AR GREGORIOS COLLEGE
OF ARTS & SCIENCE

Block No.8, College Road, M ogappair West, Chennai — 37

Affiliated to the University of Madras
Approved by the Gover nment of Tamil Nadu
An 1SO 9001:2015 Certified Institution

Y Ongoo
0

A5

DEPARTMENT OF MATHEMATICS

SUBJECT NAME: REAL ANALYSIS |
SUBJECT CODE: SM 26B
SEMESTER: VI

PREPARED BY: PROF.S.C.PREMILA

Ve Ve ol Ve Vi, o e s Vi Vi VG VG BTG TG e e e e o ***

[ T T T I Fip T T T o T T | 5 T |




UNIVERSITY OF MADRAS

B.Sc. DEGREE COURSE IN MATHEMATICS
SYLLABUSWITH EFFECT FROM 2020-2021

CORE-XIV: REAL ANALYSIS I
(Common to B.Sc. Mathswith Computer Applications)

Inst.Hrs: 6 YEAR: |11
Credits : 4 SEMESTER: VI
L earning outcomes:
Studentswill acquire knowledge about

* The Real Numbers and the Analytic Properties of Real- Valued Functions.

* The Analytic concepts of Connectedness, Compactness, Completeness And Calculus.
UNIT |
Continuous Functions on Metric Spaces: Open sets- closed sets- Discontinuous function
on R*. Connectedness, Completeness and Compactness :More about open sets-
Connected sets. Chapter 5 Section 5.4 to 5.6 Chapter 6 Section 6.1 and 6.2

UNIT II

Bounded sets and totally bounded sets: Complete metric spaces- compact metric spaces,
continuous functions on a compact metric space, continuity of inverse functions, uniform
continuity.

Chapter 6 Section 6.3t0 6.8

UNIT 11
Calculus:Sets of measure zero, definition of the Riemann integral, existence of the Riemann integral-
properties of Riemann integral.

Chapter 7 Section 7.1t0 7.4

UNIT IV

Derivatives- Rolle’s theorem, Law of mean, Fundamental theorems of calculus.
Chapter 7 Section 7.5t0 7.8

UNIT V
Taylor’s theorem- Pointwise convergence of sequences of functions, uniform convergence of
sequences of functions.

Chapter 8 Section 8.5 Chapter 9 Section 9.1 and 9.2

Content and Treatment asin
“Methods of Real Analysis”- Richard R. Goldberg (Oxford and IBH Publishing Co)

Reference: -
1. Principles of Mathematical Analysis by Walter Rudin,TataMcGrawHill.

2. Mathematical Analysis Tom M Apostal,Narosa Publishing House.



Unit - | Metric Spaces

I ntroduction

A Metric Space is a set equipped with a distance function, also called a metric, which enables us to
measure the distance between two elements in the set.

1.1 Definition And Examples
Definition 1.1.1 A Metric Spaceis a non empty set M together with a functiond : M X M —

R satisfying the following conditions.

M) d(x,y)=0forallx,yeM

(i)  d(x,y)=0ifandonlyifx =y

(@iii)  d(x,y)=d(y,x)forallx,yeM

(iv)  d(x,z)< d(x,y)+d(y,z) forallx,y,zeM[ Triangle Inequality ] d is
called a metric or distance function on M and d(x , y) is called the distance between x and y
in M. The metric space M with the metric d is denoted by (M, d) or simply by M when the
underlying metric is clear from the context.

Example 1.1.2 Let R be the set of all real numbers. Define a functiond: M X M —» R by d(x,y) = | x
—vy |. Then dis a metric on R called the usual metric on R.

Proof.
Letx,yeR.
Clearlyd(x,y)=|x-y |2 0.
Moreover, d(x,y)=0& |x—y | = 0.
S x-y = 0.
& x=y
dix,y)=[x-vy|
=|ly-x]|
=d(y ,x).

~d(x,y)=dly, x).

Letx,y,zeR.d(x, z)

=|x—z|



=l - y+y-z|
<h- vy | +|y -z |
=d(x,y) +dly, z).
~d(x, z) <d(x,y) +d(y, z).
Hence d is a metric on R.
Note. When R is considered as a metric space without specifying its metric, it is the usual metric.

Example 1.1.2
{0 ifx=y
Let M be any non-empty set. Define a functiond : Mx M =R by d(x, y) = Lifx#y

Then d is a metric on M called the discrete metric or trivial metric on M.
Pr oof.
Letx,ye M.

Clearlyd(x,y)=20andd(x,y)=0&x=y.

{Oﬁx=y
Also, d(x, y) =t ifx#y

=d(y, x) .
Letx,y,zeM.
We shall prove that d(x, z) < d(x, y) + d(y, 2).
Case (i) Suppose x =y = z.
Thend(x,z)=0,d(x,y)=0,d(y,z)=0.
~d(x, z) <d(x,y) +d(y, z).
Case (i) Suppose x =y and z distinct.
Thend(x,z)=1,d(x,y)=0,d(y,z)=1.-d(x,z)<d(x
,y)+dly, 2).
Case (iii) Suppose x = z and y distinct.
Thend(x,z)=0,d(x,y)=1,d(y,z)=1.

~d(x, z) <d(x,y) +d(y, z).

Case (iv) Suppose y = z and x distinct.



Thend(x,z)=1,d(x,y)=1,d(y,z)=0.
~d(x, z) <d(x,y) +d(y, 2).
Case (V) Suppose x £y Fz.

Thend(x,z)=1,d(x,y)=1,d(y, z)=1..d(x, z) <d(x

,y)+dly, 2).

In all the cases, d(x, z) < d(x, y) +d(y, z).
Hence d is a metric on M.
1.20PEN SETSIN A METRIC SPACE

Definition 1.2.1 Let (M, d) be a metric space. Let a € M and r be a positive real number. The open
ball or the open sphere with center a and radius r is denoted by By (a , r) and is the subset of M

defined by Bg(a, r) = {x E M /d(a , x) < r}. We write B(a, r) for Bq (@, I) if the metric d under
consideration is clear.

Note. Since d(a,a)=0<r,aEBy(a, r).
Examples1.2.2

1. In R with usual metricB(a,r)=(a-r,a+r).

2. In R?with usual metric B(a, r)is the interior of the circle with center a

and radius . { M if r>1
{a}ifr<

3. Inadiscrete metric space M, B(a, r) =

1
Definition 1.2.3 Let (M, d) be a metric space. A subset A of M is said to be open in M if for each xEA
there exists a real number r > 0 such that B(x, r) EA.

Note. By the definition of open set, it is clear that ? and M are open sets.
Examples1.2.3

1. Anyopeninterval (a, b) is an open set in R with usual metric.
For,

Letx E(a, b).
Choose a real number r suchthat0<r <min{x-a, b-x}.

Then B(x,r) S (a, b). -~ (a,
b) is openinR.

2. Every subset of a discrete metric space M is open.
For,

Let A be a subset of M.



If A= @, then A is open.

Otherwise, let x € A.

Choose a real number r such that0<r < 1.
Then B(x, r) ={x } € A and hence A is open.

3. Set of all rational numbers Q is not open in R. For,
Let x €Q.

For any real number r >0, B(x, r) = (x - r, X + r) contains both rational and irrational
numbers.

~ B(x, r) € Q and hence Q is not open.

Theorem 1.2.4 Let (M, d) be a metric space. Then each open ball in M is an open set.
Proof.

Let B(a,r) be an open ball in M.

Let x € B(a, r).

Thend(a, x)<r.

Taker,=r—d(a, x). Thenr;> 0.

We claim that B(x, r;) €B(a,r).

Let ye B( x, ri). Thend(x,y) < r,.

Now, d(a,y) <d(a, x)+d(x,y)

<d(a,x)+r;

=d(a,x)+r—d(a,x)=r.

~d(a,y)<r.

~y EB(a,r).

~B(x,r) €B(a,r).

Hence B(a, r) is an open ball.

Theorem1.2.5 In any metric space M, the union of open sets is open.
Proof.

Let {Aa} be a family of open sets in M.

We have to prove A=UA, is open in M.

Let x EA.



Then x € A, for some Q.

Since A, is open, there exists an open ball B(x, r) such that B(x, r) € A,.
~B(x,r)EA.

Hence Ais openin M.

Theorem 1.2.6 In any metric space M, the intersection of a finite number of open sets is open.
Proof.

Let A;, A2, ....,A, be open sets in M.

We have to prove A=A;NA2 n.. N A,is openin M.

Letx EA.

Thenx€ V Ai=1,2,..,n.

Since each A, is open, there exists an open ball B(x, r;) such that B(x, r;) € A.
Taker=min{ry,ry, .., r}

Clearlyr>0andB(x,r)EB(x,r) Vi=1,2,..,n.
HenceB(x,r)EAVi=1,2,..,n.

~B(x,r)EA.

~Aisopenin M.

Theorem 1.2.7 Let (M, d) be a metric space and A € M. Then A is open in M if and only if A can be
expressed as union of open balls.

Proof.

Suppose that A is open in M.

Then for each x € A there exists an open ball B(x,r,) such that B(x, r,) S A.
~A=Uxea B(X ’ rx).

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls.

Since open balls are open and union of open sets is open, A is open.

1.3 Interior of a set



Definition1.3.1 Let (M, d) be a metric space and A © M. A point x € A is said to be an interior point
of A if there exists a real number r > 0 such that B(x, r) € A. The set of all interior points is called as
interior of A and is denoted by Int A.

Notel.3.2Int ASA.

Examplel.3.3In R with usual metric, let A =[1, 2]. 1 is not an interior points of A, since for any real
numberr>0,B(1,r)=(1—-r, 1+ r)contains real numbers less than 1. Similarly, 2 is also not an
interior point of A. In fact every point of (1, 2) is a limit point of A. Hence IntA=(1, 2).

Notel.3.4(1)Int@ =@ and Int M = M.
(2) Aisopen SInt A=A,
(3 ACB=IntACINt B

Theorem1.3.5 Let (M, d) be a metric space and A & M. Then Int A = Union of all open sets
contained in A.

Proof.
Let G=U{ B/ Bis an open set contained in A } We have to

prove Int A=G.

LetxEINt A.

Then x is an interior point of A.

~ there exists a real number r > 0 such that B(x, r) EA.

Since open balls are open, B(x, r) is an open set contained in A.
~B(x,rEG.

“XEG.

SNEAC G e (1)

Letx€G.

Then there exists an open se B such that B € A and x € B.

Since B is open and x € B, there exists a real number r >0 such that B(x, r) € B C A.
-~ x is an interior point of A.

~“XEINtA.

SGEINLA (2) From (1) and (2), we get

IntA=G.



Notel.3.6 Int Ais an open set and it is the largest open set contained in A.
Theorem1.3.7 Let M be a metric space and A, B € M. Then
(1) Int (AN B)=(Int A) Nn(Int A)(2)
Int (AUB)2(Int A) U (Int A) Proof.
(DANnBCSA=Int(ANnB)SIntA.
Similarly, Int (AN B) SIntB.

“Int(ANB)S(INtA) N(INLA) e (a)IntASAandINntBSB.

~(IntA) n(IntA)SANB
Now, (Int A) N (Int A) is an open set contained in ANB..

But, Int (A N B) is the largest open set contained in ANB..

A(INEA) N (INEA) S INE (AN B) oo, (b)

From (a) and (b) , we get Int (AN B)=(Int A) N (Int A)

(2) Ac AuB=IntACInt (AUB)
Similarly, Int BS Int (A U B)

~Int (AUB)2(Int A) U (Int A)
Notel.3.8 Int (A U B)need not be equal to(Int A) U (Int A)
For,
In R with usual metric, letA=(0,1]and B=(1, 2).
AUB=(0, 2).
~Int (AUB)=(0, 2)
Now, Int A(0,1)and Int B=(1, 2)and hence (Int A)U(Int A)=(0,2)-{2}.
~Int (AUB)F#(Int A)U (Int A)
1.4 Subspace

Definition1.4.1 Let (M, d) be a metric space. Let M; be a nonempty subset of M. Then M; is also a
metric space under the same metric d. We call (M4, d) is a subspace of (M, d).

Theorem1.4.2 Let M be a metric space and M, a subspace of M. Let A € M;. Then A is open in My if
and only if A= G N M; where G is open in M.

Pr oof .



Let By(a, r) be the open ball in M, with center a and radius r.
Then By(a, r) = B(a, r) N M,where B(a, r) is the open ball in M with center a and radius r.
Let A be an open set in M.
Then A = UX €aB1(x, r(x))
=U, & [B(x, r(x)) n M,)]
=[U,e.8(x, r(x))1 N My
=GN M, whereG=U,e, B(x, r(x)) which is open in M.
Conversely, let A= G N M; where G is open in M.
We shall prove that A is open in M.
Letx EA.
Then x EG and x € M,.
Since G is open in M, there exists an open ball B(x, r) such that B(x, r) EG.
~B(x,r)NnM; €GN M,.
i.e.By(a, r) € A.
~ Alis openin M.

Examplel.4.3 Consider the subspace M; =[0, 1] U [2, 3] of R.

1 3
A=[0, 1]is openin M, sinceA:(—E ’5)

13
'where (—E,E)is openinR.
1 1
Similarly,B=1[2,3],C=[0,2],D=(2" 1] are open in M.

Note that A, B, C, D are not open in R.

1.5 Closed Sets.

Definition1.5.1A subset A of a metric space M is said to be closed in M if its complement is open in
M.

Examples 1.5.2

1. In R with usual metric any closed interval [a, b] is closed. For,
[a,b]°=R-[a,b]=(-o,a)U(b,x).
(-o0,a)and(b, o) are open sets in R and hence (-0, a) U (b, ) is openinR.i.e. [a, b]®is open

in R.



~ [a, b] isopeninR.

2. Any subset A of a discrete metric space M is closed since A is open as every subset of M is
open.
Note. In any metric space M, @ and M are closed sets since = M and M = @ which are open in M.
Thus @ and M are both open and closed in M.

Theorem 1.5.3 In any metric space M, the union of a finite number of closed sets is closed.

Proof.
Let A;, Ay, ..., A, be closed sets in a metric space M.
Let A=A, UAU ... UA,.

We have to prove A is open in M.
Now, A°=[A;UA2 V. UA,J

= A7 NA; N ....N A} [ By De Morganvg a3 ] since

Aiis closed in M, Ai‘is open in M.

Since finite intersection of open sets is open, A? ﬂA(Z; Nn....N A;:zisopen in M. i.e. A®is open
in M.

~ Alis closed in M.

Theorem 1.5.4 In any metric space M, the intersection of closed sets is closed.

Proof.
Let {Aa} be a family of closed sets in M.
We have to prove A=MNA, is open in M.
Now, A°= (N A"
= UA; [ ByDe Morganyg |, |
Since A, is closed in M, A, is open in M. Since union of

C
open sets is open, UAa is open.

i.e. A® is openin M.
~ Alis closed in M.

Theorem 1.5.5 Let M, be a subspace of a metric space M. Let F,& M;. Then F; is closed in M, if and
only if F; = FMN M; where F is a closed set in M.



Proof.

Suppose that F; is closed in M.

Then M, — Fyis open in M;.

s My —F;=ANM; where A is open in M.
Now, F; = A‘N M.

Since A is open in M, A®is closed in M.

Thus, F, = FN M; where F = A is closed in M.
Conversely, assume that F; = F N M, where F is closed in M.
Since F is closed in M, F€is open in M.

~ FN' M, is open in M.

Now, M; — F; = F'N M, which is open in M.
~ F,is closed in M;.

1.6 Closure.

Definition1.6.1 Let A be a subset of a metric space (M, d). The closure of A, denoted by A_, is
defined as the intersection of all closed sets which contain A.

i,e.A_=n {B B is closed in M and B QA}

Note 1.6.2

(1) since intersection of closed sets is closed, A_ is a closed set.
(2 A 2A

(3) A_is the smallest closed set containing A.

(4) Aisclosed &A=A_.

B)A=A_.
Theorem 1.6.3Let (M , d) be a metric space. Let A, B& M. Then
= = (1) AB=A B_
U U (2) A_B=A_ B_
n (3) AnB- SA_ B_

Pr oof .

() LetACB.B 2 B2A.
Thus B_is a closed set containing A.

But A_ is the smallest closed set containing A.



~A CB_.

(2)ASAUB.
sby (1), ALCA_UB._.

Similarly, B_ S A_ U B_.

ZA U BLCA_UB. e (a)
A_is a closed set containing A and B_ is a closed set containing B.
~A U B_isaclosed set containing AUB.

But A_ U B_is the smallest closed set containing AUB .

w TAUB_CA_UB_ e, (b) From (a) and (b)
wegetA_ UB_=A UB_.
(3) AnBCA.
~ANnB CA_.
Similarly, AnB CB_.
~ANB c A N B_
Notel.6.4 AnB need not be equalto A N
B_.
For example, in R with usual metric take A=(0,1)andB=(1, 2).
ANB=0=AnB__ =0.
ButA N B_=[0,1]N[1,2]={1}.
~ANB #A NB_.
1.7 Limit Point.

Definition 1.7.1 Let (M, d) be a metric space and A € M. A point x € M is said to be a limit point of A
if every open ball with center x contains a point of A other than x.

i.e.B(x,)N(A={x})zDforallr>0.

The set of all limit points of A is denoted by A.

Example 1.7.2 In R with usual metriclet A= (0, 1).

Every open ball with center 0, B(O, r) = (-r, r) contains points of (0, 1) other than 0.

~ 0is a limit point of A.

Similarly, 1 is a limit point of A and in fact every point of A is also a limit Point of A. For each real

number x < 0, if we choose r suchthat0<r< —*_, then B(x, r)



2 contains no point of (0, 1), and hence x is not a limit point of limit point of A.
Similarly, every real number x > 0 is not a limit point of A.

Hence Ai=[0, 1].

Example 1.7.3 In R with usual metric, Z has no limit point.

For,

Let x be any real number.

| 1 1
If x is an integer, then B(x, 2) = (x - 2, x + 2) has no integer other than x. .. x is not a

limit point of Z .

If x is not an integer, choose r such that0<r <|x-n| where n is the integer closest to x.
Then B(x, r) = (x—r, x + r) contains no integer.

Hence x is not a limit point of Z.

Thus no real number x is a limit point of Z.

nZ21=0.

Example 1.7.4 In R with usual metric, every real number is a limit point of Q .

For,

Let x be any real number.

Every open ball B(x, r) = (x—r, x + r) contains infinite number of rational numbers.

~ xis a limit point of Q.

“Q=R.

Theorem 1.7.5 Let (M, d) be a metric space and A € M. Then x is a limit point of A if and only if
every open ball with center x contains infinite number of points of A.

Proof.
Let x be a limit point of A.
We have to prove every open ball with center x contains infinite number of points of A.
Suppose not.

Then there exists an open ball B(x, r) contains only a finite number of points of A and hence
of (A—{x}).

Let B(x, r)ﬂ(A—{x}):{xl, X2, ....,xn}.



Letr,=min{d(x,x)/i=1,2,...,n}kL
Sincex#x;,d(x,x)>0Vi=1,2, ... , hand hencer;> 0.
Moreover, B(x,rl)ﬂ(A—{x}):@.:.xis not a

limit point of A.

This is a contradiction.

-~ every open ball with center x contains infinite number of points of A.

Conversely, assume that every open ball with center x contains infinite number of points of
A

Then, every open ball with center x contains infinite number of points of A—{x}.

Hence x is a limit point of A.

Note 1.7.6 Any finite subset of a metric space has no limit points.

Theorem 1.7.7 Let M be a metric space and AS M. ThenA=AUA ',
Pr oof.

Letx EAUA'!.

We claim that x EA..

Suppose x € A -

Then,xEM-A.

Since A is closed ,M-Ais oﬁen.

- there exists an open ball B(x, r) such that B(x, r) EM-A.
“B(x,)NA=0.

~B(x,fNA=0Q0.[~ACA]

~X€&AUA', which is a contradiction.

“XEA.

SAUAICA (1)

Let xEA._

We have to prove x EAU A,



Ifx €A thenx EAUA".
Suppose x € A.

We claim that x €A .

Suppose x & AL
Then there exists an open ball B(x, r) such that B(x, r) N (A—{x}) = ?.
B, NN A=0 . [xEA]..ACTB(x,

r)e.

Since B(x, r) is open, B(x, r)°is closed.

Thus B(x, r)°is a closed set containing A.
But, A'is the smallest closed set containing A.
Hence AS B(x, r)°.

Now, x € B(x , r)°.

~x&A, which is a contradiction.

~X EAland hence x EAUAI.

From (1) and (2), we get A = AUA .
Corollaryl1.7.8 A is closed if and only if A contains all its limit points.
Proof.
Aisclosed = A=A_.

