
1



2



3

SOFTWARE     TESTING  

SYLLABUS

Unit-1: Introduction: Purpose – Productivity and Quality in Software – Testing Vs
Debugging – Model for Testing – Bugs – Types of Bugs – Testing and Design
Style.

Unit-2: Flow/Graphs and Path Testing – Achievable paths – Path instrumentation –
Application – Transaction Flow Testing Techniques

Unit-3: Data Flow Testing Strategies - Domain Testing: Domains and Paths –
Domains and Interface Testing .

Unit-4: Linguistic –Metrics – Structural Metric – Path Products and Path
Expressions. Syntax Testing – Formats – Test Cases .

Unit-5 : Logic Based Testing – Decision Tables – Transition Testing – States, State
Graph, State Testing.

1. Recommended Texts
i. B. Beizer , 2003, Software Testing Techniques, II Edn., DreamTech 

India, New Delhi.
ii. K.V.KK. Prasad , 2005, Software Testing Tools, DreamTech. India, 

New Delhi. 2.
2. Reference Books

i. Burnstein, 2003, Practical Software Testing, Springer International
Edn.

ii. E. Kit, 1995, Software Testing in the Real World: Improving the
Process, Pearson Education, Delhi.

iii. R.Rajani, and P.P.Oak, 2004, Software Testing, Tata Mcgraw Hill, 
New Delhi.



4

SOFTWARE TESTING

UNIT     I  

What is testing?

Testing  is  the  process  of  exercising  or  evaluating  a  system  or  system
components by manual or automated means to verify that it satisfies specified
requirements.

Definition     of     Software     Testing  

Software testing can be stated as the process of verifying and validating that a
software or application is bug free, meets the technical requirements as guided by
its design and development and meets the user requirements effectively and
efficiently with handling all the exceptional and boundary cases.

The process of software testing aims not only at finding faults in the existing
software but also at finding measures to improve the software in terms of
efficiency, accuracy and usability. It mainly aims at measuring specification,
functionality and performance of a software program or application.

Software testing can be divided into two steps:
1. Verification: it refers to the set of tasks that ensure that software correctly
implements a specific function.
2. Validation: it refers to a different set of tasks that ensure that the software that
has been built is traceable to customer requirements.
Verification: ―Are we building the product right?‖
Validation: ―Are we building the right product?‖

What are different techniques of Software Testing?

Software techniques can be majorly classified into two categories:

1. Black Box Testing: The technique of testing in which the tester doesn’t have
access to the source code of the software and is conducted at the software
interface without concerning with the internal logical structure of the software is
known as black box testing.

2. White-Box Testing: The technique of testing in which the tester is aware of
the internal workings of the product, have access to it’s source code and is
conducted by making sure that all internal operations are performed according to
the specifications is known as white box testing.



5

Black Box Testing White Box Testing

Internal workings of an application 
are not required.

Knowledge of the internal workings is 
must.

Also known as closed box/data driven 
testing. Also known as clear box/structural testing.

End users, testers and developers. Normally done by testers and developers.

This can only be done by trial and
error method.

Data domains and internal boundaries can 
be better tested.

What are different levels of software testing?
Software level testing can be majorly classified into 4 levels:

1. Unit Testing: A level of the software testing process where individual
units/components of a software/system are tested. The purpose is to validate that
each unit of the software performs as designed.
2. Integration Testing: A level of the software testing process where individual
units are combined and tested as a group. The purpose of this level of testing is to
expose faults in the interaction between integrated units.

3. System Testing: A level of the software testing process where a complete,
integrated system/software is tested. The purpose of this test is to evaluate the
system’s compliance with the specified requirements.
4. Acceptance Testing: A level of the software testing process where a system is
tested for acceptability. The purpose of this test is to evaluate the system’s
compliance with the business requirements and assess whether it is acceptable for
delivery.



6

PURPOSE OF TESTING:

 Testing consumes at least half of the time and work required to produce a
functional program.

 MYTH: Good programmers write code without bugs. (Its wrong!!!)
 History says that even well written programs still have 1-3 bugs per

hundred statements.

Productivity and Quality in software:

o In production of consumer goods and other products, every
manufacturing stage is subjected to quality control and testing
from component to final stage.

o If flaws are discovered at any stage, the product is either
discarded or cycled back for rework and correction.

o Productivity is measured by the sum of the costs of the material,
the rework, and the discarded components, and the cost of
quality assurance and testing.

o There is a tradeoff between quality assurance costs and
manufacturing costs:  If  sufficient  time is  not  spent  in  quality
assurance, the reject rate will be high and so will be the net cost.
If  inspection  is  good and all  errors  are  caught  as  they occur,
inspection costs will dominate, and again the net cost will suffer.

o Testing and Quality assurance costs for 'manufactured' items can
be as low as 2% in consumer products or  as  high as 80% in
products such as space-ships, nuclear reactors, and aircrafts,
where failures threaten life. Whereas the manufacturing cost of
software is trivial.

o The biggest part of software cost is the cost of bugs: the cost of
detecting them, the cost of correcting them, the cost of designing
tests that discover them, and the cost of running those tests.

o For software, quality and productivity are indistinguishable
because the cost of a software copy is trivial.

 Testing and Test Design are parts of quality assurance should also focus
on bug prevention.  A prevented bug is better than a detected and
corrected bug.



7

 Phases in a tester's mental life can be categorised into the following 5  
phases:

o Phase 0: (Until 1956: Debugging Oriented)  There is no
difference between testing and debugging. Phase 0 thinking was
the norm in early days of software development till testing
emerged as a discipline.

o Phase 1: (1957-1978: Demonstration Oriented) The purpose
of testing here is to show that software works. Highlighted
during the late 1970s. This failed because the probability of
showing that software    works    'decreases'    as    testing
increases.  i.e.  The more you test, the more likely you'ill find a
bug.

o Phase 2:  (1979-1982: Destruction Oriented)  The purpose of
testing is  to  show that  software doesnt  work.  This  also failed
because the software will never get released as you will find one
bug or the other. Also, a bug corrected may also lead to another bug.

o Phase 3: (1983-1987: Evaluation Oriented)  The purpose of
testing is not to prove anything but to reduce the perceived risk
of not working to an acceptable value (Statistical Quality
Control). Notion is that testing does improve the product to the
extent that testing catches bugs and to the extent that those bugs
are fixed. The product is released when the confidence on that
product is high enough. (Note: This is applied to large software
products with millions of code and years of use.)

o Phase 4: (1988-2000: Prevention Oriented)  Testability is the
factor  considered here.  One reason is  to  reduce  the labour  of
testing.  Other reason is  to check the testable and non-testable
code. Testable code has fewer bugs than the code that's hard to
test. Identifying the testing techniques to test the code is the
main key here.

o
 Test  Design:  We know that  the  software code  must  be  designed  and

tested,  but  many  appear  to  be  unaware  that  tests  themselves  must  be
designed and tested. Tests should be properly designed and tested before
applying it to the acutal code.

 Testing is'nt everything: There are approaches other than testing to create
better software. 

Methods other than testing include:



8

o Inspection Methods: Methods like walkthroughs, deskchecking,
formal inspections and code reading appear to be as effective as
testing but the bugs caught donot completely overlap.

o Design Style:  While designing the software itself, adopting
stylistic objectives such as testability, openness and clarity can
do much to prevent bugs.

o Static Analysis Methods:  Includes formal analysis of source
code during compilation. In earlier days, it is a routine job of the
programmer to do that. Now, the compilers have taken over that
job.

o Languages:  The source language can help reduce certain kinds
of bugs. Programmers find new bugs while using new languages.

o Development Methodologies and Development
Environment: The development process and the environment in
which that methodology is embedded can prevent many kinds of
bugs.

 Testing Versus Debugging:  Many people consider both as same.
Purpose of testing is to show that a program has bugs. The purpose of
testing  is  to  find  the  error  or  misconception  that  led  to  the  program's
failure and to design and implement the program changes that correct the
error.

 Debugging usually follows testing, but they differ as to goals, methods
and most important psychology. The below tab le shows few important
differences between testing and debugging.

Testing Debugging

Testing starts with known 
conditions, uses predefined 
procedures and has predictable
outcomes.

Debugging starts from possibly 
unknown intial conditions and the end 
can not be predicted except 
statistically.

Testing can and should be 
planned, designed and scheduled.

Procedure and duration of debugging
cannot be so constrained.

Testing is a demonstration of 
error or apparent correctness.

Debugging is a deductive process.

Testing proves a programmer's
failure.

Debugging is the programmer's
vindication (Justification).



9

Testing, as executes, should strive 
to be predictable, dull, 
constrained, rigid and inhuman.

Debugging demands intutive leaps,
experimentation and freedom.

Much testing can be done without
design knowledge.

Debugging is impossible without
detailed design knowledge.

Testing can often be done by an
outsider.

Debugging must be done by an insider.

Much of test execution and design
can be automated.

Automated debugging is still a dream.

MODEL FOR TESTING:

Above figure is a model of testing process. It includes three models: A model
of the environment, a model of the program and a model of the expected 
bugs.

 ENVIRONMENT:
o A Program's environment is the hardware and software required

to make it run. For online systems, the environment may include
communication lines, other systems, terminals and operators.

o The environment also includes all programs that interact with
and  are  used  to  create  the  program under  test -  such  as  OS,
linkage editor, loader, compiler, utility routines.

o Because the hardware and firmware are stable, it is not smart to
blame the environment for bugs.

 PROGRAM:
o Most programs are too complicated to understand in detail.



10

o The concept of the program is to be simplified inorder to test it.
o If simple model of the program doesnot explain the unexpected

behaviour, we may have to modify that model to include more
facts and details. And if that fails, we may have to modify the
program.



11

 BUGS:
o Bugs are more insidious (deceiving but harmful) than ever we

expect them to be.
o An unexpected test result may lead us to change our notion of

what a bug is and our model of bugs.
o Some optimistic notions that many programmers or testers have

about bugs are usually unable to test effectively and unable to
justify the dirty tests most programs need.

 OPTIMISTIC NOTIONS ABOUT BUGS:
o Benign Bug Hypothesis: The belief that bugs are nice, tame and

logical. (Benign: Not Dangerous)
o Bug Locality Hypothesis: The belief that a bug discovered with

in a component effects only that component's behaviour.
o Control Bug Dominance: The belief that errors in the control

structures (if, switch etc) of programs dominate the bugs.
o Code / Data Separation: The belief that bugs respect the 

separation of code and data.
o Lingua Salvator Est:  The belief that the language syntax and

semantics (e.g. Structured Coding, Strong typing, etc) eliminates
most bugs.

o Corrections Abide:  The mistaken belief  that  a  corrected  bug
remains corrected.

o Silver Bullets:  The mistaken belief that X (Language, Design
method, representation, environment) grants immunity from
bugs.

o Sadism Suffices: The common belief (especially by independent
tester) that a sadistic streak, low cunning, and intuition are
sufficient to eliminate most bugs. Tough bugs need methodology
and techniques.

o Angelic Testers:  The belief that testers are better at test design
than programmers are at code design.

 IS COMPLETE TESTING POSSIBLE?
o If the objective of the testing were to prove that a program is free

of bugs, then testing not only would be practically impossible,
but also would be theoretically impossible.

o Three different approaches can be used to demonstrate that
a program is correct.They are:

1. Functional Testing:
 Every program operates on a finite number of

inputs. A complete functional test would



12

consists of subjecting the program to all
possible input streams.

 For each input the routine either  accepts the
stream and produces a correct outcome,
accepts the stream and produces an incorrect
outcome, or rejects the stream and tells us that
it did so.

 For example,  a 10 character  input string has
280 possible input streams and corresponding
outcomes, so complete functional testing in
this sense is IMPRACTICAL.

 But even theoritically, we can't execute a
purely functional test this way because we
don't know the length of the string to which
the system is responding.

2. Structural Testing:
 The design should have enough tests to ensure

that every path through the routine is exercised
at least once. Right off that's is impossible
because some loops might never terminate.

 The number of paths through a small routine
can be awesome because each loop multiplies
the path count by the number of times through
the loop.

 A small routine can have millions or billions
of paths, so total  Path Testing  is usually
IMPRACTICAL.

3. Formal Proofs of Correctness:

 Formal proofs of correctness rely on a
combination of functional and structural
concepts.

 Requirements are stated in a formal language
(e.g. Mathematics) and each program
statement is examined and used in a step of an
inductive proof that  the routine will  produce
the correct outcome for all possible input
sequences.

 The IMPRACTICAL thing here  is  that  such
proofs are very expensive and have been
applied only to numerical routines or to formal
proofs  for  crucial  software  such  as  system’s
security kernel or portions of compilers.



13

o Each approach leads to the conclusion that complete testing, in
the sense of a proof is neither theoretically nor practically
possible.

 IMPORTANCE OF BUGS:  The importance of bugs depends on
frequency, correction cost, installation cost, and consequences.

o Frequency:  How often does that kind of bug occur? Pay more
attention to the more frequent bug types.

o Correction Cost: What does it cost to correct the bug after it is
found? The cost is the sum of 2 factors: (1) the cost of discovery
(2) the cost of correction. These costs go up dramatically later in
the development cycle when the bug is discovered. Correction
cost also depends on system size.

o Installation Cost:  Installation cost  depends on the number of
installations: small for a single user program but more for
distributed systems. Fixing one bug and distributing the fix could
exceed the entire system's development cost.

o Consequences:  What are the consequences of the bug? Bug
consequences can range from mild to catastrophic.

A reasonable metric for bug importance is

Importance= ($) = Frequence * (Correction cost
+ Installation cost + Consequential cost)

 CONSEQUENCES OF BUGS:  The consequences of a bug can be
measure in terms of human rather than machine. Some consequences of a
bug on a scale of one to ten are:

1. Mild: The symptoms of the bug offend us aesthetically (gently);
a misspelled output or a misaligned printout.

2. Moderate:  Outputs are misleading or redundant. The bug
impacts the system's performance.

3. Annoying:  The system's behaviour because of the bug is
dehumanizing. E.g. Names are truncated orarbitarily modified.

4. Disturbing:  It refuses to handle legitimate (authorized / legal)
transactions. The ATM wont give you money. My credit card is
declared invalid.

5. Serious: It loses track of its transactions. Not just the transaction
itself but the fact that the transaction occurred. Accountability is
lost.



14

6. Very Serious:  The bug causes the system to do the wrong
transactions. Instead of losing your paycheck, the system credits
it to another account or converts deposits to withdrawals.

7. Extreme:  The problems aren't limited to a few users or to few
transaction types. They are frequent and arbitrary instead of
sporadic infrequent) or for unusual cases.

8. Intolerable: Long term unrecoverable corruption of the database
occurs and the corruption is not easily discovered. Serious
consideration is given to shutting the system down.

