

GREGORIOS COLLEGE
OF ARTS & SCIENCE

Block No.8, College Road, Mogappair West, Chennai — 37

Affiliated to the University of Madras
Approved by the Government of Tamil Nadu
An ISO 9001:2015 Certified Institution

cO LEG

) ’ e,’

GCO
DEPARTMENT OF

I

COMPUTER APPLICATION

SUBJECT NAME: SOFTWARE TESTING
SUBJECT CODE: SAZ6C
SEMESTER: VI

PREPARED BY: PROF. K.RAJALAKSHMI

X T A A A A A A R XXX

SOFTWARE TESTING

SYLI.ABUS

Unit-1: Introduction: Purpose — Productivity and Quality in Software — Testing Vs
Debugging — Model for Testing — Bugs — Types of Bugs — Testing and Design
Style.

Unit-2: Flow/Graphs and Path Testing — Achievable paths — Path instrumentation —
Application — Transaction Flow Testing Techniques

Unit-3: Data Flow Testinﬁtr&alB!ﬂE GE Domains and Paths —

Domains and Interfa E
u

Unit-4: Linguisti d Path

Expressions.

States, State
S

-

' EamTech

ii. h. India,

2. Reference

I. ringer International

ii. E:tgw% So eal Worlimproving the
Proc n Education, Delhi. *

iii. ~ R.Rajani, a ?Dﬂwr ZEO‘l ﬂﬂreﬁing, Tata Mcgraw Hill,

New Delhi.

SOFTWARE TESTING
UNIT I

What is testing?

Testing is the process of exercising or evaluating a system or system
components by manual or automated means to verify that it satisfies specified
requirements.

Definition of Software {‘Etii :.n l'l' L EE%

Software testing. cal§

The proceﬂ’f

software :
efficienc i
functionag¥ ak

he existing
terms of

e
E!ciﬁcation,
.

What are dlfferqﬁfchmque r £ il *t
Software techniques can rﬂlﬂi‘n II rﬁ(ir!f t lttegomes

1. Black Box Testing: The technique of testing in which the tester doesn’t have
access to the source code of the software and is conducted at the software
interface without concerning with the internal logical structure of the software is
known as black box testing.

2. White-Box Testing: The technique of testing in which the tester is aware of
the internal workings of the product, have access to it’s source code and is
conducted by making sure that all internal operations are performed according to
the specifications is known as white box testing.

This can only be done by triﬁﬂ
error method -

What are differ
Software leve

1. Unit Tesm: /\

units/compiaigmt are/systel psted. T
each unit g Frforms as Qied.
2. IntegrgiBn g: Aldevel of the's
units are Wgikaad as a DL 11D

expose f bnbety el U™

are testing?
majorly ified into 4

level of the s

3. Syste S e t
integrate té - el h S
system’s cllge]i@ce wi J

4. Acceptaifce Te
tested for ‘acceptalt
compliance with the B
delivery.

Unit Testing

0 134nT 5%

Integration Testing

i

Swystem Testing

ﬁl} T

i

Acceptance Testing

testing” process §

P teg@o proces

Internal workings of an application Knowledge of the internal workings is
are not required. must.
Also known as closed box/data driven
testing. Also known as clear box/structural testing.
End users, testers and developers. Normally done by testers and developers.
Ilat mggmains and internal boundaries can

'™0e better tested.

individual
lidate that

individual
bis level OF testing is to

—
2 aplete,

\ﬁ'ate the
esy @it a system is

aluate the system’s
er it is acceptable for

s

PURPOSE OF TESTING:

Testing consumes at least half of the time and work required to produce a
functional program.

MYTH: Good programmers write code without bugs. (Its wrong!!!)
History says that even well written programs still have 1-3 bugs per
hundred statements.

Productivity and Quality in software:

Eﬂl!!l'g other products, every
trol and testing

a age
(8 t is either

lisG®Vered atgany StEp
ork and
sum of the costs d

pent 1Im1ality

p cost.
ccur,
e nt ffer.

aufac S can
hiSh™=*80% in
5, and aircrafts,
facturing cost of

where fa
software is
s: the cost of
of designing

tests that dis and th those tests.
o For software, q iﬁ ivity are indistinguishable

because the cost of a software copy is trivial.

0 The ??est part Ofs BRhe cost of
detec E’ the cost of correcting them t-%

e Testing and Test Design are parts of quality assurance should also focus

on bug prevention. A prevented bug is better than a detected and
corrected bug.

e Phases in a tester's mental life can be categorised into the following 5
phases:

0 Phase 0: (Until 1956: Debugging Oriented) There is no
difference between testing and debugging. Phase 0 thinking was
the norm in early days of software development till testing

emerged as a discipline.
Phase 1: (1957-

Oriented) The purpose
sOltMgre works. Highlighted
3 qus probability of
works s testing
gest, the g ill find a

tion Oriente o ose of
e doesn failed
oot released @ il Jd one

e Iso 1g ganother bud® -

0 he ugpose of

izj risk
lue : ality

|
ove d o the
tent e bugs
onfid on that

b large software

he more yg

=)
ed) Testability is the

factqf nsidered Te S to red he labour of
testing? reason is to check the test I%n non-testable

code. Testab Eﬁs we hi ode that's hard to
sti hﬁx o test the code is the
0]

test. Identifying
main key here.

e Test Design: We know that the software code must be designed and
tested, but many appear to be unaware that tests themselves must be
designed and tested. Tests should be properly designed and tested before
applying it to the acutal code.

e Testing is'nt everything: There are approaches other than testing to create
better software.

products \,

Methods other than testing include:

0 Inspection Methods: Methods like walkthroughs, deskchecking,
formal inspections and code reading appear to be as effective as
testing but the bugs caught donot completely overlap.

0 Design Style: While designing the software itself, adopting
stylistic objectives such as testability, openness and clarity can
do much to prevent bugs.

o0 Static Analysis Methods: Includes formal analysis of source
code during compilation. In earlier days, it is a routine job of the
programmer to do that. Now, the compilers have taken over that
job.

0 Languages: Th @laplu,E a® Relp reduce certain kinds

of bugs. inéne "aLle using new languages.

Devel n(ﬁ Development

@ t

ironment in
kinds of

Te ing: ; S same.
Pu : pose of
tes i ' & program's
failure i Bs_thihtmeaTect the
er
De
and
diffe

ethods
portant

Testing Pebugging

Testing starts&z' nown ng starts fr ssibly
conditions, use delined unknown intigl ns and the end
procedures and has p C p%i except

outcomes. [EII" ISLEE] ;

Testing can and should be Procedure and duration of debugging
planned, designed and scheduled. cannot be so constrained.

Testing is a demonstration of

Debugging is a deductive process.
eITor or apparent correctness.

Testing proves a programmer's Debugging is the programmer's
failure. vindication (Justification).

Testing, as executes, should strive
to be predictable, dull,
constrained, rigid and inhuman.

Debugging demands intutive leaps,
experimentation and freedom.

Much testing can be done without Debugging is impossible without
design knowledge. detailed design knowledge.

Testing can often be done by an

outsider. Debugging must be done by an insider.

Much of test execution and design
can be automated.

OLLE
MODEL FOR TE&QGE" _'-'Elf;h\e

THE WORLD

Automated debugging is still a dream.

I'HE MODEL WORLD

 ——

e e,

THE
ENVIRONMENT

ENVIRONMENT

MODEL

i

UNEXFECTED

THE PROGRAM :
PROGRAM MODEL BIiL ok

FE CTED

NATLIRE
AND
PSYCHOLODGY

Above figure is a m ree models: A model

of the environment, a m del of the expected
bugs. f 'F.F

\"-"3'*
e ENVIRONMEN
0 A Program's env1rg4nllsl tﬂlrlware and software required

to make it run. For online systems, the environment may include
communication lines, other systems, terminals and operators.

0 The environment also includes all programs that interact with
and are used to create the program under test - such as OS,
linkage editor, loader, compiler, utility routines.

0 Because the hardware and firmware are stable, it is not smart to
blame the environment for bugs.

¢ PROGRAM:
0 Most programs are too complicated to understand in detail.

10

o

The concept of the program is to be simplified inorder to test it.
If simple model of the program doesnot explain the unexpected
behaviour, we may have to modify that model to include more
facts and details. And if that fails, we may have to modify the
program.

o

< CO

LLE
o
o")u q‘%‘
E
s

<]

e BUGS:
0 Bugs are more insidious (deceiving but harmful) than ever we
expect them to be.
0 An unexpected test result may lead us to change our notion of
what a bug is and our model of bugs.
0 Some optimistic notions that many programmers or testers have
about bugs are usually unable to test effectively and unable to

justify the dirty tests most programs need.
e OPTIMISTIC NOTIONS ABOUT BUGS:

0 Benign Bug Hypoth I!, f that bugs are nice, tame and
logical. (Benj ﬂﬁlgl Eﬁ

discovered with

eWinates
-
E
i , i€ L e51gn
. : i f from
ug
0 Sadisrt Dy independent

and intuition are
¥os need methodology

tester) tITe
sufficient t0"®
andt 1ques

o] Ang t rs: The belief that testers are i l*"at test design
than prograrr&as t code desi

UE {iaut o

e IS COMPLETE TESTING POSSIBLE?

0 If the objective of the testing were to prove that a program is free
of bugs, then testing not only would be practically impossible,
but also would be theoretically impossible.

0 Three different approaches can be used to demonstrate that
a program is correct.They are:

1. Functional Testing:
» Every program operates on a finite number of
inputs. A complete functional test would

11

consists of subjecting the program to all
possible input streams.

For each input the routine either accepts the
stream and produces a correct outcome,
accepts the stream and produces an incorrect
outcome, or rejects the stream and tells us that
it did so.

For example, a 10 character input string has
280 possible input streams and corresponding
outcomes, SO complete functional testing in

!n- 1t1c;ﬁ%vcan't execute a

ctness ﬁ on a
functional ructural

1 1rﬁ¥rmal language

(e g. Mathematlcs) and each program
statement is examined and used in a step of an
inductive proof that the routine will produce
the correct outcome for all possible input
sequences.

The IMPRACTICAL thing here is that such
proofs are very expensive and have been
applied only to numerical routines or to formal
proofs for crucial software such as system’s
security kernel or portions of compilers.

12

0 Each approach leads to the conclusion that complete testing, in
the sense of a proof is neither theoretically nor practically
possible.

IMPORTANCE OF BUGS: The importance of bugs depends on
frequency, correction cost, installation cost, and consequences.
0 Frequency: How often does that kind of bug occur? Pay more

gorrect the bug after it is
tQ thie®gst of discovery
§O upedrd '..-* ally later in

%" orrection

ber of
e for
could

cost depends
fle user
ol bug and dis

s en Il
se(t he dbyge Bug

g atad z
Ar i S u

b
measure in r s of hu Hh‘
bugonas ﬁ]r] to ten are:

v cost)
CONSEQUENC
1. Mild: The s of the bug off dﬁd l&hetlcally (gently);
a misspelled o “

2. Moderate: Outputs are misleading or redundant. The bug
impacts the system's performance.

3. Annoying: The system's behaviour because of the bug is
dehumanizing. E.g. Names are truncated orarbitarily modified.

4. Disturbing: It refuses to handle legitimate (authorized / legal)
transactions. The ATM wont give you money. My credit card is
declared invalid.

5. Serious: It loses track of its transactions. Not just the transaction
itself but the fact that the transaction occurred. Accountability is
lost.

ces of a bug can be
e. Someﬁ‘nsequences of a

13

6. Very Serious: The bug causes the system to do the wrong
transactions. Instead of losing your paycheck, the system credits
it to another account or converts deposits to withdrawals.

7. Extreme: The problems aren't limited to a few users or to few
transaction types. They are frequent and arbitrary instead of
sporadic infrequent) or for unusual cases.

8. Intolerable: Long term unrecoverable corruption of the database
occurs and the corruption is not easily discovered. Serious
consideration is given to shutting the system down.

9. Catastrophic: 01I_tl wn is taken out of our
hands becaug ils.
. igds FWhg tem? One that

in itself ; that
ts nuclear

nE on its
Fﬂtionality
Einterface,

e REQUIREM NCTIONALITY
BUGS: Various P ures and Functionlity

bugs includ
1. Req&' nts and Specifications Bugs: H-
. ReEi and specifications,gr* d from them
can be eti S[‘rﬂfnc')ﬁs, self-contradictory.
They can be mi erstood or impossible to
understand.

» The specifications that don't have flaws in them may
change while the design is in progress. The features are
added, modified and deleted.

