
1

2

WEB TECHNOLOGY

SAE6B / SAZ6B

Unit – I

1.1 Introduction to VBScript

Microsoft VBScript (Visual Basic Script) is a general-purpose, lightweight and

active scripting language developed by Microsoft that is modeled on Visual Basic.

Nowadays, VBScript is the primary scripting language for Quick Test Professional

(QTP), which is a test automation tool.

 VBScript ("Microsoft Visual Basic Scripting Edition") is an Client Active

Scripting language developed by Microsoft that is modeled on Visual Basic. It

allows Microsoft Windows system administrators to generate powerful tools for

managing computers with error handling, subroutines, and other advanced programming

constructs.

Features of VBScript

 VBScript is a lightweight scripting language, which has a lightning fast interpreter.

 VBScript, for the most part, is case insensitive. It has a very simple syntax, easy to learn

and to implement.

 Unlike C++ or Java, VBScript is an object-based scripting language and NOT an Object-

Oriented Programming language.

 It uses Component Object Model (COM) in order to access the elements of the

environment in which it is executing.

 Successful execution of VBScript can happen only if it is executed in Host Environment

such as Internet Explorer (IE), Internet Information Services (IIS) and Windows

Scripting Host (WSH)

https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Active_Scripting
https://en.wikipedia.org/wiki/Active_Scripting
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/Error_handling
https://en.wikipedia.org/wiki/Subroutine

3

VBscript – Version History and Uses

VBScript was introduced by Microsoft way back in 1996 and its first version was 1.0. The

current stable version of VBScript is 5.8, which is available as part of IE8 or Windows 7.

The VBScript usage areas are aplenty and not restricted to the below list.

 VBScript is used as a scripting language in one of the popular Automation testing tools –

Quick Test Professional abbreviated as QTP

 Windows Scripting Host, which is used mostly by Windows System administrators for

automating the Windows Desktop.

 Active Server Pages (ASP), a server side scripting environment for creating dynamic

webpages which uses VBScript or Java Script.

 VBScript is used for Client side scripting in Microsoft Internet Explorer.

 Microsoft Outlook Forms usually runs on VBScript; however, the application level

programming relies on VBA (Outlook 2000 onwards).

Disadvantages

 VBscript is used only by IE Browsers. Other browsers such as Chrome, Firefox DONOT

Support VBScript. Hence, JavaScript is preferred over VBScript.

 VBScript has a Limited command line support.

 Since there is no development environment available by default, debugging is difficult.

Where VBScript is Today?

The current version of VBScript is 5.8, and with the recent development of .NET framework,

Microsoft has decided to provide future support of VBScript within ASP.NET for web

development. Hence, there will NOT be any more new versions of VBScript engine but the

entire defect fixes and security issues are being addressed by the Microsoft sustaining

Engineering Team. However, VBScript engine would be shipped as part of all Microsoft

Windows and IIS by default.

4

1.2 Adding VBScript Code to an HTML Page

To insert a VBScript into an HTML page, we use the <script> tag. Inside the

<script> tag. The document. write command is a standard VBScript command for writing

output to a page.

There is a flexibility given to include VBScript code anywhere in an HTML document.

But the most preferred way to include VBScript in your HTML file is as follows −

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections.

 Script in an external file and then include in <head>...</head> section.

Ex:

<html>

<head>

<scripttype="text/Vbscript">

<!--

FunctionsayHello()

Msgbox("Hello World")

EndFunction

//-->

</script>

</head>

<body>

<inputtype="button"onclick="sayHello()"value="Say Hello"/>

</body>

</html>

5

1.3 VBScript Data Types

VBScript has only one data type called a Variant. A Variant is a special kind of data

type that can contain different kinds of information, depending on how it's used.

Because Variant is the only data type in VBScript, it's also the data type returned by all

functions in VBScript.

At its simplest, a Variant can contain either numeric or string information.

A Variant behaves as a number when you use it in a numeric context and as a string

when you use it in a string context.

The following table shows the subtypes of data that a Variant can contain.

Subtype Description

Empty Variant is uninitialized. Value is 0 for numeric variables or a zero-

length string ("") for string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either True or False.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range -32,768 to 32,767.

Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Long Contains integer in the range -2,147,483,648 to 2,147,483,647.

Single Contains a single-precision, floating-point number in the range -

3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to

3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the range -

1.79769313486232E308 to -4.94065645841247E-324 for negative

values; 4.94065645841247E-324 to 1.79769313486232E308 for

http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs249.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs245.htm

6

positive values.

Date

(Time)

Contains a number that represents a date between January 1, 100 to

December 31, 9999.

String Contains a variable-length string that can be up to approximately 2

billion characters in length.

Object Contains an object.

Error Contains an error number.

1.4 VBScript Variables

A variable is a named memory location used to hold a value that can be changed during the script

execution. VBScript has only ONE fundamental data type, Variant.

Rules for Declaring Variables −

 Variable Name must begin with an alphabet.

 Variable names cannot exceed 255 characters.

 Variables Should NOT contain a period (.)

 Variable Names should be unique in the declared context.

Declaring Variables

Variables are declared using “dim” keyword. Since there is only ONE fundamental data

type, all the declared variables are variant by default. Hence, a user NEED NOT mention the

type of data during declaration.

Example 1 − In this Example, IntValue can be used as a String, Integer or even arrays.

Dim Var

Example 2 − Two or more declarations are separated by comma(,)

Dim Variable1,Variable2

7

Assigning Values to the Variables

Values are assigned similar to an algebraic expression. The variable name on the left hand side

followed by an equal to (=) symbol and then its value on the right hand side.

Rules

 The numeric values should be declared without double quotes.

 The String values should be enclosed within double quotes(")

 Date and Time variables should be enclosed within hash symbol(#)

Examples

' Below Example, The value 25 is assigned to the variable.

Value1 = 25

' A StringValue‘VBScript’is assigned to the variable StrValue.

StrValue=“VBScript”

' The date 01/01/2020 is assigned to the variable DToday.

Date1 = #01/01/2020#

' A SpecificTimeStampis assigned to a variable in the below example.

Time1=#12:30:44 PM#

Scope of the Variables

Variables can be declared using the following statements that determines the scope of the

variable. The scope of the variable plays a crucial role when used within a procedure or classes.

 Dim

 Public

 Private

8

Dim

Variables declared using “Dim” keyword at a Procedure level are available only within the

same procedure. Variables declared using “Dim” Keyword at script level are available to all the

procedures within the same script.

1.5 VBScript Constants

Constant is a named memory location used to hold a value that CANNOT be changed

during the script execution.

Declaring Constants

Syntax

[Public | Private] ConstConstant_Name = Value

The Constant can be of type Public or Private. The Use of Public or Private is Optional.

The Public constants are available for all the scripts and procedures while the Private Constants

are available within the procedure or Class. One can assign any value such as number, String or

Date to the declared Constant.

Example 1

In this example, the value of pi is 3.4 and it displays the area of the circle in a message box.

<html>

<body>

<scriptlanguage="vbscript"type="text/vbscript">

DimintRadius

intRadius=20

const pi =3.14

Area= pi*intRadius*intRadius

MsgboxArea

</script>

</body>

</html>

9

Example 2

The below example illustrates how to assign a String and Date Value to a Constant.

<html>

<body>

<scriptlanguage="vbscript"type="text/vbscript">

ConstmyString="VBScript"

ConstmyDate=#01/01/2050#

MsgboxmyString

MsgboxmyDate

</script>

</body>

</html>

1.6 VBScript Operators

VBScript language supports following types of operators −

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Concatenation Operators

 The Arithmetic Operators

VBScript supports the following arithmetic operators −

Assume variable A holds 5 and variable B holds 10, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give -5

https://www.tutorialspoint.com/vbscript/vbscript_arithmetic_operators.htm

10

* Multiply both operands A * B will give 50

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of after an integer division B MOD A will give 0

^ Exponentiation Operator B ^ A will give 100000

To understand these operators in a better way, you can Try it yourself.

 The Comparison Operators

There are following comparison operators supported by VBScript language −

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

= Checks if the value of two operands are equal or not, if yes

then condition becomes true.

(A == B) is False.

<> Checks if the value of two operands are equal or not, if

values are not equal then condition becomes true.

(A <> B) is True.

> Checks if the value of left operand is greater than the value

of right operand, if yes then condition becomes true.

(A > B) is False.

< Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B) is True.

>= Checks if the value of left operand is greater than or equal

to the value of right operand, if yes then condition becomes

(A >= B) is False.

http://www.compileonline.com/execute_vbscript_online.php
https://www.tutorialspoint.com/vbscript/vbscript_comparison_operators.htm

11

true.

<= Checks if the value of left operand is less than or equal to

the value of right operand, if yes then condition becomes

true.

(A <= B) is True.

To understand these operators in a better way, you can Try it yourself.

 The Logical Operators

There are following logical operators supported by VBScript language −

Assume variable A holds 10 and variable B holds 0, then −

Show Examples

Operator Description Example

AND Called Logical AND operator. If both the conditions

are True, then Expression becomes True.

a<>0 AND b<>0 is False.

OR Called Logical OR Operator. If any of the two

conditions is True, then condition becomes True.

a<>0 OR b<>0 is true.

NOT Called Logical NOT Operator. It reverses the logical

state of its operand. If a condition is True, then the

Logical NOT operator will make it False.

NOT(a<>0 OR b<>0) is false.

XOR Called Logical Exclusion. It is the combination of

NOT and OR Operator. If one, and only one, of the

expressions evaluates to True, result is True.

(a<>0 XOR b<>0) is true.

To understand these operators in a better way, you can Try it yourself.

 The Concatenation Operators

There are following Concatenation operators supported by VBScript language −

Assume variable A holds 5 and variable B holds 10 then −

http://www.compileonline.com/execute_vbscript_online.php
https://www.tutorialspoint.com/vbscript/vbscript_logical_operators.htm
http://www.compileonline.com/execute_vbscript_online.php

12

Show Examples

Operator Description Example

+ Adds two Values as Variable Values are Numeric A + B will give 15

& Concatenates two Values A & B will give 510

Assume variable A = "Microsoft" and variable B="VBScript", then −

Operator Description Example

+ Concatenates two Values A + B will give MicrosoftVBScript

& Concatenates two Values A & B will give MicrosoftVBScript

1.7 Conditional Statements

In VBScript, there are four types of conditional statements: If...Then, If.....Then...Else,

If...Then.....ElseIf, and Select Case.

In this tutorial, you will learn-

 If Then Statement

 If Else Statement

 If Elseif Statement

 SELECT Case Statement

VBScript If Then Statement

 You will use the VBScript If-Then statement if you want to execute some code when a

specific condition is true.

https://www.tutorialspoint.com/vbscript/vbscript_concatenation_operators.htm
https://www.guru99.com/vbscript-conditional-statements.html#1
https://www.guru99.com/vbscript-conditional-statements.html#2
https://www.guru99.com/vbscript-conditional-statements.html#3
https://www.guru99.com/vbscript-conditional-statements.html#4

13

 For example, you want to output the message "Welcome" whenever the value of the

variable loggedIn is true.

If loggedIn = true Then

 document.write("Welcome")

End If

VBScript If Else Statement

 You will be using VBScript If....Then....Else statement, if you want to select one of two

blocks of code to execute.

In such a case, you will be using If....Then.....Else statement.

If time <= 10 Then

document.write("Hi, Good Morning")

Else

document.write("Hi, Good Day")

End If

VBScript If Elseif Statement

You will be using If.....Then.......ElseIf statement, if you have to select one of many blocks of

code to execute.

For example, if you want to change the output based on the day of the week, then you have to

use If.....Then.......ElseIf statement.

If today="Sunday" Then

document.write("Today is Sunday")

ElseIf today="Monday" Then

document.write("Today is Monday")

14

ElseIf today="Tuesday" Then

document.write("Today is Tuesday")

ElseIf today="Wednesday" Then

document.write("Today is Wednesday")

ElseIf today="Thursday" Then

document.write("Today is Thursday")

ElseIf today="Friday" Then

document.write("Today is Friday")

ElseIf today="Saturday" Then

document.write("Today is Saturday")

End If

VBScript SELECT Case Statement

Similar to If.....Then.......ElseIf statement, VBScript Case statement can also be used if

you have to select one of many blocks of code to execute.

The same above code can be written like this using Select Case statement.

Select Case today

Case "Sunday"

document.write("Today is Sunday")

Case "Monday"

document.write("Today is Monday")

Case "Tuesday"

document.write("Today is Tuesday")

Case "Wednesday"

document.write("Today is Wednesday")

15

Case "Thursday"

document.write("Today is Thursday")

Case "Friday"

document.write("Today is Friday")

Case "Saturday"

document.write("Today is Saturday")

End Select

1.8 LOOPING

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general from of a loop statement in VBScript.

Loop Type Description

for loop Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

for ..each loop It is executed if there is at least one element in group and reiterated for

each element in a group.

while..wend loop It tests the condition before executing the loop body.

do..while loops The do..While statements will be executed as long as condition is

True.(i.e.,) The Loop should be repeated till the condition is False.

do..until loops The do..Until statements will be executed as long as condition is

False.(i.e.,) The Loop should be repeated till the condition is True.

 For loop

https://www.tutorialspoint.com/vbscript/vbscript_for_loop.htm
https://www.tutorialspoint.com/vbscript/vbscript_foreach_loop.htm
https://www.tutorialspoint.com/vbscript/vbscript_while_wend_loop.htm
https://www.tutorialspoint.com/vbscript/vbscript_do_while_loop.htm
https://www.tutorialspoint.com/vbscript/vbscript_do_until_loop.htm

16

A for loop is a repetition control structure that allows a developer to efficiently write a

loop that needs to execute a specific number of times.

Syntax

The syntax of a for loop in VBScript is −

For counter = start To end [Step stepcount]

 [statement 1]

 [statement 2]

 [statement n]

 [Exit For]

 [statement 11]

 [statement 22]

 [statement n]

Next

Example

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 Dim a : a = 10

 For i = 0 to a Step 2 'i is the counter variable and it is incremented by 2

document.write("The value is i is : " &i)

document.write("
</br>")

 Next

</script>

</body>

</html>

When the above code is compiled and executed, it produces the following result −

The value is i is : 0

17

The value is i is : 2

The value is i is : 4

The value is i is : 6

The value is i is : 8

The value is i is : 10

 For Each Loop

A For Each loop is used when we want to execute a statement or a group of statements for

each element in an array or collection.

Example

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 'fruits is an array

 fruits = Array("apple","orange","cherries")

 Dim fruitnames

 'iterating using For each loop.

 For each item in fruits

fruitnames = fruitnames&item&vbnewline

 Next

msgboxfruitnames

</script>

</body>

</html>

When the above code is executed, it prints all the fruitnames with one item in each line.

apple

orange

cherries

18

 while…..wend

In a While..Wend loop, if the condition is True, all statements are executed

until Wend keyword is encountered.

If the condition is false, the loop is exited and the control jumps to very next statement

after Wend keyword.

Example

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 Dim Counter : Counter = 10

 While Counter < 15 ' Test value of Counter.

 Counter = Counter + 1 ' Increment Counter.

document.write("The Current Value of the Counter is : " & Counter)

document.write("
</br>")

 Wend ' While loop exits if Counter Value becomes 15.

</script>

</body>

</html>

When the above code is executed, it prints the following output in the console.

The Current Value of the Counter is : 11

The Current Value of the Counter is : 12

The Current Value of the Counter is : 13

The Current Value of the Counter is : 14

The Current Value of the Counter is : 15

Do……while Loop

19

 A Do..While loop is used when we want to repeat a set of statements as long as the

condition is true. The Condition may be checked at the beginning of the loop or at the end of the

loop.

Example

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 Do While i< 5

i = i + 1

Document.write("The value of i is : " &i)

Document.write("
</br>")

 Loop

</script>

</body>

</html>

When the above code is executed, it prints the following output on the console.

The value of i is : 1

The value of i is : 2

The value of i is : 3

The value of i is : 4

The value of i is : 5

20

Do……Until Loop

 A Do..Until loop is used when we want to repeat a set of statements as long as the

condition is false. The Condition may be checked at the beginning of the loop or at the end of

loop.

Example

<html>

<body>

<scriptlanguage="vbscript"type="text/vbscript">

i=10

DoUntili>15'Condition is False.Hence loop will be executed

i=i+1

Document.write("The value of i is : "&i)

Document.write("
</br>")

Loop

</script>

</body>

</html>

When the above code is executed, it prints the following output in the console.

The value of i is : 11

The value of i is : 12

The value of i is : 13

The value of i is : 14

The value of i is : 15

The value of i is : 16

1.9 VBScript Procedures

 A function is a group of reusable code which can be called anywhere in your program. This eliminates

the need of writing same code over and over again. This will enable programmers to divide a big program into a

number of small and manageable functions.

21

Example

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 Function sayHello()

msgbox("Hello there")

 End Function

</script>

</body>

</html>

Calling a Function

To invoke a function somewhere later in the script, you would simple need to write the name of

that function with the Call keyword.