9. Catastrophic:  The decision to  shut  down is taken out  of  our
hands because the system fails.

10.Infectious:  What can be worse than a failed system? One that
corrupt other systems even though it doesnot fall in itself ; that
erodes the social physical environment; that melts nuclear
reactors and starts war.

TAXONOMY OF BUGS:

 There is no universally correct way categorize bugs. The taxonomy is not
rigid.

 A given bug can be put into one or another category depending on its
history and the programmer's state of mind.

 The major categories are: (1) Requirements, Features and Functionality
Bugs (2) Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface,
Integration and System Bugs (6) Test and Test Design Bugs.

 REQUIREMENTS,    FEATURES    AND     FUNCTIONALITY
BUGS:  Various  categories  in  Requirements,  Features  and Functionlity
bugs include:

1. Requirements and Specifications Bugs:
 Requirements and specifications developed from them

can be incomplete ambiguous, or self-contradictory.
They can be misunderstood or impossible to
understand.

 The specifications that don't  have flaws in them may
change while the design is in progress. The features are
added, modified and deleted.

 Requirements, especially, as expressed in specifications
are a major source of expensive bugs.

 The range is from a few percentage to more than 50%,
depending on the application and environment.



15

 What  hurts  most  about  the  bugs  is  that  they are  the
earliest to invade the system and the last to leave.

2. Feature Bugs:
 Specification problems usually create corresponding

feature problems.
 A feature can be wrong, missing, or superfluous

(serving no useful purpose). A missing feature or case
is easier to detect and correct.  A wrong feature could
have deep design implications.

 Removing the features might complicate the software,
consume more resources, and foster more bugs.

3. Feature Interaction Bugs:
 Providing correct, clear, implementable and testable

feature specifications is not enough.

 Features usually come in groups or related features. The
features of each group and the interaction of features
with in the group are usually well tested.

 The problem is unpredictable interactions between
feature groups or even between individual features. For
example, your telephone is provided with call holding
and call forwarding. The interactions between these two
features may have bugs.

 Every application has its peculiar set of features and a
much bigger set of unspecified feature interaction
potentials and therefore result in feature interaction
bugs.

Specification and Feature Bug Remedies:

o Most feature bugs are rooted in human to human communication
problems. One solution is to use high-level, formal specification
languages or systems.

o Such languages and systems provide short term support but in
the long run, does not solve the problem.

o Short term Support:  Specification languages facilitate
formalization of requirements and inconsistency and ambiguity
analysis.



16

o Long term Support:  Assume that we have a great specification
language and that can be used to create unambiguous, complete
specifications with unambiguous complete testsand consistent
test criteria.

o The specification problem has been shifted to a higher level but
not eliminated.

Testing Techniques for functional bugs:  Most functional test
techniques- that is those techniques which are based on a  behavioral
description of software, such as transaction flow testing, syntax testing,
domain testing, logic testing and state testing are useful in testing
functional bugs.

 STRUCTURAL BUGS: Various categories in Structural bugs include:
1. Control and Sequence Bugs:

 Control and sequence bugs include paths left out,
unreachable code, improper nesting of loops, loop-back
or loop termination criteria incorrect,  missing process
steps, duplicated processing, unnecessary processing,
rampaging, GOTO's, ill-conceived (not properly
planned) switches, sphagetti code, and worst of all,
pachinko code.

 One reason for  control  flow bugs is  that  this  area is
amenable (supportive) to theoritical treatment.

 Most of the control flow bugs are easily  tested and
caught in unit testing.

 Another reason for control flow bugs is that use of old
code especially ALP & COBOL code are dominated by
control flow bugs.

 Control and sequence bugs at all levels are caught by
testing,  especially  structural  testing,  more specifically
path testing combined with a bottom line functional test
based on a specification.

2. Logic Bugs:
 Bugs in logic, especially those related to

misundertanding how case statements and logic
operators behave singly and combinations

 Also includes evaluation of boolean expressions in
deeply nested IF-THEN-ELSE constructs.



17

 If the bugs are parts of logical (i.e. boolean) processing
not  related  to  control  flow,  they  are  characterized  as
processing bugs.

 If the bugs are parts of a logical expression (i.e control-
flow statement) which is used to direct the control flow,
then they are categorized as control-flow bugs.

3. Processing Bugs:
 Processing bugs include arithmetic bugs, algebraic,

mathematical  function  evaluation,  algorithm selection
and general processing.

 Examples of Processing bugs include: Incorrect
conversion from one data representation to other,

ignoring overflow, improper use of grater-than-or-eual
etc

 Although these bugs are frequent (12%), they tend to be
caught in good unit testing.

4. Initialization Bugs:
 Initialization bugs are common. Initialization bugs can

be improper and superfluous.
 Superfluous bugs are generally  less harmful but can

affect performance.
 Typical initialization bugs include: Forgetting to

initialize  the variables before first  use,  assuming that
they are initialized elsewhere, initializing to the wrong
format, representation or type etc

 Explicit  declaration of all  variables,  as in Pascal,  can
reduce some initialization problems.

5. Data-Flow Bugs and Anomalies:
 Most initialization bugs are special  case of data flow

anamolies.
 A data flow anomaly occurs where there is a path along

which we expect  to  do  something unreasonable  with
data, such as using an uninitialized variable, attempting
to use a variable before it exists, modifying and then
not storing or using the result, or initializing twice
without an intermediate use.

 DATA BUGS:
1. Data bugs include all bugs that arise from the specification of

data objects, their formats, the number of such objects, and their
initial values.

2. Data Bugs are atleast as common as bugs in code, but they are
foten treated as if they didnot exist at all.



18

3. Code migrates data:  Software is evolving towards programs in
which more and more of the control and processing functions are
stored in tables.

4. Because of  this,  there is an increasing awareness that bugs in
code are only half the battle and the data problems should be
given equal attention.

5. Dynamic Data Vs Static data:
 Dynamic  data  are  transitory.  Whatever  their  purpose

their lifetime is relatively short, typically the processing



19

time of one transaction. A storage object may be used
to hold dynamic data of different types, with different
formats, attributes and residues.

 Dynamic  data  bugs  are  due  to  leftover  garbage  in  a
shared resource. This can be handled in one of the three
ways: (1) Clean up after the use by the user (2)
Common Cleanup by the resource manager (3) No
Clean up

 Static Data are fixed in form and content. They appear
in the source code or database directly or indirectly, for
example a number, a string of characters, or a bit
pattern.

 Compile time processing will solve the bugs caused by
static data.

6. Information, parameter, and control:  Static or dynamic data
can serve in one of three roles, or in combination of roles: as a
parameter, for control, or for information.

7. Content, Structure and Attributes: Content  can be an actual
bit pattern, character string, or number put into a data structure.
Content  is  a  pure bit  pattern and has no meaning unless it  is
interpreted by a hardware or software processor. All data bugs
result    in    the    corruption    or    misinterpretation     of
content.  Structure  relates to the size, shape and numbers that
describe the data object, that is memory location used to store
the content. (e.g A two dimensional array). Attributes relates to
the specification meaning that is the semantics associated with
the contents of a data object. (e.g. an integer, an alphanumeric
string, a subroutine). The severity and subtlelty of bugs increases
as we go from content to attributes because the things get less
formal in that direction.

 CODING BUGS:
1. Coding errors of all kinds can create any of the other kind of

bugs.
2. Syntax errors are generally not important in the scheme of things

if the source language translator has adequate syntax checking.



20

3. If a program has many syntax errors, then we should expect
many logic and coding bugs.

4. The documentation bugs are also considered as coding bugs 
which may mislead the maintenance programmers.

INTERFACE, INTEGRATION, AND SYSTEM BUGS:

 Various categories of bugs in Interface, Integration, and System Bugs are:
1. External Interfaces:

 The external interfaces are the means used to
communicate with the world.

 These include devices, actuators, sensors, input
terminals, printers, and communication lines.

 The primary design criterion for an interface with
outside world should be robustness.

 All external interfaces, human or machine should
employ a protocol. The protocol may be wrong or
incorrectly implemented.

 Other external interface bugs are: invalid timing or
sequence assumptions related to external signals

 Misunderstanding external input or output formats.
 Insufficient tolerance to bad input data.

2. Internal Interfaces:
 Internal  interfaces  are  in  principle  not  different  from

external interfaces but they are more controlled.
 A best example for internal interfaces are

communicating routines.
 The external environment is fixed and the system must

adapt to it but the internal environment, which consists
of interfaces with other components, can be negotiated.

 Internal interfaces have the same problem as external
interfaces.

3. Hardware Architecture:
 Bugs related to hardware architecture originate mostly

from misunderstanding how the hardware works.
 Examples of hardware architecture bugs: address

generation error, i/o device operation / instruction error,
waiting too long for a response, incorrect interrupt
handling etc.



21

 The remedy for hardware architecture and interface
problems is two fold: (1) Good Programming and
Testing (2) Centralization of hardware interface
software in programs written by hardware interface
specialists.

4. Operating System Bugs:
 Program bugs related to the operating system are a

combination of hardware architecture and interface
bugs mostly caused by a misunderstanding of what it is
the operating system does.

 Use operating system interface specialists, and use
explicit  interface modules or macros for all  operating
system calls.

 This approach may not eliminate the bugs but at least
will localize them and make testing easier.

5. Software Architecture:
 Software  architecture  bugs  are  the  kind  that  called -

interactive.
 Routines can pass unit and integration testing without

revealing such bugs.
 Many of them depend on load, and their symptoms

emerge only when the system is stressed.
 Sample for such bugs: Assumption that there will be no

interrupts, Failure to block or un block interrupts,
Assumption that memory and registers were initialized
or not initialized etc

 Careful integration of modules and subjecting the final
system to a stress test are effective methods for these
bugs.

6. Control and Sequence Bugs (Systems Level):
 These bugs include: Ignored timing, Assuming that

events occur in a specified sequence, Working on data
before all the data have arrived from disc, Waiting for
an impossible combination of prerequisites, Missing,
wrong, redundant or superfluous process steps.

 The remedy for these bugs is highly structured
sequence control.

 Specialize,  internal,  sequence control mechanisms are
helpful.



22

7. Resource Management Problems:
 Memory is subdivided into dynamically allocated

resources such as buffer blocks, queue blocks, task
control blocks, and overlay buffers.

 External mass storage units such as discs, are
subdivided into memory resource pools.

 Some resource management and usage bugs: Required
resource not obtained, Wrong resource used, Resource
is already in use, Resource dead lock etc

 Resource  Management Remedies:  A design remedy
that prevents bugs is always preferable to a test method
that discovers them.

 The design remedy in resource management is to keep
the resource structure simple: the fewest different kinds
of resources, the fewest pools, and no private resource
management.

8. Integration Bugs:
 Integration bugs are bugs having to do with the

integration of, and with the interfaces between, working
and tested components.

 These bugs results from inconsistencies or
incompatibilities between components.

 The communication methods include data structures,
call  sequences,  registers,  semaphores,  communication
links and protocols results in integration bugs.

 The integration bugs do not constitute a big bug
category(9%) they are expensive category because they
are usually caught late in the game and because they
force changes in several components and/or data
structures.

9. System Bugs:
 System bugs covering all kinds of bugs that cannot be

ascribed to a component or to their simple interactions,
but result from the totality of interactions between
many components  such  as  programs,  data,  hardware,
and the operating systems.

 There can be no meaningful system testing until there
has been thorough component and integration testing.



23

 System bugs are  infrequent(1.7%) but  very important
because they are often found only after the system has
been fielded.

 TEST AND TEST DESIGN BUGS:
o Testing: testers have no immunity to bugs. Tests require

complicated scenarios and databases.
o They require code or the equivalent to execute and consequently

they can have bugs.
o Test criteria: if the specification is correct, it is correctly

interpreted and implemented, and a proper test has been
designed; but the criterion by which the software's behavior is
judged may be incorrect or impossible. So, a proper test criteria
has to be designed. The more complicated the criteria, the
likelier they are to have bugs.

o Remedies: The remedies of test bugs are:
1. Test Debugging:  The first remedy for test bugs is

testing and debugging the tests. Test debugging, when
compared to program debugging, is easier because
tests, when properly designed are simpler than
programs and donot have to make concessions to
efficiency.

2. Test Quality Assurance:  Programmers have the right
to ask how quality in independent testing is monitored.

3. Test Execution Automation:  The history of software
bug removal and prevention is indistinguishable from
the history of programming automation aids.
Assemblers, loaders, compilers are developed to reduce
the incidence of programming and operation errors.
Test execution bugs are virtually eliminated by various
test execution automation tools.

4. Test Design Automation:  Just as much of software
development has been automated, much test design can
be and has been automated.  For  a  given productivity
rate, automation reduces the bug count - be it for
software or be it for tests.



24

UNIT-II

FLOWGRAPHS AND PATH TESTING:

This unit gives an in depth overview of path testing and its applications.

At the end of this unit, the student will be able to:

 Understand the concept of path testing.
 Identify the components of a control flow diagram and compare the 

same with a flowchart.
 Represent the control flow graph in the form of a Linked List notation.
 Understand the path testing and selection criteria and their limitations.
 Interpret a control flow-graph and demonstrate the complete path testing 

to achieve C1+C2.
 Classify the predicates and variables as dependent/independent and

correlated/uncorrelated.
 Understand the path sensitizing method and classify whether the path 

is achievable or not.
 Identify the problem due to co-incidental correctness and choose a path

instrumentation method to overcome the problem.

BASICS OF PATH TESTING:

PATH TESTING:
 Path Testing is the name given to a family of test techniques based on

judiciously selecting a set of test paths through the program.
 If the set  of paths are properly chosen  then we have achieved some

measure of test thoroughness. For example, pick enough paths to assure
that every source statement has been executed at least once.

 Path testing techniques are the oldest of all structural test techniques.
 Path testing is most applicable to new software for unit testing. It is

a structural technique.
 It requires complete knowledge of the program's structure.
 It is most often used by programmers to unit test their own code.
 The effectiveness of path testing rapidly deteriorates as the size of the

software aggregate under test increases.



25

THE BUG ASSUMPTION:

 The bug assumption for the path testing strategies is that something has
gone wrong with the software that makes it take a different path than
intended.

 As an example "GOTO X" where "GOTO Y" had been intended.
 Structured programming languages prevent many of the bugs targeted by

path testing: as a consequence the effectiveness for path testing for these
languages is reduced and for old code in COBOL, ALP, FORTRAN and
Basic, the path testing is indispensable.

CONTROL FLOW GRAPHS:
 The control flow graph is a graphical representation of a program's control

structure. It uses the elements named process blocks, decisions, and 
junctions.

 The flow graph is similar to the earlier flowchart, with which it is not to 
be confused.

 Flow Graph Elements: A flow graph contains four different types of
elements.

