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Sec. 4.1 Elementary Basic Concepts 

to modules; roughly speaking, a module is a vector space over a ring instead 

f over a field. For finitely generated modules over Euclidean rings we 

hall prove the fundamental basis theorem. This result allows us to give a 

omplete description and construction of all abelian groups which are 

enerated by a finite number of elements. 

Elementary Basic Concepts 

A nonempty set V is said to be a vector space over a field F 

V is an abelian group under an operation which we denote by +, and 

'if for every a E F, v E V there is defined an element, written av, in V subject 

to 

1. a ( V + W) = av + aw; 

2. (a + f3)v = av + f3v; 

3. a(f3v) = (af3)v; 

for all a, f3 E F, v, wE V (where the 1 represents the unit element of F 
multiplication). 

Note that in Axiom 1 above the + is that of V, whereas on the left-hand 

side of Axiom 2 it is that ofF and on the right-hand side, that of V. 
We shall consistently use the following notations: 

Lowercase Greek letters will be elements ofF; we shall often refer to 

elements ofF as scalars. 

Capital Latin letters will denote vector spaces over F. 

Lowercase Latin letters will denote elements of vector spaces. We shall 

often call elements of a vector space vectors. 

If we ignore the fact that V has two operations defined on it and view it 

for a moment merely as an abelian group under +, Axiom 1 states nothing 

more than the fact that multiplication of the elements of V by a fixed scalar 

rt defines a homomorphism of the abelian group V into itself. From Lemma 

4.1.1 which is to follow, if a "# 0 this homomorphism can be shown to be 
an isomorphism of V onto V. 

This suggests that many aspects of the theory of vector spaces (and of 

rings, too) could have been developed as a part of the theory of groups, 

had we generalized the notion of a group to that of a group with operators . 
. For students already familiar with a little abstract algebra, this is the pre­

ferred point of view; since we assumed no familiarity on the reader's part 
with any abstract algebra, we felt that such an approach might lead to a 
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172 Vector Spaces and Modules Ch. 4 

too sudden introduction to the ideas of the subject with no experience to 

act as a guide. 

Example 4.1 .1 Let F be a field and let K be a field which contains F as 

a subfield. We consider K as a vector space over F, using as the + of the 

vector space the addition of elements of K, and by defining, for r:t. E F, 

v E K, av to be the products of r:t. and v as elements in the field K. Axioms 

1, 2, 3 for a vector space are then consequences of the right-distributive 

law, left-distributive law, and associative law, respectively, which hold for 

K as a ring. 

Example 4.1 .2 Let F be a field and let V be the totality of all ordered 

n-tuples, (r:t.1, ... , r:t.n) where the r:t.i E F. Two elements (r:t.1, ... , r:t.n) and 

({31, .•• , f3n) of V are declared to be equal if and only if r:t.i = f3i for each 

i = 1, 2, ... , n. We now introduce the requisite operations in V to make 

of it a vector space by defining: 

1. (r:t.1, · · ·' t:i.n) + ({31, · · ·' f3n) = (r:t.1 + /31, li.z + f3z, · · ·' t:i.n + f3n)· 

2. '}'(r:t.1, ... , r:t.n) = (yr:t.1, ... , '}'r:t.n) for '}' E F. 

It is easy to verify that with these operations, V is a vector space over F. 

Since it will keep reappearing, we assign a symbol to it, namely F<n>. 

Example 4.1 .3 Let F be any field and let V = F [ x], the set of poly­

nomials in x over F. We choose to ignore, at present, the fact that in F[x] 

we can multiply any two elements, and merely concentrate on the fact that 

two polynomials can be added and that a polynomial can always be multi­

plied by an element of F. With these natural operations F[x] is a vector 

space over F. 

Example 4.1.4 In F[ X] let vn be the set of all polynomials of degree less 

than n. Using the natural operations for polynomials of addition and 

multiplication, Vn is a vector space over F. 

What is the relation of Example 4.1.4 to Example 4.1.2? Any element of 

vn is of the form t:i.o + t:i.1X + ... + t:i.n-1Xn-t, where t:i.i E F; if we map 

this element onto the element (a0, r:t.1, ... , r:t.n_ 1) in F(n) we could reasonably 

expect, once homomorphism and isomorphism have been defined,, to find 

that vn and F(n) are isomorphic as vector spaces. 

DEFINITION If Vis a vector space over F and if W c V, then W is a 

subspace of V if under the operations of V, W, itself, forms a vect0r space 

over F. Equivalently, W is a subspace of V whenever w1, w2 E W, 

r:t., f3 E F implies that aw1 + {3w2 E W. 
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Note that the vector space defined in Example 4.1.4 is a subspace of that 
defined in Example 4.1.3. Additional examples of vector spaces and 
subspaces can be found in the problems at the end of this section. 

If U and V are vector spaces over F then the mapping T 
U in to V is said to be a homomorphism if 

(u1 + u2 ) T = u1 T + u2 T; 
(ocu1) T = oc(u 1 T); 

for all uv u2 E U, and all oc E F. 

As in our previous models, a homomorphism is a mapping preserving 
all the algebraic structure of our system. 

If T, in addition, is one-to-one, we call it an isomorphism. The kernel of 
Tis defined as {u E U I uT = 0} where 0 is the identity element of the 

::~·;.addition in V. It is an exercise that the kernel of T is a subspace of U and 
•{tiithat Tis an isomorphism if and only if its kernel is (0). Two vector spaces 
fJ:\are said to be isomorphic if there is an isomorphism of one onto the other. 
~···· The set of all homomorphisms of U into V will be written as Hom ( U, V) . . ;(('Of particular interest to us will be two special cases, Hom ( U, F) and 
i1'~;}Iom ( U, U). We shall study the first of these soon; the second, which can be 
l'i¥ahown to be a ring, is called the ring of linear transformations on U. A great 
~;~eal of our time, later in this book, will be occupied with a detailed study 
~~:or Hom ( U, U). 
~ We begin the material proper with an operational lemma which, as i~ 
~;~die case of rings, will allow us to carry out certain natural and simpfe 

t
~\Computations in vector spaces. In the statement of the lemma, 0 represents 
lhe zero of the addition in V, o that of the addition in F, and - v the 

dditive inverse of the element v of V. 
~;, 
~ 

~'-EMMA 4.1 .1 Ij V is a vector space over F then :r,,, . 

• ocO = 0 for oc E F. 
· ov =-Ofor v E V. 
• ( - OC) v = - ( ocv) for oc E F, v E V. 
If v =I= 0, then ocv = 0 implies that oc = o. 

The proof is very easy and follows the lines of the analogous 
ults proved for rings; for this reason we give it briefly and with few 

planations. 

. Since ocO = oc(O + 0) = ocO + ocO, we get ocO = 0. 
~ Since ov = (o + o)v = ov + ov we get ov = 0. 
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174 Vector Spaces and Modules Ch. 4 

3. Since 0 = (o: + ( -o:))v = o:v + ( -o:)v, ( -o:)v = - (o:v). 

4. If o:v = 0 and o: i= o then 

0 = 0:-
10 = 0:-

1 
( O:V) = ( 0:-

1
0:) V = 1 V = V. 

The lemma just proved shows that multiplication by the zero of V or of 

F always leads us to the zero of V. Thus there will be no danger of confusion 

in using the same symbol for both of these, and we henceforth will merely 

use the symbol 0 to represent both of them. 

Let V be a vector space over F and let W be a subspace of V. Considering 

these merely as abelian groups construct the quotient group VfW; its 

elements are the cosets v + W where v E V. The commutativity of the 

addition, from what we have developed in Chapter 2 on group theory, 

assures us that VfW is an abelian group. We intend to make of it a vector 

space. If 0: E F, v + wE v;w, define o:(v + W) = O:V + w. As is usual, 

we must first show that this product is well defined; that is, if v + W = 

v' + W then o:(v + W) = o:(v' + W). Now, because v + W = v' + W, 

v - v' is in W; since W is a subspace, o:(v - v') must also be in W. Using 

part 3 of Lemma 4.1.1 (see Problem 1) this says that o:v - o:v' E W and so 

o:v + W = o:v' + W. Thus o:(v + W) = o:v + W = o:v' + W = o:(v' + W); 

the product has been shown to be well defined. The verification of the 

vector-space axioms for Vf W is routine and we leave it as an exercise. 

We have shown 

LEMMA 4.1.2 If Vis a vector space over F and if W is a subspace of V, then 

v;w is a vector space over F, where, for v1 + w, Vz + wE v;w and 0: E F, 

1. ( v1 + W) + ( v2 + W) = ( v1 + v2 ) + W. 

2. o:(v1 + W) = o:v1 + W. 

v;w is called the quotient space of v by w. 
Without further ado we now state the first homomorphism theorem for 

vector spaces; we give no proofs but refer the reader back to the proof of 

Theorem 2. 7 .1. 

THEOREM 4.1.1 If Tis a homomorphism of U onto V with kernel W, then V 

is isomorphic to UfW. Conversely, if U is a vector space and W a subspace of U, 

then there is a homomorphism of U onto Uf W. 

The other homomorphism theorems will be found as exercises at the end 

of this section. 

DEFINITION Let V be a vector space over F and let U1
, ... , Un be 

subspaces of v. vis said to be the internal direct sum of u1, ... ' un if'every 

element v E V can be written in one and only one way as v = u1 + u2 + 
· · · + Un where Ui E Ui. 
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Given any finite number of vector spaces over F, V1 , ... , Vm consider 
the set v of all ordered n-tuples (v1, ... ' vn) where viE vi. We declare two 
elements (v1, ... , vn) and (v~, ... , v~) of V to be equal if and only if for 

! each i, vi = v;. We add two such elements by defining (vv ... , vn) + 
~:,(Wt, ... ' wn) to be (v1 + Wv Vz + Wz, ... ' vn + wn)· Finally, if IX E F 
~and (v1, ... , vn) E V We define a(v1, ... , vn) to be (av1, CWz, ... , avn). 
~To check that the axioms for a vector space hold for V with its operations 
[~as defined above is straightforward. Thus V itself is a vector space over F. 
'We call V the external direct sum of V1, . .. , Vn and denote it by writing 
1 V=V1 Ee···ffiV. , n 

:THEOREM 4.1.2 lj V is the internal direct sum rif Uv ... , Um then V is 
isomorphic to the external direct sum rif u1, ... ' un. 

Proof. Given v E V, v can be written, by assumption, in one and only 
one way as V = U1 + Uz + · · · + Un where Ui E Ui; define the mapping 
T of V into U1 E9 · · · E9 U" by vT = (uv ... , un)· Since v has a unique 

;representation of this form, T is well defined. It clearly is onto, for the 
:arbitrary element (wv ... ' wn) E ul E9 .•. E9 un is wT where w = w1 + 
', · · · + wn E V. We leave the proof of the fact that Tis one-to-one and a 
homomorphism to the reader. 

Because of the isomorphism proved in Theorem 4.1.2 we shall henceforth 
:~erely refer to a direct sum, not qualifying that it be internal or external. 

Problems 

1. In a vector space show that a(v - w) = av - aw. 

2. Prove that the vector spaces in Example 4.1.4 and Example 4.1.2 are 
isomorphic. 

3. Prove that the kernel of a homomorphism is a subspace. 

4. (a) IfF is a field of real numbers show that the set of real-valued, 
continuous functions on the closed interval [0, 1] forms a vector 
space over F. 

(6) Show that those functions in part (a) for which all nth derivatives 
exist for n = 1, 2, ... form a subspace. 

5. (a) Let F be the field of all real numbers and let V be the set of all 
sequences (a1, a2 , ••• , am ... ), ai E F, where equality, addition 
and scalar multiplication are defined componentwise. Prove that 
V is a vector space over F. 

(b) Let W = {(a1, ... , an, ... ) E V jlim an = 0}. Prove that W 
n-+oo 

is a subspace of V. 
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00 

*(c) Let U = {(a1, ... , a"' ... ) E VI La/ is finite}. Prove that U is 
i= 1 

a subspace of V and is contained in W. 

6. If U and V are vector spaces over F, define an addition and a multipli­

cation by scalars in Hom ( U, V) so as to make Hom ( U, V) into a 

vector space over F. 

*7. Using the result of Problem 6 prove that Hom (F<n>, F<m>) is isomorphic 

to F"m as a vector space. 

8. If n > m prove that there is a homomorphism of F<n> onto F(m) with 

a kernel W which is isomorphic to F(n-m>. 

9. If v =f:. 0 E F(n) prove that there is an element T E Hom (F<n>, F) 

such that v T =P 0. 

10. Prove that there exists an isomorphism of F<n> into 

Hom (Hom (F<n>, F), F). 

11. If U and W are subspaces of V, prove that U + W = {v E VI v 

u + w, u E U, w E W} is a subspace of V. 

12. Prove that the intersection of two subspaces of Vis a subspace of V. 

13. If A and Bare subspaces of V prove that (A + B)/B is isomorphic to 

Af(A n B). 

14. If Tis a homomorphism of U onto V with kernel W prove that there 

is a one-to-one correspondence between the subspaces of V and the 

subspaces of U which contain W. 

15. Let V be a vector space over F and let V1, ••• , Vn be subspaces of 

V. Suppose that V = V1 + V2 + · · · + Vn (see Problem 11), and 

that Vi n (V1 + · · · + Vi_ 1 + Vi+ 1 + · · · + Vn) = (0) for every 

i = 1, 2, ... , n. Prove that Vis the internal direct sum of V1 , •.. , Vn. 

16. Let V = V1 ffi · · · ffi Vn; prove that in V there are subspaces Vi 

isomorphic to vi such that vis the internal direct sum of the vi. 

17. Let T be defined on F(2) by (xu x2 ) T = (ctx1 + {3x2 , yx1 + Dx2 ) 

where ct, {3, y, () are some fixed elements in F. 

(a) Prove that Tis a homomorphism of F(2) into itself. 

(b) Find necessary and sufficient conditions on ct, {3, y, () so that T is 

an isomorphism. 

18. Let T be defined on F(3) by (xv x2 , x3 ) T = (ct11x1 + ct12x2 + 
ct13x3 , ct21 x1 + ct22x2 + ct23x3 , ct31x1 + ct32x2 + ct33x3). Show that T 

is a homomorphism of F(3) into itself and determine necessary and 

sufficient conditions on the ctii so that Tis an isomorphism. 
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19. Let T be a homomorphism of V into W. Using T, define a homomor­
phism T* of Hom ( W, F) into Hom ( V, F). 

20. (a) Prove that F(1) is not isomorphic to F<n> for n > I. 
(b) Prove that F< 2> is not isomorphic to F(3>. 

21. If Vis a vector space over an irifinite field F, prove that V cannot be 
written as the set-theoretic union of a finite number of proper subspaces. 

4.2 linear Independence and Bases 

If we look somewhat more closely at two of the examples described in the 
previous section, namely Example 4.1.4 and Example 4.1.3, we notice that 
although they do have many properties in common there is one striking 
difference between them. This difference lies in the fact that in the former 
we can find a finite number of elements, 1, x, x 2

, ••• , xn- 1 such that every 
element can be written as a combination of these with coefficients from F, 
whereas in the latter no such finite set of elements exists. 

We now intend to examine, in some detail, vector spaces which can be 
generated, as was the space in Example 4.1.4, by a finite set of elements. 

DEFINITION If Vis a vector space over F and if v11 ••• , vn E V then 
any element of the form oc1 v1 + oc2v2 + · · · + ocnvm where the oci E F, is a 
linear combination over F of v1, ••• , vn. 

Since we usually are working with some fixed field F we shall often say 
linear combination rather than linear combination over F. Similarly it will 
be understood that when we say vector space we mean vector space over F . 

..,. 

DEFINITION If Sis a nonempty subset of the vector space V, then L(S), 
the linear span of S, is the set of all linear combinations of finite sets of 
elements of S. 

We put, after all, into L(S) the elements required by the axioms of a 
Vector space,· so it is not surprising to find 

LEMMA 4.2.1 L(S) is a subspace of V. 

Proof. If v and w are in L(S), then v = A.1s1 + · · · + A.nsn and w = 
P.1 t1 + · · · + Jlmtm, where the A.'s and Jl's are in F and the si and ti are all 
in S. Thus, for oc, P E F, ocv + Pw = oc(A.1s1 + · · · + A.nsn) + P(J11t1 + · · · + Jlmtm) = (ocA.1 )s1 + · · · + (ocA.n)sn + (PJ1 1 )t1 + · · · + (PJlm)tm and so 
is again in L(S). L(S) has been shown to be a subspace of V. 

The proof of each part of the next lemma is straightforward and easy 
and we leave the proofs as exercises to the reader. 
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LEMMA 4.2.2 IJ S, Tare subsets of V, then 

1. S c T implies L(S) c L( T). 

2. L(S u T) = L(S) + L( T). 

3. L(L(S)) = L(S). 

DEFINITION The vector space Vis said to be finite-dimensional (over F) 

if there is a finite subset S in V such that V = L(S). 

Note that F(n) is finite-dimensional over F, for if S consists of the n vectors 

(1, 0, ... , 0), (0, 1, 0, ... , 0), ... , (0, 0, ... , 0, 1), then V = L(S). 

Although we have defined what is meant by a finite-dimensional space 

we have not, as yet, defined what is meant by the dimension of a space. 