<html>

<body>

<script language = "vbscript" type = "text/vbscript">

 Function sayHello()

msgbox("Hello there")

 End Function

 Call sayHello()z

</script>

</body>

</html>

1.10 VBScript Functions

VBScript has the following functions

 Date / Time Functions

22

 Conversions Functions

 Format functions

 Math Functions

 Array Functions

 String Functions

 Other Functions

Date/Time Functions

Function Description

CDate Converts a valid date and time expression to the variant of subtype Date

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been added

DateDiff Returns the number of intervals between two dates

DatePart Returns the specified part of a given date

DateSerial Returns the date for a specified year, month, and day

https://www.w3schools.com/asp/func_cdate.asp
https://www.w3schools.com/asp/func_date.asp
https://www.w3schools.com/asp/func_dateadd.asp
https://www.w3schools.com/asp/func_datediff.asp
https://www.w3schools.com/asp/func_datepart.asp
https://www.w3schools.com/asp/func_dateserial.asp

23

DateValue Returns a date

Day Returns a number that represents the day of the month (between 1 and 31, inclusive)

FormatDateTime Returns an expression formatted as a date or time

Hour Returns a number that represents the hour of the day (between 0 and 23, inclusive)

IsDate Returns a Boolean value that indicates if the evaluated expression can be converted to a date

Minute Returns a number that represents the minute of the hour (between 0 and 59, inclusive)

Month Returns a number that represents the month of the year (between 1 and 12, inclusive)

MonthName Returns the name of a specified month

Now Returns the current system date and time

Second Returns a number that represents the second of the minute (between 0 and 59, inclusive)

Time Returns the current system time

https://www.w3schools.com/asp/func_datevalue.asp
https://www.w3schools.com/asp/func_day.asp
https://www.w3schools.com/asp/func_formatdatetime.asp
https://www.w3schools.com/asp/func_hour.asp
https://www.w3schools.com/asp/func_isdate.asp
https://www.w3schools.com/asp/func_minute.asp
https://www.w3schools.com/asp/func_month.asp
https://www.w3schools.com/asp/func_monthname.asp
https://www.w3schools.com/asp/func_now.asp
https://www.w3schools.com/asp/func_second.asp
https://www.w3schools.com/asp/func_time.asp

24

Timer Returns the number of seconds since 12:00 AM

TimeSerial Returns the time for a specific hour, minute, and second

TimeValue Returns a time

Weekday Returns a number that represents the day of the week (between 1 and 7, inclusive)

WeekdayName Returns the weekday name of a specified day of the week

Year Returns a number that represents the year

Conversion Functions

Function Description

Asc Converts the first letter in a string to ANSI code

CBool Converts an expression to a variant of subtype Boolean

CByte Converts an expression to a variant of subtype Byte

https://www.w3schools.com/asp/func_timer.asp
https://www.w3schools.com/asp/func_timeserial.asp
https://www.w3schools.com/asp/func_timevalue.asp
https://www.w3schools.com/asp/func_weekday.asp
https://www.w3schools.com/asp/func_weekdayname.asp
https://www.w3schools.com/asp/func_year.asp
https://www.w3schools.com/asp/func_asc.asp
https://www.w3schools.com/asp/func_cbool.asp
https://www.w3schools.com/asp/func_cbyte.asp

25

CCur Converts an expression to a variant of subtype Currency

CDate Converts a valid date and time expression to the variant of subtype Date

CDbl Converts an expression to a variant of subtype Double

Chr Converts the specified ANSI code to a character

CInt Converts an expression to a variant of subtype Integer

CLng Converts an expression to a variant of subtype Long

CSng Converts an expression to a variant of subtype Single

CStr Converts an expression to a variant of subtype String

Hex Returns the hexadecimal value of a specified number

Oct Returns the octal value of a specified number

Format Functions

https://www.w3schools.com/asp/func_ccur.asp
https://www.w3schools.com/asp/func_cdate.asp
https://www.w3schools.com/asp/func_cdbl.asp
https://www.w3schools.com/asp/func_chr.asp
https://www.w3schools.com/asp/func_cint.asp
https://www.w3schools.com/asp/func_clng.asp
https://www.w3schools.com/asp/func_csng.asp
https://www.w3schools.com/asp/func_cstr.asp
https://www.w3schools.com/asp/func_hex.asp
https://www.w3schools.com/asp/func_oct.asp

26

Function Description

FormatCurrency Returns an expression formatted as a currency value

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

Math Functions

Function Description

Abs Returns the absolute value of a specified number

Atn Returns the arctangent of a specified number

Cos Returns the cosine of a specified number (angle)

Exp Returns e raised to a power

https://www.w3schools.com/asp/func_formatcurrency.asp
https://www.w3schools.com/asp/func_formatdatetime.asp
https://www.w3schools.com/asp/func_formatnumber.asp
https://www.w3schools.com/asp/func_formatpercent.asp
https://www.w3schools.com/asp/func_abs.asp
https://www.w3schools.com/asp/func_atn.asp
https://www.w3schools.com/asp/func_cos.asp
https://www.w3schools.com/asp/func_exp.asp

27

Hex Returns the hexadecimal value of a specified number

Int Returns the integer part of a specified number

Fix Returns the integer part of a specified number

Log Returns the natural logarithm of a specified number

Oct Returns the octal value of a specified number

Rnd Returns a random number less than 1 but greater or equal to 0

Sgn Returns an integer that indicates the sign of a specified number

Sin Returns the sine of a specified number (angle)

Sqr Returns the square root of a specified number

Tan Returns the tangent of a specified number (angle)

Array Functions

https://www.w3schools.com/asp/func_hex.asp
https://www.w3schools.com/asp/func_int.asp
https://www.w3schools.com/asp/func_fix.asp
https://www.w3schools.com/asp/func_log.asp
https://www.w3schools.com/asp/func_oct.asp
https://www.w3schools.com/asp/func_rnd.asp
https://www.w3schools.com/asp/func_sgn.asp
https://www.w3schools.com/asp/func_sin.asp
https://www.w3schools.com/asp/func_sqr.asp
https://www.w3schools.com/asp/func_tan.asp

28

Function Description

Array Returns a variant containing an array

Filter Returns a zero-based array that contains a subset of a string array based on a filter criteria

IsArray Returns a Boolean value that indicates whether a specified variable is an array

Join Returns a string that consists of a number of substrings in an array

LBound Returns the smallest subscript for the indicated dimension of an array

Split Returns a zero-based, one-dimensional array that contains a specified number of substrings

UBound Returns the largest subscript for the indicated dimension of an array

String Functions

Function Description

InStr Returns the position of the first occurrence of one string within another. The search begins at the first character of the

string

https://www.w3schools.com/asp/func_array.asp
https://www.w3schools.com/asp/func_filter.asp
https://www.w3schools.com/asp/func_isarray.asp
https://www.w3schools.com/asp/func_join.asp
https://www.w3schools.com/asp/func_lbound.asp
https://www.w3schools.com/asp/func_split.asp
https://www.w3schools.com/asp/func_ubound.asp
https://www.w3schools.com/asp/func_instr.asp

29

InStrRev Returns the position of the first occurrence of one string within another. The search begins at the last character of the

string

LCase Converts a specified string to lowercase

Left Returns a specified number of characters from the left side of a string

Len Returns the number of characters in a string

LTrim Removes spaces on the left side of a string

RTrim Removes spaces on the right side of a string

Trim Removes spaces on both the left and the right side of a string

Mid Returns a specified number of characters from a string

Replace Replaces a specified part of a string with another string a specified number of times

Right Returns a specified number of characters from the right side of a string

Space Returns a string that consists of a specified number of spaces

https://www.w3schools.com/asp/func_instrrev.asp
https://www.w3schools.com/asp/func_lcase.asp
https://www.w3schools.com/asp/func_left.asp
https://www.w3schools.com/asp/func_len.asp
https://www.w3schools.com/asp/func_ltrim.asp
https://www.w3schools.com/asp/func_rtrim.asp
https://www.w3schools.com/asp/func_trim.asp
https://www.w3schools.com/asp/func_mid.asp
https://www.w3schools.com/asp/func_replace.asp
https://www.w3schools.com/asp/func_right.asp
https://www.w3schools.com/asp/func_space.asp

30

StrComp Compares two strings and returns a value that represents the result of the comparison

String Returns a string that contains a repeating character of a specified length

StrReverse Reverses a string

UCase Converts a specified string to uppercase

Other Functions

Function Description

CreateObject Creates an object of a specified type

Eval Evaluates an expression and returns the result

IsEmpty Returns a Boolean value that indicates whether a specified variable has been initialized

or not

IsNull Returns a Boolean value that indicates whether a specified expression contains no valid

data

https://www.w3schools.com/asp/func_strcomp.asp
https://www.w3schools.com/asp/func_string.asp
https://www.w3schools.com/asp/func_strreverse.asp
https://www.w3schools.com/asp/func_ucase.asp
https://www.w3schools.com/asp/func_createobject.asp
https://www.w3schools.com/asp/func_eval.asp
https://www.w3schools.com/asp/func_isempty.asp
https://www.w3schools.com/asp/func_isnull.asp

31

IsNumeric Returns a Boolean value that indicates whether a specified expression can be evaluated as

a number

IsObject Returns a Boolean value that indicates whether the specified expression is an automation

Object

RGB Returns a number that represents an RGB color value

Round Rounds a number

ScriptEngine Returns the scripting language in use

ScriptEngineBuild

Version

Returns the build version number of the scripting engine in use

ScriptEngineMajor

Version

Returns the major version number of the scripting engine in use

ScriptEngineMinor

Version

Returns the minor version number of the scripting engine in use

TypeName Returns the subtype of a specified variable

https://www.w3schools.com/asp/func_isnumeric.asp
https://www.w3schools.com/asp/func_isobject.asp
https://www.w3schools.com/asp/func_rgb.asp
https://www.w3schools.com/asp/func_round.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_scriptengine.asp
https://www.w3schools.com/asp/func_typename.asp

32

VarType Returns a value that indicates the subtype of a specified variable

1.11 VBScript Coding Conventions

Coding conventions are suggestions that help you write code using Microsoft Visual Basic

Scripting Edition.

Coding conventions can include the following:

 Naming conventions for objects, variables, and procedures

 Commenting conventions

 Text formatting and indenting guidelines

The main reason for using a consistent set of coding conventions is to standardize the structure

and coding style of a script.

Using good coding conventions results in precise, readable, and unambiguous source code that is

consistent with other language conventions and as intuitive as possible.

Constant Naming Conventions

 Constants were implemented as variables and distinguished from other variables using all

uppercase characters.

Multiple words were separated using the underscore (_) character.

For example:

 USER_LIST_MAX

 NEW_LINE

https://www.w3schools.com/asp/func_vartype.asp

33

By using an alternative naming scheme, we can create true constants using the Const statement.

This convention uses a mixed-case format in which constant names have a "con" prefix.

For example: conYourOwnConstant

Variable Naming Conventions:

For purposes of readability and consistency, we can use the following prefixes with descriptive

names for variables in our VBScript code.

 SUBTYPE PREFIX EXAMPLE

Boolean bln blnFound

Byte byt bytRasterData

Date (Time) dtm dtmStart

Double dbl dblTolerance

Error err errOrderNum

Integer int intQuantity

Long lng lngDistance

Object obj objCurrent

Single sng sngAverage

String str strFirstName

1.12 Dictionary Object in VBScript

The Dictionary object is used to hold a set of data values in the form of (key, item) pairs. A

dictionary is sometimes called an associative array because it associates a key with an item. The

keys behave in a way similar to indices in an array, except that array indices are numeric and

keys are arbitrary strings. Each key in a single Dictionary object must be unique.

Dictionaries are frequently used when some items need to be stored and recovered by name.

For example, a dictionary can hold all the environment variables defined by the system or all the

values associated with a registry key. However, a dictionary can only store one item for each key

value. That is, dictionary keys must all be unique.

34

Creating Dictionaries

To construct an instance of a dictionary object, just use the following lines of code:

DimobjDictionary

SetobjDictionary = CreateObject("Scripting.Dictionary")

1.13 Err Object

The VBScript Err object provides access to run- time error information.

The Err object encapsulates errors for a VBScript script. By default, if an error occurs,

VBScript terminates script execution and RhinoScript reports the error back to the user.

Sometimes this default error processing is not desirable. In this case, the Err object and the On

Error statement can be used to let scripts perform their own error handling.

Using On Error

To generate a user-defined run-time error, first clear the Err object using

the .Clear method. Then raise the error using the .Raise method. This method takes up to five

arguments that correspond, in order, to the properties previously listed. For example:

Err.Clear

Err.Raise 1000, "This is a script-defined error", "Test Script"

This example displays the standard RhinoScript error dialog box showing the error information.

To intercept run-time errors and process them in scripts, use the On Error statement. The syntax

of this statement is:

OnErrorResumeNext

35

Unit – II

JavaScript is a very powerful client-side scripting language. JavaScript is used mainly for

enhancing the interaction of a user with the webpage. In other words, you can make your

webpage more lively and interactive, with the help of JavaScript. JavaScript is also being used

widely in game development and Mobile application development.

JavaScript is a cross-platform, object-oriented scripting language used to make webpages

interactive (e.g., having complex animations, clickable buttons, popup menus, etc.). There are

also more advanced server side versions of JavaScript such as Node.js. JavaScript contains a

standard library of objects, such as Array, Date, and Math, and a core set of language elements

such as operators, control structures, and statements.

Features of JavaScript

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform

 JavaScript is a object-based scripting language.

 Giving the user more control over the browser.

 It Handling dates and time.

 It Detecting the user’s browser and OS,

 It is light weighted.

 JavaScript is a scripting language and it is not java.

 JavaScript is interpreter based scripting language.

 JavaScript is case sensitive.

2.1 Introduction to JavaScript

36

 JavaScript is object based language as it provides predefined objects.

 Every statement in JavaScript must be terminated with semicolon (;).

 Most of the JavaScript control statements syntax is same as syntax of control statements

in C language.

 An important part of JavaScript is the ability to create new functions within scripts.

Declare a function in JavaScript using function keyword.

2. 2 Advantages of JavaScript

The merits of using JavaScript are –

 Less server interaction – You can validate user input before sending the page off to

the server. This saves server traffic, which means less load on your server.

 Immediate feedback to the visitors – They don’t have to wait for a page reload to

see if they have forgotten to enter something.

 Increased interactivity – You can create interfaces that react when the user hovers

over them with a mouse or activates them via the keyboard.

 Richer interfaces – You can use JavaScript to include such items as drag-and-drop

components and sliders to give a Rich Interface to your site visitors.

 Speed. Client-side JavaScript is very fast because it can be run immediately within

the client-side browser. Unless outside resources are required, JavaScript is

unhindered by network calls to a backend server.

 Simplicity. JavaScript is relatively simple to learn and implement.

 Popularity JavaScript is used everywhere on the web.

37

 Interoperability. JavaScript plays nicely with other languages and can be used in a

huge variety of applications.

 Server Load. Being client-side reduces the demand on the website server.

 Gives the ability to create rich interfaces

JavaScript Syntax

JavaScript syntax is the set of rules, how JavaScript programs are constructed:

Var x, y, z; // Declar Variables

 X = 5; y = 6; // Assign Values

 Z = x + y; // Compute Values

JavaScript Values

The JavaScript syntax defines two types of values:

 Fixed values

 Variable values

Fixed values are called Literals.

Variable values are called Variables.

JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

10.50

1001

2. Strings are text, written within double or single quotes:

“John Doe”

‘John Doe’

38

2.3 Data Types in JavaScript

Data types basically specify what kind of data can be stored and manipulated within a

program.There are six basic data types in JavaScript which can be divided into three main

categories: primitive (or primary), composite (or reference), and special data types.

 String, Number, and Boolean are primitive data types. Object, Array, and Function

(which are all types of objects) are composite data types. Whereas Undefined and Null are

special data types.

Primitive data types can hold only one value at a time, whereas composite data types can

hold collections of values and more complex entities.

 Numbers, eg. 123, 120.50 etc.

 Strings of text e.g. “This text string” etc.

 Boolean e.g. true or false.

JavaScript also defines two trivial data types, null and undefined, each of which defines

only a single value. In addition to these primitive data types, JavaScript supports a composite

data type known as object.

Note – JavaScript does not make a distinction between integer values and floating-point

values. All numbers in JavaScript are represented as floating-point values. JavaScript represents

numbers using the 64-bit floating-point format defined by the IEEE 754 standard.

a. JavaScript Variable

In a programming language, variables are used to store data values.

JavaScript uses the var keyword to declare variables.An equal sign is used to assign values to

variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value 6:

Var x;

X = 6;

39

A JavaScript variable is simply a name of storage location. There are two types of

variables in JavaScript : local variable and global variable.There are some rules while declaring a

JavaScript variable (also known as identifiers).

Syntax:

Var<variable-name>;

Var<variable-name> = <value>;

 Name must start with a letter (a to z or A to Z), underscore(_), or dollar($) sign.

 After first letter we can use digits (0 to 9), for example value1.

 JavaScriptJavaScript variables are case sensitive, for example x and X are

different variables.

Example of JavaScript variables

JavaScript variables are containers for storing data values.In this example, x, y, and z, are

variables, declared with the var keyword:

Example

Var x = 5;

Var y = 6;

Var z = x + y;

From the example above, you can expect:

 X stores the value 5

 Y stores the value 6

 Z stores the value 11

Global Variables – A global variable has global scope which means it can be defined anywhere

in your JavaScript code.

40

Example

VarcarName = “Volvo”;

// code here can use carName

Function myFunction() {

 // code here can also use carName

}

Local Variables – A local variable will be visible only within a function where it is defined.

