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Unit - I Metric Spaces  
  

Introduction  

A Metric Space is a set equipped with a distance function, also called a metric, which enables us to 

measure the distance between two elements in the set.  

1.1 Definition And Examples  

Definition 1.1.1 A Metric Space is a non empty set M together with a function d : M × M → 

R satisfying the following conditions.  

(i) d(x , y) ≥ 0 for all x , y ε M  

(ii) d(x , y) = 0 if and only if x = y  

(iii) d(x , y) = d(y , x) for all x , y ε M  

(iv) d(x , z) ≤  d(x , y) + d(y , z) for all x , y , z ε M [ Triangle Inequality ] d is 

called a metric or distance function on M and d(x , y) is called the distance between x and y 

in M. The metric space M with the metric d is denoted by (M , d) or simply by M when the 

underlying metric is clear from the context.  

Example 1.1.2 Let R be the set of all real numbers. Define a function d : M × M → R by d(x , y) = | x 

– y |. Then d is a metric on R called the usual metric on R.  

Proof.  

Let x , y ε R.  

Clearly d(x , y) = | x – y | ≥  0.  

Moreover, d(x , y )= 0 ⇔ |x – y | =  0.  

   ⇔ x – y  =  0.  

                                                   ⇔  x = y  

d(x , y) = | x – y |                         

= | y – x |                       

   = d(y ,x).  

  ∴ d(x , y) = d(y , x).  

Let x , y , z ε R. d(x , z) 

= x – z |  



            = x – y + y - z |  

            ≤ x – y |+y – z |  

            = d(x , y) + d(y , z).  

 d(x , z) ≤ d(x , y) + d(y , z).  

Hence d is a metric on R.  

Note. When R is considered as a metric space without specifying its metric, it is the usual metric.  

Example 1.1.2  

Let M be any non-empty set. Define a function d : M x M R by d(x , y) =   

Then d is a metric on M called the discrete metric or trivial metric on M.  

Proof.  

Let x , y ε M.  

Clearly d(x , y) ≥ 0 and d(x , y ) = 0  x = y .  

Also, d(x , y) =   

                      = d(y , x) .  

Let x , y , z ε M.  

We shall prove that d(x , z) ≤ d(x , y) + d(y , z).  

Case (i) Suppose x = y = z.  

Then d(x , z) = 0 , d(x , y) = 0 , d(y , z) = 0 .  

 d(x , z) ≤ d(x , y) + d(y , z).  

Case (ii) Suppose x = y and z distinct.  

Then d(x , z) = 1 , d(x , y) = 0 , d(y , z) = 1 .  d(x , z) ≤ d(x 

, y) + d(y , z).  

Case (iii) Suppose x = z and y distinct.  

Then d(x , z) = 0 , d(x , y) = 1 , d(y , z) = 1 .  

 d(x , z) ≤ d(x , y) + d(y , z).  

Case (iv) Suppose y = z and x distinct.  



Then d(x , z) = 1 , d(x , y) = 1 , d(y , z) = 0.  

 d(x , z) ≤ d(x , y) + d(y , z).  

Case (v) Suppose x  y  z.  

Then d(x , z) = 1 , d(x , y) = 1 , d(y , z) = 1.  d(x , z) ≤ d(x 

, y) + d(y , z).  

In all the cases, d(x , z) ≤ d(x , y) + d(y , z).  

Hence d is a metric on M.  

1.2 OPEN SETS IN A METRIC SPACE  

Definition 1.2.1 Let (M , d) be a metric space. Let a  M and r be a positive real number. The open 

ball or the open sphere with center a and radius r is denoted by Bd (a , r) and is the subset of M 

defined by Bd (a , r) = {x  M ⁄d(a , x) < r}. We write B(a , r) for  if the metric d under 

consideration is clear.  

Note. Since d(a, a) = 0 < r, a  Bd (a , r).  

Examples 1.2.2  

1. In R with usual metric B(a , r) = (a - r , a + r).  

2. In R2 with usual metric B(a , r) is  the interior of the circle with center a 

and  radius r.  

3. In a discrete metric space M, B(a , r) =   

1 

Definition 1.2.3 Let (M , d) be a metric space. A subset A of M is said to be open in M if for each x A 

there exists a real number r > 0 such that B(x , r) A.  

Note. By the definition of open set, it is clear that  and M are open sets.  

Examples 1.2.3  

1. Any open interval (a , b) is an open set in R with usual metric.  

For,  

Let x  (a , b).  

Choose a real number r such that 0 < r ≤ min { x-a , b-x }.  

Then B(x , r) ⊆ (a , b). ∴ (a , 

b) is open in R.  

2. Every subset of a discrete metric space M is open.  

For,  

Let A be a subset of M.  



If A = ∅, then A is open.  

Otherwise, let x ∈ A.  

Choose a real number r such that 0 < r ≤ 1.  

Then B(x , r) = { x } ⊆ A and hence A is open.  

3. Set of all rational numbers Q is not open in R. For,  

Let x ∈Q.  

For any real number r > 0, B(x , r) = (x - r , x + r) contains both rational and irrational 

numbers.  

∴ B(x , r) ⊈ Q and hence Q is not open.  

Theorem 1.2.4 Let (M , d) be a metric space. Then each open ball in M is an open set.  

Proof.   

Let B(a ,r) be an open ball in M.  

Let x ∈ B(a , r).  

Then d(a , x) < r.  

Take r1= r – d(a , x). Then r1 > 0.  

We claim that B( x , r1) ⊆ B( a , r).  

Let yϵ B( x , r1). Then d(x , y) < r1.  

Now, d(a , y) ≤ d(a , x) + d(x , y)  

<d(a , x) + r1  

= d(a , x) + r – d(a , x) = r.  

∴d(a , y) < r.  

∴y ∈ B(a , r).  

∴ B( x , r1) ⊆ B( a , r).  

Hence B(a , r) is an open ball.  

Theorem1.2.5  In any metric space M, the union of open sets is open.  

Proof.  

Let Aα  be a family of open sets in M.  

We have to prove A =  Aα is open in M.  

Let x  A.  



Then x  Aα for some .  

Since Aα is open, there exists an open ball B(x , r) such that B(x , r)  Aα.  

 B(x , r)  A.  

Hence A is open in M.  

Theorem 1.2.6 In any metric space M, the intersection of a finite number of open sets is open.  

Proof.  

Let A1, A , ….,An be open sets in M.  

We have to prove A = A1  A  ….  Anis open in M.  

Let x  A.  

Then x  Ai i = 1, 2, … , n.  

Since each Ai is open, there  exists an open ball B(x , ri) such that B(x , ri)  Ai.  

Take r = min { r1 , r2 , … , rn }.  

Clearly r > 0 and B(x , r)  B(x , ri)   i = 1, 2, … , n.  

Hence B(x , r)  Ai  i = 1, 2, … , n.  

 B(x , r)  A.  

 A is open in M.  

Theorem 1.2.7 Let (M , d) be a metric space and A  M. Then A is open in M if and only if A can be 

expressed as union of open balls.  

Proof.  

Suppose that A is open in M.  

Then for each x  A there exists an open ball B(x ,rx) such that  B(x , rx)  A.  

 A = .  

Thus A is expressed as union of open balls.  

Conversely, assume that A can be expressed as union of open balls.  

Since open balls are open and union of open sets is open, A is open.  

1.3 Interior of a set  



Definition1.3.1 Let (M , d) be a metric space and A  M. A point x  A is said to be an interior point 

of A if there exists a real number r > 0 such that B(x , r)  A. The set of all interior points is called as 

interior of A and is denoted by Int A.  

Note1.3.2 Int A  A.  

Example1.3.3In R with usual metric, let A = [1 , 2]. 1 is not an interior points of A, since for any real 

number r > 0 , B(1 , r) = (1 – r , 1 + r) contains real numbers less than 1. Similarly, 2 is also not an 

interior point of A. In fact every point of (1 , 2) is a limit point of A. Hence  IntA = (1 , 2).  

Note1.3.4(1)Int  =   and Int M = M.  

(2) A is open Int A = A.  

(3) A  B Int A  Int B  

Theorem1.3.5 Let (M , d) be a metric space and A  M. Then Int A = Union of all open sets 

contained in A.  

Proof.  

Let G = { B / B is an open set contained in A } We have to 

prove Int A = G.  

Let x  Int A .  

Then x is an interior point of A.  

 there exists a real number r > 0 such that B(x , r)  A.  

Since open balls are open, B(x , r) is an open set contained in A.  

 B(x , r)  G.  

∴x ∈ G .  

∴Int A ⊆ G             ……………………………..  (1)  

Let x ∈ G .  

Then there exists an open se B such that B ⊆ A and x ∈ B.  

Since B is open and x ∈ B, there exists a real number r > 0 such that B(x , r) ⊆ B ⊆ A.  

∴ x is an interior point of A.  

∴ x ∈ Int A .  

∴ G ⊆ Int A              …………………………..  (2) From (1) and (2), we get 

Int A = G.  



Note1.3.6 Int A is an open set and it is the largest open set contained in A.  

Theorem1.3.7 Let M be a metric space and A , B ⊆ M. Then  

(1)  Int (A ∩ B) = (Int A)  ∩ (Int A) (2) 

 Int (A ∪ B) ⊇ (Int A)  ∪ (Int A) Proof.  

(1) A ∩ B ⊆ A ⇒Int (A ∩ B) ⊆ Int A .  

Similarly, Int (A ∩ B) ⊆Int B .  

∴Int (A ∩ B) ⊆ (Int A)  ∩ (Int A)     ……………………………  (a) IntA ⊆ A and Int B ⊆ B .  

∴ (Int A)  ∩ (Int A) ⊆ A ∩ B  

Now, (Int A)  ∩ (Int A) is an open set contained in A ∩B .  

But, Int (A ∩ B) is the largest open set contained in A ∩B .  

∴(Int A)  ∩ (Int A) ⊆ Int (A ∩ B)   ……………………………..  (b)  

From (a) and (b) , we get Int (A ∩ B) = (Int A)  ∩ (Int A)  

  

(2) A ⊆ A ∪ B⇒Int A⊆ Int (A ∪ B)  

Similarly, Int B⊆ Int (A ∪ B)  

∴Int (A ∪ B) ⊇ (Int A)  ∪ (Int A)  

Note1.3.8 Int (A  B)need not be equal to(Int A)  (Int A)  

For,  

In R with usual metric, let A = (0 , 1] and B = (1 , 2).  

A  B = (0 , 2).  

Int (A  B) = (0 , 2)  

Now, Int A (0 , 1) and Int B = (1 , 2) and hence (Int A)  (Int A) = (0 , 2) – { 2 }.  

Int (A  B) (Int A)  (Int A)  

1.4 Subspace  

Definition1.4.1 Let (M , d) be a metric space. Let M1 be a nonempty subset of M. Then M1 is also a 

metric space under the same metric d. We call (M1 , d) is a subspace of (M, d).  

Theorem1.4.2 Let M be a metric space and M1 a subspace of M. Let A ⊆ M1. Then A is open in M1 if 

and only if A = G  M1 where G is open in M.  

Proof.  



Let B1(a , r) be the open ball in M1 with center a and radius r.  

Then B1(a , r) = B(a , r)  M1where B(a , r) is the open ball in M with center a and radius r.  

Let A be an open set in M1.  

Then A = x A B1(x , r(x))  

             = x A [B(x , r(x)) ∩ M1)]  

             = x A B(x , r(x))]  M1  

            = G  M1 where G =  x A B(x , r(x)) which is open in M.  

Conversely, let A = G  M1 where G is open in M.  

We shall prove that A is open in M1.  

Let x A .  

Then x  G and x  M1.  

Since G is open in M, there exists an open ball B(x , r) such that  B(x , r)  G.  

∴ B(x , r) ∩ M1 ⊆ G ∩ M1.  

i.e. B1(a , r) ⊆ A.  

∴ A is open in M1.  

Example1.4.3 Consider the subspace M1 = [0 , 1] ∪ [2 , 3] of R.  

A = [0 , 1] is open in M1 since A = (-  where (-  , )is open in R.  

Similarly, B = [2 , 3], C = [0 , ], D = (  1] are open in M1.  

Note that A, B, C, D are not open in R.  

1.5 Closed Sets.  

Definition1.5.1A subset A of a metric space M is said to be closed in M if its complement is open in 

M.  

Examples 1.5.2  

1. In R with usual metric any closed interval [a , b] is closed. For,  

[a , b]c = R – [a , b] = ( - ∞ , a) ∪ (b , ∞).  

( - ∞ , a) and(b , ∞) are open sets in R and hence ( - ∞ , a) ∪ (b , ∞) is open in R. i.e. [a , b]c is open 

in R.  

  



∴ [a , b] is open in R.  

2. Any subset A of a discrete metric space M is closed since Ac is open as every subset of M is 

open.  

Note. In any metric space M, ∅ and M are closed sets since ∅c = M and Mc = ∅ which are open in M. 

Thus ∅ and M are both open and closed in M.  

Theorem 1.5.3 In any metric space M, the union of a finite number of closed sets is closed.  

Proof.  

Let A1, A2, …. , An be closed sets in a metric space M.  

Let A = A1 ∪ A2 ∪ …. ∪ An.  

We have to prove A is open in M.  

Now, Ac = [ A1  A  ….  An]c  

’s law.] Since 

Aiis closed in M, A cis open in M.  

Since finite intersection of open sets is open, A open in M. i.e. Ac is open 

in M.  

 A is closed in M.  

Theorem 1.5.4 In any metric space M, the intersection of closed sets is closed.  

Proof.  

Let Aα  be a family of closed sets in M.  

We have to prove A =  Aα is open in M.  

Now, Ac = (  Aα)c  

               ’s law.]  

Since Aα is closed in M, Ac
α is open in M. Since union of 

open sets is open,  is open.  

i.e. Ac  is open in M.  

 A is closed in M.  

Theorem 1.5.5 Let M1 be a subspace of a metric space M. Let F1  M1. Then F1 is closed in M1 if and 

only if F1 = F  M1 where F is a closed set in M.  



Proof.  

Suppose that F1 is closed in M1.  

Then M1 – F1 is open in M1.  

 M1 – F1 = A  M1 where A is open in M.  

Now, F1 = Ac  M1.  

Since A is open in M, Ac is closed in M.  

Thus, F1 = F  M1 where F = Ac is closed in M.  

Conversely, assume that F1 = F  M1 where F  is closed in M.  

Since F is closed in M, Fc is open in M.  

 Fc  M1 is open in M1.  

Now, M1 – F1 = Fc  M1 which is open in M1.  

 F1 is closed in M1.  

1.6 Closure.  

Definition1.6.1 Let A be a subset of a metric space (M , d). The closure of A, denoted by A , is 

defined as the intersection of all closed sets which contain A.  

i.e. A  = ∩ B B is closed in M and B  A   

Note 1.6.2  

(1) Since intersection of closed sets is closed, A  is a closed set.  

(2) A  A.  

(3) A is the smallest closed set containing A.  

(4) A is closed  A = A  .  

 
(5) A = A  .  

Theorem 1.6.3Let (M , d) be a metric space. Let A , B  M. Then  

(1) A  B  A B   

(2) A  B = A  B   

(3) A∩B  A  B   

Proof.  

(1) Let A  B . B   B  A.  

Thus B  is a closed set containing A.  

But A  is the smallest closed set containing A.  

  

  

  



  A  B  .  

(2) A  A  B.  

by (1), A   A B  .  

Similarly , B   A B  .  

  A  B   A B                        ……………………….. (a)  

A is a closed set containing A and B  is a closed set containing B.  

  A  B is a closed set containing A  B .  

But A B  is the smallest closed set containing A B .  

A B   A B                            ……………………….. (b) From (a) and (b) 

we get A B  = A  B  .  

(3) A  B  A.  

  A∩B A  .  

 Similarly, A∩B B  .  

 A∩B  A  B  

Note1.6.4 A∩B  need not be equal to A

 B  .  

For example, in R with usual metric take A = (0 , 1) and B = (1 , 2) .  

A  B = A∩B  =  .  

 But A  B  = [0 , 1]  [1 , 2] = { 1 }.  

   A∩B  ≠ A B  .  

1.7 Limit Point.  

Definition 1.7.1 Let (M , d) be a metric space and A  M. A point x  M is said to be a limit point of A 

if every open ball with center x contains a point of A other than x.  

i.e. B(x , r)  ( A – { x } ) ≠  for all r > 0.  

 
The set of all limit points of A is denoted by A.  

Example 1.7.2 In R with usual metric let A = (0 , 1).  

Every open ball with center 0, B(0 , r) = (-r , r) contains points of (0 , 1) other than 0.  

 0 is a limit point of A.  

Similarly, 1 is a limit point of A and in fact every point of A is also a limit Point of A. For each real 

number x < 0, if we choose r such that 0 < r  x  , then B(x , r)  

  



2 contains no point of ( 0 , 1) , and hence x is not a limit point of limit point of A.  

Similarly, every real number x > 0 is not a limit point of A.  

Hence A = [0 , 1].  

Example 1.7.3 In R with usual metric, Z has no limit point.  

For,  

Let x be any real number.  

If x is an integer, then B(x , ) = (x -  , x + ) has no integer other than x.  x is not a 

limit point of Z .  

If x is not an integer, choose r such that 0 < r < x-n  where n is the integer closest to x.  

Then B(x , r) = (x – r , x + r) contains no integer.  

Hence x is not a limit point of Z.  

Thus no real number x is a limit point of Z.  

 Z  =  .  

Example 1.7.4 In R with usual metric, every real number is a limit point of Q .  

For,  

Let x be any real number.  

Every open ball B(x , r) = (x – r , x + r) contains infinite number of rational numbers.  

 x is a limit point of Q.  

 
 Q = R.  

Theorem 1.7.5 Let (M , d) be a metric space and A  M. Then x is a limit point of A if and only if 

every open ball with center x contains infinite number of points of A.  

Proof.  

Let x be a limit point of A.  

We have to prove every open ball with center x contains infinite number of points of A.  

Suppose not.  

Then there exists an open ball B(x , r) contains only a finite number of points of A and hence 

of (A – { x }).  

Let B(x , r)  ( A – { x } ) = x1,  x2, …. , xn .  



Let r1 = min { d(x , xi) / i = 1 , 2 , ….. , n }.  

Since x ≠ xi , d(x , xi) > 0  i = 1 , 2 , …… , n and hence r1 > 0.  

Moreover, B(x , r1)  ( A – { x } ) =  .  x is not a 

limit point of A.  

This is a contradiction.  

∴ every open ball with center x contains infinite number of points of A.  

Conversely, assume that every open ball with center x contains infinite number of points of 

A.  

Then, every open ball with center x contains infinite number of points of  A – { x }.  

Hence x is a limit point of A.  

Note 1.7.6 Any finite subset of a metric space has no limit points.  

Theorem 1.7.7 Let M be a metric space and A ⊆ M. Then A = A∪ A  .  

Proof.  

Let x ∈A∪ A  .  

We claim that x ∈ A .  

Suppose x ∉ A .  

Then, x ∈ M - A .  

Since A is closed , M - A is open.  

∴ there exists an open ball B(x , r) such that B(x , r) ⊆ M - A .  

∴ B(x , r) ∩ A = ∅ .  

∴ B(x , r) ∩ A = ∅ . [ ∵ A ⊆A ].  

∴ x ∉ A ∪ A  , which is a contradiction.  

∴ x ∈ A .  

∴ A ∪ A ⊆A                  …………………………  (1)  

Let  x ∈ A .  

We have to prove x ∈A∪ A  .  



If x ∈ A, then x ∈A∪ A  .  

Suppose x ∉ A.  

We claim that x ∈A .  

Suppose x  A.  

Then there exists an open ball B(x , r) such that B(x , r)  ( A – { x } ) =  .  

 B(x , r)   A =  . [  x  A ]  A  B(x , 

r)c .  

Since B(x , r) is open, B(x , r)c is closed.  

Thus B(x , r)c is a closed set containing A.  

But, A is the smallest closed set containing A.  

Hence A  B(x , r)c .  

Now, x  B(x , r)c .  

 x  A , which is a contradiction.  

x Aand hence x  A  A  .  

 
  A  A  A                ……………………………  (2)  

 
From (1) and (2), we get A = A  A .  

Corollary1.7.8 A is closed if and only if A contains all its limit points.  

Proof.  

  A is closed  A = A  .  

 A = A  A .  

 
A  A .  

Corollary 1.7.9 x  A  B(x , r)   A ≠  r > 0.  

Proof.  

 
x  A  x  A  A .  

 x  A  or x   A .  



If x  A , then x  B(x , r)   A .  

If x   A, then B(x , r)   (A – { x }) ≠  r > 0.  

Thus B(x , r)   A ≠  r > 0.  

Conversely, let B(x , r) ∩  A ≠ ∅ ∀ r > 0.  

We have to prove x ∈ A .  

If x ∈ A , then x ∈ A .  

If x ∉ A, then A = A – { x } .  

∴ B(x , r) ∩  (A – { x }) ≠ ∅ ∀ r > 0.  

∴ x is a limit point of A.  

∴ x ∈  A .  

∴ x ∈ A .  

Corollary 1.7.10  x ∈ A ⇔ G ∩ A ≠∅  for all open set G containing x.  

Proof.  

Let x ∈ A .  

We have to prove G ∩ A ≠∅  for all open set G containing x.  

Let G be an open set containing x.  

Then there exists an open ball B(x , r) such that B(x , r) ⊆ G.  

Since x ∈ A , B(x , r) ∩ A ≠ ∅ and hence G ∩ A ≠ ∅.  

Conversely, assume that G ∩ A ≠ ∅ for every open set containing x.  

Then B(x , r) ∩  A ≠ ∅ ∀ r > 0.  

∴ x ∈ A .  

1.8 Bounded Sets in a Metric space.  

Definition 1.8.1 Let (M , d) be a metric space. A subset A of M is said to be bounded if there exists a 

positive real number k such that d(x , y) ≤ k ∀ x , y ∊ A.  

Example 1.8.2 Any finite subset A of a metric space (M , d) is bounded.  

For,  

Let A be any finite subset of M.  

If  A = ⌀  then  A is obviously bounded.  



Let A ≠ ⌀ .Then {d(x , y)/x , y ∊ A} is a finite set of real numbers.  

Let k = max {d(x , y)/x , y ∊ A}.  

Clearly d(x , y) ≤ k for all x , y ∊ A.  

∴ A is bounded.  

Example 1.8.3 [0,1] is a bounded subset of R with usual metric since d(x , y) ≤ 1 for all x , y ∊ [0,1].  

Example 1.8.4 (0 , ∞) is an unbounded subset of R.  

