nc = 6(n− 1)c− 2(n− 2)c+ 12.

It gives c = 6. Hence, the general solution of LNRC is in the form an = α + β2n + 6n2n from

whichtheconstantsαandβcanbecomputedusingtheinitialconditions.

Generating Function from Recurrence Relation

Sometimes we can find a solution to the recurrence relation using the generating function of an; see

the following example.

Example 5.1. 1. Consider solving an = 2an−1 + 1, a0 = 1.

Ans: Let F (x) = a0 + a1x+ · · · be the generating function for {ai}. Then,

F = 1 +

∞∑
i=1

aix
i = 1 +

∞∑
i=1

(2ai−1 + 1)xi =

∞∑
i=0

xi + 2x

∞∑
i=0

aix
i =

1

1− x + 2xF.

Hence, F (x) =
1

(1− x)(1− 2x)
=

2

1− 2x
− 1

1− x so that an = cf[xn, F (x)] = 2n+1 − 1.
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2. Find the ogf F for the Fibonacci recurrence relation an = an−1 + an−2, a0 = 0, a1 = 1.

Ans: Define F (x) =
∑
n≥0

anx
n =

∑
n≥1

anx
n. Then using the recurrence relation, we have

F (x) =
∑
n≥0

anx
n = x+

∑
n≥2

(an−1 + an−2)xn = x+ (x+ x2)F (x).

So, F (x) =
x

1− x− x2
.

Let α = 1+
√

5
2 and β = 1−

√
5

2 . Verify that (1− αx)(1− βx) = 1− x− x2. Then

F (x) =
1√
5

( 1

1− αx −
1

1− βx
)

=
1√
5

∑
n≥0

αnxn −
∑
n≥0

βnxn

 .

Therefore, an = cf[xn, F (x)] =
1√
5

∑
n≥0

(αn − βn), which equals Equation (6.6).

The next result follows using a small calculation and hence the proof is left for the reader.

Theorem5.2. [Obtaining Generating Function from Recurrence Relation] Let an be the solution

of the r-th order LHRC with r initial conditions given by

an = c1an−1 + · · ·+ cran−r with a0 = A0, a1 = A1, ar−1 = Ar−1. (6.7)

Then the generating function of (an) is obtained by taking

F (x) = A0 +A1x+ · · ·+Ar−1x
r−1 + [(c1Ar−1 + · · ·+ crA0]xr + · · ·

= A0 +A1x+ · · ·+Ar−1x
r−1 + crx

rF + cr−1x
r−1(F (x)−A0) + · · ·+

c1x(F (x)−A0 −A1x− · · · −Ar−2x
r−2).

This implies that

F (x) =

r−1∑
i=0

Aix
i − c1x

r−2∑
i=0

Aix
i − c2x

2
r−3∑
i=0

Aix
i − · · · − cr−1x

r−1A0

1 − c1x − · · · − crxr
. (6.8)

Remark 5.3. Then we observe the following about Equation (6.8) in Theorem 6.5.2.

1. Note that the numerator is a polynomial in x of degree at most r− 1, determined by the initial

conditions and the denominator Q(x) is a polynomial of degree r determined by the recurrence

relation.

2. Now consider all solutions of the LHRCC an = c1an−1 + · · · + cran−r of order r. We already

know that they form a vector space of dimension r. Each such solution will give us an ogf as

shown above. Since they have the same denominator, if we take linearly independent solutions,

we will get linearly independent numerators. It now follows that, if P (x) has degree less than r,

then
P (x)

Q(x)
is an ogf for some solution.

3. Note that we can write 1− c1x−· · ·− crxr = (1−α1x)s1 · · · (1−αkxk)sk , where αi’s are distinct

complex numbers and s1 + ·+ sk = r. Let P1(x) have degree less than s1. Then notice that

P1(x)

(1− α1x)s1
=

P1(x)(1− α2x)s2 · · · (1− αkx)sk

(1− α1x)s1(1− α2x)s2 · · · (1− αkx)sk
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is an ogf for some solution. Similarly, P1(x)
(1−α1x)s1 , . . . ,

Pk(x)
(1−αkx)s1 are ogf’s of some solutions. Are

these solutions linearly independent? Yes. Indeed, if those solutions are linearly dependent, then

a linear combination

a1
P1(x)

(1− α1x)s1
+ . . .+ ak

Pk(x)

(1− αkx)s1
= 0.

But this is not possible, otherwise, multiplying by (1− α1x)s1(1− α2x)s2 · · · (1− αkx)sk , we get

a1R1(x) + · · · + akRk(x) is the zero polynomial. As every term except the first one is divisible

by (1− α1x)s1 and the rhs is also divisible by (1− α1x)s1 , and that P1 has degree less than s1,

it follows that a1 = 0. Similarly, all other ai are 0. Thus we already know that the sequences

(αn1 ), (nαn1 ), . . . , (ns1−1αn1 ) are linearly independent. Indeed, if there is a combination

a0(αn1 ) + a1(nαn1 ) + · · ·+ as1−1(ns1−1αn1 ) = (0, 0, · · · ),

as α1 6= 0, we would get

(a0 + a1n+ a2n
2 + · · ·+ as1−1n

s1−1) = (0, 0, · · · ),

implying a0 = a1 = · · · = as1−1 = 0.

4. Now suppose that, the sequences

(αn1 ), (nαn1 ), . . . , (ns1−1αn1 ), · · · , (αnk), (nαnk), . . . , (nsk−1αnk)

are linearly dependent. We then have

(P1(n)αn1 + P2(n)αn2 + · · ·+ Pk(n)αnk) = (0, 0, · · · ),

for some polynomials Pi(n) with degrees less than si, i = 1, . . . , k.

We explain Theorem 6.5.2 by considering the following examples.

Example 5.4. 1. Find the ogf for the Catalan numbers Cn’s.

Ans: Let g(x) = 1 +
∑
n≥1

Cnx
n, where Cn = C(2n,n)

n+1 = 2(2n−1)
n+1 Cn−1 with C0 = 1. Then,

g(x)− 1 =
∑
n≥1

Cnx
n =

∑
n≥1

2(2n− 1)

n+ 1
Cn−1x

n

=

∞∑
n=1

4n+ 4

n+ 1
Cn−1x

n +

∞∑
n=1

−6

n+ 1
Cn−1x

n = 4xg(x) +
−6

x

x∫
0

tg(t)dt.

So, [g(x) − 1 − 4xg(x)]x = −6
x∫
0

tg(t)dt. So, [g(x) − 1 − 4xg(x)]x = −6
x∫
0

tg(t)dt. Differentiate

with respect to x to get

x(1− 4x)g′ + (1− 2x)g = 1.