Function parameters are always local to that function.

Example

// code here can NOT use carName

Function myFunction() {

VarcarName = “Volvo”;

 // code here CAN use carName

}

2.4 Array

The JavaScript Array class is a global object that is used in the construction of arrays; which

are high-level, list-like objects.

JavaScript Array

JavaScript array is an object that represents a collection of similar type of elements.There are 3

ways to construct array in JavaScript

 By array literal

 By creating instance of Array directly (using new keyword)

 By using an Array constructor (using new keyword)

41

What is an Array?

An array is an object that can store a collection of items. Arrays become really useful

when you need to store large amounts of data of the same type.

Suppose you want to store details of 500 employees. If you are using variables, you will

have to create 500 variables whereas you can do the same with a single array. You can access the

items in an array by referring to its indexnumber and the index of the first element of an array is

zero.

Syntax

Use the following syntax to create an Array object −

var fruits = new Array("apple", "orange", "mango");

JavaScript array literal

The syntax of creating array using array literal is given below:

Vararrayname=[value1,value2…..valueN];

As you can see, values are contained inside [] and separated by , (comma).

Let’s see the simple example of creating and using array in JavaScript.

<script>

Varemp=[“Sonoo”,”Vimal”,”Ratan”];

For (i=0;i<emp.length;i++){

Document.write(emp[i] + “
”);

}

</script>

Output of the above example

Sonoo

Vimal

Ratan

 JavaScript Array directly (new keyword)

42

The syntax of creating array directly is given below:

Vararrayname=new Array();

Here, new keyword is used to create instance of array.

Let’s see the example of creating array directly.

<script>

Var I;

Varemp = new Array();

Emp[0] = “Arun”;

Emp[1] = “Varun”;

Emp[2] = “John”;

 For (i=0;i<emp.length;i++){

Document.write(emp[i] + “
”);

}

</script>

Output of the above example

Arun

Varun

John

JavaScript array constructor (new keyword)

Here, you need to create instance of array by passing arguments in constructor so that we

don’t have to provide value explicitly.

The example of creating object by array constructor is given below.

<script>

Varemp=new Array(“Jai”,”Vijay”,”Smith”);

For (i=0;i<emp.length;i++){

Document.write(emp[i] + “
”);

}

</script>

43

Test it Now

Output of the above example

Jai

Vijay

Smith

2.5 Javascript Operators

JavaScript includes operators as in other languages. An operator performs some

operation on single or multiple operands (data value) and produces a result. For example 1 +

2, where + sign is an operator and 1 is left operand and 2 is right operand. + operator adds two

numeric values and produces a result which is 3 in this case.

Syntax:

<Left operand> operator <right operand>

<Left operand> operator

JavaScript includes following categories of operators.

1. Arithmetic Operators

2. Comparison Operators

3. Logical Operators

4. Bitwise Operators

5. Assignment Operators

6. Conditional Operator

7. Typeof Operator

2.5.1 Arithmetic operator

Arithmetic operators are used to perform arithmetic calculations. For example,

const number = 3 + 5; // 8

Operator Name Example

+ Addition x + y

44

- Subtraction x – y

* Multiplication x * y

/ Division x / y

% Remainder x % y

++ Increment (increments by 1) ++x or x++

Decrement (decrements by 1) --x or x—

** Exponentiation (Power) x **

1. + (Addition)

Adds two operands

Ex: A + B will give 30

2. (Subtraction)

Subtracts the second operand from the first

Ex: A – B will give -10

3. (Multiplication)

Multiply both operands

Ex: A * B will give 200

4. / (Division)

Divide the numerator by the denominator

Ex: B / A will give 2

5. % (Modulus)

Outputs the remainder of an integer division

Ex: B % A will give 0

6. ++ (Increment)

45

Increases an integer value by one

Ex: A++ will give 11

7. (Decrement)

Decreases an integer value by one

Ex: A—will give 9

<html>

<body>

<script type = “text/javascript”>

Var a = 33;

Var b = 10;

Var c = “Test”;

Varlinebreak = “
”;

Document.write(“a + b = “);

 Result = a + b;

Document.write(result);

Document.write(linebreak);

Document.write(“a – b = “);

 Result = a – b;

Document.write(result);

Document.write(linebreak);

Document.write(“a / b = “);

 Result = a / b;

Document.write(result);

Document.write(linebreak);

Document.write(“a % b = “);

 Result = a % b;

Document.write(result);

Document.write(linebreak);

Document.write(“a + b + c = “);

 Result = a + b + c;

46

Document.write(result);

Document.write(linebreak);

 A = ++a;

Document.write(“++a = “);

 Result = ++a;

Document.write(result);

Document.write(linebreak);

 B = --b;

Document.write(“—b = “);

 Result = --b;

Document.write(result);

Document.write(linebreak);

</script>

</body>

</html>

Output

A + b = 43

A – b = 23

A / b = 3.3

A % b = 3

A + b + c = 43Test

++a = 35

--b = 8

2.5.2 Comparison Operators

Returns true if the operands are equal and of the same type. See also Object is and

sameness in JS. 3 === var1. Strict not equal (!==) Returns true if the operands are of the same

type but not equal, or are of different type.

47

JavaScript supports the following comparison operators –

Assume variable A holds 10 and variable B holds 20, then –

Sr.No. Operator & Description

1 = = (Equal)Checks if the value of two operands are equal or not, if yes,

then the condition becomes true.

Ex: (A == B) is not true.

2 != (Not Equal)Checks if the value of two operands are equal or not, if the

values are not equal, then the condition becomes true.

Ex: (A != B) is true.

3 > (Greater than) Checks if the value of the left operand is greater

than the value of the right operand, if yes, then the condition becomes true.

Ex: (A > B) is not true.

4 < (Less than)Checks if the value of the left operand is less than the value

of the right operand, if yes, then the condition becomes true.

Ex: (A < B) is true.

5 >= (Greater than or Equal to)Checks if the value of the left operand is

greater than or equal to the value of the right operand, if yes, then the

condition becomes true.

Ex: (A >= B) is not true.

48

6 <= (Less than or Equal to)Checks if the value of the left operand is less

than or equal to the value of the right operand, if yes, then the condition

becomes true.

ExEx: (A <= B) is true.

Example

<html>

<body>

<script type = “text/javascript”>

<!—

Var a = 10;

Var b = 20;

Varlinebreak = “
”;

Document.write(“(a == b) => “);

 Result = (a == b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a < b) => “);

 Result = (a < b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a > b) => “);

 Result = (a > b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a != b) => “);

 Result = (a != b);

Document.write(result);

Document.write(linebreak);

49

Document.write(“(a >= b) => “);

 Result = (a >= b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a <= b) => “);

 Result = (a <= b);

Document.write(result);

Document.write(linebreak);

</script>

 Set the variables to different values and different operators and then try…

</body>

</html>

Output

(a == b) => false

(a < b) => true

(a > b) => false

(a != b) => true

(a >= b) => false

A <= b) => true

2.5.3 Logical Operators

A logical operator is a symbol or word used to connect two or more expressions such that

the value of the compound expression produced depends only on that of the original expressions

and on the meaning of the operator. Common logical operators include AND, OR, and NOT.

JavaScript supports the following logical operators –

Assume variable A holds 10 and variable B holds 20, then –

50

Sr.No. Operator & Description

1 && (Logical AND)If both the operands are non-zero, then the condition

becomes true.

Ex: (A && B) is true.

2 || (Logical OR)

If any of the two operands are non-zero, then the condition becomes true.

Ex: (A || B) is true.

3 ! (Logical NOT)

Reverses the logical state of its operand. If a condition is true, then the

Logical NOT operator will make it false.

Ex: ! (A && B) is false.

Example

Try the following code to learn how to implement Logical Operators in JavaScript.

Live Demo

<html>

<body>

<script type = “text/javascript”>

Var a = true;

Var b = false;

Varlinebreak = “
”;

51

Document.write(“(a && b) => “);

 Result = (a && b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a || b) => “);

 Result = (a || b);

Document.write(result);

Document.write(linebreak);

Document.write(“!(a && b) => “);

 Result = (!(a && b));

Document.write(result);

Document.write(linebreak);

</script>

</body>

</html>

Output

(a && b) => false

(a || b) => true

!(a && b) => true

Set the variables to different values and different operators and then try…

2.5.4 Bitwise Operators

JavaScript stores numbers as 64 bits floating point numbers, but all bitwise operations are

performed on 32 bits binary numbers. Before a bitwise operation is performed, JavaScript

converts numbers to 32 bits signed integers. … A signed integer uses the leftmost bit as the

minus sign.(-)

52

JavaScript supports the following bitwise operators –

Assume variable A holds 2 and variable B holds 3, then –

Sr.No. Operator & Description

1

& (Bitwise AND)

It performs a Boolean AND operation on each bit of its integer arguments.

Ex: (A & B) is 2.

2

| (BitWise OR)

It performs a Boolean OR operation on each bit of its integer arguments.

Ex: (A | B) is 3.

3

^ (Bitwise XOR)

It performs a Boolean exclusive OR operation on each bit of its integer

arguments. Exclusive OR means that either operand one is true or operand two

is true, but not both.

Ex: (A ^ B) is 1.

4 ~ (Bitwise Not)

It is a unary operator and operates by reversing all the bits in the operand.

Ex: (~B) is -4.

5

<< (Left Shift)

It moves all the bits in its first operand to the left by the number of places

specified in the second operand. New bits are filled with zeros. Shifting a value

left by one position is equivalent to multiplying it by 2, shifting two positions

is equivalent to multiplying by 4, and so on.

Ex: (A << 1) is 4.

6

>> (Right Shift)

Binary Right Shift Operator. The left operand’s value is moved right by the

number of bits specified by the right operand.

Ex: (A >> 1) is 1.

7

>>> (Right shift with Zero)

This operator is just like the >> operator, except that the bits shifted in on the

left are always zero.

53

Ex: (A >>> 1) is 1.

Example

<html>

<body>

<script type = “text/javascript”>

Var a = 2; // Bit presentation 10

Var b = 3; // Bit presentation 11

Varlinebreak = “
”;

Document.write(“(a & b) => “);

 Result = (a & b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a | b) => “);

 Result = (a | b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a ^ b) => “);

 Result = (a ^ b);

Document.write(result);

Document.write(linebreak);

Document.write(“(~b) => “);

 Result = (~b);

Document.write(result);

Document.write(linebreak);

Document.write(“(a << b) => “);

 Result = (a << b);

Document.write(result);

54

Document.write(linebreak);

Document.write(“(a >> b) => “);

 Result = (a >> b);

Document.write(result);

Document.write(linebreak);

</script>

<p>Set the variables to different values and different operators and then

try…</p>

</body>

</html>

OUTPUT

(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(~b) => -4

(a << b) => 16

(a >> b) => 0

Set the variables to different values and different operators and then try…

2.5.5 Assignment Operators

An assignment operator assigns a value to its left operand based on the value of its right

operand. That is, a = b assigns the value of b to a. … In addition to the regular assignment

operator “=”

JavaScript supports the following assignment operators –

S.NO Operator & Description

1 = (Simple Assignment)

Assigns values from the right side operand to the left side operand

55

Ex: C = A + B will assign the value of A + B into C

2 += (Add and Assignment)

It adds the right operand to the left operand and assigns the result to

the left operand.

Ex: C += A is equivalent to C = C + A

3 −= (Subtract and Assignment)

It subtracts the right operand from the left operand and assigns the

result to the left operand.

Ex: C -= A is equivalent to C = C – A

4 *= (Multiply and Assignment)

It multiplies the right operand with the left operand and assigns the

result to the left operand.

Ex: C *= A is equivalent to C = C * A

5 /= (Divide and Assignment)

It divides the left operand with the right operand and assigns the

result to the left operand.

Ex: C /= A is equivalent to C = C / A

6 %= (Modules and Assignment)

It takes modulus using two operands and assigns the result to the left

operand.

Ex: C %= A is equivalent to C = C % A

Note – Same logic applies to Bitwise operators so they will become

like <<=, >>=, >>=, &=, |= and ^=.

Example

<html>

<body>

<script type = “text/javascript”>

56

<!—

Var a = 33;

Var b = 10;

Varlinebreak = “
”;

Document.write(“Value of a => (a = b) => “);

 Result = (a = b);

Document.write(result);

Document.write(linebreak);

Document.write(“Value of a => (a += b) => “);

 Result = (a += b);

Document.write(result);

Document.write(linebreak);

Document.write(“Value of a => (a -= b) => “);

 Result = (a -= b);

Document.write(result);

Document.write(linebreak);

Document.write(“Value of a => (a *= b) => “);

 Result = (a *= b);

Document.write(result);

Document.write(linebreak);

Document.write(“Value of a => (a /= b) => “);

 Result = (a /= b);

Document.write(result);

Document.write(linebreak);

Document.write(“Value of a => (a %= b) => “);

 Result = (a %= b);

57

Document.write(result);

Document.write(linebreak);

</script>

<p>Set the variables to different values and different operators and then try…</p>

</body>

</html>

Output

Value of a => (a = b) => 10

Value of a => (a += b) => 20

Value of a => (a -= b) => 10

Value of a => (a *= b) => 100

Value of a => (a /= b) => 10

Value of a => (a %= b) => 0

2.5.6 Conditional Operator

The conditional operator first evaluates an expression for a true or false value and then

executes one of the two given statements depending upon the result of the evaluation.

Sr.No. Operator and Description

1 ? : (Conditional)

If Condition is true? Then value X : Otherwise value Y

Example

<html>

<body>

<script type = “text/javascript”>

<!—

Var a = 10;

Var b = 20;

58

Varlinebreak = “
”;

Document.write (“((a > b) ? 100 : 200) => “);

 Result = (a > b) ? 100 : 200;

Document.write(result);

Document.write(linebreak);

Document.write (“((a < b) ? 100 : 200) => “);

 Result = (a < b) ? 100 : 200;

Document.write(result);

Document.write(linebreak);

</script>

</body>

</html>

Output

((a > b) ? 100 : 200) => 200

((a < b) ? 100 : 200) => 100

2.5.7 Typeof Operator

The typeof operator is a unary operator that is placed before its single operand, which can

be of any type. Its value is a string indicating the data type of the operand.

The typeof operator evaluates to “number”, “string”, or “boolean” if its operand is a

number, string, or boolean value and returns true or false based on the evaluation.

Here is a list of the return values for the type of Operator.

Type String Returned by typeof

Number “number”

59

String “string”

Boolean “boolean”

Object “object”

Function “function”

Undefined “undefined”

Null “object”

Example

<html>

<body>

<script type = “text/javascript”>

<!—

Var a = 10;

Var b = “String”;

Varlinebreak = “
”;

 Result = (typeof b == “string” ? “B is String” : “B is Numeric”);

Document.write(“Result => “);

Document.write(result);

Document.write(linebreak);

 Result = (typeof a == “string” ? “A is String” : “A is Numeric”);

Document.write(“Result => “);

Document.write(result);

Document.write(linebreak);

</script>

</body>

</html>

Output

Result => B is String

60

Result => A is Numeric

2.6 JavaScript Expressions

Any unit of code that can be evaluated to a value is an expression. Since expressions

produce values, they can appear anywhere in a program where JavaScript expects a value such as

the arguments of a function invocation. As per the MDN documentation, JavaScript has the

following expression categories.

 Arithmetic Expressions:

Arithmetic expressions evaluate to a numeric value. Examples include the following

10; // Here 10 is an expression that is evaluated to the numeric value 10 by the JS interpreter

10+13; // This is another expression that is evaluated to produce the numeric value 23

 String Expressions:

String expressions are expressions that evaluate to a string. Examples include the following

‘hello’;

‘hello’ + ‘world’; // evaluates to the string ‘hello world’

 Logical Expressions:

Expressions that evaluate to the boolean value true or false are considered to be logical

expressions. This set of expressions often involve the usage of logical operators && (AND),

||(OR) and !(NOT). Examples include

10 > 9; // evaluates to boolean value true

10 < 20; // evaluates to boolean value false

True; //evaluates to boolean value true

A===20 && b===30; // evaluates to true or false based on the values of a and b

 Primary Expressions:

Primary expressions refer to stand alone expressions such as literal values, certain

keywords and variable values. Examples include the following

‘hello world’; // A string literal

61

23; // A numeric literal

True; // Boolean value true

Sum; // Value of variable sum

This; // A keyword that evaluates to the current object

 Left-hand-side Expressions:

Also known as lvalues, left-hand-side expressions are those that can appear on the left

side of an assignment expression. Examples of left-hand-side expressions include the following

// variables such as I and total

I = 10;

Total = 0;

// properties of objects

Varobj = {}; // an empty object with no properties

Obj.x = 10; // an assignment expression

// elements of arrays

Array[0] = 20;

Array[1] = ‘hello’;

// Invalid left-hand-side errors

++(a+1); // SyntaxError. Attempting to increment or decrement an expression that is not an

lvalue will lead to errors.

Now that we have covered the basics of expressions, let’s dive a bit deeper into expressions.

 Assignment Expressions:

When expressions use the = operator to assign a value to a variable, it is called an

assignment expression. Examples include

Average = 55;

Var b = (a = 1); // here the assignment expression (a = 1) evaluates to a value that is assigned to

the variable b. b = (a = 1) is another assignment expression. Var is not part of the expression.

