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Algebraic Structures -
UNIT - |

Vector Spaces

Elementary Basic Concepts

DEFINITION A nonempty set Vi said to be a vector space over a field F
if V' is an abelian group under an operation which we denote by +, and
if for cvery o & F, v e ¥ there is defined an element, writien av, in ¥ subject
to

1oalv + &) = ap + ow;
2. (e + Hiv = aw + fo;
3. a(fo) = (af)v;

4. 1p = p;

for all «, e F, v, we V (where the 1 rcpresenis the unit element of F
under muliiplication).

Note that in Axiom 1 above the + is that of F, whereas on the left-hand
side of Axiom 2 il is that of F and on the right-hand side, that of V.
We shall consistently use the lollowing nolations:

a. F will be a field.

. Lowercase Greek letters will be elements of F; we shall ofien refer to
elements of F as scalars, ™

. Capital Latin letters will denote vector spaccs over F,

. Lowercase Latin letters will denote elements of vector spaces. We shall

often call elements of a vector space vectors.

. If weignore the fact that ¥ has lwo operations defined on it and view it
~ for a moment merely as an abelian group under +, Axiom | states nothing
- ‘more than the fact that multiplication of the elemenis of V by a fixed scalar
@ deftnes o homomorphism of the abclian group V into itself. From Lemma
4.1.1 which is to follow, if & # O this homomorphism can be shown to be
© an isomorphism of F onlo 7.
: This suggesis that many aspects of the theory of vector spaces {and of
~ rings, t00) could have been developed as a parl of the theory of groups,
: had we gencralized the notion of a group to that of a group with operators.
. For students alrcady familiar with a littlc abstract algebra, this is the pre-
ferred point of view; since we assumed no familiarity on the reader’s part
- with any absiracl algebra, we felt that such an approach might lead to a

-
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Vactor Spaces and Modules Ch. 4

too sudden introduction io the ideas of the subject with no experience i
act as a guide,

Example 4.1.1 Let " be a field and lct K be a ficld which containg F as
a subfield. We consider X as a vector spacc over &, using as the 4+ of the
vecior space the addition of clements of K, and by defining, for x e F,
v € K, 2w to be the products of ¢ and v as elemenis in the field K. Axions
1, 2, 3 lor a vector space are then consequences of the right-distributive
law, lefi-distribuiive law, and associative law, respectively, which hold for
K as a ring.

Example 4.1.2 Let F be a field and let V be the totality of all ordered

n-tuples, (o, ..., %, where the &; € F. Two clements (ay,. .., a,) and
{B,.-., B,) of V are declared to be cqual if and only if &; = §; for cach
i=1,2,...,n. We now introduce the requisite operations in ¥ to make

of it a vector space by defining:

L. (al,...,o:,,) + (ﬂla--‘aﬂn} = {a; + By o0 + ooy, + 8-
2' ?('11:”'3&“) = (?ah“*:?an) fOI"}JEF.

It is casy to verify that with these operations, V is a vector space over F.
Since it will keep reappearing, we assign a symbol 1o it, namely ¢,

Example 41.3 Let F be any field and let ¥ = F[a], the sct of poly-
nomials in £ over F. We choose 1o ignore, at present, the fact that in F[x]
we can multiply any two elements, and mercly concentrate on the fact that
two polynomials can be added and that a polynomial can always be multi-
plied by an clement of F. With these natural operations F[x] 1s a vector
space over I,

Example 4.1.4 In F[s] let ¥, be the set of all polynomials of degrec less
than n Using the natural operations for polynomials of addition and
multiplication, ¥ is a veclor space over F,

What is the relation of Example 4.1.4 to Example 4.1.27 Any element of
V. is of the form oy + ax + -+ + o,,8"" !, where g;€ F; if we map
this element onto the element {ag, %, - . - , %y} in F™ we could reasonably
cxpeet, once homomorphisrn and isomorphism have been defined,, to find
that ¥, and F*) are isomorphic as vector spaces.

DEFINITION If V is a vector space over F and if W < V, then Wis 2
subspace of V if under the operations of F, W, itself, forms a vecter space
over F. Equivalently, W is a subspacc of ¥ whenever wy, w, € W,
&, § e Fimplics that 2z, 4 fw, e W,
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Note that the vector space defined in Example 4.1.4 is a subspace of that
‘defined in Example 4.1.3. Additional examples of vector spaces and
ubspaces can be found in the prablems at the end of this section.

EFINITION If U and ¥ are vector spaces over ¥ then the mapping T
f U Into Vis said to be a kemomerphism if

A (@ + )T = w7 + u, T
2. (o)) T = a(u, T},

Sor all 2, tt, € U, and all z & F.

As in our previous models, a homomorphism

Is 2 mapping preserving
all the algebraic structure of our system.

If T, in addition, is one-to-ene, we call it an tsomorplism. The kernel of
7" 15 defined as fu e U u7" = 0) where 0 is the identity element of the
addition in V. ltis an cxercise that the kernel of Tis a subspace of U and
that 7"is an isornorphism if and only if its kernel is {(0}. Two vector spaces
are said to be wsomorpfitc if there is an isomorphism of one onio the other.
The set of all homomorphisms of U into ¥ will be written as Hom (o, ¥,
Of particular interest to us will be two special cases, Hom (¥, F) and
Hom (U, U). We shail study the first of these soon; the second, which can be
shown to be a ring, is called the ring of linear iransformations on U. A great
fleal of our time, later in this book, will be occupied with a detailed study
of Hom (U, 7).

- We begin the material proper with an opcrational lemma which, as in
the case of rings, will allow us to carry out certain natural and simple
Lomputations in vector spaces. In the statement of the lermma, O represents
g?-he zcro of the addition in ¥V, ¢ that of the addition in £, and —p the
ydditive inverse of the element v of V,

EMMA 4.1 N I Vis a vector space over F then

e = Dforace I

o =0 forve V.

{(—~a)o = —(aw) forueF, veV,

- ITy 22 0, thenaw = 0 tmplies that o = o.

FProof. The proof is very casy and follows the lines of the analogous

Ults proved for rings; for this reason we give it briefly and with few
planations.

: Since 50 = 2{0 + 0} = ad + a0, we get a0 = 0.
Since op = o + o}0 = o0 + o we get op = 0.

-
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3. Since 0 = (& + (—a))p = aw + {—on, (—ojp = —(«r).
4 Jfap = Oand o # ¢ ihen

0= 10 =0 Yar) = (& ta)p = lo =0

The lemma just proved shows that multiplication by the zero of ¥ or of
F always leads us to the zero of . Thus there will be no danger of confusion
in using the same symhol for both of these, and we henceforth will merely
use the symbol 0 1o represent both of them.

Let ¥ be a vector space over £ and let W be a subspace of V. Considering
thesc merely as abelian groups construct the guetient group V/W; its
elements are the coscts @ + W where ¢ V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that VIV is an abelian group. We intend to make of it a vector
space. IfeeF, o + We PfW, define (o + W) = ar + W. Asis usual,
we must first show that this product is well defined; that is, if v 4+ W =
v + Wihen gy + W) = a{e" + W). Now, because o + W =o' + W,
» — ¢’ is in W; since W is a subspace, a{z — ¢’) must also be in W. Using
part 3 of Lerama 4.1.1 (see Problem 1) this says that ez — ' € W and so
oo+ W=avr + W, Thus afv + W) = + W= + W =ale’ + W);
the product has been shown to be well delined. The verification of the
vector-space axioms for F/W is routine and we leave it as an exercisc.
We have shown

LEMMA 4.1.2 If V is a vector space over F and if W is a subspace of V, then
VIW is a vector space over F, wheve, for vy + W, v, + We VW and e F,

L{o, + W 4 fuy + W) = (o, + 0y) + WL
2 owly, + W) =ap + W
FIW is called the guotient space of V by W.
Without further ado we now state the first homomorphism theorem for

vector spaces; we give no proofs but refer the reader back to the proof of
Theorem 2.7.1.

THEQREM 4.1.1 If T is a homomorphism of U onto V with kernel W, then V
is isomorghic to UJW. Conversely, if U is a vector space and W a subspace of U,
then there is @ homomorphism of U onte UfW.

The other homomorphism theorems will be found as excrciges at the end
of this section.

DEFINITION Tet ¥ be a vector space over F and let I, ..., U, he
subspaces of V. V is said 1o be the internal direct sum of Uy, ..., U, il'every

element ¢ € F can be written in one and only one way as v = &; + u; +

-+ 4 u, where u, 6 Ul

e i B i
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. Given any finite number of vector spaces over F, V,..., ¥, consider
- the set IV of all ordered a-tuples (#4455 2,) where 2, € ¥, We declare iwo
'Ee]ements (@1:---5 0,0 and (), ..., 0.) of ¥ to be equal if and only if for
-each i, p, = vi. We add two such elemenis by defining G
i(sys - uy) o be (o) + w0, 4+ ow,, ..., Uy + w,). Fmally, if a el
cand (vy,...,0,) € ¥V we define aloys ..., 0,) 10 be (uy, avy,...,a0,).
o check that the axioms for a vector space hold for ¥ with its operations
s defined above Is straightforward. Thus I itself is a vector space over F.
We call V' the external direct sum of V,,. .., V, and denote it by writing
Y=re-ev,

THEOREM 412 If V is the internal divect sum of U, ..., U, then V is
_dsomarphic to the external divect sum of Uy, ..., U

Proof.  Given » € V, v can be wrilten, by assumption, in one and only
;-one way as ¢ =w; + u; + - F u, where w; e U,; define the mapping
T of ¥ into U@ -® U, by sT = (u,...,u,). Since v has a unique
representation of this form, 7 is well defined, It clearly is onto, for the
arbitrary element @y w)el, @@ U, is wT where w = w, +
;; *vr+ w,e V. We leave the proof of the fact that 7 is one-to-one and 2
i'I-mnrut:mn:n"phism to the readcr.

-~ Because of the isomorphism proved in Theorem 4.1.2 we shall henecforth
merely refer to a direct sum, not qualifying that i{ be intcrnal or external.

‘Problems

- L. In a vector space show that o{e — w) = w — o
2. Prove that the vector spaccs in Example 4.1.4 and Example 4.1,2 are
isomorphic.
3. Prove that the kernel of a homomorphism is a subspacc.
4 (a) If Fis a field of real numbers show that the set of real-valued,
continuous functions on the closed interval [0, 1] forms a vector
space over F.
(6) Show that those functions in part {a) for which all ath derivalives

exist for n = 1, 2,. .. form a subspace.
3. {(a) Let £ be the ficld of all rcal numbers and let ¥ be the set of ail
sequences (4, @y, ..., &, ...}, d4;€F, where equalily, addition

and scalar muitiplication are defined componentwise. Prove that
V'is a vector space over ¥.
(b) Let W= {(ay,...,a,...0¢e V|lim a, = 0}. DProve that W

n— ok

Is a subspace ol v,

175
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6.

R

10.

11.

12.
13.

14.

16.

17.

18.

o
) Let U = {(a),...,d, ... e F] " a2 is finited. Prove that U i
fey

a subspace of ¥ and is contained in W,

If 7 and ¥ arc vector spaces over F, define an addition and a multipli-
cation by scalars in Hom {{/, V') so as to make ITom (U, V) into a
vector space over I,

Using the result of Problem 6 prove that Flom (F¢, F™) ig isomorphic
to F™" as a vector spacc.

. If # > m prove that there is a homomorphism of F® onto #™ with

a kernel W which is isomorphic to #%7",

If 2 #£ 0 F"™ prove that there is an element T e Hom (¥, Fj
such that #7' == 0.

Prove that there exists an isomorphism of F™ into

Hom {Hom {F®, £, F).

If &/ and W are subspaces of V, prove that U + W= {seVl|e =
w4 w uwe U, we W} is a subspace of V.

Prove that the intersection of two subspaces of F 13 a subspace of F,

If 4 and B are subspaces of ¥ prove that {4 + K)/8 is somorphic to
A4 n B,

If " is a homomorphism of U onto ¥ with kernel W prove that there
is a one-lp-one correspondence between the subspaces of 7 and the
subspaces of I/ which contain W,

. Let ¥ be a vertor space over F and let Vi, ..., ¥, be subspaces of

V. Suppose that V=V, + V, + --- 4+ FV, (see Problem 11}, amd
that ¥, (Fy +--+ Vo + Vigy +-- 4 V) = {0) for every
¢ = 1,2 ..., & Prove that Fis the internal direct sum of ¥y, ..., ¥,

2 '

Let V=V, &- '.-G—) I7,; prove that in V there are subspaces F,
isomorphic to V; such that V is the internal direct sum of the V.

Let T be defined on F@ by (x, 0} T = (ax, + fx;, px; + dxs)

where o, f, 7, § are some fixed elemenis in F.

{a} Prove that T is a homomorphism of F2) into itsclf,

(b} Find necessary and sufficicnt conditions on @, f, v, d so that ¥ is
an isomorphism.

Let 7 be defined on F'3 by (x, %, x0T = (o5 + o534 +
®y3Xyy Upy%) + Hga¥y + Olgaks, g%y + Oaz%y + faa¥y). Show that T
is a homomorphism of F into itsclf and deilermine necessary and
sufficient conditions on the o;; so that 7'is an isomorphism,
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. Let T be a homomorphism of Viato W, Using 7, define a homomor-
phism T* of Hom (¥, F) into Hom (V, F).

20. (a) Prove that 77" is not isomorphic to F'™ for n » 1.
(b} Prove that F@ is not isomorphic to F*,

. If V is a vector spacc over an tnfinite field F, prove that V cannot be
written as the set-theoretic union of a finite number of proper subspaces.

4.2 Linear Independence and Bases

If we look somewhat more closely at two of the examples described in the

previous section, namely Example 4.1.4 and Example 4.1.3, we notice that
- . although they do have many properties in common there is one striking
" difftrence hetween them. "U'his difference lies in the fact that in the former
- we can find a finite number of elements, 1, %, x%, ..., ¥~ ! such that every
. element can be written as a combination of these with coefficients from F,
" whereas in the latter no such finjte sct of clements exists,

We now intend to examine, in some detail, vector spaces which can be
-generated, as was the space in Example 4.1.4, by a finite sct of clements.

> DEFINITION If ¥ is a vector space over F and il v, ..., 0, ¢ V then
. any elecment of the form 48+ gty + v + @, where the g6 F, s a
. dinsar combination over F ofv,,... »

B

Since we usually are working with some fixed ficld £ we shall often say
tinear combination rather than lincar combination over F. Similarly it will
be understood that when we say vector space we mcean vector spacc over I,

DEFINITION IfSisa noncmpty subset of the vector space ¥, then L(S),

' the linear span of S, is the set of all linear combinations of finite sets of
elements of

We put, after all, into L{$) the elements required by the axioms of a
Vector space, ‘so it is not surprising to find

 LEMMA 4.21 L(§) isa subspace of V.

Proof. I v and w are in L(S), then v = s+ A5, and w o=
Mt - b, where the s and #'s arc in F and the 5, and ¢, arc all
‘in 8. Thus, for o, fe F, a4 B = aldys) + 4 A5 + Blgt, +
I Ml = (@h)s kb (02,05, + (Bt 4 (Bt and so

Is again in L{S). L{5) has been shown to be a subspace of V.

The proof of each part of the next lemma i straightforward and easy
and we leave the proofs as exercises to the reader.
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LEMMA 4.2.2 1S, T are subsats of V, then

. § = T implies L(S) = L(T).
2. LS w T) = LIS) + L{1).
3, LIL(S)) = L(S).

DEFINITION The vector space V is said to be finite-dimensional {over F)
if there is a finite subset § in Vsuch that ¥/ = L{§).

Note that F™ is finite-dimensional over F, for if § consists of the » vectors
(,o,...,0), (0, 1,0,...,0),...,(0,0,...,0, 1], then V = L(5).

Although we have defined what is mcant by a finite-dimensional space
we have not, as yet, defined what is meant by the dimension ol a space,
This will come shortly.