<A=AUA.

SACA.

Corollary 1.7.9xEA S B(x, )N AzD Vr>0.

Pr oof .

_ [
XEA=XEAUA.

Ex A orx€ Al



IfxEA,thenxEB(x,r)N A.
Ifx € A, thenB(x,r)N (A—{x}) 2D Vr>o0.
ThusB(x, )N Az@ Vr>o0.

Conversely, letB(x,r)N Az@Vr>0.

We have to provex EA.

IfxeA,thenx€A.

Ifx & A thenA=A—-{x}.
B, N (A=-{xNz@Vr>0.
~ x is a limit point of A.

“XE AL

“XEA.

Corollary 1.7.10 x€ A & GNAz0 forall open set G containing x.

Pr oof .

letx EA.
We have to prove G N A 2@ for all open set G containing x.
Let G be an open set containing x.

Then there exists an open ball B(x, r) such that B(x, r) € G.

SincexEA,_B(x, r)NA#@andhence GNAzQ.
Conversely, assume that G N A # @ for every open set containing x.

ThenB(x, N Az@Vr>0.

S XEA.
1.8 Bounded Setsin a Metric space.

Definition 1.8.1 Let (M, d) be a metric space. A subset A of M is said to be bounded if there exists a
positive real number k such that d(x,y) <k V x,y € A.

Example 1.8.2 Any finite subset A of a metric space (M, d) is bounded.
For,
Let A be any finite subset of M.

If A=g2 then Ais obviously bounded.



Let A # @ .Then {d(x, y)/x, y € A}is a finite set of real numbers.

Let k = max {d(x, y)/x,y € A}.

Clearly d(x,y) < kforallx,y €A.

~ Ais bounded.
Example 1.8.3 [0,1] is a bounded subset of R with usual metric since d(x, y) <1 for all x, y € [0,1].
Example 1.8.4 (0, =°) is an unbounded subset of R.
Example 1.8.5 Any subset A of a discrete metric space M is bounded since d(x,y) <1 for all

X,y €EA.

Note 1.8.6 Every open ball B(x, r) in a metric space (M, d) is bounded.
For,

Lets,t € B(x,r).

d(s,t)<d(s, x)+d(x,t)<r+r.

~d(s,t)<2r.

Hence B(x, r) is bounded.

Definition 1.8.7 Let (M, d) be a metric space and A € M. The diameter of A, denoted by d(A), is
defined by d(A)= L.u.b {d(x, y)/x,y € A}

Example 1.8.8 In R with usual metric the diameter of any interval is equal to the length of the
interval. The diameter of [0, 1] is 1.

1.9 Complete Metric Spaces.

Definition 1.9.1 Let (M, d) be a metric space. Let (x,) be a sequence in M. Let x € M. We say that (x,)
converges to x if for every € > 0 there exists a positive integer N such that d(x, , x) < € for alln > N. If

(xn) converges to x, then x is called a limit of (x,,) and we write lim, 5 X, =X 0or x, = X.

Note 1.9.2 (1) x,— xif and only if for every € > 0 there exists a positive integer N such that x, € B(x,
€) V n = N. Thus, the open ball B(x, r) contains all but a finite number of terms of the sequence.

(2) x,—xifandonlyif (d(x,, x))— 0.

Theorem 1.9.3 The limit of a convergent sequence in a metric space is unique.
Proof.

Let (M, d) be a metric space and let (x,) be a sequence in M.

Suppose that (x,) has two limits say x and y.



Let € > 0 be given.
Since x, — x, there exists a positive integer N, such that d(x, , x) < €/2 for alln > N;.
Since x, =y, there exists a positive integer N, such that d(x, , x) <&/2 for all n = N,.
Let N=max{N;, N, }.
Then, d(x, y) < d(x, xy) + d(xn, y)

< gf2+¢€/2 -~ d(x,

y) <Ee.

Since £ > 0'is arbitrary , d(x, y) = 0.

SX=VY.

Theorem1.9.4 Let (M, d) be a metric space and A € B. Then

i) X is a limit point of A < there exists a sequence (x,,) of distinct points in A such that

Xp = X
(i) X € A & there exists a sequence (x,) in A such that x, — x.
Proof.
(1) Let x be a limit point of A.
Then every open ball B(x, r) contains infinite number of points of A.
Thus, for each natural number n, we can choose x, € B(x, 1n) such that
Xn # X1, X2, X3, Xn-1.
1
Now, (x,) is a sequence of distinct points in A and d(x,, x) < ,— ¥ n.

“ (d(xq, %)) = 0. % x,

—>X.

Conversely, assume that there exists a sequence (x,) of distinct points in A such that

Xn = X.

We have to prove x is a limit point of A.

Let it be given an open ball B(x , €).
Since x, — x, there exists a positive integer N such that d(x,,x) <&V n

= N.

" X, EB(x,€)Vn=N.

Since x, are distinct points of A, B(x, €) contains infinite number of points of A.



Thus, every open ball with center x contains infinite number of points of A.

Hence x is a limit point of A.

(ii) Letx €A,
Then x EAU Al
If x € A then the constant sequence x, X, X, ..... is a sequence in A converges to x.

If x € A, then x €A
~ x is a limit point of A.

~ by (i), there exists a sequence (x,) in A converges to x.

Conversely, assume that there exists a sequence (x,) in A such that x, - x.
Then every open ball B(x , €) contains points in the sequence and hence points of A.
S~ XEA.

Definition 1.9.5 Let (M, d) be a metric space. Let (x,) be a sequence in M. Then (x,) is said to be a
Cauchy sequence in M if for every € > 0 there exists a positive integer N such that d(x, , x.,) < € for all
n,m=N.

Theorem 1.9.6 Every convergent sequence in a metric space (M, d) is a Cauchy sequence.
Proof. Let (x,) be a convergent sequence in M converges to x € M.

We have to prove (x,) is Cauchy.

Let € > 0 be given.

Since x, = x, there exists a positive integer N such that d(x, , x) <&/2 for alln > N.

o d(xn ’ Xm) S d(Xn ’ X) + d(X ’ Xm) < 8/2 +

g/2foralln, m>N.

& d(x,, Xn) <eforalln, m>=N.
Hence (x,) is a Cauchy sequence.

Definition1.9.7 A metric space M is said to be complete if every Cauchy sequence in M converges to
a pointin M.

Example 1.9.8 R with usual metric is complete.

Theorem 1.9.9 A subset A of a complete metric space M is complete if and only if A is closed.
Proof.

Suppose that A is complete.

We have to prove A is closed.



For that it is enough to prove A contains all its limit points.
Let x be a limit point of A.

Then there exists a sequence (x,) in A such that x, = x..
Since A is complete x € A.

-~ A contains all its limit points.

Hence A is closed.

Conversely, assume that A is a closed subset of M.

Let (x,) be a Cauchy sequence in A.

Then (x,) be a Cauchy sequence in M.

Since M is complete, there exists x € M such that x, = x.
Thus (x,) is a sequence in A such that x, — x..

LXEA.

Since A is closed A = A and hence x EA.

Thus every Cauchy sequence (x,) in A converges to a point in A.
~. Ais complete.

Note 1.9.10 Every closed interval [a, b] with usual metric is complete since it is a closed subset of
the complete metric space R.

Theorem 1.9.11 [ Cantor’s Intersection Theorem ]

Let M be a metric space. Then M is complete if and only if for every sequence ( F,, ) of nonempty
closed subsets of M such that F;, 2 F22 ...F,2....and (d(F,) ) =0,

le Fn 7 @
Proof.
Let M be a complete metric space.

Let ( F, ) be a sequence of nonempty closed subsets of M such that
F,2F2... Fa2h (1)

and (d(F,))—=0, (2)

We have to prove n;ozl F, # Q



For each natural number n, we choose a point x, in F,.

By (1), Xn, Xns1) Xns2y oee-- all liein F,.
e XnEF, VY M2n. (3) We claim that (x,) is a

Cauchy sequence in M.

Let €> 0 be given.
Since (d(F,) ) — 0, there exists a positive integer N such that d(F,) <&V n=

N.

In particular, d(Fy ) < €. s (4) Now, let m, n =N.
Then by (3), Xm , Xn € Fy.

sod(Xm, X)) <€.[By(4)]

Thus d(Xm, X,) <EV m, n=N.

= (x,) is a Cauchy sequence in M.

Since M is complete, there exists x € M such that x, = x .

We show that x € nf:l Fn.

For any natural number n, X,, Xns1 , Xns2 IS @ Sequence in F, converges to x.

~X€EF,.

Since F, is closed, F, :F_n.
S XEF,.

~XE nil Fn.

Hence ngozl Fp # Q.

Conversely, assume that for every sequence ( F, ) of nonempty closed subsets of M such
-0,NF, #0
that F, 2F,2..F,2...and (d(F,)) > 1lnp=1Tn .

We have to prove M is complete.
Let (x,) be a Cauchy sequence in M.

We claim that x, = x for some x € M.



Define a decreasing sequence of sets F, 2F, 2....2 2F, ... as follows

F1= {xl,xz J eeeer Xn s }
F2= {Xz X3, eeees , Xn, }

Thus (F, ) is a decreasing sequence of closed sets.

Since (x,) is a Cauchy sequence, for given € > 0 there exists a positive integer N such that d(x,

,Xm) <€ ¥Ynm2N. .. d(Fy) <E.
Now, F, €S Fy\ Vn=N=d(F,) <€V n=N.
But d(F,) = d(F,) .
~d(Fy)<evn=y
= (d(Fy)) =0,
Hence by hypothesis, ngozl F_n s Q
Letx € ﬂf:ll:"_n.
Then x, X, € F_n sd(x,,

X) = d(F_n)

~d(X,, X)<E Vn=N[By(5)]. =X,

». M is complete.



oo
Note 1.9.12 In the above theorem nn=1Fn contains exactly one point, since if it contains distinct

points x and y, then d(F,) = d(x , y) for all n and hence ( d(F,) ) does not converge to 0.

1.10 Baire’s Category Theorem.

Definition 1.10.1 A subset A of a metric space M is said to be nowhere dense in M if
IntA=0.

Definition 1.10.2 A subset A of a metric space M is said to be of first category in M if A can be
expressed as a countable union of nowhere dense sets.

If Ais not of first category, then we say it is of second category.
Examplel.10.3 In R with usual metric, every finite subset A is nowhere dense.
Example 1.10.4 In R with usual metric, the subset Q is of first category.

For,

Since Q is countable it can be expressed as countable union of singleton sets and each singleton set
is nowhere dense in R.. Thus, Q is countable union of nowhere dense sets. Hence Q is of first
category.

Example 1.10.5 If M is a discrete metric space, then any nonempty subset A of M is not nowhere
dense set. Also A is of second category.

Theorem 1.10.6 Let M be a metric space and A € M. Then A is nowhere dense if and only if each
nonempty open set contains an open ball disjoint from A.

Pr oof.
Suppose that A is nowhere dense.

Let G be a nonempty open set.
Since A is nowhere dense, Int A = Q.

/-\_does not contain G.
= there exists x €G such that X & A,

X & A = there exists an open ball B(x, r;) such that B(x, r)) nA=0.
G is open = there exists an open ball B(x, r,) such that B(x, r,) € G.
Letr=min{r,,r}.

Then G contains B(x, r) and disjoint from A.



Conversely, assume every nonempty open set contains an open ball disjoint from A.
We claim that Int A= .

LetxEA.

We claim that x is not an interior point of A.

Suppose x is an interior point.

Then there exists an open ball B(x , r) such that B(X, I) & A )

Now, every open ball in B(x, r) intersects with A, which is a contradiction.
Hence x is not an interior point of A.

~IntA=0.

~ Ais nowhere dense set.

Theorem 1.10.7 [Baire’s Category Theorem | Any

complete metric space is of second category.

Proof.
Let M be a complete metric space.
We claim that M is not of first category.

Let (A,) be a countable collection of nowhere dense sets in M.

We shall prove that Ui Ag # M.

Since M is open and A; is nowhere dense, there exists an open ball B; of radius less than 1 such that

BlnA1=®.

1
Let F, be the concentric closed ball whose radius is 2 times that of B;.

Now, Int F; is open and A, is nowhere dense.

1
~ Int F; contains an open ball B, of radius less than 2 such that B, N A, = Q.

1
Let F, be the concentric closed ball whose radius is 2 times that of B,.

Now, Int F, is open and A; is nowhere dense.



1
~ Int F, contains an open ball B; of radius less than 4 such that B;NA;= @,

1
Let F; be the concentric closed ball whose radius is 2 times that of Bs.

Proceeding like this we get a sequence of nonempty closed balls F,, such that

Fi2F2.....F,2....andd(Fn )<, . -
~(d(F,))—=0asn - .
Since M is complete, By Cantor’s intersection theorem, there exists a point x EM
Such that x € Mt Fo,
Moreover, F,NA, =0V n.
“XEA, Vn.
X € U Ay,
5 Ueon=1 An # M.
Hence M is of second category.
Corollary 1.10.8 R is of second category.

Pr oof.

R is a complete metric space. Hence, R is of second category.



Unit Il CONTINUITY
2.1 Continuity of functions.

Definition 2.1.1 Let (M4, d;) and (M,, d,) be two metric spaces. Let a € M;. A function f: M; > M, is
said to be continuous at a if for each € >0, there exists § >0 such that 0 < dl(x , a) <6> dz(f(x) ,

f(a)) < €. The function f is said to be continuous if it is continuous at every point of M;.

Note2.1.2d,(x, a)< 6= d,(f(x), f(a))<e ©x€Ba,s)=tk) € (G)e)

= s, 8))Ss (Ha), o).

Theorem 2.1.3 Let (M4, d;) and (M, d,) be two metric spaces. A function f : M; = M, is continuous if

and only if f'l(V) is open in M;whenever V is open in M,.
Proof. Assume that f is continuous.

Let V be open in M.
We have to prove f*(v) is open in M.
REME ¢, then it is open.
Let F1(v) = o.
We shall prove that for each x Ef’l(v)there exists an open ball B(x, 8) such that B(x, &)

criv).

Let x € F{V). Then f (x) EV.

Since V is open, there exists an open ball B(f(x) , €) such that
B(f(x),e)CE V. ......(1)

Now, since f is continuous, there exists an open ball B(x, 8) such that f(B(x, §)) &

B(f(x) , €).

By (1), f(B(x, 8)) € V and hence B(x, 8§) & F2(v).



~F(Wis open.
Conversely, assume that f’l(V) is open in M;whenever Vis open in M,.

To prove fis continuous, we shall prove that f is continuous at every point of M.
Let x EM; and let € > 0 be given.
We know that, B(f(x) , €) is an open set in M,.
By hypothesis, f*(B(f(x) , €)) is open in M;.
Also, x € f(B(f(x) , €)) .

= there exists 8 >0 such that B(x , §) € f*(B(f(x) , €)).
~f(B(x, 8)) € B(f(x), €).
f is continuous at x.
Since x € My is arbitrary, f is continuous on M.
Note 2.1.4 f is continuous if and only if inverse image of every open set is open.

Theorem 2.1.5 Let (M;, d;) and (M;, d,) be two metric spaces. A function f : M; = M, is continuous

if and only if f'l(W) is closed in M; whenever W is closed in M.
Proof. Assume that f is continuous.

Let W be a closed set in M,.

Then WC is an open set in M..

By hypothesis, f*(WC) is open in M;.
c C
But Fl(w ): [f'l(W)] .

C
Fl(W)] is open in M;. .. f1(W) is closed in
M.
Conversely, assume that f’l(W) is closed in M; whenever W is closed in M,.

To prove f is continuous, we shall prove that f’l(V) is open in M; whenever V is open in M,.

Let V be an open set in M,.



- Vis aclosed set in M,.

By hypothesis, (V) is a closed set in M.

C
(i.e) [f'l(v)] is a closed set in M.

=~ (V) is an open set in M;.

Thus, inverse image of every open set is open under f. .. fis continuous.

Note 2.1.6 f is continuous if and only if inverse image of every closed set is closed.

Theorem 2.1.7_Let (M, dy) and (M,, d,) be two metric spaces. Then f: M; = M, is continuous if
andonlyiff(A )Sf_(__A_)forallAC M,.

Proof. Assume that f is continuous.
We have to prove fla )E f__(LA_) forall AS M,.
Let AS M,. Then f(A) € M,.

f__(_LA_) is a closed set in M..

Since f is continuous, f(f__(_A_) ) is closed in M.

Since f__(_LA_)2f(A), F{(f__(_A_)) 2A.
But A_is the smallest closed set containing A.
A CFHf(LAL)).

SfAZ)Ef_(LAL).
Conversely, let f(A_)g f__(_LA_) forall AS M,.

To prove f is continuous, we shall prove that f’l(W) is closed in M; whenever W is closed in
M,.

Let W be a closed set in M,.

By hypothesis, f(f'l(W)) Cff__' ((W_).
cw_

=W (Since W is closed.).



Thus, f(F(W))

c W.. fiw)C
Fiw) |
Also, F1(w) =i

Hence FX(W) is closed.
- fis continuous.

Theorem 2.1.8 Let (M4, d;) and (M, d,) be two metric spaces. Let x € M;. A function f: M; - M, is
continuous at x if and only if x, = xin M; = f(x,)=> f(x) in M,.

Pr oof.

Suppose that f is continuous at x.

Let ( xn) be a sequence in M; such that x, 2 x.

We shall prove that f(x,) = f(x) .
Let € > 0 be given.
Since f is continuous at x, there exists 6 >0 such that d; (y , x)< 6=d, (
fly), FO) <€ o (1).

Since x, = x, there exists positive integer N such that d, ( Xn , x)< 6Vn

>N

ody (f(x, ), f(x) <eVn2N.[By(1)]
= f(xn) = f(x) -
Conversely, assume that x, 2> x = f(x,)=> f(x) .

We have to prove f is continuous at x.
Suppose not. Then there exists € > 0 such that forall 6 >0 f(B(x, 6))

Z B(f(x), €).



Thus for each
natural number n, f

(B(x, 1)) € B(f(x) , £)

Choose x, such that x,EB(x,, 6) but f( x, ).¢- B(f(x), €) . dl(xn , X

)< ! forallnandd, (f( Xn ), f(x))z e for all n.

~ X, - xand f(x,) does not converge to f(x).

This is a contradiction.
~. fis continuous at x.

Problem 2.1.9 Let (M4, d;) and (M,, d,) be two metric spaces. Then prove that any constant function
f: M; > M, is continuous.

Solution.
Let f : My = M, be given by f(x) = c where c € M, is a constant.
We have to show that f is continuous.

Let V be an open set in M,.

{0 if x v ¢
Now, f'(v) = (M if X EV

In both cases , f}(V) is an open set.
Thus, inverse image of every open set is open under f.
= fis continuous.

Problem 2.1.10 Let M;, M,, M3 be metric spaces. If f : M; > M, and g : M, - M3 are continuous,
then prove that gof : M; = M, is also continuous.

i.e. composition of two continuous functions is continuous.
Solution.

Let W be an open set in Ms .

Since g is continuous, g (W) is open in M,.

Since f is continuous, f*(g™(W)) is open in M.

Now, Fi(g (W) = (& © D}*(w).



~(go f)'l(W) is open in M.
Hence 8 ° f is continuous.

Problem 2.1.11 Let f be a continuous real valued function defined on a metric space M. Let A = {xe
MIf(x)E> a where a R }. Prove that A is closed.

Solution.

A:{XEM|f(x)ZawhereaER}

={xEM|f(x)E[a,°°)}

=f(la, ).

Now,[ a, =°) is a closed subset of R.

Since f is continuous, f"l([ a, o) ) is a closed subset of M.
~ Alis closed.

Problem 2.1.12 Let f: M = R and f : M = R be continuous functions. Prove that f+g: M = R is

continuous.

Solution.
LetxEM.

We show that f + g is continuous at x.
Let x, be a sequence in M such that x, < x.
Since f and g are continuous, f(x,) = f(x) and g(x,) = g(x) . & f(xn) +

8(xn) = f(x) + g(x) .

ie. (Frg)(x,) > (Frg)(x) . .~ frgis

continuous at x.

Note 2.1.13 In a similar way, we can prove thatf—g, fg, cfif cER and '

g
if g(x) # 0 V x EM are continuous.

2.2 Homeomor phism.

Definition 2.2.1 Let (M4, d;) and (M, d,) be two metric spaces.



A function f: M; = M, is said to be a homeomorphism if the following holds.

(2) fis a bijection.

(2) fis continuous.
(3) f*is continuous.
M; and M, are said to be homeomorphic if there exists a homeomorphism between them.