It is a linear ordinary differential equation. Observe that∫
1− 2x

x(1− 4x)
dx =

∫ [
1

x
+

2

1− 4x

]
dx = ln

(
x√

1− 4x

)
.

We thus multiply the equation with its integrating factor
x√

1− 4x
to obtain

g(x)′
x√

1− 4x
+ g(x)

1− 2x

(1− 4x)3/2
=

1

(1− 4x)3/2
⇔ d

dx

[
g(x)

x√
1− 4x

]
=

1

(1− 4x)3/2
.
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Hence, g(x) x√
1−4x

= 1
2
√

1−4x
+ C, where C ∈ R. Or, equivalently 2xg(x) = 1 + 2C

√
1− 4x.

Note that C = −1
2 as C0 = lim

x→0
g(x) = 1. Therefore, the ogf of the Catalan numbers is

g(x) =
1−
√

1− 4x

2x
.

Alternate. Recall that Cn is the number of representations of the product of n + 1 square

matrices of the same size, using n pairs of brackets. From such a representation, remove the

leftmost and the rightmost brackets to obtain the product of two representations of the form:

A1(A2 · · ·An+1), (A1A2)(A3 · · ·An+1), · · · , (A1 · · ·Ak)(Ak+1 · · ·An+1), · · · , (A1 · · ·An)An+1.

Hence, we see that

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0. (6.9)

Let g(x) be the generating function of Cn; that is, g(x) =
∞∑
n=0

Cnx
n. Then, for n ≥ 1,

cf
[
xn−1, g(x)2

]
= cf

xn−1,

( ∞∑
n=0

Cnx
n

)2
 =

n−1∑
i=0

CiCn−1−i = Cn using Equation (6.9).

That is, cf
[
xn, xg(x)2

]
= Cn. Hence, g(x) = 1 + xg(x)2. Solving for g(x), we get

g(x) =
1

2

(
1

x
±
√

1

x2
− 4

x

)
=

1±
√

1− 4x

2x
.

As the function g is continuous (being a power series in the domain of convergence) and

lim
x→0

g(x) = C0 = 1, it follows that

g(x) =
1−
√

1− 4x

2x
.

2. Fix r ∈ N and let (an) be a sequence with a0 = 1 and
n∑
k=0

akan−k = C(n + r, r) for all n ≥ 1.

Determine an.

Answer: Let g(x) =
∑
n≥0

anx
n. Using C(n+ r, r) = C(n+ (r + 1)− 1, n), we obtain

g(x)2 =
∑
n≥0

(
n∑
k=0

akan−k

)
xn =

∑
n≥0

C(n+ r, r)xn =
∑
n≥0

C(n+ r, n)xn =
1

(1− x)r+1
.

Hence, an = cf
[
xn, 1

(1−x)(r+1)/2

]
. For example, when r = 2

an = (−1)nC(−3/2, n) =
3 · 5 · 7 · · · (2n+ 1)

2n n!
=

(2n+ 1)!

22nn!n!
.

3. Determine the sequence {f(n,m) : n,m ∈W} which satisfies f(n, 0) = 1 for all n ≥ 0, f(0,m) =

0 for all m > 0, and

f(n,m) = f(n− 1,m) + f(n− 1,m− 1) for n > 0, m > 0. (6.10)
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Answer: For n > 0, define Fn(x) =
∑
m≥0

f(n,m)xm = 1 +
∑
m≥1

f(n,m)xm. Then F1(x) = 1 + x,

and for n ≥ 2,

Fn(x) =
∑
m≥0

f(n,m)xm = 1 +
∑
m≥1

(f(n− 1,m) + f(n− 1,m− 1))xm

= 1 +
∑
m≥1

f(n− 1,m)xm +
∑
m≥1

f(n− 1,m− 1)xm

= Fn−1(x) + xFn−1(x) = (1 + x)Fn−1(x).

By induction it follows that Fn(x) = (1 + x)n. Thus,

f(n,m) = cf[xm, (1 + x)n] =

{
C(n,m) if 0 ≤ m ≤ n
0 if m > n.

Alternate. For m > 0, define Gm(y) =
∑
n≥0

f(n,m)yn =
∑
n≥1

f(n,m)yn. Then, G1(y) =

y

(1− y)2
, and for m ≥ 2, Equation (6.10) gives

Gm(y) =
∑
n≥1

f(n,m)yn =
∑
n≥1

(f(n− 1,m) + f(n− 1,m− 1)) yn

=
∑
n≥1

f(n− 1,m)yn +
∑
n≥1

f(n− 1,m− 1)yn

= yGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1− yGm−1(y). As G1(y) =
y

(1− y)2
, one has Gm(y) =

ym

(1− y)m+1
. Thus,

f(n,m) = cf

[
yn,

ym

(1− y)m+1

]
= cf

[
yn−m,

1

(1− y)m+1

]
=

{
C(n,m) if 0 ≤ m ≤ n
0 if m > n.

4. Determine the sequence {S(n,m) : n,m ∈W} which satisfies S(0, 0) = 1, S(n, 0) = 0 for n > 0,

S(0,m) = 0 for m > 0, and

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1), for n > 0, m > 0. (6.11)

Answer: For n > 0, define Gm(y) =
∑
n≥0

S(n,m)yn =
∑
n≥1

S(n,m)yn. Then G1(y) = y
1−y , and for

m ≥ 1, Equation (6.11) gives

Gm(y) =
∑
n≥0

S(n,m)yn =
∑
n≥1

(mS(n− 1,m) + S(n− 1,m− 1)) yn

= m
∑
n≥1

S(n− 1,m)yn +
∑
n≥1

S(n− 1,m− 1)yn

= myGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1−myGm−1(y). By induction it follows that

Gm(y) =
ym

(1− y)(1− 2y) · · · (1−my)
= ym

m∑
k=1

αk
1− ky ,
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where αk =
(−1)m−kkm

k! (m− k)!
for 1 ≤ k ≤ m. Then

S(n,m) = cf

[
yn, ym

m∑
k=1

αk
1− ky

]
=

m∑
k=1

cf

[
yn−m,

αk
1− ky

]

=

m∑
k=1

αkk
n−m =

m∑
k=1

(−1)m−kkn

k! (m− k)!

=
1

m!

m∑
k=1

(−1)m−kknC(m, k) =
1

m!

m∑
k=1

(−1)k(m− k)nC(m, k).

(a) The identity S(n,m) =
1

m!

m∑
k=1

(−1)k(m−k)nC(m, k) is known as the Stirling’s Identity.