= Requirements, especially, as expressed in specifications
are a major source of expensive bugs.

= The range is from a few percentage to more than 50%,
depending on the application and environment.

14

» What hurts most about the bugs is that they are the
earliest to invade the system and the last to leave.

2. Feature Bugs:
= Specification problems usually create corresponding
feature problems.

= A feature ﬂ_h . gMuissing, or superfluous
s n DOSE). sing feature or case
‘ el ir(@ eature could

ight” comy C ftware,
and fos

implen able

i§ot enough:

s

yups d feat (.3; The
o

o
o N . ‘
% 7 the 1tes : eﬂ‘es
atera@ men
Y idua For
; ith ¢ali®¥lding

en these two

of features and a
uch bi gmi {Ted featuriinteraction
g-mals and therefore result in f interaction

"\
Specification and Feature'g g[RLﬂ Pe;‘ 5

0 Most feature bugs are rooted in human to human communication
problems. One solution is to use high-level, formal specification
languages or systems.

0 Such languages and systems provide short term support but in
the long run, does not solve the problem.

0 Short term Support: Specification languages facilitate
formalization of requirements and inconsistency and ambiguity
analysis.

15

0 Long term Support: Assume that we have a great specification
language and that can be used to create unambiguous, complete
specifications with unambiguous complete testsand consistent
test criteria.

0 The specification problem has been shifted to a higher level but
not eliminated.

Testing Techniques for functional bugs: Most functional test
techniques- that is those techniques which are based on a behavioral
description of software, such as transaction flow testing, syntax testing,

domain testing, logic ﬁﬂla_nl_l ing are useful in testing

functional bugs. ﬁ

STRUCT i ig i Lbugs include:

lu'- pugs include pattls "gl out,
er nestijy od@™back

E inatiofMcilleria incortoe DEA eSS
icated proge 5 URReCcessary . ;‘Mng,

El' ‘ on¢ ot properly
1 . %H’

od
h'is

and

eat
sily

at use of old
are dominated by

ol flo
M8 OBO

[OI' CO

5?-rol and sequernce bugs at all level Ih--caught by
testin jally structural tesﬁ1 e specifically
& t ine

path test utc!‘ t functional test
'E)cai r# ito

based on a specifi

2. Logic Bugs:

* Bugs in logic, especially those related to
misundertanding how case statements and logic
operators behave singly and combinations

» Also includes evaluation of boolean expressions in
deeply nested IF-THEN-ELSE constructs.

16

= [f the bugs are parts of logical (i.e. boolean) processing
not related to control flow, they are characterized as
processing bugs.

= If the bugs are parts of a logical expression (i.e control-
flow statement) which is used to direct the control flow,
then they are categorized as control-flow bugs.

3. Processing Bugs:

* Processing bugs include arithmetic bugs, algebraic,

mathematical function evaluation, algorithm selection

and general processm
Examples i

include: Incorrect
tation to other,

than-or-eual

d to be

5. Data-Flo

= Most case of data flow
mohes

o ow anomaly occurs where t path along

whlchﬂg t to do so easonable with

data, suc variable, attempting

to use a Varlable before 1t eX1sts, modifying and then
not storing or using the result, or initializing twice
without an intermediate use.

DATA BUGS:

1. Data bugs include all bugs that arise from the specification of
data objects, their formats, the number of such objects, and their
initial values.

2. Data Bugs are atleast as common as bugs in code, but they are
foten treated as if they didnot exist at all.

17

3. Code migrates data: Software is evolving towards programs in
which more and more of the control and processing functions are
stored in tables.

4. Because of this, there is an increasing awareness that bugs in
code are only half the battle and the data problems should be
given equal attention.

5. Dynamic Data Vs Static data:

* Dynamic data are transitory. Whatever their purpose
their lifetime is relatively short, typically the processing

LLE
uﬁﬂn e o

18

time of one transaction. A storage object may be used
to hold dynamic data of different types, with different
formats, attributes and residues.

*» Dynamic data bugs are due to leftover garbage in a
shared resource. This can be handled in one of the three
ways: (1) Clean up after the use by the user (2)
Common Cleanup by the resource manager (3) No
Clean up

= Static Data are fixed in form and content. They appear

in the source code atabase directly or indirectly, for

example L o characters, or a bit

actual
cture.
meaning Wngess it is
Allldgige bugs
id of
shap Bls that
ocaty Sedsi® Store
Attrifiteg ™ ates to

ed with
. alphanumeric
string, a | ality an p of bugs increases
as we go fr butes @BEIse the things get less

form_f Fr *.h‘

e CODING BUGS: #E# (; [E‘
1. Coding errors of all kin create any of the other kind of

bugs.
2. Syntax errors are generally not important in the scheme of things
if the source language translator has adequate syntax checking.

19

20

3. If a program has many syntax errors, then we should expect
many logic and coding bugs.

4. The documentation bugs are also considered as coding bugs
which may mislead the maintenance programmers.

INTERFACE, INTEGRATION, AND SYSTEM BUGS:

Various categories of bugs in Interface, Integration, and System Bugs are:

1. External Interfaces:
= The external mterfaces are the means used to

cornmumcﬂﬂ(!_
= T}% s, sensors, input
F' face with

orld should jile

A al interf hould
'u' employ a protocq g or
#.l' fy imple
E external int or
w SequeRessassumptionsgiel
‘ andi
% Ntdele

TTTe el ironm@t is Ti
adap e 1 en t, which consists

f interfaces 0 s, can bg negotiated.
= .ﬂ[?ial interfaces have the same prq@as external
interf

3. Hardware Ar Id‘l; ﬂ
= Bugs related to hardware archltecture originate mostly
from misunderstanding how the hardware works.
= Examples of hardware architecture bugs: address
generation error, i/o device operation / instruction error,
waiting too long for a response, incorrect interrupt
handling etc.

» The remedy for hardware architecture and interface
problems is two fold: (1) Good Programming and
Testing (2) Centralization of hardware interface
software in programs written by hardware interface
specialists.

4. Operating System Bugs:

* Program bugs related to the operating system are a
combination of hardware architecture and interface
bugs mostly caused by a misunderstanding of what it is

the operating syst es.

= Use oerW' pecialists, and use
explidksint®TTacemadules o os for all operating
o >

e 11 S 48R T C may not elimi th@eb

t at least

-}] e them angdiake testing
Baltwaire 7 ecture:

m = @Le architect os are the king ed -
.E S can pass and integratio ut
w : jich beos. -

load Rir SYINPIAMS
\ “ St
32 A S 0 thd 1 0
' i n bl@ teg?s,
we gized

s : qol X ing the final
ti@ss testM@re eff thods for these

Level): tﬁ

. ugs include: Ignored timi ming that
event FJE ec1f1ed %orkmg on data
before al ta rn disc, Waiting for

an impossible comblnatlon of prerequ151tes, Missing,
wrong, redundant or superfluous process steps.

» The remedy for these bugs is highly structured
sequence control.

= Specialize, internal, sequence control mechanisms are
helpful.

bugs.
6. Con nd Seqt

21

7. Resource Management Problems:

= Memory is subdivided into dynamically allocated
resources such as buffer blocks, queue blocks, task
control blocks, and overlay buffers.

= External mass storage units such as discs, are
subdivided into memory resource pools.

* Some resource management and usage bugs: Required
resource not obtained, Wrong resource used, Resource
is already in use, Resource dead lock etc

Resource Managi:E:Eemedies: A design remedy

t is to keep
ent kinds
source

force j (Phients and/or data

_t's ctures.
9. Syste&g : '*.
. Syste% ering all klﬁf iﬂ that cannot be
iplniﬂ he

ascribed to @ a It simple interactions,
but result from the totality of interactions between
many components such as programs, data, hardware,
and the operating systems.

» There can be no meaningful system testing until there
has been thorough component and integration testing.

22

= System bugs are infrequent(1.7%) but very important
because they are often found only after the system has
been fielded.

TEST AND TEST DESIGN BUGS:
0 Testing: testers have no immunity to bugs. Tests require
complicated scenarios and databases.
0 They require code or the equivalent to execute and consequently

they can have bugs.
0 Test criteria: if the specification is correct, it is correctly

interpreted and ﬁLL roper test has been
de51gned b El erign_b softwares behavior is

i S1D] er test criteria
The more cg riteria, the

S S is
%hen
bg#fuse

5 _ﬁan

gncesgions to
g
i,
E'rvare
J from

ation aids.

dihpilery oped to reduce
the i min§ ¥ operation errors.

st exec gS Iy eliminatgd by various
.g li_utlon automation tools.

4. Test utomatlon i ﬁ of software

develop uch test design can
be and has been automated For a given productivity
rate, automation reduces the bug count - be it for
software or be it for tests.

23

UNIT-1I
FLOWGRAPHS AND PATH TESTING:
This unit gives an in depth overview of path testing and its applications.
At the end of this unit, the student will be able to:
¢ Understand the concept of path testing.

¢ Identify the components of a coptrgl flow dlagram and compare the
same with a flowchart. OL

g o iea Linked List notation.
e Understand t O an ed @ Sk ir limitations.
bh and demons

depend depe and

BASICS Ok

PATH TESH N
e Path Testin
judiciously s€

e If the set of P&
measure of test th® nEsE. ramplé

DiC e&d on

. gTam.
perl osen have achieved some
enough paths to assure

that every e statem®@ fted at least oﬁ.
e Path testin ?ES are the oldest of all struct i echniques.
¢ Path testing is mos i nit testing. It is

]Eaﬁe to new soﬁtva
a structural technique.

¢ [t requires complete knowledge of the program's structure.

¢ [t is most often used by programmers to unit test their own code.

¢ The effectiveness of path testing rapidly deteriorates as the size of the
software aggregate under test increases.

24

THE BUG ASSUMPTION:

e The bug assumption for the path testing strategies is that something has
gone wrong with the software that makes it take a different path than
intended.

¢ Asan example "GOTO X" where "GOTO Y" had been intended.

e Structured programming languages prevent many of the bugs targeted by
path testing: as a consequence the effectiveness for path testing for these
languages is reduced and for old code in COBOL, ALP, FORTRAN and

Basic, the path testing i ﬁﬁ"‘_ttﬁg
5'C

ogram's control

g : uui by either
decisions g
Itis K ﬁ the block

is executed, then a

Formally, a pre
hundreds of statements.

e of one statement or

A process }f one entry sist of a single statement or
instruction, a seq f statemen tions, a sm y/exit subroutine,
a macro or function c uence of these.

2. Decisions: " I I EI1

A decision is a program point at which the control flow can diverge.
Machine language conditional branch and conditional skip instructions are
examples of decisions.

Most of the decisions are two-way but some are three way branches in
control flow.

25

26

3. Case Statements:

A case statement is a multi-way branch or decisions.

Examples of case statement are a jump table in assembly language, and the
PASCAL case statement.

From the point of view of test design, there are no differences between
Decisions and Case Statements

4. Junctions: E‘n L L E
oi?n T ntrol flow can merge.
00

A junction is a
Examples of j SE' struction in ALP, a
label that is a tar
P

—————————y,

&

YES: THEN DO

Dechions
Junctions
CASE = OF =
CASE
Case Statemant '-O @ 3

CONTROL FLOW GRAPHS Vs. FLOWCHARTS:
e A program's flow chart resembles a control flow graph.

¢ In flow graphs, we don't show the details of what is in a process block.
In flow charts every part of the process block is drawn.

e The flowchart focuses on process steps, whereas the flow graph focuses on
control flow of the program.

e The act of drawing a control flow graph is a useful tool that can help
us clarify the control flow and data flow issues.