62

The = operator expects an lvalue as its left-side operand. The value of an assignment expression

is the value of the right-side operand such as 55 in the above example. As a side effect, the =

operator assigns the value on the right side to the value on the left side.

 Expressions with side effects:

As we just saw with assignment expressions, expressions with side effects are those that

result in a change or a side effect such as setting or modifying the value of a variable through the

assignment operator =, function call, incrementing or decrementing the value of a variable.

Sum = 20; // here sum is assigned the value of 20

Sum++; // increments the value of sum by 1

Function modify(){

 A *= 10;

}

Var a = 10;

Modify(); // modifies the value of a to 100.

2.7 JavaScript Loops

The JavaScript loops are used to iterate the piece of code using for, while, do while or

for-in loops. It makes the code compact. It is mostly used in array.There are four types of loops

in JavaScript.

1. For loop

2. While loop

3. Do-while loop

4. For-in loop

2.7.1 JavaScriptFor loop

The JavaScript for loop iterates the elements for the fixed number of times. It should be

used if number of iteration is known. The syntax of for loop is given below.

ForFor (initialization; condition; increment)

{

 Code to be executed

63

}

Let’s see the simple example of for loop in javascript.

<script>

For (i=1; i<=5; i++)

{

Document.write(I + “
”)

}

</script>

Output:

1

2

3

4

5

2.7.2. JavaScript while loop

The JavaScript while loop iterates the elements for the infinite number of times. It should

be used if number of iteration is not known. The syntax of while loop is given below.

While (condition)

{

 Code to be executed

}

Let’s see the simple example of while loop in javascript.

<script>

Vari=11;

While (i<=15)

{

Document.write(I + “
”);

i++;

64

}

</script>

Test it Now

Output:

11

12

13

14

15

2.7.3 JavaScript do while loop

The JavaScript do while loop iterates the elements for the infinite number of times like

while loop. But, code is executed at least once whether condition is true or false. The syntax of

do while loop is given below.

Do{

 Code to be executed

}while (condition);

Let’s see the simple example of do while loop in javascript.

<script>

Vari=21;

Do{

Document.write(I + “
”);

I++;

}while (i<=25);

</script>

Output:

21

22

23

65

24

25

2.7.4 JavaScript for in loop

The JavaScript for in loop is used to iterate the properties of an object. We will discuss

about it later.The for loop is the most compact form of looping and includes the following three

important parts –The loop initialization where we initialize our counter to a starting value. The

initialization statement is executed before the loop begins.

The test statement which will test if the given condition is true or not. If condition is true

then code given inside the loop will be executed otherwise loop will come out.The iteration

statement where you can increase or decrease your counter.

Syntax

For (initialization; test condition; iteration statement){

 Statement(s) to be executed if test condition is true

}

2.8 JavaScript Control structures

The control structures within JavaScript allow the program flow to change within a unit

of code or function. These statements can determine whether or not given statements are

executed – and provide the basis for the repeated execution of a block of code.

 Conditionals (if-else, switch) that perform different actions depending on the value of an

expression,

 Loops (while, do-while, for, for-in, for-of), that execute other statements repetitively,

 Jumps (break, continue, labeled statement) that cause a jump to another part of the

program.

 Conditional Branches, which we use for choosing between two or more paths.

 Loops that are used to iterate through multiple values/objects and repeatedly run

specificcode blocks.

66

If … else

The if statement is the fundamental control statement that allows JavaScript to make decisions

and execute statements conditionally.

Syntax

if(expression){

Statement(s) to be executed if expression istrue

}

Example

<scripttype="text/javascript">

<!--

var age =20;

if(age >18){

document.write("Qualifies for driving");

}

//-->

</script>

Example #2

if (5 > 6) {

document.write ("Condition is true : 5 is less than 6");

}

else {

document.write ("Condition is false : 5 is not greater than 6");

}

67

Switch case

The basic syntax of the switch statement is to give an expression to evaluate and several

different statements to execute based on the value of the expression. The interpreter checks each

case against the value of the expression until a match is found. If nothing matches, a default

condition will be used.

Syntax

switch(expression){

case condition 1: statement(s)

break;

case condition 2: statement(s)

break;

...

case condition n: statement(s)

break;

default: statement(s)

}

Example

<scripttype="text/javascript">

<!--

var grade='A';

document.write("Entering switch block
");

switch(grade){

case'A':document.write("Good job
");

break;

case'B':document.write("Pretty good
");

break;

case'C':document.write("Passed
");

break;

68

case'D':document.write("Not so good
");

break;

case'F':document.write("Failed
");

break;

default:document.write("Unknown grade
")

}

document.write("Exiting switch block");

//-->

</script>

2.9 JavaScript Constructor Function

Constructor functions technically are regular functions. There are two conventions though:

They are named with capital letter first.

They should be executed only with "new" operator.

For instance:

functionUser(name){

this.name= name;

this.isAdmin=false;

}

let user =newUser("Jack");

alert(user.name);// Jack

alert(user.isAdmin);// false

The function statement is not the only way to define a new function; you can define your

function dynamically using Function() constructor along with the new operator.

Note – Constructor is a terminology from Object Oriented Programming. You may not feel

comfortable for the first time, which is OK.

Syntax

69

Following is the syntax to create a function using Function() constructor along with the new

operator.

<script type = “text/javascript”>

<!—

Varvariablename = new Function(Arg1, Arg2…, “Function Body”);

</script>

The Function() constructor expects any number of string arguments. The last argument is

the body of the function – it can contain arbitrary JavaScript statements, separated from each

other by semicolons. Notice that the Function() constructor is not passed any argument that

specifies a name for the function it creates. The unnamed functions created with the Function()

constructor are called anonymous functions.

<html>

<head>

<script type = “text/javascript”>

<!—

Varfunc = new Function(“x”, “y”, “return x*y;”);

 Function secondFunction() {

Var result;

 Result = func(10,20);

Document.write (result);

 }

 //

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type = “button” onclick = “secondFunction()” value = “Call Function”>

</form>

<p>Use different parameters inside the function and then try…</p

</body>

70

</html>

Output

Click the following button to call the function

Call function

200

2.10 User defined function dialog box

There are three types of dialog boxes supported in JavaScript that are alert, confirm, and

prompt. These dialog boxes can be used to perform specific tasks such as raise an alert, to get

confirmation of an event or an input, and to get input from the user.

a) Alert Dialog box

It is used to provide a warning message to users. It is one of the most widely used dialog

box in JavaScript. It has only one ‘OK’ button to continue and select the next task.

We can understand it by an example like suppose a textfield is mandatory to be filled out,

but the user has not given any input value to that text field, then we can display a warning

message by using the alert box.

Syntax

Alert(message);

Example

Let us see the demonstration of an alert dialog box by using the following example.

<html>

<head>

<script type=”text/javascript”>

 Function show() {

 Alert(“It is an Alert dialog box”);

 }

</script>

71

</head>

<body>

<center>

<h1>Hello World </h1>

<h2>Welcome to javaTpoint</h2>

<p>Click the following button </p>

<input type=”button” value=”Click Me” onclick=”show();” />

</center>

</body>

</html>

Output

After the successful execution of the above code, you will get the following output.

ES6 Dialog boxes

After clicking on the Click Me button, you will get the following output:

b) Confirmation Dialog box

It is widely used for taking the opinion from the user on the specific option. It includes

two buttons, which are OK and Cancel. As an example, suppose a user is required to delete

some data, then the page can confirm it by using the confirmation box that whether he/she wants

to delete it or not.

72

If a user clicks on the OK button, then the method confirm() returns true. But if the user

clicks on the cancel button, then the confirm() method returns false.

Syntax

1. confirm(message);

Example

Let us understand the demonstration of this dialog box by using the following example.

1. <html>

2.

3. <head>

4. <script type="text/javascript">

5. function show() {

6. var con = confirm ("It is a Confirm dialog box");

7. if(con == true) {

8. document.write ("User Want to continue");

9. }

10. else {

11. document.write ("User does not want to continue");

12. }

13. }

14. </script>

15. </head>

16.

17. <body>

18. <center>

19. <h1>Hello World :) :)</h1>

20. <h2>Welcome to javaTpoint</h2>

21. <p>Click the following button </p>

22. <input type="button" value="Click Me" onclick="show();" />

73

23. </center>

24. </body>

25.

26. </html>

Output

After the successful execution of the above code, you will get the following output.

When you click on the given button, then you will get the following output:

After clicking the OK button, you will get:

On clicking the Cancel button, you will get:

74

c) Prompt Dialog box

The prompt dialog box is used when it is required to pop-up a text box for getting the

user input. Thus, it enables interaction with the user.

The prompt dialog box also has two buttons, which are OK and Cancel. The user needs

to provide input in the textbox and then click OK. When a user clicks on the OK button, then the

dialog box reads that value and returns it to the user. But on clicking

the Cancel button, prompt() method returns null.

Syntax

1. prompt(message, default_string);

Let us understand the prompt dialog box by using the following illustration.

Example

1. <html>

2.

3. <head>

4. <script type="text/javascript">

5. function show() {

6. var value = prompt("Enter your Name : ", "Enter your name");

7. document.write("Your Name is : " + value);

8. }

9. </script>

10. </head>

11.

12. <body>

13. <center>

75

14. <h1>Hello World :) :)</h1>

15. <h2>Welcome to javaTpoint</h2>

16. <p>Click the following button </p>

17. <input type="button" value="Click Me" onclick="show();" />

18. </center>

19. </body>

20.

21. </html>

Output

After executing the above code successfully, you will get the following output.

When you click on the Click Me button, you will get the following output:

Enter your name and click OK button, you will get:

76

Unit- III

3.1 JavaScript - Document Object Model or DOM

A Document object represents the HTML document that is displayed in that window.

The Document object has various properties that refer to other objects which allow access to

and modification of document content.

The way a document content is accessed and modified is called the Document Object

Model, or DOM.

1. Window Object: Window Object is at always at top of hierarchy.

2. Document object: When HTML document is loaded into a window, it becomes a

document object.

3. Form Object: It is represented by form tags.

4. Link Objects: It is represented by link tags.

5. Anchor Objects: It is represented by a href tags.

6. Form Control Elements:: Form can have many control elements such as text fields,

buttons, radio buttons, and checkboxes, etc.

77

There are several DOMs in existence. The following sections explain each of these

DOMs in detail and describe how you can use them to access and modify document content.

The Legacy DOM – This is the model which was introduced in early versions of JavaScript

language. It is well supported by all browsers, but allows access only to certain key portions of

documents, such as forms, form elements, and images.

The W3C DOM – This document object model allows access and modification of all document

content and is standardized by the World Wide Web Consortium (W3C). This model is

supported by almost all the modern browsers.

The IE4 DOM – This document object model was introduced in Version 4 of Microsoft’s

Internet Explorer browser. IE 5 and later versions include support for most basic W3C DOM

features.

DOM compatibility

If you want to write a script with the flexibility to use either W3C DOM or IE 4 DOM

depending on their availability, then you can use a capability-testing approach that first checks

for the existence of a method or property to determine whether the browser has the capability

you desire. For example –

If (document.getElementById) {

 // If the W3C method exists, use it

} else if (document.all) {

 // If the all[] array exists, use it

} else {

 // Otherwise use the legacy DOM

}

3.2 HTML Object

HTML <object> tag

78

HTML <object> tag is used to embed multimedia files on webpage. The <object> tag can

include multimedia files such as video, audio, image, PDF, Java Applets, or another page on

your page.

HTML <param> tag also used with <object> tag to pass parameters to plugin which has been

included with <object> tag.

If you insert text between the <object> and </object> tags, then it will only be displayed

if the browser does not support the <object> tag.

Syntax

<object data=”” type=””></object>

3.3 JavaScript Event Handling

JavaScript's interaction with HTML is handled through events that occur when the user

or the browser manipulates a page. When the page loads, it is called an event. When the user

clicks a button, that click too is an event. Other examples include events like pressing any

key, closing a window, resizing a window, etc.

Developers can use these events to execute JavaScript coded responses, which cause

buttons to close windows, messages to be displayed to users, data to be validated, and

virtually any other type of response imaginable.

Events are a part of the Document Object Model (DOM) Level 3 and every HTML

element contains a set of events which can trigger JavaScript Code.

Some of he HTML events an

Clickonclick

Mouseover

Mouseout

Mousedown

Mouseup

Mousemove

79

Example

Try the following example.

<html>

<head>

<scripttype="text/javascript">

<!--

functionsayHello(){

 alert("Hello World")

}

//-->

</script>

</head>

<body>

<p>Click the following button and see result</p>

<form>

<inputtype="button"onclick="sayHello()"value="Say Hello"/>

</form>

</body>

</html>

Output

Click the following button and see result

 onsubmit Event Type

onsubmit is an event that occurs when you try to submit a form. You can put your form

validation against this event type.

80

Example

The following example shows how to use onsubmit. Here we are calling

a validate() function before submitting a form data to the webserver. If validate() function

returns true, the form will be submitted, otherwise it will not submit the data.

Try the following example.

<html>

<head>

<scripttype="text/javascript">

<!--

function validation(){

 all validation goes here

.........

return either true or false

}

//-->

</script>

</head>

<body>

<formmethod="POST"action="t.cgi"onsubmit="return validate()">

<inputtype="submit"value="Submit"/>

</form>

</body>

</html>

 onmouseover and onmouseout

These two event types will help you create nice effects with images or even with text as

well. The onmouseover event triggers when you bring your mouse over any element and

81

the onmouseout triggers when you move your mouse out from that element. Try the following

example.

<html>

<head>

<scripttype="text/javascript">

<!--

function over(){

document.write("Mouse Over");

}

function out(){

document.write("Mouse Out");

}

//-->

</script>

</head>

<body>

<p>Bring your mouse inside the division to see the result:</p>

<divonmouseover="over()"onmouseout="out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

Output

 Mouse Over

82

3.4 Window Object

The window object represents an open window in a browser.If a document

contain frames (<iframe> tags), the browser creates one window object for the HTML

document, and one additional window object for each frame.

 The window object is supported by all browsers. It represents the browser's window.

 All global JavaScript objects, functions, and variables automatically become members of

the window object.

 Global variables are properties of the window object.

 Global functions are methods of the window object

Even the document object (of the HTML DOM) is a property of the window object:

window.document.getElementById("header");

is the same as:

document.getElementById("header");

Window Size

Two properties can be used to determine the size of the browser window.Both properties return

the sizes in pixels:

 Window.innerHeight – the inner height of the browser window (in pixels)

 Window.innerWidth – the inner width of the browser window (in pixels)

Methods of window object

The important methods of window object are as follows:

Method Description

alert() displays the alert box containing message with ok button.

confirm() displays the confirm dialog box containing message with ok and cancel button.

83

prompt() displays a dialog box to get input from the user.

open() opens the new window.

close() closes the current window.

setTimeout() performs action after specified time like calling function, evaluating expressions etc.

3.5 JavaScript - Document Object

A Document object represents the HTML document that is displayed in that window.

The Document object has various properties that refer to other objects which allow access to

and modification of document content. ... Document object − Each HTML document that gets

loaded into a window becomes a document object.

4 Browser Object

The Browser Object Model (BOM) is used to interact with the browser.The default object

of browser is window means you can call all the functions of window by specifying window or

directly.

The Browser Object Model (BOM) is the core of JavaScript on the web. The BOM

provides you with objects that expose the web browser’s functionality

 For example:

Window.alert(“hello javatpoint”);

Is same as:

Alert(“hello javatpoint”);

3.6 Form Object

Form object represents an HTML form.

84

Form object is a Browser object of JavaScript used to access an HTML form. If a user

wants to access all forms within a document then he can use the forms array. The form object is

actually a property of document object that is uniquely created by the browser for each form

present in a document.

 The properties and methods associated with form object are used to access the

form fields, attributes and controls associated with forms.

 ItIt is used to collect user input through elements like text fields, check box and

radio button, select option, text area, submit buttons and etc.

Syntax:

<form> . . . </form>

Form Object Properties

Property Description

Action It sets and returns the value of the action attribute in a form.

enctype It sets and returns the value of the enctype attribute in a form.

Length It returns the number of elements in a form.

Method It sets and returns the value of the method attribute in a form that is GET or POST.

Name It sets and returns the value of the name attribute in a form.

Target It sets and returns the value of the target attribute in a form.

Form Object Methods

Method Description

reset() It resets a form.

85

submit() It submits a form.

3.7 JavaScript Navigator Object

The JavaScript navigator object is used for browser detection. It can be used to get

browser information such as appName, appCodeName, userAgentetc.The navigator object

contains information about the browser.

Note: There is no public standard that applies to the navigator object, but all major

browsers support it.