(b) As there is no restriction on n,m ∈ N0, Equation (6.13) is also valid for n < m. But, we

know that S(n,m) = 0, whenever n < m. Hence, we get the following identity,

m∑
k=1

(−1)m−k kn−1

(k − 1)! (m− k)!
= 0 whenever n < m.

5. [Bell Numbers] Recall that the n-th Bell number b(n) for n ∈ N, is the number of partitions

of {1, 2, . . . , n}. By convention we take b(0) = 1. For n ≥ 1,

b(n) =

n∑
m=1

S(n,m) =
∑
m≥1

S(n,m) =
∑
m≥1

m∑
k=1

(−1)m−k kn−1

(k − 1)! (m− k)!

=
∑
k≥1

kn

k!

∑
m≥k

(−1)m−k

(m− k)!
=

1

e

∑
k≥1

kn

k!
=

1

e

∑
k≥0

kn

k!

as 0n = 0 for n ≥ 1. We see that Equation (6.14) is valid even for n = 0. Notice that b(n) has

terms of the form
kn

k!
. So, we compute its egf as follows:

B(x) = 1 +
∑
n≥1

b(n)
xn

n!
= 1 +

∑
n≥1

1

e

∑
k≥1

kn

k!

 xn

n!

= 1 +
1

e

∑
k≥1

1

k!

∑
n≥1

kn
xn

n!
= 1 +

1

e

∑
k≥1

1

k!

∑
n≥1

(kx)n

n!

= 1 +
1

e

∑
k≥1

1

k!

(
ekx − 1

)
= 1 +

1

e

∑
k≥1

(
(ex)k

k!
− 1

k!

)
= 1 +

1

e

(
ee
x − 1− (e− 1)

)
= ee

x−1.

Recall that ee
x−1 is a valid formal power series (see Remark 6.3.5). Taking logarithm of Equa-

tion (6.15), we get logB(x) = ex − 1. Hence, B′(x) = exB(x), or equivalently

B′(x) =
∑
n≥1

b(n)xn−1

(n− 1)!
= ex

∑
n≥0

b(n)
xn

n!
=
∑
m≥0

xm

m!
·
∑
n≥0

b(n)
xn

n!
.

Thus,

b(n)

(n− 1)!
= cf

[
xn−1, B′(x)

]
= cf

xn−1,
∑
m≥0

xm

m!
·
∑
n≥0

b(n)
xn

n!

 =
n−1∑
m=0

1

(n− 1−m)!
· b(m)

m!
.

Therefore, b(n) =
n−1∑
m=0

C(n− 1,m)b(m) for n ≥ 1.
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Exercise5.5.1.Findtherecurrencerelation(s)forthenumberofbinarywordswithouthaving

sub-words 00 and 111.

2. Find the number of subsets (including the empty set) of {1, . . . , n} not containing consecutive

integers.

3. Let Fn be the nth Fibonacci number. Prove that if n,m ∈ N, then Fn divides Fnm.

4. In a particular semester 6 students took admission in our PhD program. There were 9 professors

who were willing to supervise these students. As a rule ‘a student can have either one or two

supervisors’. In how many ways can we allocate supervisors to these students if all the ‘will-

ing professors’ are to be allocated? What if we have an additional condition that exactly one

supervisor gets to supervise two students?

5. (a) Prove combinatorially that Dn = (n− 1)(Dn−1 +Dn−2) for n ≥ 2.

(b) Use (a) to show that the egf of Dn is
e−x

1− x .

6. (a) In how many ways can one distribute 10 identical chocolates among 10 students?

(b) In how many ways can one distribute 10 distinct chocolates among 10 students?

(c) In how many ways can one distribute 10 distinct chocolates among 10 students so that each

receives one?

(d) In how many ways can one distribute 15 distinct chocolates among 10 students so that each

receives at least one?

(e) In how many ways can one distribute 10 out of 15 distinct chocolates among 10 students so

that each receives one?

(f) In how many ways can one distribute 15 distinct chocolates among 10 students so that each

receives at most three?

(g) In how many ways can one distribute 15 distinct chocolates among 10 students so that each

receives at least one and at most three?

(h) In how many ways can one distribute 15 identical chocolates among 10 students so that

each receives at most three?

7. (a) In how many ways can one carry 15 distinct objects with 10 identical bags? Answer using

S(n, r).

(b) In how many ways can one carry 15 distinct objects in 10 identical bags with no empty bag?

Answer using S(n, r).

(c) In how many ways can one carry 15 distinct objects in 10 identical bags with each bag

containing at most three objects?

(d) In how many ways can one carry 15 identical objects in 10 identical bags?

(e) In how many ways can one carry 15 identical objects in 10 identical bags with no empty

bag?

(f) In how many ways can one carry 15 identical objects in 20 identical bags?

8. What is the number of integer solutions of x+ y + z = 10 with x ≥ −1, y ≥ −2 and z ≥ −3?

9. Is the number of solutions of x+ y+ z = 10 in non-negative multiples of 1
2 (x, y, z are allowed to

be 0, 1/2, 1, 3/2, . . .) at most four times the number of non-negative integer solutions of x+y+z =

10?

10. How many words of length 8 can be formed using the English alphabet, where each letter can

appear at most twice? Give answer using generating function.
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GENERATING FUNCTION FROM RECURRENCE RELATION

11. Let p1, . . . , pn, n ≥ 2, be distinct prime numbers. In how many ways can we partition the

set {p1, . . . , pn, p
2
1, . . . , p

2
n} into subsets of size two such that no prime is in the same subset

containing its square?

12. What is the value of
15∑
k=0

(−1)kC(15, k)(15− k)5?

13. Give your answers to the following questions using generating functions:

(a) What is the number of partitions of n with entries at most r?

(b) What is the number of partitions of n with at most r parts?

(c) What is the number of partitions of n with exactly r parts (πn(r))?

(d) What is the number of partitions of n+ C(r, 2) with r distinct parts?

(e) What is the number of partitions of n with distinct entries?

(f) What is the number of partitions of n with odd entries?

(g) What is the number of partitions of n with distinct odd entries?

(h) What is the number of self conjugate partitions of n?

14. We summarize our findings about partitions in the following table.

Objects-n

distinct?

Places-r

distinct?