(1) Process Block (2) Decisions (3) Junctions (4) Case Statements

1. Process Block:
A process block is a sequence of program statements uninterrupted by either

decisions or junctions.
It is a sequence of statements such that if any one of statement of the block 

is executed, then all statement thereof is executed.
Formally, a process block is a piece of straight line code of one statement or 

hundreds of statements.
A process has one entry and one exit. It can consist of a single statement or 

instruction, a sequence of statements or instructions, a single entry/exit subroutine,
a macro or function call, or a sequence of these.

2. Decisions:
A decision is a program point at which the control flow can diverge.
Machine language conditional branch and conditional skip instructions are 

examples of decisions.

Most of the decisions are two-way but some are three way branches in
control flow.



26

3. Case Statements:
A case statement is a multi-way branch or decisions.
Examples of case statement are a jump table in assembly language, and the

PASCAL case statement.
From the point of view of test design, there are no differences between 

Decisions and Case Statements

4. Junctions:
A junction is a point in the program where the control flow can merge.
Examples of junctions are: the target of a jump or skip instruction in ALP, a 

label that is a target of GOTO.

CONTROL FLOW GRAPHS Vs. FLOWCHARTS:
 A program's flow chart resembles a control flow graph.

 In flow graphs, we don't show the details of what is in a process block. 
In flow charts every part of the process block is drawn.

 The flowchart focuses on process steps, whereas the flow graph focuses on
control flow of the program.



27

 The act of drawing a control flow graph is a useful tool that can help 
us clarify the control flow and data flow issues.

NOTATIONAL EVOULTION:
The control flow graph is simplified representation of the program's structure. The 
notation changes made in creation of control flow graphs:

 The process boxes weren't really needed. There is an implied process 
on every line joining junctions and decisions.

 We don't need to know the specifics of the decisions, just the fact that there
is a branch.

 The specific target label names aren't important-just the fact that they exist.
So we can replace them by simple numbers.

 To understand this, we will go through an example written in a FORTRAN 
like programming language called Programming Design Language (PDL).
The program's corresponding flowchart

 The first step in translating the program to a flowchart is shown in, where 
we have the typical one-for-one classical flowchart. Note that complexity 
has increased, clarity has decreased, and that we had to add auxiliary labels 
(LOOP, XX, and YY), which have no actual program counterpart.



28

Flowchart     for     the     above     PDL  



29

Simplified     Flowgraph     Notation  

Even     Simplified     Flowgraph     Notation  

LINKED LIST REPRESENTATION:
Although graphical representations of flowgraphs are revealing, the details of the 
control flow inside a program they are often inconvenient.
In linked list representation, each node has a name and there is an entry on the list 
for each link in the flow graph. only the information pertinent to the control flow is
shown.



30

Linked     List     representation     of     Flow     Graph:  

FLOWGRAPH - PROGRAM CORRESPONDENCE:
A flow graph is a pictorial representation of a program and not the program 

itself, just as a topographic map.
You can’t always associate the parts of a program in a unique way with flow

graph parts because many program structures, such as if-then-else constructs, 
consists of a combination of decisions, junctions, and processes.

The translation from a flow graph element to a statement and vice versa is 
not always unique.



31

Alternative     Flowgraphs     for     same     logic     (Statement     "IF     (A=0)     AND     (B=1)     THEN  
.     .     .").  

An improper translation from flow graph to code during coding can lead to bugs, 
and improper translation during the test design lead to missing test cases and 
causes undiscovered bugs.

FLOWGRAPH     AND     FLOWCHART     GENERATION:  

Flowcharts can be
1. Handwritten by the programmer.
2. Automatically produced by a flowcharting program based on a 
mechanical analysis of the source code.
3. Semi automatically produced by a flow charting program based in part 
on structural analysis of the source code and in part on directions given by 
the programmer.

There are relatively few control flow graph generators.

PATH TESTING - PATHS, NODES AND LINKS:

Path: A path through a program is a sequence of instructions or statements that
starts at an entry, junction, or decision and ends at another, or possibly the same
junction, decision, or exit.

A path may go through several junctions, processes, or decisions, one or
more times. Paths consist of segments.



32

The segment is a link - a single process that lies between two nodes.
A path segment is succession of consecutive links that belongs to some path.
The length of path measured by the number of links in it and not by the 

number of the instructions or statements executed along that path.
The name of a path is the name of the nodes along the path.

FUNDAMENTAL PATH SELECTION CRITERIA:

 There are many paths between the entry and exit of a typical routine.
 Every decision doubles the number of potential paths. And every loop 

multiplies the number of potential paths by the number of different iteration
values possible for the loop.

Defining complete testing:

1. Exercise every path from entry to exit
2. Exercise every statement or instruction at least once
3. Exercise every branch and case statement, in each direction at least once If 
prescription 1 is followed then 2 and 3 are automatically followed. But it is 
impractical for most routines. It can be done for the routines that have no loops, 
in which it is equivalent to 2 and 3 prescriptions.

For X negative, the output is X + A, while for X greater than or equal to zero, the
output is X + 2A. Following prescription 2 and executing every statement, but
not every branch, would not reveal the bug in the following incorrect version:

A negative value produces the correct answer. Every statement can be executed, 
but if the test cases do not force each branch to be taken, the bug can remain



33

hidden. The next example uses a test based on executing each branch but does not
force the execution of all statements:

The hidden loop around label 100 is not revealed by tests based on prescription 3
alone because no test  forces the execution of  statement  100 and the following
GOTO statement.  Furthermore,  label  100 is  not  flagged by the compiler  as  an
unreferenced label and the subsequent GOTO does not refer to an undefined label.

A  Static Analysis  (that  is,  an analysis  based on examining the source code or
structure) cannot determine whether a piece of code is or is not reachable. There
could be subroutine calls with parameters that are subroutine labels, or in the
above example there could be a GOTO that targeted label 100 but could never
achieve a value that would send the program to that label.

Only a Dynamic Analysis (that is, an analysis based on the code's behavior while
running -  which  is  to  say,  to  all  intents  and purposes,  testing)  can  determine
whether  code  is  reachable  or  not  and  therefore  distinguish  between  the  ideal
structure we think we have and the actual, buggy structure.

PATH     TESTING     CRITERIA:  

Any testing strategy based on paths must at least both exercise every
instruction and take branches in all directions.

A set of tests that does this is not complete in an absolute sense, but it is
complete in the sense that anything less must leave something untested.
So we have explored three different testing criteria or strategies out of a potentially
infinite family of strategies.



34

Path Testing (Pinf):
 Execute all possible control flow paths through the program: typically, this

is restricted to all possible entry/exit paths through the program.
 If we achieve this prescription, we are said to have achieved 100% path

coverage. This is the strongest criterion in the path testing strategy family:
it is generally impossible to achieve.

Statement Testing (P1):
 Execute all statements in the program at least once under some test. If we 

do enough tests to achieve this, we are said to have achieved 100% 
statement coverage.

 An alternate equivalent characterization is to say that we have 
achieved 100% node coverage. We denote this by C1.

 This is the weakest criterion in the family: testing less than this for new 
software is unconscionable (unprincipled or cannot be accepted) and should
be criminalized.

Branch Testing (P2):
 Execute enough tests to assure that every branch alternative has 

been exercised at least once under some test.
 If we do enough tests to achieve this prescription, then we have 

achieved 100% branch coverage.
 An alternative characterization is to say that we have achieved 100% 

link coverage.
 For structured software, branch testing and therefore branch 

coverage strictly includes statement coverage.
 We denote branch coverage by C2.

Commonsense and Strategies:

 Branch and statement coverage are accepted today as the minimum
mandatory testing requirement.

 The question "why not use a judicious sampling of paths?, what is
wrong with leaving some code, untested?" is ineffectual in the view of
common sense and experience since:
(1.) Not testing a piece of a code leaves a residue of bugs in the program
in proportion to the size of the untested code and the probability of bugs.
(2.)

The high probability paths are always thoroughly tested if only to 
demonstrate that the system works properly.



35

Which paths to be tested?

You must pick enough paths to achieve C1+C2. The question of what is the fewest
number of such paths is interesting to the designer of test tools that help automate 
the path testing, but it is not crucial to the pragmatic (practical) design of tests. It 
is better to make many simple paths than a few complicated paths.

Path Selection Example:
An example flowgraph to explain path selection

Practical Suggestions in Path Testing:
1. Draw the control flow graph on a single sheet of paper.
2. Make several copies - as many as you will need for coverage (C1+C2) 
and several more.
3. Use a yellow highlighting marker to trace paths. Copy the paths onto master
sheets.
4. Continue tracing paths until all lines on the master sheet are covered, indicating
that you appear to have achieved C1+C2.

5. As you trace the paths, create a table that shows the paths, the coverage status 
of each process, and each decision.
6. The above paths lead to the following table considering



36

7. After you have traced a covering path set on the master sheet and filled in 
the table for every path, check the following:
1. Does every decision have a YES and a NO in its column? (C2)
2. Has every case of all case statements been marked? (C2)
3. Is every three - way branch (less, equal, greater) covered? (C2)
4. Is every link (process) covered at least once? (C1)

LOOPS:

Cases for a single loop:A Single loop can be covered with two cases: Looping and
Not looping. But, experience shows that many loop-related bugs are not discovered
by C1+C2. Bugs hide themselves in corners and congregate at boundaries - in the
cases of loops, at or around the minimum or maximum number of times the loop
can be iterated. The minimum number of iterations is often zero, but it need not be.

CASE 1: Single loop, Zero minimum, N maximum, No excluded values
1. Try bypassing the loop (zero iterations). If you can't, you either have a bug, or
zero is not the minimum and you have the wrong case.
2. Could the loop-control variable be negative? Could it appear to specify 
a negative number of iterations? What happens to such a value?
3. One pass through the loop.
4. Two passes through the loop.
5. A typical number of iterations, unless covered by a previous test.
6. One less than the maximum number of iterations.
7. The maximum number of iterations.
8. Attempt one more than the maximum number of iterations. What prevents the 
loop-control variable from having this value? What will happen with this value if 
it is forced?

CASE 2: Single loop, Non-zero minimum, No excluded values
9. Try one less than the expected minimum. What happens if the loop control 
variable's value is less than the minimum? What prevents the value from being 
less than the minimum?
10. The minimum number of iterations.
11. One more than the minimum number of iterations.
12. Once, unless covered by a previous test.
13. Twice, unless covered by a previous test.
14. A typical value.
15. One less than the maximum value.
16. The maximum number of iterations.
17. Attempt one more than the maximum number of iterations.



37

CASE 3: Single loops with excluded values
 Treat single loops with excluded values as two sets of tests consisting of

loops without excluded values, such as case 1 and 2 above.

 Example, the total range of the loop control variable was 1 to 20, but 
that values 7,8,9,10 were excluded. The two sets of tests are 1-6 and 11-
20.

 The test cases to attempt would be 0,1,2,4,6,7 for the first range 
and 10,11,15,19,20,21 for the second range.

Kinds of Loops: There are only three kinds of loops with respect to path testing:

Nested Loops:
 The number of tests to be performed on nested loops will be the exponent 

of the tests performed on single loops.
 As we cannot always afford to test all combinations of nested loops' 

iterations values. Here's a tactic used to discard some of these 
values:

1. Start at the inner most loop. Set all the outer loops to their minimum values.
2. Test the minimum, minimum+1, typical, maximum-1 , and maximum for the 
innermost loop, while holding the outer loops at their minimum iteration 
parameter values. Expand the tests as required for out of range and excluded 
values.
3. If you've done the outmost loop, GOTO step 5, else move out one loop and set it
up as in step

2 with all other loops set to typical values.
4. Continue outward in this manner until all loops have been covered.
5. Do all the cases for all loops in the nest simultaneously.

Concatenated Loops:
 Concatenated loops fall between single and nested loops with respect to 

test cases. Two loops are concatenated if it's possible to reach one after 
exiting the other while still on a path from entrance to exit.

 If the loops cannot be on the same path, then they are not concatenated 
and can be treated as individual loops.

Horrible Loops:
 A horrible loop is a combination of nested loops, the use of code that jumps

into and out of loops, intersecting loops, hidden loops, and cross connected
loops.

 Makes iteration value selection for test cases an awesome and ugly
task, which is another reason such structures should be avoided.



38

Loop Testing Time:

 Any kind of loop can lead to long testing time, especially if all the 
extreme value cases are to attempted (Max-1, Max, Max+1).

 This situation is obviously worse for nested and dependent 
concatenated loops.

 Consider nested loops in which testing the combination of extreme 
values lead to long test times. Several options to deal with:



39

 Prove that the combined extreme cases are hypothetically possible, they
are not possible in the real world

 Put in limits or checks that prevent the combined extreme cases. Then
you have to test the software that implements such safety measures.

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:

PREDICATE: The logical function evaluated at a decision is called Predicate. 
The direction taken at a decision depends on the value of decision variable. Some 
examples are: A>0, x+y>=90.......
PATH PREDICATE: A predicate associated with a path is called a Path 
Predicate. For example, "x is greater than zero", "x+y>=90", "w is either negative 
or equal to 10 is true" is a sequence of predicates whose truth values will cause the
routine to take a specific path.
MULTIWAY BRANCHES:

 The path taken through a multiway branch such as a computed GOTO's, 
case statement, or jump tables cannot be directly expressed in TRUE/FALSE
terms.

 Although, it is possible to describe such alternatives by using multi valued
logic, an expedient (practical approach) is to express multiway branches
as an equivalent set of if..then..else statements.

 For example a three way case statement can be written as: If case=1 DO
A1 ELSE (IF Case=2 DO A2 ELSE DO A3 ENDIF)ENDIF.

INPUTS:
 In testing, the word input is not restricted to direct inputs, such as 

variables in a subroutine call, but includes all data objects referenced by 
the routine whose values are fixed prior to entering it.

 For example, inputs in a calling sequence, objects in a data structure, 
values left in registers, or any combination of object types.

 The input for a particular test is mapped as a one dimensional array called as
an Input Vector.

PREDICATE INTERPRETATION:
 The simplest predicate depends only on input variables.
 For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given 

the values of x1 and x2 the direction taken through the decision is based on 
the predicate is determined at input time and does not depend on processing.



40

 Another example, assume a predicate x1+y>=0 that along a path prior to 
reaching this predicate we had the assignment statement y=x2+7. although
our predicate depends on processing, we can substitute the symbolic 
expression for y to obtain an equivalent predicate x1+x2+7>=0.

 The act of symbolic substitution of operations along the path in order to 
express the predicate solely in terms of the input vector is called predicate
interpretation.