The navigator object is the window property, so it can be accessed by:

Window.navigator

Or,

Navigator

Property Description

appCodeName Returns the code name of the

browser

appName Returns the name of the browser

appVersion Returns the version information of

the browser

https://www.w3schools.com/jsref/prop_nav_appcodename.asp
https://www.w3schools.com/jsref/prop_nav_appname.asp
https://www.w3schools.com/jsref/prop_nav_appversion.asp

86

cookieEnabled Determines whether cookies are

enabled in the browser

geolocation Returns a Geolocation object that

can be used to locate the user's

position

language Returns the language of the browser

onLine Determines whether the browser is

online

platform Returns for which platform the

browser is compiled

product Returns the engine name of the

browser

userAgent Returns the user-agent header sent

by the browser to the server

3.8 Screen Object

The screen object contains information about the visitor's screen.JavaScript Screen is a built-

in Interface (object type) that is used to fetch information related to the browser screen on which the

current window is rendered.

https://www.w3schools.com/jsref/prop_nav_cookieenabled.asp
https://www.w3schools.com/jsref/prop_nav_geolocation.asp
https://www.w3schools.com/jsref/prop_nav_language.asp
https://www.w3schools.com/jsref/prop_nav_online.asp
https://www.w3schools.com/jsref/prop_nav_platform.asp
https://www.w3schools.com/jsref/prop_nav_product.asp
https://www.w3schools.com/jsref/prop_nav_useragent.asp

87

The window.screen object can be written without the window prefix.

Properties:

Screen.width

Screen.height

Screen.availWidth

Screen.availHeight

Screen.colorDepth

Screen.pixelDepth

Note: There is no public standard that applies to the screen object, but all major browsers support it.

Screen Object Properties

Property Description

availHeight Returns the height of the screen

(excluding the Windows Taskbar)

availWidth Returns the width of the screen

(excluding the Windows Taskbar)

colorDepth Returns the bit depth of the color palette

for displaying images

height Returns the total height of the screen

https://www.w3schools.com/jsref/prop_screen_availheight.asp
https://www.w3schools.com/jsref/prop_screen_availwidth.asp
https://www.w3schools.com/jsref/prop_screen_colordepth.asp
https://www.w3schools.com/jsref/prop_screen_height.asp

88

pixelDepth Returns the color resolution (in bits per

pixel) of the screen

width Returns the total width of the screen

3.9 JavaScript Built-in Objects

Built-in objects are not related to any Window or DOM object model.These objects are

used for simple data processing in the JavaScript.Built-in objects: which are provided by the

JavaScript core. Things like Array, Strings, Number, Boolean, RegExp are all built-in objects

Math Object

Math object is a built-in static object.

It is used for performing complex math operations.

Object Methods Description

Array

Object

concat() Concate the two or more

string.

join() join the two or more array

string.

reverse() reverse the array string.

toString() Convert the array into string

array.

Object Methods Description

https://www.w3schools.com/jsref/prop_screen_pixeldepth.asp
https://www.w3schools.com/jsref/prop_screen_width.asp
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_concat
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_join
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_reverse
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_tostring

89

String

Object

anchor() Create an Anchor.

big() Big Font display into

string.

bold() bold style display into

string.

fixed() fixed font display into

string.

FontColor() Font Color display into

string.

FontSize() Font Size display into

string.

italic() italic style display into

string.

link() link display into string.

small() small text display into

string.

strike() strike text display into

string.

sub() sub style display into

string.

sup() sup style display into

string.

https://way2tutorial.com/javascript/snippet_editor/?file=js_object_anchor
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_big
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_bold
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_fixed
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_fontcolor
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_fontsize
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_italic
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_link
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_small
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_strike
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_sub
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_sup

90

toLowerCase toLowerCase text display

into string.

toUpperCase toUpperCase text display

into string.

3.10 User-defined objects:

User-defined object these are objects which you have created in your program or

application. User-defined object types are the types that most developers will use to expose

their services.

These types correspond most closely to classes in many object-oriented languages. ...

Methods are also specialized to produce constructors, which can be either instance or class

constructors (. ctor and . cctor).

Create() method to create an object of any prototype object which is already defined. …

As you can see in the code above, we can use the Object. Create method to create a new object

using an already defined object, and then if required we can change the properties values and use

the object function too.

3.11 JavaScript Cookies

Cookies are data, stored in small text files, on your computer.When a web server has sent

a web page to a browser, the connection is shut down, and the server forgets everything about the

user.

Cookies were invented to solve the problem “how to remember information about the

user”:

When a user visits a web page, his/her name can be stored in a cookie.

Next time the user visits the page, the cookie “remembers” his/her name.

Cookies are saved in name-value pairs like:

Username = John D

How Cookies Works?

https://way2tutorial.com/javascript/snippet_editor/?file=js_object_tolowercase
https://way2tutorial.com/javascript/snippet_editor/?file=js_object_touppercase

91

When a user sends a request to the server, then each of that request is treated as a new

request sent by the different user.

So, to recognize the old user, we need to add the cookie with the response from the server.

Browser at the client-side.

Now, whenever a user sends a request to the server, the cookie is added with that request

automatically. Due to the cookie, the server recognizes the users.

Create a Cookie with JavaScript

A cookie is an amount of information that persists between a server-side and a client-

side. A web browser stores this information at the time of browsing.

 A cookie contains the information as a string generally in the form of a name-value pair

separated by semi-colons.

JavaScript can create, read, and delete cookies with the document.cookieproperty.With

JavaScript, a cookie can be created like this:

Document.cookie = “username=John Doe”;

UNIT- IV

4.1 ASP.NETLANGUAGE STRUCTURE

ASP.NET is a web development platform, which provides a programming model, a

comprehensive software infrastructure and various services required to build up robust web

applications for PC, as well as mobile devices.

ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and

policies to set a browser-to-server bilateral communication and cooperation.

92

ASP.NET is a part of Microsoft .Net platform. ASP.NET applications are compiled

codes, written using the extensible and reusable components or objects present in .Net

framework. These codes can use the entire hierarchy of classes in .Net framework.

The ASP.NET application codes can be written in any of the following languages:

 C#

 Visual Basic.Net

 Jscript

 J#

ASP.NET is used to produce interactive, data-driven web applications over the internet.

It consists of a large number of controls such as text boxes, buttons, and labels for assembling,

configuring, and manipulating code to create HTML pages.

ASP.NET Web Forms Model

ASP.NET web forms extend the event-driven model of interaction to the web

applications. The browser submits a web form to the web server and the server returns a full

markup page or HTML page in response.

All client side user activities are forwarded to the server for stateful processing. The

server processes the output of the client actions and triggers the reactions.

Now, HTTP is a stateless protocol. ASP.NET framework helps in storing the information

regarding the state of the application, which consists of:

 Page state

 Session state

The page state is the state of the client, i.e., the content of various input fields in the web

form. The session state is the collective information obtained from various pages the user

visited and worked with, i.e., the overall session state. To clear the concept, let us take an

example of a shopping cart.

93

User adds items to a shopping cart. Items are selected from a page, say the items page,

and the total collected items and price are shown on a different page, say the cart page. Only

HTTP cannot keep track of all the information coming from various pages. ASP.NET session

state and server side infrastructure keeps track of the information collected globally over a

session.

The ASP.NET runtime carries the page state to and from the server across page requests

while generating ASP.NET runtime codes, and incorporates the state of the server side

components in hidden fields.

This way, the server becomes aware of the overall application state and operates in a two-tiered

connected way.

The ASP.NET Component Model

The ASP.NET component model provides various building blocks of ASP.NET pages.

Basically it is an object model, which describes:

 Server side counterparts of almost all HTML elements or tags, such as <form> and

<input>.

 Server controls, which help in developing complex user-interface. For example, the

Calendar control or the Gridview control.

ASP.NET is a technology, which works on the .Net framework that contains all web-

related functionalities. The .Net framework is made of an object-oriented hierarchy. An

ASP.NET web application is made of pages. When a user requests an ASP.NET page, the IIS

delegates the processing of the page to the ASP.NET runtime system.

The ASP.NET runtime transforms the .aspx page into an instance of a class, which

inherits from the base class page of the .Net framework. Therefore, each ASP.NET page is an

object and all its components i.e., the server-side controls are also objects.

94

4.2 PAGE STRUCTURE

An ASP.NET page is made up of a number of server controls along with HTML

controls, text, and images. Sensitive data from the page and the states of different controls on

the page are stored in hidden fields that form the context of that page request.

ASP.NET runtime controls the association between a page instance and its state. An ASP.NET

page is an object of the Page or inherited from it.

All the controls on the pages are also objects of the related control class inherited from a parent

Control class. When a page is run, an instance of the object page is created along with all its

content controls.

An ASP.NET page is also a server side file saved with the .aspx extension. It is modular in

nature and can be divided into the following core sections:

 Page Directives

 Code Section

 Page Layout

Page Directives

The page directives set up the environment for the page to run. The @Page directive

defines page-specific attributes used by ASP.NET page parser and compiler. Page directives

specify how the page should be processed, and which assumptions need to be taken about the

page.

It allows importing namespaces, loading assemblies, and registering new controls with custom

tag names and namespace prefixes.

Code Section

The code section provides the handlers for the page and control events along with other

functions required. We mentioned that, ASP.NET follows an object model. Now, these objects

raise events when some events take place on the user interface, like a user clicks a button or

95

moves the cursor. The kind of response these events need to reciprocate is coded in the event

handler functions. The event handlers are nothing but functions bound to the controls.

The code section or the code behind file provides all these event handler routines, and other

functions used by the developer. The page code could be precompiled and deployed in the form

of a binary assembly.

Page Layout

The page layout provides the interface of the page. It contains the server controls, text,

inline JavaScript, and HTML tags.

The following code snippet provides a sample ASP.NET page explaining Page directives, code

section and page layout written in C#:

<!-- directives -->

<%@PageLanguage="C#" %>

<!-- code section -->

<scriptrunat="server">

privatevoidconvertoupper(object sender,EventArgs e)

{

 string str=mytext.Value;

changed_text.InnerHtml=str.ToUpper();

}

</script>

<!-- Layout -->

<html>

<head>

<title> Change to Upper Case </title>

</head>

96

<body>

<h3> Conversion to Upper Case </h3>

<formrunat="server">

<inputrunat="server"id="mytext"type="text"/>

<inputrunat="server"id="button1"type="submit"value="Enter..."OnServerClick="convertoupper

"/>

<hr/>

<h3> Results: </h3>

<spanrunat="server"id="changed_text"/>

</form>

</body>

</html>

Copy this file to the web server root directory. Generally it is c:\iNETput\wwwroot. Open the

file from the browser to execute it and it generates following result:

Using Visual Studio IDE

97

Let us develop the same example using Visual Studio IDE. Instead of typing the code, you can

just drag the controls into the design view:

The content file is automatically developed. All you need to add is the Button1_Click routine,

which is as follows:

protectedvoidButton1_Click(object sender,EventArgs e)

{

stringbuf=TextBox1.Text;

changed_text.InnerHtml=buf.ToUpper();

}

The content file code is as given:

<%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="Default.aspx.cs"

Inherits="firstexample._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title>

 Untitled Page

98

</title>

</head>

<body>

<formid="form1"runat="server">

<div>

<asp:TextBoxID="TextBox1"runat="server"style="width:224px">

</asp:TextBox>

<asp:ButtonID="Button1"runat="server"Text="Enter..."style="width:85px"onclick="Button1_Cl

ick"/>

<hr/>

<h3> Results: </h3>

<spanrunat="server"id="changed_text"/>

</div>

</form>

</body>

</html>

Execute the example by right clicking on the design view and choosing 'View in Browser' from

the popup menu. This generates the following result:

99

4.3 PAGE EVENT

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be coded.

An event handler is basically a function or subroutine, bound to the event, using declarative

attributes such as Onclick or handle.

Following are the page life cycle events:

 PreInit - PreInit is the first event in page life cycle. It checks the IsPostBack property

and determines whether the page is a postback. It sets the themes and master pages,

creates dynamic controls, and gets and sets profile property values. This event can be

handled by overloading the OnPreInit method or creating a Page_PreInit handler.

 Init - Init event initializes the control property and the control tree is built. This event

can be handled by overloading the OnInit method or creating a Page_Init handler.

 InitComplete - InitComplete event allows tracking of view state. All the controls turn on

view-state tracking.

 LoadViewState - LoadViewState event allows loading view state information into the

controls.

100

 LoadPostData - During this phase, the contents of all the input fields are defined with

the <form> tag are processed.

 PreLoad - PreLoad occurs before the post back data is loaded in the controls. This event

can be handled by overloading the OnPreLoad method or creating a Page_PreLoad

handler.

 Load - The Load event is raised for the page first and then recursively for all child

controls. The controls in the control tree are created. This event can be handled by

overloading the OnLoad method or creating a Page_Load handler.

 LoadComplete - The loading process is completed, control event handlers are run, and

page validation takes place. This event can be handled by overloading the

OnLoadComplete method or creating a Page_LoadComplete handler

 PreRender - The PreRender event occurs just before the output is rendered. By handling

this event, pages and controls can perform any updates before the output is rendered.

 PreRenderComplete - As the PreRender event is recursively fired for all child controls,

this event ensures the completion of the pre-rendering phase.

 SaveStateComplete - State of control on the page is saved. Personalization, control state

and view state information is saved. The HTML markup is generated. This stage can be

handled by overriding the Render method or creating a Page_Render handler.

 UnLoad - The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad

event for all controls recursively and lastly for the page itself. Final cleanup is done and

all resources and references, such as database connections, are freed. This event can be

handled by modifying the OnUnLoad method or creating a Page_UnLoad handler.

101

4.4 ASP.NET DIRECTIVES

ASP.NET directives are instructions to specify optional settings, such as registering a

custom control and page language. These settings describe how the web forms (.aspx) or user

controls (.ascx) pages are processed by the .Net framework.

The syntax for declaring a directive is:

<%@directive_name attribute=value[attribute=value] %>

In this section, we will just introduce the ASP.NET directives and we will use most of these

directives throughout the tutorials.

The Application Directive

The Application directive defines application-specific attributes. It is provided at the top of the

global.aspx file.

The basic syntax of Application directive is:

<%@ApplicationLanguage="C#" %>

The attributes of the Application directive are:

Attributes Description

Inherits The name of the class from which to

inherit.

Description The text description of the application.

Parsers and compilers ignore this.

Language The language used in code blocks.

102

The Assembly Directive

The Assembly directive links an assembly to the page or the application at parse time.

This could appear either in the global.asax file for application-wide linking, in the page file, a

user control file for linking to a page or user control.

The basic syntax of Assembly directive is:

<%@AssemblyName="myassembly" %>

The attributes of the Assembly directive are:

Attributes Description

Name The name of the assembly to be linked.

Src The path to the source file to be linked

and compiled dynamically.

The Control Directive

The control directive is used with the user controls and appears in the user control (.ascx) files.

The basic syntax of Control directive is:

<%@ControlLanguage="C#"EnableViewState="false" %>

The attributes of the Control directive are:

Attributes Description

103

AutoEventWireup The Boolean value that enables

or disables automatic association

of events to handlers.

ClassName The file name for the control.

Debug The Boolean value that enables

or disables compiling with debug

symbols.

Description The text description of the

control page, ignored by

compiler.

EnableViewState The Boolean value that indicates

whether view state is maintained

across page requests.

Explicit For VB language, tells the

compiler to use option explicit

mode.

Inherits The class from which the control

page inherits.

Language The language for code and script.

104

Src The filename for the code-

behind class.

Strict For VB language, tells the

compiler to use the option strict

mode.

The Implements Directive

The Implement directive indicates that the web page, master page or user control page must

implement the specified .Net framework interface.

The basic syntax for implements directive is:

<%@ImplementsInterface="interface_name" %>

The Import Directive

The Import directive imports a namespace into a web page, user control page of

application. If the Import directive is specified in the global.asax file, then it is applied to the

entire application. If it is in a page of user control page, then it is applied to that page or control.

The basic syntax for import directive is:

<%@namespace="System.Drawing" %>

The Master Directive

The Master directive specifies a page file as being the mater page.

The basic syntax of sample MasterPage directive is:

<%@MasterPageLanguage="C#"AutoEventWireup="true"CodeFile="SiteMater.master.cs"Inher

its="SiteMaster" %>

105

The MasterType Directive

The MasterType directive assigns a class name to the Master property of a page, to make it

strongly typed.

The basic syntax of MasterType directive is:

<%@MasterType attribute="value"[attribute="value"...] %>

The OutputCache Directive

The OutputCache directive controls the output caching policies of a web page or a user control.

The basic syntax of OutputCache directive is:

<%@OutputCacheDuration="15"VaryByParam="None" %>

The Page Directive

The Page directive defines the attributes specific to the page file for the page parser and the

compiler.

The basic syntax of Page directive is:

<%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.aspx.cs"Inherits="_Defa

ult"Trace="true" %>

The attributes of the Page directive are:

Attributes Description

AutoEventWireup The Boolean value that enables

or disables page events that are

106

being automatically bound to

methods; for example,

Page_Load.

Buffer The Boolean value that enables

or disables HTTP response

buffering.

ClassName The class name for the page.

ClientTarget The browser for which the

server controls should render

content.

CodeFile The name of the code behind

file.

Debug The Boolean value that enables

or disables compilation with

debug symbols.

Description The text description of the

page, ignored by the parser.

EnableSessionState It enables, disables, or makes

session state read-only.

107

EnableViewState The Boolean value that enables

or disables view state across

page requests.

ErrorPage URL for redirection if an

unhandled page exception

occurs.

Inherits The name of the code behind or

other class.

Language The programming language for

code.

Src The file name of the code

behind class.

Trace It enables or disables tracing.

TraceMode It indicates how trace messages

are displayed, and sorted by

time or category.

Transaction It indicates if transactions are

supported.

ValidateRequest The Boolean value that

indicates whether all input data

108

is validated against a hardcoded

list of values.

The PreviousPageType Directive

The PreviousPageType directive assigns a class to a page, so that the page is strongly typed.