NOTATIONAL EVOULTION:
The control flow graph is simplified representation of the program's structure. The
notation changes made in creation of control flow graphs:
¢ The process boxes weren't really needed. There is an implied process
on every line joining junctions and decisions.
* We don't need to know the ﬁcifics of the decisions, just the fact that there
me

is a branch. LL
¢ The specific targetiie ' Eﬁﬁust the fact that they exist.
O I C

in, where
mplexity
uyary labels

INPUT X, Y VIU=1):=V{U+1) + U{V—1)

Z:=X+Y ELL:V(U+U(V)) := U + V n-

Vi=X-Y IFU = V GOTO JOE

IF Z >=8 GOTO SAM IFU>=VTHEN U := Z E
JOE: Z:=Z2 -1 Z:=U
SAM: Z2:=Z2 +V END

FORU=8TOZ

V(U),U(V) 1= (Z + V)=U

IF ViU)= 8 GOTO JOE

=2 =1

IFZ = @ GOTO ELL

Uu=u+1

NEXT U

* A contrived horror

27

Flowchart for the above PDL

YES
— fNP'UTX..:f_J—" Z=X*+Y VeX-Y B

YES
ViUl = (Z# Vel p—te UIVI=[Z+W}ol)

'—‘+ WL =)= WU+ 1F+ UV -1) ELL ViU+ U VI = U+ o

NO YES
XK U= >y U=z

YES L]
J0E

29

Simplified Flowgraph Notation

begin e = S loop V(u)=0

Although graphica etails of the
control flow inside a i
In linked list representa
for each link in th.?ﬂow gra ' ertinent to the control flow is

shown. ! r F

Linked List representation of Flow Graph:

1 (BEGIN) : 3

2 (END) : Exit, no outlink
3 (Z>@7?) 4 (FALSE)
: 5 (TRUE)
4 (JOE) : b
5 (SAM) S -
6 (LOOP) 7
7 (V(U)=0?) : 4 (TRUE)
. 8 (FALSE) E%
8 (Z=@7) : 9 (FALSE)

:10 (TRUE)
9 (U=Z?) : 6 {FALSE) = LOOP
:10 (TRUE) = ELL
10 (ELL) 11
11 (U=V?) : 4 (TRUE) = JOE
112 (FALSE)
12 (U=V?) 113 (TRUE) e
:13 (FALSE) e

13

FLOWG , :
Afl ME GhLesontg =) Ele program

itself, just as a topO%

You can’t alwa¥y
graph parts because man} hen-else constructs,
consists of a combgnation of e @Ifl process

The transl ﬁ Pm a flow graph eler en toa statquimd vice versa is
not always unique. F # E ,5"
B LIGRT

: 2 (END)

30

Alternative Flowgraphs for same logic (Statement "IF (A=0) AND (B=1) THEN
o o o "!.

0 . 0 -

NO

NO

ey

N
ND

Nl

w

™

An impr om flow grajgh @Fcode during Coe to bugs,
and imprg ifanslatigs g theatest dBSigiilliead issing te s and
causes unarsce

Z
FLOWG .'v! P! 4 ' !
=]

Flowcharts¥c L’ E

1. Handwritten b
2. Automatically pr@
mechanical analysis o
3. Semi automatically pro€
on structural anal_fi f the soUl
the programmer.

There are relatively few controﬂ!v Ja[l‘ﬂllt

PATH TESTING - PATHS, NODES AND LINKS:

d

) arting@@Bram based in part

on direc given by
ﬂ‘ﬂt

Ors.

Path: A path through a program is a sequence of instructions or statements that
starts at an entry, junction, or decision and ends at another, or possibly the same
junction, decision, or exit.

A path may go through several junctions, processes, or decisions, one or
more times. Paths consist of segments.

31

32

The segment is a link - a single process that lies between two nodes.
A path segment is succession of consecutive links that belongs to some path.
The length of path measured by the number of links in it and not by the
number of the instructions or statements executed along that path.
The name of a path is the name of the nodes along the path.

FUNDAMENTAL PATH SELECTION CRITERIA:

e There are many paths between the entry and exit of a typical routine.
¢ Every decision doubles the number of potential paths. And every loop
multiplies the number L mber of different iteration

values possible

Defining com

£

1. Exercise
2. Exercis
3. Exerci

prescriptml i ' it is
impractical to t halegag loops,
in which jig#®

IF X LT.0) GOTO 280
LR

DX =N+ A
0 CONTINUE MO
E=X+A @ XK= s A qu.;;

For X negative, the r equal to zero, the
output is X + 2A. Fo every statement, but
not every branch, would n Ing incorrect version:

-I'Jl'-l atk

YIS

) :;ug_l-l¢.ﬁi—-@ LE.

-

W (K LT.00 COTOD 790
MWK =N e A
200 CONTINLE

A negative value produces the correct answer. Every statement can be executed,
but if the test cases do not force each branch to be taken, the bug can remain

33

hidden. The next example uses a test based on executing each branch but does not
force the execution of all statements:

1F (%) 290, 150, 150
X =X A
GoTo
150X = X + 4
00X =X+ A
300 CONTINLE

He=Xah)

M=%

@xﬂ“iﬁ'J

™ ‘__l-“ﬂ
ré By #stg™ased on prescription 3

execution of ept Weand the following
QR is not flag DY % compiler as an
D does nl anwhdefined label.

The hidden loop ar
alone because n
GOTO statem
unreference

A Static Am

structure)

ed on e rce code or
whether 3pig@e of code 15" egafiable. There
could be ith paramet@rs #l&t azgmsubroutife @ or in the
above e arg 100 ut&mld never

achieve ; thgs 1a% z
Only a D 0 the ior while

running - iC ; testipg determine
whether co®® is i : ish Pe n the ideal
structure we think q

PATH TESTING CRI

Any testingi gy based on paths must at least

‘l#ercise every
instruction and take bran #n#]l directions. .5
B LRl

A set of tests that does this is not complete in an absolute sense, but it is
complete in the sense that anything less must leave something untested.
So we have explored three different testing criteria or strategies out of a potentially
infinite family of strategies.

34

Path Testing (Pinf):
e Execute all possible control flow paths through the program: typically, this
is restricted to all possible entry/exit paths through the program.
e [f we achieve this prescription, we are said to have achieved 100% path
coverage. This is the strongest criterion in the path testing strategy family:
it is generally impossible to achieve.

Statement Testing (P1):
e Execute all statements in the program at least once under some test. If we
do enough tests to achieve this, e said to have achieved 100%
statement coverage. i"-i
e An alternate eq 3 atiaD s - 82y that we have
ga e e (iliseD)
in the family:
pled or cag

Branch lw'l ‘;
. t b h altes ‘
we . ery branc Tt
-
i

this for new
d) and should

pder SOTRENPS!.
rip

e We denote br
Commonsense and Stra
e Branch anat‘ SEI

?_ coverage are accepted toda ﬁﬁmmmum

'-.

e haV g%
o

mandatory testing [E $|

e The question "why no ﬂ aILfl Iamp ing of paths?, what is
wrong with leaving some code, untested?" is ineffectual in the view of
common sense and experience since:
(1.) Not testing a piece of a code leaves a residue of bugs in the program
in proportion to the size of the untested code and the probability of bugs.

(2)

The high probability paths are always thoroughly tested if only to
demonstrate that the system works properly.

35

Which paths to be tested?

You must pick enough paths to achieve C1+C2. The question of what is the fewest
number of such paths is interesting to the designer of test tools that help automate
the path testing, but it is not crucial to the pragmatic (practical) design of tests. It
is better to make many simple paths than a few complicated paths.

Path Selection Example:
An example flowgraph to explain path selectlon

af'“ EG«E: B

Practical% j 1
1. Draw th t i E
2. Make several c

and several more.
3. Use a yellow highlig

sheets.

4. Continue tracil%s until all line e master sheei*‘evered indicating
that you appear to ha a(ﬂ' C1+C2.

5. As you trace the paths, crgthlit"a

of each process, and each decision.
6. The above paths lead to the following table considering

th aths the coverage status

PATHS ' DECISIONS ~ PROCESS—LINK

[4 6 7 9 a b ¢ d e f g h i j k 1 m
\abcde YES YES ’ (v [|~ |~ |~¥] | | | | | |
iabhkgdc NO YES ‘ NO | ¥ | ¥ v | ¥ | |
abhlibede NOYES YES YES|v |V |v |v | ¥ v | v v ‘
iatmdfjgdc YES NO,YES |YES v v iv|viiv|v | v | | v | .
labedfmibede [YES NO,YES NO v |v ¥ |v v |v| | |« | | |+]

36

7. After you have traced a covering path set on the master sheet and filled in
the table for every path, check the following:

1. Does every decision have a YES and a NO in its column? (C2)

2. Has every case of all case statements been marked? (C2)

3. Is every three - way branch (less, equal, greater) covered? (C2)

4. Is every link (process) covered at least once? (C1)

LOOPS:

Cases for a single loop: A Single lgop.c
Not looping. But, experience
by C1+C2. Bugs hide
cases of loops, at
can be iterated. il i T I ut it need not be.

CASE 1: Sin
1. Try bypa
zero is not iy
2. Could e
a negative
3. One .II
4. Two passes
5. A typi
6. One le a
7. The maxg

8. Attempt OTea 3 a&vents the
loop-control variall : g with this value if

it is forced?

overed with two cases: Looping and
alated bugs are not discovered
at boundaries - in the

CASE 2: Single logp, Non- jm 1 o excifidled values
9. Try one less th HPWiiat happens j loop control

S.%gexpecte
variable's value is lesdftha minimum? What prexﬁl"h alue from being

less than the minimum? E 1

10. The minimum number of itera'En; I EI

11. One more than the minimum number of iterations.

12. Once, unless covered by a previous test.

13. Twice, unless covered by a previous test.

14. A typical value.

15. One less than the maximum value.

16. The maximum number of iterations.

17. Attempt one more than the maximum number of iterations.

37

CASE 3: Single loops with excluded values
e Treat single loops with excluded values as two sets of tests consisting of
loops without excluded values, such as case 1 and 2 above.

e Example, the total range of the loop control variable was 1 to 20, but
that values 7,8,9,10 were excluded. The two sets of tests are 1-6 and 11-
20.

e The test cases to attempt would be 0,1,2,4,6,7 for the first range
and 10,11,15,19,20,21 for the sﬁrange

Kinds of Loops: There are orﬂl ith respect to path testing:

o the exponent

[]] OpS'

1. Start a .
2. Test th‘?i i i for the
innermostT00 i i
parametejgl)Eied
values.

fp and set it

3. If you'
up as in st

2 with all other loo
4. Continue outward i
5. Do all the cases for all

Concatenated L(.)fdfsr

e Concatenated loop F in at l‘l‘lbps with respect to
test cases. Two loops are O\E :lu &ﬁ possible to reach one after
exiting the other while still on a path from entrance to exit.

e [f the loops cannot be on the same path, then they are not concatenated
and can be treated as individual loops.

covered.

Horrible Loops:
¢ A horrible loop is a combination of nested loops, the use of code that jumps
into and out of loops, intersecting loops, hidden loops, and cross connected
loops.
® Makes iteration value selection for test cases an awesome and ugly
task, which is another reason such structures should be avoided.

38

W=

=i

Loop Testing Ti;rrle. a *t
¢ Any kind of loop can le Eﬂ IL Lﬂ!ﬁle especially if all the

extreme value cases are to attempted (Max-1, Max, Max+1).

e This situation is obviously worse for nested and dependent
concatenated loops.

e Consider nested loops in which testing the combination of extreme
values lead to long test times. Several options to deal with:

39

® Prove that the combined extreme cases are hypothetically possible, they
are not possible in the real world

e Put in limits or checks that prevent the combined extreme cases. Then
you have to test the software that implements such safety measures.

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:

PREDICATE: The logical function evaluated at a decision is called Predicate.
The direction taken at a decision depends on the value of decision variable. Some
examples are: A>0, x+y>=90.......

PATH PREDICATE: A %dﬁmghﬁ fpegith is called a Path

Predicate. For exampl ke =90", "w is either negative
or equal to 10 is tr s vilie tﬁ!

routine to take a
anch sud peomptiges GOTO's,
e directlv.expressgll 1#WRUE/FALSE

alues will cause the

a multiy
p tables ¢

1ble to descr alternativesSw : filti valued
cticgmappi@aghillis tdllepress m &y branches
ents

° : p ba Ireﬂ DO
| - [
¢ In testing, ts, sﬂﬂ

variables in d D Ureen QGRICT Oge s referenced by
the routine who ixed:pMDI tO .
¢ For example, input fegs nce, OYEEES 1N a data structure,

values left isters, g@iPof object
¢ The input fo& lar test is mapped as a one i 'ﬁnal array called as

an Input Vector. # E -' I I1 -5

PREDICATE INTERPRETATION:
e The simplest predicate depends only on input variables.
e For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given
the values of x1 and x2 the direction taken through the decision is based on
the predicate is determined at input time and does not depend on processing.

INPUTS:

40

¢ Another example, assume a predicate x1+y>=0 that along a path prior to
reaching this predicate we had the assignment statement y=x2+7. although
our predicate depends on processing, we can substitute the symbolic
expression for y to obtain an equivalent predicate x1+x2+7>=0.

e The act of symbolic substitution of operations along the path in order to
express the predicate solely in terms of the input vector is called predicate
interpretation.