Example 1.8.5 Any subset A of a discrete metric space M is bounded since  d(x , y) ≤ 1 for all 

x , y ∊ A.  

Note 1.8.6 Every open ball B(x , r) in a metric space (M , d) is bounded.  

For,  

Let s , t ∊ B(x , r).  

d(s , t) ≤ d(s , x) + d(x , t) < r + r.  

∴ d(s , t) < 2r.  

Hence B(x , r) is bounded.  

Definition 1.8.7 Let (M , d) be a metric space and A ⊆ M. The diameter of A, denoted by d(A), is 

defined by d(A)= l.u.b {d(x , y)/x , y ∊ A}.  

Example 1.8.8 In R with usual metric the diameter of any interval is equal to the length of the 

interval. The diameter of [0 , 1] is 1.  

1.9 Complete Metric Spaces.  

Definition 1.9.1 Let (M , d) be a metric space. Let (xn) be a sequence in M. Let x ∈ M. We say that (xn) 

converges to x if for every 𝜀 > 0 there exists a positive integer N such that d(xn , x) < 𝜀 for all n ≥ N. If 

(xn) converges to x , then x is called a limit of (xn) and we write limn → ∞ xn = x or xn → x .  

Note 1.9.2 (1)   xn → x if and only if for every ε > 0 there exists a positive integer N such that xn ∈ B(x , 

ε) ∀ n ≥ N. Thus, the open ball B(x , r) contains all but a finite number of terms of the sequence.  

(2)   xn → x if and only if ( d(xn , x) ) → 0.  

Theorem 1.9.3 The limit of a convergent sequence in a metric space is unique.  

Proof.  

Let (M , d) be a metric space and let (xn) be a sequence in M.  

Suppose that (xn) has two limits say x and y.  



Let ε > 0 be given.  

Since xn → x , there exists a positive integer N1 such that d(xn , x) < ε/2 for all n ≥ N1.  

Since xn → y , there exists a positive integer N2 such that d(xn , x) < ε/2 for all n ≥ N2.  

Let N = max { N1 , N2 }.  

Then, d(x , y) ≤ d(x , xN) + d(xN , y)  

                       <   ε/2 + ε/2 ∴ d(x , 

y) < ε.  

Since ε > 0 is arbitrary , d(x , y) = 0.  

∴ x = y.  

Theorem1.9.4 Let (M, d) be a metric space and A ⊆ B. Then  

(i) X is a limit point of A ⇔ there exists a sequence (xn) of distinct points in A such that 

xn → x .  

(ii) X ∈ A ⇔ there exists a sequence (xn)  in A such that xn → x .  

Proof.  

 (i)  Let x be a limit point of A.  

Then every open ball B(x , r) contains infinite number of points of A.  

Thus, for each natural number  n , we can choose xn ∈ B(x , 1n) such that  

xn ≠ x1, x2, x3, …. , xn-1 .  

Now, (xn) is a sequence of distinct points in A and d(xn , x) < n  n.  

∴ ( d(xn , x) ) → 0. ∴ xn 

→ x .  

Conversely, assume that there exists a sequence (xn) of distinct points in A such  that 

xn → x .  

We have to prove x is a limit point of A.  

Let it be given an open ball B(x , ε).  

Since xn → x , there exists a positive integer N such that  d(xn , x) < ε ∀ n 

≥ N.  

∴  xn ∈ B(x , ε) ∀ n ≥ N.  

Since xn are distinct points of A, B(x , ε) contains infinite number of points of A.  



Thus, every open ball with center x contains infinite number of points of A.  

Hence x is a limit point of A.  

 (ii)  Let x ∈ A .  

Then x ∈A ∪ A∣.  

If x ∈ A then the constant sequence x, x, x, ….. is a sequence in A converges to x.  

If x ∉ A, then x ∈A∣.  

∴ x is a limit point of A.  

∴ by (i), there exists a sequence (xn) in A converges to x.  

Conversely, assume that there exists a sequence (xn)  in A such that  xn → x .  

Then every open ball B(x , ε) contains points in the sequence and hence points of A. 

∴ x ∈ A .  

Definition 1.9.5 Let (M , d) be a metric space. Let (xn) be a sequence in M. Then (xn) is said to be a 

Cauchy sequence in M if for every ε > 0 there exists a positive integer N such that d(xn , xm) < ε for all 

n , m ≥ N.  

Theorem 1.9.6 Every convergent sequence in a metric space (M , d) is a Cauchy sequence.  

Proof. Let (xn) be a convergent sequence in M converges to x ∈ M.  

We have to prove (xn) is Cauchy.  

Let ε > 0 be given.  

Since xn → x , there exists a positive integer N such that d(xn , x) < ε/2 for all n ≥ N.  

∴ d(xn , xm) ≤ d(xn , x) + d(x , xm) < ε/2 + 

ε/2 for all n , m ≥ N.  

∴ d(xn , xm) < ε for all n , m ≥ N.  

Hence (xn) is a Cauchy sequence.  

Definition1.9.7 A metric space M is said to be complete if every Cauchy sequence in M converges to 

a point in M.  

Example 1.9.8 R with usual metric is complete.  

Theorem 1.9.9 A subset A of a complete metric space M is complete if and only if A is closed.  

Proof.  

Suppose that A is complete.  

We have to prove A is closed.  



For that it is enough to prove A contains all its limit points.  

Let x be a limit point of A.  

Then there exists a sequence (xn) in A such that xn → x .  

Since A is complete x ∈ A.  

∴ A contains all its limit points.  

Hence A is closed.  

Conversely, assume that A is a closed subset of M.  

Let (xn) be a Cauchy sequence in A.  

Then (xn) be a Cauchy sequence in M.  

Since M is complete, there exists x ∈ M such that xn → x .  

Thus (xn) is a sequence in A such that xn → x .  

.  

Since A is closed A = A and hence x  A.  

Thus every Cauchy sequence (xn) in A converges to a point in A.  

 A is complete.  

Note 1.9.10 Every closed interval [a , b] with usual metric is complete since it is a closed subset of 

the complete metric space R.  

Theorem 1.9.11 [ Cantor’s Intersection Theorem ]  

Let M be a metric space. Then M is complete if and only if for every sequence ( Fn ) of nonempty 

closed subsets of M such that F1   .…Fn  …. and ( d(Fn ) )  0 ,  

.  

Proof.  

Let M be a complete metric space.  

Let ( Fn ) be a sequence of nonempty closed subsets of M such that  

F1  F2  …… Fn  ….                   …………………….  (1)  

and ( d(Fn ) )  0 ,                              ……………………  (2)  

We have to prove .  



For each natural number n , we choose a point xn in Fn.  

By (1), xn, xn+1, xn+2, …..  all lie in Fn.  

i.e. xm  Fn  m  n.                            …………………… (3) We claim that (xn) is a 

Cauchy sequence in M.  

Let  > 0 be given.  

Since ( d(Fn ) )  0 , there exists a positive integer N such that  d(Fn ) <   n  

N.  

In particular, d( FN ) <  .                  ……………………. (4) Now, let m , n  N.  

Then by (3), xm , xn  FN.  

 d(xm , xn) <  . [ By (4) ]  

Thus d(xm , xn) <   m , n  N.  

 (xn) is a Cauchy sequence in M.  

Since M is complete, there exists  x  M such that xn  x .  

We show that x .  

For any natural number n, xn, xn+1 , xn+2 is a sequence in Fn converges to x.  

.  

Since Fn is closed, Fn = Fn.  

 x  Fn.  

.  

Hence .  

Conversely, assume that for every sequence ( Fn ) of nonempty closed subsets of M such 

that F1  F2  … Fn  …. and ( d(Fn ) ) .  

We have to prove M is complete.  

Let (xn) be a Cauchy sequence in M.  

We claim that xn  x for some x  M.  



Define a decreasing sequence of sets F1  F2  …..  Fn  …… as follows  

F1 = x1 ,x2 , ….., xn , …… .  

F2 = x2 ,x3 , ….., xn , …… .  

…..    ……    ……..    …..  

…..   ……    …….   ……  

Fn = xn ,xn+1 , …..,…….. ..   

……    …..   …….   …….  

  ……..  Fn   ……  

Thus (Fn ) is a decreasing sequence of closed sets.  

Since (xn) is a Cauchy sequence, for given  > 0 there exists a positive integer N such that d(xn 

, xm) <    n,m  N.  d(FN) <  .  

Now, Fn ⊆ FN  n  N  d(Fn) <   n  N.  

But d(Fn) = d(Fn) .  

 N           ………………………….  (5)  

0 .  

Hence by hypothesis, .  

Let x .  

Then x , xn .  d(xn , 

x) .  

 d(xn , x) <    n  N  [ By (5) ]  xn 

  x .  

  M is complete.  



Note 1.9.12 In the above theorem Fn contains exactly one point, since if it contains distinct 

points x and y, then d(Fn)  d(x , y) for all n and hence ( d(Fn) ) does not converge to 0.  

1.10 Baire’s Category Theorem.  

Definition 1.10.1 A subset A of a metric space M is said to be nowhere dense in M if  

Int A =  .  

Definition 1.10.2 A subset A of a metric space M is said to be of first category in M if A can be 

expressed as a countable union of nowhere dense sets.  

If A is not of first category, then we say it is of second category.  

Example1.10.3 In R with usual metric, every finite subset A is nowhere dense.  

Example 1.10.4 In R with usual metric, the subset Q is of first category.  

For,  

Since Q is countable it can be expressed as countable union of singleton sets and each singleton set 

is nowhere dense in R.. Thus, Q is countable union of nowhere dense sets. Hence Q is of first 

category.  

Example 1.10.5 If M is a discrete metric space, then any nonempty subset A of M is not nowhere 

dense set. Also A is of second category.  

Theorem 1.10.6 Let M be a metric space and A ⊆ M. Then A is nowhere dense if and only if each 

nonempty open set contains an open ball disjoint from A.  

Proof.  

Suppose that A is nowhere dense.  

Let G be a nonempty open set.  

Since A is nowhere dense, Int A =  .  

 A does not contain G.  

 there exists x   G such that .  

 there exists an open ball B(x , r1) such that B(x , r1) ∩ A =  .  

G is open  there exists an open ball B(x , r2) such that B(x , r2) ⊆ G.  

Let r = min { r1 , r2 }.  

Then G contains B(x , r) and disjoint from A.  



Conversely, assume every nonempty open set contains an open ball disjoint from A.  

We claim that Int A =  .  

Let x  A .  

We claim that x is not an interior point of  A .  

Suppose x is an interior point.  

Then there exists an open ball B(x , r) such that  .  

Now, every open ball in B(x , r) intersects with A, which is a contradiction.  

Hence x is not an interior point of  A .  

 Int A =  .  

 A is nowhere dense set.  

Theorem 1.10.7 [Baire’s Category Theorem ] Any 

complete metric space is of second category.  

Proof.  

Let M be a complete metric space.  

We claim that M is not of first category.  

Let (An) be a countable collection of nowhere dense sets in M.  

We shall prove that  M.  

Since M is open and A1 is nowhere dense, there exists an open ball B1 of radius less than 1 such that 

B1  A1 =  .  

Let F1 be the concentric closed ball whose radius is  times that of B1.  

Now, Int F1 is open and A2 is nowhere dense.  

 Int F1 contains an open ball B2 of radius less than  such that B2  A2 =  .  

Let F2 be the concentric closed ball whose radius is  times that of B2.  

Now, Int F2 is open and A3 is nowhere dense.  



 Int F2 contains an open ball B3 of radius less than  such that B3  A3 =  .  

Let F3 be the concentric closed ball whose radius is  times that of B3.  

Proceeding like this we get a sequence of nonempty closed balls Fn such that  

F1  F2  …… Fn  …. and d( Fn ) < 2
1

n .  

 ( d(Fn ) )  0 as n   ∞ .  

Since M is complete, By Cantor’s intersection theorem, there exists a point x M  

Such that x .  

Moreover, Fn  An =   n .  

 x  An   n .  

.  

   ∞n=1 An  M.  

Hence M is of second category.  

Corollary 1.10.8 R is of second category.  

Proof.  

R is a complete metric space. Hence, R is of second category.  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Unit II CONTINUITY  
2.1 Continuity of functions.  

Definition 2.1.1 Let (M1 , d1) and (M2 , d2) be two metric spaces. Let a  M1. A function f : M1  → M2 is 

said to be continuous at a if  for each ε >0 , there exists δ >0 such that 0 < d1 x ,  a  < δ  d2 f(x) ,  

f(a)  < ε . The function f is said to be continuous if it is continuous at every point of M1.  

Note 2.1.2 d1 x,  a  < δ  d2 f(x) ,  f(a)  < ε   x  B a , δ  f x  B f a , ε .  

                              f B a, δ B f a , ε .  

Theorem 2.1.3 Let (M1, d1) and (M2, d2) be two metric spaces. A function f : M1  → M2 is continuous if 

and only if f-1 V  is open in M1 whenever V is open in M2.  

Proof. Assume that f is continuous.  

  Let V be open in M1.  

  We have to prove f-1 V  is open in M1.  

  If f-1 V  = φ , then it is open.  

  Let f-1 V  ≠ φ.  

  We shall prove that for each x f-1 V  there exists an open ball B(x , δ)     such that B(x , δ) 

 f-1 V .  

  Let  x  f-1 V . Then f (x)  V.  

  Since V is open, there exists an open ball B(f(x) , ε) such that   

   B(f(x) , ε )  V. ……..(1)  

  Now, since f is continuous, there exists an open ball  B(x , δ) such that    f(B(x , δ))   

B(f(x) , ε).   

  By (1), f(B(x , δ))  V and hence B(x , δ)  f-1 V .     

  



  f-1 V is open.  

  Conversely, assume that f-1 V  is open in M1 whenever V is open in M2.   

 To prove f is continuous, we shall prove that f is continuous at every point    of M1.   

 Let x M1 and let ε > 0 be given.  

  We know that, B(f(x) , ε) is an open set in M2.  

  By hypothesis, f-1(B(f(x) , ε)) is open in M1.  

  Also, x  f-1(B(f(x) , ε)) .  

   there exists δ >0 such that B(x , δ)  f-1(B(f(x) , ε)).  

   f(B(x , δ))   B(f(x) , ε).  

       f  is continuous at x.  

Since x  M1 is arbitrary, f is continuous on M1.  

Note 2.1.4 f is continuous if and only if inverse image of every open set is open.  

Theorem 2.1.5 Let (M1 , d1) and (M2 , d2) be two metric spaces. A function f : M1  → M2 is continuous 

if and only if f-1 W  is closed in M1 whenever W is closed in M2.  

Proof. Assume that f is continuous.  

  Let W be a closed set in M2.  

  Then W∁  is an open set in M2.  

  By hypothesis, f-1(W∁) is open in M1.  

  But f-1 W = f-1(W) .  

  f-1(W)  is open in M1.    f-1(W) is closed in 

M1.  

  Conversely, assume that   f-1 W  is closed in M1 whenever W is closed in M2.  

To prove f is continuous, we shall prove that f-1 V  is open in M1 whenever V is open in M2.  

  Let V be an open set in M2.  

    



 
   V is a closed set in M2.  

  By hypothesis,  f-1(V∁) is a closed set in M1.  

  (i.e) f-1(V)  is a closed set in M1.  

    f-1(V) is an open set in M1.  

 Thus, inverse image of every open set is open under f.   f is continuous.  

Note 2.1.6 f is continuous if and only if inverse image of every closed set is closed.  

Theorem 2.1.7 Let (M1 , d1) and (M2 , d2) be two metric spaces. Then f : M1  → M2 is  continuous if 

and only if f A  f (  A ) for all A ⊆ M1.  

Proof. Assume that f is continuous.  

  We have to prove f A   f ( A ) for all A  M1.  

  Let A  M1. Then f(A)  M2.  

  f ( A ) is a closed set in M2.  

  Since f is continuous, f-1(f ( A ) ) is closed in M1.  

  Since f ( A )  f(A), f-1(f ( A )   A .  

  But A  is the smallest closed set containing A.  

  A   f-1(f ( A ) ).  

 f( A  )  f ( A ) .  

  Conversely, let f A   f ( A ) for all A  M1.  

To prove f is continuous, we shall prove that f-1 W  is closed in M1 whenever W is closed in 

M2.  

Let W be a closed set in M2.  

  

By hypothesis, f(f-1(W)   ff -1 ( W ) .  

               W   

              = W (Since W is closed.).    



Thus, f(f-1(W)  

W. f-1(W)  

f-1 W  .  

Also, f-1 W   f-

1(W) .  f-1 W  = f-1(W) .  

Hence f-1 W  is closed.  

 f is continuous.  

Theorem 2.1.8 Let (M1 , d1) and (M2 , d2) be two metric spaces. Let x  M1. A function f : M1  → M2 is 

continuous at x if and only if  xn  → x in M1  f(xn)→ f(x) in M2.  

Proof.  

  Suppose that f is continuous at x.  

  Let ( xn  be a sequence in M1 such that  xn  → x .  

  We shall prove that f(xn) → f(x) .  

  Let ε > 0 be given.  

 Since f is continuous at x, there exists δ >0 such that   d1 y , x < δ  d2 

f(y) , f(x)  < ε   ………… (1).  

 Since  xn  → x , there exists positive integer N such that   d1  xn   , x < δ  n 

≥N .  

   d2 f( xn  ) , f(x)  < ε  n ≥N . [ By (1) ]  

   f(xn)→ f(x) .  

  Conversely, assume that  xn  → x   f(xn)→ f(x) .  

  We have to prove f is continuous at x.  

  Suppose not. Then there exists ε > 0 such that for all δ > 0   f(B(x , δ)) 

 B(f(x) , ε).  

  

  

    



  Thus for each 
natural number n, f

. n 

  Choose  xn  such that  xn  B( xn  , δ) but  f( xn    B(f(x) , ε) .    d1  xn   , x

< 1n for all n and d2 f( xn  ) , f(x)  ≥  ε for all n.  

   xn  → x and  f(xn) does not converge to f(x).  

This is a contradiction.  

     f is continuous at x.  

Problem 2.1.9 Let (M1 , d1) and (M2 , d2) be two metric spaces. Then prove that any constant function 

f : M1  → M2 is continuous.  

Solution.  

  Let f : M1  → M2 be given by f(x) = c where c  M2 is a constant.  

  We have to show that f is continuous.  

  Let V be an open set in M2.  

  Now, f-1(V) = 
 V 

.  

   In both cases , f-1(V) is an open set.  

  Thus, inverse image of every open set is open under f.  

 f is continuous.  

Problem 2.1.10 Let M1, M2, M3 be metric spaces. If f : M1  → M2 and g : M2  → M  are continuous, 

then prove that g f : M1  → M2 is also continuous.  

  i.e. composition of two continuous functions is continuous.   

Solution.  

  Let W be an open set in M3 .  

  Since g is continuous, g-1(W) is open in M2.  

  Since f is continuous, f-1(g-1(W)) is open in M1.  

Now, f-1(g-1(W)) = -1(W).  

  



 -1(W) is open in M1.  

Hence  is continuous.  

Problem 2.1.11 Let f be a continuous real valued function defined on a metric space M. Let A =  x  

Mf x ≥ a where a R . Prove that A is closed.  

Solution.  

  A =  x  Mf x ≥ a where a  R   

      =  x  M f x   [ a , ∞)   

      = f-1([ a , ∞) ).  

          Now,[ a , ∞) is a closed subset of R.  

         Since f is continuous, f-1([ a , ∞) ) is a closed subset of M.  

   A is closed.  

Problem 2.1.12 Let f : M  R and f : M  R be continuous functions. Prove that  f+g : M  R is 

continuous.  

Solution.  

  Let x  M .  

  We show that f + g is continuous at x.  

  Let  xn   be a sequence in M such that  xn  → x .  

  Since f and g are continuous, f(xn) → f(x) and g(xn) → g(x) .    f(xn) + 

g(xn) → f(x) +  g(x) .  

 i.e. f+g)(xn) → f+g)(x) .   f+g is 

continuous at x.  

Note 2.1.13 In a similar way, we can prove that f – g, fg, cf if c  R and f    

g 

   if g(x)  0  x  M are continuous.  

  

2.2 Homeomorphism.  

Definition 2.2.1 Let (M1 , d1) and (M2 , d2) be two metric spaces.   

    

  



A function  f : M1  → M2 is said to be a homeomorphism if the following holds.  

(1) f is a bijection.  

(2) f is continuous.  

(3) f-1 is continuous.  

M1 and M2 are said to be homeomorphic if there exists a homeomorphism between them.  

Definition 2.2.2 A function  f : M1  → M2 is said to be an open mapping if for every open set G in M1, 

f(G) is open in M2.  

i.e. image of every open set in M1 under f is open in M2.  

Definition 2.2.3 A function  f : M1  → M2 is said to be a closed mapping if for every closed set F in M1, 

f(F) is closed in M2.  

i.e. image of every closed set in M1 under f is closed in M2.  

Theorem 2.2.4 Let f : M1  → M2 be a bijection. Then the following are equivalent.  

(1) f is a homeomorphism  

(2) f is a continuous open map  

(3) f is a continuous closed map Proof.  

  We shall prove that (1) ⇔ (2)  and (1) ⇔ (3) .  

  Suppose that f is a homeomorphism.  

  Then f and f-1 are continuous.  

  We have to prove f is an open mapping.  

  Let G be an open set in M1.  

Since f-1 ∶ M2 → M1 is continuous, (f-1)−1(G) is open in M1.  

i.e. f(G) is open in M2.  

∴ f is an open map.  

Conversely, assume that f is a continuous open map.  

We prove that f-1 is continuous.  

Let G be an open set in M1.   

Since f is an open mapping, f(G) is open in M2.  

i.e. (f-1)−1(G) is open in M2.  



∴ f-1 is continuous.  

  The proof of  (1) ⇔ (3) is similar.  

Note 2.2.5 Let f : M1  → M2 be a homeomorphism. Then a subset G of M1 is open in M1 if and only if 

f(G) is open in M2.  

For,  

  Since f is a homeomorphism, f is a continuous open mapping.  

  Since f is open mapping, G is open in M1 ⇒ f(G) is open in M2.  

  Since f is continuous, f(G) is open in M2 ⇒ f-1(f(G)) = G is open in M1.  

∴ G is open in M1 ⇔ f(G) is open in M2.  

Thus a homeomorphism f : M1  → M2 gives not only a 1 – 1 correspondence between the 

elements of the two spaces but also a 1 – 1 correspondence between their open sets.  

Note 2.2.6 Let f : M1  → M2 be a homeomorphism. Then a subset F of M1 is closed in M1 if and only if 

f(F) is closed in M2.  