Sometimes the interpretation may depend on the path; for example,
INPUT X
ON X GOTO A, B, C, ... 
A: Z := 7 @ GOTO HEM 
B: Z := -7 @ GOTO HEM
C: Z := 0 @ GOTO HEM
.........
HEM: DO SOMETHING
.........
HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM

The predicate interpretation at HEN depends on the path we took through the first 
multiway branch. It yields for the three cases respectively, if Y+7>0, Y-7>0, Y>0.

of the decisions
along the selected path after interpretation.

INDEPENDENCE OF VARIABLES AND PREDICATES:
 The path predicates take on truth values based on the values of 

input variables, either directly or indirectly.
 If a variable's value does not change as a result of processing, that variable is

independent of the processing.
 If the variable's value can change as a result of the processing, the variable 

is process dependent.
 A predicate whose truth value can change as a result of the processing is said

to be process dependent and one whose truth value does not change as a 
result of the processing is process independent.

 Process dependence of a predicate does not always follow from 
dependence of the input variables on which that predicate is based.



41

CORRELATION OF VARIABLES AND PREDICATES:
 Two variables are correlated if every combination of their values cannot be

independently specified.
 Variables whose values can be specified independently without restriction

are called uncorrelated.
 A pair of predicates whose outcomes depend on one or more variables in 

common are said to be correlated predicates. For example, the predicate 
X==Y is followed by another predicate X+Y == 8. If we select X and Y 
values to satisfy the first predicate, we might have forced the 2nd predicate's
truth value to change.

 Every path through a routine is achievable only if all the predicates in that
routine are uncorrelated.

PATH PREDICATES EXPRESSIONS:
 A path predicate expression is a set of boolean expressions, all of 

which must be satisfied to achieve the selected path.
 Example:

X1+3X2+17>=0
X3=17
X4-X1>=14X2

 Any set of input values that satisfy all of the conditions of the path 
predicate expression will force the routine to the path.

 Some times a predicate can have an OR in it.
 Example:

A: X5 > 0 E: X6 < 0
B: X1 + 3X2 + 17 >= 0 B: X1 + 3X2 + 17 >= 0
C: X3 = 17
D: X4 - X1 >= 14X2
C: X3 = 17
D: X4 - X1 >= 14X2

Boolean algebra notation to denote the boolean expression:

ABCD+EBCD=(A+E)BCD



42

PREDICATE COVERAGE:
 Compound Predicate: Predicates of the form A OR B, A AND B and more

complicated boolean expressions are called as compound predicates.
 Some times even a simple predicate becomes compound after

interpretation. Example: the predicate if (x=17) whose opposite branch is if
x.NE.17 which is equivalent to x>17 . Or. X<17.

 Predicate coverage is being the achieving of all possible combinations
of truth values corresponding to the selected path have been explored
under some test.

 As achieving the desired direction at a given decision could still hide bugs
in the associated predicates.

TESTING BLINDNESS:
 Testing Blindness is a pathological (harmful) situation in which the desired

path is achieved for the wrong reason.
 There are three types of Testing Blindness:

1. Assignment Blindness:
 Assignment blindness occurs when the buggy predicate appears to

work correctly  because  the  specific  value  chosen for  an  assignment
statement works with both the correct and incorrect predicate.

 For Example:
Correct Buggy
X = 7
........
if Y > 0
then ...

X = 7
........
if X+Y >
0 then ...

2. Equality Blindness:
 Equality blindness occurs when the path selected by a prior predicate 

results in a value that works both for the correct and buggy predicate.
 For Example:

Correct Buggy
if Y = 2
then
........

if Y = 2
then
........

if X+Y > 3 then ..if X > 1 then ...



43

The first predicate if y=2 forces the rest of the path, so that for any positive value 
of x. the path taken at the second predicate will be the same for the correct and 
buggy version.

3. Self Blindness:
 Self blindness occurs when the buggy predicate is a multiple of the 

correct predicate and as a result is indistinguishable along that path.
 For Example:

Correct Buggy
X = A
........
if X-1 > 0
then ...

X = A
........
if X+A-2
> 0 then

The assignment (x=a) makes the predicates multiples of each other, so the direction 
taken is the same for the correct and buggy version.

PATH SENSITIZING:
REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS:

We want to select and test enough paths to achieve a satisfactory notion of test
completeness such as C1+C2.

 Extract the programs control flowgraph and select a set of tentative 
covering paths.

 For any path in that set, interpret the predicates along the path as needed 
to express them in terms of the input vector. In general individual 
predicates are compound or may become compound as a result of 
interpretation.

 Trace the path through, multiplying the individual compound predicates to
achieve a boolean expression such as

 (A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
 Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ KL



44

 Each product term denotes a set of inequalities that if solved will yield 
an input vector that will drive the routine along the designated path.

 Solve any one of the inequality sets for the chosen path and you have 
found a set of input values for the path. If you can find a solution, then the 
path is achievable. If you cant find a solution to any of the sets of 
inequalities, the path is un achievable.

 The act of finding a set of solutions to the path predicate expression is called
PATH SENSITIZATION.

HEURISTIC PROCEDURES FOR SENSITIZING PATHS:
 This is a workable approach, instead of selecting the paths without 

considering how to sensitize, attempt to choose a covering path set that is 
easy to sensitize and pick hard to sensitize paths only as you must to achieve
coverage.

 Identify all variables that affect the decision.
 Classify the predicates as dependent or independent.
 Start the path selection with un correlated, independent predicates.
 If coverage has not been achieved using independent 

uncorrelated predicates, extend the path set using correlated 
predicates.

 If coverage has not been achieved extend the cases to those that 
involve dependent predicates.

 Last, use correlated, dependent predicates.

PATH INSTRUMENTATION:

Path instrumentation is what we have to do to confirm that the outcome was 
achieved by the intended path.
Co-incidental Correctness: The coincidental correctness stands for achieving the 
desired outcome for wrong reason.



45

The above figure is an example of a routine that, for the (unfortunately) chosen 
input value (X = 16), yields the same outcome (Y = 2) no matter which case we 
select. Therefore, the tests chosen this way will not tell us whether we have 
achieved coverage. For example, the five cases could be totally jumbled and still
the outcome would be the same. Path Instrumentation is what we have to do to
confirm that the outcome was achieved by the intended path.
The types of instrumentation methods include:

1. Interpretive Trace Program:
 An interpretive trace program is  one that  executes  every statement in

order and records the intermediate values of all calculations, the statement
labels traversed etc.

 If we run the tested routine under a trace, then we have all the 
information we need to confirm the outcome and, furthermore, to confirm
that it was achieved by the intended path.

 The trouble with traces is that they give us far more information than we 
need. In fact, the typical trace program provides so much information 
that confirming the path from its massive output dump is more work than
simulating the computer by hand to confirm the path.

2. Traversal Marker or Link Marker:
 A simple and effective form of instrumentation is called a traversal marker

or link marker.
 Name every link by a lower case letter.



46

 Instrument the links so that the link's name is recorded when the link is
executed.

 The succession of letters produced in going from the routine's entry to 
its exit should, if there are no bugs, exactly correspond to the path name.



47

Why Single Link Markers aren't enough.

Unfortunately, a single link marker may not do the trick because links can be 
chewed by open bugs

We intended to traverse the ikm path, but because of a rampaging GOTO in the 
middle of the m link, we go to process B. If coincidental correctness is against us,
the outcomes will be the same and we won't know about the bug.

Two Link Marker Method:

 The solution to the problem of single link marker method is to 
implement two markers per link: one at the beginning of each link and on
at the end.



48

 The two link markers now specify the path name and confirm both 
the beginning and end of the link.

Double     Link     Marker     Instrumentation.  



49

Link Counter: A less disruptive (and less informative) instrumentation method is
based on counters. Instead of a unique link name to be pushed into a string when 
the link is traversed, we simply increment a link counter. We now confirm that the 
path length is as expected. The same problem that led us to double link markers 
also leads us to double link counters.
.
TRANSACTION     FLOWS:  

INTRODUCTION:
 A transaction is a unit of work seen from a system user's point of view.
 A transaction consists of a sequence of operations, some of which are 

performed by a system, persons or devices that are outside of the 
system.

 Transaction begin with Birth-that is they are created as a result of some
external act.

 At the conclusion of the transaction's processing, the transaction is no 
longer in the system.

 Example of a transaction: A transaction for an online information retrieval
system might consist of the following steps or tasks:

 Accept input (tentative birth)
 Validate input (birth)
 Transmit acknowledgement to requester
 Do input processing
 Search file
 Request directions from user
 Accept input
 Validate input
 Process request
 Update file
 Transmit output
 Record transaction in log and clean up (death)

TRANSACTION FLOW GRAPHS:
 Transaction flows are introduced as a representation of a system's

processing.

 The methods that were applied to control flow graphs are then used 
for functional testing.

 Transaction flows and transaction flow testing are to the independent system
tester what control flows are path testing are to the programmer.

 The transaction flow graph is to create a behavioral model of the 
program that leads to functional testing.



50

 The transaction flowgraph is a model of the structure of the 
system's behavior (functionality).

 An example of a Transaction Flow is as follows:

USAGE:

 Transaction flows are indispensable for specifying requirements of
complicated systems, especially online systems.

 A big system such as an air traffic control or airline reservation system, 
has not hundreds, but thousands of different transaction flows.

 The flows are represented by relatively simple flowgraphs, many of 
which have a single straight-through path.

 Loops are infrequent compared to control flowgraphs.
 The most common loop is used to request a retry after user input errors. 

An ATM system, for example, allows the user to try, say three times, and 
will take the card away the fourth time.

COMPLICATIONS:
 In simple cases, the transactions have a unique identity from the time 

they're created to the time they're completed.
 In many systems the transactions can give birth to others, and 

transactions can also merge.
 Births:There are three different possible interpretations of the decision 

symbol, or nodes with two or more out links. It can be a Decision, Biosis 
or a Mitosis.



51

1. Decision:Here the transaction will take one alternative or the other
alternative but not both. (See Figure 3.2 (a))
2. Biosis:Here the incoming transaction gives birth to a new transaction, and both
transaction continue on their separate paths, and the parent retains it identity. (See
Figure 3.2 (b))
3. Mitosis:Here the parent transaction is destroyed and two new transactions are
created.

Mergers: Transaction flow junction points are potentially as troublesome as 
transaction flow splits. There are three types of junctions: (1) Ordinary Junction (2) 
Absorption (3) Conjugation
1. Ordinary Junction: An ordinary junction which is similar to the junction in a
control flow graph. A transaction can arrive either on one link or the other.
2. Absorption: In absorption case, the predator transaction absorbs 
prey transaction. The prey gone but the predator retains its identity
3. Conjugation: In conjugation case, the two parent transactions merge to form 
a new daughter. In keeping with the biological flavor this case is called as 
conjugation

TRANSACTION FLOW TESTING TECHNIQUES:

GET THE TRANSACTIONS FLOWS:
 Complicated systems that process a lot of different, complicated 

transactions should have explicit representations of the transactions flows, 
or the equivalent.

 Transaction flows are like control flow graphs, and consequently we should
expect to have them in increasing levels of detail.

 The system's design documentation should contain an overview section 
that details the main transaction flows.

 Detailed transaction flows are a mandatory pre requisite to the 
rational design of a system's functional test.



52

INSPECTIONS, REVIEWS AND WALKTHROUGHS:
 Transaction flows are natural agenda for system reviews or inspections.
 In conducting the walkthroughs, you should:
 -99% of the

transaction the system is expected to process.




how that transaction, directly or indirectly, follows from the requirements.
 Make transaction flow testing the corner stone of system functional 

testing just as path testing is the corner stone of unit testing.
 Select additional flow paths for loops, extreme values, and 

domain boundaries.
 Design more test cases to validate all births and deaths.
 Publish and distribute the selected test paths through the transaction flows as

early as possible so that they will exert the maximum beneficial effect on the
project.

PATH SELECTION:
 Select a set of covering paths (c1+c2) using the analogous criteria you 

used for structural path testing.
 Select a covering set of paths based on functionally sensible transactions 

as you would for control flow graphs.
 Try to find the most tortuous, longest, strangest path from the entry to the

exit of the transaction flow.

PATH SENSITIZATION:
 Most of the normal paths are very easy to sensitize-80% - 95% transaction

flow coverage (c1+c2) is usually easy to achieve.
 The remaining small percentage is often very difficult.
 Sensitization is the act of defining the transaction. If there are sensitization 

problems on the easy paths, then bet on either a bug in transaction flows or 
a design bug.

PATH INSTRUMENTATION:
 Instrumentation plays a bigger role in transaction flow testing than in unit

path testing.



53

 The information of the path taken for a given transaction must be kept with 
that transaction and can be recorded by a central transaction dispatcher or 
by the individual processing modules.

 In some systems, such traces are provided by the operating systems or 
a running log.



54

                   Unit-3
DATA FLOW TESTING:

 Data flow testing is the name given to a family of test strategies based 
on selecting paths through the program's control flow in order to explore
sequences of events related to the status of data objects.

 For example, pick enough paths to assure that every data object has 
been initialized prior to use or that all defined objects have been used 
for something.

Motivation:
It is our belief that, just as one would not feel confident about a program 

without executing every statement in it as part of some test, one should not feel 
confident about a program without having seen the effect of using the value 
produced by each and every computation.

DATA FLOW MACHINES:
There are two types of data flow machines with different architectures. (1) Von 
Neumann machnes (2) Multi-instruction, multi-data machines (MIMD).

Von Neumann Machine Architecture:
 Most computers today are von-neumann machines.
 This architecture features interchangeable storage of instructions and data 

in the same memory units.
 The Von Neumann machine Architecture executes one instruction at a time

in the following, micro instruction sequence:
1. Fetch instruction from memory
2. Interpret instruction
3. Fetch operands
4. Process or Execute
5. Store result
6. Increment program counter
7. GOTO 1

Multi-instruction, Multi-data machines (MIMD) Architecture:
 These machines can fetch several instructions and objects in parallel.
 They can also do arithmetic and logical operations simultaneously 

on different data objects.
 The decision of how to sequence them depends on the compiler.



55

BUG ASSUMPTION:
 The bug assumption for data-flow testing strategies is that control flow is

generally correct and that something has gone wrong with the software
so that data objects are not available when they should be, or silly things
are being done to data objects.

 Also, if there is a control-flow problem, we expect it to have symptoms 
that can be detected by data-flow analysis.

 Although we'll be doing data-flow testing, we won't be using data 
flowgraphs as such. Rather, we'll use an ordinary control flowgraph
annotated to show what happens to the data objects of interest at 
the moment.

DATA FLOW GRAPHS:
The data flow graph is a graph consisting of nodes and directed links.

We will use an control graph to show what happens to data objects of 
interest at that moment.

Our objective is to expose deviations between the data flows we have and 
the data flows we want.

Data Object State and Usage:
Data Objects can be created, killed and used.



56

 They can be used in two distinct ways: (1) In a Calculation (2) As a part of 
a Control Flow Predicate.