DEFINITION If Fis a vector space and if #y,.. ., v, arc in F, we say that
they are linearly dependent over IFif there exist elements 4,, ..., 4, In F,
not all of them O, such that 2,2, + Aoy + -1+ A, = 0

If the veetors oy, . . ., ¥, are not linearly dependent over F, they are said
to be lincarly independent over F. Flere too we shall often contract the phrase
“lincarly dependent over F7' to “lincarly dependent.” Note that if oy, ...,
v, are lincarly independent then none of them can be 0, for o & = @,
say, then sy + Oy + -+ + Oy, = Olorany o # Oin A

In £ jt is easy to verify that (1, 0, 03, (0, I, 0], and (0, 0, 1} arc linearly
mdependent while (1, 1,07, (3, 1, 3), and {5, 3, 3) are lincarly dependent.

We point cut that linear dependence is a function not only of the vectors
but also of the field, For instance, the ficld of complex numbers is a vector
space over the field of real numbers and it is also a vector space over the
ficld ol complex numbers. The elements o, = 1, 2, = ¢ in it are lincarly
Independent over the rcals but arc linearly dependent over the complexcs,
since 22y + {— 1oy, = 0.

The concept of linear dependence is an absolutcly basic and ultra-
mmportant one. We now look at some of its properties.

LEMMA 423 Ko, ...,v,c V are linsarly indspendent, then cvery element in
their lingar span has a umique representation in the form Ao, + -+ + A, with
the A, e F.

Proof. By delinition, every elemcent in the lincar span is of the form
Ay + oo+ Az, To show uniqueness we must demonstratc that il
Myt A=ty + o g, then Ay =g dy = oy oo A = e
But il Aoy + - + Aoy = oy + - + ion then we certainly have

AT S ey e e
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(A — udoy + (A — po, + -+ 4 {4, — k)8, = 0, which by the linear
independence of &, ..., 5, forces Ay — g =0, A — oy, =0,.. .,
‘15 - Jurl = 0‘

The next theorem, although very easy and at first glance of o somewhat
-technical nature, has as conscguences results which form the very [oundations
‘of the subject. We shall list some of these as corollaries; the others wili
appear in the succession of lemmas and theorems that arc to foliow,

THEOREM 4.21 Ifwv,,..., v, are in V then cither they are linearly independ.-
ent 0F some 5y 15 @ Linear combination of the Preceding ones, vy, . .

-y iy
Froof. Uw, ..., u, are lincarly independent there 15, of course, nothing
to prove. Supposc then that oz, + -« + ity = 0 where not all the
a's are 0. Let E be the largest integer for which o, # 0. Since o, = ¢
for ¢ >k o 4+ + aw, =0 which, since o, # 0, implies that
= o '(~ap - F¥z T W qBoy) = (—o T la)e 4 4

(—o o yJo, ;. Thus 2, is a linear combination of its predecessors.

"COROLLARY 1 Ifu,,..., v, in V kave W as linear span und B o, ...,
are lincarly indspendent, then we can find a subset of ¥y, -5 1, of the form o,
Bzs v vs By Uy ooy Uy consisting of linearly independent elements whose Linear

Proof. 10y, ... », arc linearly independent we are done. 17 not, weed
oul [rom this sct the first o » which is a linear combination of its predecessors,
Since vy, ..., 0, are linearly independent, 7 > £ 'The subset so constructegd,
Vs oo vy By gy Bpq,-0., 0, has 2 — 1 elements. Clearly its lincar

pan is contained in W, Tlowcver, we claim that it is actually equal to W,
L for, glven w e W, w can be writicn as a linear combination of TR
" But in

this linear combination we can replace o by a lincar combination of
v< o5 85y, Thatis, wis u lincar combination of' o, , . . ., Uy g Dyggae e sl
Continuing this weeding out process, we reach a subsct Ty Ugs
Vyys - oy 0y, whose linear span s still W but in which ne clement is 2 linear
ombination of the preceding ones. By ‘Theorem 4.2.1 the elements
v,..7, B, Uyyo - -5 B, must be linearly independent.

Oy

COROLLARY 2 I Vis a finite-dimensional vector space, then il contains a

Jindle set v, . U, 0f linearly independent elements whose linear span is V.

. Proof. Since Vs finite-dimensional, it is the Hnear span of a finite
= Dumber of clements w,, . .., #,. DBy Corollary 1 we can find a subset of

- these, denoted by 91,..., 2, consisting of lincarly Indcpendent elemcnts
g Whosc linear span must also be ¥,

179
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DEFINITION A subset § of a vector space V is called a basis of V if §
consists of lincarly independent elements (that is, any finite number of
clements in & is linearly independent) and F = L{5).

In this terminology we can rephrase Corollary 2 as

COROLLARY 3 ff V is a finite-dimensional vector spase and if uy, ..., u,

span V then some subsel of wy,. . ., w, forms a basns of V.

Corollary 3 asserts that a finite-dimcensional vector space has a hasis
containing a finite number of clements ¢y, . .., #,- Together with Lemma
4.2.3 this tells us that every element in 7 has a unique representation in the
form ooy + -+ 4 op, with oy, ..., &, In &

Let us sce some of the heuristic implications ol these remarks. Suppose
that ¥ is a finite-dimensional vector space over F; as we have scen above,
¥ has a basis #,...,#, Thus every clement v F has a unique repre-
scntation in the form » = oy + -+ + 2,2, Let us map F into Fim by
defining the image of oy, 4+ * + w2, to be (o, ..., o). By the unique-
ness of representation in this form, the mapping is wel! defined, one-to-one,
and onto! it can be shown to have all the requisite properties of an iso-
morphism. Thus F is isomorphic to #® for some #, where in fact n is
the number of clements in some basis of ¥ over F. If sume other basis of
I should have m clements, by the same token ¥ would be isomorphic to
F@™_ Since both F™ and F wonld now be isomorphic to V, they would
be isomorphic to each other,

A natural question then arises! Under what conditions on # and s arc
F™ and 2™ jsomorphic? Our intuition suggests that this can only happen
when 2 = m. Why? Tor one thing, if F should be a field with a finite
number of clements-—for instance, il F = J, the integers modulo the prime
number p—then F@ has " elements whereas 7™ has p™ elements. Tso-
morphism would imply that they have the same number of elements, and
so we would have # = m. From another point of view, if F were the field
of real numbers, then # (in what may be a rather vague geometric way
to the reader) represents real m-space, and our geometric feeling tells ws
that nr-space is different from m-space lor 2 # m. Thus we might cxpect
that if F is any ficld then F®™ is isomorphic to #¢ only if # = #. Equiv-
alendy, from our carlier discussion, we should expect that any two bases of
¥ have the same number of clements. It is towards this goal that we prove
the next lemma.

LEMMA 424 Ko, ...,0,is a basis of V over & and if wy,. .., w, in V
are linearly independent over F, then m < n.

Proof. Every vector in V, so in particular w, is a linear combination
of 2,,...,v, Thercfore the vectors w,, i, ..., #, are lincarly dependent.

N T T
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Moreover, they span F since 2, ..., v, already do so. Thus some proper
subset of these wp, o, ..., 2, with £ < n — | forms a hasis of ¥V, We
have “traded ofl”” one w, in forming this new basis, for at least one ..
Repeat this procedure with the set w,_,, w,, Pys- - Uy From this
lincarly dependent sct, by Corollary 1 to Theorem 4.2.1, we can cxtract a
basis of the form w, ,, w,, 2;,...,5;, s < n — 2. Keeping up this
procedure we eventually get down 10 a hasis of ¥ of the form w,, ...,
W 1y Whys Uy Ug - - - 5 SINCC 22y 15 not a linear combination of w,, ..., w__,, the
above basis must actually include some . To get to this basis we have
introduced m — 1 @’s, each such introduction having cost us al least one 2,

and yet there isa o left. Thus m — 1 <=0 — | andso m < n

This lemma has as consequences {which we list as corollaries) the basic
results spelling out the nature of the dimension of a vector space. These
corollarics are of the utmost imporiance in all that follows, not only in this
chapter bul in the rest of the book, in fact in all of mathematics. The
corollaries are all theorems in their own rights.

COROLLARY 1 If V is finite-dimensional over F then any two bases of V

have the same number of elements,

Froof. Lct vy,...,u, be one hasis of ¥ over F and let w), ..., w_ be
another. In particular, w,, . .., w,, are linearly independeni over F whence,
by Lemima 4.2.4, m < n. Now interchange the roles ol the #’s and »’s and
we obtain that n < m. Together these say that n = m.

COROLLARY 2 ¥ i5 isomorphic F™ if and only if n = m.

Proof. I has, as one basis, the set of # vectors, (1,0,..., 0y, (0,1,
0,...,0),...,(0,0,...,0,1). Likewise F™ has a basis containing m
vectors. An isomorphism maps a basis onto a basis {Problem 4, end of this
scéti011}, hence, by Corollary 1, m = n.

Corollary 2 puts on a {irm fooling the heuristic remarks made carlier
about the possible isomorphism of F™ and F™. As we saw in those re-
marks, Vis isomorphic to #® for some 5. By Corollary 2, this n i3 unique, thus

o
COROLLARY 3 If V is finite-dimensional over F then V s isomorphic o F™
Jor @ unique infeger n; in fact, n is the number of elements in any basis of V over F,

DEFINITION The intcger r in Gorollary 3 is called the dimension of V
over I,

The dimension of V' over F is thus the number of clements in any basis
ol ¥V over F.
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W shall write the dimension of ¥ over F as dim V, or, the occasional
time in which we shall want to stress the role of the field F, as dimg V.

COROLLARY 4 Any two ﬁnits—dfmémimaf vector spaces over I of lhe same
dimenston are isomerphic.

Proof 1If this dimension is #, then cach is isomorphic to #*, hence
they arc isomorphic to each other.

How much freedom do we have in constructing bases of ¥? The next
lemma asserts that starting with any linearly independent sct of vectors
we can “blow it up” to a basis of V,

LEMMA 425 If V is fimile-dimensional over F and of w,, ... u, €V are
linearly independent, then we can find veclsrs Gy ...y ity tn V osush that

Hys ey Uy B g o e s Mgy, 5 @ basis of V.
Proof Since V is finite-dimensional it has a basis; lct #,,...,2, bc a
basis of V. Since these span V, the vectors #, .. ., iy, o1, . . ., 8, also span

V. By Corollary 1 to Theorem 4.2.1 there is a subsct of these of the form
iy o5ty Dy, ..., 8 which consists of linearly independent elements
which span ¥. To prove the lemma merely put o, = &, .05 8py, =
A

"

What is the rclation of the dimension of a homomorphic image of ¥ to
that of ¥? The answer is provided us by

LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of 'V, then W
is finite-dimensional, dim W < dim V and dim V{W = dim V — dim W,

Proof. By Lemma 4.2.4, if # = dim V then any # + | elements in V
arc linearly dependent; in particular, any # 4+ | elements in # arc lineatly
dependent. Thus we can find a largest set of linearly independent clements
in W, w,...,w, and m < # Ifwe W then w,,...,w,, wis a lmearly
dependent sct, whenee wme + @y 4+ 4 @, = 0, and not all of the
s are 0. If @ = 0, by the linear independence of the w; we would get that
cach o; = 0, a contradiction. Thus o # 0, and so w = —u” 'a,w, +
-+ 4 g, ). Consequently, w,, ..., w, span W; by this, W is finitc-
dimensional over F, and furthermore, it has a basis of m elements, where
m < n. From the definition of dimension it then follows that dim W <
dim ¥.

Now, let w,, ..., i, be a basis of }¥. By Lemma 4.2.5, we can fill this
ont to a basis, @y, ..., W, ,...,0 of V, where m + 7 = dim ¥ and
m = dim W, .

Let 7,,...,7, be the images, in ¥ = V/W, of p,,..., 9. Sincc any

vector z & V is of the form » = aymw, + ' + o, + fioy + - + B,
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then v, the image of v, is of the form o = f,5, + - 4 fi.p, {since @, =
Wy ==, =0). Thus 7,,...,7, span ¥/W. We claim that they arc
lincarly independent, for if 9,3, + --- + 72 =0 then po, 4+ - +
Yo €W, and so yo 4+ -+ e = Ly, 00 4 Anttig, which, by the
linear independence of the sct w,, ..., Wy Uppe-., 0, forces p = =
¥o=4d = =1, =0 We have shown that ¥/W has a basis of r
clements, and so, dim V/W = r = dim ¥V — m = dim V —~ dim IV,

COROLLARY I A and B are finite-dimensional subspaces of a vector space V,
then 4 + B is fimite-dimensional and dim (4 + B) = dim (A) + dim (B) —
dim (A n B).

Preof. By the resuit of Problem 13 at the end of Scetion 4.1,

A+BN A
B T An~B

and since 4 and B are finitc-dimensional, we get that

dim(A+BJ-—dimB=dim(A;B):dim( 4 )

A~ B
= dim 4 — dim (4 ~ B).

Transposing yields the result stated in the lemma.

Problems

1. Prove Lemma 4.2.2,

2. (a) If Fis the field of real numbers, prove that the vectors {1,1,0,0),
(0,1, =1,0), and {0,0,0,3) in F arc linearly independent
over F,
{b} What conditions on the characteristic of 7 would make the three
voctors in {a) linearly dependent?
3. IM'V has a basis of x elements, give a detailed proof that V is Isomorphic
to F,
471 T is an isomorphism of ¥ onto W, prove that T maps a basis of ¥
onto a basis of W,

5. M Vis finitc-dimensional and T'is an isomorphism of ¥ into ¥, prove
that T must map ¥ onto V.

6. If V is finite-dimensional and T is a homomorphism of ¥ onts V,
prove that 7 must be onc-to-one, and so an isomorphism,

7. If ¥ is of dimension », show that any set of n linearly independent
vectors in V forms a basis of ¥,
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10

1.

12.

13.

14.

15.

*16,
17.

If Vis finite-dimcnsional and W Is a subspacc of ¥ such that dim ¥V =
dim W, prove that 7' = W

TF V is finitc-dimensional and 7 is a homomorphism of V into itself
which is not onto, prove that there is somec » # ¢ in V such that
v T = 0.

Let F be a ficld and let F[x] be the polynomials in & over F. Prove
that F[x}] is not finite-dimensional over F.

Let V, = {p{x) € F|x] | deg p(x) < r}. Definc T hy
(% + %% + -+ %, )T
=g+ o (x + 1) Foafx + DT 4o, (x+ 1770
Prove that T'Is an isomorphism of ¥, onto itsclf.
Let W = {og + % + -+ a3 ' e Fla] | 2g + 2 + -+

o,_; = 0}. Show that W is a subspace of ¥, and find a basis of W
over F.

Let oy, ..., 2, be a basis of ¥ and lct w,, ..., 2, be any 2 elements
in V. Definc Ton Vby (4iz, + -+ 42,07 = Qi + 0 + Ao,
{a} Show that R is a homomorphism of V into itself,

(b) When is T an isomorphism?

Show that any homomorphism of F into itself, when F is finitc-
dimensional, can be realized as in Problem 13 by choosing appropriate
clements &y, ..., w,.
Returning to Problem 13, since »,,...,v, is a basis of V, each
w;, = o0+ + %t ¥y € F. Show that the »” cloments %, of

F determine the homomorphism T
If dimy ¥V = r prove that dimg (Hom (F,77)) = n?.

If ¥ is finite-dimensional and # is a subgpace of ¥ prove that there
is a subspace W, of Fsuch that V= W @ W,.
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Dual Space

Given any two vector spaccs, V and W, over a field F, we have defined
Hom (¥, W) to be the set of all vector space homomorphisms of ¥ into W,
As yet Hom (¥, W) 1s merely a set with no structure imposed on it. We
shall now proceed to introduce operations in it which will turn it into a
vector space over F. Actually we have already indicated how to do so in
the descriptions of some of the problems in the carlicr scctions, However
we propose to treat the matter more formally here. _

Let § and T be any two clements of Hom (¥, W); this mcans that these
are both vector space homomorphisms of Vinto W. Recalling the definition
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of such a homomorphism, we munst have (s + 2,)S = 28 + 28 and
(a0,)8 = a(v)S) for all »), 2, € ¥V and all xe F, The same conditions also
held for T, '

We first want to introduce an addition for these elements § and T in
Fom (V, W). What is more natural than to definc § + T by declaring
(8 + T) =o8 + 2T for all ve ¥? We must, of course, verify that § 4+ 7
is in Hom {V, W), By thc very definition of § + T, if oy, 0, € V, then
(ry+o) S+ T)={ty +o)5 + {0, +0,) T;  since (o7 + 0208 = 0,8 4 0,8
and {#; + v,)7T = 0,7 + v, T and since addition in W is cornmutative, wc
get (0 +0)(8+ T) =05+ 0,7 + 2,5 +2,7. Once again invoking
the definition of § + 7T, the right-hand side of this relation becomes
n($+ T + 2,08 + T); we have shown that (o +0)8 + Ty =
n+ T) +0,(8+ T). A similar computation shows that {(ao){S + T) =
2(s(S + T)). Consequently 8§+ T is in Flom (V, W) Let O be that
homomorphism of ¥V into W which sends every element of V onto the zcro-
. eloment of W; for § € Hom (V, W) let —5 be defined by o(—8) = — (5.
" It 1s immediate that Hom (¥, ) is an abelian group under the addition
defincd above.