The basic syntax for a sample PreviousPagetype directive is:

<%@PreviousPageType attribute="value"[attribute="value"...] %>

The Reference Directive

The Reference directive indicates that another page or user control should be compiled and

linked to the current page.

The basic syntax of Reference directive is:

<%@ReferencePage="somepage.aspx" %>

The Register Directive

The Register derivative is used for registering the custom server controls and user controls.

The basic syntax of Register directive is:

<%@RegisterSrc="~/footer.ascx"TagName="footer"TagPrefix="Tfooter" %>

4.5 HTML SERVER CONTROLS

The HTML server controls are basically the standard HTML controls enhanced to

enable server side processing. The HTML controls such as the header tags, anchor tags, and

input elements are not processed by the server but are sent to the browser for display.

109

They are specifically converted to a server control by adding the attribute runat="server" and

adding an id attribute to make them available for server-side processing.

For example, consider the HTML input control:

<inputtype="text"size="40">

It could be converted to a server control, by adding the runat and id attribute:

<inputtype="text"id="testtext"size="40"runat="server">

Advantages of using HTML Server Controls

Although ASP.NET server controls can perform every job accomplished by the HTML server

controls, the later controls are useful in the following cases:

 Using static tables for layout purposes.

 Converting a HTML page to run under ASP.NET

The following table describes the HTML server controls:

Control Name HTML tag

HtmlHead <head>element

HtmlInputButton <input

type=button|submit|reset>

HtmlInputCheckbox <input type=checkbox>

HtmlInputFile <input type = file>

110

HtmlInputHidden <input type = hidden>

HtmlInputImage <input type = image>

HtmlInputPassword <input type = password

Example

The following example uses a basic HTML table for layout. It uses some boxes for

getting input from the users such as name, address, city, state etc. It also has a button control,

which is clicked to get the user data displayed in the last row of the table.

The page should look like this in the design view:

The code for the content page shows the use of the HTML table element for layout.

<%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="Default.aspx.cs"Inherits="ht

mlserver._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

111

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title>Untitled Page</title>

<styletype="text/css">

.style1

{

 width:156px;

}

.style2

{

 width:332px;

}

</style>

</head>

<body>

<formid="form1"runat="server">

<div>

112

<tablestyle="width:54%;">

<tr>

<tdclass="style1">Name:</td>

<tdclass="style2">

<asp:TextBoxID="txtname"runat="server"style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<tdclass="style1">Street</td>

<tdclass="style2">

<asp:TextBoxID="txtstreet"runat="server"style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<tdclass="style1">City</td>

113

<tdclass="style2">

<asp:TextBoxID="txtcity"runat="server"style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<tdclass="style1">State</td>

<tdclass="style2">

<asp:TextBoxID="txtstate"runat="server"style="width:230px">

</asp:TextBox>

</td>

</tr>

<tr>

<tdclass="style1"> </td>

<tdclass="style2"></td>

</tr>

<tr>

114

<tdclass="style1"></td>

<tdID="displayrow"runat="server"class="style2">

</td>

</tr>

</table>

</div>

<asp:ButtonID="Button1"runat="server"onclick="Button1_Click"Text="Click"/>

</form>

</body>

</html>

The code behind the button control:

protectedvoidButton1_Click(object sender,EventArgs e)

{

stringstr="";

str+=txtname.Text+"
";

str+=txtstreet.Text+"
";

str+=txtcity.Text+"
";

str+=txtstate.Text+"
";

displayrow.InnerHtml=str;

115

}

ANCHOR

The Anchor Tag Helper adds the hash character (#). It is useful with client-side

application. It can be used to easy marking and searching in JavaScript. It is used to set the area

name whichASP.NET Core uses to set an appropriate route.

TABLE

A table Web control creates an HTML table in simple HTML with the help of the <tr> and <td>

tags.

You can use the <table>,<tr>, and <td> tags to create a table and its rows in HTML. For

example, the HTML code in Listing 7-25 creates a table with two rows and three columns with

their values.

Listing. HTML code for a Table control

1. <table border="1" width="39%">

2. <tr>

3. <td width="33%">

4. Row1,Col1

5. </td>

6. <td width="33%">

7. Row1,Col2

8. </td>

9. <td width="34%">

10. Row1,Col3

11. </td>

12. </tr>

116

13. <tr>

14. <td width="33%">

15. Row2,Col1

16. </td>

17. <td width="33%">

18. Row2,Col2

19. </td>

20. <td width="34%">

21. Row2,Col3

22. </td>

23. </tr>

24. </table>

In the .NET Framework the Table class enables you to build an HTML table.

The System.Web.UI.Controls namespace defines the Table class, along with the other Web

controls. You can create tables in .NET using a Table control and its helper controls TableRow

and TableCell. As with all Web controls, you can create a Table control at run-time as well as at

design-time using the VS .NET IDE. Table 7-9 describes the Table control and its helper

controls.

Forms

ASP.NET Web Forms is a part of the ASP.NET web application framework and is

included with Visual Studio. ... Web Forms are pages that your users request using their

browser. These pages can be written using a combination of HTML, client-script, server

controls, and server code.

Files

files as a simple way to store data for your website.

 Text files can be in different formats, such as *.txt, *.xml, or *.csv.

117

 You can use the File.WriteAllText method to specify the file to create and then write

data to it.

 You can read/write and move data from/to the text file.

Write Data to a File

Let’s have a look into a simple example in which we will write a student information into a text

file. First we need to create a new CSHTML file

Enter TextData.cshtml in the name field and click OK to continue. In this example, we will

create a simple form in which the user can enter Student information like first name, last name

and marks.

We also need to create a text file in the App_Datafolder with Data.txt name

118

Let’s replace the following code in the TextData.cshtml file.

@{

var result ="";

if(IsPost){

varfirstName=Request["FirstName"];

varlastName=Request["LastName"];

var marks =Request["Marks"];

varuserData=firstName+","+lastName+","+ marks +Environment.NewLine;

vardataFile=Server.MapPath("~/App_Data/Data.txt");

119

File.WriteAllText(@dataFile,userData);

 result ="Information saved.";

}

}

<!DOCTYPE html>

<html>

<head>

<title>WriteData to a File</title>

</head>

<body>

<form id ="form1" method ="post">

<div>

<table>

<tr>

<td>FirstName:</td>

<td><input id ="FirstName" name ="FirstName" type ="text"/></td>

</tr>

<tr>

<td>LastName:</td>

120

<td><input id ="LastName" name ="LastName" type ="text"/></td>

</tr>

<tr>

<td>Marks:</td>

<td><input id ="Marks" name ="Marks" type ="text"/></td>

</tr>

<tr>

<td></td>

<td><input type="submit"value="Submit"/></td>

</tr>

</table>

</div>

<div>

@if(result !=""){

<p>Result:@result</p>

}

</div>

</form>

</body>

121

</html>

In the code, we have used the IsPost property to determine whether the page has been submitted

before it starts processing. The WriteAllText method of the File object takes two parameters,

the file name path and the actual data to write to the file.

Now let’s run this application and specify the following url

− http://localhost:36905/TextDataand you will see the following web page.

Let’s enter some data in all the fields.

Now click on the submit button.

122

As you can see the information is saved, now let’s open the Data.txt file and you will see that

data is written to the file.

Append Data to an Existing File

123

For writing data to the text file we have used WriteAllText. If you call this method again and

pass it with the same file name, then it will overwrite the existing file completely. But in most

cases, we often want to add new data to the end of the file, so we can do that by using

the AppendAllText method of the file object.

Let’s have a look into the same example, we will just change the WriteAllText() to

AppendAllText () as shown in the following program.

@{

var result ="";

if(IsPost){

varfirstName=Request["FirstName"];

varlastName=Request["LastName"];

var marks =Request["Marks"];

varuserData=firstName+","+lastName+","+ marks +Environment.NewLine;

vardataFile=Server.MapPath("~/App_Data/Data.txt");

File.AppendAllText(@dataFile,userData);

 result ="Information saved.";

}

}

<!DOCTYPE html>

<html>

124

<head>

<title>WriteData to a File</title>

</head>

<body>

<form id ="form1" method ="post">

<div>

<table>

<tr>

<td>FirstName:</td>

<td><input id ="FirstName" name ="FirstName" type ="text"/></td>

</tr>

<tr>

<td>LastName:</td>

<td><input id ="LastName" name ="LastName" type ="text"/></td>

</tr>

<tr>

<td>Marks:</td>

<td><input id ="Marks" name ="Marks" type ="text"/></td>

125

</tr>

<tr>

<td></td>

<td><input type ="submit"value="Submit"/></td>

</tr>

</table>

</div>

<div>

@if(result !=""){

<p>Result:@result</p>

}

</div>

</form>

</body>

</html>

126

Now let’s run the application and specify the following

url http://localhost:36905/TextData and you will see the following web page.

Enter some data and click the submit button.

Now when you open the Data.txt file then you will see that the data is appended at the end of

this file.

127

Read Data from a File

To read the data from a file, you can use the File object and then call ReadAllLines(), which

will read all the lines from the file. To do so, let’s create a new CSHTML file.

Enter ReadData.cshtml in the Name field and click OK.

Now replace the following code in the ReadData.cshtml file.

@{

var result ="";

ArrayuserData=null;

char[]delimiterChar={','};

vardataFile=Server.MapPath("~/App_Data/Data.txt");

128

if(File.Exists(dataFile)){

userData=File.ReadAllLines(dataFile);

if(userData==null){

// Empty file.

 result ="The file is empty.";

}

}else{

// File does not exist.

 result ="The file does not exist.";

}

}

<!DOCTYPE html>

<html>

<head>

<title>ReadingDatafrom a File</title>

</head>

<body>

<div>

<h1>ReadingDatafrom a File</h1>

129

@result

@if(result ==""){

@foreach(stringdataLineinuserData){

Student

@foreach(stringdataItemindataLine.Split(delimiterChar)){

@dataItem

}

}

}

</div>

</body>

</html>

130

Now let’s run the application again and specify the following

url http://localhost:36905/ReadData and you will see the following web page.

4.6 BASIC WEB SERVER CONTROL

we will discuss the basic controls available in ASP.NET.

 Button Controls

ASP.NET provides three types of button control:

 Button : It displays text within a rectangular area.

 Link Button : It displays text that looks like a hyperlink.

 Image Button : It displays an image.

When a user clicks a button, two events are raised: Click and Command.

Basic syntax of button control:

131

<asp:ButtonID="Button1"runat="server"onclick="Button1_Click"Text="Click"/>

Common properties of the button control:

Property Description

Text The text displayed on the

button. This is for button and

link button controls only.

ImageUrl For image button control only.

The image to be displayed for

the button.

AlternateText For image button control only.

The text to be displayed if the

browser cannot display the

image.

CausesValidation Determines whether page

validation occurs when a user

clicks the button. The default

is true.

CommandName A string value that is passed to

the command event when a

user clicks the button.

CommandArgument A string value that is passed to

132

the command event when a

user clicks the button.

PostBackUrl The URL of the page that is

requested when the user clicks

the button.

 Text Boxes and Labels

Text box controls are typically used to accept input from the user. A text box control can accept

one or more lines of text depending upon the settings of the TextMode attribute.

Label controls provide an easy way to display text which can be changed from one execution of

a page to the next. If you want to display text that does not change, you use the literal text.

Basic syntax of text control:

<asp:TextBoxID="txtstate"runat="server"></asp:TextBox>

Common Properties of the Text Box and Labels:

Property Description

TextMode Specifies the type of text box.

SingleLine creates a standard text box,

MultiLIne creates a text box that

accepts more than one line of text and

the Password causes the characters that

are entered to be masked. The default is

SingleLine.

133

Text The text content of the text box.

MaxLength The maximum number of characters

that can be entered into the text box.

Wrap It determines whether or not text wraps

automatically for multi-line text box;

default is true.

ReadOnly Determines whether the user can

change the text in the box; default is

false, i.e., the user can not change the

text.

Columns The width of the text box in characters.

The actual width is determined based

on the font that is used for the text

entry.

Rows The height of a multi-line text box in

lines. The default value is 0, means a

single line text box.

The mostly used attribute for a label control is 'Text', which implies the text displayed on the

label.

 Check Boxes and Radio Buttons

A check box displays a single option that the user can either check or uncheck and radio

buttons present a group of options from which the user can select just one option.

134

To create a group of radio buttons, you specify the same name for the GroupName attribute of

each radio button in the group. If more than one group is required in a single form, then specify

a different group name for each group.

If you want check box or radio button to be selected when the form is initially displayed, set its

Checked attribute to true. If the Checked attribute is set to true for multiple radio buttons in a

group, then only the last one is considered as true.

Basic syntax of check box:

<asp:CheckBoxID="chkoption"runat="Server">

</asp:CheckBox>

Basic syntax of radio button:

<asp:RadioButtonID="rdboption"runat="Server">

</asp: RadioButton>

Common properties of check boxes and radio buttons:

Property Description

Text The text displayed next to the check

box or radio button.

Checked Specifies whether it is selected or not,

default is false.

GroupName Name of the group the control belongs

to.

135

 List Controls

ASP.NET provides the following controls

 Drop-down list,

 List box,

 Radio button list,

 Check box list,

 Bulleted list.

IonalThese control let a user choose from one or more items from the list. List boxes and drop-

down lists contain one or more list items. These lists can be loaded either by code or by the

ListItemCollection editor.

Basic syntax of list box control:

<asp:ListBoxID="ListBox1"runat="server"AutoPostBack="True"OnSelectedIndexChanged="Li

stBox1_SelectedIndexChanged">

</asp:ListBox>

Basic syntax of drop-down list control:

<asp:DropDownListID="DropDownList1"runat="server"AutoPostBack="True"OnSelectedInde

xChanged="DropDownList1_SelectedIndexChanged">

</asp:DropDownList>

Common properties of list box and drop-down Lists:

Property Description

Items The collection of ListItem objects

that represents the items in the

136

control. This property returns an

object of type ListItemCollection.

Rows Specifies the number of items

displayed in the box. If actual list

contains more rows than displayed

then a scroll bar is added.

SelectedIndex The index of the currently selected

item. If more than one item is

selected, then the index of the first

selected item. If no item is selected,

the value of this property is -1.

SelectedValue The value of the currently selected

item. If more than one item is

selected, then the value of the first

selected item. If no item is selected,

the value of this property is an

empty string ("").

SelectionMode Indicates whether a list box allows

single selections or multiple

selections.

Common properties of each list item objects:

Property Description

137

Text The text displayed for the item.

Selected Indicates whether the item is selected.

Value A string value associated with the item.

 The ListItemCollection

The ListItemCollection object is a collection of ListItem objects. Each ListItem object

represents one item in the list. Items in a ListItemCollection are numbered from 0.

When the items into a list box are loaded using strings like: lstcolor.Items.Add("Blue"), then

both the Text and Value properties of the list item are set to the string value you specify. To set

it differently you must create a list item object and then add that item to the collection.

The ListItemCollection Editor is used to add item to a drop-down list or list box. This is used to

create a static list of items. To display the collection editor, select edit item from the smart tag

menu, or select the control and then click the ellipsis button from the Item property in the

properties window.

Common properties of ListItemCollection:

Property Description

Item(integer) A ListItem object that represents the

item at the specified index.

Count The number of items in the collection.

Common methods of ListItemCollection:

138

Methods Description

Add(string) Adds a new item at the end

of the collection and

assigns the string

parameter to the Text

property of the item.

Add(ListItem) Adds a new item at the end

of the collection.

Insert(integer, string) Inserts an item at the

specified index location in

the collection, and assigns

string parameter to the text

property of the item.

Insert(integer, ListItem) Inserts the item at the

specified index location in

the collection.

Remove(string) Removes the item with the

text value same as the

string.

Remove(ListItem) Removes the specified

item.

139

RemoveAt(integer) Removes the item at the

specified index as the

integer.

Clear Removes all the items of

the collection.

FindByValue(string) Returns the item whose

value is same as the string.

FindByValue(Text) Returns the item whose

text is same as the string.

Radio Button list and Check Box list

A radio button list presents a list of mutually exclusive options. A check box list

presents a list of independent options. These controls contain a collection of ListItem objects

that could be referred to through the Items property of the control.

Basic syntax of radio button list:

<asp:RadioButtonListID="RadioButtonList1"runat="server"AutoPostBack="True"

OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

</asp:RadioButtonList>

Basic syntax of check box list:

<asp:CheckBoxListID="CheckBoxList1"runat="server"AutoPostBack="True"

OnSelectedIndexChanged="CheckBoxList1_SelectedIndexChanged">

</asp:CheckBoxList>

Common properties of check box and radio button lists:

140

Property Description

RepeatLayout This attribute specifies whether the table tags or the normal html flow to use

while formatting the list when it is rendered. The default is Table.

RepeatDirection It specifies the direction in which the controls to be repeated. The values

available are Horizontal and Vertical. Default is Vertical.

RepeatColumns It specifies the number of columns to use when repeating the controls;

default is 0.

 Bulleted lists and Numbered lists

The bulleted list control creates bulleted lists or numbered lists. These controls contain a

collection of ListItem objects that could be referred to through the Items property of the control.

Basic syntax of a bulleted list:

<asp:BulletedListID="BulletedList1"runat="server">

</asp:BulletedList>

Common properties of the bulleted list:

Property Description

BulletStyle This property specifies the style

and looks of the bullets, or

numbers.