 The following symbols denote these possibilities:
1. Defined: d - defined, created, initialized etc
2. Killed or undefined: k - killed, undefined, released etc
3. Usage: u - used for something (c - used in Calculations, p - used in a predicate)

1. Defined (d):
 An object is defined explicitly when it appears in a data declaration.
 Or implicitly when it appears on the left hand side of the assignment.
 It is also to be used to mean that a file has been opened.
 A dynamically allocated object has been allocated.
 Something is pushed on to the stack.
 A record written.

2. Killed or Undefined (k):
An object is killed on undefined when it is released or otherwise made unavailable.
3. Usage (u):

 When its contents are no longer known with certitude (with 
aboslute certainity / perfectness).

 Release of dynamically allocated objects back to the availability pool.
 Return of records.
 The old top of the stack after it is popped.
 An assignment statement can kill and redefine immediately. For example, if

A had been previously defined and we do a new assignment such as A : = 
17, we have killed A's previous value and redefined A

 A variable is used for computation (c) when it appears on the right hand 
side of an assignment statement.

 A file record is read or written.
 It is used in a Predicate (p) when it appears directly in a predicate.

DATA FLOW ANOMALIES:
An anomaly is denoted by a two-character sequence of actions.
For example, ku means that the object is killed and then used, where as dd means 
that the object is defined twice without an intervening usage.
What is an anomaly is depend on the application.



57

There are nine possible two-letter combinations for d, k and u. some are bugs, 
some are suspicious, and some are okay.
1. dd :- probably harmless but suspicious. Why define the object twice without 
an intervening usage?
2. dk :- probably a bug. Why define the object without using it?
3. du :- the normal case. The object is defined and then used.
4. kd :- normal situation. An object is killed and then redefined.
5. kk :- harmless but probably buggy. Did you want to be sure it was really killed?
6. ku :- a bug. the object doesnot exist.
7. ud :- usually not a bug because the language permits reassignment at almost 
any time.
8. uk :- normal situation.
9. uu :- normal situation.

In addition to the two letter situations, there are six single letter situations.
We will use a leading dash to mean that nothing of interest (d,k,u) occurs prior to 
the action noted along the entry-exit path of interest.
A trailing dash to mean that nothing happens after the point of interest to the exit. 
They possible anomalies are:
1. -k :- possibly anomalous because from the entrance to this point on the path, 
the variable had not been defined. We are killing a variable that does not exist.
2. -d :- okay. This is just the first definition along this path.
3. -u :- possibly anomalous. Not anomalous if the variable is global and has 
been previously defined.
4. k- :- not anomalous. The last thing done on this path was to kill the variable.
5. d- :- possibly anomalous. The variable was defined and not used on this 
path. But this could be a global definition.
6. u- :- not anomalous. The variable was used but not killed on this path. 
Although this sequence is not anomalous, it signals a frequent kind of bug. If d 
and k mean dynamic storage allocation and return respectively, this could be an 
instance in which a dynamically allocated object was not returned to the pool after
use.

DATA FLOW ANOMALY STATE GRAPH:
Data flow anomaly model prescribes that an object can be in one of four distinct 
states:
1. K :- undefined, previously killed, doesnot exist
2. D :- defined but not yet used for anything
3. U :- has been used for computation or in predicate
4. A :- anomalous



58

These capital letters (K,D,U,A) denote the state of the variable and should not be 
confused with the program action, denoted by lower case letters.

STATIC Vs DYNAMIC ANOMALY DETECTION:
Static analysis is analysis done on source code without actually executing it. For 
example: source code syntax error detection is the static analysis result.
Dynamic analysis is done on the fly as the program is being executed and is based
on intermediate values that result from the program's execution. For example: a 
division by zero warning is the dynamic result.

If a problem, such as a data flow anomaly, can be detected by static analysis 
methods, then it doesnot belongs in testing - it belongs in the language processor. 
There is actually a lot more static analysis for data flow analysis for data flow 
anomalies going on in current language processors.

For example, language processors which force variable declarations can detect (-u)
and (ku) anomalies.

But still there are many things for which current notions of static analysis are 
INADEQUATE.

Why Static Analysis isn't enough? There are many things for which current
notions of static analysis are inadequate. They are:

Dead Variables:Although it is often possible to prove that a variable is dead or 
alive at a given point in the program, the general problem is unsolvable.

Arrays:Arrays are problematic in that the array is defined or killed as a single 
object, but reference is to specific locations within the array. Array pointers are 
usually dynamically calculated, so there's no way to do a static analysis to validate 
the pointer value. In many languages, dynamically allocated arrays contain garbage
unless explicitly initialized and therefore, -u anomalies are possible.



59

Records and Pointers:The array problem and the difficulty with pointers is a special case
of multipart data structures. We have the same problem with records and the pointers to them. Also, in many
applications we create files and their names dynamically and there's no way to determine, without execution,
whether such objects are in the proper state on a given path or, for that matter, whether they exist at all.

Dynamic  Subroutine  and Function  Names  in  a  Call:subroutine  or  function
name  is  a  dynamic  variable  in  a  call.  What  is  passed,  or  a  combination  of
subroutine names and data objects, is constructed on a specific path. There's no
way, without executing the path, to determine whether the call is correct or not.
 
False Anomalies:Anomalies are specific to paths. Even a "clear bug" such as ku
may not be a bug if the path along which the anomaly exists is unachievable. Such
"anomalies"  are  false  anomalies.  Unfortunately,  the  problem  of  determining
whether a path is or is not achievable is unsolvable.

Recoverable  Anomalies  and  Alternate  State  Graphs:What  constitutes  an
anomaly depends on context, application, and semantics. How does the compiler
know which model I have in mind? It can't because the definition of "anomaly" is
not fundamental. The language processor must have a built-in anomaly definition
with which you may or may not (with good reason) agree.

Concurrency, Interrupts, System Issues:As soon as we get away from the simple
single-task uniprocessor environment and start thinking in terms of systems, most
anomaly issues become vastly more complicated. How often do we define or create
data objects at an interrupt level so that they can be processed by a lower-priority
routine? Interrupts can make the "correct" anomalous and the "anomalous" correct.
True  concurrency  (as  in  an  MIMD  machine)  and  pseudo  concurrency  (as  in
multiprocessing) systems can do the same to us. Much of integration and system
testing is aimed at detecting data-flow anomalies that cannot be detected in the
context of a single routine.

Although static analysis methods have limits, they are worth using and a 
continuing trend in language processor design has been better static analysis 
methods, especially for data flow anomaly detection. That's good because it means
there's less for us to do as testers and we have far too much to do as it is.

DATA FLOW MODEL:

The data flow model is based on the program's control flow graph - Don't confuse
that with the program's data flowgraph..



60

Here we annotate each link with symbols (for example, d, k, u, c, p) or sequences
of symbols (for example, dd, du, ddd) that denote the sequence of data operations
on that link with respect to the variable of interest. Such annotations are called link
weights.
The control flow graph structure is same for every variable: it is the weights that
change.

Components of the model:
1. To every statement there is a node, whose name is unique. Every node has at
least one out link and at least one in link except for exit nodes and entry nodes.
2. Exit  nodes  are  dummy nodes  placed  at  the  outgoing  arrowheads  of  exit
statements (e.g., END, RETURN), to complete the graph. Similarly, entry nodes
are dummy nodes placed at entry statements (e.g., BEGIN) for the same reason.
3. The  outlink  of  simple  statements  (statements  with  only  one  outlink)  are
weighted by the proper sequence of data-flow actions for that statement. Note that
the sequence can consist  of  more than one letter.  For example,  the assignment
statement A:= A + B in most languages is weighted by cd or possibly ckd for
variable  A.  Languages  that  permit  multiple  simultaneous  assignments  and/or
compound statements can have anomalies within the statement. The sequence
must correspond to the order in which the object code will be executed for that
variable.
4. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are weighted with
the p - use(s) on every outlink, appropriate to that outlink.
5. Every sequence of simple statements (e.g., a sequence of nodes with one inlink
and one outlink) can be replaced by a pair of nodes that has, as weights on the
link between them, the concatenation of link weights.
6. If there are several data-flow actions on a given link for a given variable,
then the weight of the link is denoted by the sequence of actions on that link for
that variable.
7. Conversely, a link with several data-flow actions on it can be replaced by a
succession of equivalent links, each of which has at most one data-flow action for
any variable.



61

Program     Example     (PDL)  

Unannotated     flowgraph  



62

Control     flowgraph     annotated     for     X     and     Y     data     flows.  

Control
flowgraph     annotated     for     Z     data     flow.  

STRATEGIES OF DATA FLOW TESTING:
INTRODUCTION:

 Data Flow Testing Strategies are structural strategies.
 In contrast to the path-testing strategies, data-flow strategies take into 

account what happens to data objects on the links in addition to the 
raw connectivity of the graph.

 In other words, data flow strategies require data-flow link weights
(d,k,u,c,p).

 Data Flow Testing Strategies are based on selecting test path segments (also
called sub paths) that satisfy some characteristic of data flows for all data 
objects.

 For example, all subpaths that contain a d (or u, k, du, dk).
 A strategy X is stronger than another strategy Y if all test cases produced

under Y are included in those produced under X - conversely for weaker.



63

TERMINOLOGY:
1. Definition-Clear Path Segment, with respect to variable X, is a connected
sequence of  links such that  X is  (possibly)  defined on the first  link and not
redefined or killed on any subsequent link of that path  segment. ll paths in
Figure
3.9 are definition clear because variables X and Y are defined only on the first link
(1,3) and not thereafter. In Figure 3.10, we have a more complicated situation. The
following path segments are definition-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7),
(7,8,9,10), (7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition- clear because
the variable is defined on (1,3) and again on (4,5). For practice, try finding all the
definition-clear subpaths for this routine (i.e., for all variables).

2. Loop-Free Path Segment is a path segment for which every node in it is visited
atmost once. For Example, path (4,5,6,7,8,10) in Figure 3.10 is loop free, but path
(10,11,4,5,6,7,8,10,11,12) is not because nodes 10 and 11 are each visited twice.

3. Simple path segment is a path segment in which at most one node is visited
twice. For example, in Figure 3.10, (7,4,5,6,7) is a simple path segment. A simple
path segment is either loop-free or if there is a loop, only one node is involved.

4. A du path from node i to k is a path segment such that if the last link has a
computational  use  of  X,  then  the  path  is  simple  and  definition-clear;  if  the
penultimate (last but one) node is j - that is, the path is (i,p,q,...,r,s,t,j,k) and link
(j,k) has a predicate use - then the path from i to j is both loop-free and definition-
clear.

STRATEGIES:  The structural test strategies discussed below are based on the
program's  control  flowgraph.  They differ  in  the extent  to which predicate  uses
and/or computational uses of variables are included in the test set. Various types of
data flow testing strategies in decreasing order of their effectiveness are:
1. All - du Paths (ADUP): The all-du-paths (ADUP) strategy is the strongest data-
flow testing strategy discussed here.  It  requires that  every du path from every
definition of every variable to every use of that definition be exercised under some
test.

For variable X and Y:In Figure 3.9, because variables X and Y are used only on 
link (1,3), any test that starts at the entry satisfies this criterion (for variables X and
Y, but not for all variables as required by the strategy).

For variable Z: The situation for variable Z (Figure 3.10) is more complicated 
because the variable is redefined in many places. For the definition on link (1,3) 
we must exercise paths that include subpaths (1,3,4) and (1,3,5). The definition on 
link (4,5) is covered by any path that includes (5,6), such as subpath (1,3,4,5,6, ...).
The (5,6) definition requires paths that include subpaths (5,6,7,4) and (5,6,7,8).



64

For  variable  V:  Variable  V (Figure  3.11)  is  defined  only  once  on  link  (1,3).
Because V has a predicate use at node 12 and the subsequent path to the end must
be forced for both directions at node 12, the all-du-paths strategy for this variable
requires that we exercise all loop-free entry/exit paths and at least one path that
includes the loop caused by (11,4). Note that we must test paths that include both
subpaths (3,4,5) and (3,5) even though neither of these has V definitions. They
must be included because they provide alternate du paths to the V use on link (5,6).
Although (7,4) is not used in the test set for variable V, it will be included in the
test set that covers the predicate uses of array variable V() and U.
The all-du-paths strategy is a strong criterion, but it does not take as many tests as
it might seem at first because any one test simultaneously satisfies the criterion for
several definitions and uses of several different variables.

2. All Uses Startegy (AU):The all uses strategy is that at least one definition
clear path from every definition of every variable to every use of that definition
be exercised under some test. Just as we reduced our ambitions by stepping down
from all paths (P) to branch coverage (C2), say, we can reduce the number of test
cases by asking that the test set should include at least one path segment from
every definition to every use that can be reached by that definition.

For variable V:  In Figure 3.11, ADUP requires that we include subpaths (3,4,5)
and (3,5) in some test because subsequent uses of V, such as on link (5,6), can be
reached by either alternative. In AU either (3,4,5) or (3,5) can be used to start
paths, but we don't have to use both. Similarly, we can skip the (8,10) link if we've
included the (8,9,10) subpath. Note the hole. We must include (8,9,10) in some test
cases because that's the only way to reach the c use at link (9,10) - but suppose our
bug for variable V is on link (8,10) after all? Find a covering set of paths under AU
for Figure 3.11.

3. All p-uses/some c-uses strategy (APU+C) :  For every variable and every
definition of that variable, include at least one definition free path from the
definition to every predicate use; if there are definitions of the variables that are
not covered by the above prescription, then add computational use test cases as required to cover
every definition.

For variable Z:In Figure 3.10, for APU+C we can select paths that all take the
upper link (12,13) and therefore we do not cover the c-use of Z: but that's okay
according to the strategy's definition because every definition is covered. Links
(1,3), (4,5), (5,6), and (7,8) must be included because they contain definitions for



65

variable Z. Links (3,4),  (3,5),  (8,9),  (8,10),  (9,6),  and (9,10) must  be included
because they contain predicate uses of Z. Find a covering set of test cases under
APU+C for all variables in this example - it only takes two tests.

For variable V:In Figure 3.11, APU+C is achieved for V by
(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and
(1,3,5,6,7,8,10,11,12[lower], 13,2). Note
that the c-use at (9,10) need not be included under the APU+C criterion.

4. All c-uses/some p-uses strategy (ACU+P) : The all c-uses/some p-uses strategy
(ACU+P)  is  to  first  ensure  coverage  by  computational  use  cases  and  if  any
definition is not covered by the previously selected paths, add such predicate use
cases as are needed to assure that every definition is included in some test.