Example 2.2.7 The metric spaces (0 ,1) and (0 , ∞) with usual metric are homeomorphic.  

For,   Define f : (0 ,1) → (0 , ∞) by f(x) = x .  

1-x 

  We show that f is 1 – 1 and on to.  

  Let x , y ∈ (0 , 1).  

x y  

 f(x) = f(y)   

           ⇒ x (1 – y) = y (1 – x)  

           ⇒ x – x y = y – x y    

        ⇒ x = y .  

  Hence f is 1 – 1.  

  Let y ∈ (0 , ∞).  

x 

  Now, f(x) = y = y  

      ⇒ x = y (1 – x)  

      ⇒ x = y – xy  



      ⇒ x + xy = y  

      ⇒ x (1 + y) =y  

      ⇒ x =   

  (0 , 1) is the pre image of y under f.  

  ∴ f is on to.   Thus f is a bijection and hence f-1: (0 , ∞) → (0 , 1) by f(x) = x is a 

bijection.  

1 + x 

  Also, f and f-1 are continuous.  

  ∴ f is a homeomorphism.  

2.3 Uniform Continuity.  

Definition 2.3.1 Let (M1 , d1) and (M2 , d2) be a metric space. A function f : M1 → M2 is said to be 

uniformly continuous on M1, if for every ε > 0 there exists δ > 0 such that d1(x , y) < δ ⇒ d2(f(x) , f(y)) 

< ε .  

Note 2.3.2 Every uniformly continuous function is continuous but the converse need not be true.  

Example 2.3.3  The function f : [0 , 1] → R given by f(x) = x2 is uniformly continuous on [0 , 1].  

For,  

  Let ε > 0 be given.  

Let x , y  [0 , 1].  

  Now, f x - f(y)  = x2- y2    

           = x + y  x - y   

             2 x - y   

  Choose δ=  .  

 Then, x - y  < δ  f x - f(y)  < ε.   f is uniformly 

continuous on [0 , 1] .  

2.4 Discontinuities of R  



Definition 2.4.1  

 A function f: R R is said to approach to a limit  as x tends to a if given ε > 0 there exists δ > 0 such 

that 0 < |x-a|< δ  |f(x) -  | < 0 and we write .  

Definition 2.4.2  

A function f is that to have  as the right limit at x=a if given ε > 0 there exists  δ > 0 such that 

a < x < a + δ |f(x) -  |< ε and we write   

  Also we denote the right limit  by f(a+)  

A function f is that to have  as the right limit at x=a if given ε > 0 there exists  δ > 0 such that 

a < x < a – δ  |f(x) -  |< ε and we write   

  Also we denote the right limit  by f(a-)  

Note 1  

  f(x) =  if and only if .  

  i.e.   

f(x) =  if and only if  the left and right limits of  f(x) at x = a exist and are  

equal.  

Note 2  

  The definition of continuity of f at x=a can be formulated as follows.   f is 

continuous at a if and only if f(a+) = f(a-)=f(a) .    

Note 3  

  If f(x) does not exist then one of the following happens.  

1. f(x) does not exists.  

2. f(x) does not exists.  

3. f(x) and f(x) exists and are not equal.  

Definition 2.4.3  

 If a function f is discontinuous at a then a is called a point of discontinuity for the function.  

  If a is a point of discontinuity of a function then any one of the following cases arises.  

i. f(x) exists but is not equal to f(a).  

ii. f(x) and f(x) exists and are not equal.  

iii. Either f(x) or f(x) does not exists.  

Definition 2.4.4  



Let a be a point of discontinuity for f(x). a is said to be a point of discontinuity of the first 

kind if f(x) and ⁡⁡f(x) exists and both of them are finite and not equal. a is said to be a 

point of discontinuity of the second kind if either f(x) or f(x) does not exist.  

Definition 2.4.5  

 Let A⊆R. A function f :A  R is called monotonic increasing if x , y A and x<y ⟹ f(x) ≤ f(y).  

f is called monotonic decreasing if x, y A and x > y ⟹ f(x) ≥f(y).  

f is called monotonic if it is either monotonic increasing or monotonic decreasing.  

Theorem  2.4.6  

 Let f:[a, b]  R be a monotonic increasing function. Then f has a left limit and a right limit at every 

point of (a, b). Also f has a right limit at a and f has a left limit at b. Further  

  x < y ⟹ f(x+) ≤ f(y-)  

  Similar result is true for monotonic decreasing functions.  

Proof  

  Let f : [a, b]  R be monotonic increasing.  

  Let x [a, b]. Then {f(t) | a ≤ t < x} is bounded above by f(x).  

We claim that f(x-) = ℓ  

 Let ε >0 be given. By definition of l.u.b there exists t such that a ≤ t < x and  ℓ - ε < f(t) ≤ ℓ.  

∴ t < u < x⟹ ℓ- ε < f(t) ≤ f(u) ≤ ℓ  

      (∵ f is monotonic increasing)  

     ⟹ ℓ – ε < f(u) ≤ ℓ  

 ∴ x- δ < u< x ⟹ ℓ- ε < f(u) ≤ ℓ where δ = x-t  

∴ f(x-) = ℓ  

Similarly we can prove that f(x+) =g. l. b. {f(t) | x < t ≤ b}.  

Now we shall prove that x < y ⟹ f(x+) ≤ f(y-) Let x < y.  

Now, f(x+) = g.l.b {f(t)/x < t ≤ b}  

           = g.l.b {f(t)/x < t ≤ y}             (1)  

    (∵  f is monotonic increasing)  

Also f(y-)   = l.u.b {f(t)/a ≤ t < y}  

           = l.u.b {f(t)/x ≤ t < y}       (2)  

∴  f (x+) ≤ f (y-) [by (1) and (2)]  

The proof for monotonic decreasing functions is similar.  



Theorem 2.4.7  

  Let f:[a, b]  R be  a monotonic function. Then the set of points of [a, b] at which f is 

discontinuous is countable.  

Proof  

   We shall prove the theorem for a monotonic increasing function.  

  Let E = {x |x [a , b] and f is discontinuous at x}.  

  Let x E. Then f(x+) and f(x-)  exists and  f(x-) ≤ f(x) ≤ f(x+)  

  If f(x-) = f(x+) then f(x-) = f(x)=f(x+)  

  ∴ f is continuous at x, which is a contradiction.  

  ∴ f(x-) ≠ f(x+)  

  ∴ f(x-) < f(x+)  

Now choose a rational number r(x) such that f(x- ) < r(x) < f(x+)  

This defines a map r from E to Q which maps x to r(x).  

We claim that r is 1-l.  

Let x1 < x2 .   

  ∴ f(x1+) < f(x2-).    

Also f(x1-) < r(x1) < f (x1+)  

And  f(x2-) < r(x2) < f (x2+)  

  ∴ r(x1) < f(x1+) < f(x2-) < r(x2)   Thus 

x1 < x2 ⟹ r(x1) < r(x2).   ∴ r : E Q is 1 - l  

 ∴ E is countable.  

2.5 Connectedness  

Definition 2.5.1 A separation of a metric space M is a pair A, B of nonempty disjoint open subsets of 

M whose union is M.  

  M is said to be a connected metric space if there is no separation for M.  

Example 2.5.2 Any discrete metric space with more than one element is connected.  

  For,  

         Let M be a metric space with more than two elements.  

        Choose an element a ∈ M and let A = { a }.  

        Then Aс is a proper subset of M.  

        Now, A and Aс forms a separation of M.  



        ∴ M is not connected.  

Theorem 2.5.3 Let (M, d) be a metric space. Then M is connected if and only if ∅ and M are the  only 

sets which are both open and closed in M.  

Proof.  

  Suppose that M is connected.  

       We have to prove ∅ and M are the only sets which are both open and closed in M.  

  Suppose not.  

  Then there exists a proper subset A of M which is both open and closed in M.  

Now, A and Aс forms a separation of M, which is a contradiction.  

Conversely, assume that ∅ and M are the only sets which are both open and closed in M.  

We have to prove M is connected.  

Suppose not.  

Then there exists a separation A, B of M.  

A is a proper subset of M which is both open and closed in M, a contradiction.  

∴ M is connected.  

Theorem 2.5.4 Let (M , d) be a metric space. Then the following are equivalent.  

(i) The sets A and B form a separation of M.  

(ii) A and B are nonempty disjoint closed sets in M whose union is M.  

(iii) A and B are nonempty disjoint sets in M whose union is M and           A∩B  = 

A ∩B = ∅.  

Proof.  

 We shall prove that (i)  ⇔ (ii) and (ii) ⇔ (iii)  (i)  ⇒ (ii).  

  Suppose that A and B forms a separation of M.  

Then A and B are nonempty disjoint sets in M whose union is M.  

We have to prove A and B are closed in M.  

  Now, A = Bс and B = Aс.  

  Since A and B are open in M, Aс and Bс are closed in M.   

  i.e., A and B are closed in M.  

  ∴ (i)  ⇒ (ii).  



  The proof of (ii)  ⇒ (i) is similar.  

(ii) ⇒ (iii).  

       Suppose that A and B are nonempty disjoint closed sets in M whose union is M.  

We have to prove  A∩B  = A ∩B = ∅.  

  Since B is closed, B = B .  

  ∴ A∩B  = A∩B = ∅.  

  Similarly, A ∩B = ∅.  

(iii) ⇒ (i).  

  Suppose that A and B are nonempty disjoint sets in M whose union is M and   

A∩B  = A ∩B = ∅.  

We have to prove A and B are closed in M.  

Let x ∈ A .  

SinceA ∩B = ∅ , x ∉ B.  

Since A∪B = M, x ∈ A.  

 ∴ A  ⊆ A.  

But A ⊆ A .  

 ∴ A = A   and hence A is closed.  

Similarly, B is closed.  

Theorem 2.5.5 Let M be a connected metric space. Let A be a connected subset of M. If B is a subset 

of M such that  A ⊆ B ⊆ A  then B is connected. In particular, A  is connected.  

Proof.  

  Suppose B is not connected.  

  Then there exists a separation B1 , B2  of B.   

Since B1 and B2 are open in B, B1 = G1 ∩ B and B2 = G2 ∩ B, where G1 and G2 are open in M.  

  Now,B = B1 ∪ B2 = (G1 ∩ B)  ∪ (G2 ∩ B) = (G1  ∪ G2) ∩ B .  

  ∴ B ⊆ G1  ∪ G2 and hence A ⊆ G1  ∪ G2 .  

  Take  A1 = G1 ∩ A and A2 =  G2 ∩ A .  

Then A1 and A2 are open in A.  



  Also, A1  A2 = (G1 ∩ A)  (G2 ∩ A)  

                          = (G1   G2) ∩ A  

               = A [ Since A  G1   G2 ]  

    A1 ∩ A2 = (G1 ∩ A) ∩ (G2 ∩ A)  

                           = (G1  ∩ G2) ∩ A  

                 (G1  ∩ G2) ∩ B [ Since A  B]  

               = (G1 ∩ B)  (G2 ∩ B)    

                = B1  ∩ B2  

               =  .  

  Since A is connected, either A1 =  or A2 = .   Without loss of 

generality , assume that A1 =  .  

  i.e. G1 ∩ A =  .  

Since G1 is open, G1 ∩ A  =  .  

  G1 ∩ B =  . [ Since B  A  ]  

i.e. B1 =  , which is a contradiction.  

  B is connected .  

2.6 Connected subsets of R.  

Theorem 2.6.1 A subspace of R is connected if and only if it is an interval.  

Proof.  

  Suppose that A is a connected subset of R .  

  We have to prove A is an interval.  

  Suppose not .  

  Then, there exists a , b , c  R such that a < b < c and a , c  A but b  A .  

  Define A1 = ( - ∞ , b )  A and A2 = ( b ,  ∞ )  A .  

Since ( - ∞ , b ) and ( b ,  ∞ ) are open in R , A1 and A2 are open in A.  

  Moreover, A1  A2 =  and A1  A2 = A.  

Clearly a  A1 and c  A2 .  



  A1  and A2  .  

Thus, A is the union of a pair of nonempty disjoint open sets A1 and A2 .   

 A is not connected, which is a contradiction.  

Hence A is an interval.  

Conversely, assume that A is an interval.  

We have to prove A is connected.  

Suppose not.  

Then, there exists nonempty disjoint closed sets A1and A2 in A such     that A = A1 

 A2.  

Choose x  A1 and z  A2. Since A1 

 A2 =  , x   z.   x < z or z < x.  

Without loss of generality we assume that x < z.  

Now, x , z   A and A is an interval.  

  [x , z]  A  A1  A2.  

 Hence every element of [x , z] is either in A1 or in A2.  

Let y = l.u.b. { [x , z]  A1 } .  

Clearly x  y  z .  

 By the definition of l.u.b. , for each  > 0 there exists t  [x , z]  A1 such that  y –  < t  y .  

 (y –  , y + ε)  ([x , z]  A1)    ε > 0 .  

. .  

Since [x , z]  A1  is closed in A , y  [x , z]  A1   

∴ y ∈ A1.     ……………….. ( 1 )  

Again, by the definition of  y, for each ε > 0 there exists s ∈ A2 such     that y ≤ s <  

y + ε .  

∴ (y –  , y + ε) ∩ A2  ≠ ∅  ∀ ε > 0 .  

.  



Since A2 is closed in A, y ∈ A2 ………….. ( 2 )   ∴ y ∈ A1 ∩ A2 [ 

By ( 1 ) & ( 2 ) ].  

This is a contradiction to A1 ∩ A2 = ∅ .  

Hence A is connected.  

2.7 Connectedness and continuity.  

Theorem 2.7.1 Let M1 be a connected metric space. Let M2 be any metric space. Let  f : M1 → M2 be 

a continuous function. Then f( M1 ) is a connected subset of M2.  

  i.e. continuous image of a connected set is connected.  

Proof.  

  Let f ( M1 ) = A so that f is a continuous function from M1 on to A.  

  We claim that A is connected.  

  Suppose A is not connected.  

  Then, there exists a proper subset B of A which is both open and closed in A.  

  Hence f-1(B) is a proper subset of M1 which is both open and in M1.  

  ∴ M1 is not connected which is a contradiction.  

  Hence A is connected.  

Theorem 2.7.2 [ intermediate value Theorem ]  

  Let f be a real valued continuous function defined on an interval I. Then f takes every value 

between any two value it assumes.  

Proof.  

  Let a , b ∈ I and let f(a) ≠ f(b).  

  Without loss of generality we assume that f(a) < f(b).  

  Let c be a real number such that f(a) < c < f(b).  

  The interval I is a connected subset of R.  

  Since f is continuous, f(I) is a connected subset of R .  

  Hence f(I) is an interval.  

  Also f(a) , f(b) ∈ f(I). ∴ [f(a) , f(b)] ⊆ f(I) .   ∴ c ∈ f(I) . [ Since f(a) < c < f(b) ]   ∴ c = f(x) for some x ∈ I .  



  

  

  

Unit III Compactness  

3.1 Compact Metric Spaces.  

Definition 3.1.1 Let M be a metric space. A collection of open sets Gα  is said to be an open cover 

for M if  Gα = M. A sub collection of Gα  which itself is an open cover is called a subcover.  

Definition 3.1.2  A metric space M is said to be compact if every open cover for M has a finite 

subcover.  

i.e. for each collection of open sets Gα  such that  Gα = M , there exists a finite sub collection 

 such that  n
i=1 Gαi = M.  

Theorem 3.1.3 Let M be a metric space. Let A  M. Then A is compact if and only if for every 

collection Gα  of open sets in M such that  Gα  A there exists a finite sub collection 

 such that  n
i=1 Gαi  A.  

i.e. A is compact if and only if every open cover for A by sets open in M has a finite subcover.  

Proof.  

  Let A be a compact subset of M.  

  Let  Gα  be a collection  of open sets in M such that  Gα  A.  

  Then (  Gα)  A = A.  

   (Gα  A) = A.  

  Since Gα is open in M, Gα  A is open in A.  

  Gα A  is an open cover for A.  

          Since A is compact, this open cover has a finite subcover say  

  .  

  ni=1 Gαi  = A.  

   ( n
i=1 Gαi )  A = A.  

ni=1 Gαi  A.  



Conversely, assume that for every collection Gα  of open sets in M such that  Gα  A there 

exists a finite sub collection  such that  

 ni=1 Gαi  A.  

We have to prove A is compact.  

Let Hα  be an open cover for A.  

Then Hα is open in A .  

 Hα = Gα  A where Gα is open in M .  

Now Hα = A     (Gα  A) = A.  

                        (  Gα)  A = A.  

                       Gα  A.   

Hence by our assumption, there exists a finite sub collection  

G G  G  such that  n
i=1 Gαi  A.  

 ( n
i=1 Gαi )  A = A.  

n
i=1 Gαi  = A.  

n
I=1 HαI = A.  

         Thus  is a finite subcover of the given open cover Hα  of A.  

 A is compact.  

Theorem 3.1.4 Any compact subset A of a metric space (M , d) is closed.  

Proof.  

  We shall prove that Ac is open.  

  Let y  Ac .  

  Now, for each x  A , x ≠ y.  

   d(x , y) = rx > 0 and B(x , rx)  B(y , r.  

  Clearly the collection { B(x ,rx) / x  A } is an open cover for A by sets  open in M.  

  Since A is compact, there exists x1 , x2 , …. , xn  A such that  



 A             ……………………………….. (1)  

Let Vy .  

Then Vy  is an open set containing y.  

Since B(x ,  B(y ,  B(x ,  i = 1, 2, …. , n .  

.  

 Vy  A =  .     [ By (1) ]  

 Vy  Ac .  

Thus, for each y  Ac there exists an open set Vy containing y such that Vy Ac  

.  

 Ac = y Ac Vy .  

 Ac is open .  

Hence A is closed.  

Theorem 3.1.5 Any compact subset A of a metric space M is bounded.  

Proof.  

  Let x  A.  

  Now, { B(x , n) / n N } is an open cover for A by sets open in M.  

 Since A is compact, there exists natural numbers n1, n2, … , nk, such that  k
i=1 B(x ,  nk)  A.  

  Let N = max { n1, n2, … , nk}.  

  Then  k
i=1 B(x ,  nk) = B(x , N) .  

   B(x , N)  A.  

 Since B(x , N) is bounded and subset of a bounded set is bounded, A is bounded.  

Theorem 3.1.6 A closed subset A of a compact metric space M is compact.  

Proof.  

  Let  Gα  be a collection  of open sets in M such that  Gα  A.  

   Ac  Gα = M.  



  Since A is closed, Ac is open.  

  Gα  { Ac } is an open cover for M.  

  Since M is compact this open cover has a finite subcover say  

 .  

   ( n
i=1 Gαi )  Ac = M.  

  n
i=1 Gαi  A.  

  Hence A is compact.  

Theorem 3.1.7 [ Heine Borel Theorem ]  

  Any closed interval [a , b] is a compact subset of R.  

Proof.  

  Let Gα  be a collection of open sets in R such that  Gα  R.   Let S = { x  [a , b] / 

[a , x] can be covered by a finite number of Gα’s. }  

  Clearly a  S and hence S ≠ ⌀.  

  Since S is bounded above by b , l.u.b of S exists.  

  Let c = l.u.b of S.  

 Clearly c  [a , b].  

   c  G  for some index .  

  Since  is open , there exists  > 0 such that B(x , )  .  

i.e. (c –  , c + )  G .  

Choose x1  [a , b] such that x1 < c and [x1 , c]  G .  

Since x1 < c , [a , x1] is covered by a finite number of Gα’s.  

These finite number of Gα’s together with G  covers [a , c].  

∴ by the definition of S , c ∊ S.  

Now, we claim that c = b.  

Suppose c ≠ b.  

Then choose x2 ∊ [a , b] such that x2  > c and [c , x2] ⊆ G𝛼1 .  



Since [a , c] is covered by a finite number of Gα’s , these finite number of Gα’s together with 

G𝛼1 covers [a , x2].  

∴ x2 ∊ S , which is a contradiction to c is l.u.b of S [∵x2  > c ].  

Hence c = b.  

∴ [a , x] can be covered by a finite number of Gα’s.  

∴ [a , b] is a compact subset of R .  

Theorem 3.1.8 A subset A or R is compact if and only if A is closed and bounded.  

Proof.  

  If A is compact, then A is closed and bounded.  

  Conversely, assume that A is closed and bounded subset of R .  

Since A is bounded, A has a lower bound and an upper bound say a and b respectively.  

  Then A ⊆ [a , b].  

  Since A is closed in R , A ∩ [a , b] is closed in [a , b] .   I.e. A is 

closed in [a , b].  

  Thus, A is a closed subset of the compact space [a , b].  

  Hence A is compact.  

3.2 Compactness and Continuity.  

Theorem 3.2.1 Let M1 be a compact metric space and M2 be any metric space. Let f : M1→ M2 be a 

continuous function. Then f( M1 ) is compact.  

  i.e. Continuous image of a compact metric space is compact.  

  
Proof.  

  Without loss of generality we assume that f( M1 ) = M2.  

  Let Gα  be a collection  of open sets in M2 such that  Gα = M2.  

   Gα = f( M2 ).  

  f- 1( Gα ) = M1.    f- 

1(Gα ) = M1.  



  Since f is continuous, f- 1(Gα ) is open in M1  .  

  { f- 1(Gα ) } is an open cover for M1.  

Since M1 is compact, this open cover has a finite subcover say f- 1 Gα1 , f- 

1 Gα2 , …… , f- 1 Gαn .  

 f- 1(  ni=1 Gαi ) = M1.  

= f( M1 ) = M2.  

Thus  is a finite subcover for the given open cover Gα  of  

M2.  

Hence M2 is compact.  

Corollary 3.2.2 Let f be a continuous map from a compact metric space M1 into any metric space 

M2. Then f( M1) is closed and bounded.  

Proof.   

  Since f is continuous, f( M1 ) is compact and hence closed and bounded.  

Theorem 3.2.3 Any continuous mapping f defined on a compact metric space  (M1 , d1) into any 

other metric space (M2 , d2) is uniformly continuous on M1.  

Proof.  

  Let > 0 be given.  

  Let x M1.  

  Since f is continuous at x, for /2 > 0 , there exists δx > 0 such that   

d1(x , y) <δx  d2(f(x) , f(y)) < /2          ………………..  (1) Clearly, { B(x , 

} is an open cover for M1.  

Since M1 is compact, there exists x1 , x2 , …. , xn  M1 such that   

.  

Let  = min {  , ….. ,   



Now, we shall prove that d1(p , q) <   d2(f(p) , f(q)) <  p , q  M1.  