Definition 2.2.2 A function f: M; - M, is said to be an open mapping if for every open set G in M,
f(G) is open in M,.

i.e. image of every open set in M; under f is open in M,.

Definition 2.2.3 A function f: My - M, is said to be a closed mapping if for every closed set F in My,
f(F) is closed in M,.

i.e. image of every closed set in M, under fis closed in M,.
Theorem 2.2.4 Let f : M; & M, be a bijection. Then the following are equivalent.

(1)  fisahomeomorphism
(2)  fisa continuous open map
(83)  fisa continuous closed map Proof.

We shall prove that (1) © (2) and (1) & (3) ..
Suppose that f is a homeomorphism.
Then f and f* are continuous.

We have to prove fis an open mapping.

Let G be an open setin M.

Since f*: M, —» M is continuous, (f'l)—l(G) is open in M.
i.e. f(G) is open in M,.
=~ fis an open map.

Conversely, assume that f is a continuous open map.

We prove that f* is continuous.
Let G be an open setin M,

Since f is an open mapping, f(G) is open in M,.

i.e. (FH-1(G) is open in M.



=~ flis continuous.
The proof of (1) & (3) is similar.

Note 2.2.5 Let f : M; - M, be a homeomorphism. Then a subset G of M, is open in M; if and only if
f(G) is open in M,.

For,
Since f is a homeomorphism, f is a continuous open mapping.

Since f is open mapping, G is open in M; = f(G) is open in M,.

Since f is continuous, f(G) is open in M, = f*(f(G)) = G is open in M.
~ Gisopenin M; & f(G) is open in M,.

Thus a homeomorphism f : M; = M, gives not only a 1 — 1 correspondence between the
elements of the two spaces but also a 1 — 1 correspondence between their open sets.

Note 2.2.6 Let f : M; - M, be a homeomorphism. Then a subset F of M, is closed in M; if and only if
f(F) is closed in M,.

Example 2.2.7 The metric spaces (0,1) and (0, o) with usual metric are homeomorphic.

For, Definef:(0,1)—> (0, )by f(x)=_".

We show that fis 1 —1 and on to.

Letx,y€(0,1).

X y

= —_

fx)=f(y) 1x 1=y
=>x(1-y)=y(1-x
SDX=XY=y—XY

>x=y.

Hencefis1-1.

Lety € (0, o).

X

=
Now, f(x) =y  1-x_y
=>x=y(1-x)

S X=y-—Xxy



=S X+tXy=Y

=S5 x(1+y)=y
v
=>x=1+y

y

. 1+y (0, 1)is the pre image of y under f.

~ fisonto. Thus f is a bijection and hence f*: (0, ©) = (0, 1) by f(x) =—*is a

bijection.

Also, f and f* are continuous.
-~ fis a homeomorphism.
2.3 Uniform Continuity.

Definition 2.3.1 Let (M4, d;) and (M., d,) be a metric space. A function f: M; = M, is said to be
uniformly continuous on My, if for every £ > 0 there exists § > 0 such that d(x, y) < 8 = dy(f(x) , f(y))
<eg.

Note 2.3.2 Every uniformly continuous function is continuous but the converse need not be true.
Example 2.3.3 The function f: [0, 1] = R given by f(x) = x” is uniformly continuous on [0, 1].
For,

Let € > 0 be given.

Letx,y €0, 1].

Now, If(x)- f(y)| = |x2— y2|
=l +yl |x - y|
<2 |x - y|

&
Choose 6=2 .

Then, |x - y| <6b=> |f(x)— f(y)|< e. «~fisuniformly

continuouson [0, 1] .

2.4 Discontinuitiesof R



Definition 2.4.1

A function f: ROR is said to approach to a limit € as x tends to a if given € > 0 there exists 6 > 0 such

limf _f)
that 0 < |x-a|< 6 = |f(x) {’|<0andwewr|tex—>a .

Definition 2.4.2

A function f is that to have € as the right limit at x=a if given € > 0 there exists & > 0 such that

a<x<a+o6=|f(x)- 1?|<z-:andwewr|tex—>a+” t

Also we denote the right limit £ by f(a+)

A function f is that to have € as the right limit at x=a if given & > 0 there exists & >0 such that

lim =
a<x<a—-6=[f(x)- {’|<.sandwewr|te)Ha——{J

Also we denote the right limit € by f(a-)

Note 1
)gg]ai:f(x) £ if and only if x—>a+ f(X)_ x—l;gnf, f(x)=2,
i.e.
xlﬂq;f(x) £ if and only if the left and right limits of f(x) at x = a exist and are
equal.
Note 2
The definition of continuity of f at x=a can be formulated as follows. fis

continuous at a if and only if f(a+) = f(a-)=f(a) .

Note 3
If x—>ai?1!1f(x) does not exist then one of the following happens.
lim
1. xat f(x) does not exists.
lim [
2. x—l:};— f(x) does not exists.
lim {4 lim i)
3. Xx—a+ f(x) and x—a— f(x) exists and are not equal.
Definition 2.4.3

If a function f is discontinuous at athen ais called a point of discontinuity for the function.

If ais a point of discontinuity of a function then any one of the following cases arises.

. lim
. x—>a f(x) exists but is not equal to f(a).

.. lim i lim i}
Il. x—a+ f(x) and x—a— f(x) exists and are not equal.

lim e} lim
11, Either x—a— f(x) or x—>a+ f(x) does not exists.

Definition 2.4.4



Let a be a point of discontinuity for f(x). a is said to be a point of discontinuity of the first
lim {3} lim
kind if x—»>a+ f(x) and x»”él—if-‘fiffﬁf(x) exists and both of them are finite and not equal. a is said to be a

lim {0} lim {3}
point of discontinuity of the second kind if either x—a+ f(x) or x—a— f(x) does not exist.

Definition 2.4.5

Let ACR. A function f :A O R is called monotonic increasing if x , yOA and x<y = f(x) < f(y).

fis called monotonic decreasing if x, yOA and x > y = f(x) >f(y).

fis called monotonic if it is either monotonic increasing or monotonic decreasing.

Theorem 2.4.6

Let f:[a, b] O R be a monotonic increasing function. Then f has a left limit and a right limit at every

point of (a, b). Also f has a right limit at aand f has a left limit at b. Further

x <y = f(x+) < f(y-)
Similar result is true for monotonic decreasing functions.
Pr oof
Let f: [a, b] O R be monotonic increasing.
Let xO[a, b]. Then {f(t) | a <t < x} is bounded above by f(x).
We claim that f(x-) = ¢

Let £ >0 be given. By definition of |.u.b there exists t such thata<t<xand £ -e<f(t)<?.

Lt<u<sx=P-e<ft)<flu)<?
(+ f is monotonic increasing)
= f-e<f(u)<?
S Xx-8<u<x = £-e<f(u) < where 6 = x-t
s f(x-) =4
Similarly we can prove that f(x+) =g. I. b. {f(t) | x <t < b}.

Now we shall prove that x < y = f(x+) < f(y-) Let x < y.

Now, f(x+) = g.l.b {f(t)/x <t < b}
=glb {f(t)/x<t<y} (1)
(~ fis monotonic increasing)
Also f(y-) =lu.b{f(t)/a<t<y}
= Lu.b {f(t)/x<t<vy} (2)
o f (x+) < f (y-) [by (1) and (2)]

The proof for monotonic decreasing functions is similar.



Theorem 2.4.7
Let f:[a, b] O R be a monotonic function. Then the set of points of [a, b] at which f is

discontinuous is countable.

Pr oof

We shall prove the theorem for a monotonic increasing function.
Let E ={x [xO[a, b] and f is discontinuous at x}.
Let xOE. Then f(x+) and f(x-) exists and f(x-) < f(x) < f(x+)
If f(x-) = f(x+) then f(x-) = f(x)=f(x+)
~ fis continuous at x, which is a contradiction.
~ f(x-) # f(x+)
~ f(x-) < f(x+)
Now choose a rational number r(x) such that f(x- ) < r(x) < f(x+)
This defines a map r from E to Q which maps x to r(x).
We claim that ris 1-I.
Let x; < X, .
o f(xq+) < f(x,-).
Also f(x1-) < r(xq) < f (x+)
And f(x,-) < r(xy) < f (xo+)
& r(Xg) < f(x+) < f(x-) < r(xz) Thus
X1 <X =>r(xy) <r(xy). «~r:EOQis1-1
=~ Eis countable.

2.5 Connectedness

Definition 2.5.1 A separation of a metric space M is a pair A, B of nonempty disjoint open subsets of
M whose union is M.

M is said to be a connected metric space if there is no separation for M.
Example 2.5.2 Any discrete metric space with more than one element is connected.
For,
Let M be a metric space with more than two elements.
Choose an elementa € MandletA={a}.
Then A‘ is a proper subset of M.

Now, A and A forms a separation of M.



~ M is not connected.

Theorem 2.5.3 Let (M, d) be a metric space. Then M is connected if and only if @ and M are the only
sets which are both open and closed in M.

Proof.
Suppose that M is connected.

We have to prove @ and M are the only sets which are both open and closed in M.

Suppose not.
Then there exists a proper subset A of M which is both open and closed in M.

Now, A and A forms a separation of M, which is a contradiction.
Conversely, assume that @ and M are the only sets which are both open and closed in M.
We have to prove M is connected.

Suppose not.
Then there exists a separation A, B of M.

A'is a proper subset of M which is both open and closed in M, a contradiction.

~ M s connected.

Theorem 2.5.4 Let (M, d) be a metric space. Then the following are equivalent.
(i)  Thesets Aand B form a separation of M.

(i) Aand B are nonempty disjoint closed sets in M whose union is M.

(ili) A and B are nonempty disjoint sets in M whose union is M and ANB_
A_NB=0.

Proof.
We shall prove that (i) < (ii) and (ii) © (iii) (i) = (ii).
Suppose that A and B forms a separation of M.
Then A and B are nonempty disjoint sets in M whose union is M.
We have to prove A and B are closed in M.
Now, A = B and B = A".
Since A and B are open in M, A® and B® are closed in M.

i.e., A and B are closed in M.

- (i) = (ii).



The proof of (ii) = (i) is similar.
@it) = (ii).
Suppose that A and B are nonempty disjoint closed sets in M whose union is M.
We have to prove ANB_=A_NB=0.
Since Bis closed, B=B.
~ ANB_=AnB=0.
Similarly, A_nB = @.
(i) = (i).
Suppose that A and B are nonempty disjoint sets in M whose union is M and
ANB_=A_nB=0.
We have to prove A and B are closed in M.
Letx € A_.
SinceA_NB=0Q,x & B.
Since AUB =M, x € A.
~A_CA
ButAcS A_.
~ A=A andhence Ais closed.
Similarly, B is closed.

Theorem 2.5.5 Let M be a connected metric space. Let A be a connected subset of M. If B is a subset
of M such that A € B € A__then B is connected. In particular, A is connected.

Proof.
Suppose B is not connected.
Then there exists a separation B, , B, of B.
Since B, and B, are open in B, B, = G; N B and B,= G, n B, where G;and G, are open in M.
Now,B=B, UB,=(G;nB) U(G,NB)=(G; UG,) N B.
~BE G, UG,and hence AS G, UG,.

Take A1=Gln AandA2= GznA.

Then A;and A, are openin A.



Also, A{UA,=(G;n A)U (G, N A)

=(G,UG))NnA
=A[SinceASG, UG, ]
AN A=(GiNnA) N (G,N A)
=(G; NGy)N A
C (G, N Gy)Nn B[Since ACB]
=(G;n B)N (G, N B)
=B; N B,

=0.
Since A is connected, either A; = D or A, = 0} Without loss of

generality , assume that A; = 0.

ie.G,NnA=0.
Since G, is open, GiNn A_=@.
~G NB=0.[SinceBSA_]
i.e.B, = 1) , Which is a contradiction.
. B is connected .

2.6 Connected subsets of R.

Theorem 2.6.1 A subspace of R is connected if and only if it is an interval.

Pr oof .

Suppose that A is a connected subset of R .
We have to prove A is an interval.

Suppose not .

Then, there existsa,b,cER suchthata<b<canda,cEAbutb&A.

Define A;=(-00,b)NAandA,=(b, o)NA.

Since (-oo,b)and (b, o )areopeninR, A;and A, are openin A.
Moreover, A;NA, = @ and ALUA, =A.

ClearlyaEA;and c €EA,.



UA,.

y+e.

AAFE Danda, = 0.

Thus, A is the union of a pair of nonempty disjoint open sets A; and A, .

.~ Ais not connected, which is a contradiction.
Hence A is an interval.

Conversely, assume that A is an interval.

We have to prove A is connected.

Suppose not.

Then, there exists nonempty disjoint closed sets Ajand A, in A such

Choose x EA; and z E A,. Since A;

NA=0,x #z. *.x<zorz<x.

Without loss of generality we assume that x < z.
Now, x,z €EA and A is an interval.

~x,Z]EACA, UA,.

Hence every element of [x, z] is either in A; orin A,.
Lety=lLub.{[x,z]NA;}.

Clearlyx<y=<z.

that A= Al

By the definition of l.u.b. , for each € > 0 there exists t € [x, z] N A;such that y—£<t<y.

aly=,y+e)N(x,zZINA)F D Ve>0.
~yEe[x,z]NA

Since [x, z]JMA; isclosed in A,y E[x,z] NA,

.‘.yEAl. .................... (1)

Again, by the definition of vy, for each € > 0 there exists s € A, such

sy—,y+e)NA, #0 Ve>0.

nYEAy

thaty <s<



Since A, isclosed in A,y EA, .............. (2) ~yeEA NA]

By (1)&(2)].

This is a contradictionto A, N A, =0 .
Hence A is connected.
2.7 Connectedness and continuity.
Theorem 2.7.1 Let M, be a connected metric space. Let M, be any metric space. Let f: M; = M, be

a continuous function. Then f( M, ) is a connected subset of M,.

i.e. continuous image of a connected set is connected.
Pr oof.
Let f ( My ) = A so that f is a continuous function from M; on to A.
We claim that A is connected.
Suppose A is not connected.

Then, there exists a proper subset B of A which is both open and closed in A.

Hence f!(B) is a proper subset of M; which is both open and in M.
~ M is not connected which is a contradiction.
Hence A is connected.
Theorem 2.7.2 [ intermediate value Theorem |

Let f be a real valued continuous function defined on an interval |. Then f takes every value
between any two value it assumes.

Pr oof .

Leta, b €l and let f(a) # f(b).

Without loss of generality we assume that f(a) < f(b).
Let c be a real number such that f(a) < c < f(b).
The interval | is a connected subset of R.
Since f is continuous, f(l) is a connected subset of R .
Hence f(l) is an interval.

Also f(a) , f(b) € f(l). ~ [f(a), f(b)) S (1) . ~cef(l).[Sincef(a) <c<f(b)] ~c=f(x) forsomex € .



Unit Ill Compactness
3.1 Compact Metric Spaces.

Definition 3.1.1 Let M be a metric space. A collection of open sets {Ga} is said to be an open cover
for M if U G, = M. A sub collection of {Ga} which itself is an open cover is called a subcover.

Definition 3.1.2 A metric space M is said to be compact if every open cover for M has a finite
subcover.

i.e. for each collection of open sets {Ga} such that U G, = M, there exists a finite sub collection
{GM 'Gaz rorr Gﬂn such that U”izl Ggi =M.

Theorem 3.1.3 Let M be a metric space. Let A& M. Then A is compact if and only if for every
collection {Ga} of open sets in M such that U G,=2 A there exists a finite sub collection

{GOH ’Gﬂz y e ’ Gan such that U™, Gu2 A.
i.e. Ais compact if and only if every open cover for A by sets open in M has a finite subcover.
Pr oof.

Let A be a compact subset of M.
Let {Ga} be a collection of open sets in M such that U G2 A.
Then (UG,) NA=A.
~U (G,NA) = A.
Since G, is openin M, GoN A is openin A.
{Ga NA}is an open cover for A.

Since A is compact, this open cover has a finite subcover say

{Go,NA ,Gy,NA, ..., Go NA}
Unizl(chin A) =A.
e ( Uni=1 chi ) NA=A.

& Uni=1 Gai2 A.



Conversely, assume that for every collection {Ga} of open sets in M such that U G,2 A there
exists a finite sub collection {Gal 'Gﬂz poreena Gan} such that

Uni=1 Ga2 A.
We have to prove A is compact.
Let {Ha} be an open cover for A.
Then Hyisopenin AV «.
~.He =GN A where G, isopenin MV ¢.
Now UH,=A= U(G,NA)=A.
= (UGy)NA=A.
= UG,2A.

Hence by our assumption, there exists a finite sub collection

{Gal Grz G‘l’n} such that Uni=1 Gy 2 A.
A (UG )NA=A,

» Uriea(gN A = A,

Uni=1 Hy, = A.

Thus {Hal 'Haz g oo ) Han is a finite subcover of the given open cover {Hq} of A.

~ Ais compact.

Theorem 3.1.4 Any compact subset A of a metric space (M, d) is closed.

Pr oof.
We shall prove that A is open.
Lety EAC.

Now, foreachx EA, x#y.

- =0
~d(x,y)=r>0andB(x,2")NB(y, 2 "

Clearly the collection { B(x ,%) / o XEA }is an open cover for A by sets open in M.

Since A is compact, there exists X1, X5, .... , X,.€ A such that



n Txi
Uiz B(x, 2 2A ...................................... (1)

fnn B rﬁ
Letv, = Ni=1BO30)

Then V, is an open set containing y.

Ty,

Trgy Txiy
SinceB(x,T)nB(y,T)*m’VynB(x, 2) mVizl,z,....,n.
Tvi Yy _
A Vyn UL B(x, 2] = 0
~VNA=0. [By(1)]

2V, CA°,

Thus, for each y € A° there exists an open set V, containing y such that V,CA°

s Ac=Uyeacvy.
~ A%is open .
Hence A is closed.

Theorem 3.1.5 Any compact subset A of a metric space M is bounded.

Proof.

Let x EA.

Now, { B(x, n) /n EN }is an open cover for A by sets open in M.

Since A is compact, there exists natural numbers n;, n,, ..., ny, such that Uki=1 B(x, nJ) =2A.
Let N=max {ny, ny, ..., Ny}.
Then U*_; B(x, ny) = B(x, N).
=~ B(x, N) 2A.

Since B(x, N) is bounded and subset of a bounded set is bounded, A is bounded.
Theorem 3.1.6 A closed subset A of a compact metric space M is compact.
Proof .

Let {Ga} be a collection of open sets in M such that U G2 A.

~AU UG, =M.



Since A is closed, A is open.

{Ga} U{A®}is an open cover for M.

Since M is compact this open cover has a finite subcover say

{Ga, Gy s oo s Ggs A%}
S (Uni=1 Gai ) U AC =M.

~ U'=1G2 A,
Hence A is compact.
Theorem 3.1.7[ Heine Borel Theorem |
Any closed interval [a, b] is a compact subset of R.
Proof.
Let {Ga} be a collection of open sets in R such that U G2 R. LetS={xe[a,b]/

[a, x] can be covered by a finite number of G,’s. }

Clearly a€Sand hence S # @.

Since S is bounded above by b, l.u.b of S exists.
Let c = l.u.b of S.

Clearlycg|[a, b].

- c € Ga1 for some index 1.

G

Since a1 is open, there exists £ > 0 such that B(x, £) © Ga1.

i.e.(c—g,c+g) EGa.
Choose x; € [a, b] such that x; < cand [x; , c] & Ga1.

Since x; < ¢, [a, x41] is covered by a finite number of G's.

These finite number of G,’s together with G@1 covers [a, c].
-~ by the definition of S, c € S.

Now, we claim that c = b.
Suppose c # b.

Then choose x, € [a, b] such that x, > cand [c, X;] € Gg1.



Since [a, c] is covered by a finite number of G,’s , these finite number of G,’s together with

Gq1 covers [a, X,].

~ X5 €S, which is a contradictionto cis l.u.b of S[~x, > c].

Hence c=b.

~ [a, x] can be covered by a finite number of G,'s.

~ [a, b] is a compact subset of R .
Theorem 3.1.8 A subset A or R is compact if and only if A is closed and bounded.
Proof.

If A'is compact, then A is closed and bounded.
Conversely, assume that A is closed and bounded subset of R .
Since A is bounded, A has a lower bound and an upper bound say a and b respectively.
Then A C [a, b].
Since Aisclosedin R, AN [a, b]isclosedin[a, b]. l.e. Ais

closedin [a, b].

Thus, A is a closed subset of the compact space [a, b].
Hence A is compact.
3.2 Compactness and Continuity.