This will come shortly. 

DEFINITION If Vis a vector space and if v1, ... , vn are in V, we say that 

they are linearly dependent over F if there exist elements A1, ••• , An in F, 

not all of them 0, such that A1v1 + A2v2 + · · · + Anvn = 0. 

If the vectors v1, ••• , vn are not linearly dependent over F, they are said 

to be linearly independent over F. Here too we shall often contract the phrase 

"linearly dependent over F" to "linearly dependent." Note that if v1, ••• , 

vn are linearly independent then none of them can be 0, for if v1 = 0, 

say, then cx:v1 + Ov2 + · · · + Ovn = 0 for any a i= 0 in F. 

In F(3) it is easy to verify that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly 

independent while (1, 1, 0), (3, 1, 3), and (5, 3, 3) are linearly dependent. 

We point out that linear dependence is a function not only of the vectors 

but also of the field. For instance, the field of complex numbers is a vector 

space over the field of real numbers and it is also a vector space over the 

field of complex numbers. The elements v1 = 1, v2 = i in it are linearly 

independent over the reals but are linearly dependent over the complexes, 

since iv1 + ( -1)v2 = 0. 

The concept of linear dependence is an absolutely basic and ultra­

important one. We now look at some of its properties. 

LEMMA 4.2.3 IJ v1, ... , vn E V are linearly independent, then every element in 

their linear span has a unique representation in the form A1 v1 + · · · + Anvn with 

the Ai E F. 

Proof. By definition, every element in the linear span is of the form 

Atv1 + · · · + Anvn. To show uniqueness we must demonstrate that if 

At Vt + ... + AnVn =Ill vl + ... + JlnVn then At = Jll, A2 = J12, ... 'An = Jln· 

But if At v1 + · · · + Anvn = Ill v1 + · · · + JlnVn, then we certainly have. 
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CA·t - flt)vt + (A.z - flz)Vz + · · · + (A.n - fln)vn = 0, which by the linear 
independence of Vv ... ' vn forces At - flt = 0, Az - flz = 0, ... ' 
An - fln = 0. 

The next theorem, although very easy and at first glance of a somewhat 
tec:nntie<U nature, has as consequences results which form the very foundations 

the subject. We shall list some of these as corollaries; the others will 
appear in the succession of lemmas and theorems that are to follow. 

lf v1, ••• , vn are in V then either they are linearly independ­
ent or some vk is a linear combination rif the preceding ones, v1 , ••• , vk-t· 

Proof. If v1 , ••• , vn are linearly independent there is, of course, nothing 
to prove. Suppose then that a 1 v1 + · · · + anvn = 0 where not all the 
a's are 0. Let k be the largest integer for which ak =I= 0. Since ai = 0 
for i > k, a 1 v1 + · · · + akvk = 0 which, since ak =I= 0, implies that 
vk = ak -t( -atvt - azvz - · · · - ak-tvk-1) = ( -ak - 1

a1)v1 + · · · + 
( -ak -lak_ 1)vk-t· Thus vk is a linear combination of its predecessors. 

1 If v1 , ... , vn in V have W as linear span and if v1 , • •• , vk 
linearly independent, then we can find a subset rif v1, ••• , vn rif the form v1 , 

V2 , • •• , vk, Vi
1

, ••• , vir consisting rif linearly independent elements whose linear 
span is also W. 

Proof. If v
1 , ••• , vn are linearly independent we are done. If not, weed 

out from this set the first vi, which is a linear combination of its predecessors. 
Since v1 , ... , vk are linearly independent, J > k. The subset so constructe~, 
v1 , ••• , vk, ... , vi_ 1, vi+t' ... , vn has n - 1 elements. Clearly its linear 
span is contained in W. However, we claim that it is actually equal to W; 
for, given w E W, w can be written as a linear combination of v1 , ••• , vn. 
But in this linear combination we can replace vi by a linear combination of 
v1, ••• , vj-t· That is, w is a linear combination ofvv ... , vi_ 1, vi+ 1, ... ,vn. 

Continuing this weeding out process, we reach a subset v1 , ..• , vk, 
Vi

1
, ••• , vir whose linear span is still W but in which no element is a linear 

combination of the preceding ones. By Theorem 4.2.1 the elements 
vl, . . ~ vk, vit, . .. , vir must be linearly independent. 

If V is a finite-dimensional vector space, then it contains a 
set v1 , ••• , vn rif linearly independent elements whose linear span is V. 

Proof Since V is finite-dimensional, it is the linear span of a finite 
number of elements uv .. . , um. By Corollary 1 we can find a subset of 
these, denoted by v1 , ••• , vn, consisting of linearly independent elements 
Whose linear span must also be V. 
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DEFINITION A subset Sofa vector space Vis called a basis of V if S 

consists of linearly independent elements (that is, any finite number of 

elements inS is linearly independent) and V = L(S). 

In this terminology we can rephrase Corollary 2 as 

COROLLARY 3 If V is a finite-dimensional vector space and if u1 , •.. , urn 

span V then some subset of u1 , • •• , urn forms a basis of V. 

Corollary 3 asserts that a finite-dimensional vector space has a basis 

containing a finite number of elements v1, ... , vn- Together with Lemma 

4.2.3 this tells us that every element in V has a unique representation in the 

form cx 1 v1 + · · · + cxnvn with cx 1, ... , cxn in F. 

Let us see some of the heuristic implications of these remarks. Suppose 

that Vis a finite-dimensional vector space over F; as we have seen above, 

V has a basis v1 , ••• , vn. Thus every element v E V has a unique repre­

sentation in the form v = cx1 v1 + · · · + e<nvn. Let us map V into F(n) by 

defining the image of cx 1v1 + · · · + cxnvn to be (cx 1, ... , cxn)· By the unique­

ness of representation in this form, the mapping is well defined, one-to-one, 

and onto; it can be shown to have all the requisite properties of an iso­

morphism. Thus V is isomorphic to F<n> for some n, where in fact n is 

the number of elements in some basis of V over F. If some other basis of 

V should have m elements, by the same token V would be isomorphic to 

F<m>. Since both F(n) and F(m) would now be isomorphic to V, they would 

be isomorphic to each other. 

A natural question then arises! Under what conditions on n and m are 

F<n> and F(m) isomorphic? Our intuition suggests that this can only happen 

when n = m. Why? For one thing, if F should be a field with a finite 

number of elements-for instance, ifF = ]p the integers modulo the prime 

number p-then F(n) has pn elements whereas F(m) has pm elements. Iso­

morphism would imply that they have the same number of elements, and 

so we would haven = m. From another point of view, ifF were the field 

of real numbers, then F<n> (in what may be a rather vague geometric way 

to the reader) represents real n-space, and our geometric feeling tells us 

that n-space is different from m-space for n =1 m. Thus we might expect 

that ifF is any field then F<n> is isomorphic to F(m) only if n = m. Equiv­

alently, from our earlier discussion, we should expect that any two bases of 

V have the same number of elements. It is towards this goal that we prove 

the next lemma. 

LEMMA 4.2.4 If v1 , ••• , vn is a basis of V over F and if w 1 , ••• , U:m in V 

are linearly independent over F, then m :::;; n. 

Proof. Every vector in V, so in particular wm, is a linear combination 

of v1 , ••• , vn. Therefore the vectors wm, v1 , . .. , vn are linearly dependent. 
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Moreover, they span V since v1, .•• , vn already do so. Thus some proper 
subset of these wm, V;

1
, ••• , vik with k :::;; n - 1 forms a basis of V. We 

have "traded off" one w, in forming this new basis, for at least one vi. 
Repeat this procedure with the set wm_ 1 , wm, Vi

1
, ••• , vik· From this 

linearly dependent set, by Corollary 1 to Theorem 4.2.1, we can extract a 

basis of the form wm_ 1 , wm, vit, ... , vis' s :::;; n - 2. Keeping up this 
procedure we eventually get down to a basis of V of the form w2 , •.• , 

wm_ 1 , wm, vr;., Vp ... ; since w1 is not a linear combination of w2 , ••• , wm_ 1 , the 
above basis must actually include some v. To get to this basis we have 
introduced m - 1 w's, each such introduction having cost us at least one v, 
and yet there is a v left. Thus m - 1 :::;; n - 1 and so m :::;; n. 

This lemma has as consequences (which we list as corollaries) the basic 
results spelling out the nature of the dimension of a vector space. These 
corollaries are of the utmost importance in all that follows, not only in this 
chapter but in the rest of the book, in fact in all of mathematics. The 
corollaries are all theorems in their own rights. 

COROLLARY 1 If V is finite-dimensional over F then any two bases of V 
have the same number of elements. 

Proof. Let v1 , ••. , vn be one basis of V over F and let wv ... , wm be 
another. In particular, w1, ••• , wm are linearly independent over F whence, 
by Lemma 4.2.4, m :::;; n. Now interchange the roles of the v's and w's and 
we obtain that n :::;; m. Together these say that n = m. 

COROLLARY 2 F(n) is isomorphic F(m) if and only if n = m. 

Proof F(n) has, as one basis, the set of n vectors, (1, 0, ... , 0), (0, 1, 
0, ... , 0), ... , (0, 0, ... , 0, 1). Likewise F(m) has a basis containing m 
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this 
section), hence, by Corollary 1, m = n. 

Corollary 2 puts on a firm footing the heuristic remarks made earlier 
about the possible isomorphism of F(n) and F<m>. As we saw in those re­
marks, Vis isomorphic to F(n) for some n. By Corollary 2, this n is unique, thus 

..-

COROLLARY 3 If V is finite-dimensional over F then Vis isomorphic to F(n) 
for a unique integer n ~· in fact, n is the number of elements in any basis of V over F. 

DEFINITION The integer n in Corollary 3 is called the dimension of V 
over F. 

The dimension of V over F is thus the number of elements in any basis 
of Vover F .. 

181 
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We shall write the dimension of V over F as dim V, or, the occasional 

time in which we shall want to stress the role of the field F, as dimF V. 

COROLLARY 4 Any two finite-dimensional vector spaces over F of the same 

dimension are isomorphic. 

Proof. If this dimension is n, then each is isomorphic to p<n>, hence 

they are isomorphic to each other. 

How much freedom do we have in constructing bases of V? The next 

lemma asserts that starting with any linearly independent set of vectors 

we can "blow it up" to a basis of V. 

LEMMA 4.2.5 If V is finite-dimensional over F and if u1, ..• , um E V are 

linearly independent, then we can find vectors um + 1, ••• , um + r in V such that 

u1, ... ' um, um+1' ... ' um+r is a basis of v. 

Proof. Since V is finite-dimensional it has a basis; let v1, ••• , vn be a 

basis of V. Since these span V, the vectors u1, ••• , um, v1, ••• , vn also span 

V. By Corollary l to Theorem 4.2.1 there is a subset of these of the form 

u1, ••. , um, Vi
1

, • •• , vir which consists of linearly independent elements 

which span V. To prove the lemma merely put um+ 1 = Vi
1

, ••• , um+r = 

vir' 

What is the relation of the dimension of a homomorphic image of V to 

that of V? The answer is provided us by 

LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of V, then W 

is finite-dimensional, dim W ~ dim V and dim Vf W = dim V - dim W. 

Proof. By Lemma 4.2.4, if n = dim V then any n + 1 elements in V 

are linearly dependent; in particular, any n + 1 elements in Ware linearly 

dependent. Thus we can find a largest set of linearly independent elements 

in W, w1, •.• , wm and m ~ n. If w E W then w1, ..• , wm, w is a linearly 

dependent set, whence rxw + rx1 w1 + · · · + rxmwm = 0, and not all of the 

rx/s are 0. If rx = 0, by the linear independence of the wi we would get that 

each rxi = 0, a contradiction. Thus rx # 0, and so w = - rx- 1 
( rx1 w1 + 

· · · + rxmwm)· Consequently, w1, •.• , wm span W; by this, W is finite­

dimensional over F, and furthermore, it has a basis of m elements, where 

m ~ n. From the definition of dimension it then follows that dim W ~ 

dim V. 

Now, let w1, ••• , wm be a basis of W. By Lemma 4.2.5, we can fill this 

out to a basis, w1 , ... , wm, v1 , ... , vr of V, where m + r = dim V and 

m=dimW. 

Let Zi1, ... , vr be the images, in V = Vf W, of v1, ... , vr. Since any 

vector v E V is of the form v = rx1 w1 + · · · + rxmwm + fJ1 V1 + · · · + flrvr, 
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then v, the image of v, is of the form v = /31 v1 + · · · + Prvr (since w1 = 
w2 = · · · = wm = 0). Thus v1, ... , vr span VfW. We claim that they are 
linearly independent, for if y1v1 + · · · + YrVr = 0 then y1v1 + · · · + 
YrVr E w, and so YtV1 + ... + YrVr = AtW1 + ... + Amwm, which, by the 
linear independence of the set wv ... , wm, v1, ... , vr forces y1 = · · · = 
Yr = A1 = · · · = Am = 0. We have shown that Vf W has a basis of r 
elements, and so, dim VfW = r =dim V- m = dim V- dim W. 

COROLLARY If A and B are finite-dimensional subspaces of a vector space V, 
then A + B is finite-dimensional and dim (A + B) = dim (A) + dim (B) 
dim (An B). 

Proof. By the result of Problem 13 at the end of Section 4.1, 

A+B A 

~~ AnB' 

and since A and B are finite-dimensional, we get that 

dim (A + B) - dim B = dim (A ; B) = dim (A ~ B) 
= dim A - dim (A n B). 

Transposing yields the result stated in the lemma. 

Problems 

1. Prove Lemma 4.2.2. 

2. (a) IfF is the field of real numbers, prove that the vectors (1, I, 0, 0), 
(0, 1, -1, 0), and (0, 0, 0, 3) in F< 4> are linearly independent 
over F. 

(b) What conditions on the characteristic ofF would make the three 
vectors in (a) linearly dependent? 

3. If V has a basis of n elements, give a detailed proof that Vis isomorphic 
to p<n>. 

¥.If T is an isomorphism of V onto W, prove that T maps a basis of V 
onto a basis of W. 

5. If Vis finite-dimensional and Tis an isomorphism of V into V, prove 
that T must map V onto V. 

6. If V is finite-dimensional and T is a homomorphism of V onto V, 
prove that T must be one-to-one, and so an isomorphism. 

7. If Vis of dimension n, show that any set of n linearly independent 
vectors in V forms a basis of V. 
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8. If Vis finite-dimensional and W is a subspace of V such that dim V = 

dim W, prove that V = W. 

9. If V is finite-dimensional and T is a homomorphism of V into itself 

which is not onto, prove that there is some v # 0 in V such that 

vT = 0. 

10. Let F be a field and let F [ x] be the polynomials in x over F. Prove 

that F[x] is not finite-dimensional over F. 

11. Let vn = {p(x) E F[x] I deg p(x) < n}. Define T by 

(eto + et1x + ··· + Ctn_ 1xn- 1)T 

= Cto + et1 (x + 1) + et2 (x + 1) 2 + · · · + etn_ 1 (x + 1)n- 1
. 

Prove that Tis an isomorphism of Vn onto itself. 

12. Let W = {et0 + et1x + · · · + Ctn_ 1xn-
1 

E F[x] I et0 + et1 + · · · + 
etn_ 1 = 0}. Show that W is a subspace of Vn and find a basis of W 

over F. 

13. Let v1, .•• , vn be a basis of V and let Wv . .. , wn be any n elements 

in V. Define Ton V by (A,1 v1 + · · · + Anvn) T = A-1 w1 + · · · + AnWn. 

(a) Show that R is a homomorphism of V into itself. 

(b) When is T an isomorphism? 

14. Show that any homomorphism of V into itself, when V is finite­

dimensional, can be realized as in Problem 13 by choosing appropriate 

elements w1, ... ' wn. 

15. Returning to Problem 13, since v1, ..• , vn is a basis of V, each 

wi = etil v1 + · · · + Ctinvm etii E F. Show that the n
2 

elements etii of 

F determine the homomorphism T. 

*16. If dimp V = n prove that dimp (Hom (V,V)) = n 2
• 

17. If V is finite-dimensional and W is a subspace of V prove that there 

is a subspace W1 of V such that V = W EB W1 • 

4.3 Dual Spaces 

Given any two vector spaces, V and W, over a field F, we have defined 

Hom ( V, W) to be the set of all vector space homomorphisms of V into W. 

As yet Hom ( V, W) is merely a set with no structure imposed on it. We 

shall now proceed to introduce operations in it which will turn it into a 

vector space over F. Actually we have already indicated how to do so in 

the descriptions of some of the problems in the earlier sections. However 

we propose to treat the matter more formally here. 

Let S and T be any two elements of Hom ( V, W); this means that these 

are both vector space homomorphisms of V into W. Recalling the definitio~ 

I 

I 

Free Hand
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of such a homomorphism, we must have (vt + v2 )S = v1S + v
2
S and 

(cw1)S = a(vtS) for all vv v2 E V and all a E F. The same conditions also 
hold forT. 