For variable Z: In Figure 3.10, ACU+P coverage is achieved for Z by path 
(1,3,4,5,6,7,8,10, 11,12,13[lower], 2), but the predicate uses of several definitions 
are not covered. Specifically, the (1,3) definition is not covered for the (3,5) p-use,
the (7,8) definition is not covered for the (8,9), (9,6) and (9, 10) p-uses.
The above examples imply that APU+C is stronger than branch coverage but 
ACU+P may be weaker than, or incomparable to, branch coverage.

5. All Definitions Strategy (AD) : The all definitions strategy asks only every
definition of every variable be covered by atleast one use of that variable, be
that use a computational use or a predicate use.

For variable Z: Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z,
whereas any entry/exit path satisfies it for variable V.
From the definition of this strategy we would expect it to be weaker than both
ACU+P and APU+C.

6. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The
all  predicate  uses  strategy  is  derived  from  APU+C  strategy  by  dropping  the
requirement that we include a c-use for the variable if there are no p-uses for the
variable. The all computational uses strategy is derived from ACU+P strategy by
dropping the requirement that we include a p- use for the variable if there are no c-
uses for the variable.

It is intuitively obvious that ACU should be weaker than ACU+P and that APU 
should be weaker than APU+C.

ORDERING THE STRATEGIES:



66

The below figure compares path-flow and data-flow testing strategies. The arrows
denote that the strategy at the arrow's tail is stronger than the strategy at the arrow's
head.

SLICING AND DICING:
 A (static)  program  slice  is  a  part  of  a  program  (e.g.,  a  selected  set  of

statements) defined with respect to a given variable X (where X is a simple
variable or a data vector) and a statement i: it is the set of all statements that
could (potentially, under static analysis) affect the value of X at statement i -
where the influence of  a faulty statement could result  from an improper
computational  use  or  predicate  use  of  some  other  variables  at  prior
statements.

 If X is incorrect at statement  i, it follows that the bug  must be in the
program slice for X with respect to i

 A program dice is a part of a slice in which all statements which are known
to be correct have been removed.

 In other words, a dice is obtained from a slice by incorporating
information obtained through testing or experiment (e.g., debugging).

 The debugger first limits her scope to those prior statements that could
have caused the faulty value at statement i (the slice) and then eliminates
from further consideration those statements that testing has shown to be
correct.

 Debugging can be modeled as an iterative procedure in which slices are
further refined by dicing, where the dicing information is obtained from ad



67

hoc tests aimed primarily at eliminating possibilities. Debugging ends when
the dice has been reduced to the one faulty statement.

 Dynamic slicing  is a refinement of static slicing in which only statements
on achievable paths to the statement in question are included.

DOMAIN TESTING:

 INTRODUCTION:
o Domain:In mathematics, domain is a set of possible values of an

independant variable or the variables of a function.
o Programs as input data classifiers: domain testing attempts to

determine whether the classification is or is not correct.
o Domain testing can be based on specifications or equivalent 

implementation information.
o If domain testing is based on specifications, it is a functional test

technique.
o If domain testing is based implementation details, it is a 

structural test technique.
o For example, you're doing domain testing when you check 

extreme values of an input variable.

All inputs to a program can be considered as if they are
numbers. For example, a character string can be treated as a
number by concatenating bits and looking at them as if they
were a binary integer. This is the view in domain testing, which
is why this strategy has a mathematical flavor.

 THE MODEL: The following figure is a schematic representation of
domain testing.

Schematic Representation of Domain Testing.



68

 A DOMAIN IS A SET:
o An input domain is a set.
o If the source language supports set definitions (E.g. PASCAL set

types and C enumerated types) less testing is needed because the
compiler does much of it for us.

o Domain testing does not work well with arbitrary discrete sets of
data objects.

o Domain for a loop-free program corresponds to a set of numbers
defined over the input vector.

 DOMAINS, PATHS AND PREDICATES:
o In domain testing, predicates are assumed to be interpreted in

terms of input vector variables.
o If domain testing is applied to structure, then predicate

interpretation must be based on actual paths through the routine -
that is, based on the implementation control flowgraph.

o Conversely, if domain testing is applied to specifications,
interpretation is based on a specified data flowgraph for the
routine; but usually, as is the nature of specifications, no

interpretation is needed because the domains are specified
directly.

o For every domain, there is at least one path through the routine.
o There  may  be more  than  one  path  if  the  domain  consists  of

disconnected parts or if the domain is defined by the union of
two or more domains.

o Domains are defined their  boundaries.  Domain boundaries are
also where most domain bugs occur.



69

o For every boundary there is at least one predicate that specifies
what numbers belong to the domain and what numbers don't.

For  example,  in the  statement IF  x>0 THEN ALPHA ELSE
BETA we know that numbers greater than zero belong to
ALPHA processing domain(s) while zero and smaller numbers
belong to BETA domain(s).

o A domain may have one or more boundaries - no matter how
many variables define it.

For example, if the predicate is x2 + y2 < 16, the domain is the
inside of a circle of radius 4 about the origin. Similarly, we could
define a spherical domain with one boundary but in three
variables.

o Domains are usually defined by many boundary segments and
therefore by many predicates. i.e. the set of interpreted
predicates traversed on that path (i.e., the path's predicate
expression) defines the domain's boundaries.

A DOMAIN CLOSURE:

 A domain boundary is closed with respect to a domain if the points on the
boundary belong to the domain.

 If the boundary points belong to some other domain, the boundary is said
to be open.

 Figure 4.2 shows three situations for a one-dimensional domain - i.e., a
domain defined over one input variable; call it x

 The importance of domain closure is that incorrect closure bugs are
frequent domain bugs. For example, x >= 0 when x > 0 was intended.



70

 DOMAIN DIMENSIONALITY:
o Every input variable adds one dimension to the domain.
o One variable defines domains on a number line.
o Two variables define planar domains.
o Three variables define solid domains.
o Every new predicate slices through previously defined domains

and cuts them in half.
o Every  boundary  slices through  the  input  vector  space  with a

dimensionality which is less than the dimensionality of the
space.

o Thus, planes are cut by lines and points, volumes by planes, lines
and points and n-spaces by hyperplanes.

 BUG ASSUMPTION:
o The bug assumption for the domain testing is that processing is

okay but the domain definition is wrong.
o An incorrectly implemented domain means that boundaries are

wrong, which may in turn mean that control flow predicates are
wrong.

o Many different bugs can result in domain errors. Some of them
are:

Domain Errors:
 Double Zero Representation :In computers or

Languages  that  have  a  distinct  positive  and  negative
zero, boundary errors for negative zero are common.



71

 Floating point zero check:A floating point number can
equal zero only if the previous definition of that number
set it to zero or if it is subtracted from it self or
multiplied by zero. So the floating point zero check to
be done against a epsilon value.

 Contradictory domains:An implemented domain can
never  be  ambiguous  or  contradictory,  but  a  specified
domain can. A contradictory domain specification
means that at least two supposedly  distinct domains
overlap.

 Ambiguous domains:Ambiguous domains means that
union of the domains is incomplete. That is there are
missing domains or holes in the specified domains. Not
specifying what happens to points on the domain
boundary is a common ambiguity.

 Overspecified Domains:he domain can be overloaded
with so many conditions that the result is a null domain.
Another way to put it is to say that the domain's path is
unachievable.

 Boundary Errors:Errors caused in and around the
boundary of a domain. Example, boundary closure bug,
shifted, tilted, missing, extra boundary.

 Closure Reversal:A common bug. The predicate is
defined  in  terms  of  >=.  The  programmer  chooses  to
implement the logical complement and incorrectly uses
<= for  the  new predicate;  i.e.,  x  >=  0  is  incorrectly
negated as x <= 0, thereby shifting boundary values to
adjacent domains.

 Faulty Logic:Compound predicates (especially) are
subject to faulty logic transformations and improper
simplification. If the predicates define domain
boundaries,  all  kinds of domain bugs can result  from
faulty logic manipulations.

 LINEAR AND NON LINEAR BOUNDARIES:
o Nice  domain  boundaries  are  defined  by  linear  inequalities  or

equations.
o The impact on testing stems from the fact that it takes only two

points to determine a straight line and three points to determine a
plane and in general n+1 points to determine a n-dimensional
hyper plane.



72

o In  practice  more  than  99.99% of  all  boundary  predicates  are
either linear or can be linearized by simple variable
transformations.

 COMPLETE BOUNDARIES:
o Nice domain boundaries are complete in that they span the

number space from plus to minus infinity in all dimensions.
o Figure shows some incomplete boundaries. Boundaries A and E

have gaps.
o Such boundaries can come about because the path that

hypothetically corresponds to them is unachievable, because
inputs are constrained in such a way that such values can't exist,
because of compound predicates that define a single boundary,
or because redundant predicates convert such boundary values
into a null set.

o The advantage of complete boundaries is that one set of tests is
needed to confirm the boundary no matter how many domains it
bounds.

o If the boundary is chopped up and has holes in it,  then every
segment  of  that  boundary must  be tested for  every domain  it
bounds.

DOMAIN TESTING:



73

 DOMAIN TESTING STRATEGY:  The domain-testing strategy is
simple, although possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain
testing concentrates test points on or near boundaries.

2. Classify what can go wrong with boundaries, then define a test
strategy for each case. Pick enough points to test for all
recognized kinds of boundary errors.

3. Because every boundary serves at least two different domains,
test points used to check one domain can also be used to check
adjacent domains. Remove redundant test points.

4. Run the tests and by posttest analysis (the tedious part)
determine if any boundaries are faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.



74

 DOMAIN BUGS AND HOW TO TEST FOR THEM:
o An interior point (Figure 4.10) is a point in the domain such

that all points within an arbitrarily small distance (called an
epsilon neighborhood) are also in the domain.

o A  boundary point  is one such that within an epsilon
neighborhood there are points both in the domain and not in the
domain.

o An extreme point  is a point that does not lie between any two
other arbitrary but distinct points of a (convex) domain.

Interior, Boundary and Extreme points.

 An on point is a point on the boundary.
 If the domain boundary is closed, an  off point  is a point near the

boundary but in the adjacent domain.
 If the boundary is open, an off point is a point near the boundary but in

the domain being tested; see Figure 4.11. You can remember this by the
acronym COOOOI: Closed Off Outside, Open Off Inside.



75

Figure shows generic domain bugs: closure bug, shifted boundaries, tilted 
boundaries, extra boundary, missing boundary.



76

PROCEDURE FOR TESTING:  The procedure is conceptually is straight
forward. It can be done by hand for two dimensions and for a few domains and
practically impossible for more than two variables.

1. Identify input variables.
2. Identify variable which appear in domain defining predicates,

such as control flow predicates.
3. Interpret all domain predicates in terms of input variables.
4. For  p binary predicates,  there  are  at  most  2p combinations of

TRUE-FALSE values and therefore, at most 2p domains. Find
the set of all non-null domains. The result is a Boolean
expression in the predicates consisting a set of AND terms
joined  by  OR's.  For  example  ABC+DEF+GHI...... Where  the
capital letters denote predicates. Each product term is a set of
linear  inequality  that  defines a  domain  or a part of multiply
connected domains.

5. Solve these inequalities to find all  the extreme points of each
domain using any of the linear programming methods.

DOMAIN AND INTERFACE TESTING

INTRODUCTION:

 Recall that we defined integration testing as testing the
correctness of the interface between two otherwise
correct components.

 Components A and B have been demonstrated to satisfy
their component tests, and as part of the act of
integrating them we want to investigate possible
inconsistencies across their interface.

 Interface between any two components is considered as
a subroutine call.

 We're looking for bugs in that "call" when we do
interface testing.

 Let's assume that the call sequence is correct and that
there are no type incompatibilities.



77

 For  a  single  variable,  the  domain span  is the  set of
numbers between (and including) the smallest value
and the largest value. For every input variable we want
(at least): compatible domain spans and compatible
closures (Compatible but need not be Equal).

o DOMAINS AND RANGE:
 The set of output values produced by a function is

called the range of the function, in   contrast   with
the domain, which is the set of input values over which
the function is defined.

 For most testing, our aim  has been to specify  input
values and to predict and/or confirm output values that
result from those inputs.

 Interface testing requires that we select the output
values of the calling routine  i.e.  caller's range must be
compatible with the called routine's domain.

 An interface test consists of exploring the correctness of
the following mappings:

 caller domain --> caller range (caller
unit test)

caller range --> called domain
(integration test)

 called domain --> called range (called
unit test)

CLOSURE COMPATIBILITY:

 Assume that the caller's  range and the called domain
span the same numbers - for example, 0 to 17.

 Figure 4.16 shows the four ways in which the caller's
range closure and the called's domain closure can agree.

 The thick line means closed and the thin line  means
open. Figure shows the four cases consisting of
domains that are closed both on top (17) and bottom
(0), open top and closed bottom, closed top and open
bottom, and open top and bottom.



78

SPAN COMPATIBILITY:

 INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:
o For interface testing, bugs are more likely  to concern single

variables rather than peculiar combinations of two or more
variables.

o Test every input variable independently of other input variables
to confirm compatibility of the caller's range and the called
routine's domain span and closure of every domain defined for
that variable.

o There are two boundaries to test and it's a one-dimensional
domain; therefore, it requires one on and one off point per
boundary or a total of two on points and two off points for the
domain - pick the off points appropriate to the closure
(COOOOI).

o Start with the called routine's domains and generate test points in
accordance to the domain-testing strategy used for that routine in
component testing.

o Unless you're a mathematical whiz you won't be able to do this
without tools for more than one variable at a time.



79

Unit-4

Software     Testing     Metrics  

Software  Testing  Metrics  are  the  quantitative  measures  used  to  estimate  the
progress, quality, productivity and health of the software testing process. The goal
of software testing metrics is to improve the efficiency and effectiveness in the
software  testing  process  and  to  help  make  better  decisions  for  further  testing
process by providing reliable data about the testing process.

A Metric  defines  in  quantitative  terms  the  degree  to  which  a  system,  system
component, or process possesses a given attribute. The ideal example to understand
metrics  would  be  a  weekly  mileage  of  a  car  compared  to  its  ideal  mileage
recommended by the manufacturer.

Linguistic Metrics: Based on measuring properties of program text without interpreting what the
text means. – E.g., LOC.



80

Structural Metrics: Based on structural relations between the objects in a program. – E.g.,
number of nodes and links in a control flowgraph.

Lines of code (LOC)

• LOC is used as a measure of software complexity.

• This metric is just as good as source listing weight if we assume consistency w.r.t. paper and
font size. • Makes as much sense (or nonsense) to say: – ―This is a 2 pound program‖

• as it is to say: – ―This is a 100,000 line program.‖



81

McCabe Cyclomatic Complexity

McCabe's cyclomatic complexity is a software quality metric that quantifies the complexity of a 
software program. Complexity is inferred by measuring the number of linearly independent 
paths through the program. The higher the number the more complex the code.