Sometimes the interpretation may depend on the path; for example,

INPUT X

ON X GOTOA, B, C, ...

A: Z :=7 @ GOTO HEM EﬂLLEE&;

B: 7 :=-7 @ GOTO

C:Z:=0@ GOT

HEN: IF Y D EMM

The predi at HEN dé 5 on the patlT We r@goh the first
he thice cdegli@8pe if Y+79,.4-7>0, Y>0.

multiwa
yﬁ of th @sions
along th e i z

INDEPE
e The
input ‘varia

e [f a variable'
independent of

e [f the variable's va

is process dent

sing, that variable is

esult € processing, the variable

¢ A predicate th value can change as a re
to be process depeﬁp one whose t
result of the processing i Eﬁ
® Process dependence of a predlcate does not always follow from
dependence of the input variables on which that predicate is based.

% *@ processing is said

oes not change as a

CORRELATION OF VARIABLES AND PREDICATES:

e Two variables are correlated if every combination of their values cannot be
independently specified.

® Variables whose values can be specified independently without restriction
are called uncorrelated.

® A pair of predicates whose outcomes depend on one or more variables in
common are said to be correlated predicates. For example, the predicate
X==Y is followed by another predicate X+Y == 8. If we select X and Y
values to satisfy the first predicate, we might have forced the 2nd predicate's
truth value to change.

¢ Every path through a rcﬂnm if all the predicates in that
routine are unc&ﬁd. E

PATH PREDIC IONS:
* A path ion i
which

e FExa

X 1+3x 2+
X3=17
X4-X1>=

A i
° t

. 2 - o
e Fxa : E

A: X5>0E: X6 <
B: X1 +3X2+17>=

C: X3 =17
D: X4 - X1>=1
C:X3=17 4#3} 'i""

D: X4 - X1 >=14X2 \
' Youg (ygu1 S*

Boolean algebra notation to denote the boolean expression:

ABCD+EBCD=(A+E)BCD

41

PREDICATE COVERAGE:
¢ Compound Predicate: Predicates of the form A OR B, A AND B and more
complicated boolean expressions are called as compound predicates.

e Some times even a simple predicate becomes compound after
interpretation. Example: the predicate if (x=17) whose opposite branch is if
x.NE.17 which is equivalent to x>17 . Or. X<17.

® Predicate coverage is being the achieving of all possible combinations
of truth values corresponding to the selected path have been explored
under some test.

® As achieving the desired directio

in the associated predicﬁn

nlz: a given decision could still hide bugs

Eﬁ&;ﬂ

ich the desired

ifY>0 if X+
then ... 0 then
2. Equality Blindypess:
e Equality b ?s kic|_curs when the path selected

b predicate
results in a value t Eo#.s-'both for the corre #uggy predicate.

e For Example: I [EI

Correct Buggy
ify=2 ify=2
then then

if X+Y > 3 then ..if X > 1 then ...

42

The first predicate if y=2 forces the rest of the path, so that for any positive value
of x. the path taken at the second predicate will be the same for the correct and
buggy version.

3. Self Blindness:
¢ Self blindness occurs when the buggy predicate is a multiple of the
correct predicate and as a result is indistinguishable along that path.
¢ For Example:

Correct Buggy

X=A X =A ﬁﬂﬂLLEG%

if X-1>0
then ...

The assign the direction

taken is th%
PATH S]gl

REVIEWTA

We want i t'nof test
completen

Extr

For any path 1
to express them j al individual
predicates are comp

interpretati? t-
¢ Trace the pa tﬂ. multiplying the 1nd1v1duwound predicates to

achieve a boolean su
* (A+BC) (D+E) (FGH) %)&T(BII

e Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ KL

43

44

¢ Each product term denotes a set of inequalities that if solved will yield
an input vector that will drive the routine along the designated path.

¢ Solve any one of the inequality sets for the chosen path and you have
found a set of input values for the path. If you can find a solution, then the
path is achievable. If you cant find a solution to any of the sets of
inequalities, the path is un achievable.

e The act of finding a set of solutions to the path predicate expression is called

PATH SENSITIZATION.
PATHS:
e aths without
p é g path set that is

must to achieve

HEURISTIC PROCEDU

¢ This is a worka $
considering g

€ outcome was

ectness s ifﬁ for achieving the
VAl
%

Path instrumentation i
achieved by the intended p@

Co-incidental C tness: The
desired outcome fo eason

ﬂ’n LIGHT

L X =16 f——=| CASE SELECT o VRPN S—
2ol vi-2 :

C o vi-xm -

LI Y = 1g,(X) —

E el v = Xmodi4 .

The above fig a routime that, 10T thg ely) chosen
input value (e same Q pe (Y =2 er*yillich case we
select. Ther s chosen this ill not tell'us whetlher®yg have

achieved C es could H and still
the outco 3 stifimentatid » [T to do to
confirm t itended path. e

The type =

1. Inter
e A 18 eCULES ment in
cul aAiGINS, Statement

the
information wi flermore, to confirm

that it was achie
e The troubl?vith trac

need. In fa ypical trac provides so information
that conflrmm m &)m its massive outp 1S more work than

simulating the com nitl' ﬂl‘i\i th

2. Traversal Marker or Link Marker:
¢ A simple and effective form of instrumentation is called a traversal marker
or link marker.
e Name every link by a lower case letter.

ore information than we

45

46

¢ Instrument the links so that the link's name is recorded when the link is
executed.

¢ The succession of letters produced in going from the routine's entry to
its exit should, if there are no bugs, exactly correspond to the path name.

g o c_nLLEG‘E; E,%‘
é Zz

=]

E

7

i~ input A, B, C

[r]=—=

—'—-——"-[l}—'l_

Why Sin a z
Unfortunatelié#*a Sin e no aus iﬁan be
chewed by open b

O—m [[}—s{ PROCESS A L PROCESS B

[m)— =t = e
[k]=—= PROCESSC —6@* PROCESS D -

We intended to traverse the ikm path, but because of a rampaging GOTO in the
middle of the m link, we go to process B. If coincidental correctness is against us,
the outcomes will be the same and we won't know about the bug.

Two Link Marker Method:

¢ The solution to the problem of single link marker method is to
implement two markers per link: one at the beginning of each link and on
at the end.

47

48

¢ The two link markers now specify the path name and confirm both
the beginning and end of the link.

Double Link Marker Instrumentation.

O'm b ’@'U‘I | process A —r’ Process B |— 11 —»
|
1

[o]

49

Link Counter: A less disruptive (and less informative) instrumentation method is
based on counters. Instead of a unique link name to be pushed into a string when
the link is traversed, we simply increment a link counter. We now confirm that the
path length is as expected. The same problem that led us to double link markers
also leads us to double link counters.

TRANSACTION FLOWS:

INTRODUCTION:
e A transaction is a unit of wi Lrlg o a system user's point of view.
¢ A transaction consi Fary .E'- s, some of which are
performed by aﬁ e ﬁside of the

system.

Transactig ult of some
externaligg

At th ckision ©

lon

oiplWlith BIFth-that is they a

iS no

e Ex : tion: A t pn retrieval
sy ISRREOTIS1st of the foll
e A nput (i pirth

Validate
Tr
Do jg@#bu

® Seargestil

Req
e Accept inpu
e Validate input
® Process request

e Update file
¢ Transmit oﬂ '*_
e Record transactlon mclean u hih)i‘\
TRANSACTION FLOW G ﬁ
e Transaction flows are introduced as a representation of a system's
processing.

""-"ﬂm |

¢ The methods that were applied to control flow graphs are then used
for functional testing.

¢ Transaction flows and transaction flow testing are to the independent system
tester what control flows are path testing are to the programmer.

e The transaction flow graph is to create a behavioral model of the
program that leads to functional testing.

Liser
BEGIN

(—

The transaction flowgraph is a model of the structure of the
system's behavior (functionality).

An example of a Transaction Flow is as follows:

Transmir
PagE B
Tedmirgl

The flows are r
which have a sing

Loops are uent co graphs. *@L
The most coe&h p is used to request a retry ii I input errors.

An ATM system, f ﬁ allowrﬁthﬁute

COMPLICATIONS:

will take the card away t

In simple cases, the transactions have a unique identity from the time
they're created to the time they're completed.

In many systems the transactions can give birth to others, and
transactions can also merge.

Births:There are three different possible interpretations of the decision
symbol, or nodes with two or more out links. It can be a Decision, Biosis
or a Mitosis.

ay three times, and

50

51

1. Decision:Here the transaction will take one alternative or the other
alternative but not both. (See Figure 3.2 (a))

2. Biosis:Here the incoming transaction gives birth to a new transaction, and both
transaction continue on their separate paths, and the parent retains it identity. (See
Figure 3.2 (b))

3. Mitosis:Here the parent transaction is destroyed and two new transactions are
created.

ALTERMATE 1 PARENT - DAUGHTER
% PAREMT [E PARENT
ALTERNATE 2 DAUGHTER DAUGHTER ;
{8} Decision b} Biosis e} Mitosis
"

Mergers: e as
transactio ' unction (2)

Absorpti
1. Ordin j-u#ction ina
control flo Qe

2. Absor
prey trans
3. Conju
a new dau
conjugation

=
eglto form
&

TRANSACTION FL

GET THE TRAAg IONS
e Complicated Tﬁfu process a lot of differ
transactions should

e"#phcated f
or the equivalent. H Cl.t ipESETm transactions flows,

¢ Transaction flows are like control flow graphs, and consequently we should
expect to have them in increasing levels of detail.

® The system's design documentation should contain an overview section
that details the main transaction flows.

¢ Detailed transaction flows are a mandatory pre requisite to the
rational design of a system's functional test.

52

INSPECTIONS, REVIEWS AND WALKTHROUGHS:
¢ Transaction flows are natural agenda for system reviews or inspections.
¢ In conducting the walkthroughs, you should:
. -99% of the
transaction the system is expected to process.

: cOLL

how that transa%i
[]

s from the requirements.
functional

%@n flows as
i fect on the
Lo
e
PATH S
o i tgyou
i

lEactions

the entry to the

Try to find th
exit of the trans

PATH SENSITI

* Most of the l aths are very easy to sensmze-i t'95% transaction
flow coverage (c

lly easy to eﬁ
® The remaining small per ﬁ ficult.

¢ Sensitization is the act of defmlng the transaction. If there are sensitization
problems on the easy paths, then bet on either a bug in transaction flows or
a design bug.

PATH INSTRUMENTATION:
¢ Instrumentation plays a bigger role in transaction flow testing than in unit
path testing.

¢ The information of the path taken for a given transaction must be kept with
that transaction and can be recorded by a central transaction dispatcher or
by the individual processing modules.

¢ In some systems, such traces are provided by the operating systems or
a running log.

53

Unit-3
DATA FLOW TESTING:

¢ Data flow testing is the name given to a family of test strategies based
on selecting paths through the program's control flow in order to explore
sequences of events related to the status of data objects.

¢ For example, pick enough paths to assure that every data object has
been initialized prior to use or that all defined objects have been used
for something.

Motivation:
It is our belief that, jus P fident about a program
SRy 0 should not feel

confident about a pig8Edm w ; chef ing the value

Neumann

Von Neu? 1 1 ;
e MosStc ; re—
T c 3

int 3
e Th . ¢ clnl at a time
int i e

. Interpret instructi@
. Fetch operands

. Process or Execute
. Store result

. Increment progr
.GOTO 1

N UTA WN R

Multi-instruction, Multi-data machines (MIMD) Architecture:
¢ These machines can fetch several instructions and objects in parallel.
¢ They can also do arithmetic and logical operations simultaneously
on different data objects.
¢ The decision of how to sequence them depends on the compiler.

54

55

BUG ASSUMPTION:

® The bug assumption for data-flow testing strategies is that control flow is
generally correct and that something has gone wrong with the software
so that data objects are not available when they should be, or silly things
are being done to data objects.

¢ Also, if there is a control-flow problem, we expect it to have symptoms
that can be detected by data-flow analysis.

¢ Although we'll be doing data-flow testing, we won't be using data
flowgraphs as such. Rather, we'll use an ordinary control flowgraph

annotated to show what ha hegdata objects of interest at

the moment. ﬁ E.[ﬁnl-otlﬁﬁ&;

graph c‘ng of n
’f 1] a

DATA FLOW G
The dat

e
We will use an gnroﬂwﬁo fv wﬁfa&e‘%ﬁam objects of

interest at that moment.
Our objective is to expose deviatlons between the data flows we have and
the data flows we want.

Data Object State and Usage:
Data Objects can be created, killed and used.