Having succceded in introducing the structurc of an abelian group on
Hom (¥, W), we now turn our attention to defining AS for le F and
§ ¢ Hom (V, W), our ultimate goal being that of making Hom (F, )
. nto a vector space over I, For ) e F and § e Hom (V, W) we define
. AS by 2(28) = A{eS) for all # e V. We leave it to the reader to show that
AS is in Hom (F, W) and that under the opcrations we have defincd,
Hom (¥, W) s a vector space over F. But we have no assnrance that
Hom (V, W) has any elements other than the zcro-homomorphism. Be
that as it may, we have proved -

LEMMA 4.3.1 Hom (V, W) ir a vector space over F under the aperaiions
deseribed above,

Arcsult such as that of Lemma 4.3.1 really gives us very little informartion ;
rather it confirms for us that the definitions we have made are reasonable.
We would prefer some results about Hom (¥, W) that have more of a
bite to them. Such a result is provided us in

THEOREM 4.31 [ V and W are of dimensions m and n, respectively, over F,
then Hom {V, W) is of dimension mn over F.

Froof. We shall prove the thoorem by explicitly exhibiting a basis of
Hom (¥, W) over ¥ consisting of mn elements.

Let o,,..., v, be a basis of V over F and wy, ..., w, one for W oaver F.
IfseV then » = A4yp; + --- 4+ A_p,, where Ay v, Ay arc uniquely de-

-
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fincd clements of F; define T, ;:¥ — W by 87y; = Aa;. From the point
of vicw of the bases involved we arc simply letting #,7;; = 0 for k # {
and o, T;; = w;. It is an easy exercise to see that T; is in Hem (¥, W},
Since ¢ can be any of 1,2, ..., m and j any of 1,2,..., » therc arc mn
such T';;’s.

Our claim is that these mn clements constitute a basis of Hom (¥, W)
over I, For, let e Hom (V, W), since v,5e W, and since any element
in W is a lincar combination over F of w, ..., w,, ;8 = oy 00 + o0y +
see b Oy, for some o, o, ..., 0y, in FL In fact, 2,8 = ey 4o +
o, for 1=1,2,...,m Consider 8§ =Ty, + o712 + -
Uigdyp 4+ oy Loy + o+ ag, Ty + -+ wng Ty + - gy T + 0+
Ot Tt + ="+ Gpp Ty Lt us compute 98, for the basis vector v, Now
Sy = i’k(WuTn R “mlT ot e Ty = Edm Ty
120 Tya2) + At (T} + 0 0+ (8 Top). Since 7,7 = 0 for
i# k and Uka; = w;, this sum reduces to #.5, = guw, + - + G0,
which, we see, is nothing but #,8. Thus the homemorphisms §, and 5 agree
on a basis of ¥. We claim this forces S5 = 5 (scc Problem 3, end of this
section), However § is a linear combination of the 7s, whence § must
be the same lincar combination. In short, we have shown that the ma
elements T5,, Tigsvees Tpgsrrvs Fomts o o1 Fogy Span Hom (V, W} over F.

In order to prove that they form a basts of Hom (¥, W) over F there
remains but to show their Bnear independence over F. Suppose that
BuTi + BT+ o+ BTy + o+ BTy 0+ BT+
Bi Ty + + + BpuTon = 0 with §;; all in F. Applying this to g, we get
0 =nfuTyt+-+ BT+ + BynTpu) = Bawy + Pratvs + - +
Biaw, since 8, 7T;; =0 for ¢ # k and 2,T,; = w;, However, w,...,w,
are linearly independent over F, forcing ff,; = 0 for all £ and j. Thus the
T;; arc linearly independent over F, whence they indeed do form a basis
of Hom (¥, W) aover I,

An immediate consequence of Theorem 4.3.1 15 that whenever Vo2 {(0)
and W # (0} are finite-dimensional vector spaces, then Hom (V, W) docs
not just consist of the clement 0, for its dimension over Fis nm = 1.

Some spectal cases of Theorem 4,3,1 are themselves of great intercst and
we list these as corellaries.

COROLLARY 1 [ dimg ¥V = m then dimy Hom (V, 1) =

Procf. In the theorem put V= W, and so m = », whence mn = m?.

COROLLARY 2 Ifdimg ¥V = m then dimy Hom (V, F} =

Froof. As a vector space F is of dimension | over F. Applying the
theorem yields dimp Hom (V, F} = m.
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Corollary 2 has the interesting consequence that if F is finite-dimensional
“over F it is isomorphic to Hom (¥, F), for, by the corollary, they are of
the same dimension over F, whence by Corollary 4 to Lemma 4.9.4 they
must be isomorphic. This isomorphism has many shortcomings! Let us
explain. It depends heavily on the finite-dimensionality of ¥, for if ¥ is
' not finite-dimensional no such isomorphism exists, There is no nice, formal
onstruction of this isomorphism which holds universally for all vector
spaces. It depends strongly on the specialities of the finite-dimensional
“situation. In a few pages we shall, however, show that a “nice’”’ isomorphism
* does exist for any vector space ¥ into Hom (Hom (V, F), F).

*- DEFINITION  If ¥V is a vector space then its dual space is Hom {¥, F).

We shall use the notation ¥ for the dual space of V. An element of 7
will be called a Bnear funciionaf on IV into F.

If V' is not finite-dimensional ‘the ¥ is usually too large and wild to be
of interest. For such vector spaces we often have other additional structures,
such asatopology, imposed and then, as the dual space, one does not generally
take all of our ¥ but rather a properly restricted subspace. If Visfinite-dimen-
sional its dual space ¥ is always delined, as we did it, as all of Hom (¥, F).

In the proof of Theorem 4.3.]1 we constructed a basis of Hom (¥, W
using a particular basis of ¥ and one of W, The construction depended
crucially on the particular bases we had chosen for ¥ and W, respectively.
Had we chosen other bases we would have ended up with a different basis
of Hom (¥, W). As a general principle, it is preferable to give proofs,
whenever possible, which are basis-free, Such proofs are usually referred to
as invariant ones. An invariant proof or construction has the advantege,
cther than the mere aesthetic one, over a proof or construction using a
basis, in that one does not have to worry how finely everything depends
on a particular choice of bases.

" The elements of ¥ are functions defined on ¥ and having their values
';; in F. In keeping with the functional notation, we shall usually write
~ elements of ¥ as f] g, etc. and denote the value on v e ¥ as F(#) {rather
than as of ).
. Let V be a finite-dimensional vector space over F and let t,-..,2, be
- a basis of ¥; let #; be the element of ¥ defined by #{v;) = 0 for i # j,
c (o) = 1, and dfoqo, + -t + o0+ ap,) = . In fact the a,
- are nothing but the T7; introduced in the proof of Theorem 4.3.1, for here
W = F is one-dimensional over F, Thus we know that 810000, 8, form a
basis of V. 'We call this basis the dual basis of Bisovesty- o0V, by
. Lemma 4.2.5 we can find a basis of the form y =10, U3,...,0, and 5o
there is an element in ¥, namely 4,, such that 7,(s,} = f{(e) = 1 2 0.
We have proved
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LEMN’IA.4.3.2 If V is finite-dimensional and v # Q€ V, then there 15 an
element € V such thet f (v) # 0.

In fact, Lemma 4.3.2 s true if V' is infinite-dimcnsional, but as we have
no need for the result, and since its proof would involve logical questions
ihat arc not relcvant at this lime, we omit the proof.

Let 2y € V, where Vis any vector space over F. As f varies over ¥, and
up is kept fixed, £ (u,) defincs a functional on V inlo F; note that we are merely
interchanging the vole of function and variable. Lelus denole this function by T ;
in other words I, (f) = f(z) for any Ffe¥. What can we say aboul
7.5 To begin with, T, (f + &) = (f+ &) =f(w) + &) =
To(f) + Tule); furthermore, Ty (Af) = (4)(z0) = 4 (30), = ATo(1)-
Thus 7', is in the dual space of 1! We write this space as ¥ and refer Lo
it as the second dual of V.

Given any element v & V we can associale with it an clement T, in 7.
Define the mapping WiV — V by o = T, for every we V. Is ¢ a homo-
morphism of F into 77 Indeed itis! For, T, () =f(v +w) =f{0) +
J@) = T + Tlf) = (T, + T(f), and s0 Ty = T, + T,
that is, (v + @) = wf + ayp. Similarly for Ze £, (Anjy = Alngr), Thus
W defincs a homomorphism of V' into . "The construction of  used no
basis or special properties of Vs it Is an ¢xample of an invariant consiruction.

When is f an isomorphism? To answer this we must know when o =0,
or cquivalently, when 7, = 0. But if 7, =0, then 0 = T =f®
for all fe . However as we pointed oul, withoul proof, for a gencral
vector space, given v # 0 there is an fe ¥ with f(2) # 0. We actually
proved this when ¥ is finite-dimensional. Thus for ¥ finitc-dimensional
fand, in fact, for arbitrary V) s is an isomorphism. However, when ¥ is
finite-dimensional ¥ is an isomorphisn onto f}; when 7 is infinite-dimen-
sional ¢ is not onto.

If I is finile-dimensional, by the sccond corollary o Theorem 4.3.1, ¥
and ¥ arc of the same dimension; similarly, i and ¥ are of the same dimen-
sion; singe i is an isornorphism of V into f}, the equality of the dimensions
forces i 10 be onto. We have proved

LEMMA 433 I V is finite-dimensional, then 1 is an isomorphism of V ondo .

We henceforth identify ¥ and ¥, keeping in mind that this identification
is being carried out by the isomorphism .

DEFINITION If W is a subspace of V then the anmikilator of W, A(W) =
{(feV|fi{w) =0allwe W} .

We leave as an cxercise Lo the reader the verification of the fact that
A{W) is a subspace of 7. Clearly if U < W, then (U} > A(W).
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Let W be a subspace of' ¥, where V is finite-dimensional. If fe F lei
£ be the restriciion of fto H; thus flb defined on W by f (w) f(w) for
cvery w e W, Since fe 7, clcarlyfe W. Consider the mapping 1=V —» W
defined by f7 = [ for fe V. It is immediate that { f + g) T = fT + ¢T
and that ()T = A(/7T). Thus 7 is a homomorphism of ¥ into W
What is the kernel of 77 If £is in the kernel of T then the restriction of f
to W must be 0; that is, f{w) = 0 lor all we ¥, Also, conversely, il
J(w) = 0for all we W then [ig in the kernel of 7. Therefore the kernel
of T'is cxactly A(W).

We now claim that the mapping T is onto . What we must show is
thal given any element # € W, then £ is the restriction of some fe F, that
is & =4 DBy Lemma 4.2.5, if w,,...,,, is a basis of W then it can be
expanded to a basis of ¥ of the form w, ..., w0, vy,. .., 7, where r + m =
dim V. Let W, be the subspace of V¥ spanned by v,,...,0,. Thus ¥V =
W@ W, If ke Wdcfine fe Fby: lel e V be written as » = w0 + iy,
we W, w € W,; then f(v) = h{w). It is casy to see thal £1s in I and that
F=h Thush=fTandso T maps ¥ onto W, Since the kernel of 7" is
A(W) by Theorem 4.1.1, W is Isomorphic to V]A{W). In particular they
have the same dimension. Let m =dim W, n =dim FV, and r = dim
A{W). By Corollary 2 to Theorem 4.5.1, m = dim W and # = dim ¥,
However, by Lemma 4.2.6 dim F/A(W) = dim V — dim AW} = 2 — 1,
and so m = r — ». Transposing, r = n — m. We have proved

- THEOREM 4.3.2 If V is finite-dimensional and W is a subspace of V, then
W is isomorphic to VIA(WY) and dim A(W) = dim ¥ — dim W.

COROLLARY A(4(W)) = W. -

Proof. Remember thai in order for the corollary even to make sense,
since W < Vand A{4(W)) < ﬁ, we have identified V with 7. Now W <
A(A(W)y, for if we W then wiff = T, acts on V by T,(f) =/ () and
20 is O for all fe A(W). However, dim 4{A(W)) = dim ¥ — dim A(W)
{applying the theorem to the vector space ¥ and its subspace (M) so
that dim A(A(W)) = dim F — dim 4(W) = dim ¥ — (dim ¥ — dim W) =
dimAV. Since W < A4{A(W)) and they arc of the same dimension, it
follows that W = A(A(W))

Theorem 4.3.2 has application to the study of systems of linear homogeneons
equations. Consider the system of m equations in # unknowns

ayx; + @ya¥y + o+ by, = 0,

%y F dyp%; + -+ dy, = 0,

LT T N R - -

]
L
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where the a;; are in F. We ask for the number of linearly independent
solutions (%, ..., x,) there are in F to this system.

In 7 let U be the subspace gencrated by the m vectors (a,,,a,4, - - - ,a,),
{8213 @azs v oo s Baply-vos (Byly By + - 2 gt and suppose that {7 is of
dimension 7. In that case we say the system of equations is of rank r.

Lety, = (1,0, ...,0, 0, =(0,1,0, ...,0, ...,e, = (0,0, ..., 0, 1)
be used as a basis of K™ and let ), 8, ..., 5, be its dual basis in F,
Any feB® i of the form f = #,8, + wd, + '+ + 2,6, where the
x el When is fe A(U)? In that case, since (g,y,...,4,, € U,

O =fla a5 24,

=flan + 7+ Gy

= {10y b %30y + o0+ w0 (a0 F o ayD,)

= #plyy b Xpdyp bt ok Ky,
stnece §y(v;) = Ofori # jand §;{»;) = 1. Similarly the other cquations of the
system arc satisfied. Conversely, every solution (x,,...,&,) of the system
of homogeneons cquations yiclds an element, 2,8, + -+« + %0, in A{L7.
Thereby we see that the number of linearly independent solutions of the

systemn of equations 1s the dimension of A{L}, which, by Theorem 4.3.2 is
a — r. We have proved the fellowing:

THEOREM 4.3.3 If the system of homagencous linear equakions :
apty ko oagx, =0,

¥y 0+ agx, = 0,

&%y + 0+ g, =0,

where a,; € F is of rank v, then theve ave n — 1 linearly independent solutions in
R,

COROLLARY If 2 > m, that is, if the number of unknowns exceeds the number
of equations, then there is a solution (x,, ..., %) where not abl of x,, .. ., x, are 0.

Froof. Since U is generated by m vectors, and m < 1, 7 = dim 7 5
m < n; applying Theorcm 4.3.3 yields the corollary.

Problems

1. Prove that (W) is a subspace of V.

2. T 8 is a subsct of V let 4(S) = {fe V| f{s) = QaliseS} Prove
that A(S} = A(L(S)), where L{5) is the linear span of S, :
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8. If §, TeHom (V, W)} and #,8 = »,T for all elements o, of a basis
of V, prove that § =

4. Complete the proof, with all details, that Hom (V, W) is a vector
spacc over F.

5. If if denctes the mapping used in the text of ¥ into 7, glve a complete
proof that i is a vector space homomorphism of ¥ into ¥,

6, If V iz finite-dimensional and ¥; # vy are in V, prove that there Is an
J e Vsuch that £(z,) # fiv).