Places

nonempty?
Relate Number

Y Y Y Onto functions
r!S(n, r) =
r−1∑
i=0

(−1)iC(r, i)(r − i)n

Y Y N All functions rn

Y N Y
r-partition of a

set
S(n, r)

Y N N
All partitions of

a set
b(n) =

r∑
i=1

S(n, i)

N Y Y
Positive integer

solutions
C(n− 1, r − 1)

N Y N
Nonnegative

integer solutions
C(n+ r − 1, r − 1)

N N Y r-partition of n πn(r) =

cf
[
xn−r, 1

(1−x)(1−x2)···(1−xr)

]
N N N

Partitions of n

of length ≤ r
r∑
i=1

πn(i)

15. How many words of length 15 are there using the letters A,B,C,D,E such that each letter must

appear in the word and A appears an even number of times? Give your answers using generating

function.

16. The characteristic roots of an LHRC are 2, 2, 2, 3, 3. What is the form of the general solution?

17. Consider the LNRC an = c1an−1 + · · ·+ cran−r + 5n. Give a particular solution.

18. Obtain the ogf for an, where an = 2an−1 − an−2 + 2n, a0 = 0, a1 = 1.

19. Solve the recurrence relation an = 2an−1 − an−2 + 2n + 5, a0 = 0, a1 = 1.
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20. Find the number of words of size 12 made using letters from {A,B,C} which do not have the

sub-word BCA. For instance, BCCABCCABCCA is such a word, but ABCABCCCCCBA is not.

21. Find the number of 8 letter words made using letters from {A,B,C,D} in which 3 consecutive

letters are not allowed to be the same.

22. We have 3 blue bags, 4 red bags and 5 green bags. We have many balls of each of the colors blue,

red and green. What is the the smallest positive integer n so that if we distribute n balls (without

seeing the colors) into these bags, then at least one of the following three conditions is met?

Condition 1: A blue bag contains 3 blue balls or 4 red balls or 5 green balls.

Condition 2: A red bag contains 3 blue balls or 5 red balls or 7 green balls.

Condition 3: A green bag contains 3 blue balls or 6 red balls or 9 green balls.

23. Let f(x) be a polynomial with integer coefficients. What is the smallest natural number n such

that if f(x) = 2009 has n distinct integer roots, then f(x) = 9002 does not have an integer root?

24. My friend says that he has n ≥ 2 subsets of {1, 2, . . . , 14} each of which has size 6. Give a value

of n so that we can guarantee ‘some two of his subsets have 3 elements in common’, without

seeing his collection? What is the smallest possible value of n?

25. My class has n CSE, m MSC and r MC students. Suppose that t copies of the same book are

to be distributed so that each branch gets at least s copies. In how many ways can this be done,

if each student gets at most one? In how many ways can this be done, without the previous

restriction? Answer using generating functions.

26. My class has n CSE, m MSC and r MC students. Suppose that t distinct books are to be

distributed so that each branch gets at least s. In how many ways can this be done, if each

student gets at most one? In how many ways can this be done, without the previous restriction?

Answer only using generating function.

27. My class has N students. To conduct an exam, we have M identical answer scripts. In how

many ways can we distribute the answer scripts so that each student gets at least 2. Answer

using generating functions.

28. My class has N students. In an examination paper, there are M questions. Each student answers

all the questions in an order decided by him/her. In how many ways can it happen that some

three or more students have followed the same order? Answer using generating function.

29. Eleven teachers attended the Freshers’ Party. There were 4 types of soft drinks available. In how

many ways a total of 18 glasses of soft drinks can be served to them, in general? Answer using

generating function.
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GRAPH THEORY: BASIC DEFINITIONS AND THEOREMS

1. Definitions

Definition 1. A graph G = (V,E) consists of a set V of vertices (also called nodes) and
a set E of edges.

Definition 2. If an edge connects to a vertex we say the edge is incident to the vertex and
say the vertex is an endpoint of the edge.

Definition 3. If an edge has only one endpoint then it is called a loop edge.

Definition 4. If two or more edges have the same endpoints then they are called multiple
or parallel edges.

Definition 5. Two vertices that are joined by an edge are called adjacent vertices.

Definition 6. A pendant vertex is a vertex that is connected to exactly one other vertex
by a single edge.

Definition 7. A walk in a graph is a sequence of alternating vertices and edges v1e1v2e2 . . . vnenvn+1

with n ≥ 0. If v1 = vn+1 then the walk is closed. The length of the walk is the number of
edges in the walk. A walk of length zero is a trivial walk.

Definition 8. A trail is a walk with no repeated edges. A path is a walk with no repeated
vertices. A circuit is a closed trail and a trivial circuit has a single vertex and no edges.
A trail or circuit is Eulerian if it uses every edge in the graph.

Definition 9. A cycle is a nontrivial circuit in which the only repeated vertex is the first/last
one.

UNIT 5
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Definition 10. A simple graph is a graph with no loop edges or multiple edges. Edges
in a simple graph may be specified by a set {vi, vj} of the two vertices that the edge makes
adjacent. A graph with more than one edge between a pair of vertices is called a multigraph
while a graph with loop edges is called a pseudograph.

Definition 11. A directed graph is a graph in which the edges may only be traversed in
one direction. Edges in a simple directed graph may be specified by an ordered pair (vi, vj)
of the two vertices that the edge connects. We say that vi is adjacent to vj and vj is
adjacent from vi.

Definition 12. The degree of a vertex is the number of edges incident to the vertex and
is denoted deg(v).

Definition 13. In a directed graph, the in-degree of a vertex is the number of edges
incident to the vertex and the out-degree of a vertex is the number of edges incident
from the vertex.

Definition 14. A graph is connected if there is a walk between every pair of distinct
vertices in the graph.

Definition 15. A graph H is a subgraph of a graph G if all vertices and edges in H are
also in G.

Definition 16. A connected component of G is a connected subgraph H of G such that
no other connected subgraph of G contains H.

Definition 17. A graph is called Eulerian if it contains an Eulerian circuit.

Definition 18. A tree is a connected, simple graph that has no cycles. Vertices of degree 1
in a tree are called the leaves of the tree.

Definition 19. Let G be a simple, connected graph. The subgraph T is a spanning tree
of G if T is a tree and every node in G is a node in T .

Definition 20. A weighted graph is a graph G = (V,E) along with a function w : E → R
that associates a numerical weight to each edge. If G is a weighted graph, then T is a
minimal spanning tree of G if it is a spanning tree and no other spanning tree of G has
smaller total weight.
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Definition 21. The complete graph on n nodes, denoted Kn, is the simple graph with
nodes {1, . . . , n} and an edge between every pair of distinct nodes.

Definition 22. A graph is called bipartite if its set of nodes can be partitioned into two
disjoint sets S1 and S2 so that every edge in the graph has one endpoint in S1 and one
endpoint in S2.