Let p , q  M1such that d1(p , q) <   

P   

    P  for some i such that 1  i  n  

δxi < δxi  d1(p ,xi ) < 2 

 by (1), d2(f(p) , f(xi)) < /2                    …………………  (2)  

Similarly, d2(f(q) , f(xi)) < /2                   …………………  (3)  

Now, d2(f(p) , f(q))  d2(f(p) , f(xi)) + d2(f(xi) , f(q))  

                                < /2 + /2  [ By (2) and (3) ]  d2(f(p) , f(q)) <  .  

Thus, d1(p , q) <   d2(f(p) , f(q)) <  p , q  M1.  

Hence f is uniformly continuous.  

3.3 Equivalent forms of Compactness.  

Definition 3.3.1 A collection Ғ of subsets of a set M is said to have finite intersection property if the 

intersection of any finite number of elements of Ғ is nonempty.  

Theorem3.3.2 A metric space M is compact if and only if every collection of closed sets in M with 

finite intersection property has nonempty intersection.  

Proof.  

  Suppose that M is compact.  

  Let Fα  be a collection of closed subsets of M with finite intersection property.  

  We have to prove  Fα ≠  .  

  Suppose  Fα =  .  

  Then  Fα)c = M.  

   Fα
c = M. [ By De Morgan’s laws ]  

  Since each Fα is closed, each Fα
c is open.  

  Thus, { Fα
c } is an open cover for M.  



  Since M is compact, this open cover has a finite subcover say    

 .  

  = M.  

  = M .  

  .  

  This is a contradiction to the collection Fα  has finite intersection property.  

   Fα ≠  .  

Conversely, assume that every collection of closed sets in M with finite intersection property 

has nonempty intersection.  

We have to prove M is compact.  

Let Gα  be an open cover for M.  

 Gα = M.  

 =  .  

  Gα
c
=  .  

 Since each Gα is open , each Gα
c is closed.    

Hence Ғ= { Gα
c } is a collection of closed sets whose intersection is empty.  by hypothesis, 

this collection does not have finite intersection property.  

Hence there exists a finite sub collection Gα1
c, Gα2

c  , ….. , Gαn
c

 such that ni=1 Gαic =  

.  

.  

= M.  

Thus the given open cover Gα  of M has a finite subcover { Gα1,  Gα2 , ……. , Gαn }.  

Hence M is compact.  

Definition 3.3.3 A metric space M is said to be totally bounded if for every   

> 0 , there exists a finite number of elements x1 , x2 , ….. , xn  M such that   



B(x1 , )  B(x2 , )  …….. B(xn , )  = M.  

A nonempty subset A of a metric space M is said to be totally bounded if the  subspace A is totally 

bounded metric space.  

Theorem 3.3.4 Any compact metric space is totally bounded.  

Proof.  

  Let M be a compact metric space.  

  We have to prove M is totally bounded.  

  Let  > 0 be given.  

  Now, { B(x , ) / x  M } is an open cover for M.  

  Since M is compact, there exists points x1 , x2 , ….. , xn  M such that  

 M = B(x1 , )  B(x2 , )  …….  B(xn , ) .  

Hence M is totally bounded.  

Theorem 3.3.5 Any totally bounded subset A of a metric space M is bounded.  

Proof.  

  Let A be a totally bounded subset of a metric space M.  

  Then for given > 0 , there exists points x1 , x2 , ….. , xn  A such that  

 A = B1(x1 , ε) ∪ B1(x2 , ε) ∪ ……. ∪ B1(xn , ε) where B1(xi , ε) are open   balls in A.  

 Since open balls are bounded sets and finite union of bounded sets is bounded, A is bounded.  

Note3.3.6 The converse of the above theorem is not true. For,  

  Let M be an infinite set with discrete metric.  

  Then M is bounded.  

  Also, B(x , 1) = { x } for all x ∊ M.  

  Since M is infinite, M cannot be expressed as finite union of open balls of radius 1.  

  Hence M is not totally bounded.  

Definition 3.3.7 Let (xn) be a sequence in a metric space M. If n1< n2< …. < nk< ……. is a sequence of 

positive integers, then (xnk) is a subsequence of (xn).  

Theorem 3.3.8 A metric space M is totally bounded if and only if every sequence in M contains a 

Cauchy subsequence.  



Proof.  

  Suppose that every sequence in M contains a Cauchy subsequence.  

  We have to prove M is totally bounded.  

  Let ε> 0 be given.  

  Choose x1 ∊ M.  

  If B(x1 , ε) = M , then M is totally bounded.  

  If B(x1 , ε) ≠ M , Then choose x2 ∊ B(x1 , ε) – M so that d(x1 , x2) ≥ ε .  

  If B(x1 , ε) ∪ B(x2 , ε) = M , then M is totally bounded.  

Otherwise, choose x3 ∊ [B(x1 , 𝜀) ∪ B(x2 , 𝜀)] – M so that d(x3 , x1) ≥ ε and  d(x3 , x2) ≥ ε  .  

We proceed this process and if the process is terminated at a finite stage means M is totally 

bounded.  

Suppose not, then we get a sequence (xn) in M such that d(xn , xm) ≥  𝜀 if n ≠ m  

.  

∴ (xn) cannot be a Cauchy sequence, which is a contradiction.  

Conversely, suppose that M is totally bounded.  

Let S1 = { x11 , x12 , ….., x1n , ….. } be a sequence in M.  

If one of the terms in the sequence is repeated infinitely, then S1 contains a constant 

subsequence which is in fact a Cauchy sequence.  

So, we assume that no terms of S1 is repeated infinitely so that the range of S1 is infinite.  

Since M is totally bounded, M can be covered by a finite number of open balls of radius  .  

 Hence one of these balls contains infinite number of terms of the sequence S1.  

∴ S1 contains a subsequence S2 = { x21 , x22 , ….., x2n , ….. } which lies within an open ball of 

radius   .   

Similarly, S2 contains a subsequence S3 = { x31 , x32 , ….., x3n , ….. } which lies within an open 

ball of radius  .  

We repeat the process of forming successive subsequences and finally we take the diagonal 

sequence S = { x11 , x22 , ….., xnn , ….. }.  

We claim that S is a Cauchy subsequence of S1.  



1 
If m > n then both xmmand xnn lie within an open ball of radius n .  

 ∴ d(xmm , n .  

 ∴ d(xmm , .  

Hence S is a Cauchy subsequence of S1.  

Thus every sequence in M has a convergent subsequence.  

Corollary3.3.9 A nonempty subset of a totally bounded set is totally bounded.  

  
Proof.  

  Let A be a totally bounded subset of a metric space M.  

  Let B be a nonempty subset of A.  

  Let (xn) be a sequence in B.  

  Since B ⊆ A,  (xn) is a sequence in A.  

Since A is totally bounded, (xn) has a Cauchy subsequence.  

Thus every sequence in B has a Cauchy subsequence.  

  ∴ B is totally bounded.  

3.4 Sequentially Compact.  

Definition 3.4.1 A metric space M is said to be sequentially compact if every sequence in M has a 

convergent subsequence.  

Theorem 3.4.2 Let (xn) be a Cauchy sequence in a metric space M. If (xn) has a subsequence (xnk) 

converges to x , then (xn) converges to x.  

Proof.  

  Suppose that (xn) has a subsequence (xnk) which converges to x.  

  We have to prove xn → x .  

  Let ε > 0 be given.  



 Since (xn) is a Cauchy sequence, there exists a positive integer N such that   d(xn , xm) <   n 

, m ≥ N1                 ………………………  (1)  Since xnk → x , there exists a positive integer N2 such 

that  d(xnk , x) <                           ……………………...  (2)   

  Let N = max { N1 , N2 }. Fix nk ≥ N.  

  Now. d(xn , x) ≤ d(xn ,  xnk) + d(xnk , x)  

        N  

  ∴ d(xn , x) < ε ∀  n ≥ N.  

  ∴ xn →  x .  

Definition 3.4.3 A metric space M has Bolzano – Weierstrass property if every infinite subset of M 

has a limit point.  

Theorem 3.4.4 In a metric space M the following are equivalent.  

(i) M is compact.  

(ii) M has Bolzano – Weierstrass property  

(iii) M is sequentially compact  

(iv) M is totally bounded and complete.  

Proof.  

(i)    ⇒ (ii)  

Let M be compact metric space.  

Let A be an infinite subset of M.  

Suppose that A has no limit point.  

Let x ∊ M.  

Since x is not a limit point if A, there exists an open ball B(x , rx) such that   

B(x , rx) ∩ (A – { x }) = ∅ .  

B(x , rx) contains at most one point of A (contains x if x ∊ A).   

Now, { B(x , rx) / x ∊ M } is an open cover for M.  

Since M is compact, there exists points x1 , x2 , ….. , xn ∊ M such that  

M = B(x1 , rx1) ∪ B(x2 ,rx2 ) ∪ ……. ∪ B(xn , rxn) .  



∴ A ⊆ B(x1 , rx1) ∪ B(x2 ,rx2 ) ∪ ……. ∪ B(xn , rxn) .  

Since each B(x1 , rxi) has at most one point of A, A must be finite.  

This is a contradiction to A is infinite.  

Hence A has a limit point.  

(ii) ⇒ (iii)  

Suppose that M has Bolzano – Weierstrass property.  

We have to prove M is sequentially compact.  

Let (xn) be a sequence in M.  

If the range of (xn) is finite , then a term of the sequence is repeated infinitely and hence (xn) 

has a constant subsequence which is convergent.  

Otherwise (xn) has infinite number of distinct terms.  

By hypothesis, this infinite set has a limit point say x.  

∴ for any r > 0 , the open ball B(x , r) contains infinite number of terms of the sequence (xn).  

Choose a positive integer n1 such that xn1∊ B(x , 1).  

Now, choose n2 > n1 such that xn2 ∈ B(x , ) .  

In general, for each positive integer k we choose nk> nk-1 such thatxnk∊ B(x , ) .  

Then (xnk) is a subsequence of (xn) and d(xnk , x) <  k .  

∴ xnk →  x .  

Thus (xnk) is a convergent subsequence of (xn).  

Hence M is sequentially compact.  

(iii) ⇒ (iv)  

Suppose that M is sequentially compact.  

Then every sequence in M has a convergent subsequence.  

We have every Cauchy sequence is convergent.  

Thus, every sequence in M has a Cauchy subsequence.  

Hence M is totally bounded.  



Now, we prove that M is complete.  

Let (xn) be a Cauchy sequence in M.  

By hypothesis, (xn) contains a convergent subsequence (xnk).  

Let xnk →  x .  

Then xn →  x .  

 M is complete.  

(iv)  (i)  

Suppose that M is totally bounded and complete.  

We have to prove M is compact.  

Suppose not.  

Then there exists an open cover Gα  for M which has no finite subcover.  

Take rn= 2
1

n .  

Since M is totally bounded, M can be covered by a finite number of open balls of radius r1 .  

Since M is not covered by a finite number of Gα’s , at least one of these open balls say B(x1 , 

r1) cannot be covered by finite number of Gα’s .  

Now, B(x1 , r1) is totally bounded.  

Hence as before we can find x2  B(x1 , r1) such that B(x2 , r ) cannot be covered by finite 

number of Gα’s .  

Proceeding like this we get a sequence (xn) in M such that B(xn , rn) cannot be covered  by 

finite number of Gα’s and xn+1  B(xn , rn).  

Let m and n be positive integers with n < m.  

Now, d(xn , xm) ≤ d(xn , xn+1) + d(xn+1 , xn+2) + ………… + d(xm-1 , xm)   

      < rn + rn+1 + ……. +   

      < 21n + 2n1+1 + …………. + 2 m1-1  

      < n1-1 (21n + 21n + ……. )  

2 



      < n1-1  
2 

 (xn) is a Cauchy sequence in M.  

Since M is complete, there exists x  M such that xn  x .  

Now,  x  Gα for  some α.  

Since Gα is open, there exists 𝜀 > 0 such that B(x , ε) ⊆ Gα .  

 We have xn →  x  and  rn 0 .  

∴ there exists a positive integer N such that  

d(xn , x) <  and   

Fix n ≥ N.  

We claim that B(xn , rn) ⊆ B(x , ε) . y ∊ B(xn , 

rn)  ⇒ d(xn , y) <   

               ⇒ d(xn , x) + d(xn , y) <    

            ⇒ d(x , y) < ε  

            ⇒ y ∊ B(x , ε) .  

∴ B(xn , rn) ⊆ B(x , ε) ⊆ Gα .  

Thus, B(xn , rn) is covered by a single Gα , which is a contradiction.  

Hence M is compact.  

 

 

 

 

 

 

 

 

  



     UNIT-IV 

DERIVATIVES

CONTinuity and Differentiation
Let X, Y be the metric spaces. Suppose E ⊂ X, f maps E into Y and p is
a limit point of E we write f(x) → q as x → p or

lim
x→p

f(x) = q.

If there is a point q ∈ Y with the following property, for every ǫ > 0 there
exists S > 0 such that dy(f(x), q) < ǫ∀x ∈ E for which 0 < dX(x, p) < S.
(i.e.)

lim
x→p

f(x) = q.

if given ǫ > 0 there exists S > 0 such that 0 < dX(x, p) < S ⇒ dY (f(x), q) <
ǫ.

Definition 3.1 Let X and Y be any two metric spaces and E ⊂ X. Let f
and g be any complex functions defined on E then we define f +g as follows.
(f + g)(x) = f(x) + g(x)

Theorem 3.2 Let X and Y be any two metric spaces and E ⊂ X. p is a
limit point of E. Then

lim
x→p

f(x) = q iff lim
n→∞

f(pn) = q

for every sequence {pn} in E such that pn 6= p and

lim
n→∞

pn = p.

Proof: Suppose
lim
x→p

f(x) = q

⇒ Given ǫ > 0, there exists S > 0 such that 0 < dX(x, p) < S ⇒
dY (f(x), q) < ǫ ∀x ∈ E.....(1)
{pn} is a sequence of points in E such that {pn} → p as n → ∞(pn 6= p) (This
is possible ∵ p is a limit point of E) ⇒ there exists N depending on S such
that dX(pn, p) < S ∀n ≥ N . Now By (1) we have, dY (f(pn), q) < ǫ ∀n ≥ N
(i.e.)

lim
n→∞

f(pn) = q.

Conversely, Suppose
lim

n→∞
f(pn) = q

for every {pn} in E such that pn 6= p and

lim
n→∞

pn = p



51

To Prove
lim
x→p

f(x) = q

Suppose this result is false, for some ǫ > 0 and for every S > 0 such that
dX(x, p) < S ⇒ dY (f(x), q) ≥ ǫ. Let Sn = 1

n , n = 1, 2, 3... For S > 0
without loss of generality choose a point p ∈ E such that dX(p1, p) < S1(=
1) ⇒ dY (f(p1), q) ≥ ǫ. Similarly, for S2 > 0 choose a point p2 ∈ E such that
dX(p2, p) < S1 = (1/2) ⇒ dY (f(p2), q) ≥ ǫ. Proceeding for Sn > 0, choose
a point pn ∈ E such that dX(pn, p) < S1(= 1/n) ⇒ dY (f(pn), q) ≥ ǫ. ∴

we have a sequence {pn} in E such that dX(pn, p) < 1
n ⇒ dY (f(pn), q) ≥ ǫ.

Now {pn} → p as n → ∞ [∵ 1/n → 0 as n → ∞]. But f(pn) does not
converge to q ∴ our assumption is wrong. Hence for every ǫ > 0 there
exists S > 0 such that dX(x, p) < S ⇒ dY (f(x), q) < ǫ ∀x ∈ E.

∴ lim
x→p

f(x) = q.

Corollary 3.3 If f has a limit at p then this limit is unique.
Proof: Suppose q is a limit of f at p. (i.e.)

lim
x→p

f(x) = q.

∴ By the previous theorem, we have

lim
n→∞

f(pn) = q

for every {pn} in E such that pn 6= p and pn → p. But we know that, Every
convergence sequence converges to a unique limit. ∴ f has a unique limit at
p.

Definition 3.4 Suppose we have two complex f and g then f ± g, fg, λf ,
f
g (g 6= 0) are defined on a set E as follows.

1. (f + g)(x) = f(x) + g(x).

2. (f · g)(x) = f(x) · g(x)

3. (λf)(x) = λf(x)

4. (f
g )(x) = f(x)

g(x) , g(x) 6= 0.

Similarly we define f̄ , ḡ map E into R
k. Then we can define f̄ ± ḡ, f̄ ḡ, λf̄ ,

f̄
ḡ , (ḡ 6= 0).

Definition 3.5 Continuous at a point: Suppose X, Y are metric spaces
and E ⊂ X, p ∈ E and f maps E into Y . Then f is said to be continuous
at p if for every ǫ > 0, there exists a S > 0 ⇒ 0 < dX(x, p) < S ⇒
dY (f(x), f(p)) < ǫ ∀x ∈ E.
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Remark 3.6 Suppose f is continuous at p ⇒ for every ǫ > 0 there exists
S > 0 such that 0 < dX(x, p) < S ⇒ dY (f(x), f(p)) < ǫ ∀x ∈ E ⇒ x ∈
NS(p) ⇒ f(x) ∈ Nǫ(f(p)) ∀x ∈ E ⇒ f(NS(p)) ⊂ Nǫ(f(p)).

Theorem 3.7 Let X, Y be metric space and E ⊂ X. p is a limit point of E
and f : E → Y . Then f is continuous at p iff

lim
x→p

f(x) = f(p)

Proof: Suppose f is continuous at p. ⇔ for every ǫ > 0 there exists S > 0
such that 0 < dX(x, p) < S ⇒ dY (f(x), f(p)) < ǫ ∀x ∈ E ⇔

lim
x→p

f(x) = f(p)

Theorem 3.8 Suppose X, Y, Z are metric space and E ⊂ E. f maps E into
Y, g maps the range of f into Z and h is a mapping of E into Z defined by
h(x) = g(f(x)). If f is continuous at p ∈ E and if g is continuous at f(p)
then h is continuous at p. (The function h is called composite of f and g
and we write as h = g ◦ f)
Proof: Let ǫ > 0 be given and g is continuous at f(p). ∴ η > 0 such that
dY (y, f(p)) < η ⇒ dZ(g(y), g(f(p))) < ǫ, y ∈ f(E)...... (1)
Since f is continuous at p for this η > 0, there exists S > 0 such that
dX(x, p) < S ⇒ dY (f(x), f(p)) < η ∀x, y ∈ E

(i.e.)dY (f(x), f(p)) < η, f(X) ∈ f(E)

⇒ dZ(g(f(x)), (g(f(p)) < ǫ by (1)

⇒ dZ(g ◦ f(x), (g ◦ f)(p)) < ǫ

⇒ dZ(h(x), h(p)) < ǫ (h = g ◦ f).

∴ we have, dX(x, p) < S ⇒ dZ(h(x), h(p)) < ǫ ∀x ∈ E ⇒ h is continuous at
p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is
continuous on X iff f−1(E) is open in X for every open get E in Y .
Proof: Suppose f is continuous on X. Let V be a open get in Y . To Prove:
f−1(V ) is open in X. Let p ∈ f−1(V ); p ∈ f−1(V ) ⇒ f(p) ⊂ V . Since V is
open, there exists ǫ > 0 such that Nǫ(f(p)) ⊂ V ....... (1)
Since f is continuous at p, for ǫ > 0 there exists S > 0 such that f(NS(p)) ⊂
Nǫ(f(p))...... (2)
From (1) and (2), ⇒ f(NS(p)) ⊂ V ⇒ NS(p) ⊂ f−1V ⇒ p is an interior
point of f−1(V ). Since p is arbitrary, f−1(V ) is open in X. Conversely:
Suppose f−1(V ) is open in X for every open set V in Y . To Prove: f is
continuous at p, p ∈ X. Let ∈> 0 be given. Consider an open set Nǫ(f(p))
in Y, f−1(Nǫ(f(p))) is open in X. Now, ⇒ p ∈ f−1(Nǫ(f(p))) ⇒ p is an
interior point of f−1(Nǫ(f(p))) ⇒ there exists S > 0 such that NS(p) ⊂
f−1(Nǫ(f(p))) ⇒ f(NS(p)) ⊂ Nǫ(f(p)) ⇒ f is continuous at p.
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Corollary 3.10 A mapping f of a metric space X into a metric space Y
is continuous iff f−1(C) is closed in X for every closed set C in Y .
Proof: Let C be a closed set in Y.Cc is open in Y ⇒ f−1(Cc) is open in
X. (by Theorem 3.9) ⇒ [f−1(C)]c is open in X ⇒ f−1(C) is closed in X.
Conversely: Suppose f−1(C) is closed in X for every closed set C in Y . To
Prove: f is continuous on X. Let A be an open set in Y ⇒ Ac is closed in
Y ⇒ f−1(Ac) is closed in X. (by our assumption) ⇒ [f−1(A)]c is closed
in X ⇒ f−1(A) is open in X. ⇒ f is continuous on X. (by the previous
theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric
space X, then f + g, f · g, f

g (g 6= 0) are continuous on X.
Proof: At isolated point of X there is nothing prove. Fix a point p ∈ X
and suppose p is a limit point of X. Since f and g are continuous at p.

lim
x→p

f(x) = f(p); lim
x→p

g(x) = g(p)

Now,
lim
x→p

(f + g)(x) = lim
n→∞

(f + g)pn

where pn → p as n → ∞ and pn 6= p

lim
x→p

(f + g)(x) = lim
n→∞

(f(pn) + g(pn))

= lim
n→∞

f(pn) + lim
n→∞

g(pn)

= f(p) + g(p)

similarly the other results follow.

Theorem 3.12 Let f1, f2, ..., fk be real functions in a metric space X. Let f̄
be the mapping X into R

k. defined by f̄(x) = (f1(x), f2(x), ..., fk(x))x ∈ X.
Then
(a) f̄ is continuous iff each of the functions f1, f2, ..., fk is continuous.
(b) f̄ and ḡ are continuous mapping of X into R

k then f̄ + ḡ, f̄ · ḡ are
continuous on X(f1, f2, ..., fk are called components of f̄).
Proof: Suppose f̄ is continuous at every p ∈ X. Then given ǫ > 0 there
exists S > 0 such that

|f̄(x) − f̄(p)| < ǫ if 0 < dX(x, p) < S

⇒
(

k
∑

i=1

(fi(x) − fi(p))2

)1/2

< ǫ if 0 < dX(x, p) < S

⇒ |fi(x) − fi(p)| <

(

k
∑

i=1

(fi(x) − fi(p))2

)1/2

< ǫ ∀i = 1, 2, ..., k

⇒ |fi(x) − fi(p)| < ǫ ∀i = 1, 2, ..., k if 0 < dX(x, p) < S
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⇒ each fi is continuous at p, (1 ≤ i ≤ k, p ∈ X) ⇒ each fi is continuous
on X, (1 ≤ i ≤ k). Conversely, Suppose fi is continuous on X for each
i = 1, ..., k ⇒ fi is continuous at every p ∈ X ⇒ Given ǫ > 0 there exists
Si > 0 such that 0 < dX(x, p) < Si ⇒ |fi(x) − fi(p)| < ǫ√

k
∀i = 1, 2, ..., k.