7. IF W, and W, are subspaces of ¥, which is finitc-dimensional, describe
A(W, + W,) in terms of A(W,) and A(W,).
8. If Vis a finite-dimensional and W, and W, are subspaces of V, deseribe
AW, n W3l in terms of A(W,) and A{ W),
9. If Fis the field of rcal numbers, find A{W) where
{a) Wisspanned by {1, 2, 3) and (0, 4, — 1.
{b) W is spanncd by (0,0, 1, —1), (2, 1,1, 0, and (2,1, 1, —1).
10. Find the ranks of the following systems of homogeneous lincar equations
over ¥, the field of real numbers, and find all the solutions.
{a) %, + 2%, — 3x; + 4wy = 0,
x + 3xy — x; =0,
6y, + xy + 2¢, = 0.
(h) & + 323 4+ a3 = 0,
rp F dx; 4 oxy =0,
{c) &y + %3 + 25 + x4 + x5 =0,
X + 24 =0,
dx, + Twg + X3 + xy + x5 =0,
X2"—x3'—x4“x5=0.
11. If f and g are in ¥ such that £ (¢) = 0 implics g(z) = 0, prove that
£ = Afforsome L e F.
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Inner Product Space

In our discussion of veetor spaces the specific nature of F as a ficld, other
thaprthe fact that it is a field, has played virtually no role. In this section
we no longer consider vector spaces V over arbitrary fields I7; rather, we
restrict 7 to be the field of real or complex numbers. In the first case ¥
is called a rea! vector space, in the second, a romplex vector space.

We all have had some cxpericnce with real vector spaces—in Fact both
analytic geomcetry and the subject matter of vector analysis deal with thesc,
What concepts used there can we Carry over to a more abstract sctting?
To begin with, we had in these concrete cxamples the idea of length;
secondly we had the idca of perpendicnlarity, or, more generally, that of
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angle. 'Phese became special cases of the notion of a dot product (often
called a scalar or inner product.)

Let us recall some properties of dot product as it pertained 1o the special
casc of the three-dimensional real vectors, Given the veclors ¢ = (2], 45,43
and w = (4, ¥a, ¥a), where the #'s and 3’s arc real numbers, the dot prod-
uct of » and w, denoted by v-w, was defined as v-w = 3, + 2,0, +
%¥3¥3. WNotc that the length of # 1s given by \/zr- v and the angle § between
# and w is determined by

0 v
[ols 13 N

What formal properties does this dot product enjoy? We list a few:

Loz @0ande-» = 0iland only if v = O
20w = wro;
3. w-{ow + fw) = alu-0) + Blu-w);

for any vectors #, v, w and real numbers a, f,

Everything that has heen said can be carried over to complex vector
spaces. However, to get geometrically reasonable definitions we must make
some modifications. If we simply define s-w = x5, + x00 + x5, Tor
v = (w), %3, ¥3) and w = {3y, ¥, ¥;), where the x5 and 3's are complex
numbers, then it is quite possible that »-» = 0 with # % 0; this is illus-
trated by the wvector v = (1,4 0}, In fact, #-2 need not even be real. 1f,
as in the real casc, we should want oz 2 to represent sormnchow the length of
#, we should like that this length be real and that a nonzero vector should
not have zero length.

We can achieve this much by alicring the definiiion of dot product
slightly, Il % denotes the complex conjugate of the comaplex number &,
rcturning to the » and w of the paragraph above let us define v w =
X, ¥ + X3 + x3%;. Tor real veciors this new definition coincides with
the old one; on the other hand, for arbitrary complex vectors o % 0, not
enly is #- o real, it is in fact positive. 'Thus we have the possibility of iniro-
ducing, in a natural way, a nonncgative length. However, we do lose
something; for instance it is no longer true that z-w = w-z. In fact the
exacl rclationship between these is 2-w = w- v, Lot us list a few properties
of this dot product:

W o= D

'y = 0,and v-p = 0ifand only if ¢ = 0
lae + fin) ~w = aflu-w) + f{o-w);

4. u- (o + Pw) = Fu-o )+ Flu-w);

[
12

I
2.
3.

for all complex numbers &, § and all complex vectors u, 7, w.
We reiterate that in what follows & is ¢ither the field of real or complex
numbers.



Free Hand


P

A

Sec. 4.4  Inner Product Spaces

DEFINITION The vector space F over F is sald 1o be an éwmer product
space if there is defined for any 1wo vectors u,pe V an element (, ¢} in
Fsuch that

1. (u, #) = (v, u);
2. {(w,#) = 0and {u, y) = 0ifand only il s = Q;
3 (on 4 Po, w) = alu, w) + o, w);

forany w,0,we FVand o, fe F.

A few observations about properties I, 2, and 3 are in order. A function
satisfying them is called an inner product. 1f Fis the field of complex numbers,
property 1 Implies that (u, #) is real, and so property 2 makes sense. Using
1 and 3, we see that (w, 0 + fw) = (w2 + Bw, u) = a(v, u) + flw, ) =
& w) + Plww) =%, o) + Blu, w).

We pause to look at some examples of inner product spaces.

Example 441 TIn F® define, for # = (0;,...,a,) and o = (f,,...,
By (o) = Py + aoffy + 0 + 2,8, This defincs an inner product
on £,

Example 4.4.2 In F{? define for # = (1, ;) and v = {§,, f.), (u, v} =
20,8, + oy ff; + @B + 2,B,. It is casy to verify that this dcfines an
inner product on F'2,

Example 44,3 Let V be the sct of all continuous complex-valucd
functions on the closed unit interval [0, 1]. If £ (1), g{t) & V, dcfine

1
0800 = | £ 5
o
We leave it 1o the reader to verify that this defines an inner product on V.

For the remainder of this scetion ¥ will denote an inner product space.

DEFINITIGN If e F then the length of v (or norm of 2), written |z|, is
defined by |2} = V’f{v, )N

LEMMA 441 If w,veV and o, feF ithen (ow + Pv,an + fo) =
o (u, u) + wfilu, o) + Tlw @) + pR v).

Froof. By property 3 defining an inner product space, {ow + po, au +
B} = a(u, o + fo) + Blv, au + Br); but (w,au + fo) = &(u, u) + fu, 0)
and (#, ax + Bv) = %{v, u) + Blv, v). Substituting these in the expression
for {an + fiv. ax + PFo) we get the desired result.

193
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COROLLARY  |eu| = jof u?.

Proof. |leuj® = (s, o) = ef(w,u) by Lemma 441 (withv = 0).
Since 0@ = lz|? and (z, %) = ||z]?, taking squarc roots yields [on] =
fot] fell -

We digress for a moment, and prove a very e¢lementary and familiar
rcsult about real quadratic equations.

LEMMA 442 Ifa, b, are real numbers such that a > O and al® + 261 +
¢ = O for all veal numbers 1, then b* < ac.

Proof.  Completing the squares,

2
alz+le+c=l(al+bj2+(s—é—-).
44 i

Sinec it 1s greater than or equal to 0 for all J, in particular this must be
truc for 4 = —#ja. Thus ¢ — ($*{z) > 0, and since & > 0 we gel b < ac.

We now proceed to an cxtremely important incquality, usually known
as the Schwarz inequality

THEOREM 441 Jfu ve Vthen |(z o) < [ull ]2].

Proof. If u =0 then both (7)) =0 and || [¢] = 0, so that the
result is iruc there,

Suppose, for the moment, that (s, v} is real and # # 0. By Lemma
4,41, for any rcal mumber 4, O < (du + o du + ¥} = A2(u, u) +
2m, v)A + (2, v) Let a = (uu), b—(n v}, and ¢ = (v, v}; for these the
hypothesis of Lemma 4.4.2 is satisfied, so that 4* < ac. That Is, (u, 7)? <
(u, #){», ¥); from this it is immediate that [{w.2}] £ [Juf] {2l

Ifa = {u,v) 15 not r(‘al then # ccrtainly is not 0, so that ufo is mean-

ingful. Now,
u 1 1
(;, ﬂ) = (z, ¥) = o ) (w, ¥) = 1,

and 50 it is certainly real. By the case of the Schwars incquality discussed
in the paragraph above,

- e

o

L

1l = <

SINCE

1
= — [l
|ox]
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we get

llell =l

| =« ———

}
ot}

whence |x| < || ||lz]. Putting in that o = (z, ) we obtain |{, 2)| <
I« I2]. the desired result,

Specific cascs of the Schwarz inequalily are therselves of great interest,
We poinl out iwo of thom.

LIV =F with (#,0) = oyff, + - + a,f, wherc a2 = (o;,...,4,)
and v = (f},..., f,), then Theorem 4.4.1 implies that

lagfly A o agBe 1 < Ueyl® + - o I7)(8, 17 + -+ 1BA7).

2. If I is the set of all continuous, complex-valued functions on [0,17 with
inner product defined by

(fie): glt)) = J F) g6 4,
a

then Theorem 4.4.1 implics that

jlm @ a'sr < J

o

1 1

FAGIRE j lg(t)]? dt.

o

The concept of perpendicularity is an extremcly useful and important
one in geometry. We introduce its analog in general inner product spaces,

DEFINITION If », v e ¥ then u is said to be orthogonal to v if {u, v) = Q.

Note that if u.is orthogonal to » then v is orthogonal to «, for (s, u) =

(% 7) =0 = 0.

DEFINITION If W is a subspace of V¥, the orthogonal complemeni of W,
W+, is defined by Wh = {x e V|{x, w) = Oforall we W}

LEMMA 443 W' isa subspace of V.

“Proof. If a, be W* then for all o, fe # and all we W, (ua + b, w) =
#(a, w) + p{b, w) = 0 since a, be W

Note that W W' = (@), for if w e W A W it must be self-orthogonal,
that is (w,w) = 0. The defining properties of an inner product space
rule out this possibility unless w = 0.

One of cur goals is to show that ¥ = W + W*. Once this is done,
the remark made above will beeome of some interest, for it will imply that
¥ is the direct sum of W/ and W1,
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DEFINITION The set of vectors {z,} in ¥ is an orthenormal set if

1. Each v, is of length 1 (fe, (z;, v, = 1}.
2. Fori #j, {3pv;) = 0.

LEMMA 4.4.4 If {v;} is ar orthonormal sel, then the veclors tn {p.} ave linearly
tndgpendent. If w = oo, + -+ oy, then oy = (w, o) for i =42, .., 0

-

Proof. Supposc that @, + ova + -+ + 0,2, = 0. Therefore 0 =
(oo, -0+ o0, ) = oy, v 4 -0+ o, 0). Since (v, 2) = 0
for j # ¢ while (p,»,) =1, this equation reduces to a; = 0. Thus the
#;'s arc lincarly independent.

Hw = + 4+ o2, then computing as above yiclds {w, ») = 2,

Similar in spirit and in proof to Lemma 4.4.4 is

LEMMA 445 Jf {p,,...,#,} ir an orthonormal set in V and if we V, then
o= w — (w, o)y — (w000 — 0 — (0 208 — 0 — (W, 10, W
orthogonal (o each of 01, ¥, .0 vy U

Proof. Computing (x, #;) for any ¢ < », using the orthonormality of
Ups - -5 U, yviclds the resuli.

The construction carried out in the proof of the next theorem is one which
appears and reappcars in many parts of mathcmatics, It is a basic pro-
cedure and is known as the Grem-Schmidi erthogonalization process. Although
we shall be working in a finite-dimensional inner product space, the
Gram-Schmidt process works equally well in infinitc-dimensional situations.

THEOREM 4.4.2 L V be a finite-dimensional inner product space; then V has

an orthonormal sef as a basis.

Proof. Let Vbe of dimension z over F and let o, ..., ¢, be a basis of .
I'rom this basis we shall construnet an erthonormal sct of n vectors; by
Lemma 4.4.4 this set is lincarly independeni so must [orm a basts of F.

We procced with the construction. We seek n vectors w, ..., w, each
of length | such that for i # j, (w; w;) = 0. In fact we shall finally
produce them in the following form: 2, will be a multiple of »,, @, will be
in the linear span of w, and v,, w, in the linear span of w,, w,, and ¥, and
more generally, wy in the linear span of wy, wy,. .., W, 0

Let
vy =

Yol

v F 1
(w,w>=(—',—1)=——w,v>=1,
Y el T !

then




Sec. 44 Inner Product Spaces

hence || = 1. We now ask: for what value of « is s + 24 orthogonal
@ ? All we nced s that {ow, + oy, @) = 0, that Is w(w, ) +
= 0. Since (w,wy) =1, & = —(v;, w) will do the trick, Let

—({v,, wyliwy + ¥3; u, 15 orthogonal to w,; since o, and #, are linearly

dependcnt w, and #, must be linearly independent, and so u, # 0.

wy = (#yf]2,1); then {wy, w,} i3 an orthonormal sct. 'We continue.
gt us = — (g, w0y — (vg, )y + 053 a simple check verifics that
gy, 0] = (my, wy) = 0, Bince wy, w,, and »; are linearly independent

for te, 0, arc in the linear span of v, and 23}, #; ¥ 0. Let wy = (u,/]u;]]);
en {w,, wy, w3} is an orthonormal set. The road ahead 13 now clear.

15 -+~ U which form an orthonormal set. How do we construct the next

ne, wp," Merely put w = —{op,, @) — (04, wylw, — 0 —

g0, - - -, w; we leave to the reader. Putw;,, = {u; . fllm . ]}!

In this way, given v lincarly independent clements in V, we ean construct
n orthonormal set having + elements, T particular, when dim V' = #,
rom any basis of I/ we can construct an orthonormal set having » elements.
This provides us with the required basis for 7.

- We illustrate the construction used in the last proof in a concrete case.
Let F be the real ficld and let ¥ he the set of polynomials, In a variable #,
fover F of degree 2 or less. In ¥ we define an inner product bhy: if p{x),
-g{x) e V, then

(B0, ) = f‘p(x)qw "

-1

Let us start with the basis o, = [, v, = %, 1; = x? of V. Following the

construction used,

LE 1 I

uy, = _— e = ===
1
bzl \/j 1 de Ng.
-1
#y = — (v, wilwy + vy,

‘which after the computations reduces to #, = #, and so
u x 3
2 — \/ 3 X

s j“" V2
N

-1

w2=

finally,

-1
#y = — (23, 6) w; — (03, 00) wy + 73 = 3 + %%,

wppose that we have constructed w, w,, ..., w, in the linear span of

B, W@y + 24 That ., # 0 and that it is orthogonal to each of
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and so

sl \”1 (___1 N xz)z 4
—1h 3

We mentioned the next theorem earlicr as one of our goals. We are now
ablc to prove it.

THEOREM 4.4.3 ¥ V is a finite-dimensional inner product space and if W is
a subspace of V, then V.= W + W', More particularly, V is the divect sum of
W and W',

Proof.  Because of the highly gcometric nature of the result, and because
it is so basic, we give scveral proofs, The first will make use of Theorcn
4.4.2 and some of the carlier lemmas. The sccond will be motivated geo-
metrically,

First Proof.  As a subspace of the Inner product space V, W is itsclf an
inner produet space (its inner product being that of V restricted to W),
Thus we can find an orthonormal set wy, . . ., w, in W which is a basis of W.

It veV, by Lemma 445, v, =0 — (o, w)wy — (0, w;)w, — -+ —
{#, w,jw, is orthogonal to each of w,...,#, and so is orthogonal to W.
Thus wsye W', and since v =, + {(g, 0w, + -« + (0, w,)w,), ve

W + W*. Therefore V=W + W Since W n W' = (0), this sum is
direct.

Second Proof. In this proof we shall assume that F¥ is the field of real
numbers. The proof works, in almost the same way, for thc complex
numbers; however, it entails a few cxtra details which might tend to obscure
the cssential ideas used.

Let v € V; supposc that we could find a wvector w, € W such that
lo — wo| < |l# — w| for afl we W. We claim that then (0 — wy, w) = 0
for all e W, that i3, 2 — w, € W2,

If w e W, then w, + w e W, in consequence of which

{”_woai’_wo)5(”"(3”0‘1‘5“):”*(&'0""3”})‘

However, the right-hand sidc is (w, ) + (0 — wy, 0 — wy} — 2(:,-.— el 1],
leading to 2{(» — wy, w) < (w,w) for all we W. If m is any positive
integer, since w/m € W we have that

E{a—wo,w}=2(v—wo;f)$(gsz£)="l—z{waw%.
m 2] m i

and so 2(n — wy, ) < (1/m)(w, w) for any positive integer m. Howevcr,
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{lfm (w, w] — O asm ~ 00, whenee 2(p — wy, w) < 0. Similarly, —we W,
and 50 0 < =200 ~ wp, w) = 2(p — wy, —w) < 0, yielding (2 — wy, w)
e 0 for all w e W. Thus 2 — o€ W hence vew, + W' < W + Wi
. To finish the second proof we must prove the cxistence of a wye W
ch that {# — wyl| = |lv — w| for all we W. We mdlcate skewchily two
ys ol proving the cxistence of such a w,.