56

e They can be used in two distinct ways: (1) In a Calculation (2) As a part of
a Control Flow Predicate.
¢ The following symbols denote these possibilities:
1. Defined: d - defined, created, initialized etc
2. Killed or undefined: k - killed, undefined, released etc
3. Usage: u - used for something (c - used in Calculations, p - used in a predicate)

1. Defined (d):
* An object is defined explicitly when it appears in a data declaration.
¢ Or implicitly when it appears.o thll,l.\ hand side of the assignment.
e Itis also to be used L
* A dynamically

Something |

An object i
3. Usage

navailable.

ample if
as A :
17, we have

e A variable is use
side of an agignmen
e A filereco d or writtett:

e Jtisusedina P Fﬁ(ﬁlwhen it appears dlgﬁthﬁ'predlcate

DATA FLOW ANOMALIES: " I IEI
An anomaly is denoted by a two-character sequence of actions.

For example, ku means that the object is killed and then used, where as dd means
that the object is defined twice without an intervening usage.

What is an anomaly is depend on the application.

rs on the right hand

57

There are nine possible two-letter combinations for d, k and u. some are bugs,
some are suspicious, and some are okay.

1. dd :- probably harmless but suspicious. Why define the object twice without

an intervening usage?

2. dk :- probably a bug. Why define the object without using it?

3. du :- the normal case. The object is defined and then used.

4. kd :- normal situation. An object is killed and then redefined.

5. kk :- harmless but probably buggy. Did you want to be sure it was really killed?
6. ku :- a bug. the object doesnot eXist

7. ud :- usually not a bug because the permlts reassignment at almost

any time.
8. uk :- normal situati ﬁ E Eﬁ

In addition to 2 are SiX Sip

tuations, th

We will use ing of irk urs prior to
the action i nterest.

A trailing i @IS after thy r:%o the exit.
They pos :

1.-k:-p G i8I T a a.this poilMbuathe path,
the varia . . lial dogs natexist.
2.-d:-0 i ¢ i

3.-u:-p aéas

been prev

4. k-:-no ; as 0 K ﬁariable.
5. d- :- possibly a i efj Rt uSe this
path. But this coul -

6. u- :- not anomalous®
Although this sequence i
and k mean dyna torage a

d but
pignal

i on this path.
*quent kind of bug. If d

espectiv his could be an
instance in Wthh ally allocated ob] ect was n i #d to the pool after

use. FF#E_H I I1 -5

DATA FLOW ANOMALY STATE GRAPH

Data flow anomaly model prescribes that an object can be in one of four distinct
states:

1. K :- undefined, previously killed, doesnot exist

2. D :- defined but not yet used for anything

3. U :- has been used for computation or in predicate

4. A :- anomalous

58

These capital letters (K,D,U,A) denote the state of the variable and should not be
confused with the program action, denoted by lower case letters.

STATIC Vs D

Static analy

example: s

Dynamic is based
on interm ple: a

division
—

If a prob sis
methods, i i i 0CEeSSOT.
There is acfisal flow
anomalies '
For example, langu ations can detect (-u)
and (ku) anomalies.

But still there are.fl things
INADEQUATE. }

Why Static Analysis isn'rea)
notions of static analysis are in

otions of %‘E analysis are
%Trﬁ ytli%s for which current
adeuat®. e:

Dead Variables: Although it is often possible to prove that a variable is dead or
alive at a given point in the program, the general problem is unsolvable.

Arrays:Arrays are problematic in that the array is defined or killed as a single
object, but reference is to specific locations within the array. Array pointers are
usually dynamically calculated, so there's no way to do a static analysis to validate
the pointer value. In many languages, dynamically allocated arrays contain garbage
unless explicitly initialized and therefore, -u anomalies are possible.

59

Records and Pointers:The array problem and the difficulty with pointers is a special case
of multipart data structures. We have the same problem with records and the pointers to them. Also, in many
applications we create files and their names dynamically and there's no way to determine, without execution,
whether such objects are in the proper state on a given path or, for that matter, whether they exist at all.

Dynamic Subroutine and Function Names in a Call:subroutine or function
name is a dynamic variable in a call. What is passed, or a combination of
subroutine names and data objects, is constructed on a specific path. There's no
way, without executing the path, to determine whether the call is correct or not.

False Anomalies: Anomaljes EQJHIIEE n a "clear bug" such as ku

may not be a bug if t al) th ik iSigis unachievable. Such

"anomalies" are aﬁ SHTortidtel 2. PseDi®m of determining
b

whether a path j le is

Recoverabl i g "What #8nstitutes an
anomaly d i i peSdge compiler
know whi ind? : b Wmmomaly" is
not funda) bui halgmalefinition
with whi o
e

athe simple
ems, most
e or create
Dy _Mlower-priority
sanomalous" correct.
O concurrency (as in
Bl integration and system
at cannot be detected in the

Concurr
single-tas
anomaly i
data object
routine? Interrupt
True concurrency
multiprocessing) syste
testing is aimed a detectl
context of a smgl

Although static analysis nr E Ev ,td -ﬂae! ltm‘th using and a
continuing trend in language proce TE\ been better static analysis
methods, especially for data flow anomaly detection. That's good because it means
there's less for us to do as testers and we have far too much to do as it is.

DATA FLOW MODEL:

The data flow model is based on the program's control flow graph - Don't confuse
that with the program's data flowgraph..

60

Here we annotate each link with symbols (for example, d, k, u, c, p) or sequences
of symbols (for example, dd, du, ddd) that denote the sequence of data operations
on that link with respect to the variable of interest. Such annotations are called link
weights.

The control flow graph structure is same for every variable: it is the weights that
change.

Components of the model:

1. To every statement there is a node, whose name is unique. Every node has at
least one out link and at least one in link except for exit nodes and entry nodes.

2. Exit nodes are dummy nﬁm Fusgoing arrowheads of exit
statements (e.g., END aj 0.GOHR 1€ Sggph. Similarly, entry nodes
are dummy nodes éa I N (ST S . I the same reason.

3. The outlink ents (statemdii$* wi ne outlink) are
weighted by t ce of datg@lleow actiong ent. Note that
the sequenc more th 2 |etter. e assignment

[
i

statement ﬁ ost langu weightedeh peEibly ckd for
variable permit JCEPle simu ighgaents and/or
compoun have anori@li@® within the e sequence

ill be @

must cor in wilich ect eauted for that
variable. -

4. Predic L E ted with
the p - use ' i ink’ 21

one inlink
hts on the

e of
has!

5. Every s
and one 0
link between the
6. If there are seve I a given variable,
then the weight of the sequeé tions on that link for
that variable.

7. Conversely, a Wth seve ons on it be replaced by a
succession of equivdldht lpﬁ- each of which has at mq‘@ ata-flow action for

any variable. E-' I IEI-‘ '5

Program Example (PDL

CODE* (PDL)
INPUT X, Y VIU=1}):=V{U+1) + U(V-1)
Z:=X+Y ELL:VIU+UV)) :=U + V
Vi=X-Y IFU =V GOTO JOE
IF Z >=@8 GOTO SAM IFU>VTHENU :=2Z
JOE: Z:=2 -1 £ i=U
SAM: Z:=2 +V END

FORU=@gT02Z
VIU)UV) = (2 = V)=U
IF V(U)= @ GOTO JOE
Z2:=Z2-1

IFZ = 8 GOTO ELL
J:=U+1

NEXT U

= A contrived horror

61

Control flowgraph annotated for X and Y data flows.

Control

INTRO
e Dat
In co
account wh
raw connectivi

¢ In other words, d link weights

(d,k,u,c,p).
¢ Data Flow Strategies a on selectin l%ﬁth segments (also
called sub pat) t y some characten ('ﬁ a flows for all data

objects. Lﬂ%

¢ For example, all subpaths that con (or u, k, du, dk).

* A strategy X is stronger than another strategy Y if all test cases produced
under Y are included in those produced under X - conversely for weaker.

TERMINOLOGY:

1. Definition-Clear Path Segment, with respect to variable X, is a connected
sequence of links such that X is (possibly) defined on the first link and not
redefined or killed on any subsequent link of that path segment. 1l paths in
Figure

3.9 are definition clear because variables X and Y are defined only on the first link
(1,3) and not thereafter. In Figure 3.10, we have a more complicated situation. The
following path segments are definition-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7),
(7,8,9,10), (7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition- clear because
4,5). For practice, try finding all the

the variable is defined on (1,3) and.againgon

definition-clear subpaths for t II)Q =19 e iables).

2. Loop-Free Path al i q g o) " h¢
,5,6,7,8,10) i e 8.

atmost once. For,
(10,11,4,5,6,7, ot becausggilades 10 ang : isited twice.

node in it is visited

n which at most oge

twice. For) is a sijj . A simple

path seg 1 a loop, 0 olved.
g P -

4. A du m if the'd8t link has a

computatio iiioh-® W ; if the

penultim 1 % i Lt and link

(j,k) has a b a finition-

clear.

STRATEGIES: d
program's control
and/or computational
data flow testing strategi

2| OW ﬁased on the

which predicate uses
est set. Various types of
ectiveness are:

1. All - du Paths UP): T P) strategyds the strongest data-
flow testing straig #s sed here. It requires that path from every
definition of every Valriab‘ﬁ.S i\%é exercised under some

OFE TiEnt"s

For variable X and Y:In Figure 3.9, because variables X and Y are used only on
link (1,3), any test that starts at the entry satisfies this criterion (for variables X and
Y, but not for all variables as required by the strategy).

clude
r of

For variable Z: The situation for variable Z (Figure 3.10) is more complicated
because the variable is redefined in many places. For the definition on link (1,3)
we must exercise paths that include subpaths (1,3,4) and (1,3,5). The definition on
link (4,5) is covered by any path that includes (5,6), such as subpath (1,3,4,5,6, ...).
The (5,6) definition requires paths that include subpaths (5,6,7,4) and (5,6,7,8).

63

64

For variable V: Variable V (Figure 3.11) is defined only once on link (1,3).
Because V has a predicate use at node 12 and the subsequent path to the end must
be forced for both directions at node 12, the all-du-paths strategy for this variable
requires that we exercise all loop-free entry/exit paths and at least one path that
includes the loop caused by (11,4). Note that we must test paths that include both
subpaths (3,4,5) and (3,5) even though neither of these has V definitions. They
must be included because they provide alternate du paths to the V use on link (5,6).
Although (7,4) is not used in the tes r variable V, it will be included in the

et fo
test set that covers the predicaﬁ@ia'tq

The all-du-paths strate

2. All Uses g e definition
clear path it i oy e G t definition
be exercis I ing down
from all m cd er of test
cases by i] ment from

every defImiti

For varid L@hs (3,4,5)
and (3,5) in ,6), can be
reached b #sed to start
paths, but we do i ¥ link if we've
included the (8,9,1 el (8,9,10) in some test

cases because that's th e C US 9,10) - but suppose our
bug for variable V is on

for Figure 3.11. _f
3. All p-uses/some c-us #x (APU+C ,ﬁoﬁ“ variable and every
definition of that variable, 1n i at.[leﬁﬂ# efinition free path from the

definition to every predicate use; if there are definitions of the variables that are

not covered by the above prescription, then add computational use test cases as required to cover
every definition.

For variable Z:In Figure 3.10, for APU+C we can select paths that all take the
upper link (12,13) and therefore we do not cover the c-use of Z: but that's okay
according to the strategy's definition because every definition is covered. Links
(1,3), (4,5), (5,6), and (7,8) must be included because they contain definitions for

65

variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6), and (9,10) must be included
because they contain predicate uses of Z. Find a covering set of test cases under
APU+C for all variables in this example - it only takes two tests.

For variable V:In Figure 3.11, APU+C is achieved for V by
(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and
(1,3,5,6,7,8,10,11,12[lower], 13,2). Note

that the c-use at (9,10) need not be included under the APU+C criterion.

4. All c-uses/some p-uses strWlE e c-uses/some p-uses strategy
(ACU+P) is to first verageebiyecomputaiional use cases and if any
definition is not co reNQION s | VRSO C (Sllelia th:_! such predicate use
cases as are nee very definitiof clide me test.