Let S = min(S1, S2, ..., Sk). Now,

0 < dX(x, p) < Si ⇒ |fi(x) − fi(p)| <
ǫ√
k

∀i = 1, 2, ..., k

⇒ |fi(x) − fi(p)|2 <
ǫ2

(
√

k)2

⇒
k
∑

i=1

|fi(x) − fi(p)|2 <
ǫ2

k
· k

= ǫ2

⇒

√

√

√

√

k
∑

i=1

|fi(x) − fi(p)|2 < ǫ

⇒ |f̄(x) − f̄(p)| < ǫ

(i.e.)0 < dX(x, p) < S ⇒ |f̄(x) − f̄(p)| < ǫ

⇒ f̄ is continuous at every p ∈ X ⇒ f̄ is continuous on X
(b) Let f̄ = (f1, f2, ..., fk) and ḡ = (g1, g2, ..., gk). Now, f̄ + ḡ = (f1 +
g1, f2 + g2, ..., fk + gk); f̄ · ḡ = (f1 · g1, f2 · g2, ..., fk · gk). Given f̄ and ḡ
are continuous. by (a), each fi, gi are continuous (i ≤ i ≤ k) (by Theorem
3.11) ⇒ fi + gi, fi · gi are continuous. (by (a))

Theorem 3.13 Let x̄ = (x1, x2, ..., xk) ∈ R
k define φi : Rk → R by φi(x̄) =

xi, (i = 1, 2, ..., k). φi is called the coordinate function, then φi is continuous.
Proof: Let x̄, ȳ ∈ R

k. Given ǫ > 0 choose S = ǫ such that

|x̄ − ȳ| < S

⇒ |φi(x̄) − φi(ȳ)| = |xi − yi|

<

(

k
∑

i=1

|xi − yi|2
)1/2

= |x̄ − ȳ|
< ǫ

⇒ φi is continuous on R
k

Theorem 3.14 Every polynomial in R
k is continuous.

Proof: By the above theorem φi : Rk → R is continuous for every i. Now,
φ2

i (x̄) = φi(x̄) · φi(x̄) = xi · xi = x2
i ∀i. In general φni

i (x̄) = xni

i ∀i. By



55

Theorem 3.11, φni

i is continuous. Now,

(φn1
1 · φn2

2 · · · φnk

k )x̄

= φn1
1 (x̄) · φn2

2 (x̄) · · · φnk

k (x̄)

= xn1
1 · xn2

2 · · · xnk

k

Now φn1
1 ·φn2

2 · · ·φnk

k is a monomial function, where n1, n2, ..., nk are positive
integers. Every monomial function is continuous Cn1,n2,...,nk

is a complex
constant ⇒ Cn1,n2,...,nk

·xn1
1 ·xn2

2 ····xnk

k is continuous on R
k. ⇒ ∑

Cn1,n2,...,nk
·

xn1
1 · xn2

2 · · · ·xnk

k is continuous on R
k. ⇒ Every polynomial is continuous on

R
k.

Continuity and Compact: A mapping f̄ on a set E into X is said to be
bounded, if there is a real number m such that |f̄(x)| < m ∀x ∈ X.

Theorem 3.15 Suppose f is continuous function on a compact metric space
X into a metric space Y . Then f(X) is compact. (i.e., continuous image
of a compact metric space is compact)
Proof: Given that X is compact. To Prove: f(X) is compact. Let {Vα} be
an open cover for f(X) ⇒ each Vα is open in Y . Now, Given f is continuous
⇒ f−1(Vα) is open in X for each α ⇒ {f−1(Vα)} is open cover for X. Since
X is compact, there exists finitely may indices α1, α2, ..., αn such that

X ⊂ f−1(Vα1) ∪ f−1(Vα2) ∪ · · · ∪ f−1(Vαn)

=
n
⋃

i=1

f−1(Vαi
)

⇒ f(X) ⊂
n
⋃

i=1

ff−1(Vαi
) ⊂

n
⋃

i=1

Vαi

⇒ {Vα} ⇒ has a finite sub cover. ∴ f(X) is compact.

Theorem 3.16 If f̄ is continuous mapping of a compact metric space X
into R

k. Then f̄(X) is closed and bounded. ∴ f̄ is bounded.
Proof: Given f̄ is continuous and X is compact. ⇒ f̄(x) is a compact
subset of R

k. ⇒ f̄(x) is closed and bounded. (by Heine Borel theorem)
Now, in particular ⇒ f̄(x) is bounded ⇒ f̄ is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact met-
ric space X and M = supp∈X f(p) and let m = infp∈X f(p). Then, there
exists a points p, q ∈ X such that f(p) = m1, f(q) = m2 (i.e., f attains
maximum M at p and minimum m at q)
Proof: We know that, If E is bounded and y = sup E and X = inf E
then x, y ∈ Ē. Since f is continuous and X is compact ⇒ f(X) is closed
and bounded [By the above Theorem 3.16] and since f(X) is bounded.
m, M ∈ f(X) = f(X) (∵ f(X) is closed) ⇒ m, M ∈ f(X) ⇒ there exists
p, q ∈ X such that M = f(p), m = f(q).
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Theorem 3.18 Suppose f is continuous 1−1 mapping of a compact metric
space X into a metric space Y . Then the inverse mapping f−1 defined on
Y by f−1(f(X)) = X is a continuous mapping of Y onto X.
Proof: Suppose f is a continuous 1 − 1 mapping of a compact metric space
X into a metric space Y and also f−1(f(X)) = X. To Prove: f−1 is
continuous on Y , it is enough to prove that (f−1)(V ) is open in Y for every
open set V in X. Let V be a open set in X ⇒ V c is closed in X. Since X
is compact, V c is compact in X. Since f is continuous, f(V c) is compact
in Y ⇒ f(V c) is closed in Y ⇒ (f(V c))c is closed in Y ⇒ f(V ) is open in
Y . (∵ f is 1 − 1 and onto) ⇒ (f−1(V ))−1 is open in Y ⇒ f−1 is continuous
on Y .

Definition 3.19 (Uniformly Continuous) Let X and Y be any two met-
ric space then the f : X → Y is said it to be uniformly continuous on X if for
every ǫ > 0 there exists a S > 0 such that dX(p, q) < S ⇒ dY (f(p), f(q)) < ǫ
∀p, q ∈ X.

Theorem 3.20 Let f be a continuous mapping of a compact metric space
X into a metric space Y then f is uniformly continuous. (i.e.) Continuous
function defined on a compact metric space is uniformly continuous.
Proof: Let ǫ > 0 be given let f is continuous on X ⇒ f is continuous at
every point p ∈ X. Now, f is continuous at p ⇒ there exists a positive real
φ(p) such that dX(p, q) < φ(p) ⇒ dY (f(p), f(q)) < ǫ ∀q ∈ X....... (1)
Let J(p) = N φ(p)

2

{p} ⇒ J(p) is a closed in X ⇒ J(p) is a open in X. ∴

{J(p)|p ∈ X} is an open cover for X. Since X is compact, there ex-
ists finitely may p ∈ S. p1, p2, ..., pn such that X ⊂ ⋃n

i=1 J(pi). Let S =

min{(φ(p)
2 , ..., φ(p)

2 )}. Clearly, S > 0. Let p, q be points in X such that
dX(p, q) < S. Now,

p ∈ X ⊂
n
⋃

i=1

J(pi)

⇒ p ∈ J(pm) for some m, 1 ≤ m ≤ n

⇒ dX(p, pm) <
φ(pm)

2
< φ(pm)

⇒ dY (f(p), f(pm)) < ǫ/2.......(2) (by(1))

Now dX(q, pm) < dX(q, p) + d(p, pm)

< S +
φ(pm)

2

<
φ(pm)

2
+

φ(pm)

2
= φ(m)

(i.e.) dX(q, pm) < φ(pm)

⇒ dY (f(q), f(pm)) < ǫ/2 by(1)........(3)
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⇒ dY (f(p), f(q)) < dY (f(q), f(pm)) + dY (f(pm)f(q))

= ǫ/2 + ǫ/2 (by (2) and (3))

∴ dX(p, q) < S ⇒ dY (f(p), f(q)) < ǫ

⇒ f is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in R
1. Then

(a) there exists a continuous function on E which is not bounded,
(b) there exists continuous and bounded function on which has no maximum
if in addition E is bounded,
(c) there exists a continuous function on E which is not uniformly continu-
ous.
Proof: Case(i): Suppose E is bounded.
(a) To Prove: f is continuous but not bounded. Since E is bounded, there
exists a limit point of x0 of E such that x0 /∈ E. [∵ E is not closed]. Define
a map f : E → R

1 by f(x) = 1
x−x0

, x ∈ E. ∴ f is continuous on E. To
Prove: f is unbounded on E. Since x0 is a limit point of E. Nr(x0) ∩ E 6= ∅
∀r > 0 ⇒ there exists x1 such that x1 ∈ Nr(x0) ∩ E ⇒ x1 ∈ Nr(x0) and
x1 ∈ E

⇒ |x1 − x0| < r and x1 ∈ E

⇒ 1

|x1 − x0| >
1

r
and x1 ∈ E

⇒ |f(x1)| >
1

r
and x1 ∈ E ∀r > 0

∀r > 0 there exists x ∈ E such that |f(x)| > 1
r ⇒ f is unbounded on E.

(b) Define g : E → R by g(x) = 1
1+(x−x0)2 , x ∈ E. Clearly, g is continuous.

Now, 0 < g(x) < 1 ⇒ g(x) is a bounded function. Clearly, supx∈E g(x) = 1.
But g(x) < 1 ∀x ∈ E. ∴ g has no maximum on E.
(c) Let f : E → R be defined by f(x) = 1

x−x0
, x ∈ E, where x0 is a limit

point of E. Clearly, f is continuous on E. Let ǫ > 0 be given. Let S > 0
be arbitrary choose a point x ∈ E such that |x − x0| < S and taking t very
close to x0 so as to satisfy |t − x| < S. Then,

|f(t) − f(x)| =

∣

∣

∣

∣

1

t − x0
− 1

x − x0

∣

∣

∣

∣

=

∣

∣

∣

∣

x − x0 − t + x0

(t − x0)(x − x0)

∣

∣

∣

∣

=
|x − t|

|t − x0||x − x0|
>

1

t − x0
> ǫ

(If we choose x ∈ (x0 − S, x0), t ∈ (x0, x0 + S) and |x − t| < S or t ∈
(x0 − S, x0), x ∈ (x0, x0 + S) and |x − t| < S ⇒ |t − x| > |x − x0|) So we
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have taken t very close to x0 and we made the difference |f(t) − f(x)| > ǫ
although |t − x| < S. Since this is true for every S > 0 ⇒ f is not uniformly
continuous.
Case(ii): Suppose E is not bounded.
(a) Define f : E → R by f(x) = x. Clearly, f is continuous on E and f is
not bounded on E. ∴ there exists function on E which is not bounded.
(b) Define g : E → R by g(x) = x2

1+x2 ⇒ g is continuous. Now, as x2 <

1 + x2 ⇒ g(x) = x2

1+x2 < 1. ∴ 0 < g(x) < 1 ∀x ∈ E. ∴ g is a bounded.
∴ g is a continuous and bounded function. supx∈E g(x) = 1. But g has no
maximum on E.
(c) If the boundedness is omitted then the result fails. Let E be the set of all
integers. Then every function defined on E is uniformly continuous on E ⇒
for every ǫ > 0 choose S < 1 such that |X − Y | < S ⇒ |f(x) − f(y)| = 0 < ǫ

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a
metric space Y and E is a connected subset of X. Then f(E) is connected.
i.e., continuous image of a connected subset of a metric space is connected.
Proof: Given E is connected subset of X. To Prove: f(E) is a connected
subset of Y . Suppose f(E) is not connected. ⇒ f(E) = A ∪ B where A and
B are non-empty separated sets. Put G = E ∩ f−1(A) and H = E ∩ f−1(B)

G ∪ H = (E ∩ f−1(A)) ∪ (E ∩ f−1(B))

= E ∩ (f−1(A) ∪ f−1(B))

= E ∩ (f−1(A ∪ B))

= E ∩ E

G ∪ H = E

Clearly G 6= ∅ H 6= ∅ (∵ A 6= ∅, B 6= ∅). Claim: G and H are separated
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sets. i.e., To Prove Ḡ ∩ H = ∅, G ∩ H̄ = ∅. Now

G = E ∩ f−1(A)

⇒ G ⊂ f−1(A) ⊂ f−1(Ā)

⇒ Ḡ ⊂ f−1(Ā) = f−1(Ā) [∵ Ā is closed and

f is continuous ⇒ f−1(Ā)]

⇒ f(Ḡ) ⊂ ff−1(Ā) ⊂ Ā

⇒ f(Ḡ) ⊂ Ā

H = E ∩ f−1(B)

⇒ H ⊂ f−1(B) ⇒ f(H) ⊂ ff−1(B) = B

⇒ f(H) ⊂ B

⇒ f(Ḡ) ∩ f(H) ⊂ Ā ∩ B = ∅ (∵ A and B are separated sets)

⇒ f(Ḡ) ∩ f(H) = ∅
⇒ f(Ḡ ∩ H) = ∅

⇒ Ḡ ∩ H = ∅
similarly, G ∩ H̄ = ∅

∴ G and H are separated sets. ⇒ E can be expressed as a union of two
non-empty separated sets. ⇒ E is not connected. ⇒⇐ to E is connected.
∴ f(E) is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous
real valued function on [a, b]. If f(a) < f(b) and c is the number such that
f(a) < c < f(b) then there exists a point x ∈ (a, b) such that f(x) = c.
Proof: Every interval in R is connected and f is continuous. By the previous
theorem, f [a, b] is connected in R. ⇒ f [a, b] is interval in R. Let f(a), f(b) ∈
f [a, b] ⇒ [f(a), f(b)] ⊂ f [a, b]. Now, f(a) < c < f(b) ⇒ c ∈ f [a, b] ⇒ c =
f(x) for some x ∈ [a, b].

Remark 3.24 Converse not true.
Proof: If any two points x1 and x2 and for any member c between f(x1)
and f(x2) there is a point x in [x1, x2] such that f(x) = c then f may be
discontinuous. For example:

f(x) =

{

sin 1
x x 6= 0

0 x = 0

Choose x1 ∈ (−π
2 , 0), x2 ∈ (0, π

2 ). Clearly x1 < x2; f(x1) =negative
f(x2)=positive. ∴ f(0) = 0. f is continuous all the points except at 0.

Differentiation:
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Definition 3.25 Let f be real value function defined on [a, b], for any x ∈
[a, b] form the quotient φ(t) = f(t)−f(x)

t−x , a < t < b, t 6= x, and defined

f ′(x) = lim
t→x

f(t) − f(x)

t − x

provided the limit exists.

Remark 3.26 1. If f ′ is defined at a point, we say that f is differentiable
at x.
2. If f ′ is defined at every point of a set E ⊂ [a, b], we say that f is
differentiable on E.

Theorem 3.27 Let f be defined on [a, b]. If f is differentiable at a point x
in [a, b], then f is continuous at x.
Proof: Given f is differentiable at x. (i.e.)

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists.

To Prove: f is continuous at x (i.e.)To Prove

lim
t→x

f(t) = f(x)

Now

f(t) − f(x) =
f(t) − f(x)

t − x
(t − x)

lim
t→x

(f(t) − f(x)) = lim
t→x

[

f(t) − f(x)

t − x
(t − x)

]

= lim
t→x

f(t) − f(x)

t − x
· lim

t→x
(t − x)

= f ′(x) · 0

= 0

lim
t→x

(f(t) − f(x)) = 0

(or) lim
t→x

f(t) = f(x)

∴ f is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) =
|x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a, b] and are differentiable
at at point x in [a, b] then f + g, fg, f

g are differentiable at x.

(a) (f + g)′(x) = f ′(x) + g′(x)
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(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(c) (f
g )′(x) = g(x)f ′(x)−g′(x)f(x)

g2(x)
, g(x) 6= 0.

Proof: Given f and g are differentiable at x.

(i.e.)f ′(x) = lim
t→x

f(t) − f(x)

t − x
and g′(x) = lim

t→x

g(t) − g(x)

t − x
exists.

(a)

φ(t) =
(f + g)(t) − (f + g)(x)

t − x

=
f(t) + g(t) − (f(x) + g(x))

t − x

φ(t) =
f(t) − f(x)

t − x
+

g(t) − g(x)

t − x

Taking limits as t → x

lim
t→x

φ(t) = lim
t→x

{

f(t) − f(x)

t − x
+

g(t) − g(x)

t − x

}

= lim
t→x

f(t) − f(x)

t − x
+ lim

t→x

g(t) − g(x)

t − x

(i.e.)(f + g)′(x) = f ′(x) + g′(x)

(i.e.) (f + g) is differentiable at x.
(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x). Let h = fg. Now,

(h(t) − h(x)) = (fg)(t) − (fg)(x)

= f(t)g(t) − f(x)g(x)

= f(t)g(t) − f(t)g(x) + f(t)g(x) − f(x)g(x)

= f(t)(g(t) − g(x)) + g(x)(f(t) − f(x))

h(t) − h(x)

t − x
= f(t)

(g(t) − g(x))

t − x
+ g(x)

(f(t) − f(x))

t − x

lim
t→x

h(t) − h(x)

t − x
= lim

t→x

{

f(t)
g(t) − g(x)

t − x
+ g(x)

f(t) − f(x)

t − x

}

= lim
t→x

f(t) lim
t→x

g(t) − g(x)

t − x
+ lim

t→x
g(x) lim

t→x

f(t) − f(x)

t − x

h′(x) = f(x)g′(x) + g(x)f ′(x)

(fg)′(x) = f(x)g′(x) + g(x)f ′(x)

fg is differentiable at x.
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(c)
(

f
g

)′
(x) = g(x)f ′(x)−g′(x)f(x)

g2(x)
. Let h = f

g .

(h(t) − h(x)) =
f

g
(t) − f

g
(x)

=
f(t)

g(t)
− f(x)

g(x)

=
f(t)g(x) − f(x)g(x) + f(x)g(x) − f(x)g(t)

g(t)g(x)

=
g(x)(f(t) − f(x)) − f(x)(g(t) − g(x))

g(t)g(x)

h(t) − h(x)

t − x
=

g(x)(f(t) − f(x)) − f(x)(g(t) − g(x))

g(t)g(x)(t − x)

lim
t→x

h(t) − h(x)

t − x
= lim

t→x

g(x)

g(t)g(x)

(

f(t) − f(x)

t − x

)

− lim
t→x

f(x)

g(t)g(x)

(

g(t) − g(x)

t − x

)

=
g(x)

g2(x)
lim
t→x

f(t) − f(x)

t − x
− f(x)

g2(x)
lim
t→x

g(t) − g(x)

t − x

h′(x) =
g(x)f ′(x) − g′(x)f(x)

g2(x)
(

f

g

)′

(x) =
g(x)f ′(x) − g′(x)f(x)

g2(x)

Since f ′(x), g′(x) exists and g(x) 6= 0,
(

f
g

)′
(x) exists.

Example 3.30 (1) The derivative of any constant is zero.
(2) f(x) = x ⇒ f ′(x) = 1
(3) f(x) = n ⇒ f ′(x) = nxn−1

Theorem 3.31 Chain Rule: Suppose f is continuous on [a, b], f ′(x) exists
at some point x in [a, b] , g is defined on an interval I which contains the
range of f , and g is differentiable at the point f(x). If h(t) = g(f(t)), a ≤
t ≤ b then h is differentiable at x, and h′(x) = g′(f(x))f ′(x).
Proof: Given

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists, t ∈ [a, b].

Let h(t) = g(f(t)). To Prove: h′(x) = g′(f(x))f ′(x). Since f is differentiable
at x ∈ [a, b]

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists, t ∈ [a, b] exists.

(i.e.) f ′(x) + u(t) =
f(t) − f(x)

t − x
, t ∈ [a, b] where lim

t→x
u(t) = 0

⇒ (f ′(x) + u(t))(t − x) = f(t) − f(x)......(1)
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Let y = f(x). Now g is differentiable at y(= f(x))

g′(y) = lim
s→y

g(s) − g(y)

s − y
, s ∈ I

(i.e.) g′(y) + v(s) =
g(s) − g(y)

s − y
, s ∈ I where lim

s→y
v(s) = 0

(g′(y) + v(s))(s − y) = g(s) − g(y).......(2)

Let s = f(t). Now,

h(t) − h(x) = g(f(t)) − g(f(x))

= (g′(f(x)) + v(s))(s − y) (by(2))

h(t) − h(x) = g′(f(x) + v(s))(f(t) − f(x))

= g′(f(x) + v(s))(f ′(x) + u(t))(t − x) (by(1))

h(t) − h(x)

t − x
= g′(f(x) + v(s))(f ′(x) + u(t))

lim
t→x

h(t) − h(x)

t − x
= lim

t→x
{g′(f(x) + v(s))(f ′(x) + u(t))}

h′(x) = lim
t→x

g′(f(x) + v(s)) lim
t→x

(f ′(x) + u(t))

= lim
s→y

(g′(f(x)) + v(s))f ′(x)

= g′(f(x))f ′(x)

∴ h′(x) = g′(f(x))f ′(x)

Example 3.32 Let

f(x) =

{

x sin 1
x x 6= 0

0 x = 0

Find f ′(x)(x 6= 0), and show that f ′(0) does not exist.
Solution:

f(x) = x sin
1

x

f ′(x) = x cos

(

1

x

)

(
−1

x2
) + sin

(

1

x

)

= − 1

x
cos

(

1

x

)

+ sin

(

1

x

)

= sin

(

1

x

)

−
(

1

x

)

cos

(

1

x

)

, x 6= 0.
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since x 6= 0f ′(x) exists. To Prove: f ′(0) does not exists.

f ′(0) = lim
t→0

f(t) − f(0)

t − 0

= lim
t→0

t sin 1
t − 0

t − 0

= lim
t→0

sin
1

t
which does not exists.