Let ul, .-ty be a basis of W thus any we W is of the form » =
gy + i Let By = {u,u;) and let y; = (p,4,) for ve V. Thus
=W —w) = (v — Ay — e — A, — Ay — — Ay) =
(o, 7} — 2448, — 284y This quadratic function in the Xy is nonnegative
and so, by results rom the calculus, has a minimum. The A’s for this
pinimum, 4,19, L, L give us the desired vector w, =
'_3_1(0)1,1 o )kaﬂ)ﬂk in W

A second way of exhibiting such a minimizing w is as follows. In ¥ dcfine
a metric £ by {(x, 5] = ||x — p|l; one shows that { is a proper metric on V,
and ¥ is now a metric space. Let S = {we W | e — w] < |lz|}; In
this metric & is a compact set (provel) and so the continuous function
Fw) = ||v — w| defined for we 8 takes on a minimum at some point
wy €8. We leave it to the reader to verify that m, is the desired vector
satistying v — wyl| < |v — w| for all we W

COROLLARY  If V is a finile-dimensional inner produst space and W is g subspace
of V then (WHL = W,

Proof. If weW then for any we W'Y, (w,u) =0, whence W o
(WH Now V= W+ W and V= W' + (WL from these we get,
since the sums arc direct, dim (W) = dim (W), Since W c (Wt
and is of the same dimension as (W?1)4, it follows that W = (W)L,

Problems
In all the problems ¥ is an inner product space over F.
1. If F is the real ficld and V is #1®, show that the Schwars inequality
ierlies that the cosine of an angle is of absolute value at most 1.

2. If F is the real ficld, find all 4-tuples of rcal numbers (g, 4, ¢, d) such

that for u = (%, %), v = (B,,f:) e FP, (u,2) = a% By + buyfi, +
ety fi; + daafi defines an inner product on #(2),

3. In ¥V define the distance £{u, s) lrom  to » by {(%, v} = ||lu — 3|. Prove

thai

(a} £(u, v} = Gand {{x, v} = 0 ifand only if u = »,
(b} {(w,v) = Lo, w).

{c) i, z:) < {{w, w) + {{w, o) (trianglc inequality).

1
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10,

11.

12.

- I {ey,y .. ., e, } 15 an orthonormal set in V¥, prove that

[(w;, 2|2 < || forany v e V.

(Bessel mnoquality)

. If ¥ is finite-dimensional and if {w,, ..., #,} is an orthonormal set in

F such that

m

3 (e, 0] = [o]?

=1

for every o e ¥, prove that {w,, . .., w,} must be a basis of V.

.HdimV=nand if fw,,...,w,} is an orthonermal set in V, prove

that there cxist vectors wy, 4, .- -, W,
.« B, } Is an orthonormal set (and basis of V).

such that fw, ..., w,, w,, |,

. Usc the result of Problem 6 to give another prool of Theorem 4.4.3,
- In V prove the parallclogram law:

l + 21% + Jlu — 2|* = 2(llel® + |2 %).

Explain what this means geometrically in the special case V' = F),
where F is the real ficld, and where the inner product is the usual dot
product.

. Let ¥ be the real functions 3 = f(x) satisfyving d2n/dx® + 9y = 0.

{a) Prove that Vis a two-dimensional rcal vector space.

(k) In Fdecfine (5 2) = J. »z dx. Find an erthonermal basis in V.

0
Let ¥V be the set of rcal functions y = f () satisfying
3, 2

3 _ 647

dy
=5 dx2+11d_x—sy=o.

(a) Provc that ¥ is a three-dimensional real vector space.
(k) In ¥V define

]
(u, ) = J. uw d.

Show that this defines an inner product on ¥ and find an ortho-

normal basis for V.

Il W is a subspace of V and if v e V satisfies (o, w) + (w, #) < (0, w)
for every we W, prove that (v, w) = 0 for every we W, :
If ¥ is a finite-dimensional inncr product space and if £ is a linear

functional on ¥ (i.e., fe F), prove that there is a #, € V such that
Sl ={o,u)forallve V.




UNIT - IV

The Algebra Of Linear
Transformations

‘Let ¥ be a vector space over a ficld F and let Hom {V, ¥V}, as before, be
- the sel of all veclor-space-homomorphisms of ¥ into itself. In Scction 4.5
swe showed that Hom (F, V) forms a vector space over F, where, for
Ty, TyeHom (V, V), Ty + T, is defined by (T} + T,) = vT + v7,
for all v€ V and where, for we F, a7} is defined by #{aT)) = vy ).

For T, Ty e Hom (¥, V), since #T, € V for any ve V, (#7,)}7, makes
ense. As we have done for mappings of any set into itsclf, we define
T, T, by o{T Ty} = (vT,)T, for any ve V. We now claim that N T,e
Hom (V, VV}, To prove this, we musi show that for all ¢, § € Fand all
u,ve V, {au + fo)(1,7,) = a(u(T,7,)) + B{p{T,T,)). We compute

(e + Poy(TyT5) = ((aw + p) T T,

{a@@Ty) + BoTy)) T,

alufy) Ty + BET)T,

a(w(Ty73)) + Blo(T1T,)).

We lcavc as an exercise the following propertics of this product in
Hom (¥, ¥):

LT + TT, = N1y + 1,713
. Ts(f'I + T3) = T37) + Th T3
. TI(TZT.’.) = (TxTz}Ts;

- (T To) = (wT,y) T, = Ty(aTy);

Notc that propertics 1, 2, 3, above, are exacily what are reguircd to
akc of Hom {V, '} an associative ring, Property 4 intcrtwines ihe
haracter of Hom (F, ¥}, as a vector space over I, with its character as a
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Note further that there is an element, I, in Hom (V, V), dcfined by
of = » for all ve V, with the property that T/ = IT = T for cvery Te
Hom (V, V). Thereby, Hom (V, ¥7) is a ring with a unit clement. More-
over, if in property 4 above we put T, = I, we obtain o, = Ty{al).
Since {af) Ty = a({T,) = aT}, we sce that (0T, = Ty(al) for all T,
Hom (V, ¥), and so of commutes with every element of Hom (V, V).
We shall always write, in the future, ol merely as o.

DEFINITION An associative ring 4 is called an algebra over F if A is o
vector space over I such that for all ¢, bed and el alab) = (ea)b =
a(ab).

Homomorphisms, isomorphisms, ideals, ctc., of algebras are dcfined as
for rings with the additional provise that thesc must preserve, or be in-
variant undcr, the vector space structurc.

Our remarks above indicate that Hom (F, V) is an algebra over £ TFor
convenicnee of notation we henceforth shall write Hom (V, V) as A(V);
whenever we want to cmphasize the role of the ficld F we shall denote it by
Ag ().

DEFINITION A lincar transformation on V, over F, is an element of 4p(¥).

We shall, at times, refer to A(V) as the ring, or aigebra, of Iinear frems-
Jormations on V.

For arbitrary algebras A, with unit clement, over a field F, we can prove
the analog of Caylcy’s theorcm for groups; namely,

LEMMA 6.1.1 If A is an algebra, with unit elsment, over I\, then A 1s isomorphic
to a subalgebra of A(V) for some vector space V over I,

Proof, Since 4 is an algebra over F, it must be a vector space over ™
We shall use ¥ = A to prove the theorem. :

If ac 4, let T,:A - A be defined by o7, = va for every ze 4. We
assert that T, is a lincar transformation on ¥(=4). By the right-distribu-
tive law (v, + )7, = (o, + vy)a = 0,08 + vp2 = ¥, T+ v, T, Since 4
is an algebra, ()T, = (w0)a = a(va) = w(oT,) for ved, aelf. Thus
T, is indeed a lincar transformation on 4.

Consider the mapping ¢:4 — A(V}) defined by af = T, for every
ae A We claim that i is an isomorphism of 4 into A(V). To begin with,
if a,bed and w, BeF, then for all ved, vT i = v{ea + BBy =
afva) + B(ob) [by the left-distributive law and the fact that A is an algebra
over F] = afeT,) + BT, = v{aT, + BT;) since both 7, and T; are
lincar transformations. In consequence, Tagep = 07, + BT, whence ¥
is a vector-space homomorphism of 4 into A(V). Next, we compute, for




Sec. 6.1 Algebra of Linear Transformations

g, bed, o1, = vlab) = (va)b = (0207, = o(T,T,) {we have uscd
- the associative law of 4 in this computation), which implies that 7, =
-_ T.T, Tn this way, ¢ is also a ring-homomorphism of 4. So lar we have
" proved that y is a homomorphism of 4, as an algebra, Into AV}, All that
remains is to detcrmine the kernel of . Let e € 4 be in the kernel of ir;
then af = 0, whence T, = 0 and s0 27, = U for all pe V. Now F = A,
and A has a unit element, e, hence 67, = 0. However, 0 = 7, = ez = g,
roving that ¢ = 0. The kernel of  must therefore merely consist of {,
hus implying that i is an isomorphism of A into A(1). This completes the
prool of the Iemma,

. The lemma points out the universal role played by the particular algebras,

= A(V), for in these we can find isomorphic copies of any algebra.

Let 4 be an algebra, with unit element ¢, over F, and let p(z) = o, +
_-'-;'clx + o+ @ be a polynomial In Flx]. Tor ae d, by #(z), we shall
. mean the element oge + @6 + -+ 4+ o,6" in 4. If pla) = 0 we shall say

_l & satisfies pix).

LEMMA 6.1.2 a4 be an algebra, with unit element, over F, and suppose that
.- A 15 of dimension m over . Then every element in A satisfies some nontrivial poly-
. nomial in Flx| of degree al most m.

i Proof. Let ¢ be the unit element of 4; if ae d, consider the m + 1
elements e, 2, 6%, ..., @ in 4. Since 4 is m-dimensional over I, by Lemma
424, ¢,a,4% ..., 4" being m + 1 in number, must be linearly dependent
';fl:m:r F. In other words, thore are clements %ps Epy -5 0, in F, not all
40, such that age + 2,¢ + -+ + 2,4™ = 0. But then z satisfies the non-
+ rivial polynomial glx) = oy + ayx + -+ + %", of degree at most #,
“iin Fla).

“'. If ¥ is a linite-dimensional vector space over F, of dimension n, by
= "Gorollary 1 to Theorem 4.3.1, A(F} is of dimension n? over F. Since A(V)
.18 an algebra over F, we can apply Lemma 6.1.2 to it 1o obtain that every
‘element in A(V) satisfics a polynomial over F of degree at most n2. This
ifact will be of central si gnificance in all that follows, so we single it out as

HEOF{EM 611 Ir V{; an n-dimensional vector space over F, then, given any
wament I in A(V), there exists a nonirivial polynomial q(x) e FF [x] of degree at
Most 2, such that ¢{ T) = 0.

We shall see later that we can assert much more about the degrec of ¢{x);
M fact, we shall eventually be able to say that we can choose such a g{x}
of degrec at most n. This fact is a famous thcorem in the subject, and is
own as the Cayley-Hamilton theorem. For the moment we can get by
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without any sharp estimate of the degree of ¢{x}); all we nced is that
suitable g{x) exists.

Since for finitc-dimensional ¥V, given T e A{V), some polynomial g{x)
cxists for which ¢{7) = 0, a nontrivial polynomial of lowest degree with
this property, p{x}, cxists in F[x]. We call p{x) a minimal polynomial for T
gver F. IF T satisfies a polynomial &{x), then #(x) | &{x).

DEFINITION An clement T e A(V) is called right-invertible if there exists
an S e A{V) such that 7.5 = 1. {Here ! denotes the unit element of A{F).)

Similarly, we can definc lefi-invertible, if there is a Ue A(F) such
that T = |. If Tis both right- and lefi-anvertible and if T8 = UT = 1,
it is an easy exercisc that § = U7 and that § is unigue.

DEFINITION An element T in A(V) is nwertible or regular if it is both
right- and left-invertible; that is, if there is an element § e A(V) such that
ST = TS = 1. We write Sas T~ 1.

An element in A(V) which is not regular is called singufar.

It is quite possible that an element in A{}) is right-invertiblc but is not
invertible. An example of such: Let F be the field of real numbers and let
V be F[x], the sct of all polynomials in # over . In ¥ lect § be defined by

295 = L 403
dx
and T by

qMT=rﬂwm

Then ST £ 1, whereas 75 = 1. As we shall see in a moment, if V is
finite-dimensional over F, then an element in A(V} which is right-invertible
is invertible.

THEOREM 6.1.2 If V is finite-dimensional over F, then Te A(V) is in-
vertible if and only if the constant term of the minimal polynomial for T is not O,

Proof. Let p(x) = ag + ;% 4+ + 5%, o #£ 0, be the minimal
polynomial for T over F.

If oy # 0, since 0 =p{T) = o T* + o T* 1 oo 4+ oy T + 3, WE
obtain

1 = T( _ —l (aka-l -+ ka_lTk-z + -+ 41))
tn )

( - c:_u (g, T 4 oo 4 al))T.
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. 1 _
S == — (@7 + oty
%y

acts as an inversc for T, whenee T Is invertible,

Suppose, on the other hand, that T iy invertible, yet @, = 0. Thus
=T+ T o+ T = (o + T+ + 0, T )T, Multi-
cplying this relation from the right by T viclds o, + o, T + -+ +
" 771 = 0, whereby T satisfies the polynomial ¢{x) = o, + ayx + - +
#x*” ' in Flx]. Since the degree of ¢{x} is less than that of #{x), this is
‘' impossible. Consequently, o # 0 and the other half of the thcorem is
* " established.

COROLLARY 1 If V is finite-dimensional over F and if Te A(V) is in-
pertible, then TV is a polynomial expression in T over F.

Proof. Bince T is invertible, by the theorem, oy + o6, T+ -+ +
@, 7% = 0 with o, # 0. But then

7= 1 o, + o T 4+ o, T,
% 1

' COROLLARY 2 If V is finite-dimensional over F and if T € A{V) is singular,
then there exisis an 8 # 0 in AV such that 5T = TS = 0.

. Proof. Bccause T is not regular, the constant term of its minimal
polynomial must be 0. That is, p{x) = v + -+ + ¥, whence 0 =
o T4+ T If §=o + -+ T then §£0 (since
Ty o+ o~ 1 is of lower degrec than p(x}) and §T = TS = 0. -

" COROLLARY 3 If V is finite-dimensional over F and if TeA(V) is right-
- ingertible, then if is invertible.

: Proof. Let TU = 1. If T were singular, therc would be an § # 0
o such that ST = 0. However, 0 = (STHU = §(TU) = 851 = § # 0,
.. & contradiction, Thus T is regular.

We wish to transfer the in;pr‘mation contained in Theorem 6.1.2 and its

corollaries from A(V) to theaction of T on ¥. A most basic result in this
Vein g

"THEOREM 6.1.3 If V is finite-dimensional over F, then T'e A(V) is singular
Y and only if there exists av % 0 in V suck that o T = 0.

. Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if
“there is an § # 0 in A(V) such that §T = 7§ = 0. Since § # 0 there
"is an clement w € ¥ such that w$ # O
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Let o = w$; then 97 = (w8 T = w(ST) = w0 = 0. We have produced
a nonzero vector # in ¥ which is annihilated by 7. Conversely, il #7 =0
with v # 0, we leave as an exercise the fact that 7" is not invertible.

Woe seek still another characterization of the singularity or regularity of
a lincar transformation in terms of its overall action on V.

DEFINITION If Te A4(V), then the range of T, VT, is defined by VT =
0T |veV}

The range of T is easily shown to be a subvector space of V. Tt merely
consists of all the images by T of the elements of V. Note that the range
of T'is all of ¥ if and only if T is onto.

THEQREM 6.1.4 If V is finite-dimensional over F, then T e A(V) is regular
if and only if T maps V onte V.