We first want to introduce an addition for these elements S and Tin 
Hom (V, W). What is more natural than to define S + T by declaring 
v(S + T) = vS + vT for all v E V? We must, of course, verify that S + T 
is in Hom (V, W). By the very definition of S + T, if vt, v2 E V, then 
(vt + v2 ) (S + T) = (vt + v2 )S + (vt + v2 ) T; since (vt + v2 )S = vtS + v2S 
and (vt + v2 ) T = v1 T + v2 T and since addition in W is commutative, we 
get ( vt + v2 ) ( S + T) = vt S + vt T + v2S + v2 T. Once again invoking 
the definition of S + T, the right-hand side of this relation becomes 
vt (S + T) + v2 (S + T); we have shown that (vt + v2 ) (S + T) = 

' vt (S + T) + v2 (S + T). A similar computation shows that (av) (S + T) = 
a(v(S + T)). Consequently S + T is in Hom (V, W). Let 0 be that 
homomorphism of V into W which sends every element of V onto the zero­
element of W; for S E Hom (V, W) let -S be defined by v( -S) = - (vS). 
It is immediate that Hom ( V, W) is an abelian group under the addition 
defined above. 

Having succeeded in introducing the structure of an abelian group on 
Hom (V, W), we now turn our attention to defining .AS for .A E F and 
S E Hom (V, W), our ultimate goal being that of making Hom (V, W) 
into a vector space over F. For A E F and S E Hom (V, W) we define 
AS by v(.AS) = .A(vS) for all v E V. We leave it to the reader to show that 
.AS is in Hom ( V, W) and that under the operations we have defined, 
Hom (V, W) is a vector space over F. But we have no assurance that 
Hom ( V, W) has any elements other than the zero-homomorphism. Be 
that as it may, we have proved 

LEMMA 4.3.1 Hom (V, W) zs a vector space over F under the operations 
described above. 

A result such as that ofLemma 4.3.1 really gives us very little information; 
rather it confirms for us that the definitions we have made are reasonable. 
We would prefer some results about Hom (V, W) that have more of a 
bite to them. Such a result is provided us in 

THEOREM 4.3.1 If V and Ware of dimensions m and n, respectively, over F, 
then Hom ( V, W) is of dimension mn over F. 

Proof. We shall prove the theorem by explicitly exhibiting a basis of 
Hom ( V, W) over F consisting of mn elements. 

Let vt, ... , vm be a basis of V over F and wt, ... , wn one for W over F. 
If v E V then v = At vt + · · · + AmVm where At, ... , Am are uniquely de-
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fined elements ofF; define Tii:V--+ W by vTii = A.iwi. From the point 

of view of the bases involved we are simply letting vk Tii = 0 for k =I= i 

and viTii = wi. It is an easy exercise to see that Tii is in Hom (V, W). 

Since i can be any of 1, 2, ... , m and j any of 1, 2, ... , n there are mn 

such Tii's. 

Our claim is that these mn elements constitute a basis of Hom ( V, W) 

over F. For, let S E Hom (V, W); since viSE W, and since any element 

in W is a linear combination over F of wi, ••• , Wm viS = oc11 wi + oc12w 2 + 
· · · + ocinwn, for some oc11 , oc12, ••• , oc1n in F. In fact, viS= oci1wi + · · · + 
cxinwn for i = 1, 2, ... , m. Consider S0 = oc11 T11 + oc12 T 12 + · · · + 
OCtn Tin + oc21 T21 + ... + OC2n T2n + ... + oci1 Til + ... + cxin Tin + ... + 
ocmi Tmi + · · · + ocmn Tmn· Let us compute vkSo for the basis vector vk. Now 

vkSo = vk(cxu Tu + · · · + OCmi Tmi + · · · + OCmn Tmn) = OC11 (vk Tu) + 
cxu(vkTu) + ... + cxmi(vkTmi) + ... + CXmn(vkTmn)· Since vkTij = 0 for 

i =I= k and vkTki = wi, this sum reduces to vkSo = ock1wi + · · · + cxknwm 

which, we see, is nothing but VIP. Thus the homomorphisms S0 and S agree 

on a basis of V. We claim this forces S0 = S (see Problem 3, end of this 

section). However S0 is a linear combination of the Tii's, whence S must 

be the same linear combination. In short, we have shown that the mn 

elements T11 , T 12, ••• , T 1 m ... , Tmi' ... , Tmn span Hom (V, W) over F. 

In order to prove that they form a basis of Hom ( V, W) over F there 

remains but to show their linear independence over F. Suppose that 

f3u Tu + fJ12 T12 + · · · + Pin Tin + · · · + f3i1 Til + · · · + Pin Tin + · · · + 
Pmi Tmi + · · · + PmnTmn = 0 with {3ij all in F. Applying this to vk we get 

0 = vk(f3u Tu + · · · + f3iiTii + · · · + PmnTmn) = Pk1W1 + Pk2W2 + · · · + 
Pknwn since vk Tii = 0 for i =I= k and vk,Tki = wi. However, w1, ..• , wn 

are linearly independent over F, forcing pki = 0 for all k and j. Thus the 

Tii are linearly independent over F, whence they indeed do form a basis 

of Hom ( V, W) over F. 

An immediate consequence of Theorem 4.3.1 is that whenever V =1= (0) 

and W =I= (0) are finite-dimensional vector spaces, then Hom ( V, W) does 

not just consist of the element 0, for its dimension over F is nm ;;::: 1. 

Some special cases of Theorem 4.3.1 are themselves of great interest and 

we list these as corollaries. 

COROLLARY 1 .lfdimp V = m then dimp Hom (V, V) = m 2. 

Proof. In the theorem put V = W, and so m = n, whence mn = m2
• 

COROLLARY 2 .lfdimp V = m then dimp Hom (V, F) = m. 

Proof. As a vector space F is of dimension 1 over F. Applying the 

theorem yields dimp Hom ( V, F) = m. 

J 
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Corollary 2 has the interesting consequence that if Vis finite-dimensional 
over Fit is isomorphic to Hom (V, F), for, by the corollary, they are of 
the same dimension over F, whence by Corollary 4 to Lemma 4.2.4 they 
must be isomorphic. This isomorphism has many shortcomings! Let us 
explain. It depends heavily on the finite-dimensionality of V, for if V is 
not finite-dimensional no such isomorphism exists. There is no nice, formal 
construction of this isomorphism which holds universally for all vector 
spaces. It depends strongly on the specialities of the finite-dimensional 
situation. In a few pages we shall, however, show that a "nice" isomorphism 
does exist for any vector space V into Hom (Hom ( V, F), F). 

DEFINITION If Vis a vector space then its dual space is Hom (V, F). 

We shall use the notation V for the dual space of V. An element of V 
will be called a linear functional on V into F. 

If V is not finite-dimensional the V is usually too large and wild to be 
of interest. For such vector spaces we often have other additional structures, 

· such as a topology, imposed and then, as the dual space, one does not generally 
take all of our Vbut rather a properly restricted subspace. If Vis finite-dimen­
sional its dual space Vis always defined, as we did it, as all of Hom (V, F). 

In the proof of Theorem 4.3.1 we constructed a basis of Hom ( V, W) 
using a particular basis of V and one of W. The construction depended 
crucially on the particular bases we had chosen for V and W, respectively. 
Had we chosen other bases we would have ended up with a different basis 
of Hom ( V, W). As a general principle, it is preferable to give proofs, 
whenever possible, which are basis-free. Such proofs are usually referred to 
as invariant ones. An invariant proof or construction has the advantage, 
other than the mere aesthetic one, over a proof or construction using a 
basis, in that one does not have to worry how finely everything depends 
on a particular choice of bases. 

The elements of V are functions defined on V and having their values 
in F. In keeping with the functional notation, we shall usually write 
elements of Vas J, g, etc. and denote the value on v E Vas f (v) (rather 
than as vf). 

Let V be a finite-dimensional vector space over F and let v1, .•• , vn be 
a basis of V; let vi be the element of V defined by vi( vi) = 0 for i =I= j, 
vi(vi) = 1, and vi((X1Vl + ... + (XiVi + ... + (Xnvn) =(Xi. In fact the vi 
are nothing but the Tii introduced in the proof of Theorem 4.3.1, for here 
W = F is one-dimensional over F. Thus we know that v1 , •.• , fJn form a 
basis of V. We call this basis the dual basis of v1, ••. , vn. If v =I= 0 E V, by 

. Lemma 4.2.5 we can find a basis of the form v1 = v, v2, ... , vn and so 
there is an element in V, namely v1 , such that fJ1 (v1 ) = v1 (v) = I =/= 0. 
We have proved 
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LEMMA 4.3.2 If V is finite-dimensional and v =I= 0 E V, then there zs an 

elementf E V such thatf (v) =I= 0. 

In fact, Lemma 4.3.2 is true if V is infinite-dimensional, but as we have 

no need for the result, and since its proof would involve logical questions 

that are not relevant at this time, we omit the proof. 

Let v0 
E V, where V is any vector space over F. As f varies over V, and 

v
0 

is kept fixed,j (v0 ) defines a functional on V into F; note that we are merely 

interchanging the role of function and variable. Let us denote this function by Tvo; 

in other words Tv
0
(j) =f(v0 ) for any jE V. What can we say about 

Tv/ To begin with, Tv
0
(j + g) = (j + g) (v0 ) = f (vo) + g(vo) = 

Tv
0
(j) + Tv

0
(g); furthermore, 'T__v

0
(Aj) = (A_j)(vo) = Aj(vol = ATvo(f). 

Thus Tvo is in the dual space of V! We write this space as V and refer to 

it as the second dual of V. :lt: 

Given any element v E V we can associate with it an element Tv in V. 
:lt: 

Define the mapping tjJ: V ~ V by vljl = Tv for every v E V. Is tjJ a homo-

morphism of V into V? Indeed it is! For, Tv+w(f) = f (v + w) = f (v) + 

j(w) = Tv(f) + Tw(f) = (Tv + Tw)(f), and so Tv+w = Tv + Tw, 

that is, (v + w)t/J = vt/J + wt/J. Similarly for A E F, (A_v)t/J = A_(vt/J). Thus 

""' tjJ defines a homomorphism of V into V. The construction of tjJ used no 

basis or special properties of V; it is an example of an invariant construction. 

When is tjJ an isomorphism? To answer this we must know when vljl = 0, 

or equivalently, when Tv = 0. But if Tv = 0, then 0 = Tv(f) = j (v) 

for all f E V. However as we pointed out, without proof, for a general 

vector space, given v =I= 0 there is an f E V with f (v) =I= 0. We actually 

proved this when V is finite-dimensional. Thus for V finite-dimensional 

(and, in fact, for arbitrary V) tjJ is an isomorphism. However, when Vis 
~ 

finite-dimensional tjJ is an isomorphism onto V; when Vis infinite-dimen-

sional tjJ is not onto. 

If Vis finite-dimensional, by the second corollary to Theorem 4.3.1, V 

and Vare of the same dimension; similarly, Vand Vare of the same dimen­

sion; since ljJ is an isomorphism of V into V, the equality of the dimensions 

forces tjJ to be onto. We have proved 

LEMMA 4.3.3 If Vis finite-dimensional, then tjJ is an isomorphism of V onto V. 

We henceforth identify V and V, keeping in mind that this identification 

is being carried out by the isomorphism ljJ. 

DEFINITION If W is a subspace of V then the annihilator of W, A(W) = 

{jE V /J(w) = 0 all wE W}. 

We leave as an exercise to the reader the verification of the fact that . 

A(W) is a subspace of V. Clearly if U c W, then A(U) ~ A(W). 
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Let W be a subspace of V, where V is finite-dimensional. Iff E V let 

J be the restriction off to W; thus] is defined on W by j ( w) = f ( w) for 

every wE W. SincejE V, clearly] E W. Consider the mapping T: V-+ W 
defined by JT =]for f E V. It is immediate that (f + g) T = JT + gT 

and that (Aj) T = A(jT). Thus T is a homomorphism of V into W. 
What is the kernel of T? Iff is in the kernel of T then the restriction off 

to W must be 0; that is, f(w) = 0 for all wE W. Also, conversely, if 

f ( w) = 0 for all w E W then f is in the kernel of T. Therefore the kernel 

of Tis exactly A ( W). 

We now claim that the mapping Tis onto W. What we must show is 

that given any element h E W, then h is the restriction of some f E V, that 

is h = J By Lemma 4.2.5, if Wv .•. , wm is a basis of W then it can be 

expanded to a basis of V of the form w1, ••• , wm, v 1, ••• , vr where r + m = 

dim V. Let W1 be the subspace of V spanned by v1, .•. , vr. Thus V = 

W ffi Wl. If hEW define jE V by: let V E V be written as V = W + w1, 

wE w, wl E wl; thenf (v) = h(w). It is easy to see thatfis in Vand that 

] = h. Thus h = JT and so T maps V onto W. Since the kernel of T is 

A(W) by Theorem 4.1.1, W is isomorphic to VJA(W). In particular they 

have the same dimension. Let m = dim W, n = dim V, and r = dim 

A(W). By Corollary 2 to Theorem 4.3.1, m =dim W and n =dim V. 
However, by Lemma 4.2.6 dim VJA(W) =dim V- dim A(W) = n- r, 

and so m = n - r. Transposing, r = n - m. We have proved 

THEOREM 4.3.2 If V is finite-dimensional and W is a subspace of V, then 

W is isomorphic to VJ A ( W) and dim A ( W) = dim V - dim W. 

COROLLARY A(A(W)) = W. 

Proof. Remember that in order :f'or the corollary even to make sense, 

since W c Vand A(A(W)) c V, we have identified V with V. Now W c 

A(A(W)), for if wE W then wt/J = Tw acts on V by Tw(f) =f(w) and 

so is 0 for all jE A(W). However, dim A(A(W)) =dim V- dim A(W) 
(applying the theorem to the vector space V and its subspace A( W)) so 

that dimA(A(W)) =dim V- dimA(W) =dim V- (dim V- dim W) = 

dinyW. Since W c A(A(W)) and they are of the same dimension, it 

follows that W = A(A(W)). 

Theorem 4.3.2 has application to the study of systems of linear homogeneous 

equations. Consider the system of m equations inn unknowns 

allxl + a12x2 + ... + alnxn = 0, 

a21X1 + a22X2 + · · · + a2nxn = 0, 
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where the aii are in F. \Ve ask for the number of linearly independent 

solutions (x1, ... , xn) there are in p<n> to this system. 

In p<n> let U be the subspace generated by them vectors (a11 , a12, . .. ,a1n), 

(a21 , a22 , • •• , a2 n), ... , (am1, am2 , ••• , amn) and suppose that U is of 

dimension r. In that case we say the system of equations is of rank r. 

Let v1 = (1, 0, ... , 0), v2 = (0, 1, 0, ... , 0), ... , vn = (0, 0, ... , 0, 1) 

be used as a basis of p<n> and let z\, v2 , • •• , vn be its dual basis in ft<n). 

Any fE p(n) is of the form f = xliJ1 + XzVz + ... + xnvm where the 

xi EF. When isfEA(U)? In that case, since (a11 , ... , a1 n) E U, 

0 =f(a11, a12, ... ' aln) 

=J(a11v1 + · · · + alnvn) 

= (xlz\ + XzVz + ... + xnvn)(a11v1 + ... + alnvn) 

since iJi(rJi) = 0 fori # j and vi( vi) = 1. Similarly the other equations of the 

system are satisfied. Conversely, every solution (x1, ••• , xn) of the system 

of homogeneous equations yields an element, x1v1 + · · · + xnvm in A(U). 

Thereby we see that the number of linearly independent solutions of the 

system of equations is the dimension of A( U), which, by Theorem 4.3.2 is 

n - r. We have proved the following: 

THEOREM 4.3.3 If the system of homogeneous linear equations: 

a11xl + ... + alnxn = 0, 

a21x1 + ... + a2nxn = 0, 

amlxl + ... + amnxn = 0, 

where aii E F is of rank r, then there are n - r linearly independent solutions in 
p<n>. 

COROLLARY If n > m, that is, if the number of unknowns exceeds the number 

of equations, then there is a solution (x1, ... , xn) where not all of x1 , ... , xn are 0. 

Proof. Since U is generated by m vectors, and m < n, r = dim U ~ 

m < n; applying Theorem 4.3.3 yields the corollary. 

Problems 

1. Prove that A( W) is a subspace of V. 

2. If S is a subset of V let A(S) = {fE V lf(s) = 0 all s E S}. Prove 

that A(S) = A(L(S)), where L(S) is the linear span of S. 
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3. If S, T E Hom ( V, W) and viS = vi T for all elements vi of a basis 
of V, prove that S = T. 

4. Complete the proof, with all details, that Hom ( V, W) is a vector 
space over F. 

5. If ljJ denotes the mapping used in the text of V into V, give a complete 
proof that ljJ is a vector space homomorphism of V into V. 

6. If Vis finite-dimensional and v1 =/=- v2 are in V, prove that there is an 
f E V such thatf (v1 ) =I= f (v2 ). 

7. If W1 and W2 are subspaces of V, which is finite-dimensional, describe 
A(W1 + W2 ) in terms of A(W1 ) and A(W2 ). 

8. If vis a finite-dimensional and wl and w2 are subspaces of v, describe 
A(W1 n W2 ) in terms of A(W1 ) and A(W2 ). 

9. IfF is the field of real numbers, find A(W) where 
(a) W is spanned by (1, 2, 3) and (0, 4, -1). 
(b) Wisspanned by (0, 0, 1, -1), (2, 1, 1, 0), and (2, 1, 1, -1). 