RepeatDirection It specifies the direction in which

the controls to be repeated. The

141

values available are Horizontal and

Vertical. Default is Vertical.

RepeatColumns It specifies the number of columns

to use when repeating the controls;

default is 0.

 HyperLink Control

The HyperLink control is like the HTML <a> element.

Basic syntax for a hyperlink control:

<asp:HyperLinkID="HyperLink1"runat="server">

HyperLink

</asp:HyperLink>

It has the following important properties:

Property Description

ImageUrl Path of the image to be displayed by

the control.

NavigateUrl Target link URL.

Text The text to be displayed as the link.

Target The window or frame which loads the

linked page.

 Image Control

The image control is used for displaying images on the web page, or some alternative text, if the

image is not available.

142

Basic syntax for an image control:

<asp:ImageID="Image1"runat="server">

It has the following important properties:

Property Description

AlternateText Alternate text to be displayed in

absence of the image.

ImageAlign Alignment options for the control.

ImageUrl Path of the image to be displayed by

the control.

4.7 ASP.NETDataList Server Control

The ASP.NET DataList control is a light weight server side control that works as a

container for data items. It is used to display data into a list format to the web pages.

It displays data from the data source. The data source can be either a DataTable or a table from

database.

Here, first, we are creating DataList that gets data from a DataTable. This example includes the

following files.

ASP.NET DataList Example with DataTable

1. <%@ Page Language="C#" AutoEventWireup="true"

2. CodeBehind="DataListExample.aspx.cs" Inherits="AdoNetExample.DataListExam

ple" %>

143

3. <!DOCTYPE html>

4. <html xmlns="http://www.w3.org/1999/xhtml">

5. <head runat="server">

6. <title></title>

7. </head>

8. <body>

9. <form id="form1" runat="server">

10. <div>

11. </div>

12. <asp:DataList ID="DataList1" runat="server" DataSourceID="SqlDataSo

urce1">

13. <ItemTemplate>

14. name:

15. <asp:Label ID="nameLabel" runat="server" Text='<%# Eval("name

") %>' />

16.

17. email:

18. <asp:Label ID="emailLabel" runat="server" Text='<%# Eval("email

") %>' />

19.

20. contact:

21. <asp:Label ID="contactLabel" runat="server" Text='<%# Eval("con

tact") %>' />

22.

23.

24. </ItemTemplate>

25. </asp:DataList>

26. <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionStr

ing="<%$

27. ConnectionStrings:StudentConnectionString %>"

28. SelectCommand="SELECT * FROM [student]"></asp:SqlDataSource>

29. </form>

30. </body>

31. </html>

144

Output:

This application produces the following output.

 CheckBoxList

The CheckBoxList class is derived from the class System.Web.UI.WebControls.ListControls.

ASP.NET CheckBoxList is a web control that can be used to collate the items that can be

checked, thus giving the user the ability to select multiple items simultaneously. This list of

items in the CheckBoxList can be dynamically generated using the Data Binding functions. The

CheckBoxList control class implements different interfaces such as INamingContainer,

IPostBackDataHandler, IRepeatInfoUser.

Syntax:

145

Start Your Free Software Development Course

Web development, programming languages, Software testing & others

The checkboxlist can be created using the design section by dragging and dropping the control

from the ASP.NET toolbar window, or else it can also create from the markup section using the

following code.

<asp: CheckBoxList id=” checkboxlist1” AutoPostBack = “True” TextAlign = “Right”

OnSelectedIndexChanged = “CheckList_Clicked” runat= “server”>

<asp: ListItem> Item 1 </asp: ListItem>

<asp: ListItem> Item 2 </asp: ListItem>

<asp: ListItem> Item 3 </asp: ListItem>

The above code will create a checkboxlist named “checkboxlist1” containing items “Item1”,

“Item2” and “item3” created using the element <asp:ListItem>. These items contain a checkbox

preceding every element in the list.

 RadioButtonList Control

RadioButtonList Control is same as DropDownList but it displays a list of radio buttons

that can be arranged either horizontally or vertically. You can select only one item from the

given RadioButtonList of options. These options are mutually exclusive.

The RadioButtonList control supports three important properties that affect its layout:

RepeatColumns: It displays the number of columns of radio buttons.

146

RepeatDirection: The direction that the radio buttons repeat. By default RepeatDirection value

is vertical. Possible values are Horizontal and Vertical.

RepeatLayout: Determines whether the radio buttons display in an HTML table.

Possible values are as follows:

 Table

 Flow

 OrderedList

 UnorderedList

Example

using System;

using System.Web.UI.WebControls;

public partial class ListControls : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 Label1.Text = "You have selected </br> Item=" +

 RadioButtonList1.SelectedItem.Text + "</br> Value =" +

 RadioButtonList1.SelectedValue + "</br> Index =" +

 RadioButtonList1.SelectedIndex ;

 }

 protected void Button2_Click(object sender, EventArgs e)

147

 {

 if (RadioButtonList1.RepeatDirection == RepeatDirection.Vertical)

 {

 RadioButtonList1.RepeatDirection = RepeatDirection.Horizontal;

 }

 else

 {

 RadioButtonList1.RepeatDirection = RepeatDirection.Vertical;

 }

 }

}

You can add items in RadioButtonList through item collection using property window.

<asp:RadioButtonList ID="RadioButtonList1" runat="server">

 <asp:ListItem Value="1">Red</asp:ListItem>

 <asp:ListItem Value="2">Green</asp:ListItem>

 <asp:ListItem Value="3">Blue</asp:ListItem>

 <asp:ListItem Value="4">Yellow</asp:ListItem>

 <asp:ListItem Value="5">Orange</asp:ListItem>

</asp:RadioButtonList>

148

 ASP.NET DropDown

 List

The DropDownList is a web server control which is used to create an HTML Select

component. It allows us to select an option from the dropdown list. It can contain any number of

items

ASP.NET provides a tag to create DropDownList for web application. The following is the

Syntax of DropDownList tag.

 <asp:DropDownList id="DropDownList1" runat="server"

 DataSource="<% databindingexpression %>"

 DataTextField="DataSourceField"

 DataValueField="DataSourceField"

 AutoPostBack="True|False"

 OnSelectedIndexChanged="OnSelectedIndexChangedMethod">

 <asp:ListItem value="value" selected="True|False">

 Text

 </asp:ListItem>

 </asp:DropDownList>

 LIST BOX

The ListBox represents a Windows control to display a list of items to a user. A user

can selectan item from the list. It allows the programmer to add items at design time by

using the properties window or at the runtime.

A list box is a graphical control element that allows the user to select one or more

items from a list contained within a static, multiple line text box. The user clicks inside

the boxon an item to select it, sometimes in combination with the ⇧ Shift or Ctrl in order to

make multiple selections.

149

 ASP.NET DataGrid

.NET Framework provides DataGrid control to display data on the web page. It was

introduced in .NET 1.0 and now has been deprecated. DataGrid is used to display data in

scrollable grid. It requires data source to populate data in the grid.

It is a server side control and can be dragged from the toolbox to the web form. Data

Source for the DataGrid can be either a DataTable or a database. Let's see an example, how can

we create a DataGrid in our application.

Repeater Controls in ASP.NET

 The Repeater control is used to display a repeated list of items that are bound to the control. The

Repeater control may be bound to a database table, an XML file, or another list of items.

 Repeater is a Data Bind Control. Data Bind Controls are container controls. Data Binding is the

process of creating a link between the data source and the presentation UI to display the data.

ASP .Net provides rich and wide variety of controls, which can be bound to the data.

 Repeater has 5 inline template to format it:

 <HeaderTemplate>

 <FooterTemplate>

 <ItemTemplate>

 <AlternatingItemTemplate>

 <SeperatorTemplate>

 <AlternatingItemTemplate>

HeaderTemplate: This template is used for elements that you want to render once before your

ItemTemplate section.

 FooterTemplate: - This template is used for elements that you want to render once after your

ItemTemplate section.

150

ItemTemplate: This template is used for elements that are rendered once per row of data. It is

used to display records

 AlternatingItemTemplate: This template is used for elements that are rendered every second row

of data. This allows you to alternate background colors. It works on even number of records

only.

 SeperatorTemplate: It is used for elements to render between each row, such as line breaks.

 Some point about Repeater Control

 It is used to display backend result set. It is used to display multiple tuple.

 It is an unformatted control. The Repeater control is a basic templated data-bound list. It

has no built-in layout or styles, so you must explicitly declare all layout, formatting, and

style tags within the control's templates.

 The Repeater control is the only Web control that allows you to split markup tags across

the templates. To create a table using templates, include the begin table tag (<table>) in

the HeaderTemplate, a single table row tag (<tr>) in the ItemTemplate, and the end table

tag (</table>) in the FooterTemplate.

 The Repeater control has no built-in selection capabilities or editing support. You can use

the ItemCommand event to process control events that are raised from the templates to

the control.

UNIT-5

5.1 Request and Response object

Request Object

The request object is an instance of the System.Web.HttpRequest class. It represents the

values and properties of the HTTP request that makes the page loading into the browser.

The information presented by this object is wrapped by the higher level abstractions (the web

control model). However, this object helps in checking some information such as the client

browser and cookies.

151

Properties and Methods of the Request Object

The following table provides some noteworthy properties of the Request object:

Property Description

AcceptTypes Gets a string array of client-

supported MIME accept types.

ApplicationPath Gets the ASP.NET

application's virtual application

root path on the server.

Browser Gets or sets information about

the requesting client's browser

capabilities.

ContentEncoding Gets or sets the character set of

the entity-body.

ContentLength Specifies the length, in bytes,

of content sent by the client.

ContentType Gets or sets the MIME content

type of the incoming request.

Cookies Gets a collection of cookies

sent by the client.

152

FilePath Gets the virtual path of the

current request.

Files Gets the collection of files

uploaded by the client, in

multipart MIME format.

Form Gets a collection of form

variables.

Headers Gets a collection of HTTP

headers.

HttpMethod Gets the HTTP data transfer

method (such as GET, POST,

or HEAD) used by the client.

InputStream Gets the contents of the

incoming HTTP entity body.

IsSecureConnection Gets a value indicating whether

the HTTP connection uses

secure sockets (that is,

HTTPS).

QueryString Gets the collection of HTTP

query string variables.

RawUrl Gets the raw URL of the

current request.

153

RequestType Gets or sets the HTTP data

transfer method (GET or

POST) used by the client.

ServerVariables Gets a collection of Web server

variables.

TotalBytes Gets the number of bytes in the

current input stream.

Url Gets information about the

URL of the current request.

UrlReferrer Gets information about the

URL of the client's previous

request that is linked to the

current URL.

UserAgent Gets the raw user agent string

of the client browser.

UserHostAddress Gets the IP host address of the

remote client.

UserHostName Gets the DNS name of the

remote client.

UserLanguages Gets a sorted string array of

154

client language preferences.

The following table provides a list of some important methods:

Method Description

BinaryRead Performs a binary read of a

specified number of bytes

from the current input

stream.

Equals(Object) Determines whether the

specified object is equal to

the current object. (Inherited

from object.)

GetType Gets the Type of the current

instance.

MapImageCoordinates Maps an incoming image-

field form parameter to

appropriate x-coordinate

and y-coordinate values.

MapPath(String) Maps the specified virtual

path to a physical path.

SaveAs Saves an HTTP request to

155

disk.

ToString Returns a String that

represents the current

object.

ValidateInput Causes validation to occur

for the collections accessed

through the Cookies, Form,

and QueryString properties.

Response Object

The Response object represents the server's response to the client request. It is an

instance of the System.Web.HttpResponse class.

In ASP.NET, the response object does not play any vital role in sending HTML text to the

client, because the server-side controls have nested, object oriented methods for rendering

themselves.

However, the HttpResponse object still provides some important functionalities, like the cookie

feature and the Redirect() method. The Response.Redirect() method allows transferring the user

to another page, inside as well as outside the application. It requires a round trip.

Properties and Methods of the Response Object

The following table provides some noteworthy properties of the Response object:

Property Description

Buffer Gets or sets a value indicating

whether to buffer the output and

send it after the complete

156

response is finished processing.

BufferOutput Gets or sets a value indicating

whether to buffer the output and

send it after the complete page is

finished processing.

Charset Gets or sets the HTTP character

set of the output stream.

ContentEncoding Gets or sets the HTTP character

set of the output stream.

ContentType Gets or sets the HTTP MIME

type of the output stream.

Cookies Gets the response cookie

collection.

Expires Gets or sets the number of

minutes before a page cached on

a browser expires.

ExpiresAbsolute Gets or sets the absolute date

and time at which to remove

cached information from the

cache.

157

HeaderEncoding Gets or sets an encoding object

that represents the encoding for

the current header output stream.

Headers Gets the collection of response

headers.

IsClientConnected Gets a value indicating whether

the client is still connected to the

server.

Output Enables output of text to the

outgoing HTTP response stream.

OutputStream Enables binary output to the

outgoing HTTP content body.

RedirectLocation Gets or sets the value of the Http

Location header.

Status Sets the status line that is

returned to the client.

StatusCode Gets or sets the HTTP status

code of the output returned to

the client.

158

StatusDescription Gets or sets the HTTP status

string of the output returned to

the client.

SubStatusCode Gets or sets a value qualifying

the status code of the response.

SuppressContent Gets or sets a value indicating

whether to send HTTP content

to the client.

The following table provides a list of some important methods:

Method Description

AddHeader Adds an HTTP header

to the output stream.

AddHeader is provided

for compatibility with

earlier versions of ASP.

AppendCookie Infrastructure adds an

HTTP cookie to the

intrinsic cookie

collection.

AppendHeader Adds an HTTP header

to the output stream.

159

AppendToLog Adds custom log

information to the

InterNET Information

Services (IIS) log file.

BinaryWrite Writes a string of binary

characters to the HTTP

output stream.

ClearContent Clears all content output

from the buffer stream.

Close Closes the socket

connection to a client.

End Sends all currently

buffered output to the

client, stops execution

of the page, and raises

the EndRequest event.

Equals(Object) Determines whether the

specified object is equal

to the current object.

Flush Sends all currently

buffered output to the

client.

GetType Gets the Type of the

current instance.

Pics Appends a HTTP PICS-

Label header to the

160

output stream.

Redirect(String) Redirects a request to a

new URL and specifies

the new URL.

Redirect(String, Boolean) Redirects a client to a

new URL. Specifies the

new URL and whether

execution of the current

page should terminate.

SetCookie Updates an existing

cookie in the cookie

collection.

ToString Returns a String that

represents the current

Object.

TransmitFile(String) Writes the specified file

directly to an HTTP

response output stream,

without buffering it in

memory.

Write(Char) Writes a character to an

HTTP response output

stream.

Write(Object) Writes an object to an

HTTP response stream.

161

Write(String) Writes a string to an

HTTP response output

stream.

WriteFile(String) Writes the contents of

the specified file

directly to an HTTP

response output stream

as a file block.

WriteFile(String, Boolean) Writes the contents of

the specified file

directly to an HTTP

response output stream

as a memory block.

Example

The following simple example has a text box control where the user can enter name, a button to

send the information to the server, and a label control to display the URL of the client computer.

The content file:

<%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="Default.aspx.cs"

Inherits="server_side._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<htmlxmlns="http://www.w3.org/1999/xhtml">

<headrunat="server">

<title>Untitled Page</title>

</head>

162

<body>

<formid="form1"runat="server">

<div>

 Enter your name:

<asp:TextBoxID="TextBox1"runat="server"></asp:TextBox>

<asp:ButtonID="Button1"runat="server"OnClick="Button1_Click"Text="Submit"/>

<asp:LabelID="Label1"runat="server"/>

</div>

</form>

</body>

</html>

The code behind Button1_Click:

protectedvoidButton1_Click(object sender,EventArgs e){

if(!String.IsNullOrEmpty(TextBox1.Text)){

// Access the HttpServerUtility methods through

// the intrinsic Server object.

Label1.Text="Welcome, "+Server.HtmlEncode(TextBox1.Text)+".
 The url is

"+Server.UrlEncode(Request.Url.ToString())

}

}

163

Run the page to see the following result:

5.2 COOKIES

A cookie is often used to identify a user. A cookie is a small file that the server embeds

on the user's computer. Each time the same computer requests a page with a browser, it will send

the cookie too. With ASP, you can both create and retrieve cookie values.

 To Create a Cookie

The "Response.Cookies" command is used to create cookies.

Note: The Response.Cookies command must appear BEFORE the <html> tag.

In the example below, we will create a cookie named "firstname" and assign the value "Alex" to

it:

<%

Response.Cookies("firstname")="Alex"

%>

It is also possible to assign properties to a cookie, like setting a date when the cookie should

expire:

<%

Response.Cookies("firstname")="Alex"

164

Response.Cookies("firstname").Expires=#May 10,2012#

%>

5.3 OLEDB CONNECTION CLASS

An OleDbConnection object tsupports a connection to an OLE DB data provider. In

practice, you usually use OLE DB connections with all data providers except Microsoft's SQL

Server. Note that, depending on the OLE DB data provider, not all properties of an

OleDbConnection object may be suppored.