Proof. As happens so often, one-half of this is almost trivial; namcly,
if T is rcgular then, given veV, v = (v7 17T, whence VT = V and
T is onto.

On the other hand, suppose that T is not regular. We must show that
T is not onto. Since T is singular, by Theorem 6.1.3, there cxists a vector
9, # 0in ¥ such that ; T = 0. By Lemma 4.2.3 we can fill out, from vy,

to a basis v, Dy, ..., v, of ¥. Then cvcry element in V7T is a linear com-
bination of the clements w, = 0, T, wy = v,7,..., w, = 2, 7. Since
w, =0, VT is spanncd by the n — 1 elements wg, ..., w,; therefore

dim VT <n — 1 < a=dim V. But then VT must be different from V;
that iz, 7T is not onto.

Theorem 6.1.4 points out that we can distinguish rcgular elements from
singular ones, in the finite-dimensional case, according as their ranges arc

or are not all of V. If Te A(¥) this can be rcphrased as: T is regular if

and only if dim (FT) = dim V. This suggests that we could use dim {V'7)
not only as a test for regularity, but even as a measure of the degree of
singularity {or, lack of regularity) for a given T € (V).

DEFINITION If V is finite-dimensional over F, then the rank of T'is the
dimension of VT, the range of T, over F.

We denote the rank of T by #{T). At one end of the spectrum, if (T) =
dim V, T is regular {and so, not at all singular}, At the other end, if
#(T) =0, then T = 0 and 50 T is as singular as it can possibly be. The
rank, as a function on 4(F), is an important function, and we now investigate
somc of its properties.

—
P
e




Sec. 6.1 Algebra of Linear Transformations

LEMMA 6.1.3 IfV is finite-dimensional over ¥ then for 8, Te A(V).

18T < r(T);
2. A7S) < A(T);

(and 50, (8T} < min {#(T), r(8)})
3. r(ST) = +{TS) = +(T) for § regutar in AV,
Proof. 'We go through 1, 2, and 3 in order.

L. Since V8 c V, V(§T) = (V$)T < VT, whence, by Lemma 4.2.6,
dim (F(§T)) < dim ¥T; that is, r(ST) < (7).

2. Suppose that #(T) = m. Therefore, VT has a basis of m elements,
Wy, W, .05 Wy But then (VT)8 is spanned by w,S, wyd, . .., w8, hence
. has dimension at most m. Siace 7{TS) = dim (V(TS)) =dim {((VT)$) <

m = dim VT = r(T), part 2 is proved.

.. 3. If § 55 invertible then VS = ¥, whence V{ST) = (VS)T = VT,

Thereby, (ST = dim (V(§7}) = dim (VT = ¢(T}. On the other hand,
- if ¥T has w,,...,w, as a basts, the regularity of § implics that w,S, . .,
0, arc linearly independent. (Prove!) Since these span V(T3] they farmn
©a basis of ¥(75). But then #{T$) = dim {(V(TS)) = dim (VFT) = »({T).

'-_:jCUROLLARY FTeAV)andifSe A(V) is vegular, then r(T) = F(STS™ L.

Proof. By part 3 of the lemma, r(STS™ 1) = r(S( 75" ) =r((T818) =
= r{T).

Problems

. In all problems, unfess siated obherwise, V will denote ﬁnitc-dimensioﬁa_l

. vector space over a field #.

L. Prove that § e A(V) is regular if and only if whenever oy,...,2, e V
are lincarly independent, then 0,8, 2,8, ..., v, are also lincarly
independent.

2. Prove that Te A(¥V) is completely determined by its values on a
basis of V. /

3. Prove Lemia 6.1.1 even when' A does not have a unit clement.

4. If 4 is the ficld of complex numbers and F is the ficld of real numbers,
then 4 is an algebra over F of dimension 2. For g = ¢ + Biin A4,
compute the action of 7, {see Lemina 6.1.1) on a basis of 4 aver #,

5. If ¥ is two-dimensional over ¥ and A — A{V), write down a basis
of 4 over F and compute T, for each ¢ in this basis.

6. Il dimg V > 1 prove that A(V) is not commutative.
7. In4(V)let Z= {TeA(V)|ST = TSforall §e A{¥)}. Prove that
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8.

*¥g

10.

11.

12.

13.

*14.

*15.
*16.

17.

18.

*19.

20.

21.

22,

23.

Linear Transformatians

Ch.6

Z merely consists of the multiples of the unit element of A{I") by the
elements of F,
If dimg {V) > | provec that A(F) has no two-sided idcals other than
{0y and A(F).

_ Prove that the conclusion of Problem 8 is false If ¥ i3 not finite-

dimensional over £

If ¥ is an arbitrary vector space over F and if Te A(¥) is both
right- and left-invertible, prove that the right inverse and left mverse
must be cqual. Trom this, prove that the inverse of 7 is unique.

If I is an arbitrary vector space over F and if T e A(V) is nght-
invertiblc with a umigue right inverse, prove that 7 is invertible.

Prove that the regular elcments in A{F) form a group.

If F is the field of integers modulo 2 and if ¥ is two-dimcnsional over
F, computc the group of regular elements in A() and prove that
this group is isomorphic to §;, the symmetric group of degree 3.

If F is a finitc field with g elements, compute the order of the group

of regular clements in 4(V) where Vis two-dimenstonal over F.
Do Problem 14 if P is assumed to be r-dimensional over F.

If V is finitc-dimensional, prove that cvery element n A{V} can be
written as a sum of regular clements.

An element E e A(V) is called an idempolent if E* = E. If Ee A(V)
is an idempotent, prove that ¥V =V, @ ¥, where g£ = 0 for all
e Vyand nE = o forall o, € V),

If Tedg(V), F of characteristic not 2, satisfies 7° = 7, prove
that V= ¥, @ I/, @ V, where

(a) vy € Vg implies 5,7 = 0.

{b) , € ¥V, implics v, T = »,,

¢} v € Vy implies 0, T = —wu,.

If ¥ is finite-dimensional and T # D e A(V), prove that therc is
an S & A(V) such that £ = T # 9 is an idempotcnt.

The clement T'e A{V) is called nilpotent if T" = 0 for somc m. If
T 15 nilpotent and if »T = aw for some v # 0 in ¥V, with x e F, prove
that & = Q.

If TeA{V) is nilpotent, prove that oy + o, T + w, T+ F
o, T* is rcgular, provided that oy # 0.

If A is a finite-dimensional algcbra over F and if a € 4, prove that
for some integer k > O and somc polynomial (x) € F[x]; g =
a1 pla),

Using the result of Problem 22, prove that for ¢ & A there is a poly-
nomial g(x) € F[x] such that a* = a**g(a).

;
i
i
]
f
i
f
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. Using the result of Problem 23, prove that given a4 either 4 is
nilpotent or therce is an element b # 0 in 4 of the form & — ak{a),
where A{x) € F[x], such that 5% = .

- If 4 is an algebra over FF (not necessarily finite-dimensional) and if
for a e 4, a® — a is nilpotent, prove that either a is nilpotent or there
8 an clement b of the form b = ah{a) # 0, where k{x) € F[x], such
that 4% = 5.

- If T # 0e A(¥) is singular, prove that there is an clement Se AV
such that 78 = 0 but §7 = 0.

- Let ¥ be two-dimensional over £ with basis 1, #2. Suppose that
TeA(V) is such that 3, T = ary + poy, 0, T = yo, + 6vy, where
@ B, ¥, 0 € F. Find a nonzero polynomial in F«] of degree 2 satisfied
by T.

. If Vis three-dimensional over F with basis U1y ¥z, 03 and if Te A(V)
is such that o7 = a;m 4 ®ialiy + O30y for 1 =1,2, 3, with all
o;; € F, find a polynomial of degree 3 in Fx] satisfied by 7

. Let ¥ be #-dimensional over F with a basis Ups« vy ¥y Supposc that
T e A(¥V) is such that

nT =, 0,7 =0;,...,0,_,T =3,
2,7 = —a — tyq9y — -+ — a0,
wherc %, ..., @, € £ Provc that 7T satisfics the polynomial

P =+ " 4w 4 1 g over TR

. If T'c A(V} satisfics a polynomial g(x) € F[x], prove that for Se

A(V), §regular, STS™! also satisfies g{x). -

- (a) If Fis the field of rational numbers and if ¥ is threc-dimensional
over £ with a basis ), ,, v;, compute the rank of Te A(V)
defined by

ni = — v,
T =2 +
037 = 1, + v,
{b} Find a vector ve ¥, v % 0. such that T = 0.

» Prove that the range of T and 7 = {ve VloT = 0} are subspaces
of V.,

ME TedAW), let Vy = {ze V|oT* = 0 for some k). Prove that
Vo is a subspace and that if 9T™ e Vo, then v e T,

- Prove that the minimal polynomial of T over F divides all polynomials
satisficd by 7 over F.

- I a{T) is the dimension of the U of Problem 39 prove that #(7T) +
#(T) = dim V.
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6.2 Characteristic Roots

For the rest of this chapter our intercst will be limited to lincar transfor.
mations on finite-dimensional vector spaces. Thus, henceforth, V will alivays
denvte @ finite-dimensional vector space over a field F.

The algcbra A{F) has a unit element; for ease of notation we shall write
this as 1, and by the symbol A — T, for leF, TeA(V) we shall mean
Al — T.

DEFINITION ¥ TeA(V) then AeF is called a characteristic rool {or
eigenvalue) of T if A — T is singular.

We wish to characterize the property of being a characteristic root in the
behavior of Ton V. We do this in

THEOREM B6.21 The element L€ F is a characteristic root of Te AV} if
and ondy if for somev # 0in V, T = Az

Proof. If 1is a characteristic root of 7 then 2 — T'is singular, whence,
by Theorem 6.1.3, there is a vector v % 0 in ¥ such that (1 — T} = 0.
But then lp = T,

On the other hand, if T = Ay for somc 2 # Oin V, theno{d — T} = &,
whence, again by Theorcm 6.1.3, A — 7 must be singular, and so, Alsa
characteristic root of T.

LEMMA 623 If AeF is a characteristic root of T & A(V), then for any
polynomial g(x) € F[x}, q(1) is a charactertstic root of ¢{T).

Proof. Suppose that L€ F s a characteristic root of 7., By Theorem
6.2.1, there is a nonzcro vector v in Vsuch that #T = Av. What about y72?

Now 272 = ()T = AxT) = (A} = A’. Continuing in this way;
we obtain that T* = M for all positive intcgers k. T g{#) = og#" +
k™! b+ oy, € F, then f?T) = ogT™ + &, T + -+ tye
whence  og(T) = ol T™ + o, T™ 7+ 4 o) = oloT™) + o 077 N+
o g g = (dgA™ 4 o AT e+ e )o = g{d)e by the remark made
above. Thus #(g(A} — ¢{7)} = 0, hence, by Theorem 6.2.1, gld) is a
characteristic root of g(7T}.

As immediatc consequence of Lemma 6.2.1, in fact as a mere special
case (but an extremely important one), we have

THEOREM 622 [f AcF is a characteristic root of Te A(V), then ) is ¢
root of the minimal polynomial of T. In particular, T only has a [inite number of
characieristic roots in I
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Froef.  Let p(x) be the minimal polynomial over F of T,thus p{T) = 0.
If 2& F is a characteristic root of T, there is a o #0m ¥V with oT = 1o
As In the prool of Lemma 6.2.1, up(7T) = p{Ad)o; but p{¥") = 0, which
thus implies that p(4)o = 0. Since v # 0, by the properties of a vector
space, we must have that p(1) = 0. Therefore, 2 is a root of p{x). Since
#{x) has only a finite number of roots (in fact, since deg p{x) = n? where
r = dim; V, p(x) has at most n? roots) in F, therc can only be a finite
nmumber of characieristic roots of T in F,

If Te AlV)and if S € A(V) is regular, then (ST~ N2 =8§TS15TS ! =
ST2S™ L, (8TS™ N =8T38L L, (STS™ Wi = g7ig—1, Consequently,
for any ¢(x) e F[x], ¢(STS ') = S(T)8" L. In particular, if ¢{T) = 0,
then ¢{S7TS™ ') = 0. Thus if p{x) is the minimal polynomial for T, then it

follows easily that p{x) is also the minimal polynomial for ST~ !, We have
proved

LEMMA 6.2.2 If T,5e A(V) and if § is regular, then T and STS™' have
the same minimal polynomial.

-DEFINITION The clement 0 # pe V is called a characieristic veclor of T
“belonging to the characteristic root Ae F it T = Jo.

What relation, if' any, must exist between characteristic vectors of T
belonging to dificrent characteristic roots? This is answered in

THEOREM 6.23 If 1,,..., & in F are distinet characteristic voots of Te
A(VY and if v, ..., v, are characteristic vectors of T belonging i A, .

e A
Loy ]
rg-@@fﬂf{.’fé?, then Uiy -y Uy are Iz'nea:r{y indej)mdeni oper K,

Froof. For the theorem to require any proofl, k must be larger than 1;
30 we supposc that £ > 1,

. If vy, ..., v, are lincarly dependent over F, then here is a relation of the
form a7 4 - - + o, = 0, where 2,,..., o, are all in F and not all of
them arc 0. In all such relations, there is onc having as few nonzero co-

efficients as possible. By suitably renumbering the vectors, we can assume
this shortest rclation to he -~

A

Bioy + -+ By =0, B #£0,..., 8 #0. (1}
We know that »,T" = 25, 50, applying T to equation (1), wc obtain
Aoy + e+ 4By = 0. ()

Multiplying equation (1) by 1, and subtracting from equation (2}, we

(42 = AdBoe + - + (A; — A)Bu, = 0.
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Now 4; — A, # 0 for i > I, and f; # 0, whenee (4, - 4,08, # 0. Buwt
then we have produced a shorter relation than that in (1) between
U3: ..., 0 Lhis contradictzon proves the theorem.

COROLLARY 1 If Te A(V) and if dimg V = n then T can have at most

n distinct characteristic roots in F.

Proof.  Any set of linearly independent vectors in P can have at most »
clements. Since any sct of distinet characteristic roots of T, by Theorem
6.2.3, gives rise to a corresponding set of linearly independent characteristic
vectors, the corollary follows.

COROLLARY 2 If TeA(V) and if dimp V = n, end if T has n distingt
characleristic ropts in F, then there is a basis of V over F which consists of characteristic
veclors of T.

We leave the proof of this corollary to the reader, Corollary 2 is but the
first of a whole class of theorems to come which will specify for us that a
given lincar transformation has a certain desirable basts of the vector space
on which its action iz easily describable.

Problems
In all the problems ¥ is a vector space over F.

1. If Te A(V) and if g(x} € F[x] is such that g{7) = 0, is it true that
every root of ¢(x) in F is a characteristic root of T? Either prove that
this is true or give an example to show that it is false.

2. If Te A(V) and if p(x) is the minimal polynomial for T over F, sup-
posc that p(x) has all its roots in F. Prove that every root of p(x] is a
characteristic root of T.

3. Let V be two-dimensional over the ficld F, of real numbers, with a
hasts #;, v;. Find the characteristic roots and corresponding charac-
teristic vectors for T defined by
(a) 0, T = v, + vy 7 =0, — 1,

(b) 5,7 =5y, + 6y, v, T = —7m,.
{c) v T'=u0 + 20y, v, T = 3, + 6p,.

4. Let ¥V be as in Problem 3, and supposc that T A{¥F] is such that
v =oav + Py, 1,7 = 30, + 80y, where o, f, 9,8 arc in F.

(a) Find nccessary and sufficient conditions that 0 be a characteristic
rool of T in terms of o, B, y, &.

TR =y
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{b) In terms of o, 8, v, § find necessary and suflicicnt conditions that
T have two distinct characteristic roots in F,

- If ¥V is two-dimensional over a field prove that cvery element in

A(V) satisfics a polynomial of degree 2 over F,

H V is two-dimensional over # and if §, TedV), prove that
8T — 7812 commutes with all elements of A{V).

. Prove Corollary 2 to Theorem 6.2.3.