I 0. Find the ranks of the following systems of homogeneous linea~ equations 
over F, the field of real numbers, and find all the solutions. 
(a) x1 + 2x2 - 3x3 + 4x4 = 0, 

x1 + 3x2 - x3 = 0, 

6x1 + x3 + 2x4 = 0. 

(b) x1 + 3x2 + x3 = 0, 

x1 + 4x2 + x3 = 0. 

(c) x1 + x2 + x3 + x4 + x 5 = 0, 
x1 + 2x2 = 0, 

4x1 + 7x2 + x3 + x4 + x5 = 0, 
x2 - x3 - x4 - x5 = 0. 

II. Iff and g are in V such that f (v) = 0 implies g(v) = 0, prove that 
g = A_ffor some A E F. 

4.4 Inner Product Spaces 

In our discussion of vector spaces the specific nature of F as a field, other 
thavthe fact that it is a field, has played virtually no role. In this section 
we no longer consider vector spaces V over arbitrary fields F; rather, we 
restrict F to be the field of real or complex numbers. In the first case V 
is called a real vector space, in the second, a complex vector space. 

We all have had some experience with real vector spaces-in fact both 
analytic geometry and the subject matter of vector analysis deal with these. 
What concepts used there can we carry over to a more abstract setting? 
To begin with, we had in these concrete examples the idea of length; 
secondly we had the idea of perpendicularity, or, more generally, that of 
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angle. These became special cases of the notion of a dot product ( oft~n 

called a scalar or inner product.) 

Let us recall some properties of dot product as it pertained to the special 

case of the three-dimensional real vectors. Given the vectors v = (x1 ,x2 ,x3 ) 

and w = (YvY2 ,y3 ), where the x's andy's are real numbers, the dot prod­

uct of v and w, denoted by v · w, was defined as v · w = x1y 1 + x2y 2 + 
x

3
y 3 • Note that the length of v is given by .J~ and the angle (J between 

v and w is determined by 

v· w 
cos (J 

What formal properties does this dot product enjoy? We list a few: 

1. v · v ~ 0 and v · v = 0 if and only if v = 0; 

2.v·w=w·v; 

3. u · (cw + Pw) = a(u · v) + P(u · w); 

for any vectors u, v, w and real numbers a, p. 
Everything that has been said can be carried over to complex vector 

spaces. However, to get geometrically reasonable definitions we must make 

some modifications. If we simply define v · w = x1y1 + x2 y 2 + x3y 3 for 

v = (x1 , x2 , x3 ) and w = (y1,y2 ,y3 ), where the x's andy's are complex 

numbers, then it is quite possible that v · v = 0 with v =1=- 0; this is illus­

trated by the vector v = ( 1, i, 0). In fact, v · v need not even be real. If, 

as in the real case, we should want v ~ v to represent somehow the length of 

v, we should like that this length be real and that a nonzero vector should 

not have zero length. 

We can achieve this much by altering the definition of dot product 

slightly. If iX denotes the complex conjugate of the complex number a, 
returning to the v and w of the paragraph above let us define v · w = 
x1 ji1 + x2 ji2 + x3 ji3 • For real vectors this new definition coincides with 

the old one; on the other hand, for arbitrary complex vectors v =1=- 0, not 

only is v · v real, it is in fact positive. Thus we have the possibility of intro­

ducing, in a natural way, a nonnegative length. However, we do lose 

something; for instance it is no longer true that v · w = w · v. In fact the 

exact relationship between these is v · w = w · v. Let us list a few properties 

of this dot product: 

l.v·w=w·v; 

2. v · v ~ 0, and v · v = 0 if and only if v 0· 
' 

3. (au + Pv) · w = a(u · w) + P(v · w); 

4. u · (av + Pw) = a(u ·v ) + PCu · w); 

for all complex numbers a, p and all complex vectors u, v, w. 

We reiterate that in what follows F is either the field of real or complex 

numbers. ~
! .. ; 

. 

' 

' 

Free Hand
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DEFINITION The vector space V over F is said to be an inner product 
space if there is defined for any two vectors u, v E V an element (u, v) in 
F such that 

1. (u, v) = (V,U); 

2. (u, u) ~ 0 and (u, u) = 0 if and only if u = 0; 

3. (ocu + {3v, w) = oc(u, w) + {3(v, w); 

for any u, v, w E V and oc, {3 E F. 

A few observations about properties 1, 2, and 3 are in order. A function 

satisfying them is called an inner product. IfF is the field of complex numbers, 

property 1 implies that (u, u) is real, and so property 2 makes sense. Using 

1 and 3, we see that (u, ocv + {3w) = (ocv + {3w, u) = oc(v, u) + f3(w, u) 

iX(V,U) + /1(w, u) = iX(u, v) + /1(u, w). 
We pause to look at some examples of inner product spaces. 

Example 4.4.1 In p<n> define, for u = (oc1 , •.• , ocn) and v = ({31 , •.• , 

fin), (u, v) = oc 1/11 + oc2 /12 + · · · + ocnf1n· This defines an inner product 
on p<n>. 

Example 4.4.2 In p(2> define for u = (oc1, oc2 ) and v = ({31, {32 ), (u, v) = 
2a1 /J1 + oc1/J2 + oc2 /J1 + a2 /J2 • It is easy to verify that this defines an 
inner product on F< 2 >. 

Example 4.4.3 Let V be the set of all continuous complex-valued 

functions on the closed unit interval [0, 1]. Ifj(t), g(t) E V, define 

(f (t)' g(t)) = s: f (t) g(t) dt. 

We leave it to the reader to verify that this defines an inner product on V. 

For the ·remainder of this section V will denote an inner product space. 

D(FINITION If v E V then the length of v (or norm of v), written llvll, is 

defined by II vii = .J (v, v). 

LEMMA 4.4.1 If u, v E V and oc, {3 E F then (ocu + {3v, ocu + {3v) = 

aa(u, u) + oc/J(u, v) + iX{3(v, u) + {3/J(v, v). 

Proof. By property 3 defining an inner product space, ( ocu + {3v, au + 
{Jv) = oc(u, ocu + pv) + P(v, ocu + Pv); but (u, IXU + {3v) = a(u, u) + /1(u, v) 
and (v, ocu + {3v) = a(v, u) + /1(v, v). Substituting these in the expression 
for (au + pv, ocu + {3v) we get the desired resul~. 
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COROLLARY llcwll = lrxlllull. 

Proof. llrxuJJ 2 = (e<u, rxu) = £&(u, u) by Lemma 4.4.1 (with v = 0). 

Since e<~ = lacl 2 and (u, u) = llull 2
, taking square roots yields l!rxull = 

lrxl !lull. 

We digress for a moment, and prove a very elementary and familiar 

result about real quadratic equations. 

LEMMA 4.4.2 If a, b, c are real numbers such that a :> 0 and aA 2 + 2bA + 

c ~ 0 for all real numbers A, then b2 ~ ac. 

Proof. Completing the squares, 

al
2 + 2bl + c = ~(al + b)

2 + (c- b:} 

Since it is greater than or equal to 0 for all A, in particular this must be 

true for A = - bfa. Thus c - (b 2 fa) ~ 0, and since a > 0 we get b2 ~ ac. 

We now proceed to an extremely important inequality, usually known 

as the Schwarz inequality: 

THEOREM 4.4.1 If u, v E V then I (u, v) I ~ !lull I! vii. 

Proof. If u = 0 then both (u, v) = 0 and !lull llvll = 0, so that the 

result is true there. 

Suppose, for the moment, that (u, v) is real and u i= 0. By Lemma 

4.4.1, for any real number A, 0 ~ (Au + v, AU + v) = A 2 (u, u) + 

2(u, v) A + (v, v) Let a = (u, u), b = (u, v), and c = (v, v); for these the 

hypothesis of Lemma 4.4.2 is satisfied, so that b2 ~ ac. That is, (u, v) 2 ~ 

(u, u) (v, v); from this it is immediate that I (u,v) I ~ !lull II vii. 

If a = (u, v) is not real, then it certainly is not 0, so that ufe< is mean­

ingful. Now, 

-' v = - ( u, v) = -- ( u, v) = 1' 
(

u ) 1 1 

e< e< ( u, v) 

and so it is certainly real. By the case of the Schwarz inequality discussed 

in the paragraph above, 

since 

11~11 
1 

= -IJuJJ, 
lrxl 
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we get 

1 < !lull llvll 
- ltXI ' 

whence ltXI ::;; !lull llvll· Putting in that Cl = (u, v) we obtain l(u, v)l ::;; 

II u II II vII, the desired result. 

Specific cases of the Schwarz inequality are themselves of great interest. 

We point out two of them. 

1. If V = p(n) with (u, v) = tX1/31 + · · · + Cln/3m where u = (tX1, ... , Cln) 

and v = (/31 , ... , f3n), then Theorem 4.4.1 implies that 

ltX1,B1 + ·" + Cln/3n 12
::;; (ltX1I 2 + "' + ltXnl 2 )(1/311 2 + "' + l/3nl 2

). 

2. If Vis the set of all continuous, complex-valued functions on [0, 1] with 

inner product defined by 

u (t), g(t)) = r f(t) g(t) dt, 

then Theorem 4.4.1 implies that 

1

r f(t) g(t) dt
1

2 

, r lf(t)l 2 
dt r lg(t)1

2 
dt. 

The concept of perpendicularity is an extremely useful and important 

one in geometry. We introduce its analog in general inner product spaces. 

DEFINITION If u, v E V then u is said to be orthogonal to v if (u, v) = 0. 

Note that if u is orthogonal to v then v is orthogonal to u, for (v, u) 

(u, v) = U = 0. 

DEFINITION If W is a subspace of V, the orthogonal complement of W, 

Wi, is defined by w.L = {x E Vl(x, w) = 0 for all wE W}. 

LEMMA 4.4.3 w.t is a subspace of V. 

"Proof. If a, bE W.L then for all Cl, {3 E F and all wE W, (Cla + f3b, w) 

a(a, w) + f3(b, w) = 0 since a, bE W.L. 

Note that w () w.L = (0), for if wE w () w.L it must be self-orthogonal, 

that is (w, w) = 0. The defining properties of an inner product space 

rule out this possibility unless w = 0. 

One of our goals is to show that V = W + w.t. Once this is done, 

the remark made above will become of some interest, for it will imply that 

V is the direct sum of W and W .L. 
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DE FIN ITI 0 N The set of vectors { v J in Vis an orthonormal set if 

1. Each vi is oflength 1 (i.e., (vi, vi) = 1). 

2. For i =1- j, (vi, vi) = 0. 

LEMMA 4.4.4 If {vi} is an orthonormal set, then the vectors in {vJ are linearly 

independent. If w = a1v1 + · · · + anvm then ai = (w, vi) for i = 1, 2, ... , n. 

Proof. Suppose that a 1 v1 + a2v2 + · · · + anvn = 0. Therefore 0 = 
(a1 v1 + · · · + anvm vi) = a 1 (v1, vi) + · · · + an(vm vi). Since (vi, vi) = 0 

for j =1- i while (vi, vi) = 1, this equation reduces to ai = 0. Thus the 

v/s are linearly independent. 

If w = a1v1 + · · · + anvn then computing as above yields (w, vi) = !Xi. 

Similar in spirit and in proof to Lemma 4.4.4 is 

LEMMA 4.4.5 If {v1, ... , vn} is an orthonormal set in V and if wE V, then 

u = w - (w, v1)v1 - (w, v2 )v2 - • • • - (w, vi)vi - · · · - (w, vn)vn is 

orthogonal to each of v1, v2 , ••• , vn. 

Proof. Computing (u, vi) for any i :s; n, using the orthonormality of 

v1, ••• , vn yields the result. 

The construction carried out in the proof of the next theorem is one which 

appears and reappears in many parts of mathematics. It is a basic pro­

cedure and is known as the Gram-Schmidt orthogonalization process. Although 

we shall be working in a finite-dimensional inner product space, the 

Gram-Schmidt process works equally well in infinite-dimensional situations. 

THEOREM 4.4.2 Let V be a finite-dimensional inner product space; then V has 

an orthonormal set as a basis. 

Proof. Let V be of dimension n over F and let v1, ••• , vn be a basis of V. 

From this basis we shall construct an orthonormal set of n vectors; by 

Lemma 4.4.4 this set is linearly independent so must form a basis of V. 

We proceed with the construction. We seek n vectors w1, ••• , wn each 

of length 1 such that for i =1- j, (wi, wi) = 0. In fact we shall finally 

produce them in the following form: w1 will be a multiple of Vv w2 will be 

in the linear span of w1 and v2 , w3 in the linear span of w1 , w2 , and v3 , and 

more generally, wi in the linear span of w1, w2 , ••• , wi_ 1, vi. 

Let 

w - v1 • 
1 

- 1lv1ll' 

then 

(w,, w,) = (u:: II' 11:: II) = llv: 11 2 (v,, v,) 1' 
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!WJ1erux II w1 II = 1. We now ask: for what value of a is aw1 + v2 orthogonal 

w1? All we need is that (aw1 + v2 , w1) = 0, that is a(w1, w1) + 
'11

2
, w1) = 0. Since (w1, w1) = 1, a = - (v2 , w1) will do the trick. Let 

,z = - (v2, w1)w1 + v2 ; u2 is orthogonal to w1; since v1 and v2 are linearly 

· dependent, w1 and v2 must be linearly independent, and so u2 =f:. 0. 

t w2 = (u2 /llu2 ll); then {w1, w2 } is an orthonormal set. We continue. 

et u3 = - (v3 , w1)w1 - (v3 , w2 )w2 + v3 ; a simple check verifies that 

'~ 3 , w1) = (u3 , w2 ) = 0. Since w1, w2 , and v3 are linearly independent 

,(for w1, w2 are in the linear span of v1 and v2 ), u3 =f:. 0. Let w3 = (u3 fllu3 ll); 

~tpen {w1, w2 , w3 } is an orthonormal set. The road ahead is now clear. 

~-uppose that we have constructed Wu w 2, ... , wi, in the linear span of 

f;,
1

, •.. , vi, which form an orthonormal set. How do we construct the next 

'pne, wi+l? Merely put ui+l = - (vi+l' w1)w1 - (vi+l' w2)w2 - · · · -

Xvi+ 1, wi)wi + vi+t· That ui+t =f:. 0 and that it is orthogonal to each of 

to1, ..• , wi we leave to the reader. Put wi+l = (ui+t/llui+tll)! 

*' In this way, given r linearly independent elements in V, we can construct 

an orthonormal set having r elements. If particular, when dim V = n, 

''from any basis of V we can construct an orthonormal set having n elements. 

;;This provides us with the required basis for V. 

We illustrate the construction used in the last proof in a concrete case. 

Let F be the real field and let V be the set of polynomials, in a variable x, 

over F of degree 2 or less. In V we define an inner product by: if p(x), 

q(x) E V, then 

(p(x), q(x)) = r/(x)q(x) dx. 

Let us start with the basis v1 = 1, v2 = x, v3 = x 2 of V. Following me 

construction used, 

u2 = - (v2, wl)wt + v2, 

whicfi after the computations reduces to u2 = x, and so 

finally, 
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and so 

We mentioned the next theorem earlier as one of our goals. We are now 

able to prove it. 

THEOREM 4.4.3 If Vis a finite-dimensional inner product space and if W is 

a subspace of V, then V = W + Wj_. More particularly, V is the direct sum rif 
wand wj_. 

Proof. Because of the highly geometric nature of the result, and because 

it is so basic, we give several proofs. The first will make use of Theorem 

4.4.2 and some of the earlier lemmas. The second will be motivated geo­

metrically. 

First Proof. As a subspace of the inner product space V, W is itself an 
inner product space (its inner product being that of V restricted to W). 

Thus we can find an orthonormal set Wv ... , wr in W which is a basis of W. 

If v E V, by Lemma 4.4.5, v0 = v - (v, w1)w1 - (v, w2 )w2 - • • • -

(v, wr)wr is orthogonal to each of w1, ••• , wr and so is orthogonal to W. 

Thus v0 E Vfl\ and since v = v0 + ((v, w1)w1 + · · · + (v, wr)wr), v E 

W + Wj_. Therefore V = W + Wj_. Since W n Wj_ = (0), this sum is 

direct. 

Second Proof. In this proof we shall assume that F is the field of real 

numbers. The proof works, in almost the same way, for the complex 

numbers; however, it entails a few extra details which might tend to obscure 
the essential ideas used. 

Let v E V; suppose that we could find a vector w0 E W such that 

llv - w0 ll ~ llv - wll for all wE W. We claim that then (v - w0 , w) = 0 
for all WE W, that is, V - Wo E Wj_. 

If w E W, then w0 + w E W, in consequence of which 

(v - w0 , v - w0 ) ~ (v - (w0 + w), v - (w0 + w)). 