Definition 23. The complete bipartite graph on n, m nodes, denoted Kn,m, is the
simple bipartite graph with nodes S1 = {a1, . . . , an} and S2 = {b1, . . . , bm} and with edges
connecting each node in S1 to every node in S2.

Definition 24. Simple graphs G and H are called isomorphic if there is a bijection f from
the nodes of G to the nodes of H such that {v, w} is an edge in G if and only if {f(v), f(w)}
is an edge of H. The function f is called an isomorphism.

Definition 25. A simple, connected graph is called planar if there is a way to draw it on
a plane so that no edges cross. Such a drawing is called an embedding of the graph in the
plane.

Definition 26. For a planar graph G embedded in the plane, a face of the graph is a region
of the plane created by the drawing. The area of the plane outside the graph is also a face,
called the unbounded face.
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GRAPHTHEORY:BASICDEFINITIONSANDTHEOREMS

Theorems

Theorem 1. Let G be a connected graph. Then G is Eulerian if and only if every vertex in
G has even degree.

Theorem 2 (Handshaking Lemma). In any graph with n vertices vi and m edges
n∑

i=1

deg(vi) = 2m

Corollary 1. A connected non-Eulerian graph has an Eulerian trail if and only if it has
exactly two vertices of odd degree. The trail begins and ends these two vertices.

Theorem 3. If T is a tree with n edges, then T has n + 1 vertices.

Theorem 4. Two graphs that are isomorphic to one another must have

(1) The same number of nodes.
(2) The same number of edges.
(3) The same number of nodes of any given degree.
(4) The same number of cycles.
(5) The same number of cycles of any given size.

Theorem 5 (Kuratowski’s Theorem). A graph G is nonplanar if and only if it contains a
“copy” of K3,3 or K5 as a subgraph.

Theorem 6 (Euler’s Formula for Planar Graphs). For any connected planar graph G em-
bedded in the plane with V vertices, E edges, and F faces, it must be the case that

V + F = E + 2.
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Graphs and Subgraphs

1.1 Introduction

Graph theory is a branch of mathematics which deals the problems, with the

help of diagrams. There are may applications of graph theory to a wide variety

of subjects which include operations research, physics, chemistry, computer

science and other branches of science. In this chapter we introduce some basic

concepts of graph theory and provide variety of examples. We also obtain

some elementary results.

1.2 What is a graph ?

Definition 1.2.1. A graph G consists of a pair (V (G), X(G)) where V (G)

is a non empty finite set whose elements are called points or vertices and

X(G) is a set of unordered pairs of distinct elements of V (G). The elements

of X(G) are called lines or edges of the graph G. If x = {u, v} ∈ X(G), the

line x is said to join u and v. We write x = uv and we say that the points u

and v are adjacent. We also say that the point u and the line x are incident

with each other. If two lines x and y are incident with a common point then

they are called adjacent lines. A graph with p points and q lines is called a

(p, q) graph. When there is no possibility of confusion we write V (G) = V and

X(G) = X .
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a

b c d

Figure 1.1: A an example of a (4, 3) graph

1.3 Representation of a graph

It is customary to represent a graph by a diagram and refer to the diagram

itself as the graph. Each point is represented by a small dot and each line

is represented by a line segment joining the two points with which the line

is incident. Thus a diagram of graph depicts the incidence relation holding

between its points and lines. In drawing a graph it is immaterial whether the

lines are drawn straight or curved, long or short and what is important is the

incidence relation between its points and lines.

Example 1.3.1.

1. Let V = {a, b, c, d} and X = {{a, b}, {a, c}{a, d}}, G = (V,X) is a (4, 3)

graph. This graph can be represented by the diagram given in figure

1.1. In this graph the points a and b are adjacent whereas b and c are

nonadjacent.

2. Let V = {1, 2, 3, 4} and X = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Then G = (V,X) is a (4, 6) graph. This graph is represented by the

diagram given in figure 1.2 Although the lines {1, 2} and {2, 4} intersect

in the diagram, their intersection is not a point of the graph. Figure 1.3

is another diagram for the graph given in figure 1.2.

3. The (10, 15) graph given in figure 1.4 is called the Petersen graph.

Remark 1.3.1. The definition of a graph does not allow more than one line

joining two points. It also does not allow any line joining a point to itself.

Such a line joining a point to itself is called a loop.
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4

1 2

3

Figure 1.2: An example of a (4, 6) graph

1

2 3

4

Figure 1.3: Another representation of graph shown in figure 1.1

a

b

c
d

e

1

2

3 4

5

Figure 1.4: Peterson graph
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Figure 1.5: A multiple graph

Figure 1.6: A pseudograph

Definition 1.3.1. If more than one line joining two vertices are allowed, the

resulting object is called a multigraph. Line joining the same points are

called multi lines. If further loops are also allowed, the resulting object is

called Pseudo graph.

Example 1.3.2. Figure1.5 is a multigraph and figure 1.6 is a pseudo graph.

Remark 1.3.2. Let G be a (p, q) graph. Then q 6

(

p

2

)

and q =

(

p

2

)

iff

any two distinct points are adjacent.

Definition 1.3.2. A Graph in which any two distinct points are adjacent is

called a complete graph. The complete graph with p points is denoted by

Kp. K3 is called a triangle. The graph given Fig. 1.3 is K4 and K5 is shown

inFig.1.7
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Figure 1.7: K5

Definition 1.3.3. A graph whose edge set is empty is called a null graph or

a totally disconnected graph.

Definition 1.3.4. A graph G is called labeled if its p points are distinguished

from one another by names such as v1, v2 · · · vp.

The graphs given in Fig. 1.1 and Fig. 1.3 are labelled graphs and the graph

in Fig. 1.7 is an unlabelled graph.

Definition 1.3.5. A graph G is called a bigraph or bipartite graph if V

can be partitioned into two disjoint subsets V1 and V2 such that every line of

G joins a point of V1 to a point of V2. (V1, V2)is called a bipartition of G. If

further G contains every line joining the points of V1 to the points of V2 then

G is called a complete bigraph. If V1 contains m points and V2 contains n

points then the complete bigraph G is denoted by Km,n. The graph given in

Fig. 1.1 is K1,3. The graph given in Fig. 1.8 is K3,3. K1,m is called a star for

m ≥ 1.

1.4 Exercise

1. Draw all graphs with 1, 2, 3 and 4 points.

2. Find the number of points and lines in Km,n.

3. Let V = {1, 2, 3, · · · , n}. Let X = { {i, j}| i, j ∈ V and are relatievly

prime}. The resulting graph (V,X) is denoted by Gn. Draw G4 and G5.