- If Vis n-dimensional over ¥ and T A(V) is nilpotent (ie, 7% = ()

for some k), prove that 1™ = 0. (Hint: If v & V use the fact that o, 07,
¥, ., vT" must be linearly dependent over )
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-:"":_;Mthcugh we have been discussing linear transformations for some-time, it

has always been in a detached and impersonal way; to us a linear trans-
formation has becn a symbol {very often T7) which acts in a cortajn way on
a vector space. When onc gets right down o it, outside of the fow concrete
examples cncountered in the problems, we have really never come face to
face with specific linear transformations. At the samc time it is clear that
if one were to pursuc the subject further there would often arisc the need
of making a thorough and detailed study
“To mention one precise problor,

of a given linear transformation,
presented with a linear transformation
{and supposc, for the morment, that we have o means of recognizing it),
how does one go about, in a “practical” and computable way, finding its
F&Baracteristic roots? '
What we seek first is a simple notation, or, perhaps more accuratcly,
Yeprescntation, for linear transformations. We shall accomplish this by
Mse of a particular basis of the vector space and by usc of the action of g
Hnear transformation on this basis. Onee this much is achicved, by means
f the operations in A(V) we can induce operations for the symbols created,
aking of them an algebra. ‘I'his new olyject, infiised with an algebraic life
its own, can be studicd as a mathematical cntity)}aving an inferest by
elf. 'This study is what comprises the subject of mafrix theory.
owever, 1o ignore the sonrce of these matrices, that 15, to investigate the
of symbols independently of what they represcnt, can be costly, for we
ould be throwing away a great deal of uscful information. Instead we
1l always use the in terplay between the abstract, A(V), and the con crete,
matrix algcbra, to obtain information one about the other.
Let ¥ be an r-dimensional vector space over a ficld F and let o,,..., 0,
> @ basis of ¥ over K. If 7€ A(V) then Tis determined on any vector as
P as we know its action on a basis of ¥, Since 7 maps V inta V, n T,

H
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2T, ..., 2,7 must all be in V. As clements of ¥, cach of these is realizable
in a wmique way as a lincar combination of vy, ..., o, over F. Thus

n T =yt + %+t Gyl
9, T = tpy#y + 05 + 70+ X24%s
;T = ayty + tpvs + -7+ 2y
E.F"T = r'.":nlz"l. + “nzz‘z R &““E’n,

where cach a;; € F. This systemn of equations can be written morc compacily as
L]
U[T = Z mijﬂj, fOr 'i = 1, 2, PR n.
i=1

The ordered sct of a2 numbers «;; in F completely describes 7. They will
serve as Lhe means of representing T,

DEFINITION Let ¥ be an n-dimensioned vector space over F and let
9y, .., 0, he a basis for ¥V over F. If T'e 4(V) then the matrix of T in the
basis vy, . . . , v,, written as m{T), is

gy %z 23

2y 22 Uy
m(T) = : »

€y U2 %an

where o, T = }; o0

A matrix then is an ordered, square array of elements of F, with, as yel,
no furiher propertics, which represents the effect of a linear transformation
on a given basis.

Let us examine an examnple. Let F be a field and let V be the set of all
polynomials in & of degree n — 1 or less over F. On V let 2 be defined
by (Bo + Bux + o+ + Bus? D = fy + x4 + it 4 o
{n — 1)B,_ "2 It is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The qucstions is meaningless unless we specify
a basis of ¥, Let us first compute the matrix of D in the basis o, = 1,

by = %, 8y = &%, .., 0, =2 0, =21 Now,

0D = 1D =0 = 0p, + Opy +:- + Og,

t, D =x2D=1=1lp, +00, + -+ 0gy
2D = #ID = (i — 1)
= Oﬂl + OUZ + b + Dﬂi_z + {I‘ — l)z’i—l + Oui
+.;.+03n
2,D = " 'D = (n — Da"?

I

Oz, + Ovy + "+ Ov, + {n — o, + Oz,

AN e R

iy i et e P
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Going back to the very definition of the matrix of a linear transformation
a given basis, we sec the matrix of D in the basis vy, ..., 7,, m{D), is
fact

[T o Y oa e}
o o O O
| oo oo

]

Sooce

{n

Howcver, there is nothing special about the basis we just used, or n how
‘we numbered its clements. Suppose we mercly renumber the elements of
this basis; we then get an equally good basis oy, = 21, w, = ¥~ 2, .,
=44 .. .,w, =1 What is the matrix of the samc linear trans-
grmation D in this basis? Now, ‘

D

wD =510 = {n — 13" %
= 0w, + {n — Lyw, + Owy + -+ + O,

wD = 27D = (n — i
=0y + -+ 0w + (n — Dy + Owyyy + - + Ow

;u,D=1D=o=0w,+0w2+---+ow,

0 (n—1 0 0 0 0

0 0 (n — 2) 0 0 0

0 0 0 (m—3) 0 0
mz(D):[.) .

0 0 0 01

0 0 0 00

Before leaving this example, let us computce the matrix of D in still another
basis of Vover F, Lot u; =1, 3 =1+4, g =1 +xtu, =14
s easy to verily that wy, ..., u, form a basis of V over F. What is the
atrix of D in this basis? Since

WD =1D=0= 0u+0u2+---+0u,,
— (15D =1 =1lu, + Oy + - + O,
:(l+ 2)D—2x=2(&!2—u1}=—2ul+2u2+0u3+...+0un
=U+x")DF(n—l = {n — }{u, — u,)

= —{n — 1z, + Ouy + - +0u52+(n—])n1+0u".
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The matrix, m, (D), of I in this basis is

[0 0 0 0 QO

| o 0 0 0

-2 2 0 0 0

-3 o 3 0 0

my (D} = 0 Q
0 0

\—{n:—l} 00 ... (=1 0O

By the example worked out we see that the matrices of D, for the three
bascs used, depended completely on the basis. Although different from cach
other, they still represent the same lincar transformation, I}, and we could
reconstruct D from any of themn if we knew the basis used in their determi.
nation. However, although diffcrent, we might expect that some relationship
must hold between m, (D), m,(D), and my{D). This exact relationship will
be detcrmined later.

Since the basis uscd at any time is completely at our disposal, given a
lincar transformation T (whose dcfinition, after all, does not depend on any
basis) it is natural for us to seck a basis in which the matrix of T has a
particularly nice form. For instance, if 7 is a linear transformation on V,
which is n-dimensional over F, and if T has n distinct characteristic roots
A4+ o3 4, in F, then by Corollary 2 to Theorem 6.2.3 we can find a basis
2y5 ..., 0, of ¥ over Fsuch that ;7" = iw;. In this basis T has as matrix
the cspecially simple matrix,

4 0 0 0
0 2, 0 0
m(T) =
0 0 . ... 2

n

We have seen that once a basis of ¥ is picked, to every lincar transforma-
tion we can associatc a matrix, Conversely, having picked a fixed basls
Uy . .-, 4, of ¥ over F, a given matrix

all LI 0:1"
- - H] ai] € Fa
Ha1 =t Lonz

gives rise to a lincar transformation 7T defincd on ¥ by v, 7 = 2; o9; o8
this basis. Notice that the matrix of the linear transformation 7, just con-
structed, in the basis v, . - . , 7, is exactly the matrix with which wc started:
Thus every possible square array serves as the matrix of some lincar trans”
formation in the basis ¥, ..., ¥,
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It 15 clear what is intended by the phrase the first row, sccond row,.. .,

of a matrix, and likewise by the first column, second column, ... 1In the
malkrix

i1 e By,

+ + >

By en O,

the clement %,; is in the ith row and jth column; we relcr to it as the {7, 7
eniry ol the matrix,

To write out the whole square array of a matrix is somewhat awkward ]
instead we shall always write a matrix as {or;7) 5 this indicates that the (i, i
entry ol the matrix is e

Suppose that Vis an s-dimensional vector space over Fand oy,..., 7,
is a basis of V over F which will remain fixed in the following discussion.
Suppose that § and T arc linear transformations on ¥ over # having matrices
m(§) = (o), m(T) = (ti;), Tespectively, in the given basis, Our objcctive
is to transfer the algebraic structure of 4 (V) to the set of matrices having
entrics in .

To begin with, § = T if and only if 2§ = o7 for any v € V, hence, il
and only if 9.8 = »,T lor any »,,..., v, lorming a basis of V over F.
Equivalently, § = 7 if and only ilgy = 1,; for each { and j.

Given that m{§) = (e, ;) and m(T) = (tis)s can we explicitly write down
m(8 + T)? Because m(§) = (O 08 = X; ;055 likewise, 1,7 = 3, ¢
whence

IJ]-(S + T) = L'I-S + ﬂiT = Z ﬂ'u—ﬂj + Z T;jzjj = E EI'J'U + Tu)vj.
i i

i s

4

™

But then, by what is meant by the matrix of a linear transformation in a
given basis, m(S + T) = (A;;) where Ay = 0 + 14 for cvery i and J-
A computation of the same kind shows that for YEF, m(yS)~= ()
where y;, = yo,; for every 7 and J-

The most intcresting, and complicated, computation is that of m{ST).
Now

w($T) = (05T = (Z O'rk”x) T= 2 o0 T).

However, 5, T = 2.; T2y substituting in the above formula yields

u(8T) = Z Ty (Z Tu”.f) = Z (Z “ikrkf)"i'

i
(Provel} Therefore, m(ST} = (v;;}, wherc for each i and Joovy =
O ik Thj-
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At first glance the rule for computing the matrix of the product of two
linear transformations in a given basis seems complicated. However, note
that the (4, 73 cniry of m(ST}) Is obtaincd as follows: Consider the rows of
§ as vectors and the columns of T as vectors; then the (i, j) cntry of m{ST)
is merely the dot product of the ith row of § with the jth colurnn of 7

Let us illustrate this with an example. Suppose that

L {1 2
m(§) = (3 4)
m(1) = (—; g)

the dot product of the first row of § with the first column of T is (13{—1)
(2)(2) = 3, whence the (1, 1) entry of m{ST) is 3; the dot product of the
first tow of & with the sccond colummn of T is (1)(0) + {2)(3) = 6, whence
the (1, 2} entry of m($7') is 6; the dot product of the second row of § with
the first colurnn of T is (3){—1) + (4)(2) = 5, whence the (2, 1) entry of
m(ST) is 5; and, finally the dot product of the second row of § with the
second column of 7' is (3){0) + (4)(3) = 12, whence the {2, 2) entry of

M{ST) is }2. Thus
3 6
ST) = {
mST) (5 12)

The previous discussion has been intended to scrve primarily as a motiva-
tion for the constructions we are about to make.

Let Fhe a ficld; an # x r matrix over F will be a square array of elernents
n F,

and

By &z ... Uyg

By Uga -0 Upg

{which we write as (o). let Fp = {(x:)) | ;€ F; in F, we want [0
introduce the notion of equality of its ¢lernents, an addition, scalar multipli-
cation by elements of F and a multiplication so that it hecomes an algebra
over . We use the propertics of m{T) for T'e A{V) as our guide in this.

L. We declare {&;;) = (f;;), for two matrices in F,, if and only if «;; =
B;; for each i and j.

2. We define (o) + (;) = (4;;) where Ay = oy + By for every i, -

3. We define, for ye F, (o) = (#:) where u;; = yo; for every 1 and j.

4. We define (a,,)(8;;) = {v;), where, for every { and j, v = ¥, By
Let ¥ be an s-dimensional vector space over F oand let #y,. .., % be a

basis of V over FF; the matrix, m(T), in the basis v, ..., v, associates with
T e A(V) an clement, m(T}), in ¥,. Without further ado we claim that the
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" ‘mapping from A(F) into F, defined by mapping T onto m(T') is an algebra
isomorphism of A(V) onto #,. Because of this tsomorphisin, &, is an
agsociative aigebra over F (as can also be verified direetly}. We call F,
the algebra of ali n 3¢ n matrices over I,

Lvery basis of ¥ provides us with an algebra isomorphism of A(F) onto

F,. H i1 a thcorem that every algebra isomorphism of A(¥) onto £, is so
~ obtainabie.

In light of the very specific nature of the isomorphism between 4(¥)} and
. F,. we shall oftcn identify a linear transformation with its matrix, in some
basis, and A{V) with #,. In fact, F, can bc considered as A{¥) acting on
. the vector space V= F™ of all z-tuples over ¥, where for the basis 7 =
(LO,...,0), 2,=(0,1,0,...,0),..., p, = (0, 0....,0,1), (z;)€eF,
acts as o;(%,;] = ith row of (o}

We summarize what has been donc in

- THEOREM 6.3.1 The set of all'n » n matrices over F form an associative
algebra, F, over F. If 'V is an n-dimensional vector space over F, then A{V) and
- F, are somorphic as algebras over F. Given any basis vy, ..., 0, of V over F, if
CSfor TeA(V), m(T) is the matrix of T in the basis &, .. .. v, the mapping
T — m(T) provides an algebra isomorphism of A(V) onto F -

The zero under addition in F, is the zero-matrix all of whosc entrics are 0;
- we shall often write it merely as 0. The unit matriz, which is the unit element
of F, under multiplication, is the matrix whose diagonal entrics are 1 and
whose entries elscwhere arc ¢ we shall write it as I, I (when we wish to
- emphasize the size of matrices), or tnerely as 1. Yor we £, the matrices

bt

%
ol =
o

- (blank spaces indicate only O entries} arc called sealar matrices, Becausc of the
‘isomorphism between A(F) and £,, it is clear that T'e A(V) is inverrible
if and only if m{ T, as a matrix, has an inverse in F,.

Given a lincar transformation T'e A(¥), if we pick two bases, oy, .

ces T
and @, ..., w, of V over ¥, cach gives rise to a matrix, namely, 2, { T} and
my{ T, the matrices of 7 in the bases U1,--.58, and wy, ..., w,, respec-

tively, As matrices, thar 15, as elements of the matrix algebra 77, what is
the relationship between my (T and my ()7

THEOREM 6.3.2 J V is n-dimensional voer & and if Te AlV) has the ma-
Brix my (T) in the basis vy, . .., U and the matrix w,(T) in the basis w,, ..., w,
o V over F, then there is an element Cc F. such that my (T = Cmy (THOC L,

L]
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In fact, if S is the lincar transformation of V defined by pS = fori=12...,n
then C can be chosen to be m (S},

Proof. Let m (T) = (x;;) and my(T) = (Bi;); thus 2,7 = PN
w T = 2; By

Let § be the lincar transformation on ¥ defined by v, § = w; Since
gy -0y U, and Wy, ..., W, ATC bases of ¥ over F, S maps V onto V, hence,
by Theorem 6.1.4, § 13 invertible in A{V).

Now w,T =X, Biw;; since w; = p,S, on substituting this in thc cx-
pression for w;T wc obtain (2,8)T = L; By(2;8). But then (8T =
(3; Bijw;)S; since S is invertible, this further simplifies to p(STS™ 1) =
¥ By By the very definition of the matrix of a linear transformation in
a given hasis, m (STS™Y) = (By;) = mp(T). However, the mapping
T = m,(T) is an isomorphism of A(¥) onto F,; therefore, m, (STS ') =
ml(S}ml[T]ml{S_lj = m, ($)m, { Tym, ($) "1, Putting the pieces together,
we obtain m,(T) = my {(8)m, (Tym, (S}~ !, which is exactly what is clammed
in the theorem.

We illustrate this last theorem with the examplc of the matrix of D, in
various bases, worked out carlier. To minimize the computation, supposc
that ¥ is the vector space of all polynomials over F of degree 3 or lcss, and let
D be the dilferentiation operator defined by (o + &% + ayxt + o) D =
o, + 2epx + Bogst.

As we saw carlier, in the basis v, = 1, 1, = %, 73 = %2 vy = %°, the
matrix of D is

m, (D) =

oo e O
o A I e [
S5 W e I
oo o 2

In the basis w, = 1, iy =1 + %, 2y =1 + %2, u, =1 + %%, the matrix
of D is

my (D) =

25T I
WO oo
i - R e

o kDO

Let § be the lincar transformation of V defined by ,§ = w, (=21
pS=w,=14+x=1 +, 1g8 = 1wy =1 + 27 =y + U3 and also
pS =wy =1+ x* = v, + v, The matrix of § in the basis o), U3, U3, ¥4
s

——
[ B
o -0 O
—_— D D
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~ A struple computation shows that

1 0 0 0
i_ -1 100
“1 01 0
10 0 |
Then
10 0 O\/0 00 g 1 00 0
. 110 o{{1 06 0 o}f-11 00
1 _
Cm (D)C 1 o1 oflo2aollr o1 0
1601/ 035 o/\-1 0 0 1
6 6 0 0
1 06 0
“{-2 2 0 o) = "D
3 0 3 0

.. as it should be, according to the theorem. (Verify all the computaftions
© used!)
= 'The theorem asserts that, knowing the matrix of a linear transformation
. in any one basis allows us to compute it in any other, as long as we know the
. Bnear transformation {or matrix) of the change of basis.