Theorem 3.2.1 Let M, be a compact metric space and M, be any metric space. Let f : M;— M, be a
continuous function. Then f( M; ) is compact.

i.e. Continuous image of a compact metric space is compact.

Proof.
Without loss of generality we assume that f( My ) = M,.
Let {Ga} be a collection of open sets in M, such that U G, = M..
UGy =f(M,).
= UGy ) = M. ~Uf

1(GC( ) =M.



Since f is continuous, f (G, ) is open in M,V .

~{f1G,) }is an open cover for M.

Since M1 is compact, this open cover has a finite subcover say {f- 1(Ga1), f-

o f-1(Uni=1 Gai ) = M1.
Uizt Gas £ M, ) = M,.

Thus {G0t1 ’Gaz yoere s Gan} is a finite subcover for the given open cover {Ga} of
M.

Hence M, is compact.

Corollary 3.2.2 Let f be a continuous map from a compact metric space M, into any metric space
M. Then f( M,) is closed and bounded.

Proof.
Since f is continuous, f( M, ) is compact and hence closed and bounded.
Theorem 3.2.3 Any continuous mapping f defined on a compact metric space (M., d,) into any

other metric space (M, , d,) is uniformly continuous on M.

Proof.
Let &> 0 be given.
Let x EM;.
Since f is continuous at x, for £/2 > 0, there exists &, > 0 such that

di(x, y) <6, = dy(f(x), f(Y) < €/2 e (1) Clearly, { B(x,

)
_x) / X E Ml A
2 }is an open cover for M.

Since M, is compact, there exists x4, X, , ...., X, € M; such that

n axi
im1 B(x; ,7) = Ml‘

S Bg O,
Letd=min{ 2 > 2 ,..., 2V




Now, we shall prove that di(p, q) < & = d,(f(p) , f(q)) <€V p, g EM..

Let p, g € M;such that di(p, q) <&
n 6-“'i
PE M13 P e Ui:] B(Xi ,7)

%

€ B(x;
p ( 12 2 “forsomeisuchthat1<i<n

=

Bxi < &x di(p xi) <2

~ by (1), dyo(f(p), f(x)) <E/2 (2)
Similarly, d,(f(q) , f(x)) <&€/2 e (3)
Now, da(f(p) , f(a)) = da(f(p) , f(x:) + da(f(x) , f(q))

<&/2+€/2  [By(2)and(3)] . daf(p), fla)) <E.

Thus, di(p, q) <8 = dy(f(p) , fla)) <€ Vp,qEM,.
Hence f is uniformly continuous.
3.3 Equivalent forms of Compactness.

Definition 3.3.1 A collection F of subsets of a set M is said to have finite intersection property if the
intersection of any finite number of elements of ¥ is nonempty.

Theorem3.3.2 A metric space M is compact if and only if every collection of closed sets in M with
finite intersection property has nonempty intersection.

Proof.
Suppose that M is compact.
Let {Fa} be a collection of closed subsets of M with finite intersection property.

We have to prove (N F, 2 0.

Suppose N Fo= D.

Then (N F)e =M.
~ UF, =M. [ By De Morgan’s laws |
Since each F, is closed, each F, is open.

Thus, { F," }is an open cover for M.



Since M is compact, this open cover has a finite subcover say
(Fo,® Fot o B}
in=1 Fai C= M.
SNy Fo)%
- ?=1 F(Ii - @
This is a contradiction to the collection {Fa} has finite intersection property.
SN Fe20.

Conversely, assume that every collection of closed sets in M with finite intersection property
has nonempty intersection.

We have to prove M is compact.
Let {Ga} be an open cover for M.
~ UG, =M.
» (UG -0,
2NG=0.
Since each G, is open , each G, is closed.

Hence F= { G,  } is a collection of closed sets whose intersection is empty. .. by hypothesis,

this collection does not have finite intersection property.

Hence there exists a finite sub collection {Gmc, (TP Gomc} such that [hi=1 Gaic = @

+ (UL Gy =0

n
i=1 GO'.i: M.

Thus the given open cover {Ga} of M has a finite subcover { Gal; Gaz S , Gan I3

Hence M is compact.
Definition 3.3.3 A metric space M is said to be totally bounded if for every

£> 0, there exists a finite number of elements x; , x5, ..... , X, € M such that



B(x1,E)UB(x2, &) U........ B(xn, €) =M.
A nonempty subset A of a metric space M is said to be totally bounded if the subspace A is totally

bounded metric space.

Theorem 3.3.4 Any compact metric space is totally bounded.
Proof.
Let M be a compact metric space.
We have to prove M is totally bounded.
Let £ >0 be given.
Now, { B(x, €) / x EM }is an open cover for M.
Since M is compact, there exists points X; , X, , ..... , X, € M such that
M =B(x;, &) UB(x,, &) U ....... UB(x,, €) .
Hence M is totally bounded.
Theorem 3.3.5 Any totally bounded subset A of a metric space M is bounded.
Proof.
Let A be a totally bounded subset of a metric space M.

Then for given £> 0, there exists points X1, X5, ....., X, € A such that

A =By(X1, €) UBy(xy, €) U....... U By(x, , €) where B4(x;, €) are open ballsin A.
Since open balls are bounded sets and finite union of bounded sets is bounded, A is bounded.

Note3.3.6 The converse of the above theorem is not true. For,

Let M be an infinite set with discrete metric.
Then M is bounded.
Also, B(x, 1) ={x }forall x e M.
Since M is infinite, M cannot be expressed as finite union of open balls of radius 1.
Hence M is not totally bounded.

Definition 3.3.7 Let (x,) be a sequence in a metric space M. If ;< n< ... < Ni< ... is a sequence of
positive integers, then (x,) is a subsequence of (x,).

Theorem 3.3.8 A metric space M is totally bounded if and only if every sequence in M contains a
Cauchy subsequence.



Pr oof.

Suppose that every sequence in M contains a Cauchy subsequence.
We have to prove M is totally bounded.
Let €> 0 be given.
Choose x; € M.
If B(x;, €) =M, then M is totally bounded.
If B(x;, €) # M, Then choose x, € B(x;, €) — M so that d(x;, x;) 2 €.
If B(x;, €) U B(x,, €) =M, then M is totally bounded.
Otherwise, choose x; € [B(x;, €) U B(x,, €)] — M so that d(x;, x;) 2 €and d(x3, x,) =€ .

We proceed this process and if the process is terminated at a finite stage means M is totally
bounded.

Suppose not, then we get a sequence (x,) in M such that d(x, , Xm) = €ifn# m

~ (x,) cannot be a Cauchy sequence, which is a contradiction.
Conversely, suppose that M is totally bounded.
Let S; ={x11, X12, «e.., X1n, ..... } D€ @ SEQUENCE iN M.

If one of the terms in the sequence is repeated infinitely, then S; contains a constant
subsequence which is in fact a Cauchy sequence.

So, we assume that no terms of S, is repeated infinitely so that the range of S, is infinite.
1
Since M is totally bounded, M can be covered by a finite number of open balls of radius 2.

Hence one of these balls contains infinite number of terms of the sequence S;.

~ S, contains a subsequence S; = { X1, X22 , «eeey Xon 5 weeee } which lies within an open ball of
1

radius 2.
Similarly, S, contains a subsequence S; = { X31, X33, «eeeey X3n ) eeve } which lies within an open
1

ball of radius 3.

We repeat the process of forming successive subsequences and finally we take the diagonal
sequence S ={Xi1, X2, ceeey Xnn 5 eeees I3

We claim that S is a Cauchy subsequence of S;.



If m > n then both xmmand xnn lie within an open ball of radius n .

2
s d(Xmm Xpp) < Ton.

2
X)) <€V m,nzg

)

- d(Xmm
Hence S is a Cauchy subsequence of S;.
Thus every sequence in M has a convergent subsequence.

Corollary3.3.9 A nonempty subset of a totally bounded set is totally bounded.

Proof.
Let A be a totally bounded subset of a metric space M.
Let B be a nonempty subset of A.
Let (x,) be a sequence in B.
Since B C A, (x,) is a sequence in A.
Since A is totally bounded, (x,) has a Cauchy subsequence.
Thus every sequence in B has a Cauchy subsequence.
-~ B is totally bounded.
3.4 Sequentially Compact.

Definition 3.4.1 A metric space M is said to be sequentially compact if every sequence in M has a
convergent subsequence.

Theorem 3.4.2 Let (x,) be a Cauchy sequence in a metric space M. If (x,) has a subsequence (x)
converges to x , then (x,) converges to x.

Pr oof.

Suppose that (x,) has a subsequence (x,x) which converges to x.

We have to prove x, = X..

Let € > 0 be given.



£
Since (x,) is a Cauchy sequence, there exists a positive integer N such that d(x,, xn) < 2 n

,M2Ny (1) Since x.x — X, there exists a positive integer N, such

€
£ >
that dpcy,x)<z Pk =Ne 2)

Let N=max { Ny, N, }. Fixn,= N.
Now. d(x,, X) < d(X,, Xnk) + d(Xnk , X)

<‘+ivn>
2 2 N

~d(x,,X)<eV n=N.
S Xn D X,

Definition 3.4.3 A metric space M has Bolzano — Weierstrass property if every infinite subset of M
has a limit point.

Theorem 3.4.4 In a metric space M the following are equivalent.

) M is compact.

(i) M has Bolzano — Weierstrass property
(ii) M s sequentially compact

(iv)  Mis totally bounded and complete.

Proof.
(i) = (i)
Let M be compact metric space.
Let A be an infinite subset of M.
Suppose that A has no limit point.
Letx € M.
Since x is not a limit point if A, there exists an open ball B(x, r,) such that
Bx,n)Nn(A—{x})=0.
B(x, r,) contains at most one point of A (contains x if x € A).
Now, { B(x, r,) / x € M }is an open cover for M.

Since M is compact, there exists points X; , X, ....., X, € M such that

M = B(Xq1, ry) UB(Xy,re2) U....... U B(Xn, M) -



& ACB(Xq, ra) UB(Xy,r2) U ....... U B(Xn, r'n) -
Since each B(x; , ry) has at most one point of A, A must be finite.

This is a contradiction to A is infinite.

Hence A has a limit point.

(i) = (iii)

Suppose that M has Bolzano — Weierstrass property.

We have to prove M is sequentially compact.

Let (x,) be a sequence in M.

If the range of (x,) is finite , then a term of the sequence is repeated infinitely and hence (x,)
has a constant subsequence which is convergent.

Otherwise (x,) has infinite number of distinct terms.
By hypothesis, this infinite set has a limit point say x.
~ forany r>0, the open ball B(x, r) contains infinite number of terms of the sequence (x,).

Choose a positive integer n, such that x,.€ B(x, 1).

1
Now, choose n,> n, such that x,; € B(x, 2) .

1
In general, for each positive integer k we choose n,> n,.; such thatx,€ B(x, k) .

1
Then (xqx) is a subsequence of (x,) and d(X. , X) < K v k.

S Xk = X
Thus (x.x) is a convergent subsequence of (x,).

Hence M is sequentially compact.

(iii) = (iv)

Suppose that M is sequentially compact.

Then every sequence in M has a convergent subsequence.
We have every Cauchy sequence is convergent.

Thus, every sequence in M has a Cauchy subsequence.

Hence M is totally bounded.



Now, we prove that M is complete.

Let (x,) be a Cauchy sequence in M.

By hypothesis, (x,) contains a convergent subsequence (X.).

Let Xk — X.

Then x, = X.

= Mis complete.

(iv)= (i)

Suppose that M is totally bounded and complete.
We have to prove M is compact.

Suppose not.

Then there exists an open cover {Ga} for M which has no finite subcover.
Take r,= ' —

Since M is totally bounded, M can be covered by a finite number of open balls of radius r; .

Since M is not covered by a finite number of G,’s , at least one of these open balls say B(x; ,
r,) cannot be covered by finite number of G,’s .

Now, B(x;, ry) is totally bounded.

Hence as before we can find x, € B(x; , r1) such that B(x, , r2) cannot be covered by finite
number of G,s .

Proceeding like this we get a sequence (x,) in M such that B(x, , r,) cannot be covered by

finite number of G,'s and X,,; € B(X,, rn).

Let m and n be positive integers with n < m.

Now, d(X, , Xm) € d(Xn , Xne1) + A(Xne1 , Xns2) F cevevveneen + d(Xm-1, Xm)
S R RO +Tm
<Z2ZIn+7ZnT+1 + ..., +2___ _mla

2



< _nl1

= (x,) is a Cauchy sequence in M.

Since M is complete, there exists x € M such that x,— x .

Now, x € G, for some a.

Since G, is open, there exists £ > 0 such that B(x, €) € G, .

|
We have x, = x and r, 2" 0.
-~ there exists a positive integer N such that

£ €
5 - >
d(xn,x)<23ndrn<2 ¥V n>N.

Fix n > N.

We claim that B(x,, rx) € B(x, €) .y € B(x,,

£

) = di,v) < P2
€ €
_+ —_
= d(X,, x)+d(x,,y)< 2 2
=>d(x,y)<e
=>yeB(x,e).

% B(xn, ) € B(x, €) € Gq.

Thus, B(x,, ) is covered by a single G, , which is a contradiction.

Hence M is compact.
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DERIVATIVES

CONTinuity and Differentiation
Let X,Y be the metric spaces. Suppose £ C X, f maps F into Y and p is
a limit point of E we write f(z) — g as ¢ — p or

lim f(z) = q.

T—p

If there is a point ¢ € Y with the following property, for every € > 0 there
exists S > 0 such that dy,(f(z),q) < eVz € E for which 0 < dx(z,p) < S.
(i.e.)

lim f(z) = q.

T—p

if given € > 0 there exists S > 0 such that 0 < dx(z,p) < S = dy(f(x),q) <
€.

Definition 3.1 Let X and Y be any two metric spaces and E C X. Let f
and g be any complex functions defined on E then we define f+ g as follows.
(f+9)(x) = f(z) +g(x)

Theorem 3.2 Let X and Y be any two metric spaces and E C X. p is a
limit point of E. Then

lim f(z) = ¢ iff lim f(p) =g

T—p

for every sequence {p,} in E such that p, # p and

Ji, o =
Proof: Suppose
lim f(z) =q

= Given € > 0, there exists S > 0 such that 0 < dx(z,p) < S =
dy (f(z),q) <eVr e E..(1)
{pn} is a sequence of points in E such that {p,} — pasn — co(p, # p) (This
is possible ' p is a limit point of F) = there exists N depending on S such
that dx (pn,p) < S Vn > N. Now By (1) we have, dy (f(pn),q) < e Vn > N
(i.e.)

Jim f(pn) = ¢
Conversely, Suppose

lim f(pn) = ¢

n—o0

for every {p,} in E such that p, # p and

lim p,=p

n—oo



o1

To Prove

lim f(z) =

T—p

Suppose this result is false, for some € > 0 and for every S > 0 such that
dx(z,p) < S = dy(f(x),q) > e. Let S, = %, n =123. For S >0
without loss of generality choose a point p € E such that dx(p1,p) < Si(=
1) = dy(f(p1),q) > e. Similarly, for Sy > 0 choose a point py € E such that
dx(p2,p) < S1 = (1/2) = dy(f(p2),q) > €. Proceeding for S,, > 0, choose
a point p, € E such that dx(pn,p) < Si(= 1/n) = dy(f(pn),q) > €.

we have a sequence {p,} in E such that dx (pn,p) < 2 = dy(f(pn),q) > €.
Now {p,} = pasn — oo [ 1/n — 0 as n — oo]. But f(p,) does not

converge to g ... our assumption is wrong. Hence for every ¢ > 0 there
exists S > 0 such that dx(z,p) < S = dy(f(x),q) <e Vx € E.
* lim f(z) = g.

Corollary 3.3 If f has a limit at p then this limit is unique.
Proof: Suppose ¢ is a limit of f at p. (i.e.)

lim f(z) =

T—p
*. By the previous theorem, we have
Jim f(pn) = q

for every {p,} in E such that p, # p and p,, — p. But we know that, Every
convergence sequence converges to a unique limit. . f has a unique limit at

p.

Definition 3.4 Suppose we have two complex f and g then f + g, fg,\f,
i(g #0) are defined on a set E as follows.

f+9)(@) = f(z)+g(z).
9)(x) = f(z) - g(x)
A ) (@) = Af(x)
4o (L) (x) = f(f g(x) # 0.
Similarly we define f,g map E into R*. Then we can define f + g, fg, \f,
(g #0).

Definition 3.5 Continuous at a point: Suppose X,Y are metric spaces
and E C X,p € E and f maps E into Y. Then f is said to be continuous
at p if for every € > 0, there exists a S > 0 = 0 < dx(z,p) < S =

dy (f(z), f(p)) < eVx € E.

1. (
2. (f-
3. (
(

Qs
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Remark 3.6 Suppose f is continuous at p = for every ¢ > 0 there exists
S > 0 such that 0 < dx(z,p) < S = dy(f(x),f(p)) < eVr € E =z €

Ns(p) = f(x) € Ne(f(p)) Vo € E = f(Ns(p)) € Ne(f(p))-
Theorem 3.7 Let X,Y be metric space and E C X. p is a limit point of B
and f: E—Y. Then f is continuous at p iff

lim f(z) = f(p)

T—p

Proof: Suppose f is continuous at p. < for every € > 0 there exists S > 0
such that 0 < dx(z,p) < S = dy(f(x), f(p)) <e Vx € E &

lim f(z) = f(7)

Theorem 3.8 Suppose X, Y, Z are metric space and E C E. f maps E into
Y, g maps the range of f into Z and h is a mapping of E into Z defined by
h(z) = g(f(z)). If [ is continuous at p € E and if g is continuous at f(p)
then h is continuous at p. (The function h is called composite of f and g
and we write as h=go f)

Proof: Let € > 0 be given and ¢ is continuous at f(p). .. n > 0 such that
dy (y, f(p)) <n=dz(9(y),9(f(p))) <€, y € f(E)..... (1)

Since f is continuous at p for this n > 0, there exists S > 0 such that
dx(z,p) < S=dy(f(z), f(p)) <n Vz,ye FE

(i.e.)dy (f(z), f(p)) <n, f(X) € f(E)

)
= dz(g(f(x)), (g(f (p))<6by()
= dz(go f(z),(go f)(p)) <
= dz(h(z), h(p)) < ( =gof).
)

. we have, dx(z,p) < S = dz(h(z),h(p)) < € V& € E = h is continuous at
p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is
continuous on X iff f~1(E) is open in X for every open get E inY .
Proof: Suppose f is continuous on X. Let V be a open get in Y. To Prove:
fH(V)isopenin X. Let pe f~1(V); pe f~1(V) = f(p) C V. Since V is
open, there exists € > 0 such that N.(f(p)) C V....... (1)

Since f is continuous at p, for € > 0 there exists S > 0 such that f(Ng(p)) C
Ne(F () (2)

From (1) and (2), = f(Ns(p)) C V = Ng(p) C f~'V = p is an interior
point of f~1(V). Since p is arbitrary, f~!(V) is open in X. Conversely:
Suppose f~1(V) is open in X for every open set V in Y. To Prove: f is
continuous at p,p € X. Let €> 0 be given. Consider an open set N.(f(p))
inY, f~Y(N(f(p))) is open in X. Now, = p € f~H(N(f(p))) = p is an
interior point of f~Y(N.(f(p))) = there exists S > 0 such that Ng(p) C

F Y N(f(p)) = f(Ns(p)) € N(f(p)) = f is continuous at p.
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Corollary 3.10 A mapping f of a metric space X into a metric space Y
is continuous iff f~1(C) is closed in X for every closed set C inY .
Proof: Let C be a closed set in Y.C¢ is open in Y = f~}(C°) is open in
X. (by Theorem BY) = [f~1(C)]¢is open in X = f~1(C) is closed in X.
Conversely: Suppose f~1(C) is closed in X for every closed set C' in Y. To
Prove: f is continuous on X. Let A be an open set in Y = A€ is closed in
Y = f71(A°) is closed in X. (by our assumption) = [f~1(A)]¢ is closed
in X = f7!(A) is open in X. = f is continuous on X. (by the previous
theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric
space X, then f+g,f -9, g(g # 0) are continuous on X .
Proof: At isolated point of X there is nothing prove. Fix a point p € X
and suppose p is a limit point of X. Since f and g are continuous at p.

lim f(z) = f(p); lim g(z) = g(p)

T—p T—p

Now,
lim (f + ¢)(z) = lim (f + 9)pn

T—p

where p, — p as n — oo and p, # p

lim(f +g)() = lim (f(pn) + 9(pn))

= lim f(pn) + lim g(pn)
= f(p) +9(p)

similarly the other results follow.