1.5 Degrees

Definition 1.5.1. The degree of a point vi in a graph G is the number of

linesincidentwithvi .Thedegreeofvi isdenotedbydG(vi)ordegvi ord(vi).
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Figure 1.8: bigraph

A point v of degree 0 is called an isolated point. A point v of degree 1 is

called an endpoint.

Theorem 1.5.1. The sum of the degrees of the points of a graph G is twice

the number of lines. That is,
∑

i degvi = 2q.

Proof. Every line of G is incident with two points. Hence every line contribute

2 to the sum of the degrees of the points. Hence
∑

i degvi = 2q.

Corollary 1.5.1. In any graph G the number of points of odd degree is even.

Proof. Let v1, v2, · · · , vk denote the point of odd degree and w1, w2 · · · , wm

denote the points of even degree in G. By theorem 1.5.1,
∑k

i=1 deg(vi) +
∑w

i=1 degwi = 2q which is even. Further
∑m

i=1 degwi is even. Hence
∑m

i=1 degvi

is also even. But degvi is odd for each i. Hence k must be even.

Definition 1.5.2. For any graph G,we define

δ(G) = min{degv/v ∈ V (G)} and

∆(G) = max{degv/v ∈ V (G)}.

It all the points of G have the same degree r, then δ(G) = ∆(G) = r and this

case G is called a regular graph of degree r. A regular graph of degree 3 is

called a cubic graph. For example, the complete graph Kp is regular of degree

p− 1.

Theorem 1.5.2. Every cubic graph has an even number of points.

Proof. Let G be a cubic graph with p points, then
∑

degv = 3p which is even

by theorem 1.5.1. Hence p is even.
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Solved Problems

Problem 1. Let G be a (p, q) graph all of whose points have degree k or k+1.

If G has t > 0 points of degree k, show that t = p(k + 1)− 2q.

Solution

Since G has t points of degree k, the remaining p− t points have degree k+1.

Hence
∑

v∈V d(v) = tk + (p− t)(k + 1).

∴ tk + (p− t)(k + 1) = 2q

∴ t = p(k + 1)− 2q.

Problem 2. Show that in any group of two or more people, there are always

two with exactly the same number of friends inside the group.

Solution. We construct a graph G by taking the group of people as the set of

points and joining two of them if they are friends, then degv is equal to number

of friends of v and hence we need only to prove that at least two points of G

have the same degree. Let V (G) = {v1, v2, · · · , vp.}. Clearly 0 ≤ degvi ≤ p−1

for each i. Suppose no two points of G have the same degree. Then the degrees

of v1, v2, · · · , vp. are the integers 0, 1, 2, · · · , p − 1 in some order. However a

point of degree p − 1 is joined to every other point of G and hence no point

can have degree zero which is a contradiction. Hence there exist two points of

G with equal degree.

Problem 3. Prove that δ ≤ 2q/p ≤ ∆

Solution

Let V (G) = {v1, v2, · · · , vp}. We have δ ≤ degvi ≤ ∆. for all i. Hence

pδ ≤

p
∑

i=1

degvi ≤ p∆.

∴ pδ ≤ 2q ≤ p∆ (by theorem2.1)

∴ δ ≤
2q

p
≤ ∆

Problem 4. Let G be a k-regular bibgraph with bipartion (V1, V2) and k > 0.

Prove that |V1| = |V2| .

Solution

SinceeverylineofGhasoneendinV1 andotherendinV2 itfollowsthat
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∑

v∈V1
d(v) =

∑

v∈V2
d(v) = q. Also d(v) = k for all v ∈ V = V1 ∪ V2. Hence

∑

v∈V1
d(v) = k|V1| and

∑

v∈V2
d(v) = k|V2| so that k |V1| = k|V2|. Since k > 0,

we have |V1| = |V2|.

1.7 Exercise

1. Given an example of a regular graph of degree 0

2. Give three examples for a regular graph of degree 1

3. Give three examples for a regular graph of degree 2

4. What is the maximum degree of any point in a graph with p points?

5. Show that a graph with p points is regular of degree p− 1 if and only if

it is complete

6. Let G be a graph with at least two points show that G contains two

vertices of the same degree

7. A (p, q) graph has t points of degree m and all other points are of degree

n. Show that (m− n)t+ pn = 2q.

1.8 Subgraphs

Definition 1.8.1. A graph H = (V1, X1) is called subgraph of G = (V,X).

V1 ⊆ V and X1 ⊆ X . If H is a subgraph of G we say that G is a supergraph

of H . H is called a spanning subgraph of G if H is the maximal subgraph

of G with point set V1. Thus, if H is an induced subgraph of G, two points are

adjacent in H they are adjacent in G. If V2 ⊆ V , then the induced subgraph

of G induced by V2 and is denoted by G[X ]. If X2 ⊆ X , then the sub graph

of G with line set X2 and is denoted by G[X2]

Examples. Consider the petersen graph G given in Fig. 1.4. The graph

given in Fig.1.9 is a subgraph of G. The graph given in Fig.1.10 is an induced

subgraph of G. The graph given in Fig.1.10 is an induced subgraph of G. The

graphgiveninFig1.11isaspanningsubgraphofG.
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Figure 1.9: Subgraph
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Figure 1.10: Induced subgraph
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Figure 1.11: Spanning subgraph
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Figure 1.12:

Definition 1.8.2. Let G = (V,X) be a graph.Let vi ∈ V . The subgraph

of G obtained by removing the point vi and all the lines incident with vi is

called the subgraph obtained by the removal of the point vi and is

denoted by G-vi. Thus if G− vi = (Vi, Xi) then Vi = V − vi and Xi = {x/x ∈

X and x is not incident with vi}. Clearly G− vi is an induced subgraph of G.

Let xi ∈ X . Then G− xi = (V,X − xj) is called the subgraph of G obtained

by the removal of the line xj . Clearly G − xj is a spanning subgraph of G

which contains all the lines of G except xj . The removal of a set of points or

lines from G is defined to be the removal of single elements in succession.

Definition 1.8.3. Let G = (V,X) be a graph. Let vi, vj be two points which

are not adjacent in G. Then G + vivj = (V,X
⋃

{vi, vj}) is called the graph

obtained by the addition of the line vivj to G

Clearly G+vivj is the smallest super graph of G containing the line vivj .We

listed these concepts in Fig1.12. The proof given in the following theorem is

typical of several proofs in theory.

Theorem 1.8.1. The maximum number of lines among all p point graph no

triangles is
[

p2

4

]

. ([x] denotes the greatest integer not exceeding the the real

number x).

Proof. The result can be easily verified for p ≤ 4. For p > 4, we will prove by

induction separately for odd p and for every p.