The Significance of the McCabe Number

Measurement of McCabe's cyclomatic complexity metric ensures that developers are sensitive to
the fact that programs with high McCabe numbers (e.g. > 10) are likely to be difficult to 
understand and therefore have a higher probability of containing defects. The cyclomatic 
complexity number also indicates the number of test cases that would have to be written to 
execute all paths in a program.

Calculating the McCabe Number

Cyclomatic complexity is derived from the control flow graph of a program as follows:

Cyclomatic complexity (CC) = E - N + 2P
Where:
P = number of disconnected parts of the flow graph (e.g. a calling program and a subroutine)
E = number of edges (transfers of control)
N = number of nodes (sequential group of statements containing only one transfer of control)
McCabe Cyclomatic Complexity
(Alias: McCabe number)

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.
- Alan Perlis, American Scientist

McCabe's cyclomatic complexity is a software quality metric that quantifies the complexity of a 
software program. Complexity is inferred by measuring the number of linearly independent 
paths through the program. The higher the number the more complex the code.



82

The Significance of the McCabe Number

Measurement of McCabe's cyclomatic complexity metric ensures that developers are sensitive to
the fact that programs with high McCabe numbers (e.g. > 10) are likely to be difficult to 
understand and therefore have a higher probability of containing defects. The cyclomatic 
complexity number also indicates the number of test cases that would have to be written to 
execute all paths in a program.

Calculating the McCabe Number

Cyclomatic complexity is derived from the control flow graph of a program as follows:

Cyclomatic complexity (CC) = E - N + 2P
Where:
P = number of disconnected parts of the flow graph (e.g. a calling program and a subroutine)
E = number of edges (transfers of control)
N = number of nodes (sequential group of statements containing only one transfer of control)

Examples of McCabe Number Calculations

Halstead's     Software     Metrics  
According to Halstead's "A computer program is an implementation of an algorithm considered
to be a collection of tokens which can be classified as either operators or operand."

The basic measures are

n1 = count of unique operators.
n2 = count of unique operands.
N1 = count of total occurrences of operators.
N2 = count of total occurrence of operands.

In terms of the total tokens used, the size of the program can be expressed as N = N1 + N2.



83

Estimated Program Length

According to Halstead, The first Hypothesis of software science is that the length of a well-
structured program is a function only of the number of unique operators and operands.

N=N1+N2

And estimated program length is denoted by N^

N^ = n1log2n1 + n2log2n2

The following alternate expressions have been published to estimate program length:

o NJ = log2 (n1!) + log2 (n2!)

o NB = n1 * log2n2 + n2 * log2n1

o NC = n1 * sqrt(n1) + n2 * sqrt(n2)

o NS = (n * log2n) / 2

PATH PRODUCTS AND PATH EXPRESSION:

PATH PRODUCTS:

 Normally flow graphs used to denote only control flow connectivity.
 The simplest weight we can give to a link is a name.
 Using link names as weights, we then convert the graphical flow graph

into an equivalent algebraic like expressions which denotes the set of all
possible paths from entry to exit for the flow graph.

 Every link of a graph can be given a name.
 The link name will be denoted by lower case italic letters.
 In tracing a path or path segment through a flow graph, you traverse a

succession of link names.
 The name of the path or path segment that corresponds to those links is

expressed naturally by concatenating those link names.
 For example, if you traverse links a,b,c and d along some path, the name

for that path segment is abcd. This path name is also called a  path
product.



84

 PATH EXPRESSION:
o Consider a pair of nodes in a graph and the set of paths between

those node.
o Denote that set of paths by Upper case letter such as X,Y. From

Figure 5.1c, the members of the path set can be listed as follows:

ac, abc, abbc, abbbc, abbbbc.............

o Alternatively, the same set of paths can be denoted by :

ac+abc+abbc+abbbc+abbbbc+...........

o The + sign is understood to mean "or" between the two nodes of
interest, paths ac, or abc, or abbc, and so on can be taken.

o Any expression that consists of path names and "OR"s and
which denotes a set of paths between two nodes is called a "Path
Expression."



85

 PATH PRODUCTS:
o The name of a path that consists of two successive path segments

is conveniently expressed by the concatenation or  Path
Product of the segment names.

o For example, if X and Y are defined as X=abcde,Y=fghij,then
the path corresponding to X followed by Y is denoted by

XY=abcdefghij

o Similarly,
o YX=fghijabcde
o aX=aabcde
o Xa=abcdea 

XaX=abcdeaabcde

 If  X and  Y represent  sets  of  paths  or  path  expressions,  their  product
represents the set of paths that can be obtained by following every
element of X by any element of Y in all possible ways. For example,

 X = abc + def + ghi
 Y = uvw + z

Then,

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz
 RULE     1:   A(BC)=(AB)C=ABC

where A,B,C are path names, set of path names or path expressions.

 The zeroth power of a link name, path product, or path expression is also
needed for completeness. It is denoted by the numeral "1" and denotes the
"path" whose length is zero - that is, the path that doesn't have any links.

 a0 = 1
X0 = 1

PATH SUMS:

 The "+" sign was used to denote the fact that path names were part of the
same set of paths.

 The "PATH SUM" denotes paths in parallel between nodes.



86

 Links a and b in Figure 5.1a are parallel paths and are denoted by a + b.
Similarly, links c and d are parallel paths between the next two nodes and
are denoted by c + d.

 The set of all paths between nodes 1 and 2 can be thought of as a set of
parallel paths and denoted by eacf+eadf+ebcf+ebdf.

 If X and Y are sets of paths that lie between the same pair of nodes, then
X+Y denotes the UNION of those set of paths.

RULE     2:   X+Y=Y+X
RULE     3:   (X+Y)+Z=X+(Y+Z)=X+Y+Z

 DISTRIBUTIVE LAWS:
o The product and sum operations are distributive, and the

ordinary rules of multiplication apply; that is

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD

o Applying these rules to the below Figure 5.1a yields 

e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf

ABSORPTION RULE:

o If X and Y denote the same set of paths, then the union of these
sets is unchanged; consequently,

RULE     5:   X+X=X (Absorption Rule)

o If a set consists of paths names and a member of that set is added
to it,  the "new" name, which is  already in that  set  of  names,
contributes nothing and can be ignored.



87

o For example,
o if X=a+aa+abc+abcd+def then

X+a = X+aa = X+abc = X+abcd = X+def = X

It follows that any arbitrary sum of identical path expressions reduces to the 
same path expression.

LOOPS:

Loops can be understood as an infinite set of parallel paths. Say that the loop 
consists of a single link b. then the set of all paths through that loop point is 
b0+b1+b2+b3+b4+b5+..............

The path expression for the above figure is denoted by the notation: 

ab*c=ac+abc+abbc+abbbc+................
Syntax     Testing  

 System inputs must  be validated.  Internal  and external  inputs conform to
formats: – Textual format of data input from users. – File formats. –
Database schemata.

 Data formats can be mechanically converted into many input data validation
tests.

 Such a conversion is easy when the input is expressed in a formal notation
such as BNF (Backus-Naur Form).



88

Syntax     Testing     Steps  

 Identify the target language or format.
 Define the syntax of the language, formally, in a notation such as BNF.
 Test and Debug the syntax: – Test the ―normal‖ conditions by covering the

BNF syntax graph of the input language. (minimum requirement) – Test the
―garbage‖ conditions by testing the system against invalid data. (high
payoff)

How     to Find     the     Syntax  

 Every input has a syntax.
 The syntax may be:

– formally specified
– undocumented
– just understood

 … but it does exist!
 Testers need a formal specification to test the syntax and create useful

―garbage .‖

BNF

Syntax is defined in BNF as a set of definitions. Each definition may in-turn refer
to other definitions or to itself.

The LHS of a definition is the name given to the collection of objects on the RHS.

– ::= means ―is defined as .‖

– | means ―or .‖

– * means ―zero or more occurrences .‖
– + means ―one or more occurrences .‖

   Test     Case     Generation  

There are three possible kinds of incorrect actions:

– Recognizer does not recognize a good string.

– Recognizer accepts a bad string.



89

– Recognizer crashes during attempt to recognize a string.

• Even small BNF specifications lead to many good strings and far more 
bad strings.

• There is neither time nor need to test all strings.

Testing     Strategy  

 Create one error at a time, while keeping all other components of the 
input string correct.

 Once a complete set of tests has been specified for single errors, do the 
same for double errors, then triple, errors, ...

 Focus on one level at a time and keep the level above and below as 
correct as you can.

Delimiter     Errors  

Delimiters are characters or strings placed between two fields to denote where one 
ends and the other begin.

• Delimiter Problems:

– Missing delimiter. e.g., (x+y

– Wrong delimiter. e.g., (x+y]

– Not a delimiter. e.g., (x+y 1

– Poorly matched delimiters. e.g., (x+y))

Sources     of Syntax  

 Designer-Tester Cooperation
 Manuals
 Help Screens
 Design Documents
 Prototypes
 Programmer Interviews
 Experimental (hacking)



90

Unit-5         :  

Logic     Based     Testing  

 INTRODUCTION:
o The functional requirements of many programs can be specified

by decision tables, which provide a useful basis for program and
test design.

o Consistency and completeness can be analyzed by using boolean
algebra, which can also be used as a basis for test design.
Boolean algebra is trivialized by using  Karnaugh-Veitch
charts.

o "Logic" is one of the most  often used words in programmers'
vocabularies but one of their least used techniques.

o Boolean algebra is to logic as arithmetic is to mathematics.
Without it, the tester or programmer is cut off from many test
and design techniques and tools that incorporate those
techniques.

o Logic has been, for several decades, the primary tool of
hardware logic designers.

o Many test methods developed for hardware logic can be adapted
to software logic testing. Because hardware testing automation is
10 to 15 years ahead of software testing automation, hardware
testing methods and its associated theory is a fertile ground for
software testing methods.

o As programming and test techniques have improved, the bugs
have shifted closer to the process front end, to requirements and
their specifications. These bugs range from 8% to 30% of the
total and because they're first-in and last-out, they're the costliest
of all.

o The trouble with specifications is that they're hard to express.
o Boolean algebra (also known as the sentential calculus) is the

most basic of all logic systems.
o Higher-order logic systems are needed and used for formal 

specifications.
o Much of logical analysis can be and is embedded in tools. But

these tools incorporate methods to simplify, transform, and 
check specifications, and the methods are to a large extent based on boolean 
algebra.



91

KNOWLEDGE BASED SYSTEM:

 The  knowledge-based system  (also expert system, or
"artificial intelligence" system) has become the
programming construct of choice for many applications
that were once considered very difficult.

 Knowledge-based systems incorporate knowledge from
a knowledge  domain  such  as  medicine,  law,  or  civil
engineering into a database. The data can then be
queried and interacted with to provide solutions to
problems in that domain.

 One implementation of knowledge-based systems is to
incorporate the expert's knowledge into a set of rules.
The user can then provide data and ask questions based
on that data.

 The user's  data  is  processed through the rule base to
yield conclusions (tentative or definite) and requests for
more data. The processing is done by a program called
the inference engine.

 Understanding knowledge-based systems and their
validation problems requires an understanding of
formal logic.

o Decision tables are extensively used in business data processing;
Decision-table preprocessors as extensions to COBOL are in
common use; boolean algebra is embedded in the
implementation of these processors.

o Although programmed tools are nice to have, most of the
benefits  of  boolean  algebra  can  be  reaped  by  wholly  manual
means if you have the right conceptual tool: the Karnaugh-
Veitch diagram is that conceptual tool.



92

DECISION     TABLES:  



 It consists of four areas called the condition stub, the condition entry, the
action stub, and the action entry.

 Each column of the table is a rule that specifies the conditions under
which the actions named in the action stub will take place.

 The condition stub is a list of names of conditions.

A more general decision table can be as below:



93

 A rule specifies whether a condition should or should not be met for the
rule to be satisfied. "YES" means that the condition must be met, "NO"
means that the condition must not be met, and "I" means that the
condition plays no part in the rule, or it is immaterial to that rule.

 The action stub names the actions the routine will take or initiate if the
rule is satisfied. If the action entry is "YES", the action will take place; if
"NO", the action will not take place.

 The    table    in    Figure    6.1     can    be    translated     as    follows:
Action 1 will take place if conditions 1 and 2 are met and if conditions 3 
and 4 are not met (rule 1) or if conditions 1, 3, and 4 are met (rule 2).

 "Condition" is another word for predicate.
 Decision-table uses "condition" and "satisfied" or "met". Let us use 

"predicate" and TRUE / FALSE.
 Now the above translations become:

1. Action  1  will  be  taken if  predicates  1  and 2  are  true  and  if
predicates 3 and 4 are false (rule 1), or if predicates 1, 3, and 4
are true (rule 2).

2. Action 2 will be taken if the predicates are all false, (rule 3).
3. Action 3 will take place if predicate 1 is false and predicate 4 is

true (rule 4).

DECISION-TABLE PROCESSORS:

o Decision tables can be automatically translated into code and, as
such, are a higher-order language

o If the rule is satisfied, the corresponding action takes place
o Otherwise, rule 2 is tried. This process continues until either a

satisfied rule results in an action or no rule is satisfied and the
default action is taken



94

o Decision tables have become a useful tool in the programmers
kit, in business data processing.

DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:

5. The specification is given as a decision table or can be easily
converted into one.

6. The order in which the predicates are evaluated does not affect
interpretation of the rules or the resulting action - i.e., an
arbitrary permutation of the predicate order will not, or should
not, affect which action takes place.

7. The order in which the rules are evaluated does not affect the
resulting action - i.e., an arbitrary permutation of rules will not,
or should not, affect which action takes place.

8. Once a rule is satisfied and an action selected, no other rule need
be examined.

9. If several actions can result from satisfying a rule, the order in
which the actions are executed doesn't matter

DECISION-TABLES AND STRUCTURE:

o Decision tables can also be used to examine a program's 
structure.

o Figure 6.4 shows a program segment that consists of a decision
tree.

o These decisions, in various combinations, can lead to actions 1,
2, or 3



95

 If the decision appears on a path, put in a YES or NO as appropriate. If
the decision does not appear on the path, put in an I, Rule 1 does not
contain decision C, therefore its entries are: YES, YES, I, YES.

 The corresponding decision table is shown in Table

RULE
1

RULE
2

RULE
3

RULE
4

RULE
5

RULE
6

CONDITION
A

CONDITION
B

CONDITION
C

CONDITION
D

YES
YES

I
YES

YES
NO
I

I

YES
YES

I
NO

NO I
YES

I

NO I
NO
YES

NO
I

NO
NO

ACTION 1
ACTION 2
ACTION 3

YES
NO
NO

YES
NO
NO

NO
YES
NO

NO
YES
NO

NO
YES
NO

NO
NO
YES

KV CHARTS 

INTRODUCTION:

 If you had to deal with expressions in four, five, or six
variables, you could get bogged down in the algebra
and make as many errors in designing test cases as there
are bugs in the routine you're testing.