We still have not answered the question: Given a linear transformation,
how docs one compute its characteristic roots? This will come later. T rom
~the matrix of a lincar transformation we shall show how to construct a
polynomial whose roots are precisely the characteristic roots of the lincar
transformation,

“. Problems

1. Compute the following matrix products:

fay /2 %/ 1 0 1
1 -1 24 o 2 3i
8 4 5/\—1 -1 -]

2. Verify all the computations made in the exampic illustrating Theorem
6.3.2,
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3. In F, prove directly, using the definitions of sum and product, that
(a) A(B + G} = AB + AC;
(b) (AB)C = A(BC);
for A, B, Ce F,.

4. In F, prove that for any two clements 4 and B, (AB — BA)Y? iz
scalar matrix.

5. Let ¥ be the vector space of polynomials of degree 3 or less over F.
In V define T by {ay + %x -+ uyx? + oz )T = ag + o {x + 1} +
ay(x + 1} + wy(x + 1)* Compute the matrix of T in the basis
(a) 1, x, 22, x™.

By 1,1 4+ =1 +x2 1 + X
(¢) If the matrix in part (a) is A and that in part (b} is B, find a
matrix G so that B = CAC™*,

6. Let V = F'* and suppose that

1 1 2
-1 2 1
01 3

is the matrix of Te A(V) in the basis v; = {1,0,0}, #; = 0, 1,0,
2, = (0,0,1). Tind the matrix of T in the basis

(a) w, = (1L, 1, 1), m={(0, L 1), us= {0, 0, 1).

(b) ¥ = (ls 13 0): iy = (}‘3 2: 0).! iz = (13 2) l}

7. Prove that, given the matrix

0 1 0
A=10 0 1]ei;
6 —I11 6

(where the characteristic of F is not 2), then
(a) 43 — 64% + 114 — 6 = 0.
{(b) There exists a matrix C € 73 such that

1 09
cac~' =0 2 0.
003

8. Prove that it is impossible 1o find a matrix C € F, such that
o b1 o1 — e 0 ’ l _.
01 0 B :

9. A mattix A e F, is said o be a diggonal matrix if all the cntries off
the main diagonal of 4 are 0, ic., if 4 = {=;;) and g;; = 0 for ¢ # J-
If A is a diagonal matrix all of whose entrics on the main diagona!

H
i -
]
!

foranya, fe F.
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are distinct, find all the matrices B € F, which commute with 4, thatis,
all mmatrices B such that B4 = AR,

10. Using the result of Problem 8, prove that the only matrices in F,
' whichk commute with all matrices in F, are the scalar matrices,

11. Let 4 € F be the matrix

01 0 0 00
0010 ...00

ra
‘429001...9?’
0000 ...0 1
0000 ...00

whose entries everywhere, cxcept on the superdiagonal, are 0, and
whose entries on the superdiagonal are 1's. Prove A" = Obut 4"~ ! = (.
*12. 1f A is5 as in Problem 11, find all matrices in F, which commute with
A and show that they must be: of the form og + a4 + 0,47 + -+ +
A" ! where oy, 2y, ..., 2%, EF.
13. Let AeF, and let G(d) = {BeF, | 4B = BA}. Let C(U{d)) =
{Gel, | GX = XG forall X e G{A)}. Prove that if G e C(€(A4)) then
G is of the form g + o, 4, ag, oy € F.
14, Do Problem 13 for A e #;, proving that every Ge C(C{4)) is of
the form oy + 0,4 4 «, A%

15, In F, let the matrices Fy; be defined as follows: £; is the matrix
whose only nonzero entry is the (4, j) entry, which is 1, Prove
(a) The F;; form a basis of F, over F.

(b F &, = Oforj # k; BB, = K,

(¢) Given 4, 7, there exists a matrix € such that CE, (7! = Ky
(d) If i  j therc cxists a matrix € such that GE;C™' = F,,.

(e) Find all B e F, commuting with E, ;.

(f} Find all B e F, commuting with #,,.

16, Let F be the field of real numbers and let & be the field of complex
numbers. For ae C let 7,:0 - C by x7, = za for all xe C. Using
the basis 1, 7 ind the matrix of the linear transformation T, and so get
an isomorphic representation of the complex numbers as 2 x 2
matrices over the real field.

17. Let ) be the division ring of quaternions over the real field. Using
the basis 1,4, j, &k of @ over F, proceed as in Problem 16 to find an
isotnorphic representation of § by 4 x 4 matrices over the field of
rcal numbers,

*18. Combine the results of Problems 16 and 17 to find an isomorphic
representation of @ as 2 x 2 matrices over the field of complex
numbers.
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19,

20.

21.

22.

23.

24,

25.

26.

27.

Let & be the set of all n % n matrices having entrics 0 and 1 in such
a way that there is one | in each row and column, {Such matrices
are called permutation matrices.)

(a) If M e .4, describe AM in terms of the rows and columns of A.
(b) If M e #, describe MA in terms of the rows and columns of 4.

Let & be as in Problem 19. Prove

{a) & has n! elements.

(&) If M e &, then it is invertible and its inverse is again in 4.

{¢) Give the explicit form of the inverse of M.

(d) Prove that 4 is a group under matrix multiplication.

(e) Prove that . is isomorphic, as a group, to §,, the symmetric
group of degree a.

Let A = (&) be such that for each i, ¥;¢;; = 1. Prove that 1 15
a characteristic root of 4 (that is, 1 — A Is not invertible].

Let 4 = {ay;) be such that for cvery 4 Z, ;= 1. Prove that L is
a characteristic root of A.

Find necessary and sufficient conditions on o, f, %, 8, so that

A= (GE ’g) is invertible. When It is invertible, writc down A1
i

explicitly,
If EcF, is such that E? = E # 0 prove that there is a matrix
C ¢ F, such that

1 0 0 0O ... 0
01 0
NN L U W
10 0 o ... 0f°
0 0 a ... 0

wherc the unit matrix in the top left corner is r x #, where r is the
rank of E.

If F is the rcal field, prove that it is impossible to find matriccs
A, B e F, such that AB — BA = 1.

If Fis of characteristic 2, prove that in F} it is possible to find matrices
A4, Bsuch that AE — B4 = 1.

The matrix A is called friangular if all the entrics above the main

diagonal are 0. (If all the entrics below the main diagonal arc 0 the

matrix Is also called triangular),

(a) If 4 is triangular and no entry on the main diagonal is 0, prove
that A is invertible.

(b} If 4 is triangular and an entry on the main diagonal is 0, prove
that 4 is singular.
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28. If 4 is iriangular, prove thal its cha.r/a.ctcristic roots are precisely the
clements on ils main diagonal.

29. If N* = 0, Ne F,, prove that 1 4+ N is invertible and find iis inverse
as a polynomial in N.

30. If A e F, is iriangular and all the entries on its main diagonal are 0,
prove that A® = (.

3l. If AeF, is triangular and all the entrics on its main diagonal are
equal tox # 0 e F, find 471,

32. Let 8, 7 be linear transformations on ¥ such thal the matrix of §
in one basis is equal to the matrix of T in another. Prove there exists
a linear transformation A on V such that T = A§4~ 1.

6.4 Canonical Forms: Triangular Form

Lel V be an a-dimensional veclor space over a field 7.

DEFINITION The linear transformations S, T'e¢ A(V) are said to he
_similar if there exisls an inverlible element C e A{F) such that T = C§C 1,

In view of the results of Section 6.3, this definition translales into ome
about matrices. In fact, since F, acts as AV} on F™, {he above definition
already defines similarity of matrices, By it, 4, Be I7, are similar if there
is an invertible € e F, such that B = CAC™ 1.

‘The relation on A(V) defined by similarily is an equivalence relation
the equivalence class of an element will be called its similarity class. Given
two linear transformations, how can we determine whether or nol they are
similar? Qf course, we could scan the similarity class of one of these 16 see
if the other is in it, but this procedure is not a feasible one. Instead we try
o ¢stablish some kind of landmark in each similarity class and a way of
going from any element in the class to this landmark. We shall prove the
existence of linear transformations in each similarity class whose matrix,
in some basis, is of a particularly nicc form. These matrices will be called
the canonical forms. To determine if (wo linear transformations are similar,
we need bul computc a particular canonical form for cach and check if
these are the same.

There ‘are many possible canonical forms; we shall only consider three of
these, namcly, the triangular form, Jordan form, and the rational canonical
form, in this and the next three sections.

DEFINITION The subspace W of V is invariant wnder T e A(V) if
WT < w.

LEMMA 641 If W < V i imvariant under T, then T induces o linear
trangformation T on ViW, defined by (v + WYT = 0T + W. If T salisfies

285



.__,.

Linsar Transformations Ch. 8

the polynomial q(x) & F[x], then so does T. If p(x} is the minimal polynomial
for T over F and if p(x) is that for T, then p,(x) | p(x).

Proof Let ¥ = V{W; the clements of ¥ are, of course, thc cosets
v+ W of Win ¥, Given s =v+ WeV define o7 =27 + W. To
verify that 7 has all the formal properties of a lincar transformation on |4
is an easy matter once if kas been established that T is well defined on V. We
thus conient oursclves with proving this fact.

Suppose that o = 2, + W =v; + W wherc 2,2, € V. We must show
that 0, T + W =2,T + W. Since v, + W=2, + W, v, - 2, must be
in W, and since W is invariant under T, {#; — v;) T must also be in W.
Consequently o, 7 — v, T'e W, from which it follows that » T + W =
2, T+ W, as desired. Wec now know that T defines a linear transformation
on V= VW

If 7=v4+ WeP then oTH =T+ W= @T+ W=
T + W)T = ((r + W)T)T = 35(T)?; thus (T2) = (T)% Similarly,
(TH = (T}* for any k = 0. Consequently, for any pelynomial q(x} e
Flx], ¢(T} = ¢(T). For any g(x) € F[x] with ¢{T} = 0, since D is the
zero transformation on 7, 0 = ﬂ?} = q{ 7). |

Let p, («) be the minimal polynomial over F satisfied by 7. Ifg(T) =0 °
for g{x) € F[x], then p,(s} | g(x). If p(«) is the minimal polynomial for T
over F, then p{T) = 0, whence p(T) = 0; in consequence, #,(x) | £(x}.

As we saw in Theorem 6.2.9, all the characteristic roots of T which lie
in F arc roots of the minimal polynomial of T over F. We say that all the
characteristic roots of T are in F if all the roots of the minimal polynomial of T
aver F lie in F.

In Problem 27 at the end of the last section, we defined a matrix as being
triangular if all its entrics above the main diagonal were 0. Equivalently, if
T'is a linear transformation on V over F, thc matrix of T in the basis
..., ¥, 1s triangular if

nT = a1 l _:
v T = t312) + T3ty i
T = oyt F Kgp¥y ot Wl
vnT = Rarth R Gt

i.e.,if »,T is a linear combination only of ; and its predecessors in the basis.
£ Y I P

THEOREM 6.4.1 If Te A(V) has all its characteristic ‘roots in F, then there
is @ basis of V in which the matrix of T is iriangular, :

Proof. The proof goes by induction on the dimension of ¥ over F.
If dim,; ¥ = 1, then every element in A(V) is a scalar, and so ihe
theorem is true herc.




Sec. 6.4  Canonical Forms: Triangular Form

Suppose that the theorem is true for all vector spaces over ¥ of dimension
g — 1, and let V be of dimension # over F,

The linear transformation 7 on ¥ has all its characterigtic roots in F;
let 4, & # he a characteristic root of 7. Therc exists a nonzero vector
in ¥such that o, T = Az, Let W = {az, | ¢ e ¥}; W is a one-dimensional

. subspacc of ¥, and is invariant under 7. Let ¥ = V/W; by Lemma 4.2.6,
g dim ¥ =dim ¥ — dim W =» — 1. By Lemma 64.1, T induces a
Linear transformation T on ¥ whose minimal polynomial over ¥ divides
the minimal polynomial of T over ¥. Thus all the roots of the minimal
polynomial of T, being roots of the minimal polynomial of T, must lie in F.

The linear transformation T in its action on ¥ satisfies the hypothesis of

the theorcm; since ¥ is (r — 1)-dimensional over F, by our induction
hypothesis, there is a basis ¥, 73, ..., 7, of ¥ over F such that

0T = o557,

U3 8 = a0 + sty

uT = by + oty + 0+ g,

.

5,7 = 0,0, + 0303 + -0 + 4,0,

Let #,,...,v, be elements of ¥ mapping into 7,,..., 3, respectively.
Then vy, 95, ..., v, form a basis of ¥ (see Problem 3, ¢nd of this section},
Since v, T = tty50,, 0, T — ay,8, = 0, whence 8,7 — o;,, must be in W.
Thus v, 7 — a,,, s a multiple of #,, say &,,7,, yielding, alter transposing,
0T = 05,0y + a0y Similarly, 2,7 — w0, — a;30, — -+ — a0, € W,
whence v, T = o, 10y + a0, + '+ + o2, The basis o, ...,0, of ¥ over
F provides us with a basis where cvery 2,7 is a linear combination of 7
and ity predecessors in the basis. Therefore, the matrix of 7" in this basis
Is triangular. This completes the induction and proves the theorem.

We wish to restate 'Theorem 6,41 for matrices. Suppose that the matrix
A e F,_ has all its characteristic roots in F. A4 dcfines a linear transforma-
tion T on £ whose matrix in the basis

5, =(1,0,...,0),0, = (0,1,0,...,0,...,0, = (0,0,...,0, 1),

is preciscly A. The characteristic roots of T, being equal to those of 4, arc
all in F, whence by Theorem 6.4.1, there is a basis of #® in which the
matrix of 7 is triangular. However, by Theorem 6,3.2, this change of basis
merely changes the matrix of 7, namely A4, in the first basis, into CAG ™1
for a suitable € « F,. Thus

ALTERNATIVE FORM OF THEOREM 6.4.1 I the matrix Ae F, has
ol its characteristic rools in F, then there is a matrix G F, such that CAC™V is
@ triangular matrix,
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Theorem 6.4.1 (in cither form) is vsually described by saying that T
(or A) can be brought to triangular form over F.

If we glance back at Problem 28 at the end of Section 6.3, we see that
after T has been brought to triangular form, the elemcnts on the main
diagonal of its matrix play the following significant role: they are precisely
the characteristic roofs of T.

We conclude the section with

THEQREM 6.4.2 If V is n-dimensional over F and if Te A(VY has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.

Proof. By Theorem 6.4.1, we can find a bass #;,..., 0, of V over F
such that:
v =40
2, T = oy + Aa0z

nT = apty + 0+ G-atiog + A
fori=1,2,...,n
Equivalently
v (T — A =0
‘f‘z(T — Ap) =ty

0,(T — Ay = ooy + 0+ G-V

fori=1,2,...,n
What is 2,(T — A0 T — 4,)? As a result of v,{T — Ao) = w30y and
p,(T — A4} = 0, we obtain #,(T — LT — 4;) = 0. Bince

(T = )T — A = (T — )T = 1y),
2 {T — )T - A = o (T — 40T — Ay) = 0.

1

Continuing this type of computation yields

o (T — AT — Aiegy (T = 4 0,
v (T — AT — AT — 44) = (:"a

{

o (T — ANT = Ay} - (T = A} = 0.

For i = n, the matrix § = (T — AT — 4,4} (T — Ay} satisfies
2,8 = 0,8 =+--= 1,8 = 0. Then, since § annihilates a basis of ¥, § must
annihilate all of V. Thereforc, § = 0. Consequently, 7 satisfies the poly-
nomial {x — 4,)(x — A} -+ (¥ — &) in F[x] of degree n, proving the
theorem.
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