Part 1. For odd p.

Suppose the result is true for all odd p ≤ 2n+ 1. Now let G be a (p, q) graph

with p = 2n + 3 and no triangles. Ifq = 0, then q ≤
[

p2

4

]

. Hence let q > 0.

Let u and v be a pair of adjacent points. The subgraph G′ = G− {u, v} has
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2n + 1 points and no triangles. Hence induction hypothesis,

q(G′) ≤

[

(2n+ 1)2

4

]

=

[

4n2 + 4n+ 1

4

]

=

[

n2 + n+
1

4

]

= n2 + n

Since G has no triangles, no point of G′ can be adjacent to both u and G.

Now, lines in G are of three types.

1. Lines of G′(≤ n2 + n in number by(1))

2. Lines between G′ and {u, v}(≤ 2n+ 1 innumberby(2))

3. Line uv

Hence

q ≤ (n2 + n) + (2n+ 1) + 1 = n2 + 3n + 2

=
1

4
(4n2 + 12n+ 8)

=

(

4n2 + 12n+ 9

4
−

1

4

)

=

[

(2n+ 3)2

4

]

=

[

p2

4

]

Also for p = 2n + 3, the graph Kn+1,n+2 has no triangles and has (n +

1)(n+ 2) = n2 + 3n+ 2 = [p
2

4
] lines. Hence this maximum q is attained.

Part 2. For even p.

Suppose the result is true for all even p ≤ 2n. Now let G be a (p, q) graph

with p = 2n+ 2 and no triangles. As before, let u and v be a pair of adjacent

points in G and let G′ = G− {u, v}.

Now G′ has 2n points and no triangles. Hence by hypothesis,

q(G′) ≤

[

(2n)2

4

]

= n2

Lines in G are of three types.
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(i) Lines of G′

(ii) Lines between G′ and {u, v}

(iii) line uv.

Hence q ≤ n2 + 2n + 1 = (n + 1)2 = (2n+2)2

4
= [p2/4]. Hence the result holds

for even p also. We see that for p = 2n+2. Kn+1,n+1 is a (p, [p
2

4
] graph without

triangles.

1.9 Exercise

1. Show that Kp − v = Kp−1 for any point v of Kp.

2. Show that an induced subgraph of a complete graph is complete.

3. Let G = (V,X) be a (p, q) graph. Let v ∈ V and x ∈ X . Find the

number of points and lines in G− v and G− x.

4. If every induced proper subgraph of a graph G is complete and p > 2

then show that G is complete.

5. If every induced proper subgraph of a graph G is totally disconnected,

then show that G is totally disconnected.

6. Show that in a graph G every induced graph is complete iff every induced

graph with two points is complete.

1.10 Isomorphism

Definition 1.10.1. Two graphs G1 = (V1, X1) and G2 = (V2, X2) are said

to be isomorphic if there exists a bijection f : V1 → V2 such that u, v are

adjacent in G1 if and only if f(u), f(v) are adjacent in G2. If G1 is isomorphic

to G2, we write G1
∼= G2. The map f is called an isomorphism from G1 to G2.

Example 1.10.1. 1. The graph given in Fig. 2.2 and Fig. 2.3 are isomor-

phic.

2. The two graphs given in Fig.1.13 are isomorphic. f(ui) = vi is an iso-

morphism between these two graphs.
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u1 u2

u3u4

u5

v1
v2

v3
v4

v5

Figure 1.13:

Figure 1.14:

3. The three graphs given in Fig.1.14 are isomorphic with each other.

Theorem 1.10.1. Let f be an isomorphism of the graph G1 = (V1, X1) to the

graph G2 = (V2, X2). Let v ∈ V1. Then deg v = deg f(v). i.e., isomorphism

preserves the degree of vertices.

Proof. A point u ∈ V1 is adjacent to v in G1 iff f(u) is adjacent to f(v) in G2.

Also f is bijection. Hence the number of points in V1 which are adjacent to v

is equal to the number of points in V2 which are adjacent to f(v). Hence deg

v = deg f(v).

Remark 1.10.1. Two isomorphic graphs have the same number of points

and the same number of lines. Also it follows from Theorem 1.10.1that two

isomorphic graphs have equal number of points with a given degree. However

these conditions are not sufficient to ensure that two graphs are isomorphic.

For example consider the two graphs given in figure 1.15. By theorem 1.10.1,

under any isomorphism w4 must correspond to v3;w1, w5, w6 must correspond

to v1, v5, v6 in some order. The remaining two points w2, w3 are adjacent

whereas v2, v4 are not adjacent. Hence there does not exist an isomorphism
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w
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w2  w3 w4
w5
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v1 v2 v3 v4

v6

v5

Figure 1.15:

Figure 1.16:

between these two graphs. However both graphs have exactly one vertex of

degree 3, three vertices of degree 1 and two vertices of degree 2.

Definition 1.10.2. An isomorphism of a graph G onto itself is called an

automorphism of G.

Remark 1.10.2. Let Γ(G) denote the set of all automorphism of G. Clearly

the identity map i : V → V defined by i(v) = v is an automorphism of G

so that i ∈ Γ(G). Further if α and β are automorphisms of G then α.β and

α−1 are also automorphism of G. Hence Γ(G) is a group and is called the

automorphism group of G.

Definition 1.10.3. Let G = (V,X) be a graph. The complement G of G

is defined to be the graph which has V as its set of points and two points

are adjacent in G iff they are not adjacent in G. G is said to be a self

complementary graph if G is isomorphic to G.

For example the graphs given in Fig.1.16 are self complementary graphs.

It has been conjectured by Ulam that the collection of vertex deleted sub-

graphs G− v determines G upto isomorphism.

Solved Problems

Problem5.Provethatanyselfcomplementarygraphshas4nor4n+1points
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Solution. Let G = (V (G), X(G)) be a self complementary graph with p

points.

Since G is self complementary, G is isomorphic to G.

∴ |X(G)| = |X(G)|. Also

|X(G)|+ |X(G)| =

(

p

2

)

= p(p−1)
2

∴ 2|X(G)| =
p(p− 1)

2

∴ |X(G)| =
p(p− 1)

4
is an integer.

Further one of p or p− 1 is odd. Hence p or p− 1 is a multiple of 4. ∴ p is of

the the form 4n or 4n + 1.

Problem 6. Prove that Γ(G) = Γ(G).

Solution. Let f ∈ Γ(G) and let u, v ∈ V (G).

Then u, v are adjacent in G ⇔ u, v are not adjacent in G.

⇔ f(u), f(v) are not adjacent in G

(since f is an automorphism of G)

⇔ f(u), f(v) are adjacent in G.