A central property of connection objects is the ConnectionString property, which holds a string

full of attribute/value pairs that contain data needed to log on to a data provider and choose a

specific database. These attribute/value pairs are specific to the data provider you're using, and

make up a list of items separated by semicolons. You can either assign a connection string to the

connection's ConnectionString property, or you can pass the connection string to the connection

object's constructor, like this:

Dim ConnectionString As String = "Provider=SQLOLEDB.1;Integrated " & _

Security=SSPI;Persist Security Info=False;Initial " & _

"Catalog=pubs;Packet Size=4096;Workstation ID=STEVE;" & _

"Use Encryption for Data=False"

Dim Connection1 As OleDbConnection = New OleDbConnection(ConnectionString)

If you have no idea what a connection string should look like for a specific data provider

and database, use the visual tools built into Visual Basic to construct a few sample strings to that

data provider, which you can either use directly in code or modify as you need. To do that, create

a connection to the source you want to use, then drag a data adapter to a project's main form,

which creates both data connection and data adapter objects. Then take a look at the connection

object's ConnectionString property in the Properties window.

Tip The most common attribute/value pairs used in OLE DB connection strings are also

supported with properties of connection objects, such as DataSource, Database, UserId, and

Password, which means that when you work with a connection object, you can either set the

165

ConnectionString property as a string, or you can set various connection properties one-by-one

and let Visual Basic create the connection string for you (unless your OLE DB provider requires

data not supported by the connection object's properties).

After you've created a connection object, you can open it with the Open method, and assign it to

the Connection property of a command object. (To specify the SQL you want to use, you can

pass that SQL to the command object's constructor.) Then you can use the command object with

a data adapter. For example, you might assign the command object to the SelectCommand

property of a data adapter, and you can use the data adapter's Fill method to execute that

command and fill a dataset. When done with the connection, use its Close method to close it.

(The connection won't be closed otherwise, even if the connection object goes out of scope.)

Tip If your application uses a number of connections, you should use connection pooling to

improve performance. (Connection pooling lets you keep a cache of connections without having

to create new ones all the time.) When you use the OLE DB .NET data provider, connection

pooling is enabled automatically.

5.4 Command class

The Command class is provided by all standard ADO.NET providers, and it almost

always encapsulates a SQL statement or a stored procedure call that can be executed against a

data source. Command objects can retrieve rows; directly insert, delete, or modify records;

calculate totals and averages; alter the structure of a database; or fill a

disconnected DataSet when used with a DataAdapter.

At a bare minimum, every Command must reference a Connection object, which it uses

to communicate with the data source and define a few key properties, such asCommandText (the

stored procedure or embedded SQL command) and CommandType. The Command class is

provided in several provider-specific varieties, including SqlCommand and OleDbCommand.

To execute a Command, you use one of theCommand object methods,

includingExecuteNonQuery(), ExecuteReader(), and ExecuteScalar(), depending on the type

of Command. Occasionally, a provider may define an additional method, such as

the ExecuteXmlReader() method offered by the SQL Server provider, which retrieves query

166

results as an XML document. Other than this discrepancy, the Command objects provided by the

core set of ADO.NET providers are virtually identical.

5.5 Transaction Class

The Transaction class contains methods used by developers implementing resource

managers for enlistment. It also provides functionalities for cloning a transaction and

controlling the currenttransaction context. You can obtain the currenttransaction, if one is set,

using the static Current property.

5.6 Data Adapter

The DataAdapter works as a bridge between a DataSet and a data source to retrieve data.

DataAdapter is a class that represents a set of SQL commands and a database connection. It can

be used to fill the DataSet and update the data source.

DataAdapter Class Signature

 DataAdapter Constructors

Constructors Description

DataAdapter() It is used to initialize a new

instance of a DataAdapter class.

DataAdapter(DataAdapter) It is used to initializes a new

instance of a DataAdapter class

from an existing object of the

same type.

5.7 Data set class

It is a collection of data tables that contain the data. It is used to fetch data without interacting

with a Data Source that's why, it also known as disconnected data access method. It is an in-

memory data store that can hold more than one table at the same time. We can use DataRelation

167

object to relate these tables. The DataSet can also be used to read and write data as XML

document.

ADO.NET provides a DataSet class that can be used to create DataSet object. It contains

constructors and methods to perform data related operations.

DataSet Class Signature

1. public class DataSet : System.ComponentModel.MarshalByValueComponent, System.Co

mponentModel.IListSource,

2. System.ComponentModel.ISupportInitializeNotification, System.Runtime.Serialization.I

Serializable,

3. System.Xml.Serialization.IXmlSerializable

5.8 ADVANCED ISSUES

Email:

Email is a computer based method of sending messages from one computer user to another.

These messages usually consist of individual pieces of text which you can send to another

computer user even if the other user is not logged in (i.e. using the computer) at the time you

send your message. The message can then be read at a later time. This procedure is analogous to

sending and receiving a letter.

When mail is received on a computer system, it is usually stored in an electronic mailbox for the

recipient to read later. Electronic mailboxes are usually special files on a computer which can be

accessed using various commands. Each user normally has their individual mailbox.

Host-based mail systems

The original email systems allowed communication only between users who logged into the

same host or "mainframe". This could be hundreds or even thousands of users within an

organization.

By 1966 (or earlier, it is possible that the SAGE system had something similar some time

before), such systems allowed email between different organizations, so long as they ran

168

compatible operating systems.

Examples include BITNET, IBM PROFS, Digital Equipment Corporation ALL-IN-1 and the

original Unix mail.

LAN-based mail systems

From the early 1980s, networked personal computers on LANs became increasingly important.

Server-based systems similar to the earlier mainframe systems were developed. Again these

systems initially allowed communication only between users logged into the same server

infrastructure. Eventually these systems could also be linked between different organizations, as

long as they ran the same email system and proprietary protocol.

Examples include cc:Mail, Lantastic, WordPerfect Office, Microsoft Mail, Banyan VINES and

Lotus Notes - with various vendors supplying gateway software to link these incompatible

systems.

Early interoperability among independent systems included:uucp was used as an open "glue"

between differing mail systems, primarily over dialup telephones

•ARPANET which was the forerunner of today's Internet

•CSNet which used dial-up telephone access to link additional sites to the ARPANET and then

Internet

5.9 Working with IIS:

IIS (Internet Information Server) is a group of Internet servers (including a Web or

Hypertext Transfer Protocol server and a File Transfer Protocol server) with additional

capabilities for Microsoft's Windows NT and Windows 2000 Server operating systems. IIS is

Microsoft's entry to compete in the Internet server market that is also addressed by Apache, Sun

Microsystems, O'Reilly, and others. With IIS, Microsoft includes a set of programs for building

and administering Web sites, a search engine, and support for writing Web-based applications

that access databases. Microsoft points out that IIS is tightly integrated with the Windows NT

and 2000 Servers in a number of ways, resulting in faster Web page serving.

169

A typical company that buys IIS can create pages for Web sites using Microsoft's Front Page

product (with its WYSIWYG user interface). Web developers can use Microsoft's Active Server

Page (ASP) technology, which means that applications - including ActiveX controls - can be

imbedded in Web pages that modify the content sent back to users. Developers can also write

programs that filter requests and get the correct Web pages for different users by using

Microsoft's Internet Server Application Program Interface (ISAPI) interface. ASPs and ISAPI

programs run more efficiently than common gateway interface (CGI) and server-side include

(SSI) programs, two current technologies. (However, there are comparable interfaces on other

platforms.)

Microsoft includes special capabilities for server administrators designed to appeal to Internet

service providers (ISPs). It includes a single window (or "console") from which all services and

users can be administered. It's designed to be easy to add components as snap-ins that you didn't

initially install. The administrative windows can be customized for access by individual

customers.

Worker process isolation mode Provides an easy way to insulate Web applications from each

other, so that problems with one Web application don't impact the other Web applications on

Microsoft Internet Information Services(IIS). IIS 6.0 allows you to organize applications into

application pools. Each application pool is a completely independent entity, served by one or

more worker processes. Usually, a Windows administrator will create a separate application pool

for each Web application that the server hosts -- but a single application pool can host multiple

applications.Of course, this raises the question of how application pools can isolate IIS Web

applications from each other. True isolation is possible because Windows differentiates between

code that is running in kernel mode vs. code that is running in user mode.

Windows runs core IIS components, such as HTTP.SYS and the WWW service, in kernel mode.

Each application pool contains its own kernel-mode queue. This means that HTTP.SYS is able to

route inbound requests directly to a queue that is dedicated to a specific application pool, all

within kernel mode. Application pools are separated from each other by process boundaries.

Worker processes are dedicated to a specific application pool to actually service requests. If a

failure occurs, it usually happens within a worker process. However, since worker processes are

170

bound to particular application pools, a worker process failure will only affect the application in

which it resides, but no others. The really cool part is that IIS provides mechanisms for

monitoring the health of a worker process. If a worker process fails, the process can be restarted

without the end user even being aware of the failure.

5.10 The Page Directive

The Page directive defines the attributes specific to the page file for the page parser and the

compiler.

The basic syntax of Page directive is:

<%@PageLanguage="C#"AutoEventWireup="true"CodeFile="Default.aspx.cs"Inherits="_Defa

ult"Trace="true" %>

The attributes of the Page directive are:

Attributes Description

AutoEventWireup The Boolean value that enables

or disables page events that are

being automatically bound to

methods; for example,

Page_Load.

Buffer The Boolean value that enables

or disables HTTP response

buffering.

ClassName The class name for the page.

171

ClientTarget The browser for which the

server controls should render

content.

CodeFile The name of the code behind

file.

Debug The Boolean value that enables

or disables compilation with

debug symbols.

Description The text description of th

5.11 Error Handling

Although ASP.NET can detect all runtime errors, still some subtle errors may still be

there. Observing the errors by tracing is meant for the developers, not for the users.

Hence, to intercept such occurrence, you can add error handing settings in the web.config file of

the application. It is application-wide error handling. For example, you can add the following

lines in the web.config file:

<configuration>

<system.web>

<customErrorsmode="RemoteOnly"defaultRedirect="GenericErrorPage.htm">

<errorstatusCode="403"redirect="NoAccess.htm" />

<errorstatusCode="404"redirect="FileNotFound.htm"/>

</customErrors>

172

</system.web>

<configuration>

The <customErrors> section has the possible attributes:

 Mode : It enables or disables custom error pages. It has the three possible values:

o On : displays the custom pages.

o Off : displays ASP.NET error pages (yellow pages)

o remoteOnly : It displays custom errors to client, display ASP.NET errors locally.

 defaultRedirect : It contains the URL of the page to be displayed in case of unhandled

errors.

To put different custom error pages for different type of errors, the <error> sub tags are used,

where different error pages are specified, based on the status code of the errors.

To implement page level error handling, the Page directive could be modified:

<%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="Default.aspx.cs"

Inherits="errorhandling._Default"Trace="true"ErrorPage="PageError.htm" %>

Because ASP.NET Debugging is an important subject in itself, so we would discuss it in the

next chapter separately.

5.12 SECURITY Authentication

Authentication is used by a server when the server needs to know exactly who is

accessing their information or site.Authentication is used by a client when the client needs to

know that the server is system it claims to be. Inauthentication, the user or computer has to

prove its identity to the server or client.

5.13 IP Address

IP stands for internet protocol. It is a protocol defined in the TCP/IP model used for

sending the packets from source to destination. The main task of IP is to deliver the packets from

173

source to the destination based on the IP addresses available in the packet headers. IP defines the

packet structure that hides the data which is to be delivered as well as the addressing method that

labels the datagram with a source and destination information.

An IP protocol provides the connectionless service, which is accompanied by two transport

protocols, i.e., TCP/IP and UDP/IP, so internet protocol is also known as TCP/IP or UDP/IP.

The first version of IP (Internet Protocol) was IPv4. After IPv4, IPv6 came into the market,

which has been increasingly used on the public internet since 2006.

5.14 Secure by SSL& CLIENT certificates

Server Certificate

Server certificates (SSL certificates) are used to authenticate the identity of a server.

When installed on a website, an SSL certificate turns the protocol on the website from HTTP to

HTTPS [Difference b/w HTTP and https] and installs indicators that vouch for the authenticity of

the website. Thus, users can know the website belongs to the said entity. Apart from

authentication, SSL certificates also facilitate Encryption. Meaning, any information a user sends

to the server is protected from the reaches of any ill-intended 3rdparty.

Client Certificate

Contrary to Server certificates (SSL certificates), Client certificates are used to validate

the identity of a client (user). The user, in this case, might be a website user or an email user.

Simply put, it works as a password, but without any intervention/input from the user. This way,

the server makes sure that it’s connecting to the permitted user and that party is safe to

communicate with.

Now you might be wondering ‘Don’t passwords do the same thing?’ Well, sometimes

passwords are not good enough. We often fall prey to password cracking techniques such as

brute-force attacks and keyloggers. That’s why passwords are no longer sufficient when you

have some really highly-sensitive information at stake.

https://www.javatpoint.com/tcp-ip-full-form
https://www.javatpoint.com/computer-network-tcp-ip-model
https://www.javatpoint.com/udp-full-form
https://cheapsslsecurity.com/blog/http-vs-https-do-you-really-need-https/

174

So, there might be some documents or files that you want only designated people to

access. But as passwords are not secure enough, you’ll have to explore your options. That’s

where Client certificates come in. Instead of validating people via passwords, Client certificates

authenticate people by the systems they use. If the user doesn’t have the granted permissions,

he/she won’t be granted access. To make it even more secure, you can combine the use of client

certificates with passwords. In technical terms, this is called ‘Two-factor Authentication.’ It is an

absolute must for organizations dealing with sensitive data –both internal as well as external.

And you know what happens when you don’t employ two-factor authentication? Just ask

Equifax!

Client certificates also use public key infrastructure (PKI) for authentication, just like

Server certificates. However, there is one significant difference between the two. Unlike Server

certificates, Client certificates don’t encrypt any data; they’re installed for validation purposes

only.

Client Certificate vs Server certificate: What’s the difference?

Server Certificate Client Certificates

Server certificates are used to authenticate

server identity to the client(s).

Client certificates are used to authenticate the

client (user) identity to the server.

Server certificates encrypt data-in-transit.

No encryption of data takes place in case of

Client certificates.

Server Certificates are based on PKI. Client certificates are based on PKI.

Example: SSL certificates Example: E-mail Client certificates

	Features of VBScript
	VBscript – Version History and Uses
	Disadvantages
	Where VBScript is Today?
	A variable is a named memory location used to hold a value that can be changed during the script execution. VBScript has only ONE fundamental data type, Variant.
	Declaring Variables
	Assigning Values to the Variables
	Rules
	Examples

	Scope of the Variables
	Dim

	Declaring Constants
	Syntax
	Example 1
	Example 2

	 The Arithmetic Operators
	 The Comparison Operators
	 The Logical Operators
	 The Concatenation Operators
	VBScript If Then Statement
	VBScript If Else Statement
	VBScript If Elseif Statement
	VBScript SELECT Case Statement
	Syntax
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Calling a Function
	Conversion Functions
	Format Functions
	Math Functions
	Array Functions
	String Functions
	Other Functions
	Creating Dictionaries
	Using On Error
	2. 2 Advantages of JavaScript
	Syntax

	2.5 Javascript Operators
	If … else
	Example #2
	Switch case
	b) Confirmation Dialog box
	c) Prompt Dialog box

	3.2 HTML Object
	3.3 JavaScript Event Handling
	Example
	Output
	 onsubmit Event Type
	Example

	 onmouseover and onmouseout
	Output

	Mouse Over
	Methods of window object
	3.8 Screen Object
	Screen Object Properties
	ASP.NET Web Forms Model
	The ASP.NET Component Model
	Page Directives
	Code Section
	Page Layout
	Using Visual Studio IDE
	ASP.NET Page Life Cycle Events
	The Application Directive
	The Assembly Directive
	The Control Directive
	The Implements Directive
	The Import Directive
	The Master Directive
	The MasterType Directive
	The OutputCache Directive
	The Page Directive
	The PreviousPageType Directive
	The Reference Directive
	The Register Directive
	Advantages of using HTML Server Controls
	Example (1)
	Write Data to a File
	Append Data to an Existing File
	Read Data from a File
	 Button Controls
	 Text Boxes and Labels
	 Check Boxes and Radio Buttons
	 List Controls
	 The ListItemCollection
	Radio Button list and Check Box list
	 Bulleted lists and Numbered lists
	 HyperLink Control
	 Image Control

	4.7 ASP.NETDataList Server Control
	ASP.NET DataList Example with DataTable
	 CheckBoxList
	 RadioButtonList Control
	Example

	 ASP.NET DropDown
	 List
	 LIST BOX
	The ListBox represents a Windows control to display a list of items to a user. A user can selectan item from the list. It allows the programmer to add items at design time by using the properties window or at the runtime.
	A list box is a graphical control element that allows the user to select one or more items from a list contained within a static, multiple line text box. The user clicks inside the boxon an item to select it, sometimes in combination with the ⇧ Shift ...

	 ASP.NET DataGrid
	Repeater Controls in ASP.NET
	Request Object
	Properties and Methods of the Request Object

	Response Object
	Properties and Methods of the Response Object

	Example
	To Create a Cookie
	DataAdapter Class Signature
	DataSet Class Signature
	5.8 ADVANCED ISSUES

	5.10 The Page Directive
	5.11 Error Handling
	Server Certificate
	Client Certificate
	Client Certificate vs Server certificate: What’s the difference?