 Karnaugh-Veitch chart  reduces boolean algebraic
manipulations to graphical trivia.

 Beyond six variables these diagrams get cumbersome
and may not be effective.

SINGLE VARIABLE:

 Figure 6.6 shows all the boolean functions of a single
variable  and  their  equivalent representation  as  a KV
chart.



96

 The charts show all possible truth values that the variable A can have.

 A "1" means the variable’s value is "1" or TRUE. A "0" means that the
variable's value is 0 or FALSE.

 The entry in the box (0 or 1) specifies whether the function that the chart
represents is true or false for that value of the variable.

 We usually do not explicitly put in 0 entries but specify only the 
conditions under which the function is true.

STATES,     STATE     GRAPHS     AND     TRANSITION     TESTING  

OBJECTIVE:

To know how state testing strategies are based on the use of finite state machine 
models for software structure, software behavior, or specifications of software 
behavior.

Introduction:

The finite state machine is as fundamental to software engineering as Boolean 
algebra to logic.

Finite state machines can also be implemented as table driven software, in which 
case they are a powerful design option.



97

State     Graphs:  

OBJECTIVE:

State graph is used to represent states, links, and transitions from one state to 
involves a program that detects the character sequence ―in the graph.

1. A state is defined as : ― A combination of circumstances or attributes 
belonging for the time being to a person or thing.‖

2. For example, a moving automobile whose engine is running can have 
the following states with respect to its transmission

1. Reverse gear

2. Neutral gear

3. First gear

4. Second gear

5. Third gear

6. Fourth gear State graph –

For example, a program that detects the character sequence ―ZCZC‖ can be in the 
following states.

7. Neither ZCZC nor any part of it has been detected.

8. Z has been detected.

9. ZC has been detected.

10. ZCZ has been detected.

11. ZCZC has been detected.



98

States are represented by Nodes.

State are numbered or may identified by words or whatever else is convenient

1.     Inputs and     Transition:  

1. Whatever is being modeled is subjected to inputs. As a result of those inputs, 
the state changes, or is said to have made a Transition.

2. Transition are denoted by links that join the states.

3. The input that causes the transition are marked on the link; That is, the inputs 
are link weights.

4. There is one outlink from every state for every input.

5. If several inputs in a state cause a transition to the same subsequent state, 
instead of drawing a bunch of parallel links we can abbreviate the notation 
by listing the several inputs as in: ―input1, input2, input3……… .‖

6. A finite state machine is an abstract device that can be represented by a state 
graphhaving a finite number of states and a finite number of transitions 
between states.

2.     Outputs  

1. An output can be associated with any link.

2. Out puts are denoted by letters or words and are separated from inputs by a 
slash as follows: ―input/output .‖

3. As always, output denotes anything of interest that’s observable and is not
restricted to explicit outputs by devices



99

4. Outputs are also link weights.

5. If every input associated with a transition causes the same output, then 
denoted it as: ―input1, input2, input3 .../output‖

3.     State     Tables:  

1.Big state graphs are cluttered and hard to follow.

2. It’s more convenient to represent the state graph as a table (the state table or
state transition table) that specifies the states, the inputs, the transitions and the
outputs.

3. The following conventions are used:

 Each row of the table corresponds to a state.
 Each column corresponds to an input condition.
 The box at the intersection of a row and a column specifies 

the next state (the transition) and the output, if any.

4.   Time     versus     Sequence:  

 State graphs don’t represent time they represent sequence.
 A transition might take microseconds or centuries;



100

 A system could be in one state for milliseconds and another for years 
the state graph would be the same because it has no notion of time.

 Although the finite state machines model can be elaborated to include
notions of time in addition to sequence, such as time Petri Nets.

5. Software     Implementation  

Implementation and Operation:

1. There are four tables involved:

2. A table or process that encodes the input values into a 
compactlist (INPUT_CODE_TABLE).

3. A table that specifies the next state for every combination of state and input 
code (TRANSITION_TABLE).

4. A table or case statement that specifies the output or output code, if any,
associated with every state-input combination (OUTPUT_TABLE).

5. A table that stores the present state of every device or process that uses 
the same state table—e.g., one entry per tape transport (DEVICE_TABLE).

6. The routine operates as follows, where # means concatenation: BEGIN

a) PRESENT_STATE := DEVICE_TABLE(DEVICE_NAME)
b) ACCEPT INPUT_VALUE
c) INPUT_CODE := INPUT_CODE_TABLE(INPUT_VALUE)
d) POINTER := INPUT_CODE#PRESENT STATE
e) NEW_STATE := TRANSITION_TABLE(POINTER)
f) OUTPUT_CODE := OUTPUT_TABLE(POINTER)
g) CALL OUTPUT_HANDLER(OUTPUT_CODE)
h) DEVICE_TABLE(DEVICE_ NAME) := NEW_STATE END 

State Codes and State-Symbol Product:

1. The term state-symbol product is used to mean the value obtained by any
scheme used to convert the combined state and input code into a pointer to
a compact table without holes.



101

2. ―state codes‖ in the context of finite-state machines, we mean the 
(possibly) hypothetical integer used to denote the state and not the actual form 
of the state code that could result from an encoding process.

Good     State     graphs and     bad     State     graphs  

OBJECTIVE: student should find out state graphs which are reachable and non 
reachable states according to the given specifications or not. To check how 
equivalent states are possible with set of inputs and outputs

Here are some principles for judging:

1. The total number of states is equal to the product of the possibilities of 
factors that make up the state.

2. For every state and input there is exactly one transition specified to exactly 
one, possibly the same, state.

3. For every transition there is one output action specified. The output could 
be trivial, but at least one output does something sensible.

4. For every state there is a sequence of inputs that will drive the system back 
to the same state.

Number of states:

1. The number of states in a state graph is the number of states we choose 
to recognize or model.

2. In practice, the state is directly or indirectly recorded as a combination of 
values of variables that appear in the data base.

3. Find the number of states as follows:

Impossible States:

 Sometimes some combinations of factors may appear to be impossible.
 The discrepancy between the programmer’s state count and the tester’s state

count is often due to a difference of opinion concerning ―impossible 
states .‖



102

 A robust piece of software will not ignore impossible states but will 
recognize them and invoke an illogical condition handler when they 
appear to have occurred

Unreachable States:

 An unreachable state is like unreachable code.
 A state that no input sequence can reach.
 An unreachable state is not impossible, just as unreachable code is 

not impossible
 There may be transitions from unreachable state to other states; there usually

because the state became unreachable as a result of incorrect transition.

Dead States:

1. A dead state is a state that once entered cannot be left.

2. This is not necessarily a bug but it is suspicious.

STATE TESTING

 Impacts of Bugs:
 Wrong number of states.
 Wrong transition for a given state-input combination.
 Wrong output for a given transition.
 Pairs of states or sets of states that are inadvertently made equivalent 

(factor lost).
 States or sets of states that are split to create inequivalent duplicates.
 States or sets of states that have become dead.
 States or sets of states that have become unreachable.

Principles     of     State     Testing  : The starting point of state testing is:
1. Define a set of covering input sequences that get back to the initial state 
when starting from the initial state.
2. For each step in each input sequence, define the expected next state, the 
expected transition, and the expected output code. A set of tests, then, consists 
of three sets of sequences:

1. Input sequences. 2. Corresponding transitions or next-state names. 3. Output
sequences.



103

Limitations     and     Extensions  

1.State transition coverage in a state graph model does not guarantee 
complete testing.

2. How defines a hierarchy of paths and methods for combining paths to 
produce covers of state graphs.

3. The simplest is called a ―0 switch‖ which corresponds to testing each 
transition individually.

4. The next level consists of testing transitions sequences consisting of 
two transitions called ―1 switches .‖

5. The maximum length switch is ―n1 switch‖ where there are n number of states

6. A set of input sequences that provide coverage of all nodes and links is 
a mandatory minimum requirement.

7. In executing state tests, it is essential that means be provided (e.g., 
instrumentation software) to record the sequence of states (e.g., transitions) 
resulting from the input sequence and not just the outputs that result from the 
input sequence.

*****


	SYLLABUS
	SOFTWARE TESTING UNIT I
	Definition of Software Testing
	PURPOSE OF TESTING:
	Productivity and Quality in software:
	Phases in a tester's mental life can be categorised into the following 5 phases:
	MODEL FOR TESTING:
	ENVIRONMENT:
	PROGRAM:
	BUGS:
	OPTIMISTIC NOTIONS ABOUT BUGS:
	IS COMPLETE TESTING POSSIBLE?
	Three different approaches can be used to demonstrate that a program is correct.They are:
	2. Structural Testing:
	3. Formal Proofs of Correctness:
	Importance= ($) = Frequence * (Correction cost + Installation cost + Consequential cost)

	TAXONOMY OF BUGS:
	1. Requirements and Specifications Bugs:
	2. Feature Bugs:
	3. Feature Interaction Bugs:
	Specification and Feature Bug Remedies:
	1. Control and Sequence Bugs:
	2. Logic Bugs:
	3. Processing Bugs:
	4. Initialization Bugs:
	5. Data-Flow Bugs and Anomalies:
	DATA BUGS:
	5. Dynamic Data Vs Static data:
	CODING BUGS:
	INTERFACE, INTEGRATION, AND SYSTEM BUGS:
	1. External Interfaces:
	2. Internal Interfaces:
	3. Hardware Architecture:
	4. Operating System Bugs:
	5. Software Architecture:
	6. Control and Sequence Bugs (Systems Level):
	7. Resource Management Problems:
	8. Integration Bugs:
	9. System Bugs:
	TEST AND TEST DESIGN BUGS:
	UNIT-II
	At the end of this unit, the student will be able to:
	BASICS OF PATH TESTING:
	THE BUG ASSUMPTION:
	CONTROL FLOW GRAPHS:
	1. Process Block:
	2. Decisions:
	3. Case Statements:
	4. Junctions:
	CONTROL FLOW GRAPHS Vs. FLOWCHARTS:
	NOTATIONAL EVOULTION:
	Simplified Flowgraph Notation

	LINKED LIST REPRESENTATION:
	Linked List representation of Flow Graph:
	Alternative Flowgraphs for same logic (Statement "IF (A=0) AND (B=1) THEN

	FLOWGRAPH AND FLOWCHART GENERATION:
	PATH TESTING - PATHS, NODES AND LINKS:
	FUNDAMENTAL PATH SELECTION CRITERIA:
	PATH TESTING CRITERIA:
	Path Testing (Pinf):
	Statement Testing (P1):
	Branch Testing (P2):
	Commonsense and Strategies:
	Which paths to be tested?
	Path Selection Example:
	Practical Suggestions in Path Testing:
	LOOPS:
	CASE 2: Single loop, Non-zero minimum, No excluded values
	CASE 3: Single loops with excluded values

	Nested Loops:
	Concatenated Loops:
	Horrible Loops:
	Loop Testing Time:
	PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:
	MULTIWAY BRANCHES:
	INPUTS:
	PREDICATE INTERPRETATION:
	INDEPENDENCE OF VARIABLES AND PREDICATES:
	CORRELATION OF VARIABLES AND PREDICATES:
	PATH PREDICATES EXPRESSIONS:
	ABCD+EBCD=(A+E)BCD
	TESTING BLINDNESS:
	1. Assignment Blindness:
	2. Equality Blindness:
	3. Self Blindness:
	PATH SENSITIZING:
	(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
	ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ KL
	PATH SENSITIZATION.
	PATH INSTRUMENTATION:
	1. Interpretive Trace Program:
	2. Traversal Marker or Link Marker:
	Why Single Link Markers aren't enough.

	Two Link Marker Method:
	Double Link Marker Instrumentation.

	TRANSACTION FLOWS:
	INTRODUCTION:
	TRANSACTION FLOW GRAPHS:
	USAGE:
	COMPLICATIONS:

	TRANSACTION FLOW TESTING TECHNIQUES:
	GET THE TRANSACTIONS FLOWS:
	INSPECTIONS, REVIEWS AND WALKTHROUGHS:
	PATH SELECTION:
	PATH SENSITIZATION:
	PATH INSTRUMENTATION:

	Unit-3
	DATA FLOW TESTING:
	Motivation:
	DATA FLOW MACHINES:
	Von Neumann Machine Architecture:
	Multi-instruction, Multi-data machines (MIMD) Architecture:
	BUG ASSUMPTION:
	DATA FLOW GRAPHS:
	Data Object State and Usage:
	1. Defined (d):
	2. Killed or Undefined (k):
	3. Usage (u):
	DATA FLOW ANOMALIES:
	DATA FLOW ANOMALY STATE GRAPH:
	STATIC Vs DYNAMIC ANOMALY DETECTION:
	DATA FLOW MODEL:
	Components of the model:
	Program Example (PDL)
	Control flowgraph annotated for X and Y data flows.

	STRATEGIES OF DATA FLOW TESTING:
	INTRODUCTION:
	TERMINOLOGY:
	ORDERING THE STRATEGIES:
	SLICING AND DICING:

	DOMAIN TESTING:
	A DOMAIN IS A SET:
	DOMAINS, PATHS AND PREDICATES:
	A DOMAIN CLOSURE:
	DOMAIN DIMENSIONALITY:
	BUG ASSUMPTION:
	Domain Errors:
	LINEAR AND NON LINEAR BOUNDARIES:
	COMPLETE BOUNDARIES:
	DOMAIN TESTING:
	DOMAIN BUGS AND HOW TO TEST FOR THEM:
	Interior, Boundary and Extreme points.

	DOMAIN AND INTERFACE TESTING INTRODUCTION:
	DOMAINS AND RANGE:
	CLOSURE COMPATIBILITY:
	SPAN COMPATIBILITY:
	Unit-4
	PATH PRODUCTS AND PATH EXPRESSION:
	PATH EXPRESSION:
	PATH PRODUCTS:
	PATH SUMS:
	DISTRIBUTIVE LAWS:
	ABSORPTION RULE:
	LOOPS:
	Syntax Testing
	Syntax Testing Steps
	How to Find the Syntax
	BNF
	Test Case Generation
	Testing Strategy
	Delimiter Errors
	Sources of Syntax
	Unit-5 :
	INTRODUCTION:
	KNOWLEDGE BASED SYSTEM:
	DECISION TABLES:
	DECISION-TABLE PROCESSORS:
	DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:
	DECISION-TABLES AND STRUCTURE:
	KV CHARTS INTRODUCTION:
	SINGLE VARIABLE:
	STATES, STATE GRAPHS AND TRANSITION TESTING
	State Graphs:
	1. Inputs and Transition:
	2. Outputs
	3. State Tables:
	4. Time versus Sequence:
	5. Software Implementation
	Good State graphs and bad State graphs
	STATE TESTING
	Limitations and Extensions