Hence f is an automorphism of G.

∴ f ∈ Γ(G) and hence Γ(G) ⊆ Γ(G).

Similarly Γ(G) ⊆ Γ(G) so that Γ(G) = Γ(G).

1.11 Exercise

1. Prove that any graph with p points is isomorphic to a subgraph of Kp.

2. Show that isomorphism is an equivalence relation among graphs.

3. Show that the two graphs given in Fig. 2.17 are not isomorphic.
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Module 2

Eulerian graphs, Hamiltonian

graphs and Trees

2.1 Eulerian graphs

Definition 2.1.1. A closed trail containing all the points and lines is called

an eulerian trail. A graph having an eulerian trail is called an eulerian graph.

Remark 2.1.1. In an eulerian graph, for every pair of points u and v there

exists at least two edge disjoint u−v trails and consequently there are at least

two edge disjoint u− v paths. The graph shown in figure 2.1 is eulerian.

Theorem 2.1.1. If G is a graph in which the degree of every vertex is at least

two then G contains a cycle.

Proof. First, we construct a sequence of verices v1, v2, v3, . . . as follows. Choose

any vertex v. Let v1 be any vertex adjacent to v. Let v2 be any vertex adjacent

Figure 2.1: A Eulerian graph
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to v1 other than v. At any stage, if the vertex vi, i ≥ 2 is already chosen, then

choose vi+1 to be any vertex adjacent to vi other than vi−1. Since degree of

each vertex is at least 2, the existence of vi+1 is always guaranteed. G has only

finite number of vertices, at some stage we have to choose a vertex which has

been chosen before. Let vk be the first such vertex and let vk = vi where i < k.

Then vivi+1 . . . vk is a cycle.

Theorem 2.1.2. Let G be a connected graph. Then the following statements

are equivalent.

(1) G is eulerian.

(2) every point has even degree.

(3) the set of edges of G can be partitioned into cycles.

Proof.

(1) ⇒ (2) Assume that G is eulerian. Let T be an eulerian trail in G, with

origin and terminus u. Each time a vertex v occurs in T in a place

other than the origin and terminus, two of the edges incident with v are

accounted for. Since an eulerian trail contains every edges of G, d(v) is

even for v 6= u. For u, one of the edges incident with u is accounted for

by the origin of T , another by the terminus of T and others are accounted

for in pairs. Hence d(u) is also even.

(2) ⇒ (3) Since G is connected and nontrivial every vertex of G has degree

at least 2. Hence G contains a cycle Z. The removal of the lines of Z

results in a spanning subgraph G1 in which again vertex has even degree.

If G1 has no edges, then all the lines of G form one cycle and hence (3)

holds. Otherwise, G1 has a cycle Z1. Removal of the lines of Z1 from G1

results in spanning subgraph G2 in which every vertex has even degree.

Continuing the above process, when a graph Gn with no edge is obtained,

we obtain a partition of the edges of G into n cycles.

(3) ⇒ (1) If the partition has only one cycle, then G is obviously eulerian,

since it is connected. Otherwise let z1, z2, . . . , zn be the cycles forming

a partition of the lines of G. Since G is connected there exists a cycle

zi 6= z1 having a common point v1 with z1. Without loss of generality,
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let it be z2. The walk beginning at v1 and consisting of the cycles z1 and

z2 in succession is a closed trail containing the edges of these two cycles.

Continuing this process, we can construct a closed trail containing all

the edges of G. Hence G is eulerian.

Corollary 2.1.1. Let G be a connected graph with exactly 2n(n ≥ 1), odd

vertices. Then the edge set of G can be partitioned into n open trails.

Proof. Let the odd vertices of G be labelled v1, v2, . . . , vn; w1, w2, . . . , wn in any

arbitrary order. Add n edges toG between the vertex pairs (v1, w1), (v2, w2), . . . , (vn, wn)

to form a new graph G′. No two of these n edges are incident with the same

vertex. Further every vertex of G′is of even degree and hence G′ has an eule-

rian trail T . If the n edges that we added to G are now removed from T , it

will split into n open trails. These are open trails in G and form a partition

of the edges of G.

Corollary 2.1.2. Let G be a connected graph with exactly two odd vertices.

Then G has an open trail containing all the vertices and edges of G.

Corollary 2.1.2 answers the question: Which diagrams can be drawn with-

out lifting one’s pen from the paper not covering any line segment more than

once?

Definition 2.1.2. A graph is said to be arbitrarily traversable(traceable)from

a vertex v if the following procedure always results in an eulerian trail. Start at

v by traversing any incident edge. On arriving at a vertex u, depart through

any incident edge not yet traversed and continue until all the lines are tra-

versed.

If a graph is arbitrary traversable from a vertex then it obviously eulerian.

The graph shown in figure 2.1 is arbitrarily traversable from v. From no

other point it is arbitrarily traversable.

Theorem 2.1.3. An eulerian graph G is arbitrarily traversable from a vertex

v in G iff every cycle in G contains v.
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Figure 2.2: A theta graph

2.1.1 Exercise

1. For what values of n, is Kn eulerian?

2. For what values of m and n is Kn,m is eulerian?

3. Show that if G has no vertices of odd degree, then there are edge disjoint

cycles C1, C2, . . . , Cn such that

E(G) = E(C1) ∪ E(C2) ∪ . . . ∪ E(Cm)

4. Show that every block of a connected graph G is eulerian then G is

eulerian.

2.2 Hamiltonian Graphs

Definition 2.2.1. A spanning cycle in a graph is called a hamiltonian cycle.

A graph having a hamiltonian cycle is called a hamiltonian graph.

Definition 2.2.2. A block with two adjacent vertices of degree 3 and all other

vertices of degree 2 is called a theta graph.

Example 2.2.1. The graph shown in figure 2.2is a theta graph. A theta graph

is obviously nonhamiltonian and every nonhamiltonian 2-connected graph has

a theta subgraph.

Theorem 2.2.1. Every hamiltonian graph is 2-connected.

Proof. Let G be a hamiltonian graph and let Z be a hamiltonian cycle in G.

For any vertex v of G, Z − v is connected and hence G− v is also connected.

Hence G has no cutpoints and thus G is 2-connected.

47

136

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db

	Graphs and Subgraphs
	Introduction
	What is a graph ?
	Representation of a graph
	Exercise
	Degrees
	Solved Problems
	Exercise
	Subgraphs
	Exercise
	Isomorphism
	Exercise

	Eulerian graphs, Hamiltonian graphs and Trees
	Eulerian graphs
	Exercise

	Hamiltonian Graphs