∴ f ′(0) does not exists.

Example 3.33 Let

f(x) =

{

x2 sin 1
x x 6= 0

0 x = 0

Find f ′(x)(x 6= 0), show that f ′(0) = 0
Solution: Let

f(x) = x2 sin
1

x

f ′(x) = x2(cos

(

1

x

)

)

(−1

x2

)

+ 2x · sin
1

x

= 2x · sin
1

x
− cos

1

x
, x 6= 0

f ′(0) = lim
t→0

f(t) − f(0)

t − 0

= lim
t→0

x2 sin 1
t − 0

t − 0

= lim
t→0

t sin
1

t

= 0 (∵

∣

∣

∣

∣

t sin
1

t

∣

∣

∣

∣

≤ 1)

∴ f ′(0) = 0

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real
function defined on a metrics space X. We say that f has local maximum
at a point p in X if there exists δ > 0 such that f(q) ≤ f(p) ∀q ∈ X with
d(p, q) < δ. f has a local minimum at p in X, if f(p) ≤ f(q) ∀q ∈ X such
that d(p, q) < δ.

Theorem 3.35 Let f be defined on [a, b]; if f has a local maximum at a
point x ∈ (a, b) and if f ′ exists, then f ′(x)=0. The analogous statement for
local minimum is also true.
Proof: Case(i) Assume that f has local maximum at x. To Prove: f ′(x) =
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0. Since f has local maximum at x, there exists δ > 0 such that (q, x) <
δ ⇒ f(q) ≤ f(x)

If x − δ < t < x then
f(t) − f(x)

t − x
≥ 0

⇒ lim
t→x

h(t) − h(x)

t − x
≥ 0

(i.e.) f ′(x) ≥ 0 .......(1)

If tx < xt < x + δ then
f(t) − f(x)

t − x
≤ 0

⇒ lim
t→x

h(t) − h(x)

t − x
≤ 0

⇒ f ′(x) ≤ 0 .......(2)

Since f ′(x) exists, (1),(2) ⇒ f ′(x) = 0.
Case(ii) Assume that f has a local minimum at x. We show that f ′(x)=0.
Then there exists δ > 0 such that d(q, x) < δ ⇒ f(q) ≥ f(x)

If x − δ < t < x then
f(t) − f(x)

t − x
≤ 0

⇒ lim
t→x

f(t) − f(x)

t − x
≤ 0

(i.e.) f ′(x) ≤ 0 ........(3)

If x < t < x + δ then
f(t) − f(x)

t − x
≥ 0

⇒ lim
t→x

f(t) − f(x)

t − x
≥ 0

⇒ f ′(x) ≥ 0 .......(4)

Since f ′(x) exists, and from (3) and (4) we get f ′(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are
continuous real functions on [a, b], which are differentiable in (a, b), then
there is a point x ∈ (a, b) at which [f(b) − f(a)]g′(x) = [g(b) − g(a)]f ′(x).
proof: Let h(t) = [f(b) − f(a)]g(t) − [g(b) − g(a)]f(t), t ∈ [a, b]. Since f
and g are differentiable in (a, b), h(t) is also differentiable in (a, b). Now,

h(a) = [f(b) − f(a)]g(a) − [g(b) − g(a)]f(a)

= f(b)g(a) − f(a)g(a) − g(b)f(a) + g(a)f(a)

= f(b)g(a) − g(b)f(a)

h(b) = [f(b) − f(a)]g(b) − [g(b) − g(a)]f(b)

= f(b)g(b) − f(a)g(b) − g(b)f(b) + g(a)f(b)

= g(a)f(b) − f(a)g(b)
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Claim: h′(x) = 0 for some x ∈ (a, b). If h(t) is a constant then h′(x) =
0 ∀x ∈ (a, b). If h(t) < h(a), a < t < b, then by Intermediate value theorem,
there exists x in (a, b) at which h is minimum. ∴ h′(x) = 0 (by Theorem
3.35). If h(t) > h(a) then h attains its maximum at some point x ∈ (a, b). ∴

h′(x) = 0 (by Theorem 3.35) (i.e.)

(f(b) − f(a))g′(x) − (g(b) − g(a))f ′(x) = 0

(f(b) − f(a))g′(x) = (g(b) − g(a))f ′(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function
on [a, b] which is differentiable at (a, b) then there is a point x ∈ (a, b) at
which f(b) − f(a) = (b − a)f ′(x).
Proof: Put g(x) = x in theorem 3.36. ∴ g′(x) = 1 ⇒ (f(b) − f(a)) =
(b − a)f ′(x).

Theorem 3.38 Suppose f is differentiable in (a, b).
(a) If f ′(x) ≥ 0 ∀x ∈ (a, b), then f is monotonically increasing.
(b) If f ′(x) = 0 ∀x ∈ (a, b), then f is a constant.
(c) If f ′(x) ≤ 0 ∀x ∈ (a, b), then f is monotonically decreasing.
Proof: (a)By theorem 3.37, If x1 < x2, then there exists x1 < x < x2 such
that f(x2) − f(x1) = (x2 − x1)f ′(x)...... (1)
If f ′(x) ≥ 0 then (1) ⇒ f(x2)−f(x1) ≥ 0 (∵ (x2 −x1)f ′(x) ≥ 0) ⇒ f(x1) ≤
f(x2) (i.e.) f is an increasing function
(b) If f ′(x)=0 then (1) ⇒ f(x2) − f(x1) = 0 ⇒ f(x2) = f(x1). ∴ f is
constant.
(c) If f ′(x) ≤ 0 then (1)⇒ f(x2) − f(x1) ≤ 0 ⇒ f(x1) ≥ f(x2). ∴ f is an
decreasing function.

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a, b] and sup-
pose f ′(a) < λ < f ′(b), then there is a point x ∈ (a, b) such that f ′(x) = λ.
A similar result holds if f ′(a) > λ > f ′(b).
Proof: Let g(t) = f(t) − λt, t ∈ [a, b] then, g′(t) = f ′(t) − λ; g′(a) =
f ′(a) − λ < 0. ∴ there exists a < t1 < b such that g(t1) < g(a). Also,
g′(b) = f ′(b) − λ > 0. ∴ there exists a < t2 < b such that g(t2) < g(b). ∴ g
attains minimum at x ∈ (a, b). ∴ g′(x)=0 (by Theorem 3.35) (i.e.)
f ′(x) − λ = 0 ⇒ f ′(x) = λ.

Corollary 3.40 If f is differentiable on [a, b], then f ′ is cannot have any
simple discontinuity on [a, b]. But f ′ may have discontinuity of second kind.
Proof: f ′ takes every value between f(a) and f(b). Let a < x < b. If f ′ is
not continuous at x, then

1. f ′(x+), f ′(x−) exists,
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2. f ′(x+) 6= f ′(x−),

3. f ′(x−) = f ′(x+) 6= f ′(x) ⇒⇐

∴ f ′ cannot have any simple discontinuity. In Example 3.33 f ′ has a
discontinuity of second kind at x ∈ [a, b].

Theorem 3.41 L’Hospital’s Rule: Suppose f and g are differentiable in

(a, b) and g′(x) 6= 0 ∀x ∈ (a, b) where −∞ ≤ a < b ≤ ∞. Suppose f ′(x)
g′(x) → A

as x → a........ (1).
If f(x) → 0 and g(x) → 0 as x → a........ (2) (or) if g(x) → ∞ as

x → a....... (3), then f(x)
g(x) → A as x → a....... (4). (The analogous

statement is true if x → b (or) if g(x) → −∞ in (3)).
Proof: Case(i): Let −∞ ≤ A < ∞. We choose r and q such that A < r <
q. Given

lim
x→a

f ′(x)

g′(x)
= A

Then there exists c ∈ (a, b) such that a < x < c ⇒ f ′(x)
g′(x) < r....... (i)

Now if a < x < y < c then by generalised mean value theorem, there exists

t ∈ (a, b) such that f(x)−f(y)
g(x)−g(y) = f ′(t)

g′(t) < r........ (ii)

Suppose f(x) → 0 and g(x) → 0 as x → a. Then by taking limits as x → a,

then (ii) we get f(y)
g(y) ≤ r < q........ (iii)

Suppose g(x) → ∞ as x → a, then by keeping y fixed in (ii) we can find
c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 ∀x ∈ (a, c1). Multiply (ii) by
g(x)−g(y)

g(x) , we get

f(x) − f(y)

g(x)
< r

(

g(x) − g(y)

g(x)

)

⇒ f(x)

g(x)
− f(y)

g(x)
< r

(

1 − g(y)

g(x)

)

⇒ f(x)

g(x)
< r − r

g(y)

g(x)
+

f(y)

g(x)

Since g(x) → ∞ as x → a, there exists c2 ∈ (a, c1) such that f(x)
g(x) < r ∀x ∈

(a, c2) (or) f(x)
g(x) < q ∀x ∈ (a, c2).......(iv)

suppose −∞ < A ≤ ∞. By choosing p < A as above, we can show that
there exists c3 ∈ (a, b) such that p < f(x)

g(x) ∀a < x < c3.....(v)

Thus in all cases f(x)
g(x) → A as x → a. Hence

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

.
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Derivatives Of Higher Order

Definition 3.42 If f has a derivative f ′ on an interval and if f ′ is dif-
ferentiable, we see the second derivative f ′′ exists. Similarly if fn−1(x) is
differentiable we say f (n) exists.

Theorem 3.43 Taylor’s Theorem: Suppose f is a real function on [a, b], n
is a positive integer, f (n−1) is continuous on [a, b], f (n)(t) exists ∀t ∈ (a, b).
Let α, β be distinct points of [a, b] and define

p(t) =
n−1
∑

n=0

f (k)(α)

k!
(t − α)k,

then there exists a point x ∈ (α, β) such that f(β) = p(β) + f (n)(x)
n! (β − α)n.

Proof: If n=1, then f(β) = f(α) + f ′(x)(β − α); f(β)−f(α)
β−α = f ′(x). This

is just the mean value theorem. Suppose n > 1. Define a number M such
that f(β) = p(β) + M(β − α)n........(1)
Let g(t) = f(t) − p(t) − M(t − α)n........ (2)
Now,

g(α) = f(α) − p(α) − M(α − α)n

= f(α) − p(α)

g(α) = f(α) − f(α) (∵ p(α) = f(α))

= 0

g(β) = f(β) − p(β) − M(β − α)n

= 0 (by (1)).......(4)

Also g(n)(t) = f (n)(t) − 0 − Mn!.......(5)

g(k)(α) = f (k)(α) − p(k)(α)

= f (k)(α) − f (k)(α)

= 0......(6)

(i.e.) g(α) = g′(α) = · · · = gn−1(α) = 0. Since g(α) = 0 and g(β) = 0, there
exists x1 ∈ (α, β), by mean value theorem, such that g′(x1)=0. Now since
g′(α) = 0; g′(x1) = 0 again by mean value theorem there exists x2 ∈ (α, x1)
such that g”(x2) = 0. Proceeding this way we get α < xn < xn−1, such that

g(n)(xn) = 0 (i.e.) f (n)(xn) − Mn! = 0 (by (5)). ∴ M = fn(xn)
n! , sub M in

(1) ⇒ f(β) = p(β) + f (n)(xn)
n! (β − α)n, ∀x ∈ (α, xn−1)



                UNIT V

The Riemann-Steiltjes integral and Sequences and series of func-
tions

Definition 4.1 Let [a, b] be an interval. By a partition P of [a, b] we mean
a finite set of points x0, x1, ..., xn, where a = x0 ≤ x1 ≤, ..., ≤ xi−1 ≤ xi ≤
, ..., ≤ xn = b.

Remark 4.2 1. ∆xi = xi − xi−1 ∀i = 1, 2, ..., n.

2. Let f be a bounded real function on [a, b] then mi = inf f(x), Mi =
sup f(x) ∀xi−1 ≤ x ≤ xi.

3.

L(P, f) =
n
∑

i=1

mi∆xi

U(P, f) =
n
∑

i=1

mi∆xi

L(P, f) ≤

∫ b

a
f(x)dx ≤ U(P, f)

L(P, f) ≤ U(P, f).

4.
∫ b

a f(x)dx = sup L(P, f)

5.
∫ b̄

a f(x)dx = inf U(P, f) (The inf and sup are taken over all partition
P of [a, b]).

6. If the upper and lower reimann interval over is same then f is said to
be Reimann integrable over [a, b].f ∈ R(R is the set of all Reimann
integrable functions)

7.
∫ b

a
f(x)dx =

∫ b̄

a
f(x)dx =

∫ b

a
f(x)dx

Result 4.3 For every partition P of [a, b] and every bounded function f
there exists 2 real numbers m, M such that m(b − a) ≤ L(P, f) ≤ U(P, f) ≤
M(b − a).
Solution: Let m = inf f(x) and M = sup f(x), a ≤ x ≤ b. Let P =

  RIEMANN INTEGRAL AND 
POINTWISE CONVERGENCE
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{x0, x1, ..., xn} be the given partition of [a, b],

m ≤ mi ≤ Mi ≤ M

m∆xi ≤ mi∆xi ≤ Mi∆xi ≤ M∆xi (∆xi ≥ 0)
n
∑

i=1

m∆xi ≤
n
∑

i=1

mi∆xi ≤
n
∑

i=1

Mi∆xi ≤
n
∑

i=1

M∆xi

m(
n
∑

i=1

∆xi) ≤ L(P, f) ≤ U(P, f) ≤ M
n
∑

i=1

∆xi........(1)

Now,
n
∑

i=1

∆xi = ∆x1 + ∆x2 + ... + ∆xn

= (x1 − x0) + (x2 − x1) + ... + (xn − xn−1)

= xn − x0

= b − a........(2)

sub (2) in (1) we get, m(b − a) ≤ L(P, f) ≤ U(P, f) ≤ M(b − a).

Definition 4.4 Let α be a monotonically increasing function on [a, b]. Cor-
responding to each partition P of [a, b]
we define ∆αi = α(xi) − α(xi−1). Clearly, ∆αi ≥ 0

L(P, f, α) =
n
∑

i=1

mi∆αi

U(P, f, α) =
n
∑

i=1

Mi∆αi

sup L(P, f, α) =

∫ b

a
fdα

U(P, f, α) =

∫ b̄

a
fdα

where infimum and suprimum are taken over all partitions. If

∫ b

a
fdα =

∫ b̄

a
fdα,

then f is Reimann Stieljes integrable with respect to,

∫ b

a
fdα =

∫ b

a
fdα =

∫ b̄

a
fdα,

we also write f ∈ R(α).

Note 4.5 By taking α(x) = x, we see that the Reimann integral is the
special case of Riemann’s Stieltjes integral.
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Definition 4.6 The partition P ∗ of [a, b] is called a refinement of P if P ⊂
P ∗. Given two partition P1 and P2, we say that P = P1 ∪ P2 is the common
refinement of P1 and P2.

Theorem 4.7 If P ∗ is an refinement of P , then L(P, f, α) ≤ L(P ∗, f, α)
and U(P ∗, f, α) ≤ U(P, f, α).
Proof: Let P = {x0, x1, ..., xi−1, xi, ..., xn} be a partition of [a, b] and let
P ∗ = {x0, x1, x2, ..., xi−1, x∗, xi, ..., xn} be an refinement of P . Let

mi = inf f(x), xi−1 ≤ x ≤ xi

w1 = inf f(x), xi−1 ≤ x ≤ x∗

w2 = inf f(x), x∗ ≤ x ≤ xi

∴ w1 ≥ mi and w2 ≥ mi. Now,

L(P ∗, f, α) = m1∆α1 + m2∆α2 + ... + mi−1∆αi−1 + w1(α(x∗) − α(xi−1))

+ w2(α(xi) − α(x∗)) + mi+1∆αi+1... + mn∆αn......(1)

L(P, f, α) = m1∆α1 + m2∆α2 + ... + mi−1∆αi−1 + mi∆αi

+ mi+1(∆αi+1) + ... + mn∆αn......(2)

(1)-(2) ⇒

L(P ∗, f, α) − L(P, f, α) = w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗)) − mi∆αi

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− mi(α(xi) − α(xi−1))

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− mi(α(xi) − α(x∗)) − mi(α(x∗) − α(xi−1))

= (w1 − mi)(α(x∗) − α(xi−1))

+ (w2 − mi)(α(xi) − α(x∗))

≥ 0(∵ w1 and w2 ≥ mi)

L(P ∗, f, α) − L(P, f, α) ≥ 0

⇒ L(P, f, α) ≤ L(P ∗, f, α)

∴ L(P, f, α) ≤ L(P ∗, f, α)

Let P ∗ = {x0, x1, ..., xi−1, x∗, xi, ..., xn} be refinement of P . Let

Mi = sup f(x), xi−1 ≤ x ≤ xi

w1 = sup f(x), xi−1 ≤ x ≤ x∗

w2 = sup f(x), x∗ ≤ x ≤ xi

∴ w1 ≥ Mi and w2 ≥ Mi



72 4. UNIT IV

Now

U(P ∗, f, α) = M1∆α1 + M2∆α2 + ... + Mi−1∆αi−1 + w1(α(x∗) − α(xi−1))

+ w2(α(xi) − α(x∗)) + Mi+1∆αi+1 + ... + Mn∆αn.......(1)

U(P, f, α) = M1∆α1 + M2∆α2 + ... + Mi−1∆αi−1 + Mi∆αi

+ Mi+1(∆αi+1) + ... + Mn∆αn......(2)

(1)-(2) ⇒

U(P ∗, f, α) − U(P, f, α) = w1(α(x∗) − α(xi−1)) + w2(α(xi)

− α(x∗)) − Mi∆αi

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− Mi(α(xi) − α(xi−1))

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− Mi(α(xi) − α(x∗)) − Mi(α(x∗) − α(xi−1))

= (w1 − Mi)(α(x∗) − α(xi−1))

+ (w2 − Mi)(α(xi − α(x∗)))

≤ 0(∵ w1 and w2 ≤ M)

(i.e.) U(P ∗, f, α) − U(P, f, α) ≤ 0

⇒ U(P ∗, f, α) ≤ U(P, f, α)

∴ U(P ∗, f, α) ≤ U(P, f, α)

If P ∗ contains k-points more than P , we repeat this reasoning k-times and
get the result.

Theorem 4.8
∫ b

a
fdα ≤

∫ b̄

a
fdα.

Proof: Let P1 and P2 be two partition of [a, b] and let P ∗ = P1UP2.
(i.e.) P ∗ is a common refinement of P1 and P2. L(P1, f, α) ≤ L(P ∗, f, α) ≤
U(P ∗, f, α) ≤ U(P2, f, α) ⇒ L(P1, f, α) ≤ U(P2, f, α). Keeping P1 fixed
and taking infimum over all partition P2, we get

L(P, f, α) ≤

∫ b̄

a
fdα.

Now, by taking suprimum over all partition P1 we get

∫ b

a
fdα ≤

∫ b̄

a
fdα.

Theorem 4.9 Criterion for Riemann Integrability: Let f ∈ R(α)
iff ∀ ∈> 0, there exists a partition P such that U(P, f, α) − L(P, f, α) <∈.
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Proof: Let ∈> 0, there exists a partition P such that U(P, f, α)−L(P, f, α) <∈
Claim: f ∈ R(α). We know that

U(P, f, α) ≥

∫ b̄

a
fdα.....(1)

L(P, f, α) ≤

∫ b

a
fdα.....(2)

(2) × −1 ⇒ −L(P, f, α) ≥ −

∫ b

a
fdα.....(3)

(1) + (3) U(P, f, α) − L(P, f, α) ≥

∫ b̄

a
fdα −

∫ b

a
fdα

(or)

∫ b̄

a
fdα −

∫ b

a
fdα ≤ U(P, f, α) − L(P, f, α)

< ǫ

Since ǫ is arbitrary,

∫ b

a
fdα =

∫ b̄

a
fdα.(i.e.) f ∈ R(α).

Conversely: Assume f ∈ R(α). To Prove: let ǫ > 0, there exists a partition
P such that U(P, f, α) − L(P, f, α) < ǫ
let ǫ > 0 be given
Then there exists two partition P1 and P2 such that
U(P1, f, α) <

∫ b
a fdα + ǫ

2 .....(4) and
∫ b

a fdα − ǫ
2 < L(P2, f, α).......(5)

Let P = P1UP2 (i.e.) P is the common refinement of P1 and P2

Now

U(P, f, α) ≤ U(P1, f, α)

≤

∫ b

a
fdα +

ǫ

2
(by (4))

< L(P2, f, α) +
ǫ

2
+

ǫ

2
(by (5))

= L(P2, f, α) + ǫ

≤ L(P, f, α) + ǫ

∴ U(P, f, α) − L(P, f, α) < ǫ

Theorem 4.10 Let P be a partition ∈: U(P, f, α) − L(P, f, α) < ǫ...(1)
(a) if (1) holds for some P and ǫ then (1) holds for every refinement of P .
(b) if (1) holds for P = {x0, x1, ..., xn} and si, ti are arbitrary points in
[xi−1, xi] then

n
∑

i=1

|f(si) − f(ti)|∆αi < ǫ
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(c) if f ∈ R(α) and the hypothesis of (b) holds then

∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

< ǫ.

Proof: (a) Let P ∗ be a refinement of P . We know that

U(P ∗, f, α) ≤ U(P, f, α)......(2)

L(P ∗, f, α) ≤ L(P, f, α) (by Theorem 4.7)

−L(P ∗, f, α) ≤ −L(P, f, α)......(3)

(2)+(3) gives

U(P ∗, f, α) − L(P ∗, f, α) ≤ U(P, f, α) − L(P, f, α)

< ǫ (by (1))

(i.e.)U(P ∗, f, α) − L(P ∗, f, α) < ǫ

(b) si, ti ∈ [xi−1, xi]; f(si), f(ti) ∈ f [xi−1, xi]; mi ≤ f(si), f(ti) ≤ Mi

∴ |f(si) − f(ti)| ≤ Mi − mi (∵ Mi − mi ≥ 0)

⇒ |f(si) − f(ti)|∆αi ≤ (Mi − mi)∆αi

⇒
n
∑

i=1

|f(si) − f(ti)|∆αi =
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

= U(P, f, α) − L(P, f, α) (by (1))

∴

n
∑

i=1

|f(si) − f(ti)|∆αi < ǫ.