Theorem 3.12 Let f1, fo, ..., f be real functions in a metric space X. Let f
be the mapping X into R*. defined by f(z) = (fi(x), f2(2), ..., fu(z))z € X.
Then

(a) f is continuous iff each of the functions fi, fa, ..., fx is continuous.

(b) f and g are continuous mapping of X into RF then f + g,f - g are
continuous on X (f1, fa, ..., fr are called components of f_)

Proof: Suppose f is continuous at every p € X. Then given € > 0 there

exists S > 0 such that

1f(z) — f(p)| <€ if 0 < dx(z,p) < S
k 1/2
= (Z(ﬁ(w) - fz-(p»?) <eif 0 <dx(z,p) < S
Zzl 1/2
= |fi(z) — filp)| < (Z(ﬁ-(m) — fz(p))2> <eVi=1,2,...k
=1

= |fi(z) — filp)| <eVi=1,2,.,kif 0 <dx(z,p) < S
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= each f; is continuous at p, (1 <i <k, p € X) = each f; is continuous
on X, (1 < i < k). Conversely, Suppose f; is continuous on X for each
i =1,....,k = f; is continuous at every p € X = Given € > 0 there exists
S; > 0 such that 0 < dx(z,p) < S; = |fi(x) — fi(p)| < T Vi=1,2,.k
Let S = min(S1, Se, ..., Sk). Now,

0 <dx(z,p)<S;i=|fi(x)— filp)| <

= |fi(z) = fip)]* < Vh)?

:ser; ~ fip)? < %kz
2

JZIﬁ — filp)? < e

= [f(z) — f(p)| <e
(i.e)0 < dx(z,p) < S = |f(x) = f(p)| < e

= f is continuous at every p € X = f is continuous on X
(b) Let f - (f17f27‘ )[k) a‘nd g - (91792)‘ )gk) NOW f+g - (fl +

g, fo+ g2 S+ ar); F-G = (fi- 91, f2- g2, fx - g). Given f and g
are continuous. by (a), each f;, g; are continuous (i < i < k) (by Theorem

BI) = f; + gi, fi - gi are continuous. (by (a))

Theorem 3.13 Let & = (1,72, ...,x;) € RF define ¢; : R¥ — R by ¢;(2) =
xi, (i =1,2,...,k). ¢; is called the coordinate function, then ¢; is continuous.
Proof: Let z,7 € R*. Given € > 0 choose S = € such that
|z —y| < S
= [¢i(2) — ¢i (V)| = |zi — yil

()’

= |z -y
< €

= ¢; is continuous on R*
Theorem 3.14 FEvery polynomial in R¥ is continuous.

Proof: By the above theorem ¢; : R¥ — R is continuous for every i. Now,
$2(z) = ¢i(%) - ¢4(T) = x; - ; = 22 Vi. In general ¢ (T) = z Vi. By
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Theorem B, ¢ is continuous. Now,
ny no ng\ =
( 1Thepy? ¢k )x
My | Am2 (= nk (=
= @11 (Z) - 95 (Z) - -+ " (T)
_ 1 ng
— :U1 . 332 P ij
Now ¢! - 5% -+ qbZ’“ is a monomial function, where nq,no, ..., nj are positive
integers. Every monomial function is continuous C,; n,,..n, is & complex
constant = Ch, ny, . ny 27" 2522 is continuous on RF. = 3 Cpyng.m
n1 . n2 e e Tk
xyt - xy )
Rk

.
is continuous on R*. = Every polynomial is continuous on

Continuity and Compact: A mapping f on a set E into X is said to be
bounded, if there is a real number m such that |f(z)| < m Vz € X.

Theorem 3.15 Suppose f is continuous function on a compact metric space
X into a metric space Y. Then f(X) is compact. (i.e., continuous image
of a compact metric space is compact)

Proof: Given that X is compact. To Prove: f(X) is compact. Let {V,,} be
an open cover for f(X) = each V,, is open in Y. Now, Given f is continuous
= f~1(V,) is open in X for each a = {f~1(V,)} is open cover for X. Since
X is compact, there exists finitely may indices a1, ag, ..., o, such that

X C f_l(vm) Uf_l(vaz) U--- Uf_l(van)

U v
=1

S fx) e U € U Ve
=1 3

= {V,} = has a finite sub cover. .. f(X) is compact.

Theorem 3.16 If f is continuous mapping of a compact metric space X
into R*. Then f(X) is closed and bounded. .. f is bounded.

Proof: Given f is continuous and X is compact. = f(x) is a compact
subset of RF. = f(z) is closed and bounded. (by Heine Borel theorem)
Now, in particular = f(z) is bounded = f is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact met-
ric space X and M = sup,cx f(p) and let m = infyecx f(p). Then, there
exists a points p,q € X such that f(p) = m1, f(q) = ma (i.e., f altains
mazximum M at p and minimum m at q)

Proof: We know that, If £ is bounded and y = sup F and X = inf £
then z,y € E. Since f is continuous and X is compact = f(X) is closed
and bounded [By the above Theorem BIHG] and since f(X) is bounded.
m, M € f(X) = f(X) (. f(X)is closed) = m, M € f(X) = there exists
p,q € X such that M = f(p), m = f(q).
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Theorem 3.18 Suppose f is continuous 1 —1 mapping of a compact metric
space X into a metric space Y. Then the inverse mapping = defined on
Y by f7U(f(X)) = X is a continuous mapping of Y onto X.

Proof: Suppose f is a continuous 1 — 1 mapping of a compact metric space
X into a metric space Y and also f~1(f(X)) = X. To Prove: f~!is
continuous on Y, it is enough to prove that (f~!)(V) is open in Y for every
open set V in X. Let V be a open set in X = V¢ is closed in X. Since X
is compact, V¢ is compact in X. Since f is continuous, f(V¢) is compact
inY = f(V° is closed in Y = (f(V°))¢ is closed in Y = f(V) is open in
Y. (. fis1—1and onto) = (f~1(V))~!is open in Y = f~! is continuous
onY.

Definition 3.19 (Uniformly Continuous) Let X andY be any two met-
ric space then the f : X — 'Y is said it to be uniformly continuous on X if for
every € > 0 there exists a S > 0 such that dx(p,q) < S = dy(f(p), f(q)) <€
Vp,q € X.

Theorem 3.20 Let f be a continuous mapping of a compact metric space
X into a metric space Y then f is uniformly continuous. (i.e.) Continuous
function defined on a compact metric space is uniformly continuous.

Proof: Let ¢ > 0 be given let f is continuous on X = f is continuous at
every point p € X. Now, f is continuous at p = there exists a positive real

¢(p) such that dx(p,q) < ¢(p) = dy (f(p), f(q)) <eVge X....... (1)
Let J(p) = Now {p} = J(p) is a closed in X = J(p) is a open in X.

{J(p)lp € X} is an open cover for X. Since X is compact, there ex-
ists finitely may p € S. p1,p2,...,pn such that X C U, J(p;). Let S =
mm{(@,,@)} Clearly, S > 0. Let p,q be points in X such that
dx(p,q) < S. Now,

peXclJJm)
=1

= p € J(pm) for some m,1 <m <n

= dx(ppm) < 222 < )
= dy (f(p), [(pm)) < €/2.......(2) (by(1))
Now dx(q,pm) < dx(q,p) + d(p, pm)

<S4 ¢(1;m)

- cb(gm) n cb(gm)

= ¢(m)
(i.e.) dx(q, pm) < &(pm)
= dy (f(q), f(pm)) < €/2 by(1)........ (3)




o7

= dy (f(p), f(a)) < dy(f(a), f(pm)) + dv (f(pm)f(q))
=¢/2+¢/2 (by (2) and ( )
-.-dX(p7 )<S:>dY( (p)vf( ))

= f is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in RY. Then

(a) there exists a continuous function on E which is not bounded,

(b) there exists continuous and bounded function on which has no maximum
if in addition E is bounded,

(c) there exists a continuous function on E which is not uniformly continu-
ous.

Proof: Case(i): Suppose E is bounded.

(a) To Prove: f is continuous but not bounded. Since E is bounded, there
exists a limit point of g of E such that zo ¢ E. [." E is not closed]. Define
amap f: E — R! by f(z) = a:—lxo’ x € E. . f is continuous on F. To
Prove: f is unbounded on E. Since zg is a limit point of E. N,.(xg) N E # ()
Vr > 0 = there exists x; such that z; € Ny(z9) N E = x1 € N;(x9) and
T, € F

= |r1 —x9| <rand z; € E

1 1
= — > and r1 €F
\361—330|

1
j]f(a:l)]>;andx1€EVT>0

Vr > 0 there exists € E such that |f(z)| > 1 = f is unbounded on E.
(b) Define g : E — R by g(z) = m, x € E. Clearly, g is continuous.
Now, 0 < g(z) < 1 = g(z) is a bounded function. Clearly, sup,cp g(z) = 1.
But g(z) <1 Vz € E. . g has no maximum on E.

(c) Let f : E — R be defined by f(z) = ﬁ, x € E, where zg is a limit
point of E. Clearly, f is continuous on E. Let ¢ > 0 be given. Let S > 0
be arbitrary choose a point x € E such that |z — z¢| < S and taking ¢ very

close to xg so as to satisfy |t — x| < S. Then,

1 1
t) — = -
£0 - f@] = | -
|z —x0—1T+ 20
(t = zo)(z — x0)
o~ 1
[t — @ol|z — o

>

> €
t —xo

(If we choose x € (z¢g — S,20),t € (zo,2z0+S) and |z —t] < Sort €
(xo — S,x0),x € (xg, 20+ S) and |x —t| < S = |t — x| > | — x0]) So we
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have taken t very close to zp and we made the difference |f(t) — f(z)| > €
although [t — x| < S. Since this is true for every S > 0 = f is not uniformly
continuous.

Case(ii): Suppose E is not bounded.

(a) Define f : E — R by f(z) = z. Clearly, f is continuous on E and f is
not bounded on E. . there exists function on E which is not bounded.
(b) Define g : E — R by g(z) = % = ¢ is continuous. Now, as 2% <
1+ 22 = g(x) = 11% <1l - 0<g(x)<1l VzeE. . gisa bounded.
.. g is a continuous and bounded function. sup,cp g(z) = 1. But g has no
maximum on F.

(c) If the boundedness is omitted then the result fails. Let E be the set of all
integers. Then every function defined on F is uniformly continuous on F =
for every € > 0 choose S < 1 such that | X —Y| < S=|f(z)— f(y)|=0<e¢

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a
metric space Y and E is a connected subset of X. Then f(E) is connected.
i.e., continuous itmage of a connected subset of a metric space is connected.
Proof: Given E is connected subset of X. To Prove: f(FE) is a connected
subset of Y. Suppose f(F) is not connected. = f(F) = AUB where A and
B are non-empty separated sets. Put G = ENf~!1(A) and H = ENf~1(B)

Clearly G #0 H #0 (- A#0,B# (). Claim: G and H are separated
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sets. i.e., To Prove GNH =(,GN H = (). Now

G=Enf 14
=G C fi(A) cfHA)
“H(A) [ A is closed and

A
=GCfYA)=["4A
f is continuous = f~1(A)]

= f(H)C B

= f(GYNf(H)c ANB =10 (. Aand B are separated sets)
= f(G)Nf(H) =0
= f(GNH)=1
=GNH=1
similarly, GNH =0

.. G and H are separated sets. = FE can be expressed as a union of two
non-empty separated sets. = FE is not connected. =< to E is connected.
. f(E) is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous
real valued function on [a,b]. If f(a) < f(b) and c is the number such that
fla) < c< f(b) then there exists a point x € (a,b) such that f(z) = c.
Proof: Every interval in R is connected and f is continuous. By the previous
theorem, fla,b] is connected in R. = fla, b is interval in R. Let f(a), f(b) €
fla,b] = [f(a), f(b)] C fla,b]. Now, f(a) < c < f(b) = ¢ € fla,b] = ¢ =
f(z) for some z € [a,b].

Remark 3.24 Converse not true.

Proof: If any two points 21 and x5 and for any member ¢ between f(x;)
and f(xz9) there is a point x in [z1,z2] such that f(x) = ¢ then f may be
discontinuous. For example:

B sin% x#0
R

Choose z1 € (—3,0),z2 € (0,%). Clearly 1 < w2; f(r1) =negative
f(xg)=positive. .". f(0) = 0. f is continuous all the points except at 0.

Differentiation:
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Definition 3.25 Let f be real value function defined on [a,b], for any x €
[a,b] form the quotient ¢(t) = M, a<t<bt#z, and defined

t—x

provided the limit exists.

Remark 3.26 1. If [’ is defined at a point, we say that f is differentiable
at x.

2. If f' is defined at every point of a set E C [a,b], we say that f is
differentiable on E.

Theorem 3.27 Let f be defined on [a,b]. If f is differentiable at a point x
in [a,b], then f is continuous at x.
Proof: Given f is differentiable at z. (i.e.)

o) — i L = 1)

t—zx t—2x

exists.

To Prove: f is continuous at z (i.e.)To Prove

lim f(t) = f(x)

Now -
70) ~ 7y = PO T
tim(£(t) ~ f(a)) = im [0 =TE
pin =L i)
— f'()-0
lim (/(6) — /(@) =
(or) Tim £(t) = £()

t—x
.. f is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) =
|x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a,b] and are differentiable
at at point x in |a,b] then f + g, fg,g are differentiable at x.

(o) (f+9)(z)=f(z)+d(x)



(b) (f9)'(x) = ['(z)g(x) + f()g'(x)
(C) (g)/(‘r) — g(l‘)f’(:(:)—g'(x)f(x)’ g(a:) £0.

9*(z)
Proof: Given f and g are differentiable at .

f(t) = f(x) 9(t) — g9(x)

(i-e) (@) = lim 20T and g/ () = him DO et
@)
o(t) = (f + g)(ti - :(Uf +9)()
_ 0 +9(0) ~ (@) + 9(2)
aw:f%:§@5132:§”

Taking limits as ¢t — =

i 0) = iy { L0190 =g}

t—x t—x t—x t—=x
i SO = @) 90— o)
t—x t—ax t—x t—ax

(i.e)(f+9) (@) = f'(2) + 4 (2)

(i.e.) (f + g) is differentiable at .
(b) (f9)'(x) = f'(x)g(z) + f(2)g'(x). Let h = fg. Now,

(h(t) — h(=)) = (f9)(6) ~ (f9)(x)
= F(Hg(t) — f(@)g(x)
= F(H9(t) — F(g(w) + FDg(x) — f@)g(x)
= FO(9(0) — g(x)) + 9@)(f (1) — f())
MO =) _ 1 (00~ | (1) S12)
iy MR _ g €90 ote) ) S0 = )
i 1) i 2090 |y ) 7O~ 1)

W(x) = f(z)g (x) +g(x)f'(x)
(f9)(x) = f(x)g'(x) + g(x)f'(x)

fg is differentiable at x.
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/ f
(h(t) — h(z)) = p (t) p (2)
_ SO f@)
gt)  g(z)
_ fWg(x) — f(@)g(x) + f(x)g(x) — f(z)g(t)
g9(t)g(x)
_9@)(f(t) — f(=)) — f(2)(9(t) — g(x))
g(t)g(x
h(t) — h(z) _ g(x)(f(t) — f(x)) — f(=)(g(t) — g(x))
t—x g(t)g(z)(t —x)
. h(t) —h(z) z) (f(t) = flz) . flx) [g(t) —g(z)
}gr:lc t—x —}gr:lc g(t)g(x) ( t—x ) %grglc g(t)g(zx) ( t—x )
o) S~ f@) fla) (D) - ala)
g2 (aj) t—x t—x g2 (x t—x t—x
) 9(@)f'(z) — g'(z)f(x)
i) 9*(z)
) —g'(z)f(z)

(£) ) = sl

g )

Since f'(x),q'(x) exists and g(z) # 0, (£>/ (z) exists.

Example 3.30 (1) The derivative of any constant is zero.
(2) fla)=z= f(z)=1
(3) f(z)=n= f(z)=na"""

Theorem 3.31 Chain Rule: Suppose f is continuous on [a,b], f'(x) exists
at some point x in [a,b] , g is defined on an interval I which contains the
range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)),a <
t < b then h is differentiable at x, and h'(z) = ¢'(f(z))f'(x).

Proof: Given

fl(z)= }1&1}3 f(ti : i(x) exists, t € [a, b].

Let h(t) = g(f(t)). To Prove: h'(x) = ¢'(f(x))f'(x). Since f is differentiable
at x € [a, D]

f(z) = }lgal; f(ti : i(z) exists, ¢ € [a, b] exists.
(i.e.) f'(z) +u(t) = M, t € [a,b] where limu(t) =0

t—=x t—z
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Let y = f(z). Now g is differentiable at y(= f(x))

) 9(s) —g(y)

g) = lim =——

g(s) —g(y)
y

,s €1

,s € I where lim v(s) =0
s—Y

(i.e.) g'(y) +v(s) =

(9'(y) +v(s)(s —y) = g(s) = g(y).......(2)

h(t) - h(z) = g(7(1) — a(f(x))
= (9'(f(x)) +v(s))(s —y) (by(2))
h(t) — h(x) = o (F(2) + o(s) (F(B) — (@)
= §/(F() + () @) + ult)(t — ) (by(1)
MO M) g (#(a) + o) (/@) + u(e)
tim MO i (1) - 0(6)) (7 (@) + 1)

Example 3.32 Let

xsin% x#0
0 =0

-

Find f'(z)(x #0), and show that f'(0) does not exist.
Solution:

o1
f(z) = wsin —

f'(z) = z cos <;) (;—21) + sin <31:>
= —é czs (i) :—sin (i?
= sin (m) — (:c) cos (x) ,x # 0.
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since x # 0f'(z) exists. To Prove: f’(0) does not exists.

/ - f(t)_f<0)
F10) =l ==—4
:hmtsin%—o
t—=0 t—0

1
= lim sin — which does not exists.
t—0 t

. f(0) does not exists.

Example 3.33 Let

Find f'(z)(x #0), show that f'(0) =
Solution: Let

f(x) = z? sin%
F(z) = 22 (cos (;) (;;) + 205

1
=2z -sin— —cos—,x #0

x x

oy _ e 1) = £(0)
F10) =l ==—5
z?sind — 0
_ ¢
=0

. .1
= lim ¢sin —
t—0

~ f'(0)=0

1
tsint’ <1)

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real
function defined on a metrics space X. We say that f has local mazimum
at a point p in X if there exists § > 0 such that f(q) < f(p) Vq € X with
d(p,q) < 6. f has a local minimum at p in X, if f(p) < f(q) Vg € X such
that d(p,q) < 9.

Theorem 3.35 Let f be defined on [a,b]; if f has a local mazimum at a
point x € (a,b) and if ' exists, then f'(x)=0. The analogous statement for
local minimum s also true.

Proof: Case(i) Assume that f has local maximum at 2. To Prove: f'(x) =
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0. Since f has local maximum at z, there exists § > 0 such that (¢,z) <

6= f(q) < f(x)

Ifx—5<t<xthenw_0
h(t) — h(z)

= lim
t—zx t—2x

(i) f1(z) >0 (1)

Iftx<xt<x+5thenf(ti_f($)§0
—x
:>1imh()_h(x)§0

Since f’(x) exists, (1),(2) = f/'(z) = 0.
Case(ii) Assume that f has a local minimum at x. We show that f’(z)=0.
Then there exists 0 > 0 such that d(q,z) < = f(q) > f(x)

Iffn—5<t<xthenw_0
f(t) = f(z)

= lim
t—x t—ax

Ifz <t<ax+6 then >0
—x
i T @)

Since f’(x) exists, and from (3) and (4) we get f'(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are
continuous real functions on |a,b], which are differentiable in (a,b), then
there is a point x € (a,b) at which [f(b) — f(a)]g' (x) = [g(b) —g(a)]f'(z).

proof: Let A(t) = [f(5) — f(a)lg(t) — [9(8) — g(a)lf (), € [a,b]. Since f
and g are differentiable in (a,b), h(t) is also differentiable in (a,b). Now,

h(a) = [f(b) = f(a)lg(a) — [9(b) — g(a)lf(a)
= f(b)g(a) — f(a)g(a) — g(b) f(a) + g(a) f(a)
= f(b)g(a) —g(b)f(a)
h(b) = [f(b) — f(a)lg(b) —[9(b) — g(a)]f (D)
= [(b)g(b) — f(a)g(b) — g(b)f () + g(a) f (D)
=9(a)f(b) — f(a)g(b
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Claim: h/(z) = 0 for some x € (a,b). If h(t) is a constant then h'(z) =
0Vz € (a,b). If h(t) < h(a),a <t < b, then by Intermediate value theorem,
there exists x in (a,b) at which h is minimum. .. A'(z) =0 (by Theorem
B334). If h(t) > h(a) then h attains its maximum at some point = € (a,b). ..
K(x) =0 (by Theorem B=33) (i.e.)