For variabl i is qr path
(1’3’4’5:63‘& i C CS_ OLSEV efinitions
are not co ion i gl 5) p-use,
the (7,8) dEihi

' ' Q.F e but

The abo
ACU+P aefef: -

5. All Defiggti i I ' y every
definition i 3 At able, be
that use a ' E

or variable Z,

-ranch

For variable Z: Pat
whereas any entry/exi
From the definition of t

ACU+P and APij,

'l.,.
6. All Predicate Uses (utatio % CU) Strategies : The
all predicate uses strategy 1S f li' iJ strategy by dropping the
requirement that we include a c-use for the variable if there are no p-uses for the
variable. The all computational uses strategy is derived from ACU+P strategy by
dropping the requirement that we include a p- use for the variable if there are no c-
uses for the variable.

riablé
ild e

it fq
to be weaker than both

It is intuitively obvious that ACU should be weaker than ACU+P and that APU
should be weaker than APU+C.

ORDERING THE STRATEGIES:

66

The below figure compares path-flow and data-flow testing strategies. The arrows

denote that the strategy at the arrow's tail is stronger than the strategy at the arrow's
head.

ALL PATHS

ALL du PATHS

ALL USES
ALL—c/SOME—p ALL—p/SOME—c
ALL—c USES ALL DEFS ALL—p USES I.ﬁ
"l
BRANCH
| Q=
-
STATEMENT |

sgted set of
is a simple
ﬁemems that

dat statement i -

t from an improper
computational er variables at prior

statements.

s that ﬂimg must be in the

o If X is imﬁ; t i
program slic f})}u h respect to i 'l‘.

¢ A program dice is mli(r mﬁfﬂ&imems which are known
to be correct have been re e

e In other words, a dice is obtained from a slice by incorporating
information obtained through testing or experiment (e.g., debugging).

® The debugger first limits her scope to those prior statements that could
have caused the faulty value at statement i (the slice) and then eliminates
from further consideration those statements that testing has shown to be
correct.

¢ Debugging can be modeled as an iterative procedure in which slices are
further refined by dicing, where the dicing information is obtained from ad

67

hoc tests aimed primarily at eliminating possibilities. Debugging ends when
the dice has been reduced to the one faulty statement.

¢ Dynamic slicing is a refinement of static slicing in which only statements
on achievable paths to the statement in question are included.

DOMAIN TESTING:

« INTRODUCTION:
0 Domain:In mathematics domaln is-a set of possible values of an

independant V&l‘lﬁa‘h & 2 function.
?p o : fdTain testing attempts to

Youp |1gut

Schematic Representation of Domain Testing.

INPUT |—+ CLASSIFY -—-C}———@ QUTPUT

DO CASE 2

DO CASE 3

== DO CASE n

AL set
se the

then predicate
rough the routine -
ol flowgraph.

interpretati®
that based o

o] Con # if doma 1S apphed ecifications,
interpret&ti

E sed on c1f1e g graph for the
routine; but us !& ecifications, no

interpretation is needed because the domains are specified

directly.

For every domain, there is at least one path through the routine.

0 There may be more than one path if the domain consists of
disconnected parts or if the domain is defined by the union of
two or more domains.

0 Domains are defined their boundaries. Domain boundaries are
also where most domain bugs occur.

S
a spe

o

0 For every boundary there is at least one predicate that specifies
what numbers belong to the domain and what numbers don't.

For example, in the statement IF x>0 THEN ALPHA ELSE
BETA we know that numbers greater than zero belong to
ALPHA processing domain(s) while zero and smaller numbers
belong to BETA domain(s).

0 A domain may have one or more boundaries - no matter how
many Varlables define it.

For exampl % -l." ?= 16, the domain is the
inside i gin ilarly, we could
omain with ut in three

s and

nm)reted

predlcate
—

A DOM : E

Rin it ﬁnts on the

sually defilledPy many D8
predigatesili.c. gike set O
path'

nda

boundary b

« If the bounda b otlTe e boundary is said
to be open.

« Figure 4.2 shows th a gnef@mensional domain - i.e., a

domain de Ver one in 1aBte; call it x

e The importanc %nam closure is that t iclosure bugs are
frequent domain bug !ﬂnflr ni 1w£1 > 0 was intended.

69

D1 MIN D2 MAX b3

[a)] Both Sides Closed

o1 Dz 1 D3
- ¢
{b} One Side Open
MIN M
D1 49 D2 _f{ D3
i A T

-
Gl

ﬁs, lines
« BUG ASSUMPTI

o] The umptlo esting i #ﬁprocessmg is
okay in definition is wrong

a

0 An incorrec Eﬂm rj EEEET at boundaries are

wrong, which may i control flow predicates are
wrong.

0 Many different bugs can result in domain errors. Some of them
are:

Domain Errors:
* Double Zero Representation :In computers or
Languages that have a distinct positive and negative
zero, boundary errors for negative zero are common.

70

* Floating point zero check:A floating point number can
equal zero only if the previous definition of that number
set it to zero or if it is subtracted from it self or
multiplied by zero. So the floating point zero check to
be done against a epsilon value.

» Contradictory domains:An implemented domain can
never be ambiguous or contradictory, but a specified
domain can. A contradictory domain specification
means that at least two supposedly distinct domains

overlap

I
o
T oo

ctly

®s (especially) are
£b ect to Te ; matlons d improper

r#I atlon If the predicate e domain
bound E jﬂnds of do i i"tan result from

faulty logic

LINEAR AND NON LINEAR BOUNDARIES:

0 Nice domain boundaries are defined by linear inequalities or
equations.

0 The impact on testing stems from the fact that it takes only two
points to determine a straight line and three points to determine a
plane and in general n+1 points to determine a n-dimensional
hyper plane.

71

0 In practice more than 99.99% of all boundary predicates are
either linear or can be linearized by simple variable
transformations.

« COMPLETE BOUNDARIES:

0 Nice domain boundaries are complete in that they span the
number space from plus to minus infinity in all dimensions.

0 Figure shows some incomplete boundaries. Boundaries A and E
have gaps.

0 Such boundaries can come about because the path that
hypothetically corre S gio gilem is unachievable, because
inputs are ¢ ﬁﬁ uch values can't exist,
because inega single boundary,

i % undary values

DOMAIN TESTING:

72

DOMAIN TESTING STRATEGY: The domain-testing strategy is

simple, although possibly tedious (slow).

1.

2.

5
o

Domains are defined by their boundaries; therefore, domain
testing concentrates test points on or near boundaries.

Classify what can go wrong with boundaries, then define a test
strategy for each case. Pick enough points to test for all
recognized kinds of boundary errors.

Because every boundary serves at least two different domains,
test points used to check one domain can also be used to check
adjacent domamﬂ? d t points.

Run the t 1s (the tedious part)

eter

73

« DOMAIN BUGS AND HOW TO TEST FOR THEM:

0 An interior point (Figure 4.10) is a point in the domain such
that all points within an arbitrarily small distance (called an
epsilon neighborhood) are also in the domain.

0 A boundary point is one such that within an epsilon
neighborhood there are points both in the domain and not in the
domain.

0 An extreme point is a point that does not lie between any two
other arbitrary but distinct points of a (convex) domain.

Interior, Boungﬁ EF#QLLE%

EXTREME FPOINT

INTERIOR POINT

« An oﬁ) i ﬁ'.
« If the do i point near the
boundary but i

o If the boundary
the domain being t
acronym

the boundary but in
n remember this by the

: en Off In ‘111
Vi
Youg (ygu1 S*

74

ON POINTS

Figure shows
boundaries,

SHIFTED BOUNDARIES i

TILTED BOUNDARIES =@yt

")
OPEN/CLOSED ERROR IR

=B R
$

EXTRA BOUNDARY B ey
Ty
‘h“‘h
MISSING BOUNDARY B o
~
CORRECT

INCORRECT == ===u

75

76

PROCEDURE FOR TESTING: The procedure is conceptually is straight
forward. It can be done by hand for two dimensions and for a few domains and
practically impossible for more than two variables.

1. Identify input variables.
2. Identify variable which appear in domain defining predicates,
such as control flow predicates.
3. Interpret all domain predicates in terms of input variables.
4. For p binary pr B He Fk. Jost 2P combinations of
TRUE-FAL&E 2 herefores ost 2° domains. Find
! be” 1 is a Boolean
iF ¥ AND terms
here the
Jis a set of
Dol Qiimultiply

edicates consi

domain or g

all the eXtre] each
o methots

B strated to satisfy
f[helr O ¢ a8t sk A B part of the act of
atlng the We B¥Vant to mve possible

1n ﬁaes across their interf

= f
gnstfl{) o, # T)Itnoldtjpi S is considered as

= We'e looking for bugs in that "call" when we do

interface testing.
= Let's assume that the call sequence is correct and that
there are no type incompatibilities.

» For a single variable, the domain span is the set of
numbers between (and including) the smallest value
and the largest value. For every input variable we want
(at least): compatible domain spans and compatible
closures (Compatible but need not be Equal).

0 DOMAINS AND RANGE:

= The set of output values produced by a function is
called the range of the function, in contrast with
the domain, which is the set of input values over which
the function is def

For most ILdl.q n to specify input
ﬁ pred out ut values that

g requ1res t

e output
ust be

routln
f exploring.the

nge a ﬂ

lg{._#.
Q

CLOSURE CO

= Ass t e called domain

fs an the sdmig ple, O to
.&' e 4.16 shows the Tour ways in i[ﬁﬁhe caller's
I:F nd the called's do re can agree.
The thi #eq: SI'E) th1n line means
open. Figure show e four cases consisting of
domains that are closed both on top (17) and bottom
(0), open top and closed bottom, closed top and open
bottom, and open top and bottom.

range

Rl L) S)

77

caller called open tops open bottoms both open
=17 - ™ = - - - -
= G - - el L - - =
SPAN COMPATIBILITY:
_ rOLLEr.
9 - g 9= -

7 -7
3

Emore

ables
called
ned for

one-dimensional
domain; th i one off point per
bou or a to ' nd two off. points for the

C;p ck the off points appro naﬂI the closure
(cooo eﬁ.

Start with the C#E l.ltlIe Bf‘l generate test points in

accordance to the domain-testing strategy used for that routine in
component testing.

Unless you're a mathematical whiz you won't be able to do this
without tools for more than one variable at a time.

78

79

Unit-4

Software Testing Metrics

Software Testing Metrics are the quantitative measures used to estimate the
progress, quality, productivity and health of the software testing process. The goal
of software testing metrics is to improve the efficiency and effectiveness in the
software testing process and to help make better decisions for further testing
process by providing reliable data about the testing process.

A Metric defines in g tiﬁﬂellﬂ!ﬂEGﬁto which a system, system
a

component, or proce i example to understand
metrics would ileage of a c its ideal mileage
recommended e turer. '

Types of White Box Metrics

—

‘ — Linguistic Metrics:
* measuring the properties of program/specification text without
interpretation or ordering of the components.

— Structural Metrics:
* based on structural relations between objects in program;
* usually based on properties of control/data flowgraphs [e.g.
number of nodes, links, nesting depth], fan-ins and fan-outs of
procedures, etc.

— Hybrid Metrics:

* based on combination (or on a function) of linguistic and
structural properties of a program.

Linguistic Metrics: Based on measuring properties of program text without interpreting what the
text means. — E.g., LOC.

80

Structural Metrics: Based on structural relations between the objects in a program. — E.g.,
number of nodes and links in a control flowgraph.

Lines of code (LOC)
* LOC is used as a measure of software complexity.

» This metric is just as good as source listing weight if we assume consistency w.r.t. paper and
font size. « Makes as much sense (or nonsense) to say: —-This is a 2 pound program||

* as it is to say: — -This is a 100,000 line program. ||

i ﬂ.ﬂ'LLEEg-

LOC

* Various studies indicate:

error rates ranging from 0.04% to 7% when measured
against statement counts;

LOC is as good as other metrics for small programs
LOC is optimistic for bigger programs.

LOC appears to be rather linear for small programs
(<100 lines),

but increases non-linearity with program size.
Correlates well with maintenance costs

Usually better than simple guesses or nothing at all.

81

Structural Metrics

— McCabe’s Cyclomatic Complexity
* Control Flow Graphs

— Information Flow Metric

McCabe Cyclo

McCabe's cyclo i i i complexity of a
software prog i i i inear ependent
paths throug P i .

The Signifi

Measurem i i an sensitive to
the fact th 1cult to
understand a i C i

complexit
execute all

Calculating

Cyclomatic cdtple E)ws:

Cyclomatic complexit
Where:

P = number of disconnecte
E = number of edges gransfers o T

N = number of nod ({# ntial group
McCabe Cyclomatic nﬁe j
(Alias: McCabe number) T# E n I ’;f

e

ogram and a subroutine)

\A ansfer of control)

AN

it. Some can avoid it. Geniuses remove it.