However, the right-hand side is (w, w) + (v - w0 , v - w0 ) - 2(v - w0 , w), 
leading to 2(v - w0 , w) ~ (w, w) for all wE W. If m is any positive 
integer, since wfm E W we have that 

- (v - w0 , w) = 2 v - w0 ,- ~ -,- = - (w, w), 2 ( w) (ww) 1 
m m m m m2 

and so 2(v - w0 , w) ~ (1/m)(w, w) for any positive integer m. However, 
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·{1/m)(w, w) ~ 0 as m ~ oo, whence 2(v- w0 , w) ~ 0. Similarly, -wE W, 
and so 0 ~ -2(v - w0 , w) = 2(v - w0 , -w) ~ 0, yielding (v - w0 , w) 
;::: 0 for all w E w. Thus v - Wo E wl.; hence v E Wo + wl. c w + wl.. 

, To finish the second proof we must prove the existence of a w0 E W 
~such that II v - w0 II ~ II v - w II for all w E W. We indicate sketchily two 
!1ways of proving the existence of such a w0 • 

? Let uv ... , uk be a basis of W; thus any wE W is of the form w = 
'.,t1u1 + · · · + J..kuk. Let f3ii = (u;, uj) and let Yi = (v, ui) for v E V. Thus 
~<v - w, v - w) = (v - A1u1 - • • • - J..kuk, v - A1w1 - • • • - Akwk) = 
(v, v) - L.J..)if3ii - 2L.AiYi· This quadratic function in the J..'s is nonnegative 
and so, by results from the calculus, has a minimum. The J..'s for this 
minimum, J..1<

0 >, J..2 <
0 >, ... , Ak(O) give us the desired vector w

0 = 
.A.

1 
(O)u

1 + · · · + Ak (O)uk in W. 

A second way of exhibiting such a minimizing w is as follows. In V define 
a metric (by ((x,y) = llx - Yll; one shows that (is a proper metric on V, 
and V is now a metric space. ·Let S = {wE WI llv- wll ~ llvll}; in 
this metric S is a compact set (prove!) and so the continuous function 
f(w) = IJv - wll defined for wE S takes on a minimum at some point 
w0 E S. We leave it to the reader to verify that w0 is the desired vector 
satisfying llv - w0 11 ~ llv - wl/ for all wE W. 

COROLLARY If Vis a finite-dimensional inner product space and W is a subspace 
of V then (Wl.)l. = W. 

Proof. If wE W then for any u E Wl., (w, u) = 0, whence W c 

(W1.)1.. Now V = W + w1. and V = w1. + (Wl.)l.; from these we get, 
since the sums are direct, dim (W) =dim ((W1.)1.). Since W c (Wl.}.l. 
and is of the same dimension as (Wl.)l., it follows that W = (W1.)1.. 

Problems 

In all the problems Vis an inner product space over F. 

I. IfF is the real field and Vis p(3>, show that the Schwarz inequality 
i~lies that the cosine of an angle is of absolute value at most 1. 

2. IfF is the real field, find all 4-tuples of real numbers (a, b, c, d) such 
that for u = (ctv ct2), v = ({3 1, {32 ) E F< 2>, (u, v) = act1 /31 + bct2 {32 + 
cct1{32 + dct2 {31 defines an inner product on F< 2 >. 

3. In V define the distance ((u, v) from u to v by ((u, v) = IJu - vii. Prove 
that 

(a) ((u, v) ~ 0 and ((u, v) = 0 if and only if u = v. 
(b) ((u, v) = '(v, u). 

(c) '(u, v) ~ '(u, w) + '(w, v) (triangle inequality). 
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4. If {w1, ... , wm} is an orthonormal set in V, prove that 

m 

L l(w;, v)l
2 
~ llvll 2 

for any v E V. 
i= 1 

(Bessel inequality) 

5. If Vis finite-dimensional and if {w1, ••. , wm} is an orthonormal set in 

V such that 

m 

L l(w;, v)l2 = llvll2 
i= 1 

for every v E V, prove that {wv ... , wm} must be a basis of V. 

6. If dim V = n and if {w1, ... , wm} is an orthonormal set in V, prove 

that there exist vectors wm+l' ... , wn such that {w1, ... , wm, wm+l' 
... , wn} is an orthonormal set (and basis of V). 

7. Use the result of Problem 6 to give another proof of Theorem 4.4.3. 

8. In V prove the parallelogram law: 

Explain what this means geometrically in the special case V = p(3>, 
where F is the real field, and where the inner product is the usual dot 

product. 

9. Let V be the real functions y = f (x) satisfying d 2yfdx 2 + 9y = 0. 

(a) Prove that Vis a two-dimensional real vector space. 

(b) In V define (y, z) = J: yz dx. Find an orthonormal basis in V. 

10. Let V be the set of real functions y = f (x) satisfying 

d3y d 2y dy 
- - 6 - + 11 - - 6y = 0. 
dx 3 dx 2 dx 

(a) Prove that Vis a three-dimensional real vector space. 

(b) In V define 

(u, v) = roo uv dx. 

Show that this defines an inner product on V and find an ortho­

normal basis for V. 

11. If W is a subspace of V and if v E V satisfies (v, w) + (w, v) ~ (w, w) 
for every wE W, prove that (v, w) = 0 for every wE W. 

12. If V is a finite-dimensional inner product space and iff is a linear 
functional on V (i.e., fE V), prove that there is a u0 E V such that 
f (v) = (v, u0 ) for all v E V. 
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A popular myth is that mathematicians revel in the inapplicability of 
their discipline and are disappointed when one of their results is "soiled" 
by use in the outside world. This is sheer nonsense! It is true that a mathe­

tician does not depend for his value judgments on the applicability of a 
result outside of mathematics proper but relies, rather, on some 
· c, and at times intangible, mathematical criteria. However, it is 

true that the converse is false-the utility of a result has never 
its mathematical value. A perfect case in point is the subject of 

algebra; it is real mathematics, interesting and exciting on its own, 
it is probably that part of mathematics which finds the widest applica­

, •• ,.,,,... __ 1,... physics, chemistry, economics, in fact in almost every science and 

The Algebra of Linear Transformations 

V be a vector space over a field F and let Hom ( V, V), as before, be 
·the set of all vector-space-homomorphisms of V into itself. In Section 4.3 
·we showed that Hom (V, V) forms a vector space over F, where, for 
T1, T2 E Hom (V, V), T1 + T2 is defined by v(T1 + T2) = vT1 + vT2 

for all v E V and where, for ex E F, exT1 is defined by v(exT1 ) = ex(vT1 ). 

For T1, T 2 E Hom (V, V), since vT1 E V for any v E V, (vT1 ) T2 makes 
sense. As we have done for mappings of any set into itself, we define 
T1 T2 by v( T1 T2) = (vT1 ) T2 for any v E V. We now claim that T1 T2 E 

(V, V). To prove this, we must show that for all ex, {1 E F and all 
u, v E V, (exu + {1v)(T1 T2) = ex(u(T1 T2 )) + {1(v(T1 T2 )). We compute 

((exu + {1v) T1 ) T2 

(ex(uT1 ) + {1(vT1 )) T2 

= ex(uT1 ) T2 + {1(vT1 ) T2 

= ex(u(T1 T2 )) + {J(v(T1 T2 )). 

an exercise the following properties of this product in 

( T 1 + T2) T3 = T 1 T3 + T2 T3; 

T3(Tt + T2) = T3 Tt + T3 T2; 
Tt(T2 T3) = (Tt T2) T3; 
ex(T1 T2) = (exT1) T2 = T 1 (exT2); 

all T1, T 2 , T 3 E Hom (V, V) and all ex E F. 
Note that properties I, 2, 3, above, are exactly what are required to 

of Hom ( V, V) an associative ring. Property 4 intertwines the 
.:uarac:ter of Hom (V, V), as a vector space over F, with its character as a 
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Note further that there is an element, I, in Hom (V, V), defined by 

vi = v for all v E V, with the property that TI = IT = T for every T E 

Hom (V, V). Thereby, Hom (V, V) is a ring with a unit element. More­

over, if in property 4 above we put T 2 = I, we obtain rxT1 = T1 (rx/). 

Since (rx/) T1 = rx(IT1) = rxT1 , we see that (rxl) T1 = T1 (rxl) for all T1 E 

Hom (V, V), and so rxl commutes with every element of Hom (V, V). 

We shall always write, in the future, rxl merely as rx. 

DEFINITION An associative ring A is called an algebra over F if A is a 

vector space over F such that for all a, bE A and rx E F, rx(ab) = (rxa)b = 

a(rxb). 

Homomorphisms, isomorphisms, ideals, etc., of algebras are defined as 

for rings with the additional proviso that these must preserve, or be in­

variant under, the vector space structure. 

Our remarks above indicate that Hom (V, V) is an algebra over F. For 

convenience of notation we henceforth shall write Hom (V, V) as A(V); 

whenever we want to emphasize the role of the field F we shall denote it by 

Ap(V). 

DEFINITION A linear transformation on V, over F, is an element of Ap(V). 

We shall, at times, refer to A ( V) as the ring, or algebra, of linear trans­

formations on V. 

For arbitrary algebras A, with unit element, over a field F, we can prove 

the analog of Cayley's theorem for groups; namely, 

LEMMA 6.1.1 !fA is an algebra, with unit element, over F, then A is isomorphic 

to a subalgebra of A ( V) for some vector space V over F. 

Proof. Since A is an algebra over F, it must be a vector space over F. 

We shall use V = A to prove the theorem. 

If a E A, let Ta:A ~A be defined by vTa = va for every v EA. We 

assert that Ta is a linear transformation on V( =A). By the right-distribu­

tive law (v1 + v2 ) Ta = (v1 + v2 )a = v1a + v2a = v1 Ta+ v2 Ta. Since A 

is an algebra, (rxv) Ta = (rxv)a = rx(va) = f'J.(vTa) for v E A, f'J. E F. Thus 

Ta is indeed a linear transformation on A. 

Consider the mapping 1/J :A ~ A(V) defined by at/J = Ta for every 

a EA. We claim that 1/J is an isomorphism of A into A(V). To begin with, 

if a, bE A and f'J., f3 E F, then for all v E A, vTaa+Pb = v(rxa + {Jb) ::::: 

rx(va) + f3(vb) [by the left-distributive law and the fact that_A is an algebra 

over F] = f'J.(vTa) + fJ(vTb) = v(f'J.Ta + f3Tb) since both Ta and Tb are 

linear transformations. In consequence, Taa+Pb = rxTa + f3Tb, whence t/1 

is a vector-space homomorphism of A into A( V). Next, we compute, for 
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a, bE A, vTab = v(ab) = (va)b = (vTa) Tb = v(TaTb) (we have used 
the associative law of A in this computation), which implies that Tab = 
TaTb. In this way, t/1 is also a ring-homomorphism of A. So far we have 
proved that 1/J is a homomorphism of A, as an algebra, into A(V). All that 
remains is to determine the kernel of t/J. Let a E A be in the kernel of t/1; 
then at/J = 0, whence Ta = 0 and so vTa = 0 for all v E V. Now V =A, 

A has a unit element, e, hence eTa = 0. However, 0 = eTa = ea = a, 
proving that a = 0. The kernel of t/1 must therefore merely consist of 0, 
thus implying that t/1 is an isomorphism of A into A ( V). This completes the 
proof of the lemma. 

The lemma points out the universal role played by the particular algebras, 
A(V), for in these we can find isomorphic copies of any algebra. 

Let A be an algebra, with unit element e, over F, and let p(x) = cx0 + 
a 1x + · · · + cxnxn be a polynomial in F[x]. For a E A, by p(a), we shall 
mean the element cx0e + cx1a + · · · + cxnan in A. If p(a) = 0 we shall say 
a satisfies p ( x) . 

LEMMA 6.1.2 Let A be an algebra, with unit element, over F, and suppose that 
A is of dimension m over F. Then every element in A satisfies some nontrivial poly­
nomial in F [ x] of degree at most m. 

Proof. Let e be the unit element of A; if a E A, consider the m + 1 
elements e, a, a2

, ••• , am in A. Since A ism-dimensional over F, by Lemma 
4.2.4, e, a, a2

, ••• , am, being m + 1 in number, must be linearly dependent 
over F. In other words, there are elements cx0 , cx1, ••• , cxm in F, not all 
0, such that cx0 e + cx1 a + · · · + cxmam = 0. But then a satisfies the non­
trivial polynomial q(x) = cx0 + cx1x + · · · + cxm~' of degree at most m, 
in F[x]. 

If V is _a finite-dimensional vector space over F, of dimension n, by 
Corollary 1 to Theorem 4.3.1, A(V) is of dimension n 2 over F. Since A(V) 
is an algebra over F, we can apply Lemma 6.1.2 to it to obtain that every 
element in A( V) satisfies a polynomial over F of degree at most n2

• This 
fact will be of central significance in all that follows, so we single it out as 

lf V fs an n-dimensional vector space over F, then, given any 
Tin A(V), there exists a nontrivial polynomial q(x) E F[x] of degree at 

n2
, such that q( T) = 0. 

We shall see later that we can assert much more about the degree of q(x); 
fact, we shall eventually be able to say that we can choose such a q(x) 
degree at most n. This fact is a famous theorem in the subject, and is 

as the Cayley-Hamilton theorem. For the moment we can get by 

263 
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without any sharp estimate of the degree of q(x) ; all we need is that a 

suitable q(x) exists. 

Since for finite-dimensional V, given T E A(V), some polynomial q(x) 

exists for which q( T) = 0, a nontrivial polynomial of lowest degree with 

this property, p(x), exists in F[x]. We call p(x) a minimal polynomial for T 

over F. If T satisfies a polynomial h(x), then p(x) I h(x). 

DEFINITION An element T E A(V) is called right-invertible if there exists 

an S E A(V) such that TS = 1. (Here 1 denotes the unit element of A(V).) 

Similarly, we can define left-invertible, if there is a U E A(V) such 

that UT = 1. If T is both right- and left-invertible and if TS = UT = 1, 

it is an easy exercise that S = U and that S is unique. 

DEFINITION An element Tin A(V) is invertible or regular if it is both 

right- and left-invertible; that is, if there is an elementS E A(V) such that 

ST = TS = 1. We writeS as r- 1
. 

An element in A ( V) which is not regular is called singular. 

It is quite possible that an element in A(V) is right-invertible but is not 

invertible. An example of such: Let F be the field of real numbers and let 

V be F [ x], the set of all polynomials in x over F. In V let S be defined by 

d 
q(x)S = - q(x) 

dx 

and Thy 

q(x) T = r q(x) dx. 

Then ST =I= I, whereas TS = 1. As we shall see in a moment, if Vis 

finite-dimensional over F, then an element in A(V) which is right-invertible 

is invertible. 

THEOREM 6.1.2 If Vis finite-dimensional over F, then TeA(V) is in­

vertible if and only if the constant term of the minimal polynomial for Tis not 0. 

Proof. Let p(x) = IXo + a 1 x + · · · + akx\ ak =1= 0, be the minimal 

polynomial for T over F. 

If C<o =I= 0, since 0 = p( T) = C(k Tk + C(k-1 rk- 1 + ... + C(l T + CXo, we 

obtain 
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S = - _!._ ( IXk Tk- 1 + ' ' ' + IX1) 

IXo 

acts as an inverse for T, whence T is invertible. 
Suppose, on the other hand, that T is invertible, yet rx0 = 0. Thus 

0 = rx 1 T + rx2 T 2 + · · · + rxkTk = (rx1 + rx2 T + · · · + rxkTk- 1 )T. Multi­
plying this relation from the right by r- 1 yields rx1 + rx2 T + · · · + 
a.kTk- 1 = 0, whereby T satisfies the polynomial q(x) = rx 1 + rx2x + · · · + 
a.,/'- 1 in F[x]. Since the degree of q(x) is less than that of p(x), this is 
impossible. Consequently, ct0 =I= 0 and the other half of the theorem is 
established. 

COROLLARY 1 If Vis finite-dimensional over F and if TEA(V) is in­
vertible, then r- 1 is a polynomial expression in T over F. 

Proof. Since T is invertible, by the theorem, IXo + rx1 T + · · · + 
a.1 Tk = 0 with rx0 =I= 0. But then 

r- 1 = - _!._ (rx1 + rx2 T + · · · + rxkrk- 1
). 

IXo 

COROLLARY 2 If Vis finite-dimensional over F and if TEA( V) is singular, 
then there exists an S =/:; 0 in A(V) such that ST = TS = 0. 

Proof. Because T is not regular, the constant term of its minimal 
polynomial must be 0. That is, p(x) = rx1x + · · · + rxkx\ whence 0 = 

cx1 T + · · · + rxkTk. If S = rx1 + · · · + rxkrk- 1
, then S =/:; 0 (since 

cx1 + · · · + rxkxk- 1 is of lower degree than p(x)) and ST = TS = 0. 

COROLLARY 3 If V is finite-dimensional over F and if T E A(V) is right­
invertible, then it is invertible. 

Proof. Let TU = 1. If T were singular, there would be an S =/:; 0 
such that ST = 0. However, 0 = (ST)U = S(TU) = Sl = S =I= 0, 
a contradiction. Thus Tis regular. 

We wish to transfer the information contained in Theorem 6.1.2 and its 
corollaries from A(V) to the~ction of Ton V. A most basic result in this 
vein is · 

THEOREM 6.1.3 If Vis finite-dimensional over F, then T E A(V) is singular 
if and only if there exists a v =I= 0 in V such that v T = 0. 