(@) f'(x) =0
(a))g'(z) = (9(b) — g(a)) f'(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function
on [a,b] which is differentiable at (a,b) then there is a point x € (a,b) at
which f(b) — f(a) = (b—a)f'(x).

Proof: Put g(z) = x in theorem B3@. .. ¢'(z) = 1 = (f(b) — f(a)) =
(b —a)f'(x).

Theorem 3.38 Suppose f is differentiable in (a,b).

(a) If f'(x) >0 Va € (a,b), then f is monotonically increasing.

(b) 1If f'(x) = 0 Vz € (a,b), then f is a constant.

(¢c) 1If f'(z) <0 Vz € (a,b), then f is monotonically decreasing.

Proof: (a)By theorem BZX1, If x1 < x9, then there exists 21 < z < x5 such
that f(ze) — f(x1) = (z2 — 1) f'(x)...... (1)

If f/(z) > 0then (1) = f(z2)— f(z1) >0 (. (z2—21)f () > 0) = f(x1) <
f(x2) (i-e.) f is an increasing function

(b) If f'(z)=0 then (1) = f(x2) — f(z1) = 0 = f(x2) = f(z1). ... fis
constant.

(c) If f/(x) <0 then (1)= f(z2) — f(z1) < 0= f(x1) > f(xe). .. fisan
decreasing function.

—
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The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a,b] and sup-
pose f'(a) < X < f'(b), then there is a point x € (a,b) such that f'(z) = A.
A similar result holds if f'(a) > X > f'(b).

Proof: Let g(t) = f(t) — M\, t € [a,b] then, ¢'(t) = f'(t) — X; ¢'(a) =
f'(a) — X < 0. .. there exists a < t; < b such that g(t1) < g(a). Also,
g (b) = f'(b) = X\ > 0. .. there exists a < ta < b such that g(t2) < g(b). .. g
attains minimum at = € (a,b). .. ¢'(x)=0 (by Theorem B33) (i.e.)
fllx)=A=0= f'(x) =\

Corollary 3.40 If f is differentiable on [a,b], then f’ is cannot have any
simple discontinuity on [a,b]. But f' may have discontinuity of second kind.
Proof: f’ takes every value between f(a) and f(b). Let a < z < b. If f"is
not continuous at x, then

1. f'(z+), f'(x—) exists,



67

2. f'(z+) # ['(z—),
3. fla=) = f'(a+) # ['(x) =<

. f' cannot have any simple discontinuity. In Example B=33 f’ has a
discontinuity of second kind at = € [a, b].

Theorem 3.41 L’Hospital’s Rule: Suppose f and g are differentiable in
(a,b) and ¢'(z) # 0 Va € (a,b) where —oo < a < b < co. Suppose g,g; — A
as T — Q........ (1).

If f(x) — 0 and g(x) — 0 as ¢ — a........ (2) (or) if g(z) — oo as
T = d....... (3), then % — Aasz — a..... (4). (The analogous

statement is true if x — b (or) if g(x) — —o0 in (3)).
Proof: Case(i): Let —oo < A < co. We choose r and ¢ such that A < r <

q. Given
/
lim f/(w) =A
z—a g ($)
Then there exists ¢ € (a,b) such that a < z < ¢ = g:é;’g < T (i)
Now if a < © < y < ¢ then by generalised mean value theorem, there exists
t € (a,b) such that LT — LH < (i)

Suppose f(xz) — 0 and g(x) — 0 as x — a. Then by taking limits as x — a,

then (i) we get {4 <7< q..... (iii)
Suppose g(x) — oo as * — a, then by keeping y fixed in (ii) we can find
c1 € (a,y) such that g(z) > g(y) and g(z) > 0 Vx € (a,c1). Multiply (ii) by
9(z)=g(y)

9@ , we get
f(x) — f(y) . g(z) —g(y)
9(@) << g(@) >
@) ) _ ()9
MO COR ( g(sc))
@) 90, fW)
i@ S ) T )

Since g(x) — 0o as * — a, there exists c3 € (a,c1) such that % <rVze
(a,c2) (or) @) « gV e (@, c2)...... (iv)

g(a)
suppose —oo < A < oo. By choosing p < A as above, we can show that

there exists c¢3 € (a,b) such that p < % Va <z < c3.....(v)
f(z)

Thus in all cases ﬁ — A as x — a. Hence

@) @
M g(e) ~H M g(a)
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Derivatives Of Higher Order

Definition 3.42 If f has a derivative f' on an interval and if [’ is dif-
ferentiable, we see the second derivative f" exists. Similarly if f"1(x) is
differentiable we say f™ exists.

Theorem 3.43 Taylor’s Theorem: Suppose f is a real function on [a,b],n
is a positive integer, f"~1Y) is continuous on [a,b], fU(t) exists Vt € (a,b).
Let o, B be distinct points of [a,b] and define

(SPAMG)

plt) = 3 )t

n=0

then there exists a point x € («a, ) such that f(5) = p(8) + i )( )(ﬁ —a)™.

Proof: If n=1, then f(8) = f(a) + f'(x)(f — «a); f(ﬁﬂia f’( ). This
is just the mean value theorem. Suppose n > 1. Define a number M such

that f(8) =p(B) + M(B — a)™........ (1)

Let g(t) = f(t) —p(t) — M(t —a)™........ (2)
Now,
9(a) = f(a) = p(e) = M(a — a)"
= fla) = pla
g9(a) = f(a) = f(e) (. p(e) = f(a))
=0
9(8) = f(B) —p(B) = M (B — )"
=0 (by (1))....... (4)
Also g™ (t) = f™M(t) =0 — Mnl....... (5)
9M(a) = fP () - pM (o)
= () = fP(a)
=0......(6)
(i.e.) g(a) =g (a) =+ = ¢g" }(a) = 0. Since g(a) = 0 and g(B) = 0, there

exists =1 € (o, 3), by mean value theorem, such that ¢'(z1)=0. Now since
¢ () =0; ¢'(z1) = 0 again by mean value theorem there exists x5 € («, 1)
such that ¢g”(x2) = 0. Proceeding this way we get o < z, < Zp,—1, such that
9™ (z,) = 0 (ie) f™(z,) — Mnl =0 (by (5)). .. M = LG sy M in

(1) = £(8) = p(B) + LX) (8 — a)", Var € (a, 1)



UNIT V

RIEMANN INTEGRAL AND
POINTWISE CONVERGENCE

The Riemann-Steiltjes integral and Sequences and series of func-
tions

Definition 4.1 Let [a,b] be an interval. By a partition P of [a,b] we mean

a finite set of points xg,x1,...,xn, where a = x9 < 1 <,...,< w1 < x3; <
sy < Ty = b

Remark 4.2 1. Ay =x;, — ;1 Vi=1,2,....n.

2. Let f be a bounded real function on [a,b] then m; = inf f(z), M; =
sup f(z) Vzio1 <z <.

3.
=1
L(P,f) < / f(@)dz < U(P, f)
L(P, f) <U(P, f).
4. [2 f(x)dz = sup L(P, f)

5. ff f(z)dz = inf U(P, f) (The inf and sup are taken over all partition
P of [a,b]).

6. If the upper and lower reimann interval over is same then f is said to
be Reimann integrable over [a,b].f € R(R is the set of all Reimann
integrable functions)

/abf(x)da: = /abf(x)da: = /abf(x)da:

Result 4.3 For every partition P of [a,b] and every bounded function f
there exists 2 real numbers m, M such that m(b—a) < L(P, f) <U(P, f) <
M(b—a).

Solution: Let m = inf f(z) and M = sup f(x),a < z < b. Let P =
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{0, x1, ..., 25} be the given partition of [a, b],
m<m; < M; <M
mAx; < m;Axr; < M;Az; < MAz; (ASL‘Z' >0)

<Z:mZAacZ <Z:MA9UZ < X:MA:L“Z

=1 =1

MS;M:

I
—

2

m(

Ax;)) < L(P,f) <U(P, f) < MZA@ ........ (1)

% =1

Now, Z Az; = Axq + Azg + ... + Az,
i=1
= (x1 —x0) + (x2 — 1) + ... + (Tp — Tp—1)

= Tn — X0

sub (2) in (1) we get, m(b—a) < L(P,f) <U(P, f) < M(b— a).

Definition 4.4 Let a be a monotonically increasing function on [a,b]. Cor-
responding to each partition P of |a,b]
we define Aoy = o(x;) — axi—1). Clearly, Aa; > 0

L(P, f,« Zm,Aal

UP, f,a) = ZM,-A@,-

i=1

sup L(P, f,a) = /b fda

U(P, f, o / fda

where infimum and suprimum are taken over all partitions. If

/abfda:/abfda,

then f is Reimann Stieljes integrable with respect to,

/abfda:/abfda:/al;fda,

we also write f € R(a).

Note 4.5 By taking a(z) = z, we see that the Reimann integral is the
special case of Riemann’s Stieltjes integral.
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Definition 4.6 The partition P* of [a,b] is called a refinement of P if P C
P*. Given two partition Py and Py, we say that P = P, U Py is the common
refinement of Py and Ps.

Theorem 4.7 If P* is an refinement of P, then L(P, f,a) < L(P*, f,«)
and U(P*, f,a) <U(P, f,«a).

Proof: Let P = {x9,x1,...,2i—1,%;,...,Tn} be a partition of [a,b] and let
P* = {x9,x1,x2, ..., Ti—1,2*, T, ..., xp } be an refinement of P. Let

mi = lnff(x)v Ti—1 < v <@y

wy = inf f(z), z;_y <z <2*
wy = inf f(z), 2" <z <

sowi > my and wg > m;. Now,

L(P*, f,a) = miAas + moAas + ... + mi_1Ac;_1 +wi(a(z”) — a(z;_1))
+ wo(a(z;) — a(x™)) + mip1Aaitq... + mpAay,......(1)
L(P, f,a) = miAas + moAas + ... + mi—1Ac;—1 + miAqy
+ mit1(Acit1) + ... + mpAag......(2)

L(P*, f,a) — L(P, f,a) = wy(a(z¥) — a(zi-1)) + wa(a(z;) — a(z")) — miAq;
=wi(a(z”) — afzi-1)) + wa(a(zi) — a(z"))
—my(a(z;) — a(wi-1))
=wi(a(z”) — a(xi-1)) + wala(x;) — a(z”))
—mi(a(z;) — a(z®)) — mi(a(z®) — a(zi-1))
= (w1 — my)(e(z”) — a(xi-1))
+ (w2 —mg)(a(z;) — a(z™))

> 0(. wy and wg > my)
L(P*, f,a) — L(P, f,a) > 0
= L(P, f,a) < L(P*, f,a)
L(P, f,a) < L(P*, f,«)

Let P* = {xo, 21, ..., Xi—1, %, X4, ..., T} be refinement of P. Let

M; =sup f(x),x;-1 <z <z

wi = sup f(z),zi1 <w <o’

wy =sup f(z),2" <z <z
cowp > M; and we > M;
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Now

U(P*, f,a) = MiAay + MaAag + ... + M;_1Aa;—1 + wy(a(z) — a(xi—1))
+ wo(a(z;) — a(z™)) + Miv1Aaitq + ... + MpAay,....... (1)
U(P, f,a) = M1Aay + MaAag + ... + M1 A1 + M;Ac;
+ Mit1(Aip1) + ... + MpAay,......(2)

(1)-(2) =

<0(.w; and we < M)
(i.e.) UP*, f,a) = U(P, f,a)) <0
= U(P", f,a) <

S UP fa) <

(P, f,a)
(P, f,a)

If P* contains k-points more than P, we repeat this reasoning k-times and
get the result.

U
U

Theorem 4.8

/abfdag/:fda.

Proof: Let P, and P, be two partition of [a,b] and let P* = PUP;.
(i.e.) P* is a common refinement of P; and Py. L(P, f,a) < L(P*, f,a) <
UP* f,a) < U(Py fya) = L(P1, f,a) < U(Py, f,a). Keeping P; fixed
and taking infimum over all partition P, we get

L(P.f.0) < [ ' fdo.

Now, by taking suprimum over all partition P; we get

/abfdag/abfda.

Theorem 4.9 Criterion for Riemann Integrability: Let f € R(«)
iff V. €> 0, there exists a partition P such that U(P, f,a) — L(P, f,a) <€.
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Proof: Let €> 0, there exists a partition P such that U(P, f,«)—L(P, f,a) <€
Claim: f € R(a). We know that

(1) + (3) U(P, f,0) — L(P, f,a) > / " tda— [ fda

(o) [ fdo— [ fda <U(P,f,0) - L(P. f.0)
<e

Since € is arbitrary,

/ab fda = /j fda.(ie.) f € R(a).

Conversely: Assume f € R(a). To Prove: let € > 0, there exists a partition
P such that U(P, f,a) — L(P, f,a) < €

let € > 0 be given

Then there exists two partition P, and P» such that

U(Pi, f,a) < [P fda + §.....(4) and [P fda — § < L(Pa, f,@)...c...(5)

Let P = PiUP; (i.e.) P is the common refinement of P, and P»

Now

U(P, f,a) <U(P, f,a)

b €
< [ gda+5 oy ()

< L(Py, f,0) + % + g (by (5))
= L(Pg,f, a) +e€
L(P, f,a)+¢€

<
L U(P, f,a) — L(P, f,a) < e

Theorem 4.10 Let P be a partition €: U(P, f,a) — L(P, f,a) <e€...(1)
(a) if (1) holds for some P and € then (1) holds for every refinement of P.
(b) if (1) holds for P = {xg,x1,...,xn} and s;,t; are arbitrary points in
[Ti_1, 2] then

n

ST (si) = Flt)|Aq; < e

i=1
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(¢c) if f € R() and the hypothesis of (b) holds then

n

S f(t)Aa; — /ab fda

i=1

< €.

Proof: (a) Let P* be a refinement of P. We know that

UP*, f,a) <U(P, f,).....(2)
L(P*, f,a) < L(P, f,«x) (by Theorem £=7)
—L(P*, f,a) < —L(P, f,a)......(3)

(2)+(3) gives

U(P*, f,a) — L(P*, f,a) <U(P, f,a) — L(P, f, )
< e (by (1))
(i.e)U(P*, f,a) — L(P*, f,a) < €

(b)  si ti € (w1, zil; f(s:), f(t) € flwim1, @i]; mi < f(sq), f(t:) < M;

S f(ss) = f(ta)] < My —my (0 My —my; > 0)
= |f(si) = f(ti)|Aa; < (M; —m;)Acy

n

= Z | f(s:) ti)|Aa; = Z(Ml —my;)Aaq;

i=1

= ZM Aoy — ZmiAai
=1

=1

=U(P, f,a) = L(P, f,a) (by (1))
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(4) and (5) =

> #(t)80i — [ fdo| < U(P,f,0) - L(P, f.0)
i=1 a
= e (by (1))
S f(t)Aa; — /b fdal < e.
i=1 a

Theorem 4.11 If f is continuous on [a,b] then f € R(«a).

Proof: Let € > 0 be given. Choose 1 > 0 such that [a(b) — a(a)]n < e...(1)
Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous.
Then there exists 0 > 0 such that |z —¢| < = |f(x) — f(€)| < n..... (2)
Let P = {zo,x1,...,2n} be a partition of [a,b] such that Ax; < ¢ .. (2)
guarantees that |M; —m;| <n (i.e.) M; —m; < n......(3)

Now,

U(Pvfaa) - L(P)faa) = ZMZAQZ - ZmzAaz
i=1 i=1

n

= Z(MZ — mz)AaZ

=1

<03 Ba) (by (3)

(1) = awo)) + ((w2) — (1)) + o + ((@n) — a(zn-1))]

<
S U(P, f,a) — L(P, f,a) < € (by Theorem £9)

By Theorem B9, f € R(«).

Theorem 4.12 If f is monotonic on [a,b] and if « is continuous in [a,b),
then f € R(a).

Proof: Let

epstlon > 0 be given. For every positive integer n, we choose a partition P
such that Aa; = alb)=ala) ;g i possible since « is continuous.

n
Case(i): f is monotonic increasing. .. M; = f(x;); m; = f(xi—1) Vi =
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1,2 n. Now
U(P,f,a) = L(P, f,«a)
= i M;Ao; — ZmlAaz
i=1
= zn:(M Aa; — miAa;)
i=1
= > (M; —mj)Aq
i=1
= > (fi) - f@“))(aaﬂ;a(@)
i=1
_« b) — Z o
_ a(b) A0 = ) ) — fla)) + (Fw2) — Fon)) +
(o) S )
= a(b) ;a(a) [f () — f(z0)]
_ a(b) ;Ox(a) () — F(a)
<€ asn — o0.
S fER().
Case(ii): f is monotonic decreasing. .. M; = f(x;); my = f(xi_1) Vi =
1,2,...,n. Now,
U(P,f, ) L(P f’ )
i MAozl—Zml ) Aoy
i=1
- i(MiAOéi — miAq;)
i=1
= (M; — m;) Aoy
=1
— Z(f(xz—1> _ f(xz))(a(b) ; a(a))
i=1

:ab Z - "

=1
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= 2O D 40 — (e
= 2O =@ ) — i)
<e€easn — oo.

S f € R(a).

Hence the proof.

Theorem 4.13 Suppose f is bounded on [a,b], f has only finitely many
point of discontinuity on [a,b] and « is continuous at every point at which
f is discontinuous, then f € R(«).

Proof: Let € > 0 be given. Put M = sup|f(x)|. Let E be the set of points
at which f is discontinuous. Since FE is finite and « is continuous at every
point of E, we can cover E by finitely many disjoint [uj,v;] C [a,b] such
that the sum of the corresponding differences

S la(wy) — afuy)] < e

J

Also we place these intervals in such a way that every point of E N (a,b)
lies in the interval of some [u;, v;]. Remove the segments (uj,v;) from [a, b].
The remaining set K is compact. hence f is uniformly continuous on K. ",
there exists 0 > 0 such that |s —t| < J = |f(s) — f(t)] <€ Vs,t € K. We
form a partition P = {xo,x1,...,2n} of [a,b] as follows. Each u; occurs in
P, each v; occurs in P. No point of any segment (uj,v;) occurs in P. If
x;—1 is not one of the u;’s then Az; < . we observe that M; —m; < 2pu, Vi
and M; —m; < e unless ;1 is one of the u;’s. .. U(P, f,a) — L(P, f,a) <
[a(b) —a(a)le+2Me. (By Theorem HETT) Since € is arbitrary, Theorem £
guarantees that f € R(«).

Theorem 4.14 Suppose f € R(«) on [a,b],m < f < M, ¢ is continuous
on [m, M| and h(z) = ¢(f(z)) on [a,b], then h € R(a) on [a,b].

Proof: Let € > 0 be given. Since ¢ : [m, M| — R is continuous and [m, M]
is compact, ¢ is uniformly continuous. ... There exists § > 0 such that
d<el|s—t] <d=|p(s) —o(t)]| <efors,te[m,M... (1)

Since f € R(«), there exists a partition P = {zg, z1,...,2,} of [a,b] such
that U(P, f,a) — L(P, f,a) < 6%...... (2)

To Prove: h € R(a). Let M = suph(z),zi-1 < x < z; and m] =

infh(z),mi1 < o < 2. Let A = {i]l < i < n,M; —m; < 6}; B =
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{z]lgzgn,Ml—mzzﬁ

for i € A, |M; —mi| <0 = |¢(M;) — ¢(my)| < e (by (1))

For i € B,|M; —m}| < |M]|+ |m]
< k+k where k = sup|o(t)],t € [m, M]
M —m}| < 2k.....(4)
Also 6 Z Aq; < Z(Ml —my;)Aq;

1€EB 1€EB
n
< Z(MZ — mz)AaZ
=1
n n
= Z MZAOQ — Z mzAaz
i=1 i=1

< 6% (by (2))
(i.e) 0 Aa; <6

i€EB
= Z Aa; < 0..... (5)
i€EB
Now U(P,h,o) — L(P,h, o) = > M;Ac; — Y _m;Ac;
=1 =1
= > (M} —mf)Aa;
i=1
— Z(MZ* —m;)Aq; + Z(Ml* —m;)Aq;
€A i€EB
<€y Aa;+2k> Aaq; (by (3) and (4))
€A i€EB

< ezn:Aozi +2kZAai
i=1

1€B
< €la(b) — ala)] + 2k
< ela(b) — a(a)] + 2ke ("6 < ¢)
= ela(b) — a(a) + 2k]

(i.e.) U(P,h,a) = L(P, h, ) < e[a(b) — a(a) + 2K]
since € is arbitrary, Theorem B, implies that h € R(«).