BHT

Fools ignore complexity. Pragmatists s
- Alan Perlis, American Scientist

McCabe's cyclomatic complexity is a software quality metric that quantifies the complexity of a
software program. Complexity is inferred by measuring the number of linearly independent
paths through the program. The higher the number the more complex the code.

82

The Significance of the McCabe Number

Measurement of McCabe's cyclomatic complexity metric ensures that developers are sensitive to
the fact that programs with high McCabe numbers (e.g. > 10) are likely to be difficult to
understand and therefore have a higher probability of containing defects. The cyclomatic
complexity number also indicates the number of test cases that would have to be written to
execute all paths in a program.

Calculating the McCabe Number

Cyclomatic complexity is derived from the control flow graph of a program as follows:
Cyclomatic complexity (CC) =E - N + 2P

Where:

P = number of disconnected parts qifthdf [§vilkg h pu P llin o program and a subroutine)
- Sl 55

E = number of edges (transf 3¥tro

N = number of nodes (g¢

cramlh Of ne JilE oxﬂn transfer of control)

Examples of McCal Qi afe

SLi=" AV X
57 (M)

E=2 N T -4 +2 A
Halstead's Software Metric8

According to Halstead's "A co DEQSam imple
to be a collection of which can™

5
s
s

ation of an algorithm considered

er operatorsilherand."
The basic measures are F # Eﬂ I I EI 1 5‘\

nl = count of unique operators.

n2 = count of unique operands.

N1 = count of total occurrences of operators.
N2 = count of total occurrence of operands.

In terms of the total tokens used, the size of the program can be expressed as N = N1 + N2.

83

Estimated Program Length

According to Halstead, The first Hypothesis of software science is that the length of a well-
structured program is a function only of the number of unique operators and operands.

N=N1+N2
And estimated program length is denoted by N/

NA =nllog,nl + n2log,n2

The following alternate expressions ha\ﬁLpr:rEd estimate program length:

0 N;=log (nl!)+ B&) E

0 Ng=nl*lo nZak. 109

0 Nc=nl

0 stﬁ

o
PATH Pm) CT

PATH PE®D

e

—
o Norrmally . - floV ecnty.
o The STpI®St weai -] : ﬂﬂ

aphi ow graph

o Using link
into an equive . otes the set of all
possible paths xit fg

« Every link of a grap 8 VeRa

+The link naghigavill be deMe oW Ttalic letteﬁr

e In tracing a f ath segment through a flo -@J you traverse a
succession of hnk ﬁ

e The name of the path oggl q[glhﬂt.llj corresponds to those links is
expressed naturally by concatenating those link names.

« For example, if you traverse links a,b,c and d along some path, the name
for that path segment is abcd. This path name is also called a path

product.

e flo

escl, apdf ebef, ebd!
{a)

abcde, abgjfbode, abedimibede
1]

-LE
o E%E

ac, abe, abbe, abbbe, abbbibe
1l

) e ¢y il B 0

abd, abehd, abebebd, abebebebd

£

g thé S aFtween

er su ; From
o |is ollows:

0 Alternatively, afgPe denoted by :

aC"'a.bf{iB(rﬂE)bﬁabbbbﬁ‘*t
0 The + sign is und(geu)dl)l:rﬂl:);" ll)%[ween the two nodes of

interest, paths ac, or abc, or abbc, and so on can be taken.

0 Any expression that consists of path names and "OR"s and
which denotes a set of paths between two nodes is called a "Path
Expression."

PATH PRODUCTS:

0 The name of a path that consists of two successive path segments
is conveniently expressed by the concatenation or Path
Product of the segment names.

0 For example, if X and Y are defined as X=abcde,Y=fghij,then
the path corresponding to X followed by Y is denoted by

XY=abcdefghij

Similarly,

©o oo
=<
<
0w
=
s
8
&
-
m

ir product
ng every
le,

where A,B,C expressions.

The zeroth wer 0 or path expression is also
needed for ﬂgteness t the numer "h'._and denotes the
"path" whos gt ero - that is, the path t%*i have any links.

o1 I' LIGHT

PATH SUMS:

The "+" sign was used to denote the fact that path names were part of the
same set of paths.
The "PATH SUM" denotes paths in parallel between nodes.

85

86

e Links a and b in Figure 5.1a are parallel paths and are denoted by a + b.
Similarly, links c and d are parallel paths between the next two nodes and
are denoted by c + d.

« The set of all paths between nodes 1 and 2 can be thought of as a set of
parallel paths and denoted by eacf+eadf+ebcf+ebdf.

« If X and Y are sets of paths that lie between the same pair of nodes, then
X+Y denotes the UNION of those set of paths.

ABSORPTION EL

%
o If X and €%€ ame set of thttﬂl?el union of these
sets is unchanged,; jeqlelitﬂlut

RULE 5: X+X=X (Absorption Rule)

0 If a set consists of paths names and a member of that set is added
to it, the "new" name, which is already in that set of names,
contributes nothing and can be ignored.

0 For example,
o if X=at+aa+abc+abcd+def then
X+a = X+aa = X+abc = X+abcd = X+def = X

It follows that any arbitrary sum of identical path expressions reduces to the
same path expression.

LOOPS:

Loops can be understood as am rallel paths. Say that the loop
consists of a single link lﬁe t gh that loop point is
b0+b1+b2+b3+b4+RAEH oy

.}

bﬂ

The path 4
ab*c=ac+abissabh BN .. E
Syntax Testing

rnal inputs conform to

formats: — Textual users. — File formats. —
Database s 'H._

a.

e Data formats cf bﬁﬁcﬁqnicaﬂy converted 1%%} input data validation
tests. _' I ! EII

t

® Such a conversion is easy when the input is expressed in a formal notation
such as BNF (Backus-Naur Form).

e System inputs

87

Syntax Testing Steps

¢ Identify the target language or format.

¢ Define the syntax of the language, formally, in a notation such as BNF.

e Test and Debug the syntax: — Test the -normal || conditions by covering the
BNF syntax graph of the input language. (minimum requirement) — Test the
—garbage|| conditions by testing the system against invalid data. (high

payoff)

BNF

Syntax is d&#nedy e ! iti jalin-turn refer
to other definitions

The LHS of a definitio
— 1= means —is d¢.1 s||-

— | means -or]|. F# E .'

— + means —one or more occurrences||.

Test Case Generation

There are three possible kinds of incorrect actions:
— Recognizer does not recognize a good string.

— Recognizer accepts a bad string.

88

89

— Recognizer crashes during attempt to recognize a string.

» Even small BNF specifications lead to many good strings and far more
bad strings.

* There is neither time nor need to test all strings.

Testing Strategy

® C(Create one error at a time, while keeping all other components of the

input string correct.
‘ E%r single errors, do the
p below as

® Once a complete se
same for doublg#

Delimite av i i ﬁ where one
ends and t

— Not a delimiter. e.g.,

— Poorly matchedﬁfr?j

Sources of Syntax F# E _' I I EI" 5‘

¢ Designer-Tester Cooperation
* Manuals

e Help Screens

¢ Design Documents

* Prototypes

® Programmer Interviews

e Experimental (hacking)

Unit-5 :

Logic Based Testing

INTRODUCTION:

0 The functional requirements of many programs can be specified
by decision tables, which provide a useful basis for program and
test design.

0 Consistency and completeness can be analyzed by using boolean

algebra, which can L;El as a basis for test design.
Boolean al {;ﬁlﬂ Gﬁ'ng Karnaugh-Veitch

charts.

of theirdeast use#
is to log as arithng
mer i

bved, the bugs
have shi | equirements and
their speci g ¢ 8% to 30% of the
total dbecaus e fi -out, they're the costliest
of al ¥I.=

0 The trou F cifications i 1s that tlg? to express.

0 Boolean algeb E ntial calculus) is the
most basic of all loglc syste

0 Higher-order logic systems are needed and used for formal
specifications.

0 Much of logical analysis can be and is embedded in tools. But

these tools incorporate methods to simplify, transform, and
check specifications, and the methods are to a large extent based on boolean
algebra.

90

KNOWLEDGE BASED SYSTEM:

= The knowledge-based system (also expert system, or
"artificial intelligence" system) has become the
programming construct of choice for many applications
that were once considered very difficult.

Knowledge-based systems incorporate knowledge from
a knowledge domain such as medicine, law, or civil
engineering into a database. The data can then be

queried an m E o provide solutions to
probl s i e

=P lemanta o)i Hedop :cﬂ systems is to
b 0

: #-) eXpert's ot of rules.
en progide dat®and quesiens based

H‘- he user's data is ssed throtigh the rul@pase to
#l' lusions (e or de Uilla#s for
'E fla. The prq@fsSllg is dont™ey Bled
once engine. emmr
w ing QW ABIBRD A S ¢ ems arid™ their
DI'OL] @S d]
%ﬂ DI ACEs f S are in
N Qi e A6 T 3 D i the

imple

0 Although | tools@are ve, most of the
benefits o o n be " by wholly manual
meang if you Traug ez opgettial tool: .the Karnaugh-
VEIt(@ am is that conceptual tool. i-

v

91

DECISION TABLES:

CONDITION ENTAY
{
i AULEY | RuLE? | muLed | RuLed
CONDITION | YES vis NQ KO
-Mr;?:::au { lcovomionz | s | N0 1
v | ['
CONDITION 3 N0 Y5 NO ‘
CONDITIONG | NO Yis o | YES
% e e —— st —_— -
ACTION 1 YEE | YES N 50
ACTION . : :
$Tub < L ACTION } N0 .' N 1 Yis NO :l
ACTION) W | N KO ¥ES P
\ e ama—— | | P ’
m !'
ACTION ENTRY -

. . i try, the

onditions under
which the act \ gce.

92

Printer troubleshooter

Rules
Printer doas not print YIY|Y]IYININ|N|NMN
Conditions | A red light is flashing Y|IY|NIN]JY|YIN|N
Printer is unrecognised YIN|IY|INIYIN]JY|N
Check the power cable x
Check the printer-computer cable | X x
Actions Ensure printer software is installed | X x X
Check/replace ink X| X x| X
Check for paper jam X x

-

met for the
et, ||NO"
cmNS. that the

o Arule r a condi hould oy
rule t ES" mex t the ca
mea iti be met,
con i is im
Th i i e goutine wi

ruly s",
"] t

"y

i te if the
e place; if
—

. llows:
itions 3
2).

. or predica

. isi i) = Let us use

"predicate"
+ Now the above t QI
1. Action 1 wil ifpEedicate ™ and 2 are true and if

, or if pre%gs 1, 3, and 4

alse (rule 3).
is false and predicate 4 is

2. Action 2 wil 1i tI cnatl
3. Action 3 will take pl'! [fn

true (rule 4).
DECISION-TABLE PROCESSORS:

predkin Fog

0 Decision tables can be automatically translated into code and, as
such, are a higher-order language

0 If the rule is satisfied, the corresponding action takes place

0 Otherwise, rule 2 is tried. This process continues until either a
satisfied rule results in an action or no rule is satisfied and the
default action is taken

93

0 Decision tables have become a useful tool in the programmers
kit, in business data processing.

DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:

5. The specification is given as a decision table or can be easily
converted into one.

6. The order in which the predicates are evaluated does not affect
interpretation of the rules or the resulting action - i.e., an
arbitrary permutation of the predicate order will not, or should

not, affect which E
7. The order 1 %d does not affect the
i tlbof rules will not,

rule need

DECISI
—
Z

gﬁlSlOl’l

to actions 1,

ACTION 1

9}— ACTION 2 —(:z:)_—

[R&

0. ND TN —
@ ACTION 3

94

« If the decision appears on a path, put in a YES or NO as appropriate. If
the decision does not appear on the path, put in an I, Rule 1 does not
contain decision C, therefore its entries are: YES, YES, I, YES.

« The corresponding decision table is shown in Table

RULE RULE RULE RULE RULE RULE
1 2 3 4) 6

CONDITION

CONDITION YE.;'ML NOI NO
NO I

CONDIT d ‘i S NO

¢n Y % NO

CO 16

KV CHAR

INTRODE

boolean algebraic

ulatlons 0 grap via.

and mm

variables these dlagali‘l&'cumbersome
SINGLE VARIABLE:

rffft'vﬂ I 1

» Figure 6.6 shows all the boolean functions of a single
variable and their equivalent representation as a KV
chart.