Proof. By Corollary 2 to Theorem 6.1.2, Tis singular if and only if 
there is an S =1= 0 in A(V) such that ST = TS = 0. Since S =I= 0 there 
is an element w E V such that wS =1= 0. 
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Let v = wS; then vT = (wS) T = w(ST) = wO = 0. We have produced 

a nonzero vector v in V which is annihilated by T. Conversely, if vT = 0 

with v =F 0, we leave as an exercise the fact that Tis not invertible. 

We seek still another characterization of the singularity or regularity of 

a linear transformation in terms of its overall action on V. 

DEFINITION If T E A(V), then the range of T, VT, is defined by VT = 

{vT I v E V}. 

The range of Tis easily shown to be a subvector space of V. It merely 

consists of all the images by T of the elements of V. Note that the range 

ofT is all of V if and only if Tis onto. 

THEOREM 6.1.4 {f Vis finite-dimensional over F, then TE A(V) is regular 

if and only if T maps V onto V. 

Proof. As happens so often, one-half of this is almost trivial; namely, 

if T is regular then, given v E V, v = (vT- 1
) T, whence VT = V and 

Tis onto. 

On the other hand, suppose that Tis not regular. We must show that 

Tis not onto. Since Tis singular, by Theorem 6.1.3, there exists a vector 

v1 =F 0 in V such that v1 T = 0. By Lemma 4.2.5 we can fill out, from v1, 

to a basis v1 , v2 , ••• , vn of V. Then every element in VT is a linear com­

bination of the elements w1 = v1 T, w2 = v2 T, ... , wn = vnT. Since 

w1 = 0, VT is spanned by the n - 1 elements w2 , ••• , wn; therefore 

dim VT ~ n - 1 < n = dim V. But then VT must be different from V; 

that is, T is not onto. 

Theorem 6.1.4 points out that we can distinguish regular elements from 

singular ones, in the finite-dimensional case, according as their ranges are 

or are not all of V. If T E A ( V) this can be rephrased as: T is regular if 

and only if dim ( VT) = dim V. This suggests that we could use dim ( VT) 

not only as a test for regularity, but even as a measure of the degree of 

singularity (or, lack ofregularity) for a given TE A(V). 

DEFINITION If Vis finite-dimensional over F, then the rank of Tis the 

dimension of VT, the range of T, over F. 

We denote the rank of T by r ( T). At one end of the spectrum, if r ( T) == 

dim V, T is regular (and so, not at all singular). At th~ other end, if 

r(T) = 0, then T = 0 and so Tis as singular as it can possibly be. The 

rank, as a function on A(V), is an important function, and we now investigate 

some of its properties. 
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LEMMA 6.1 .3 If V is finite-dimensional over F then for S, T E A ( V). 

I. r(ST) ~ r( T); 

2. r(TS) ~ r(T); 

(and so, r(ST) ~ min {r( T), r(S) }) 

3. r(ST) = r(TS) = r(T)forSregularinA(V). 

Proof. We go through 1, 2, and 3 in order. 

1. Since VS c V, V(ST) = (VS) T c VT, whence, by Lemma 4.2.6, 
dim (V(ST)) ~ dim VT; that is, r(ST) ~ r(T). 

2. Suppose that r( T) = m. Therefore, VT has a basis of m elements, 
w1, w2 , ••• , wm. But then (VT)S is spanned by w1S, w2S, ... , wmS, hence 
has dimension at most m. Since r(TS) =dim (V(TS)) =dim ((VT)S) ~ 
m = dim VT = r(T), part 2 is proved. 

3. If S is invertible then VS = V, whence V(ST) = (VS) T = VT. 
Thereby, r(ST) = dim (V(ST)) =dim (VT) = r(T). On the other hand, 
if VT has w 1, .•. , wm as a basis, the regularity of S implies that w1S, . :. , 
w,P are linearly independent. (Prove!) Since these span V(TS) they form 
a basis of V(TS). But then r(TS) = dim (V(TS)) = dim (VT) = r(T). 

COROLLARY ljTEA(V) andifSEA(V) is regular, thenr(T) = r(STS- 1
). 

Proof. By part 3 of the lemma, r(STs- 1
) = r(S( rs- 1

)) = r(( rs- 1 )S) = 
r(T). 

Problems 

In all problems, unless stated otherwise, V will denote a finite-dimensional 
vector space over a field F. 

1. Prove that S E A(V) is regular if and only if whenever v1, ••• , vn E V 
are linearly independent, then v1 S, v2S, ... , vnS are also linearly 
independent. 

2. Prove that TEA( V) is completely determined by its values on a 
basis of V. 

3. Prove Lemma 6.1.1 even wherfA does not have a unit element. 
4. If A. is the field of complex numbers and F is the field of real numbers, 

then A is an algebra over F of dimension 2. For a = ct + pi in A, 
compute the action of Ta (see Lemma 6.1.1) on a basis of A over F. 

5. If Vis two-dimensional over F and A = A(V), write down a basis 
of A over F and compute Ta for each a in this basis. 

6. If dimp V > 1 prove that A( V) is not commutative. 
7. In A(V) let Z = {T E A(V) I ST = TS for all S E A(V) }. Prove that 
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Z merely consists of the multiples of the unit element of A(V) by the 

elements of F. 

*8. If dimF (V) > 1 prove that A(V) has no two-sided ideals other than 

(0) and A(V). 

**9. Prove that the conclusion of Problem 8 is false if V is not finite­

dimensional over F. 

10. If V is an arbitrary vector space over F and if T E A(V) is both 

right- and left-invertible, prove that the right inverse and left inverse 

must be equal. From this, prove that the inverse ofT is unique. 

11. If V is an arbitrary vector space over F and if T E A(V) is right­

invertible with a unique right inverse, prove that Tis invertible. 

12. Prove that the regular elements in A(V) form a group. 

13. IfF is the field of integers modulo 2 and if Vis two-dimensional over 

F, compute the group of regular elements in A(V) and prove that 

this group is isomorphic to s3, the symmetric group of degree 3. 

* 14. IfF is a finite field with q elements, compute the order of the group 

of regular elements in A( V) where Vis two-dimensional over F. 

* 15. Do Problem 14 if Vis assumed to be n-dimensional over F. 

*16. If Vis finite-dimensional, prove that every element in A(V) can be 

written as a sum of regular elements. 

1 7. An element E E A ( V) is called an idempotent if E 2 = E. If E e A ( V) 

is an idempotent, prove that v = Vo ffi vl where VoE = 0 for all 

Vo E Vo and vlE = vl for all vl E vl. 

18. If T E Ap(V), F of characteristic not 2, satisfies T 3 = T, prove 

that V = V0 ffi V1 ffi V2 where 

(a) v0 E V0 implies v0 T = 0. 

(b) vl E vl implies vl T = vl. 

(c) v2 E v2 implies v2 T = -v2. 

*19. If V is finite-dimensional and T ::f. 0 E A(V), prove that there is 

an S E A(V) such that E = TS ::f. 0 is an idempotent. 

20. The element T E A(V) is called nilpotent if ym = 0 for some m. If 

Tis nilpotent and if vT = rxv for some v ::f. 0 in V, with rx E F, prove 

that rx = 0. 

21. If T E A(V) is nilpotent, prove that rx0 + rx1 T + rx2 T
2 + · · · + 

rxk Tk is regular, provided that rx0 ::f. 0. 

22. If A is a finite-dimensional algebra over F and if. a E A, prove that 

for some integer k > 0 and some polynomial p(x) E F[x], ak :::::: 

ak+ lp(a). 

23. Using the result of Problem 22, prove that for a E A there is a poly­

nomial q(x) E F[x] such that ak = a2kq(a). 
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24. Using the result of Problem 23, prove that given a E A either a is 
nilpotent or there is an element b =f. 0 in A of the form b = ah(a), 
where h(x) E F[x], such that b2 = b. 

25. If A is an algebra over F (not necessarily finite-dimensional) and if 
for a E A, a2 

- a is nilpotent, prove that either a is nilpotent or there 
is an element b of the form b = ah(a) =f. 0, where h(x) E F[x], such 
that b 2 = b. 

*26. If T =f. 0 E A( V) is singular, prove that there is an element SEA( V) 
such that TS = 0 but ST =f. 0. 

27. Let V be two-dimensional over F with basis v1, v2 • Suppose that 
TEA( V) is such that v1 T = cw1 + {3v2 , v2 T = ')'7J1 + tJv2 , where 
ex, {3, y, bE F. Find a nonzero polynomial in F[x] of degree 2 satisfied 
by T. 

28. If Vis three-dimensional over F with basis v1 , v2 , v3 and if T E A(V) 
is such that viT = exi1z'1 + exi2v2 + exi3v3 for i = I, 2, 3, with all 
exii E F, find a polynomial of degree 3 in F[x] satisfied by T. 

29. Let V be n-dimensional over F with a basis v1 , ... , v,. Suppose that 
T E A(V) is such that 

v1 T = v2 , v2 T = v3 , ••• , v,_ 1 T = v,, 

v,T = -ex,v1 - ex,_ 1v2 - • • • - ex1v,, 
where ex1, ... , ex,. E F. Prove that T satisfies the polynomial 

p(x) = x" + ex 1x"- 1 + ex2x"- 2 + · · · + ex,. over F. 

30. If T E A(V) satisfies a polynomial q(x) e F[x], prove that for S e 
A(V), S regular, srs- 1 also satisfies q(x). 

31. (a) IfF is the field of rational numbers and if Vis three-dimensional 
over F with a basis v1 , v2 , v3 , compute the rank of TEA( V) 
defined by 

v1 T = v1 - v2 , 

v2 T = v1 + v3 , 

v3 T = v2 + v3 • 

(b) Find a vector v e V, v =f. 0. sqcil that vT = 0. 
32. Prove that the range of T and U = { v E V I v T = 0} are subspaces 

of V. 

33. If TeA(V), let V0 = {v E VI vTk = 0 for some k}. Prove that 
Vo is a subspace and that if vrm E Vo, then v E Vo. 

34. Prove that the minimal polynomial ofT over F divides all polynomials 
satisfied by T over F. 

35. If n( T) is the dimension of the U of Problem 32 prove that r( T) + 
n(T) =dim V. 
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6.2 Characteristic Roots 

For the rest of this chapter our interest will be limited to linear transfor­

mations on finite-dimensional vector spaces. Thus, henceforth, V will always 

denote a finite-dimensional vector space over a field F. 

The algebra A(V) has a unit element; for ease ofnotation we shall write 

this as 1, and by the symbol A - T, for A E F, T E A ( V) we shall mean 

Al- T. 

DEFINITION If TE A(V) then A E F 1s called a characteristic root (or 

eigenvalue) of T if A - T is singular. 

We wish to characterize the property of being a characteristic root in the 

behavior of T on V. We do this in 

THEOREM 6.2.1 The element A E F is a characteristic root of T E A(V) if 

and only if for some v i= 0 in V, vT = AV. 

Proof. If A is a characteristic root ofT then A - Tis singular, whence, 

by Theorem 6.1.3, there is a vector v i= 0 in V such that v(A - T) = 0. 

But then AV = vT. 

On the other hand, if vT = AV for some v i= 0 in V, then v(A. - T) = 0, 

whence, again by Theorem 6.1.3, A - T must be singular, and so, A is a 

characteristic root of T. 

LEMMA 6.2.1 If A E F is a characteristic root of T E A(V), then for any 

polynomial q(x) E F[x], q(A) is a characteristic root of q(T). 

Proof. Suppose that A E F is a characteristic root of T. By Theorem 

6.2.1, there is a nonzero vector v in V such that vT = AV. What about vT 2 ? 

Now vT2 = (Av) T = A(vT) = A(Av) = A 2v. Continuing in this way, 

we obtain that vTk = Akv for all positive integers k. If q(x) = cx0 xm + 

cx1xm- 1 + ... + CXm, (Xi E F, then q( T) = CXo ym + (X1 Tm- 1 + ... + CXm, 

whence vq(T) = v(exo Tm + cx1 Tm- 1 + · · · + cxm) = cx0 (vTm) + cx1 (vTm- 1) + 

· · · + cxmv = (cx0 Am + cx1Am- 1 + · · · + cxm)v = q(A)v by the remark made 

above. Thus v(q(A) - q(T)) = 0, hence, by Theorem 6.2.1, q(A) is a 

characteristic root of q( T). 

As immediate consequence of Lemma 6.2.1, in fact as a mere special 

case (but an extremely important one), we have 

THEOREM 6.2.2 If A E F is a characteristic root of T E A(V), then A is a 

root of the minimal polynomial of T. In particular, T only has a finite number of 

characteristic roots in F. 
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Proof. Let p(x) be the minimal polynomial over F of T; thus p( T) = 0. 
If A E F is a characteristic root of T, there is a v ¥= 0 in V with v T = AV. 
As in the proof of Lemma 6.2.1, vp(T) = P(A)v; but p(T) = 0, which 
thus implies that P(A)v = 0. Since v ¥= 0, by the properties of a vector 
space, we must have that P(A) = 0. Therefore, A is a root of p(x). Since 

'p(x) has only a finite number of roots (in fact, since deg p(x) ~ n2 where 
n = dimp V, p(x) has at most n2 roots) in F, there can only be a finite 
number of characteristic roots of Tin F. 

If T E A(V) and if s E A(V) is regular, then (Srs-t) 2 = srs-tsrs-t = 
ST2S-I, (STs-t) 3 = ST3S-I, ... , (STS-t)i = STis-t. Consequently, 
for any q(x) E F[ x], q(STs- t) = Sq( T)s- t. In particular, if q( T) = 0, 
then q(STS- t) = 0. Thus if p(x) is the minimal polynomial for T, then it 
follows easily that p(x) is also the minimal polynomial for srs- t. We have 
proved 

LEMMA 6.2.2 If T, S E A(V) and if Sis regular, then T and srs-t have 

The element 0 ¥= v E V is called a characteristic vector of T 
belonging to the characteristic root A E F if vT = AV. 

What relation, if any, must exist between characteristic vectors of T 
belonging to different characteristic roots? This is answered in 

THEOREM 6.2.3 If At, ... , Ak in F are distinct characteristic roots of T E 
A.(V) and if vt, ... , vk are characteristic vectors of T belonging to At, ... ~)k, 

. respectively, then vt, ... , vk are linearly independent over F. 

For the theorem to require any proof, k must be larger than 1 ; 
we suppose that k > 1. 
If vt, ... , vk arc linearly dependent over F, then there is a relation of the 

form OCt vt + · · · + r:xkvk = 0, where oct, ... , ock are all in F and not all of 
them are 0. In all such relations, there is one having as few nonzero co-

. as possible. By suitably renumbering the vectors, we can assume 
this shortest relation to be / 

Pt ¥= o, ... , pi ¥= o. 
We know that viT = Aivi, so, applying T to equation (1), we obtain 

AtPt vt + · · · + AiPivi = 0. 

(1) 

(2) 

equation ( 1) by At and subtracting from equation (2), we 
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Now Ai - A1 =ft 0 for i > 1, and Pi =ft 0, whence (Ai - A1)Pi =ft 0. But 

then we have produced a shorter relation than that in (1) between v1 , 

v2, ... , vk. This contradiction proves the theorem. 

COROLLARY 1 lf T E A(V) and if dimp V = n then T can have at most 

n distinct characteristic roots in F. 

Proof. Any set of linearly independent vectors in V can have at most n 

elements. Since any set of distinct characteristic roots of T, by Theorem 

6.2.3, gives rise to a corresponding set of linearly independent characteristic 

vectors, the corollary follows. 

COROLLARY 2 lf TEA( V) and if dimp V = n, and if T has n distinct 

characteristic roots in F, then there is a basis of V over F which consists of characteristic 

vectors ofT. 

We leave the proof of this corollary to the reader. Corollary 2 is but the 

first of a whole class of theorems to come which will specify for us that a 

given linear transformation has a certain desirable basis of the vector space 

on which its action is easily describable. 

Problems 

In all the problems V is a vector space over F. 

1. If TeA(V) and if q(x) eF[x] is such that q(T) = 0, is it true that 

every root of q(x) in F is a characteristic root of T? Either prove that 

this is true or give an example to show that it is false. 

2. If T E A(V) and if p(x) is the minimal polynomial for T over F, sup­

pose that p(x) has all its roots in F. Prove that every root of p(x) is a 

characteristic root of T. 

3. Let V be two-dimensional over the field F, of real numbers, with a 

basis v1 , v2 • Find the characteristic roots and corresponding charac­

teristic vectors for T defined by 

(a) v1 T = v1 + v2 , v2 T = v1 - v2 • 

(b) v1 T = 5v1 + 6v2 , v2 T = -7v2 • 

(c) v1 T = v1 + 2v2 , v2 T = 3v1 + 6v2 • 

4. Let V be as in Problem 3, and suppose that T E A{V) is such that 

v1 T = av1 + Pv2 , v2 T = yv1 + bv2 , where a, p, y, b are in F. 
(a) Find necessary and sufficient conditions that 0 be a characteristic 

root of T in terms of a, p, y, b. 
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(b) In terms of a, /3, y, b find necessary and sufficient conditions that T have two distinct characteristic roots in F. 
5. If V is two-dimensional over a field F prove that every element in A( V) satisfies a polynomial of degree 2 over F. 