Lemma 4.15 If f € R(«) and f >0 on [a,b] then ff fda > 0.
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Proof: Since f > 0, M; > 0V,.

i=1
= U(P, h,a)
= infU(P, h, )

b
:>/ fda >0
a
Properties of Integral

Theorem 4.16 (a) If fi1, fo € R(«) on [a,b] then fi + fo € R(«),cfi €
R () for every constant ¢ and ff(f1+f2)da = ff flda—i—f; fada, ff cfida =
cf: fido.

(b) If fi(z) < fo(x) on [a,b] then [} frdo < [) fodor.

(c) If f € R(a) on [a,b] and a < ¢ < b, then f € R(a) on [a,c] and on
[a,b] and [° fda = [© fda + [P fda

(d) If f € R(a) on [a,b] and if |f(z )|<Mthen\f fda|<[ (b) — a(a)].
(e) Iff e R(oq) and f € R(az) then f € R(a1 +ag) andf fd(on +az) =
f fdag + f fdao. If f € R(a) and c is positive constant then f € R(a)
and f; fda = cf(f fda.

Proof: (a) Let € > 0 be given. Since fi € R(«) and fa € [a, b], there exists
two partitions Py and P» of [a, b] such that U(Py, f1,a) — L(Py, fi1,a) < e.....
(1) and U(Py, f2, ) — L( P, fa, ) < €.....(2)

Let P = P; U P, be the common refinement of [a, b].

>0
>0

U(P, f1,0) <U(Py f1,0)
L(Py, f1,0) < L(Py, f1,)
= U(P, f1,0) + L(P1, fi,a) SU(Py, f1,0) + L(P, f1, @)
= U(P, f1,0) — L(P1, fi,a) S U(Py, fi,0) = L(Py, fi, «)
U(P, f1,a) — L(P, f1,a) < € (by (1))....... (3)
Similarly U(P, fa, ) — L(P, fa, ) < € (by (2))....... (4)

(3)+(4)=
U(P, fi,a) + U(P, f2,0) — (L(P, f1,@)) + L(P, f2, @)

Now L(P, fi,a) + L(P, fa, ) < L(P, f1 + f2, )
SU(P, f1+ f2, )
<U(P, fr,a) + U(P, fa,)......(6)
(5).(6)= U(P.fi + fora) — L(P.fy + fona) < 26. - i + fo € R() on [a, ]

To prove:

/ab(fl + f2)da = /abflda+ /: fada
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Since f1, f2 € R(«), there exists partition P; and P, of [a, b]

b

Let P=PLUP,

U(Pvflaa)
U(P7f27a)

U(Pr, f1,q)....... (4%)

<
S U(Py, fo,q)....... (5%)

(4%)+(5%)=
U(P, fi,a) + U(P, fo,a) < U(P1, f1,0)+ < U(P, fa, @)

b b
</ fida+ [ fadoo+ 2e......(6%) (by (3%))
U(P, f1 + fo, ) SU(P, fr,0) + U(P, fo, @)

< [ pudat [ e+ 26 oy (%)

Taking infimum over all partition P,

/ab(f1+f2)da< /abflda+/abf2da+2e

Since € is arbitrary,

Replacing f1 and fo in (7*) by —f1 and — fo respectively we get,

[h- o< [(pyda+ [ (o

From (7*)and(8*) we get,

/ab(f1 + fa)da = /abflda + /abfzda



To Prove: cfi € R(a) where c is a constant.
For any partition P, of [a, b

U(P,Cfl,oz)z{CU(P’fl’O‘) c>0

cL(P, fi,a) ¢<0
and

— CL(P7f17a) CZO

L(P,cfi,a) = {CU(P, ) o

c(U(P, fr,a) = L(P, f1,))

—c(U(P, fi,a) — L(P, f1,a))
U(P,cfi,a) — L(P,cfi1,a) = |c|(U(P, f1,a) — L(P, f1,@)).....

Since f1 € R(«) there exists a partition P of [a, b] such that

U(P, CflaOé) - L(P, Cfl,a) = {

U(P, f1,a) — L(P,cfi,a) < —.....(24)

Sub (2A) in (1A), we get
U(P,cfi,a) — L(P,cfi,a) < \c%

U(Pvcflva) —L(P,Cfl,Od) <€
Cf1 GR(O&).

b b
/ cfrda :/ cfrda
If ¢ >0, then U(P,cfy,a) = cU(P, f1, )

= inf U(P, cf1,a) = inf(cU(P, f1,a))
= infU(P,cf1,a) = cinf U(P,cf1, @)

b b
:>/ cfldoz:/ cfida
If ¢ <0, then L(P,cf1,a) = cU(P, f1,)

= —|c|U(P, fi,@) (.- c<0)
= sup L(P, cfy,a) = sup(—|c|U(P, f1,a))
= |e|sup(=U(P, f1,))
= —[c[inf(U(P, f1,))

b b
:>/ cflda:—|c\/ frda

b
:c/ fida

b b
When ¢ = 0,/ cfida = / fida (=0)

To Prove:

c>0
c<O0

81
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To Prove:

b b
fi<h= [ fda< [ pda
Proof of b: Given f1 < fo= fo— f1 >0

:ﬁéaﬁ—ﬁMazo
= /ab fa+ /ab(—fl)da >0
_ /ab Fodar + /ab(—fl)da >0 (by (a))
=>/abf2da—/abf1d0420
= /abflda < /abfzdoz

Proof of (c): Given f € R(«) on [a,b] and a < ¢ < b for € < 0, there exists
a partition P of [a,b] such that

U(P, f,a) — L(P, f,a) <e.....(1B)

Let P* = P U {c}. Now P* is a refinement of P and induces two partitions
Py and P, of [a,c] and [c, b] respectively. Now,

U(P.f.0) > U(P*, f.0)
=U(Py, f,a) + U(Ps, f,).....2B)
=U(P, f,a) <U(P, f,a)......3B)
and U(P, f,a) <U(P, f,q)....... (4B)
L(P.f.0) < L(P". f.0)
=L(P1, f,a) + L(Pa, f,@)....... (5B)
—L(P, f,a) > =L(P, f,a) — L(P, f, @)
—L(Py, f,a) < —L(P, f,q)......(6B)
and — L(Py, f,a) < —L(P, f,q)....... (7B)
(3B) + (6B) = U(P, f.a) — L(Py, f,a) < U(P f,0) — L(P, f,a) (by (IB))
<€

. f € R(a) on a,c].
(4B) + (1B) = U(Ps, f,) — L(Ps, f,0) < U(P, f,) — L(P, f, ) (by (IB))
<€
. f € R(a) on [e,b).

/abfda:/:fda—l—/cbfda

To Prove:



(QB)jU(P,f,O{) ZU(Plafva)+U(P23faa)

2LLCfda+.Abfda

(6B) = L(P, f,a) < L(Py, f,a) + L(Pa, f, @)

/fda+/fda

:>supU(P,f,0z)§/ fda+/ fda

.. (8B) and (9B), we get

LU@:L%@+LU@

Proof of (d): Given f € R(«) and |f(z)| < M
To Prove: |f: fda| < [a(b) — a(a)]
we have, for any partition P of [a, b],

/ ' fda < U(P, f,0)

/:fda

<|U(P, f, )|

n
< Z |M1Aaz|
=1

= Z |M1|Aa2 ( AO&Z' > 0)

<Y MAag (2 [f(@)] < M)

=1

:MZAC!Z‘

=1

< M[a(b) — a(a)]

/abfda

Proof of (e): Given f € R(aq) and f € R(az). To Prove: f € R(a1+ az).

83
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Let o = a1 + . For any partition p of [a, ],

UP, f,a) = iMiAai
_ éMi(a(%) — a(zi)
:éMmm+@m»4m+wmum
ziMmmm+mmnwmmqﬂam»m
= f: Moy (z;) — ay(@im1)] + Enj Mi[az(zi) — ag(wi-1)]
U(P, f,a) = ;;(IP, foa1) + U(P, f,a2)...... ?10)

Similarly L(P, f,«) = L(P, f,c1) + L(P, f, a2)....... (20)

since f € R(a1) and f € R(az), there exists partitions P, and P of [a, b]
such that

U(Pl,f,O[l)*L(Pl,f,Oél) <€
and U(Pg, 1, 012) — L(Pg,f, 042) <€

Let P* be the common refinement of P and P» of [a,b]. P* = P, U P,

U(P*, f,a1) — L(P*, f,a1) < €........ (3C)
U(P*, f,a2) — L(P*, f,a2) < €........ (4C) (by Theorem £IM)

Now,

U(P*, f,0) = L(P*, f,0) = U(P*, f,en) + U(P*, f,a2)
— [L(P", f,a1) + L(P*, [,02)] (by (IC) and (2C))
= [U(P", f,01) — L(P*, f,n)]
+ [U(P", f,a2) = L(P*, f, a2)]
< e+e€ (by (3C) and (4C))
U(P*, f,a) — L(P*, f,a) < 2e.

Since € arbitrary, we get f € R(a) (i.e.) f € R(a1 + ).

To Prove:
b b b
/ d(Oq +C¥2) :/ fdaq —1—/ fdao



(10):>U(P,f,a):U(P,f,a1)+U(P,f,a2)

b b
> / fday + / fdas

(2C) = L(P, f,a) = L(P, f,a1) + L(P, f, as)

/fda1+/ fdas

supU(P, f,a) S/ fda1+/ fdag

from (5C) and (6C) we get,

/abfdaz/abfda1+/;fda2
(i.e.) /ab d(ar + ag) = /ab fdoy + /ab fdas.

To Prove: Given f € R(«) and ¢ > 0
To Prove: f € R(«), for any partition P,

U(P, f,ca) = ZMz‘A(COéz‘)

Similarly L(P, f,ca) = c¢L(P, f, @)
U(P, f,ca) — L(P, f, car) U(P, f,a) — cL(P, f,«)
=c[U(P, f,a) — L(P, f,a)]......(8C)

Il
Q

Since f € R(«a), given € > 0, there exists partition P of [a,b] such that

U(P, f,a) — L(P, f,a) < g ....... (90)
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sub (9C)in (8C) we get
U(P, f,ca) — L(P, f,ca) < c- -
c

. f € R(ca). To Prove:

/abfd(ca) —c/abfda

(7C) = U(P, f,ca) = cU(P, f, )
= infU(P, f,ca) = inf cU(P, f, )
=cinfU(P, f,«a)

:>/abfd(ca):c/abfdoz

Theorem 4.17 If f,g € R(«) on [a,b],then

(a) f-g€R(a)
/abfda g/ab|f|da.

(b) 11 € R(a) and
Proof: (a) Let ¢(t) = 2, clearly ¢ is continuous

(z)) (by Theorem HBTA)
)

(b) |f] € R(e) and | [} fda| < [7|f|da.
To Prove: |f| € R(a). Let ¢(t) = |t]; h(z) = ¢(f(x)) = |f(x)]. .. By

Theorem BT4, |f] € R(«)
To prove:
b b
/fda g/ 1f|da.
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Choose ¢ = £1 so that cf; fda >0

'.\/abfda|—c/abfdo¢

= /b c¢fda (by Theorem BETH(a))
< /b\f|da (. ef <|f]) by Theorem ETHA(b)

Hence the proof.

Definition 4.18 Unit Step Function:

I(x):{o if <0

1 i xz>o0

Theorem 4.19 Ifa < s < b, f is bounded on [a,b], f is continuous at s
and a(x) = I(x — s), then

[ da= 106)

Proof: Consider partitions P = {xg,x1, z2, zp} of [a,b] where zoz; = 5,5 <
T9 < b,xo = b. Now,

U(P, f,« ZMA%

= MiAal + MoAay + MsAag
= Mi[a(z1) — afzo)] + Ma[a(zz) — afz1)] + Ms[a(zs) — a(2)]
= M[I(z1—s) — I(xg — s)] + Ma[I(zg — s) — I(x1 — s)]
+ Ms[I(x3 — s) — I(z2 — s)]
=M[I(s—s)—I(a—s)]+ Ma[I(xg —s)— I(s—s)]
+ M3[I(b—s) — I(xzg — s)]
= ML[T(0) = I(a — )] + My[I(w5 — 5) — T(0)]
MA[I(b— 5) — I(wa — )]
= M;[0 — 0] + Ma[1 — 0] + M3[1 — 1] (by definition of i)
= M,

In a similar fashion we can get L(P, f,a) = ma.

/b fdao=infU(P, f,a) = sup L(P, f, @)

= inf My = supmy
= f(s) (. xe = s, f(xe) = f(x) as f is continuous at s)
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Theorem 4.20 Suppose ¢, > 0 for 1,2,3...; > ¢, converges, {s,} is a
sequence of distinct point in (a,b) and a(x) = Y oo cpd(x — sp). Let f be
continuous on |a,b], then

o

/ab fda = Z cnf(sn).

n=1

Proof: We have |I(z — s,)| < 1. . |epd(z — sp)| < ¢p. Since
(o9}
> e
n=1

is convergent, by comparison test,

Z enl(z — sp)
n=1

also converges. Now,

ala) = Z cnd(a — sp)
n=1
=0......(1) (" I(a—sp) =0)

and a(b) = Z cnd(b—sp)
n=1

n=1

Claim: « is monotonically increasing. Let x < y and let z < s <y

a(r) = Z enl(x — sn)
n=1
=ctcet ...t
O‘(y) = Z CnI(y - Sn)
n=1

=c1+cC+ ... +Ck—1+Ck
La(z) < oy)
Hence the claim. Since -
> e
n=1

is convergent, given € > (, there exists NV > such that
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Let

Clearly a(x) = ai(x) + ao(x). Let oy = I(x — s4),i=1,2,..., N.

N
coon(z) = Z Cn1n ()
n=1

= (cra11 + 12 + ... + eyain)z

(or) a1 = cra11 + 212 + ... + ey

Now,

b b
/ fday = / fd(cran1 + caa12 + ... + eyoan)
a a

b b b
= 01/ fdaiy +02/ fdaio + ...CN/ fdaan (by Theorem BETH(e))
=ci1f(s1)+caf(s2) + ...+ enf(sy) (by Theorem BT9)

Now,
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Let M = |f(x)|,« € [a,b]. By Theorem BIH(d),

[ fias] < [ax5) ~ )

< Me (by (5)and(6)),

(e | [ o < M

=

b b b
/ fda + / Fdas — / fdas| < Me

= < Me (by theorem BIH(d))

/ab fd(oq + ag) — /ab fday

/abfda — icnf(sn)

= < Me (by (4))
n=1
Taking limits as N — oo,
b [e.e]
/ fda — Z enf(sn)| < Me
a n=1
b oo
[ fdad = 3 eafsn)
@ n=1

Theorem 4.21 Assume « increases monotonically and o' € R on [a,b],
Let f be a bounded real function on [a,b], then f € R(a) iff fo' € R. In
that case f; fda = fff(:n)a’(:z)dm.

Proof: Let ¢ > 0 be given. Since o/ € R, there exists a partition P =
{z1,22,...,xn} of [a,b] such that U(P,a’) — L(P,d/) < e........ (1)

By mean value theorem , there exists ¢ :€ [z;_1,2;] such that o(z;) —
a(:ci_l) = O/(ti)(ﬂji — xi—l) (1e) Aai = Oé/(ti)Al‘i ..... (2)

By Theorem M(b), Vsi,ti S [.’Ei_l,fm]
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Now,

Zn: f(s)Aay — Zf ;) (s;) Az,

&
_ 2: F(si)al(t) A; — if(si)a’(si)Al‘i
- i:zlﬂsi)[o/(ti) ~ o/(s)

Zn: f(s)Aq; — Zf s;)a (s;) Az

&
< 3" Fsolla(t) — o' (s9)] A,

s
Il
—

IN

@
Il
—

Mo/ (t;) — o (s;)|Az; where M = sup | f(z)]

'Msi =

Z ) — o (s;)|Ax;
e (by

< (3))
(i.e.) si)Aa; — Zf '(s;)Ax;| < Me
1:1
2”: f(si)Aay — Zf )(si)Az;| < Me.....(4)
i=1

Since inequality (4) is true for any s; in [z;_1,z;], we can replace (fa')(s;)
by M/ and m}, where m} = inf(fo/)s;, M} =sup(fa’)(si),si € [zi—1, 2]

( DA — Y M{Ax;| < Me.......(5)
i=1
and Zm;Axl < Me......(6)
i=1
Again by replacing f(sz) by M; in (5) and by m; in (6)
we get
> M{Aa; — > M{Az;| < Me and
i=1 i=1

n n

/ /
E m; Aoy — E m; Ax;
i=1 i=1

= |U(P, f,a) —U(P, f,a)] < Me......(7T) and
|L(P, f,a) — L(P, f,a)| < Me.......(8)
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Since € is arbitrary, (7) and (8)

= U(P, f,a) =U(P, f,d) and
L(P, f,a) = L(P, f,d)
= infU(P, f,a) =inf U(P, f,a’) and
sup L(P, f,a) = sup L(P, f, ')

b

a

e ' (fol)do = / ' (fa')da (by (9) and (10))
o f(a) eR.
Now, /abfdoz:/jfda
-/ '(fal)z (by(9))
_ /a " fol)da
_ / " Fw)a (x)da

.‘./abfda:/abf(x)a’(x)dx

Remark 4.22 The above theorem gives the relation of R integral and R(«)
integral.

Theorem 4.23 Change of Variable: Suppose ¢ is a strictly increasing
function that maps an interval [A, B] onto [a,b]. Suppose o is monotoni-
cally increasing on [a,b] and f € R(a) on [a,b]. Define 5 and g on [A, B]
by B(y) = a(é(v)), 9(y) = f(#(v)), then g € R(B) and [ gd(B) = [, fdo
Proof: g(y) = (f- )z = f(o(y)) = f(=)
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Let P = {x0,x1,%2,...,xy} be any partition of [a,b]. Since ¢ is onto for
each i, there exists y; € [A, B] such that ¢(y;) = x;, i = 0,1,2,...,n.
{v0,Y1, Y2, ..., yn} is a partition of [A, B] every partition of [A, B] can be
obtained in this way (since ¢ is monotonically increasing)

For y € [yi-1, yil
9(y) = (f o)y
9(y) = f(6(y))
= f(x) where z = ¢(y), = € [zj—1, 2]
= sup g(y) = sup f(z)

Mt = M. (2)
Now AB; = B(yi) — B(yi-1)
= (a0 d)y; — (o P)yi—1
= a(d(yi)) — a((yi-1))

= a(x;) — a(zi-1)

~UQ,9,8) = M{AB;

=1

3" MiAar (by (1) and (3))
=1

=U(P, f,a)....(4)
Similarly L(Q, g, 5) = L(P, f, )......(5)

Since f € R(«a), given € > 0, there exists a partition P of [a, b] such that

U(P, f,a) — L(P, f,a) <e€
= U(Q,9,8) — L(Q,g,5) < € (by (4) and (5))
g €R(B)
B
Also / gdp =infU(Q, g, )
A
= inf U(P, f, ) (by (4))

—/abfda.
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Note 4.24 Let a(xz) =z and ¢' € R on [A, B].

B b
/ gdf = / fda (by previous theorem)
A a

[ stz = [ ga

=/ABgd¢>

= /A "’ 9(y)¢' (y)dy (by theorem F21)

Integrations and Differentiations:

Theorem 4.25 Let f € R on [a,b], for a < x < b, put F(z) = [ f(t)dt,
then F is continuous on [a,b], further more if f is continuous at some point
xo of [a,b], then F is differentiable at xo and F'(xo) = f(xo).

Proof: Given F(z) = [ f(t)dt. To Prove: F(z) is continuous on [a,b]. Let
a<x<y<b Now,

Fly)~Fla) = [ st~ [ rwae
:/;f(t)dtJr/jf(t)dt—/:f(t)dt
:/:f(t)dt
= |Fw) - F@)| = | [
< [(ia

y
§/ Mdt where M = sup |f(t)|, t € [a,b]

=M(y — =)
(ie.) [F(y) = F(z)| < Mly — 2| (- (y — 2) = 0)

Given € > 0, there exists 6 = ;7 such that |y — 2| < d = [F(y) — F(z)| <€
(i.e.) F'is continuous on [a,b]. (infact F' is uniformly continuous on [a, b]).
Suppose f is continuous at xg € [a,b]. To Prove: F'(xzg) = f(xzo). Given
€ > 0, there exists 6 > 0 such that [t — xo| < 0 = |f(t) — f(xo)| < € for
t € la,bl.... (1)



95

Let g —0 < s <xg <t <zxzp+9d. Now,

s :/atf(t)dt—/asf(t)dt
:/asf(t)dt+/stf(t)dt_/:f(t)dt

P~ F(s) = [

LEOZFS L
= HOZEE gy = [ pwar-
F(?:f(«?) ~ Fmg) = 1{/tf t)dt — (t — 5) f (w0)}
{/ dt—/ f (xo)dt}
= [0 - reona
0Py - \tis / t(f(t) ~ fan))at]
F(xo)|dt
< E/ dt (by (1
U2 )| <

It follows that F'(zg) = f(xo).