95

A
0 1
0 0 0 The function is never true
A
0 1
A 0 1 The function is true when A is true
A

The function is true when A is false

&

The function is always true

e
-
ale A ¢ nihwe.

ahat the

vari s Q

« The the b) < ' g fund the chart
repr S i L il o
« We usually @ ' ¥ only the

conditions und@

STATES, STATE GRAPE ' oW STIN

OBJECTIVE: !r F # .‘*
To know how state testing stratgi' ai Ia“rlh:e‘ﬁse of finite state machine

models for software structure, software behavior, or specifications of software
behavior.

Introduction:

The finite state machine is as fundamental to software engineering as Boolean
algebra to logic.

Finite state machines can also be implemented as table driven software, in which
case they are a powerful design option.

96

97

State Graphs:
OBJECTIVE:

State graph is used to represent states, links, and transitions from one state to
involves a program that detects the character sequence —in the graph.

1. A state is defined as : — A combination of circumstances or attributes
belonging for the time being to a person or thing. ||

2. For example, a moving automobileswhose engine is running can have
the following states with resp
1. Reverse gear n E

2. Neutral gea

3. First geanu'

4. Second

5. Third
6. Fourth gear

For exam
following

7. Neither ZCZC
8. Z has been detecte
9. ZC has been detgcted.

10. ZCZ has been cft.it.erﬂa

11. ZCZC has been detected.

Z,C,A

States are represented by Nodes. State are numbered or may
identified by words or whatever else is convenient.

States are represented byﬁdﬂn L L Eﬁﬁ

State are numbere ie

1S convenient

1. Inputs and

1. Whatewv
the state

2. Transiwa e den

3. The in
are link we

4. There i

equent state,
| linkslwve ca the notation
ut?2, WP

instead of drawing a
by listing the several inp

6. A finite state n‘ff 1s an abstract dev at can be re*ﬂnted by a state

graphhaving a finite num ﬁf #ates and a finite uﬂ) ansitions
LA

between states.

2. OQutputs

1. An output can be associated with any link.

2. Out puts are denoted by letters or words and are separated from inputs by a
slash as follows: —input/output]||.

3. As always, output denotes anything of interest that’s observable and is not
restricted to explicit outputs by devices

98

99

4. Outputs are also link weights.

5. If every input associated with a transition causes the same output, then
denoted it as: —input1, input2, input3 .../output ||

3. State Tables:

1.Big state graphs are cluttered and hard to follow.

2. It’s more convenient to represent the state graph as a table (the state table or

state transition table) that spe(ﬁﬁ'_te puts, the transitions and the

outputs.

3. The following

State Table-Example
inputs

STATE d L A
NONE NONE NONE
Z 2L, NONE
" ¥ b7 NONE NONE
A4 . ZCZC NONE
ZCZC ZCZC ZCZC ZLLG

4, Time versus Sequence:

e State graphs don’t represent time they represent sequence.
¢ A transition might take microseconds or centuries;

100

* A system could be in one state for milliseconds and another for years
the state graph would be the same because it has no notion of time.

¢ Although the finite state machines model can be elaborated to include
notions of time in addition to sequence, such as time Petri Nets.

5. Software Implementation

Implementation and Operation:

1. There are four tables involved:;

3. A table that
code (TRAN

4. A table grpces
associated 2

hat speci output
put com@ilia (OUT

5. Atab]@a store nt st of
the same stage

6. The ro e

PRE < _NAME)

b
0) (INPUT_VALUE)
d) PO STATE

) JNEW_ PTABLE(POINTER)

f ,#PUT_COD - UT_TABL TER)

g) CALLJBIRUT HANDLER ow_ ODE)

h) DEVICE%@I[\EI‘*IA E) := NEW_STATE END

State Codes and State-Symbol Product:

1. The term state-symbol product is used to mean the value obtained by any
scheme used to convert the combined state and input code into a pointer to
a compact table without holes.

101

2. -state codes|| in the context of finite-state machines, we mean the
(possibly) hypothetical integer used to denote the state and not the actual form
of the state code that could result from an encoding process.

Good State graphs and bad State graphs

OBJECTIVE: student should find out state graphs which are reachable and non
reachable states according to the given specifications or not. To check how
equivalent states are possible with set of inputs and outputs

Here are some principles for]ﬁﬁ l_ L E Eﬁ
) ;

1. The total number tﬂ S _isal(
factors that make#p. e sl

2. For every
one, possib

4. For every S B¢ (9 back
to the sa

Number o

1. The number of
to recognize or mod@

2. In practice, the state is'@
values of Varlabqu?t appear 1

3. Find the number of stak# #ﬁw

Impossible States:

= Sometimes some combinations of factors may appear to be impossible.

= The discrepancy between the programmer’s state count and the tester’s state
count is often due to a difference of opinion concerning —impossible
states|| .

102

= A robust piece of software will not ignore impossible states but will
recognize them and invoke an illogical condition handler when they
appear to have occurred

Unreachable States:

= An unreachable state is like unreachable code.
= A state that no input sequence can reach.
= An unreachable state is not impossible, just as unreachable code is
not impossible '!]_I?E
= There may be tgﬁnﬂ'ﬂ T
r

because the

o other states; there usually
oon rect transition.

Dead States:

(factor lost).
e States or sets o
e States or sets of stat

® States or s<£ IFE ?gates that reachable*t
Principles of State Testilr. # E setlrm 'Ioill‘tésting is:
1. Define a set of covering inpu u lﬁg back to the initial state

when starting from the initial state.
2. For each step in each input sequence, define the expected next state, the

expected transition, and the expected output code. A set of tests, then, consists
of three sets of sequences:

1. Input sequences. 2. Corresponding transitions or next-state names. 3. Output
sequences.

103

Limitations and Extensions

1.State transition coverage in a state graph model does not guarantee
complete testing.

2. How defines a hierarchy of paths and methods for combining paths to
produce covers of state graphs.

3. The simplest is called a -0 switch || which corresponds to testing each
transition individually.

4. The next level consist ﬁg!’!ﬁlﬂ%s consisting of
two transitions calle E

mber of states

	SYLLABUS
	SOFTWARE TESTING UNIT I
	Definition of Software Testing
	PURPOSE OF TESTING:
	Productivity and Quality in software:
	Phases in a tester's mental life can be categorised into the following 5 phases:
	MODEL FOR TESTING:
	ENVIRONMENT:
	PROGRAM:
	BUGS:
	OPTIMISTIC NOTIONS ABOUT BUGS:
	IS COMPLETE TESTING POSSIBLE?
	Three different approaches can be used to demonstrate that a program is correct.They are:
	2. Structural Testing:
	3. Formal Proofs of Correctness:
	Importance= ($) = Frequence * (Correction cost + Installation cost + Consequential cost)

	TAXONOMY OF BUGS:
	1. Requirements and Specifications Bugs:
	2. Feature Bugs:
	3. Feature Interaction Bugs:
	Specification and Feature Bug Remedies:
	1. Control and Sequence Bugs:
	2. Logic Bugs:
	3. Processing Bugs:
	4. Initialization Bugs:
	5. Data-Flow Bugs and Anomalies:
	DATA BUGS:
	5. Dynamic Data Vs Static data:
	CODING BUGS:
	INTERFACE, INTEGRATION, AND SYSTEM BUGS:
	1. External Interfaces:
	2. Internal Interfaces:
	3. Hardware Architecture:
	4. Operating System Bugs:
	5. Software Architecture:
	6. Control and Sequence Bugs (Systems Level):
	7. Resource Management Problems:
	8. Integration Bugs:
	9. System Bugs:
	TEST AND TEST DESIGN BUGS:
	UNIT-II
	At the end of this unit, the student will be able to:
	BASICS OF PATH TESTING:
	THE BUG ASSUMPTION:
	CONTROL FLOW GRAPHS:
	1. Process Block:
	2. Decisions:
	3. Case Statements:
	4. Junctions:
	CONTROL FLOW GRAPHS Vs. FLOWCHARTS:
	NOTATIONAL EVOULTION:
	Simplified Flowgraph Notation

	LINKED LIST REPRESENTATION:
	Linked List representation of Flow Graph:
	Alternative Flowgraphs for same logic (Statement "IF (A=0) AND (B=1) THEN

	FLOWGRAPH AND FLOWCHART GENERATION:
	PATH TESTING - PATHS, NODES AND LINKS:
	FUNDAMENTAL PATH SELECTION CRITERIA:
	PATH TESTING CRITERIA:
	Path Testing (Pinf):
	Statement Testing (P1):
	Branch Testing (P2):
	Commonsense and Strategies:
	Which paths to be tested?
	Path Selection Example:
	Practical Suggestions in Path Testing:
	LOOPS:
	CASE 2: Single loop, Non-zero minimum, No excluded values
	CASE 3: Single loops with excluded values

	Nested Loops:
	Concatenated Loops:
	Horrible Loops:
	Loop Testing Time:
	PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:
	MULTIWAY BRANCHES:
	INPUTS:
	PREDICATE INTERPRETATION:
	INDEPENDENCE OF VARIABLES AND PREDICATES:
	CORRELATION OF VARIABLES AND PREDICATES:
	PATH PREDICATES EXPRESSIONS:
	ABCD+EBCD=(A+E)BCD
	TESTING BLINDNESS:
	1. Assignment Blindness:
	2. Equality Blindness:
	3. Self Blindness:
	PATH SENSITIZING:
	(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
	ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ KL
	PATH SENSITIZATION.
	PATH INSTRUMENTATION:
	1. Interpretive Trace Program:
	2. Traversal Marker or Link Marker:
	Why Single Link Markers aren't enough.

	Two Link Marker Method:
	Double Link Marker Instrumentation.

	TRANSACTION FLOWS:
	INTRODUCTION:
	TRANSACTION FLOW GRAPHS:
	USAGE:
	COMPLICATIONS:

	TRANSACTION FLOW TESTING TECHNIQUES:
	GET THE TRANSACTIONS FLOWS:
	INSPECTIONS, REVIEWS AND WALKTHROUGHS:
	PATH SELECTION:
	PATH SENSITIZATION:
	PATH INSTRUMENTATION:

	Unit-3
	DATA FLOW TESTING:
	Motivation:
	DATA FLOW MACHINES:
	Von Neumann Machine Architecture:
	Multi-instruction, Multi-data machines (MIMD) Architecture:
	BUG ASSUMPTION:
	DATA FLOW GRAPHS:
	Data Object State and Usage:
	1. Defined (d):
	2. Killed or Undefined (k):
	3. Usage (u):
	DATA FLOW ANOMALIES:
	DATA FLOW ANOMALY STATE GRAPH:
	STATIC Vs DYNAMIC ANOMALY DETECTION:
	DATA FLOW MODEL:
	Components of the model:
	Program Example (PDL)
	Control flowgraph annotated for X and Y data flows.

	STRATEGIES OF DATA FLOW TESTING:
	INTRODUCTION:
	TERMINOLOGY:
	ORDERING THE STRATEGIES:
	SLICING AND DICING:

	DOMAIN TESTING:
	A DOMAIN IS A SET:
	DOMAINS, PATHS AND PREDICATES:
	A DOMAIN CLOSURE:
	DOMAIN DIMENSIONALITY:
	BUG ASSUMPTION:
	Domain Errors:
	LINEAR AND NON LINEAR BOUNDARIES:
	COMPLETE BOUNDARIES:
	DOMAIN TESTING:
	DOMAIN BUGS AND HOW TO TEST FOR THEM:
	Interior, Boundary and Extreme points.

	DOMAIN AND INTERFACE TESTING INTRODUCTION:
	DOMAINS AND RANGE:
	CLOSURE COMPATIBILITY:
	SPAN COMPATIBILITY:
	Unit-4
	PATH PRODUCTS AND PATH EXPRESSION:
	PATH EXPRESSION:
	PATH PRODUCTS:
	PATH SUMS:
	DISTRIBUTIVE LAWS:
	ABSORPTION RULE:
	LOOPS:
	Syntax Testing
	Syntax Testing Steps
	How to Find the Syntax
	BNF
	Test Case Generation
	Testing Strategy
	Delimiter Errors
	Sources of Syntax
	Unit-5 :
	INTRODUCTION:
	KNOWLEDGE BASED SYSTEM:
	DECISION TABLES:
	DECISION-TABLE PROCESSORS:
	DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:
	DECISION-TABLES AND STRUCTURE:
	KV CHARTS INTRODUCTION:
	SINGLE VARIABLE:
	STATES, STATE GRAPHS AND TRANSITION TESTING
	State Graphs:
	1. Inputs and Transition:
	2. Outputs
	3. State Tables:
	4. Time versus Sequence:
	5. Software Implementation
	Good State graphs and bad State graphs
	STATE TESTING
	Limitations and Extensions