•6. If V is two-dimensional over F and if S, T E A ( V), prove that (ST- TS) 2 commutes with all elements of A(V). 
7. Prove Corollary 2 to Theorem 6.2.3. 

8. If V is n-dimensional over F and TEA( V) is nilpotent (i.e., Tk = 0 for some k), prove that rn = 0. (Hint: If v E v use the fact that v, vT, v T 2
, • •• , v rn must be linearly dependent over F.) 

6.3 Matrices 

,Although we have been discussing linear transformations for some· time, it bas always been in a detached and impersonal way; to us a linear trans­, formation has been a symbol (very often T) which acts in a certain way on ,a vector space. When one gets right down to it, outside of the few concrete , examples encountered in the problems, we have really never come face to ~face with specific linear transformations. At the· same time it is clear that .·'if one were to pursue the subject further there would often arise the need .. of making a thorough and detailed study of a given linear transformation. mention one precise problem, presented with a linear transformation suppose, for the moment, that we have a means of recognizing it), does one go about, in a "practical" and computable way, finding)ts ~;c~narac:ten"tstl .. c roots? 
What we seek first is a simple notation, or, perhaps more accurately, entation, for linear transformations. We shall accomplish this by of a particular basis of the vector space and by use of the action of a transformation on this basis. Once this much is achieved, by means the operations in A(V) we can induce operations for the symbols created, · of them an algebra. This new object, infused with an algebraic life its own, can be studied as a mathematical entity_)laving an interest by . This study is what comprises the subject of matrix theory. 
However, to ignore the source of these matrices, that is, to investigate the of symbols independently of what they represent, can be costly, for we be throwing away a great deal of useful information. Instead we always use the interplay between the abstract, A(V), and the concrete, matrix algebra, to obtain information one about the other. Let V be an n-dimensional vector space over a field F and let vv ... , vn a basis of V over F. If T E A ( V) then T is determined on any vector as as we know its action on a basis of V. Since T maps V into V, v1 T, 
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v2 T, ... , vn T must all be in V. As elements of V, each of these is realizable 

in a unique way as a linear combination of v1, ..• , vn over F. Thus 

v 1 T = oc11 v 1 + oc12v 2 + · · · + oc1 nvn 

V2 T = OC21 V1 + OC22V2 + · · · + OC2nvn 

vi T = ocil v1 + oci2v2 + · · · + ocinvn 

vnT = ocn1v1 + ocn2v2 + ... + OCnnvn, 

where each ocii e F. This system of equations can be written more compactly as 

n 

viT = L ociivi' for i = 1, 2, ... , n. 

j=1 

The ordered set of n 2 numbers ocii in F completely describes T. They will 

serve as the means of representing T. 

DEFINITION Let V be an n-dimensioned vector space over F and let 

v1, ••. , vn be a basis for V over F. If T E A(V) then the matrix ofT in the 

basis Vv • •• , vn, written as m( T), is 

m( T) = (r:: ~:: 
0Cn1 0Cn2 

where viT = Lj ociivi. 

A matrix then is an ordered, square array of elements ofF, with, as yet, 

no further properties, which represents the effect of a linear transformation 

on a given basis. 

Let us examine an example. Let F be a field and let V be the set of all 

polynomials in x of degree n - 1 or less over F. On V let D be defined 

by (Po+ P1x + · · · + Pn-1~- 1
)D = P1 + 2P2x + · · · + ipixi-

1 + · · · + 
(n- 1)Pn- 1 ~-

2 . It is trivial that Dis a linear transformation on V; in 

fact, it is merely the differentiation operator. 

What is the matrix of D? The questions is meaningless unless we specify 

a basis of V. Let us first compute the matrix of D in the basis v1 = 1, 

v2 = x, v3 = x2, ... , vi= xi- 1, ... , vn = xn- 1
• Now, 

v1D = 1D = 0 = Ov1 + Ov2 + · · · + Ovn 

v2D = xD = 1 = 1v1 + Ov2 + · · · + Ovn 

~iD = xi- 1D = (i- 1)x'f- 2 

= Ov1 + Ov2 + · · · + Ovi_ 2 + (i - 1)vi_ 1 + Ovi 

+ · · · + Ovn 

vnD = xn- 1D = (n- 1)~- 2 

= Ov1 + Ov2 + · · · + Ovn_ 2 + (n - l)vn-l + Ovn. 
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back to the very definition of the matrix of a linear transformation 
a given basis, we see the matrix of D in the basis v1, ... , v,., m1 (D), is 
fact 

(

0 0 0 .. . 

1 0 0 .. . 

m1 (D) = 0 2 0 .. . 

0 0 3 .. . 

0 0 0 .. . 

0 

0 

0 

0 

(n - 1) !) 
However, there is nothing special about the basis we just used, or in how 

numbered its elements. Suppose we merely renumber the elements of 
basis; we then get an equally good basis w1 = x"- I, w2 = x"- 2

, ••• , 

i = x"- i, . .. , w,. = 1. What is the matrix of the same linear trans-
tion Din this basis? Now, 1 

w
1
D = x"- 1D = (n- 1)x"- 2

· 

= Ow1 + (n - 1)w2 + Ow3 + · · · + Ow,. 

wiD= x"-iD = (n- i)xn-i-t 

= Ow1 + · · · + Owi + (n - i)wi+l + Owi+ 2 + · · · + Ow,. 

w,.D = 1D = 0 = Ow1 + Ow2 + · · · + Ow,., 

m2 (D), the matrix of Din this basis is 

(n - 1) 0 0 0 0 

0 (n - 2) 0 0 0 

0 0 (n- 3) 0 0 

m2 (D) 

0 0 0 1 

0 0 0 0 

Before leaving this example, let us compute the matrix of D in still another 
· of Vover F. Let u1 =1, u2 =1+x, u3 =1+x2

, .•• ,u,.=1+x"- 1
; 

is easy to verify that u1, •.• , u,. form a basis of V over F. What is the 
· of D in this basis? Since 

1D = 0 = Ou1 + Ou2 + · · · + Ou,. 

(1 + x)D = 1 = 1u1 + Ou2 + · · · + Ou,. 
(1 + x 2 )D = 2x = 2(u2 - u1) = -2u1 + 2u2 + Ou3 + · · · + Ou,. 

(1 + x"- 1 )D = (n- I)x"- 2 = (n- 1)(u,.- u1 ) 

= - (n - l)u1 + Ou2 + · · · + Ou,._ 2 + (n - l)u,._ 1 + Ou,.. 
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The matrix, m3 (D), of Din this basis is 

0 0 0 0 0 

1 0 0 0 0 

-2 2 0 0 0 

-3 0 3 0 0 

m3 (D) 0 0 

0 0 

- (n - 1) 0 0 (n - 1) 0 

By the example worked out we see that the matrices of D, for the three 

bases used, depended completely on the basis. Although different from each 

other, they still represent the same linear transformation, D, and we could 

reconstruct D from any of them if we knew the basis used in their determi­

nation. However, although different, we might expect that some relationship 

must hold between m1 (D), m2 (D), and m3 (D). This exact relationship will 

be determined later. 

Since the basis used at any time is completely at our disposal, given a 

linear transformation T (whose definition, after all, does not depend on any 

basis) it is natural for us to seek a basis in which the matrix of T has a 

particularly nice form. For instance, if Tis a linear transformation on V, 

which is n-dimensional over F, and if T has n distinct characteristic roots 

A.1, •.. , An in F, then by Corollary 2 to Thebrem 6.2.3 we can find a basis 

v1, ••• , vn of V over F such that vi T = A.ivi. In this basis T has as matrix 

the especially simple matrix, 

m(T) 

We have seen that once a basis of Vis picked, to every linear transforma­

tion we can associate a matrix. Conversely, having picked a fixed basis 

v1, ... , vn of V over F, a given matrix 

~ln) 
. ' 
1Xnn 

gives rise to a linear transformation T defined on V by vi T = Lj ctiivi on 

this basis. Notice that the matrix of the linear transformation T, just con­

structed, in the basis v1, ••• , vn is exactly the matrix with which we started. 

Thus every possible square array serves as the matrix of some linear trans­

formation in the basis v1 , ... , vn. 



Sec. 6.3 Matrices 277 

It is clear what is intended by the phrase the first row, second row, ... , 
of a matrix, and likewise by the first column, second column, . . . . In the 
matrix 

the element aii is in the ith row and jth column; we refer to it as the (i, j) 
entry of the matrix. 

To write out the whole square array of a matrix is somewhat awkward; 
instead we shall always write a matrix as (aii); this indicates that the (i, j) 
entry of the matrix is aii" 

Suppose that Vis an n-dimensional vector space over F and v1, ••• , vn 
is a basis of V over F which will remain fixed in the following discussion. 
Suppose that Sand Tare linear transformations on V over F having matrices 
m(S) = (aii), m(T) = (r:i), respectively, in the given basis. Our objective 
is to transfer the algebraic structure of A ( V) to the set of matrices having 
en tries in F. 

To begin with, S = T if and only if vS = vT for any v E V, hence, if 
and only if viS = vi T for any v1 , ..• , vn forming a basis of V over F. 
Equivalently, S = T if and only if a ii = 1: ii for each i and j. 

Given that m(S) = (aii) and m(T) = (r:ii), can we explicitly write down 
m(S + T)? Because m(S) = (aii), viS= Lj aiivi; likewise, viT = Li r:iivi, 
whence 

vi(S + T) = viS + viT = L aiivi + L r:iivi = L (aii + r:ii)vi. 
j j j 

But then, by what is meant by the matrix of a linear transformation in a 
given basis, m(S + T) = (A.ii) where Aii = aii + r:ii for every i and j. 
A computation of the same kind shows that for y E F, m( yS)--= (Jlii) 
where llii = ya ii for every i and j. 

The most interesting, and complicated, computation is that of m(ST). 
Now 

v1(ST) = (v,S) T = ( 4= u,.v•) T = 4= u,.(v.T). 

However, vkT = Li r:kivi; substituting in the above formula yields 

(Prove!) Therefore, m(ST) = (vii), where for each i and J, vii = 
I:k a ikr:kj· 
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At first glance the rule for computing the matrix of the product of two 

linear transformations in a given basis seems complicated. However, note 

that the (i, j) entry of m(ST) is obtained as follows: Consider the rows of 

S as vectors and the columns ofT as vectors; then the (i, j) entry of m(ST) 

is merely the dot product of the ith row of S with the jth column of T. 

Let us illustrate this with an example. Suppose that 

m(S) = G !) 
and 

(-1 0) 
m(T) = 2 3 ; 

the dot product of the first row of S with the first column of Tis (1)( -1) + 

(2)(2) = 3, whence the (1, 1) entry ofm(ST) is 3; the dot product of the 

first row of S with the second column ofT is (1)(0) + (2)(3) = 6, whence 

the (1, 2) entry of m(ST) is 6; the dot product of the second row of S with 

the first column of T is (3) ( -1) + ( 4) (2) = 5, whence the (2, 1) entry of 

m(ST) is 5; and, finally the dot product of the second row of S with the 

second column of Tis (3)(0) + (4)(3) = 12, whence the (2, 2) entry of 

M(ST) is 12. Thus 

m(ST) = G ~~} 
The previous discussion has been intended to serve primarily as a motiva­

tion for the constructions we are about to make. 

Let F be a field; an n X n matrix over F will be a square array of elements 

in F, 

(which we write as (IY.ij)). Let Fn = {(IY.ii) I r:J.ii E F}; in Fn we want to 

introduce the notion of equality of its elements, an addition, scalar multipli­

cation by elements ofF and a multiplication so that it becomes an algebra 

over F. We use the properties of m(T) for T E A(V) as our guide in this. 

1. We declare (!Y.ii) = ([:Jii), for two matrices in Fm if and only if IY.ij = 

fJ ii for each i and j. 

2. We define (!Y.ii) + ([:Jij) = ()..ii) where ).ii = r:J.ii + pii for every i, j. 

3. We define, for y E F, y(r:J.ii) = (Jlii) where Jlii = ')JIY.ii for every i and j. 

4. We define (1Y.ii)(f3ii) = (vii), where, for every i and j~ vii = Lk r:J.ikpkj· 

Let V be an n-dimensional vector space over F and let v1 , .•. , vn be a 

basis of V over F; the matrix, m( T), in the basis v1
, .•• , vn associates with 

TEA( V) an element, m( T), in Fn. Without further ado we claim that the 
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mapping from A(V) into Fn defined by mapping Tonto m( T) is an algebra 
isomorphism of A(V) onto Fn. Because of this isomorphism, Fn is an 
associative algebra over F (as can also be verified directly). We call Fn 
the algebra cif all n x n matrices over F. 

Every basis of V provides us with an algebra isomorphism of A(V) onto 
Fn. It is a theorem that every algebra isomorphism of A(V) onto Fn is so 
obtainable. 

In light of the very specific nature of the isomorphism between A ( V) and 
Fm we shall often identify a linear transformation with its matrix, in some 
basis, and A(V) with Fn. In fact, Fn can be considered as A(V) acting on 
the vector space V = p<n) of all n-tuples over F, where for the basis v1 = 
(1,0, ... ,0), v2 = (0, 1,0, ... ,0), ... , vn = (0,0, ... ,0, 1), (r:xi) EFn 
acts as vi(r:xii) = ith row of (r:xii). 

We summarize what has been done in 

THEOREM 6.3.1 The set cif all n x n matrices over F form an assoczatzve 
algebra, F"' over F. lf V is an n-dimensional vector space over F, then A ( V) and 
Fn are isomorphic as algebras over F. Given any basis v1 , ••• , vn cif V over F, if 
for T E A ( V), m ( T) is the matrix cif T in the basis .a 1, . • . . v"' the mapping 
T ~ m(T) provides an algebra isomorphism cif A(V) onto Fn. 

The zero under addition in Fn is the zero-matrix all of whose entries are 0; 
we shall often write it merely as 0. The unit matrix, which is the unit element 
of Fn under multiplication, is the matrix whose diagonal entries are 1 and 
whose entries elsewhere are 0; we shall write it as I, In (when we wish to 
emphasize the size of matrices), or merely as I. For r:x E F, the matrices 

al= C·.J 
(blank spaces indicate only 0 entries) are called scalar matrices. Because of the 
isomorphism between A(V) and Fn, it is clear that T E A(V) is invertible 
if and only if m( T), as a matrix, has an inverse in Fn. 

Given a linear transformation T E A(V), if we pick two bases, Vv ... , vn 
and w1,. "'", wn of V over F, each gives rise to a matrix, namely, m1 ( T) and 
tnz(T), the matrices of Tin the bases v1 , ••• , vn and w1 , ••• , wn, respec­
tively. As matrices, that is, as elements of the matrix algebra Fn, what is 
the relationship between m1 ( T) and m2 ( T)? 

THEOREM 6.3.2 lf V is n-dimensional over F and if T E A(V) has the ma­
. m1 (T) in the basis v1 , ••• , vn and the matrix m2 ( T) in the basis w1 , ••• , wn 

V over F, then there is an element C E Fn such that m2 (T) = Cm1 (T)C- 1
• 
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In fact, if Sis the linear transformation of V defined by viS= wifor i = 1, 2, ... , n, 

then C can be chosen to be m1 (S). 

Proof. Let m1 (T) = (rx 1i) and m2(T) = ({3ii); thus viT= Lir:t.iivi, 

wiT= Li Piiwi. 

Let S be the linear transformation on V defined by viS= wi. Since 

v1, ... , vn and w1, .•. , wn are bases of V over F, S maps V onto V, hence, 

by Theorem 6.1.4, Sis invertible in A(V). 

Now wiT = Li Piiwi; since wi = viS, on substituting this in the ex­

pression for wiT we obtain (viS) T = Li Pii(viS). But then vi(ST) = 

(Li {3iivi)S; since S is invertible, this further simplifies to vi(STS- 1
) = 

Lj Piivi. By the very definition of the matrix of a linear transformation in 

a given basis, m1 (STS- 1
) = ({3ii) = m2 (T). However, the mapping 

T ~ m1 (T) is an isomorphism of A(V) onto Fn; therefore, m1 (STS- 1
) = 

m1(S)m1 (T)m1 (S- 1
) = m1 (S)m1 (T)m1 (S)- 1

• Putting the pieces together, 

we obtain m2 (T) = m1 (S)m1(T)m1 (S)-1, which is exactly what is claimed 

in the theorem. 

We illustrate this last theorem with the example of the matrix of D, in 

various bases, worked out earlier. To minimize the computation, suppose 

that Vis the vector space of all polynomials over F of degree 3 or less, and let 

D be the differentiation operator defined by (IXo + rx1x + rx2x2 + rx3x 3 )D = 

rx1 + 2rx2x + 3a3x2
• 

As we saw earlier, in the basis v1 = 1, v2 = x, v3 = x2
, v4 = x 3

, the 

matrix of D is 

In the basis u1 = 1, u2 = 1 + x, u3 = 1 + x 2
, u4 = 1 + x 3

, the matrix 

of Dis 

(_! ~ ~ ~). 
-3 0 3 0 

Let S be the linear transformation of V defined by v1S = w1 ( = v1), 

v2S = w2 = 1 + x = v1 + v2 , v3S = w3 = 1 + x2 = v1 + v3 , and also 

v4S = w4 = 1 + x3 = v1 + v4 . The matrix of S in the basis v1, v2 , v3, V4 

IS 

J 
r 
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A simple computation shows that 

c-1 
(
-! ~ ~ ~) 
-1 0 0 . 