Theorem 4.26 The Fundamental Theorem of Calculus: If f € R
on [a,b] and if there is a differentiable function F such that F' = f, then
J? f(x)dz = F(b) — F(a).

Proof: Since f € R on [a,b], given € 0, there exists a partition P =
{0, x1,x2,...,2n} of [a,b] such that U(P, f) — L(P, f) < €...... (1)

Since F' is differentiable we can apply the mean value theorem to it on
[€i—1,x;]. There exists t; € [x;_1, z;] such that

F(z;) — F(xi—1) = (21 — 2) F'(t;)
= Ax;if(t;) (- F = f)

Summing over i, we get,

n n

D [F(zi) = F(zia)] =Y Azif(t:)

i=1 i=1
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By Theorem HE0(c), (1) implies that

Using (2) and (3) we get, \(F(b)—F(a))—f; f(z)dz| < e. Since € is arbitrary,
f; f(z)dz = F(b) — F(a). Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable
functions on [a,b],F' = f € R,G' = g € R, then

b b
/a f(@)g(z)dr = F(b)G(b) — F(a)G(a) —/a f(2)G(z)de.

Proof: Let H(x) = F(z)G(x). ... H'(z) = F(2)G'(x) + F'(2)G(z) =
F(z)g(z) + f(z)G(x)....... (1)

Given f and g € R. Since F' and G are differentiable, they are continuous.
.. By Theorem BT, F and G are integrable (¢ R). ... By Theorem BEI0
F(z)g(z) + f(x)G(z) € R (i.e.) H'(z) € R. By fundamental theorem of
calculus,

/a " (@)di = H(b) — H(a)
b
(i.e.) /a (F(2)g(z) + f(2)G(x))dr = F(b)G(b) — F(a)G(a)
b b
= /a F(z)g(z)dz —i—/a f(z)G(x)dx = F(b)G(b) — F(a)G(a)

b b
- / F(a)g(x)dz = F(b)G(b) — F(a)G(a) — / F(2)G(z)dx

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let f1, fo, ..., f
be real functions on [a,b] and let f = (f1, f2, ..., fx) be a mapping of [a,b] —
RF. Suppose a increases monotonically on [a,b], then f € R(a) < for each
fi € R(«), and in this case

/:fda = (/abflda,/abfzda,...,/abfkda)

Theorem 4.29 Fundamental Theorem of calculus for vector valued
functions: If F, f map [a,b] into R¥ and if f € R on [a,b] and if F' = f
then [° f(t)dt = F(b) — F(a).

Proof: Let

f = (f17f27 7fk)
F=(F,F,..F)
F' = (F|,F},....F})
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Given F' = f. - (F{,F},... F) = (f1, for-s J&) = F/ = f; Vi=1,2,.. k.
Since f € R, each f; € R. .. By fundamental theorem of calculus, for any
i.

/ab f(t)dt = (/ab f1(t)dt, / f2(t) / Jr(t) t) (by definition)

a), F5(b) — Fa(a), ..., Fi(b) — Fi(a))
oo Fu(0)) — (Fi(a), Fa(a), ..., Fy(a))

(5) - F(a)
b
o [ it = Fo) — Fa)

Note 4.30 Schwartz inequality:

b < (ZH) (iw) (or)

1
n
> agb;
j=1

() (0]

Theorem 4.31 If f maps [a,b] into RF and if f € R( ) or some monotoni-
cally increasing function [a,b], then |f| € R(c) and | f (t)da| < f |f(t)|dae.
Proof:

f=(f1, far s f)
=+ B+ 5+ + )
Since f € R(«)
= fi e R(a) ¥ ok
= f2 € R(a)
= (ff+f+f+- +fk)€R(a)
= (ff+ [+ f; + ..+ [£)’ € R(a)(by Theorem ET7, ¢(t) = t'/?)
= |fl GR(G)

To Prove:
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Let y = f(f f(t)da. Tf § = 0, then the inequality is trivial (for, § = 0 =
LH.S=0and |f| > 0= [*|f(t)|da >0 (i.e.) R.HS > 0)
Let y #0

.'.gj:/abfda: (/abflda,/abfgda,...,/abfkda>

b
= (y17y27 7yk) where Yi = / flda
a

Now |g]> = y% +y2 4.4y

) gl = Zyz
:Zyiyi
i=1
k b
= 4 Z'dOé
;y(/af )
E b
:;A@mm
p k
:/ O wifi)da
@ =1
b/ k 1/2
S/a (2’%’2)

/2 , 1/2
(i-e.) [y < /(Z%) (fo) do

k 1/2
(Z | fz|2> da (by schwartz inequality)
i—1

b _
(i.e) 13 < 13 / |flda
b _
$MS/WM

[ 7ao] < [ |7lda

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that {f,} of function
n=1,2,... converges uniformly on E to a function f is every e > 0 there is

an integer N such that n > N = |f,(x) — f(x)] <e.
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Note 4.33 If {f,} converges pointwise on E, then there exists a function
f such that for every ¢ > 0 and for every x in E there is an integer N
depending on € and x such that |f,(z) — f(x)] < € ¥Yn > N. If {f.}
converges uniformly on E, it is possible for each € > 0, to find one integer
N which will do for all x in E. We say that the series Y o fn(z) converges
uniformly on E if the {sp} of partial sums defined by sp(z) = > iy fi(z)
converges uniformly on E.

Theorem 4.34 Cauchy’s Criterian for Uniform Convergence: The
sequence of functions {f,}, defined on E, converges uniformly on E iff for
every € > 0 there exists an integer N such thatn,m > N,x € E = |f,(x) —
fm(@)| < c.

Proof: For the ’only if’ part we assume that {f,,} — f uniformly. To Prove:
There exists N such that z € E n,m > N = |f,(z) — fm(x)] <e. Let e >0
such that |f,(z) — f(z)] < €/2...... (1) Y/n>N VzxeFE

Now, for n,m > N

[fn(@) = fm ()] = | fn(2) = f(2) + f(2) = fn(2)]
< fa(@) = f@)| +1f (@) = fm(2)]
<e/2+¢/2 (by (1))
(i-e.) [ fn(x) = fm(2)] < €

For the 'i f’ part we assume that there exists N > 0 such that n,m > N,z €
E=|fo(z) — f(z)] < e (2)

For fixed z, (2) implies that {f,(z)} is a cauchy sequence .. {f,(x)} —
f(@)(|fulx) = f(z)] = 0). To Prove: {f,} — f uniformly. In (2), keeping
n fixed and taking limit as m — oo we get |fn(z) — f(z)] < e Vn > N
Ve € E. . {fn} — f uniformly.

Theorem 4.35 Suppose

Jm fa = (@), (z € B),

Put M, = sup,cp | fn(x)— f(2)|, then {fn} — f uniformly on E iff M,, — 0
as n — oo.

Proof: For the ’only if’ part, we assume that {f,} — f. To Prove: M,, — 0
as n — oo0. By hypothesis, given ¢ > 0, there exists N > 0 such that
|fu(x) — f(z)] <€ Vn >N Vo € E = supz € E|f,(z) — f(x)] < €
Vn >N = M, <eVn > N (ie.) M, — 0asn — oco. For the ’if’
part, let M,, — 0 as n — oco. Then there exists N > 0 such that M,, < ¢
Vi > N = supeplfa(@) — f@)] <€ Vi > N S |falz) - f@)] < e
VYn > N,z € E = {f,} — f uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose
{fn} is a sequence of function defined on E and suppose that |fi(x)] < M,
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(x € E;n=1,2..) then " f, converges uniformly on E its Y M, converges.
Proof: Assume that > M, converges. To Prove: Y f,, converges uniformly.
Let € > 0 be given. Let {s,} and {¢,} be the sequences of partial sums of
> fn and Y M, respectively. Since Y. M, converges, {t,} also converges.
Since any convergence sequence is a Cauchy sequence {t,} is also a Cauchy
sequence. Then there exists N > 0 such that |t, —t,| <€ Vn,m > N. Let
m > n(> N)

—tm| = Z M| < e....... (1)
n+1
Now, for x € E,
|sn(x) — sm(z)| = Z fr(z
n+1
<> | frl(=)
n+1

<3 My < e (by (1)

n+1

“sn(x) — sm(x)] < €

". By Cauchy’s criteria the {s,} converges uniformly on E. .. > f,
converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose { f,}
converges to f uniformly on a set E, in a metric space. Let x be a limit
point of E and suppose that limy_,, fn(t) = Ap(n = 1,2,3...), then {A,}
converges limy_,, f(t) = limy, 00 Ap. In other words lim;_,, lim, o f(t) =
hmn—mo hmt—m fn(t) .

Proof: Let € > 0 be given. Since {f,} converges to f uniformly on F, by
Theorem B34, there exists an integer N > 0 such that |f,(t) — fm(t)] <€
Vn,m > N,t € E...... (1)

Letting ¢t — x in (1) we get |4, — Ap| < e VYn,m > N(. limy,, = A,)
(i.e.) {A,} is a Cauchy sequence of real numbers. Since R is complete, {4, }
converges to some A( in R) (i.e.) {4,} — A. .. there exists N; > 0 such
that |4, — A| <¢€/3, Vn > Nj...... (2)

Now,

[f(@) = Al = [f() = fa(D)] + (fn(t) = An) + [(An — A)]
SUf@) = fu(®)] 4 [fa(t) = An| + (An = A)].......(3)

Since {f,} — f uniformly, there exists No > 0 such that | f,(t) — f(t)| < €/3
Vn > Noyt€ E...... (4)
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Since z is a limit point of F and "." limy_,, f,(t) = A, there exists a neigh-
bourhood V of x such that |f,(t) — A, <€/3 Vte VNE... (5)
Let N3 = max{Ny, Na}. Now using (2),(4) and (5) in (3) we get

If(t) — Al <€/3+¢/3+¢€/3¥n>N3VteVNE.
(i.e) [f(t) — Al <e
(i.e.) lim f(t) = A (or)

i Jim fo(6) =l 4,

= lim lim f,(t))

n—oo t—x
~ g f0) = g, An

Theorem 4.38 If {f,} is a sequence of continuous functions on E, and if
{fn} converges to f uniformly on E then f is continuous on E.
Proof: Enough To Prove: lim;_,, f(t) = f(x)

lim f(¢t) = lim lim f,(¢)) (. fn = f uniformly)

t—x t—x n—o0
%1_1}316 f(t) = nlggo(}gg fn(t)) (by Theorem H£=32)

= 7}1_%0 fn(z) (. frn is continuous)
= f(x) (. fn — f uniformly)

Remark 4.39 The converse of the above theorem need not be true. (i.e.)
a sequence of continuous function may converse to a continuous function,
although the convergence is not uniform.

Example 4.40 f,(z) = n?z(1 —22)", 0 <2 <1, n =1,2,3,... Clearly,
each fn is continuous. Also f is continuous. But the convergence is not
uniform. By Theorem [.34, for let

My, = sup |[fn(z) — f(2)]
z€]0,1]

= sup |n%z(l —2%)" -0
z€[0,1]
— 2 2\n
=n" sup {z(l —2°)"}
z€[0,1]

-+ 0 as n — oco.

By Theorem [-3d, the convergence is not uniform.

Theorem 4.41 [Dini’s Theorem] Suppose K is compact and
(a) {fn} is a sequence of continuous functions on K.

(b) {fn} converges pointwise to a continuous functions f on K.
(c) fn(x) > fryi(x) Ve e K, n=1,2,3...
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then fn, — f uniformly on K.

Proof: Given K is compact. Let g, = f, — f. Since each f,, is con-
tinuous and f is continuous, g, is continuous for all n. Since {f,} con-
verges pointwise to f, {g,} converges pointwise to 0. Since f,,(z) > fni1(z)
Vo € K, n=1,2... fu(z) — £(z) > far1(2) — £(2). (ie) gn(z) > gnir(a)
Vz, n=1,2.. (i.e.) {gn} is also a monotonic decreasing sequence. To prove
that { f,,} converges to f uniformly. It is enough to prove that {g,} converges
to 0 uniformly. Let € > 0 be given. For each n, let K,, = {z € K|gn(x) > €}.
Now,

K, = {IE S K|gn(9€) >€ [6700)}
={z € K|z € g, '[e,00)}

= gn '[€,00).

Since [e,0) is closed in R and g, is continuous, g, ![e,00) is closed in K.
(i.e.) K, is a closed subspace of the compact space K. ... K, is compact
(". every closed subspace of a compact space is compact). Claim: K, D
Kpy1, n=1,2,3... Let x € K41 = gnt1(z) > €. But gp(x) > gpt1(x) (by
(1)). . gn(z) > gnyi(z) > e = gp(z) > e=> 2 € K, -. Kpp1 C K. Fix
x € K. Since {g,} converges pointwise to 0. {g,(z)} — 0. Then there exists
N(x) > 0 such that |g,(z) — 0| <€ ¥Yn > N(z) = gn(z) <€ Vn> N(z) =
x ¢ K, VYn> N(z)=x ¢ (oo Kp. Since z is arbitrary, 7, K, = ¢ =
Ky = ¢ for some N. . gn(z) <e Vze K. But

0<gn(z) <gn(z)<eVzxe K, Vn>N
gn(z) <eVre K, Vn> N
(i.e.) |gn(x) — 0| < eVr € K, Vn > N

Hence {g,,} — 0 uniformly.
Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 f,(z) = #ﬂ’ 0<zxz<l1, n=1,23.{f.} — f pointwise

where f(z) = OVz € (0,1) and (0,1) is not compact. Clearly, each f, is
continuous. Also f is continuous. Now,

n+1>n
= (n+ 1)z >nx
=nm+Dz+1>nzr+1
N 1 < 1
(n+Dzx+1 nx+1

= fn+1($) < fn(l')
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= {fn} is a decreasing sequence. But {f,} — f uniformly. For, if {f,} — f
uniformly then, given € > 0, there exists N > 0 such that

|fn(z) — f(2)] <eVn >N, Vx € (0,1)
(i.e.)

— 0| <eV 0,1
nx+1 ‘6 v €(0,1)

<eV 0,1
nx—i—l‘_e z€(0,1)

1 1
Put z = —. Then§<e

" <
=

.. The convergence is not uniform.

Definition 4.44 If X is a metric space € (x) denotes the set of all complex
valued continuous bounded functions with domain X. €(X) ={f/f: X —
¢, f is continuous and bounded}. If X is compact, €(X)={f/f: X = ¢, f
is continuous} (. any continuous function on a compact space is bounded).
For any f in €(f), sup|| f|| = sup,ex |f(z)|, since f is bounded || f|| < oco.

Result 4.45 € (X) is a metric space. Given f,g € €(X) define

(@) d(f,g) = |lf —gll

= sup [f(x) — g(x)]
el

>0
s.d(f,g9) >0
(i) d(f,g) = sup|f(x) — g(z)|

zeFE

= sup [g(z) — f(2)]

)
= [lg— f|
=d(f,9)
(iii) d(f,g) =0 || f —gll =0
& sup | f(z) — g(z)]
)
< |f(z) —g(z)| =0Vz € E

& fz) =g(z)
& f=g
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(i) d(f,9) = If — 4l
= sup | f(z) — g(z)]

el
= sup |(f(z) = h(z)) + (h(z) = g(2))]
< sup{|(f(z) = h(@))[ + [(A(z) — 9(2))}
< sup |(f(x) — h(x))[ + sup [(f(z) — g(z))]
zel zeE
= |If =Rl + 1P =gl

=d(f,h) +d(h,g)
(i-e.) d(f,9) < d(f,h) +d(h,g)
S (F(X),d) is a metric space.

Result 4.46 (Analogue of Theorem [-33) A sequence {f,} — f with
respect to the metric space € (X) iff {fn} — [ uniformly on X.

Proof: ’only if’ part:

Assume that {f,,} — fin € (X). || fn — f|]| = 0asn — oo (i.e.) sup,cp | fn(z)—
f(z)] > 0asn — oo (ie.) M, — 0asn — oo (Theorem BZ33). {f,} — f
uniformly (by Theorem H£Z33)

’if” part:

Suppose {f,} — f uniformly. Then M, — 0 as n — oo (Theorem HB=33)
(i.e.) supz € El|fp(xz) — f(z)] — 0 as n — oo (ie)||fn—f]] — 0 as
n—o0. . {fn} = fin €(X)

Note 4.47 (i) Closed subsets of €(X) are called uniformly closed subsets.
(ii) If A C €(X) then the closure of A is called the uniform closure of A.

Theorem 4.48 % (X) is a complete metric space.

Proof: Let {f,} be a Cauchy sequence in ¢’ (X). Let ¢ > 0 be given. Then
there exists N > 0 such that || f, — fm]| <€ Vn,m > N..... (1)

(ie.) supep |fu(®) = fm(2)] < € Vn,m > N. = |fu(z) = fm(2)] < €
Vn,m > N,z € X. By Theorem B=34, guarantees that {f,} converges uni-
formly, say f. (i.e.) lim, o0 fn(z) = f(z),z € X. Claim: f € €(X). Since
each f, is continuous and {f,} — f uniformly (Theorem H£=38). Theorem
demands that f is also continuous. Again, since {f,} — f uniformly,
there exists N1 > 0 such that |f,(z) — f(z)| <1Vn > Nj,z € X. In partic-
ular, |fn, () — f(z)] < 1...... (2) Vx € X

Since fn, (z) € €(X),|fn, ()] < K......... (3) Ve e X

Now,

[f (@) = [(f (@) = fn, () + fv, ()]
[f (@) < |f(2) = fv (@) + | fov, ()]
<1+ K (by (2) and (3)) Vx € X
(i.e.) |[f(x)]| <1+ K Vz € K.
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*. f is bounded. Hence f € % (X). It remains to prove that {f,} — f in
¢(X). For, {fn} — f uniformly = M,, — 0 = sup,cx |fn(z) — f(z)] = 0
asn — oo (by Theorem B=33) = ||f, — f|| = 0asn — co. So {fn} — f
in the metric space €(X). ... €(X) is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let a be monotonically increasing on [a,b]. Suppose f, €
R(«) on [a,b] forn =1,2,3.... and suppose fn, — [ uniformly on [a,b] then
fn € R(a) on [a,b] and f(f fda = lim;, o ff fda.

Proof: Let €, = sup,<,<p |f(7) — fu(z)]....... (1) (Theorem HB=33)

Nf = ful <enVn=1,2,3...
_ng_fngen
:>fn_6n§f§fn+6n

:/ab(fn—en)dag/abfdozg/al;fdag/ab(fn+en)da ........ (2)

b b b b b b
:>/ fnda—/ endag/ fdag/ fdag/ fnda—i—/ enda
b b 7b b b b
:>/ fda—/fdag(/ fnda—i-/enda)—(/ fnda—/ enda)
- b
:2/ endo
—26n/ do

= 2en[a(b) — a(a)]

(i.e.) /ab fdo — /b fda < 2en(a(b) — ala))

0(C.€,—0 as f, — f uniformly by theorem £=33)
/ fda = / fda

Hence f € R(a). IT part: To prove:

b ' b
/afda:nh_{rolo/a frnda
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Now, (2)=

/ab(fn —ep)da < /bfda < /b(fn + €p)da

b b ab ab b
/fnda—/ endag/ fdag/ fnda—l—/ endo
ab ¢ b ab ab ¢ b
:>/ fnda—en/ dag/ fdag/ fndoz—}—en/ do
a ab ab ab ab
:>—6n/ dag/ fda—/ fndozgen/ do
b b b
/fda—/ frnda Sen/ da

= en(a(b) — a(a))
—0asn— oo (. €, = 0)

] b b
1}1_)1130/(1 fnda:/a fda.

Corollary 4.50 If f, € R(a) on [a,b] and if f(z) = > 02 fa(x)(a <z <
b), the series converges uniformly on [a,b], then ff fda=3"0", f; fnda.(the
series may be integrated term by term,)

Proof: Given ) f, = f (uniformly). Let s, = > p_; fx. By hypothesis
{sn} — f uniformly. By Theorem &9,

b b
/ fda = lim / Spda
a n—oo a

= lim ' (Zn: fk> da
n—oo a 1
-t 3 ([ o)

k=1

o h
=> [ frdo

k=179

=