(c) We have

mi ≤ f(ti) ≤ Mi

⇒ mi∆αi ≤ f(ti)∆αi ≤ Mi∆αi

⇒
n
∑

i=1

mi∆αi ≤
n
∑

i=1

f(ti)∆αi ≤
n
∑

i=1

Mi∆αi

⇒ L(P, f, α) ≤
n
∑

i=1

f(ti)∆αi ≤ U(P, f, α)......(4)

L(P, f, α) ≤

∫ b

a
fdα ≤ U(P, f, α)......(5)
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(4) and (5) ⇒

∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ U(P, f, α) − L(P, f, α)

= ǫ (by (1))
∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

< ǫ.

Theorem 4.11 If f is continuous on [a, b] then f ∈ R(α).
Proof: Let ǫ > 0 be given. Choose η > 0 such that [α(b) − α(a)]η < ǫ...(1)
Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous.
Then there exists δ > 0 such that |x − ǫ| < δ ⇒ |f(x) − f(ǫ)| < η..... (2)
Let P = {x0, x1, ..., xn} be a partition of [a, b] such that ∆xi < δ ∴ (2)
guarantees that |Mi − mi| < η (i.e.) Mi − mi < η......(3)
Now,

U(P, f, α) − L(P, f, α) =
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

=
n
∑

i=1

(Mi − mi)∆αi

< η(
n
∑

i=1

∆αi) (by (3))

= η[∆α1 + ∆α2 + ... + ∆αn]

= η[(α(x1) − α(x0)) + (α(x2) − α(x1)) + ... + (α(xn) − α(xn−1))]

= η(α(xn) − α(x0))

= η[α(b) − α(a)]

< ǫ

∴ U(P, f, α) − L(P, f, α) < ǫ (by Theorem 4.9)

By Theorem 4.9, f ∈ R(α).

Theorem 4.12 If f is monotonic on [a, b] and if α is continuous in [a, b],
then f ∈ R(α).
Proof: Let
epsilon > 0 be given. For every positive integer n, we choose a partition P
such that ∆αi = α(b)−α(a)

n . This is possible since α is continuous.
Case(i): f is monotonic increasing. ∴ Mi = f(xi); mi = f(xi−1) ∀i =
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1, 2, ..., n. Now,

U(P,f, α) − L(P, f, α)

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

=
n
∑

i=1

(Mi∆αi − mi∆αi)

=
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

(f(xi) − f(xi−1))(
α(b) − α(a)

n
)

=
α(b) − α(a)

n

n
∑

i=1

[f(xi) − f(xi−1)]

=
α(b) − α(a)

n
{(f(x1) − f(x0)) + (f(x2) − f(x1)) + ...

+ (f(xn) − f(xn−1))}

=
α(b) − α(a)

n
[f(xn) − f(x0)]

=
α(b) − α(a)

n
(f(b) − f(a))

< ǫ as n → ∞.

∴ f ∈ R(α).

Case(ii): f is monotonic decreasing. ∴ Mi = f(xi); mi = f(xi−1) ∀i =
1, 2, ..., n. Now,

U(P,f, α) − L(P, f, α)

=
n
∑

i=1

(Mi∆αi −
n
∑

i=1

mi)∆αi

=
n
∑

i=1

(Mi∆αi − mi∆αi)

=
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

(f(xi−1) − f(xi))(
α(b) − α(a)

n
)

=
α(b) − α(a)

n

n
∑

i=1

[f(xi−1) − f(xi)]
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=
α(b) − α(a)

n
{(f(x0) − f(x1)) + (f(x1) − f(x2)) + ...

+ (f(xn−1) − f(xn))}

=
α(b) − α(a)

n
[f(x0) − f(xn)]

=
α(b) − α(a)

n
(f(a) − f(b))

< ǫ as n → ∞.

∴ f ∈ R(α).

Hence the proof.

Theorem 4.13 Suppose f is bounded on [a, b], f has only finitely many
point of discontinuity on [a, b] and α is continuous at every point at which
f is discontinuous, then f ∈ R(α).
Proof: Let ǫ > 0 be given. Put M = sup|f(x)|. Let E be the set of points
at which f is discontinuous. Since E is finite and α is continuous at every
point of E, we can cover E by finitely many disjoint [uj , vj ] ⊂ [a, b] such
that the sum of the corresponding differences

∑

j

[α(vj) − α(uj)] < ǫ.

Also we place these intervals in such a way that every point of E ∩ (a, b)
lies in the interval of some [uj , vj ]. Remove the segments (uj , vj) from [a, b].
The remaining set K is compact. hence f is uniformly continuous on K. ∴

there exists δ > 0 such that |s − t| < δ ⇒ |f(s) − f(t)| < ǫ ∀s, t ∈ K. We
form a partition P = {x0, x1, ..., xn} of [a, b] as follows. Each uj occurs in
P , each vj occurs in P . No point of any segment (uj , vj) occurs in P . If
xi−1 is not one of the uj ’s then ∆xi < δ. we observe that Mi − mi ≤ 2µ, ∀i
and Mi − mi ≤ ǫ unless xi−1 is one of the uj ’s. ∴ U(P, f, α) − L(P, f, α) ≤
[α(b) − α(a)]ǫ + 2Mǫ. (By Theorem 4.11) Since ǫ is arbitrary, Theorem 4.9
guarantees that f ∈ R(α).

Theorem 4.14 Suppose f ∈ R(α) on [a, b], m ≤ f ≤ M, φ is continuous
on [m, M ] and h(x) = φ(f(x)) on [a, b], then h ∈ R(α) on [a, b].
Proof: Let ǫ > 0 be given. Since φ : [m, M ] → R is continuous and [m, M ]
is compact, φ is uniformly continuous. ∴ There exists δ > 0 such that
δ < ǫ, |s − t| < δ ⇒ |φ(s) − φ(t)| < ǫ for s, t ∈ [m, M ]...... (1)
Since f ∈ R(α), there exists a partition P = {x0, x1, ..., xn} of [a, b] such
that U(P, f, α) − L(P, f, α) < δ2...... (2)
To Prove: h ∈ R(α). Let M∗

i = sup h(x), xi−1 ≤ x ≤ xi and m∗
i =

inf h(x), xi−1 ≤ x ≤ xi. Let A = {i|1 ≤ i ≤ n, Mi − mi < δ}; B =



78 4. UNIT IV

{i|1 ≤ i ≤ n, Mi − mi ≥ δ}

for i ∈ A, |Mi − mi| < δ ⇒ |φ(Mi) − φ(mi)| < ǫ (by (1))

⇒ |M∗
i − m∗

i | < ǫ......(3)

For i ∈ B, |M∗
i − m∗

i | ≤ |M∗
i | + |m∗

i |

≤ k + k where k = sup|φ(t)|, t ∈ [m, M ]

|M∗
i − m∗

i | ≤ 2k.....(4)

Also δ
∑

i∈B

∆αi ≤
∑

i∈B

(Mi − mi)∆αi

≤
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

= U(P, f, α) − L(P, f, α)

< δ2 (by (2))

(i.e.) δ
∑

i∈B

∆αi < δ2

⇒
∑

i∈B

∆αi < δ.....(5)

Now U(P, h, α) − L(P, h, α) =
n
∑

i=1

M∗
i ∆αi −

n
∑

i=1

m∗
i ∆αi

=
n
∑

i=1

(M∗
i − m∗

i )∆αi

=
∑

i∈A

(M∗
i − m∗

i )∆αi +
∑

i∈B

(M∗
i − m∗

i )∆αi

< ǫ
∑

i∈A

∆αi + 2k
∑

i∈B

∆αi (by (3) and (4))

< ǫ
n
∑

i=1

∆αi + 2k
∑

i∈B

∆αi

< ǫ[α(b) − α(a)] + 2kδ

< ǫ[α(b) − α(a)] + 2kǫ (∵ δ < ǫ)

= ǫ[α(b) − α(a) + 2k]

(i.e.) U(P, h, α) − L(P, h, α) < ǫ[α(b) − α(a) + 2k]
since ǫ is arbitrary, Theorem 4.9, implies that h ∈ R(α).

Lemma 4.15 If f ∈ R(α) and f ≥ 0 on [a, b] then
∫ b

a fdα ≥ 0.



79

Proof: Since f ≥ 0, Mi ≥ 0∀i.

∴

n
∑

i=1

Mi∆αi ≥ 0

⇒ U(P, h, α) ≥ 0

⇒ inf U(P, h, α) ≥ 0

⇒

∫ b

a
fdα ≥ 0.

Properties of Integral

Theorem 4.16 (a) If f1, f2 ∈ R(α) on [a, b] then f1 + f2 ∈ R(α), cf1 ∈
R(α) for every constant c and

∫ b
a (f1 +f2)dα =

∫ b
a f1dα+

∫ b
a f2dα,

∫ b
a cf1dα =

c
∫ b

a f1dα.

(b) If f1(x) ≤ f2(x) on [a, b] then
∫ b

a f1dα ≤
∫ b

a f2dα.
(c) If f ∈ R(α) on [a, b] and a < c < b, then f ∈ R(α) on [a, c] and on
[a, b] and

∫ b
a fdα =

∫ c
a fdα +

∫ b
c fdα

(d) If f ∈ R(α) on [a, b] and if |f(x)| ≤ M then |
∫ b

a fdα| ≤ [α(b) − α(a)].

(e) If f ∈ R(α1) and f ∈ R(α2) then f ∈ R(α1 +α2) and
∫ b

a fd(α1 +α2) =
∫ b

a fdα1 +
∫ b

a fdα2. If f ∈ R(α) and c is positive constant then f ∈ R(α)

and
∫ b

a fdα = c
∫ b

a fdα.
Proof: (a) Let ǫ > 0 be given. Since f1 ∈ R(α) and f2 ∈ [a, b], there exists
two partitions P1 and P2 of [a, b] such that U(P1, f1, α)−L(P1, f1, α) < ǫ.....
(1) and U(P2, f2, α) − L(P2, f2, α) < ǫ.....(2)
Let P = P1 ∪ P2 be the common refinement of [a, b].

∴ U(P1, f1, α) ≤ U(P1, f1, α)

L(P1, f1, α) ≤ L(P1, f1, α)

⇒ U(P, f1, α) + L(P1, f1, α) ≤ U(P1, f1, α) + L(P, f1, α)

⇒ U(P, f1, α) − L(P1, f1, α) ≤ U(P1, f1, α) − L(P1, f1, α)

U(P, f1, α) − L(P, f1, α) < ǫ (by (1)).......(3)

Similarly U(P, f2, α) − L(P, f2, α) < ǫ (by (2)).......(4)

(3)+(4)⇒

U(P, f1, α) + U(P, f2, α) − (L(P, f1, α)) + L(P, f2, α)

< 2ǫ......(5)

Now L(P, f1, α) + L(P, f2, α) ≤ L(P, f1 + f2, α)

≤ U(P, f1 + f2, α)

≤ U(P, f1, α) + U(P, f2, α)......(6)

(5),(6)⇒ U(P, f1 + f2, α) − L(P, f1 + f2, α) < 2ǫ. ∴ f1 + f2 ∈ R(α) on [a, b].
To prove:

∫ b

a
(f1 + f2)dα =

∫ b

a
f1dα +

∫ b

a
f2dα
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Since f1, f2 ∈ R(α), there exists partition P1 and P2 of [a, b]

U(P1, f1, α) <

∫ b

a
f1dα + ǫ (by Theorem 4.9).......(1∗)

U(P2, f2, α) <

∫ b

a
f2dα + ǫ........(2∗)

(1)+(2)⇒

U(P1, f1, α) + U(P2, f2, α) <

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ......(3∗)

Let P = P1 ∪ P2

U(P, f1, α) ≤ U(P1, f1, α).......(4∗)

U(P, f2, α) ≤ U(P2, f2, α).......(5∗)

(4*)+(5*)⇒

U(P, f1, α) + U(P, f2, α) ≤ U(P1, f1, α)+ ≤ U(P2, f2, α)

<

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ......(6∗) (by (3*))

U(P, f1 + f2, α) ≤ U(P, f1, α) + U(P, f2, α)

<

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ (by (6*))

Taking infimum over all partition P ,

∫ b

a
(f1 + f2)dα <

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ

Since ǫ is arbitrary,

∫ b

a
(f1 + f2)dα ≤

∫ b

a
f1dα +

∫ b

a
f2dα.....(7∗)

Replacing f1 and f2 in (7*) by −f1 and −f2 respectively we get,

∫ b

a
(−f1 − f2)dα ≤

∫ b

a
(−f1)dα +

∫ b

a
(−f2)dα

⇒

∫ b

a
(f1 + f2)dα ≥

∫ b

a
f1dα +

∫ b

a
f2dα.....(8∗)

From (7*)and(8*) we get,

∫ b

a
(f1 + f2)dα =

∫ b

a
f1dα +

∫ b

a
f2dα
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To Prove: cf1 ∈ R(α) where c is a constant.
For any partition P , of [a, b]

U(P, cf1, α) =

{

cU(P, f1, α) c ≥ 0

cL(P, f1, α) c ≤ 0

and

L(P, cf1, α) =

{

cL(P, f1, α) c ≥ 0

cU(P, f1, α) c ≤ 0

U(P, cf1, α) − L(P, cf1, α) =

{

c(U(P, f1, α) − L(P, f1, α)) c ≥ 0

−c(U(P, f1, α) − L(P, f1, α)) c ≤ 0

U(P, cf1, α) − L(P, cf1, α) = |c|(U(P, f1, α) − L(P, f1, α)).....(1A)

Since f1 ∈ R(α) there exists a partition P of [a, b] such that

U(P, f1, α) − L(P, cf1, α) <
ǫ

|c|
......(2A)

Sub (2A) in (1A), we get

U(P, cf1, α) − L(P, cf1, α) < |c|
ǫ

|c|

U(P, cf1, α) − L(P, cf1, α) < ǫ

∴ cf1 ∈ R(α).

To Prove:
∫ b

a
cf1dα =

∫ b

a
cf1dα

If c ≥ 0, then U(P, cf1, α) = cU(P, f1, α)

⇒ inf U(P, cf1, α) = inf(cU(P, f1, α))

⇒ inf U(P, cf1, α) = c inf U(P, cf1, α)

⇒

∫ b

a
cf1dα =

∫ b

a
cf1dα

If c ≤ 0, then L(P, cf1, α) = cU(P, f1, α)

= −|c|U(P, f1, α) (∵ c ≤ 0)

⇒ sup L(P, cf1, α) = sup(−|c|U(P, f1, α))

= |c| sup(−U(P, f1, α))

= −|c| inf(U(P, f1, α))

⇒

∫ b

a
cf1dα = −|c|

∫ b

a
f1dα

= c

∫ b

a
f1dα

When c = 0,

∫ b

a
cf1dα =

∫ b

a
f1dα (= 0)
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To Prove:

f1 ≤ f2 ⇒

∫ b

a
f1dα ≤

∫ b

a
f2dα

Proof of b: Given f1 ≤ f2 ⇒ f2 − f1 ≥ 0

⇒

∫ b

a
(f2 − f1)dα ≥ 0

⇒

∫ b

a
f2 +

∫ b

a
(−f1)dα ≥ 0

⇒

∫ b

a
f2dα +

∫ b

a
(−f1)dα ≥ 0 (by (a))

⇒

∫ b

a
f2dα −

∫ b

a
f1dα ≥ 0

⇒

∫ b

a
f1dα ≤

∫ b

a
f2dα

Proof of (c): Given f ∈ R(α) on [a, b] and a < c < b for ǫ < 0, there exists
a partition P of [a, b] such that

U(P, f, α) − L(P, f, α) < ǫ......(1B)

Let P ∗ = P ∪ {c}. Now P ∗ is a refinement of P and induces two partitions
P1 and P2 of [a, c] and [c, b] respectively. Now,

U(P, f, α) ≥ U(P ∗, f, α)

= U(P1, f, α) + U(P2, f, α).....(2B)

⇒ U(P1, f, α) ≤ U(P, f, α)......(3B)

and U(P2, f, α) ≤ U(P, f, α).......(4B)

L(P, f, α) ≤ L(P ∗, f, α)

= L(P1, f, α) + L(P2, f, α).......(5B)

−L(P, f, α) ≥ −L(P1, f, α) − L(P2, f, α)

−L(P1, f, α) ≤ −L(P, f, α)......(6B)

and − L(P2, f, α) ≤ −L(P, f, α).......(7B)

(3B) + (6B) ⇒ U(P1, f, α) − L(P1, f, α) ≤ U(P, f, α) − L(P, f, α) (by (1B))

< ǫ

∴ f ∈ R(α) on [a, c].

(4B) + (7B) ⇒ U(P2, f, α) − L(P2, f, α) ≤ U(P, f, α) − L(P, f, α) (by (1B))

< ǫ

∴ f ∈ R(α) on [c, b].

To Prove:
∫ b

a
fdα =

∫ c

a
fdα +

∫ b

c
fdα
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(2B) ⇒ U(P, f, α) ≥ U(P1, f, α) + U(P2, f, α)

≥

∫ c

a
fdα +

∫ b

c
fdα

⇒ inf U(P, f, α) ≥

∫ c

a
fdα +

∫ b

c
fdα

∫ b

a
fdα ≥

∫ c

a
fdα +

∫ b

c
fdα......(8B)

(5B) ⇒ L(P, f, α) ≤ L(P1, f, α) + L(P2, f, α)

≤

∫ c

a
fdα +

∫ b

c
fdα

⇒ sup U(P, f, α) ≤

∫ c

a
fdα +

∫ b

c
fdα

∫ b

a
fdα ≤

∫ c

a
fdα +

∫ b

c
fdα.......(9B)

∴ (8B) and (9B), we get

∫ b

a
fdα =

∫ c

a
fdα +

∫ b

c
fdα

Proof of (d): Given f ∈ R(α) and |f(x)| ≤ M
To Prove: |

∫ b
a fdα| ≤ [α(b) − α(a)]

we have, for any partition P of [a, b],

∫ b

a
fdα ≤ U(P, f, α)

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ |U(P, f, α)|

=

∣

∣

∣

∣

∣

n
∑

i=1

Mi∆αi

∣

∣

∣

∣

∣

<
n
∑

i=1

|Mi∆αi|

=
n
∑

i=1

|Mi|∆αi (∵ ∆αi ≥ 0)

≤
n
∑

i=1

M∆αi (∵ |f(x)| ≤ M)

= M
n
∑

i=1

∆αi

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ M [α(b) − α(a)]

Proof of (e): Given f ∈ R(α1) and f ∈ R(α2). To Prove: f ∈ R(α1 +α2).
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Let α = α1 + α2. For any partition p of [a, b],

U(P, f, α) =
n
∑

i=1

Mi∆αi

=
n
∑

i=1

Mi(α(xi) − α(xi−1))

=
n
∑

i=1

Mi[(α1 + α2)(xi) − (α1 + α2)(xi−1)]

=
n
∑

i=1

Mi[α1(xi) + α2(xi)] − [α1(xi−1) + α2(xi−1)]

=
n
∑

i=1

Mi[α1(xi) − α1(xi−1)] +
n
∑

i=1

Mi[α2(xi) − α2(xi−1)]

U(P, f, α) = U(P, f, α1) + U(P, f, α2).......(1C)

Similarly L(P, f, α) = L(P, f, α1) + L(P, f, α2).......(2C)

since f ∈ R(α1) and f ∈ R(α2), there exists partitions P1 and P2 of [a, b]
such that

U(P1, f, α1) − L(P1, f, α1) < ǫ

and U(P2, f, α2) − L(P2, f, α2) < ǫ

Let P ∗ be the common refinement of P1 and P2 of [a, b]. P ∗ = P1 ∪ P2

U(P ∗, f, α1) − L(P ∗, f, α1) < ǫ........(3C)

U(P ∗, f, α2) − L(P ∗, f, α2) < ǫ........(4C) (by Theorem 4.10)

Now,

U(P ∗, f, α) − L(P ∗, f, α) = U(P ∗, f, α1) + U(P ∗, f, α2)

− [L(P ∗, f, α1) + L(P ∗, f, α2)] (by (1C) and (2C))

= [U(P ∗, f, α1) − L(P ∗, f, α1)]

+ [U(P ∗, f, α2) − L(P ∗, f, α2)]

< ǫ + ǫ (by (3C) and (4C))

U(P ∗, f, α) − L(P ∗, f, α) < 2ǫ.

Since ǫ arbitrary, we get f ∈ R(α) (i.e.) f ∈ R(α1 + α2).
To Prove:

∫ b

a
d(α1 + α2) =

∫ b

a
fdα1 +

∫ b

a
fdα2
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(1C) ⇒ U(P, f, α) = U(P, f, α1) + U(P, f, α2)

≥

∫ b

a
fdα1 +

∫ b

a
fdα2

⇒ inf U(P, f, α) ≥

∫ b

a
fdα1 +

∫ b

a
fdα2

∫ b

a
fdα ≥

∫ b

a
fdα1 +

∫ b

a
fdα2......(5C)

(2C) ⇒ L(P, f, α) = L(P, f, α1) + L(P, f, α2)

≤

∫ b

a
fdα1 +

∫ b

a
fdα2

sup U(P, f, α) ≤

∫ b

a
fdα1 +

∫ b

a
fdα2

∫ b

a
fdα ≤

∫ b

a
fdα1 +

∫ b

a
fdα2......(6C)

from (5C) and (6C) we get,

∫ b

a
fdα =

∫ b

a
fdα1 +

∫ b

a
fdα2

(i.e.)

∫ b

a
d(α1 + α2) =

∫ b

a
fdα1 +

∫ b

a
fdα2.

To Prove: Given f ∈ R(α) and c > 0
To Prove: f ∈ R(α), for any partition P,

U(P, f, cα) =
n
∑

i=1

Mi∆(cαi)

=
n
∑

i=1

Mi(cα(xi) − cα(xi−1))

=
n
∑

i=1

Mic[α(xi) − α(xi−1)]

=
n
∑

i=1

cMi∆αi

= cU(P, f, α).......(7C)

Similarly L(P, f, cα) = cL(P, f, α)

U(P, f, cα) − L(P, f, cα) = cU(P, f, α) − cL(P, f, α)

= c[U(P, f, α) − L(P, f, α)]......(8C)

Since f ∈ R(α), given ǫ > 0, there exists partition P of [a, b] such that

U(P, f, α) − L(P, f, α) <
ǫ

c
.......(9C)
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sub (9C)in (8C) we get

U(P, f, cα) − L(P, f, cα) < c ·
ǫ

c
= ǫ

∴ f ∈ R(cα). To Prove:

∫ b

a
fd(cα) = c

∫ b

a
fdα

(7C) ⇒ U(P, f, cα) = cU(P, f, α)

⇒ inf U(P, f, cα) = inf cU(P, f, α)

= c inf U(P, f, α)

⇒

∫ b

a
fd(cα) = c

∫ b

a
fdα

Theorem 4.17 If f, g ∈ R(α) on [a, b],then
(a) f · g ∈ R(α)
(b) |f | ∈ R(α) and

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤

∫ b

a
|f |dα.