-1 0 0 1 
Then 

(1 
0 0 

~)(~ 
0 0 

~) ( _: 
0 0 

~) Cm1 (D)C- 1 1 0 0 0 1 0 
0 1 2 0 0 -1 0 
0 0 0 3 0 -1 0 0 

(J 
0 0 

~) 
0 0 

= m2 (D), 
2 0 

' -3 0 3 

as it should be, according to the theorem. (Verify all the computations 
used!) 

The theorem asserts that, knowing the matrix of a linear transformation 
in any one basis allows us to compute it in any other, as long as we know the 
linear transformation (or matrix) of the change of basis. 

We still have not answered the question: Given a linear transformation, 
how does one compute its characteristic roots? This will come later. From 
the matrix of a linear transformation we shall show how to construct a 
polynomial whose roots are precisely the characteristic roots of the linear 
transformation. 

Problems 

1. Compute the following matrix products: 

(c) (t t ~ 3 :)
2 

3 3 

(d)(_: _:y 

0 

2 

-1 
~). 

-1 

2. Verify all the computations made in the example illustrating Theorem 
6.3.2. 
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3. In Fn prove directly, using the definitions of sum and product, that 

(a) A(B + C) = AB + AC; 

(b) (AB)C = A(BC); 

for A, B, C E Fn. 

4. In F2 prove that for any two elements A and B, (AB - BA) 2 is a 

scalar matrix. 

5. Let V be the vector space of polynomials of degree 3 or less over F. 

In V define T by (oc0 + oc1x + oc2x2 + oc3x3
) T = oc0 + oc1 (x + l) + 

oc2 (x + l) 2 + oc3 (x + 1) 3 . Compute the matrix of Tin the basis 

(a) 1, x, x 2
, x 3

. 

(b) 1, 1 + x, 1 + x 2
, 1 + x3

. 

(c) If the matrix in part (a) is A and that in part (b) is B, find a 

matrix C so that B = CAC- 1
• 

6. Let V = F< 3> and suppose that 

( -i ~ !) 
is the matrix of T E A(V) in the basis v1 = (1, 0, 0), v2 = (0, 1, 0), 

v3 = (0, 0, 1). Find the matrix of T in the basis 

(a) u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (0, 0, 1). 

(b) u1 = (1, 1, 0), u2 = (1, 2, 0), u3 = (1, 2, 1). 

7. Prove that, given the matrix 

A=(~ 
1 0) 
0 1 E F3 

-11 6 

(where the characteristic ofF is not 2), then 

(a) A3
- 6A

2 + llA- 6 = 0. 

(b) There exists a matrix C E F3 such that 

CAc-• = (~ ~ ~)· 
8. Prove that it is impossible to find a matrix C E F2 such that 

1) c-1 = (oc o) 
1 0 f3 ' 

for any oc, f3 E F. 

9. A matrix A E Fn is said to be a diagonal matrix if all the entries off 

the main diagonal of A are 0, i.e., if A = (ocii) and ocii = 0 for i #- j. 

If A is a diagonal matrix all of whose entries on the main diagonal 
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are distinct, find all the matrices BE Fn which commute with A, that is, 

all matrices B such that BA = AB. 

10. Using the result of Problem 9, prove that the only matrices in Fn 

which commute with all matrices in Fn are the scalar matrices. 

11. Let A E Fn be the matrix 

0 1 0 0 0 0 

0 0 1 0 0 0 

A 
0 0 0 .. / 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

whose entries everywhere, except on the superdiagonal, are 0, and 

whose entries on the superdiagonal are 1 's. Prove An = 0 but An- 1 =j:. 0. 

*12. If A is as in Problem 11, find all matrices in Fn which commute with 

A and show that they must .be of the form a0 + a1A + a2A 2 + · · · + 
an_ 1An-l where a0 , a 1, ... , an-l E F. 

13. Let A E F 2 and let C(A) = {BE F2 I AB = BA}. Let C(C(A)) = 

{G E F2 I GX = XG for all X E C(A) }. Prove that if G E C(C(A)) then 

G is of the form a0 + a 1 A, a0 , a1 E F. 

14. Do Problem 13 for A E F 3 , proving that every G E C(C(A)) is of 

theforma0 + a1A + a2A 2
• 

15. In Fn let the matrices Eii be defined as follows: Eii is the matrix 

whose only nonzero entry is the (i, j) entry, which is 1. Prove 

(a) The Eij form a basis of Fn over F. 

(b) EiiEkz = 0 for j =/:- k; EiiEiz = Eu. 

(c) Given i, j, there exists a matrix C such that CEiiC- 1 
= Ei'i• 

(d) If i =;6 j there exists a matrix C such that CEiiC- 1 = Ell. 

(e) Find all BE Fn commuting with Ell. 

(f) Find all BE Fn commuting with E 11 • 

16. Let F be the field of real numbers and let C be the field of complex 

numbers. For a E C let T
0

:C--+ C by xTa = xa for all x E C. Using 

the basis 1, i find the matrix of the linear transformation Ta and so get 

an isomorphic representation of the complex numbers as 2 x 2 

matrices over the real field. 

17. Let Q be the division ring of quaternions over the real field. Using 

the basis 1, i, j, k of Q over F, proceed as in Problem 16 to find an 

isomorphic representation of Q by 4 x 4 matrices over the field of 

real numbers. 

*18. Combine the results of Problems 16 and 17 to find an isomorphic 

representation of Q as 2 x 2 matrices over the field of complex 

numbers. 
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19. Let .A be the set of all n x n matrices having entries 0 and 1 in such 

a way that there is one 1 in each row and column. (Such matrices 

are called permutation matrices.) 

(a) If ME .A, describe AM in terms of the rows and columns of A. 

(b) If ME .A, describe MA in terms of the rows and columns of A. 

20. Let .A be as in Problem 19. Prove 

(a) .A has n! elements. 

(b) If ME .A, then it is invertible and its inverse is again in .R. 

(c) Give the explicit form of the inverse of M. 

(d) Prove that .A is a group under matrix multiplication. 

(e) Prove that .A is isomorphic, as a group, to Sn, the symmetric 

group of degree n. 

21. Let A = (rJ.ii) be such that for each i, Lj rf.ii = 1. Prove that 1 is 

a characteristic root of A (that is, 1 - A is not invertible). 

22. Let A = (rJ.ii) be such that for every j, Li rf.ii = 1. Prove that 1 is 

a characteristic root of A. 

23. Find necessary and sufficient conditions on rJ., {3, y, b, so that 

A = G ~) is invertible. When it is invertible, write down A- 1 

explicitly. 

24. If E E Fn is such that E 2 = E =I= 0 prove that there 1s a matrix 

C E Fn such that 

1 0 0 0 0 

0 0 

CEC- 1 
0 0 0 0 

0 0 0 0 

0 0 0 0 

where the unit matrix in the top left corner is r x r, where r is the 

rank of E. 

25. If F is the real field, prove that it is impossible to find matrices 

A, B E Fn such that AB - BA = 1. 

26. IfF is of characteristic 2, prove that in F2 it is possible to find matrices 

A, B such that AB - BA = 1. 

27. The matrix A is called triangular if all the entries above the main 

diagonal are 0. (If all the entries below the main diagonal are 0 the 

matrix is also called triangular). 

(a) If A is triangular and no entry on the main diagonal is 0, prove 

that A is invertible. 

(b) If A is triangular and an entry on the main diagonal is 0, prove 

that A is singular. 
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28. If A is triangular, prove that its cha7cteristic roots are precisely the 
elements on its main diagonal. 

29. If Nk = 0, N E Fn, prove that 1 + N is invertible and find its inverse 
as a polynomial inN. 

30. If A E Fn is triangular and all the entries on its main diagonal are 0, 
prove that An = 0. 

31. If A E Fn is triangular and all the entries on its main diagonal are 
equal to a =1 0 E F, find A - 1

. 

32. Let S, T be linear transformations on V such that the matrix of S 
in one basis is equal to the matrix ofT in another. Prove there exists 
a linear transformation A on V such that T = ASA- 1

• 

6.4 Canonical Forms: Triangular Form 

Let V be an n-dimensional vector space over a field F. 

DEFINITION The linear transformations S, TEA(V) are said to be 
similar if there exists an invertible element c E A ( V) such that T = esc- 1

. 

In view of the results of Section 6.3, this definition translates into one 
about matrices. In fact, since Fn acts as A(V) on p<n>, the above definition 
already defines similarity of matrices. By it, A, BE Fn are similar if there 
is an invertible C E Fn such that B = CAC- 1

• 

The relation on A ( V) defined by similarity is an equivalence relation; 
the equivalence class of an element will be called its similarity class. Given 
two linear transformations, how can we determine whether or not they are 
similar? Of course, we could scan the similarity class of one of these to~see 
if the other is in it, but this procedure is not a feasible one. Instead we try 
to establish some kind of landmark in each similarity class and a way of 
going from any element in the class to this landmark. We shall prove the 
existence of linear transformations in each similarity class whose matrix, 
in some basis, is of a particularly nice form. These matrices will be called 
the canonical forms. To determine if two linear transformations are similar, 
we need but compute a particular canonical form for each and check if 
these are the same. 

There ·are many possible canonical forms; we shall only consider three of 
these, namely, the triangular form, Jordan form, and the rational canonical 
form, in this and the next three sections. 

DEFINITION The subspace W of V 1s invariant under T E A(V) if 
.WTc W. 

LEMMA 6.4.1 If W c V is invariant under T, then T induces a linear 
transformation T on Vj W, defined by ( v + W) 'f' = v T + W. If T satisfies 
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the polynomial q(x) E F[x], then so does T. If Pi (x) is the minimal polynomial 

for T over F and if p(x) is that for T, then p1 (x) I p(x). 

Proof. Let V = Vf W; the elements of V are, of course, the cosets 

v + w of w in v. Given v = v + wE v define vf' = vT + w. To 

verify that T has all the formal properties of a linear transformation on V 

is an easy matter once it has been established that T is well defined on V. We 

thus content ourselves with proving this fact. 

Suppose that v = v1 + W = v2 + W where vi, v2 E V. We must show 

that vi T + W = v2 T + W. Since v1 + W = v2 + W, v1 - v2 must be 

in W, and since W is invariant under T, (v1 - v2 ) T must also be in W. 

Consequently v1 T - v2 T E W, from which it follows that v1 T + W = 

v2 T + W, as desired. We now know that T defines a linear transformation 

on V = VfW. 

If v = v + wE v, then v(T2
) = vT2 + w = (vT) T + w = 

(vT + W)T = ((v + W)T)T = v(T) 2
; thus (T2

) = (1") 2
• Similarly, 

( Tk) = ( f')k for any k ~ 0. Consequently, for any polynomial q(x) E 

F[x], q(T) = q(T). For any q(x) E F[x] with q(T) = 0, since U is the 

zero transformation on V, 0 = q( T) = q( T). 

Let p1 (x) be the minimal polynomial over F satisfied by 'f. If q( T) = 0 

for q(x) E F[x], then Pi (x) I q(x). If p(x) is the minimal polynomial for T 

over F, then p( T) = 0, whence p( T) = 0; in consequence, p1 (x) I p(x). 

As we saw in Theorem 6.2.2, all the characteristic roots of T which lie 

in F are roots of the minimal polynomial of T over F. We say that all the 

characteristic roots of T are in F if all the roots of the minimal polynomial of T 

over F lie in F. 

In Problem 27 at the end of the last section, we defined a matrix as being 

triangular if all its entries above the main diagonal were 0. Equivalently, if 

T is a linear transformation on V over F, the matrix of T in the basis 

v 1' ... ' v n is triangular if 

v1 T = a11v1 

V2 T = tX21 V1 + IX22V2 

viT = ailvl + 1Xi2V2 + · · · + aiivi, 

vn T = anl vl + ... + amnvn, 

i.e., if vi Tis a linear combination only of vi and its predecessors in the basis. 

THEOREM 6.4.1 If TeA(V) has all its characteristic'roots in F, then there 

is a basis of V in which the matrix ofT is triangular. 

Proof. The proof goes by induction on the dimension of V over F. 

If dimp V = I, then every element in A(V) is a scalar, and so the 

theorem is true here. 
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Suppose that the theorem is true for all vector spaces over F of dimension 
n - 1, and let V be of dimension n over F. 

The linear transformation Ton V has all its characteristic roots in F; 
let i!.1 E F be a characteristic root of T. There exists a nonzero vector v1 
in V such that v1 T = i!.1 v1 . Let W = { cw1 I ex E F}; W is a one-dimensional 
subspace of V, and is invariant under T. Let V = VfW; by Lemma 4.2.6, 
dim V =dim V- dim W = n- 1. By Lemma 6.4.1, T induces a 
linear transformation f' on V whose minimal polynomial over F divides 
the minimal polynomial of T over F. Thus all the roots of the minimal 
polynomial of f', being roots of the minimal polynomial of T, must lie in F. 
The linear transformation f' in its action on V satisfies the hypothesis of 
the theorem; since V is (n - I)-dimensional over F, by our induction 
hypothesis, there is a basis v2 , v3 , ..• , lin of V over F such that 

v2 f' = cx22v2 

v3 f' = cx32v2 + cx33v3 

Let v2, ... , vn be elements of V mapping into v2, ... , lim respectively. 
Then v1, v2 , ••• , vn form a basis of V (see Problem 3, end of this section). 
Since v2 f' = cx22v2, v2 f' - cx22v2 = 0, whence v2 T - cx22v2 must be in W. 
Thus v2 T - cx22v2 is a multiple of v1, say cx21 v1, yielding, after transposing, 
v2 T = cx21 v1 + cx22v2. Similarly, vi T - cxi2v2 - cxi3v3 - · • · - cxuvi E W, 
whence vi T = cxil v1 + cxi2v2 + · · · + cxiivi. The basis v1, ... , vn of V over 
F provides us with a basis where every vi Tis a linear combination of vi 
and its predecessors in the basis. Therefore, the matrix of Tin this basis 
is triangular. This completes the induction and proves the theorem. 

We wish to restate Theorem 6.4.1 for matrices. Suppose that the matrix 
A E F n has all its characteristic roots in F. A defines a linear transforma­
tion T on F(n) whose matrix in the basis 

v1 = (l,O, ... ,O),v2 = (0, l,O, ... ,O), ... ,vn = (0,0, ... ,0, 1), 

is precisely A. The characteristic roots of T, being equal to those of A, are 
all in F, whence by Theorem 6.4.1, there is a basis of F(n) in which the 
matrix of Tis triangular. However, by Theorem 6.3.2, this change of basis 
merely changes the matrix of T, namely A, in the first basis, into GAG- 1 

for a suitable G c Fn. Thus 

ALTERNATIVE FORM OF THEOREM 6.4.1 If the matrix A E F" has 
all its characteristic roots in F, then there is a matrix G E F n such that GAG - 1 is 
a triangular matrix. 
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Theorem 6.4.1 (in either form) is usually described by saying that T 

(or A) can be brought to triangular form over F. 

If we glance back at Problem 28 at the end of Section 6.3, we see that 

after T has been brought to triangular form, the elements on the main 

diagonal of its matrix play the following significant role: they are precisely 

the characteristic roots of T. 

We conclude the section with 

THEOREM 6.4.2 If V is n-dimensional over F and if T E A(V) has all its 

characteristic roots in F, then T satisfies a polynomial of degree n over F. 

Proof. By Theorem 6.4.1, we can find a basis vt, ... , vn of V over F 

such that: 

vt T = Atvt 

v2 T = oe21 vt + A2 v2 

viT = oeilvt + · · · + oei,i-tvi-t + Aivi, 

for i = 1, 2, ... , n. 

Equivalently 

vt(T- At) = 0 

v2(T- A2) = oe2tvt 

vi(T - At) = oeilvt + · · · + oei,i-tvi-t' 

for i = 1, 2, ... , n. 

What is v2 (T- A2)(T- At)? As a result ofv2 (T- A2 ) = oe21vt and 

vt (T - At) = 0, we obtain v2 ( T - A2) ( T - At) = 0. Since 

(T- A2)(T- At) = (T- At)(T- A2), 

vt(T- A2)(T- At) = vt(T- At)(T- A2) = 0. 

Continuing this type of computation yields 

v1(T- Ai)(T- Ai-t) · · · (T- At) = 0, 

v2(T- )..i)(T- Ai-t) · · · (T- )..t) = 0, 

vi(T- )..i)(T- )..i-t)··· (T- At) = 0. 

For i = n, the matrix S = ( T - An)( T - An-t) · · · ( T - At) satisfies 

vtS = v2S = · · · = vnS = 0. Then, since S annihilates a basis of V, S must 

annihilate all of V. Therefore, S = 0. Consequently, T satisfies the poly­

nomial (x - At)(x - )..2 ) • • • (x - An) in F[x] of 'degree n, proving the 

theorem. 

Unfortunately, it is in the nature of things that not every linear trans­

formation on a vector space over every field F has all its characteristic roots 

Free Hand

Free Hand