Proof: (a) Let φ(t) = t2, clearly φ is continuous

h(x) = φ(f(x)) (by Theorem 4.14)

= f(x)2

= f2(x)

∴ f2 ∈ R(α).......(1) (∵ f ∈ R(α))

Now,f, g ∈ R(α)

⇒ f + g, f − g ∈ R(α) (by Theorem 4.16)

⇒ (f + g)2, (f − g)2 ∈ R(α)

⇒ (f + g)2 − (f − g)2 ∈ R(α)

⇒ 4fg ∈ R(α)

⇒ fg ∈ R(α) (by Theorem 4.16)

(b) |f | ∈ R(α) and |
∫ b

a fdα| ≤
∫ b

a |f |dα.
To Prove: |f | ∈ R(α). Let φ(t) = |t|; h(x) = φ(f(x)) = |f(x)|. ∴ By
Theorem 4.14, |f | ∈ R(α)
To prove:

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤

∫ b

a
|f |dα.
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Choose c = ±1 so that c
∫ b

a fdα ≥ 0

∴ |

∫ b

a
fdα| = c

∫ b

a
fdα

=

∫ b

a
cfdα (by Theorem 4.16(a))

≤

∫ b

a
|f |dα (∵ cf ≤ |f |) by Theorem 4.16(b)

Hence the proof.

Definition 4.18 Unit Step Function:

I(x) =

{

0 if x ≤ 0

1 if x > o

Theorem 4.19 If a < s < b, f is bounded on [a, b], f is continuous at s
and α(x) = I(x − s), then

∫ b

a
fdα = f(s).

Proof: Consider partitions P = {x0, x1, x2, xb} of [a, b] where x0x1 = s, s <
x2 < b, x2 = b. Now,

U(P, f, α) =
3
∑

i=1

Mi∆αi

= Mi∆α1 + M2∆α2 + M3∆α3

= M1[α(x1) − α(x0)] + M2[α(x2) − α(x1)] + M3[α(x3) − α(x2)]

= M1[I(x1 − s) − I(x0 − s)] + M2[I(x2 − s) − I(x1 − s)]

+ M3[I(x3 − s) − I(x2 − s)]

= M1[I(s − s) − I(a − s)] + M2[I(x2 − s) − I(s − s)]

+ M3[I(b − s) − I(x2 − s)]

= M1[I(0) − I(a − s)] + M2[I(x2 − s) − I(0)]

+ M3[I(b − s) − I(x2 − s)]

= M1[0 − 0] + M2[1 − 0] + M3[1 − 1] (by definition of i)

= M2

In a similar fashion we can get L(P, f, α) = m2.

∫ b

a
fdα = inf U(P, f, α) = sup L(P, f, α)

= inf M2 = sup m2

= f(s) (∵ x2 → s, f(x2) → f(x) as f is continuous at s)
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Theorem 4.20 Suppose cn ≥ 0 for 1, 2, 3...,
∑

cn converges, {sn} is a
sequence of distinct point in (a, b) and α(x) =

∑∞
n=1 cnI(x − sn). Let f be

continuous on [a, b], then

∫ b

a
fdα =

∞
∑

n=1

cnf(sn).

Proof: We have |I(x − sn)| ≤ 1. ∴ |cnI(x − sn)| ≤ cn. Since

∞
∑

n=1

cn

is convergent, by comparison test,

∞
∑

n=1

cnI(x − sn)

also converges. Now,

α(a) =
∞
∑

n=1

cnI(a − sn)

= 0.......(1) (∵ I(a − sn) = 0)

and α(b) =
∞
∑

n=1

cnI(b − sn)

=
∞
∑

n=1

cn.....(2) (∵ I(b − sn) = 0)

Claim: α is monotonically increasing. Let x < y and let x < sk < y

α(x) =
∞
∑

n=1

cnI(x − sn)

= c1 + c2 + ... + ck−1

α(y) =
∞
∑

n=1

cnI(y − sn)

= c1 + c2 + ... + ck−1 + ck

∴ α(x) ≤ α(y)

Hence the claim. Since
∞
∑

n=1

cn

is convergent, given ǫ > 0, there exists N > such that

∞
∑

n=N+1

cn < ǫ......(3)
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Let

α1(x) =
N
∑

n=1

cnI(x − sn)

α2(x) =
∞
∑

n=N+1

cnI(x − sn)

Clearly α(x) = α1(x) + α2(x). Let α1i = I(x − si), i = 1, 2, ..., N.

∴ α1(x) =
N
∑

n=1

cnα1n(x)

= (c1α11 + c2α12 + ... + cN α1N )x

(or) α1 = c1α11 + c2α12 + ... + cN α1N

Now,

∫ b

a
fdα1 =

∫ b

a
fd(c1α11 + c2α12 + .... + cN α1N )

= c1

∫ b

a
fdα11 + c2

∫ b

a
fdα12 + ...cN

∫ b

a
fdα1N (by Theorem 4.16(e))

= c1f(s1) + c2f(s2) + ... + cN f(sN ) (by Theorem 4.19)

=
N
∑

n=1

cnf(sn).......(4)

Now,

α2(a) =
∞
∑

n=N+1

cnI(a − sn)

= 0........(5)

α2(b) =
∞
∑

n=N+1

cnI(b − sn)

=
∞
∑

n=N+1

cn

< ǫ (by (3))......(6)
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Let M = |f(x)|, x ∈ [a, b]. By Theorem 4.16(d),

∣

∣

∣

∣

∣

∫ b

a
fdα2

∣

∣

∣

∣

∣

≤ [α2(b) − α2(a)]

≤ Mǫ (by (5)and(6)),

(i.e.)

∣

∣

∣

∣

∣

∫ b

a
fdα2

∣

∣

∣

∣

∣

≤ Mǫ

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα1 +

∫ b

a
fdα2 −

∫ b

a
fdα1

∣

∣

∣

∣

∣

≤ Mǫ

⇒

∣

∣

∣

∣

∣

∫ b

a
fd(α1 + α2) −

∫ b

a
fdα1

∣

∣

∣

∣

∣

≤ Mǫ (by theorem 4.16(d))

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα −

N
∑

n=1

cnf(sn)

∣

∣

∣

∣

∣

≤ Mǫ (by (4))

Taking limits as N → ∞,

∣

∣

∣

∣

∣

∫ b

a
fdα −

∞
∑

n=1

cnf(sn)

∣

∣

∣

∣

∣

≤ Mǫ

∴

∣

∣

∣

∣

∣

∫ b

a
fdαǫ

∣

∣

∣

∣

∣

=
∞
∑

n=1

cnf(sn)

Theorem 4.21 Assume α increases monotonically and α′ ∈ R on [a, b],
Let f be a bounded real function on [a, b], then f ∈ R(α) iff fα′ ∈ R. In
that case

∫ b
a fdα =

∫ b
a f(x)α′(x)dx.

Proof: Let ǫ > 0 be given. Since α′ ∈ R, there exists a partition P =
{x1, x2, ..., xn} of [a, b] such that U(P, α′) − L(P, α′) < ǫ........ (1)
By mean value theorem , there exists t :∈ [xi−1, xi] such that α(xi) −
α(xi−1) = α′(ti)(xi − xi−1) (i.e.) ∆αi = α′(ti)∆xi..... (2)
By Theorem 4.10(b), ∀si, ti ∈ [xi−1, xi]

n
∑

i=1

|α′(si) − α′(ti)|∆xi < ǫ......(3)
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Now,
∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

f(si)α
′(ti)∆xi −

n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

f(si)[α
′(ti) − α′(si)]∆xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

≤
n
∑

i=1

|f(si)||α
′(ti) − α′(si)|∆xi

≤
n
∑

i=1

M |α′(ti) − α′(si)|∆xi where M = sup |f(x)|

= M
n
∑

i=1

|α′(ti) − α′(si)|∆xi

≤ Mǫ (by (3))

(i.e.)

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

≤ Mǫ

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(α′)(si)∆xi

∣

∣

∣

∣

∣

≤ Mǫ.....(4)

Since inequality (4) is true for any si in [xi−1, xi], we can replace (fα′)(si)
by M ′

i and m′
i, where m′

i = inf(fα′)si, M ′
i = sup(fα′)(si), si ∈ [xi−1, xi]

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

M ′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ.......(5)

and

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

m′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ......(6)

Again by replacing f(si) by Mi in (5) and by mi in (6)
we get

∣

∣

∣

∣

∣

n
∑

i=1

M ′
i∆αi −

n
∑

i=1

M ′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ and

∣

∣

∣

∣

∣

n
∑

i=1

m′
i∆αi −

n
∑

i=1

m′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ

⇒ |U(P, f, α) − U(P, f, α′)| ≤ Mǫ......(7) and

|L(P, f, α) − L(P, f, α′)| ≤ Mǫ.......(8)
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Since ǫ is arbitrary, (7) and (8)

⇒ U(P, f, α) = U(P, f, α′) and

L(P, f, α) = L(P, f, α′)

⇒ inf U(P, f, α) = inf U(P, f, α′) and

sup L(P, f, α) = sup L(P, f, α′)

⇒

∫ b̄

a
fdα =

∫ b̄

a
(fα′)dα.......(9) and

∫ b

a
fdα =

∫ b

a
(fα′)dα.......(10)

∴ f ∈ R(α) ⇔

∫ b

a
fdα =

∫ b̄

a
fdα

⇔

∫ b

a
(fα′)dα =

∫ b̄

a
(fα′)dα (by (9) and (10))

⇔ f(α′) ∈ R.

Now,

∫ b

a
fdα =

∫ b̄

a
fdα

=

∫ b̄

a
(fα′)dx (by(9))

=

∫ b

a
(fα′)dx

=

∫ b

a
f(x)α′(x)dx

∴

∫ b

a
fdα =

∫ b

a
f(x)α′(x)dx

Remark 4.22 The above theorem gives the relation of R integral and R(α)
integral.

Theorem 4.23 Change of Variable: Suppose φ is a strictly increasing
function that maps an interval [A, B] onto [a, b]. Suppose α is monotoni-
cally increasing on [a, b] and f ∈ R(α) on [a, b]. Define β and g on [A, B]
by β(y) = α(φ(y)), g(y) = f(φ(y)), then g ∈ R(β) and

∫ B
A gd(β) =

∫ b
a fdα.

Proof: g(y) = (f · φ)x = f(φ(y)) = f(x)

[A, B]
φ
−→ [a, b]

f
−→ R

[A, B]
φ
−→ [a, b]

α
−→ R

β(y) = (α · φ)y

= α(φ(y))

= α(x)
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Let P = {x0, x1, x2, ..., xn} be any partition of [a, b]. Since φ is onto for
each i, there exists yi ∈ [A, B] such that φ(yi) = xi, i = 0, 1, 2, ..., n. ∴

{y0, y1, y2, ..., yn} is a partition of [A, B] every partition of [A, B] can be
obtained in this way (since φ is monotonically increasing)

For y ∈ [yi−1, yi]

g(y) = (f · φ)y

g(y) = f(φ(y))

= f(x) where x = φ(y), x ∈ [xi−1, xi]

⇒ sup g(y) = sup f(x)

⇒ Mi′ = Mi.......(1)

Similarly inf g(y) = inf f(x)

mi′ = mi.......(2)

Now ∆βi = β(yi) − β(yi−1)

= (α ◦ φ)yi − (α ◦ φ)yi−1

= α(φ(yi)) − α(φ(yi−1))

= α(xi) − α(xi−1)

= ∆αi......(3)

∴ U(Q, g, β) =
n
∑

i=1

M ′
i∆βi

=
n
∑

i=1

Mi∆αi (by (1) and (3))

= U(P, f, α)......(4)

Similarly L(Q, g, β) = L(P, f, α)......(5)

Since f ∈ R(α), given ǫ > 0, there exists a partition P of [a, b] such that

U(P, f, α) − L(P, f, α) < ǫ

⇒ U(Q, g, β) − L(Q, g, β) < ǫ (by (4) and (5))

∴ g ∈ R(β)

Also

∫ B

A
gdβ = inf U(Q, g, β)

= inf U(P, f, α) (by (4))

=

∫ b

a
fdα.
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Note 4.24 Let α(x) = x and φ′ ∈ R on [A, B].

∴ β(y) = (α ◦ φ)y,

= α(φ(y))

= φ(y) ∀y ∈ [A, B]

∴ β = φ
∫ B

A
gdβ =

∫ b

a
fdα (by previous theorem)

∫ b

a
f(x)dx =

∫ B

A
gdβ

=

∫ B

A
gdφ

=

∫ B

A
g(y)φ′(y)dy (by theorem 4.21)

Integrations and Differentiations:

Theorem 4.25 Let f ∈ R on [a, b], for a ≤ x ≤ b, put F (x) =
∫ x

a f(t)dt,
then F is continuous on [a, b], further more if f is continuous at some point
x0 of [a, b], then F is differentiable at x0 and F ′(x0) = f(x0).
Proof: Given F (x) =

∫ x
a f(t)dt. To Prove: F (x) is continuous on [a, b]. Let

a ≤ x ≤ y ≤ b. Now,

F (y) − F (x) =

∫ y

a
f(t)dt −

∫ x

a
f(t)dt

=

∫ x

a
f(t)dt +

∫ y

x
f(t)dt −

∫ x

a
f(t)dt

=

∫ y

x
f(t)dt

⇒ |F (y) − F (x)| = |

∫ y

x
f(t)dt|

≤

∫ y

x
|f(t)|dt

≤

∫ y

x
Mdt where M = sup |f(t)|, t ∈ [a, b]

= M(y − x)

(i.e.) |F (y) − F (x)| ≤ M |y − x| (∵ (y − x) = 0)

Given ǫ > 0, there exists δ = ǫ
M such that |y − x| < δ ⇒ |F (y) − F (x)| < ǫ

(i.e.) F is continuous on [a, b]. (infact F is uniformly continuous on [a, b]).
Suppose f is continuous at x0 ∈ [a, b]. To Prove: F ′(x0) = f(x0). Given
ǫ > 0, there exists δ > 0 such that |t − x0| < δ ⇒ |f(t) − f(x0)| < ǫ for
t ∈ [a, b]...... (1)
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Let x0 − δ < s ≤ x0 ≤ t ≤ x0 + δ. Now,

F (t) − F (s) =

∫ t

a
f(t)dt −

∫ s

a
f(t)dt

=

∫ s

a
f(t)dt +

∫ t

s
f(t)dt −

∫ s

a
f(t)dt

F (t) − F (s) =

∫ t

s
f(t)dt

⇒
F (t) − F (s)

t − s
=

1

t − s

∫ t

s
f(t)dt

⇒
F (t) − F (s)

t − s
− f(x0) =

1

t − s

∫ t

s
f(t)dt − f(x0)

F (t) − F (s)

t − s
− f(x0) =

1

t − s
{

∫ t

s
f(t)dt − (t − s)f(x0)}

=
1

t − s
{

∫ t

s
f(t)dt −

∫ t

s
f(x0)dt}

=
1

t − s

∫ t

s
(f(t) − f(x0))dt

∣

∣

∣

∣

F (t) − F (s)

t − s
− f(x0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t − s

∫ t

s
(f(t) − f(x0))dt

∣

∣

∣

∣

≤
1

t − s

∫ t

s
|f(t) − f(x0)|dt

<
∈

t − s

∫ t

s
dt (by (1))

∣

∣

∣

∣

F (t) − F (s)

t − s
− f(x0)

∣

∣

∣

∣

< ǫ

It follows that F ′(x0) = f(x0).

Theorem 4.26 The Fundamental Theorem of Calculus: If f ∈ R
on [a, b] and if there is a differentiable function F such that F ′ = f , then
∫ b

a f(x)dx = F (b) − F (a).
Proof: Since f ∈ R on [a, b], given ∈ 0, there exists a partition P =
{x0, x1, x2, ..., xn} of [a, b] such that U(P, f) − L(P, f) < ǫ...... (1)
Since F is differentiable we can apply the mean value theorem to it on
[xi−1, xi]. There exists ti ∈ [xi−1, xi] such that

F (xi) − F (xi−1) = (xi−1 − xi)F
′(ti)

= ∆xif(ti) (∵ F ′ = f)

Summing over i, we get,
n
∑

i=1

[F (xi) − F (xi−1)] =
n
∑

i=1

∆xif(ti)

F (b) − F (a) =
n
∑

i=1

f(ti)∆xi.......(2)
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By Theorem 4.10(c), (1) implies that
∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆xi −

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

< ǫ.......(3)

Using (2) and (3) we get, |(F (b)−F (a))−
∫ b

a f(x)dx| < ǫ. Since ǫ is arbitrary,
∫ b

a f(x)dx = F (b) − F (a). Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable
functions on [a, b], F ′ = f ∈ R, G′ = g ∈ R, then

∫ b

a
f(x)g(x)dx = F (b)G(b) − F (a)G(a) −

∫ b

a
f(x)G(x)dx.

Proof: Let H(x) = F (x)G(x). ∴ H ′(x) = F (x)G′(x) + F ′(x)G(x) =
F (x)g(x) + f(x)G(x)....... (1)
Given f and g ∈ R. Since F and G are differentiable, they are continuous.
∴ By Theorem 4.11, F and G are integrable (∈ R). ∴ By Theorem 4.16
F (x)g(x) + f(x)G(x) ∈ R (i.e.) H ′(x) ∈ R. By fundamental theorem of
calculus,

∫ b

a
H ′(x)dx = H(b) − H(a)

(i.e.)

∫ b

a
(F (x)g(x) + f(x)G(x))dx = F (b)G(b) − F (a)G(a)

⇒

∫ b

a
F (x)g(x)dx +

∫ b

a
f(x)G(x)dx = F (b)G(b) − F (a)G(a)

⇒

∫ b

a
F (x)g(x)dx = F (b)G(b) − F (a)G(a) −

∫ b

a
f(x)G(x)dx

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let f1, f2, ..., fk

be real functions on [a, b] and let f̄ = (f1, f2, ..., fk) be a mapping of [a, b] →
R

k. Suppose α increases monotonically on [a, b], then f̄ ∈ R(α) ⇔ for each
fi ∈ R(α), and in this case

∫ b

a
f̄dα = (

∫ b

a
f1dα,

∫ b

a
f2dα, ...,

∫ b

a
fkdα)

Theorem 4.29 Fundamental Theorem of calculus for vector valued
functions: If F̄ , f̄ map [a, b] into R

k and if f̄ ∈ R on [a, b] and if F̄ ′ = f̄
then

∫ b
a f̄(t)dt = F̄ (b) − F̄ (a).

Proof: Let

f̄ = (f1, f2, ..., fk)

F̄ = (F1, F2, ..., Fk)

F̄ ′ = (F ′
1, F ′

2, ..., F ′
k)
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Given F̄ ′ = f̄ . ∴ (F ′
1, F ′

2, ..., F ′
k) = (f1, f2, ..., fk) ⇒ F ′

i = fi ∀i = 1, 2, ..., k.
Since f̄ ∈ R, each fi ∈ R. ∴ By fundamental theorem of calculus, for any
i.

∫ b

a
F ′

i (t)dt = Fi(b) − Fi(a)

(i.e.)

∫ b

a
fi(t)dt = Fi(b) − Fi(a)........(1)

Now,

∫ b

a
f̄(t)dt =

(

∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt, ...,

∫ b

a
fk(t)dt

)

(by definition)

(1) ⇒ = (F1(b) − F1(a), F2(b) − F2(a), ..., Fk(b) − Fk(a))

= (F1(b), F2(b), ..., Fk(b)) − (F1(a), F2(a), ..., Fk(a))

= F̄ (b) − F̄ (a)

∴

∫ b

a
f̄(t)dt = F̄ (b) − F̄ (a)

Note 4.30 Schwartz inequality:

∣

∣

∣

∣

∣

∣

n
∑

j=1

aj b̄j

∣

∣

∣

∣

∣

∣

2

≤





n
∑

j=1

|aj |2









n
∑

j=1

|bj |2



 (or)

∣

∣

∣

∣

∣

∣

n
∑

j=1

aj b̄j

∣

∣

∣

∣

∣

∣

≤





n
∑

j=1

|aj |2





1

2





n
∑

j=1

|bj |2





1

2

Theorem 4.31 If f̄ maps [a, b] into R
k and if f̄ ∈ R(α) for some monotoni-

cally increasing function [a, b], then |f̄ | ∈ R(α) and |
∫ b

a f̄(t)dα| ≤
∫ b

a |f̄(t)|dα.
Proof:

f̄ = (f1, f2, ..., fk)

|f̄ | = (f2
1 + f2

2 + f2
3 + ... + f2

k )1/2

Since f̄ ∈ R(α)

⇒ fi ∈ R(α) ∀i = 1, 2, ..., k

⇒ f2
i ∈ R(α)

⇒ (f2
1 + f2

2 + f2
3 + ... + f2

k ) ∈ R(α)

⇒ (f2
1 + f2

2 + f2
3 + ... + f2

k )2 ∈ R(α)(by Theorem 4.17, φ(t) = t1/2)

⇒ |f̄ | ∈ R(α)

To Prove:
∣

∣

∣

∣

∣

∫ b

a
f̄(t)dα

∣

∣

∣

∣

∣

≤

∫ b

a
|f̄(t)|dα
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Let ȳ =
∫ b

a f̄(t)dα. If ȳ = 0, then the inequality is trivial (for, ȳ = 0 ⇒

L.H.S=0 and |f̄ | ≥ 0 ⇒
∫ b

a |f̄(t)|dα ≥ 0 (i.e.) R.H.S ≥ 0)
Let ȳ 6= 0

∴ ȳ =

∫ b

a
f̄dα =

(

∫ b

a
f1dα,

∫ b

a
f2dα, ...,

∫ b

a
fkdα

)

= (y1, y2, ..., yk) where yi =

∫ b

a
fidα

Now |ȳ|2 = y2
1 + y2

2 + ... + y2
k

(i.e.) |ȳ|2 =
k
∑

i=1

y2
i

=
k
∑

i=1

yiyi

=
k
∑

i=1

yi(

∫ b

a
fidα)

=
k
∑

i=1

∫ b

a
(yifi)dα

=

∫ b

a
(

k
∑

i=1

yifi)dα

≤

∫ b

a

(

k
∑

i=1

|yi|
2

)1/2( k
∑

i=1

|fi|
2

)1/2

dα (by schwartz inequality)

(i.e.) |ȳ|2 ≤

∫ b

a

(

k
∑

i=1

y2
i

)1/2( k
∑

i=1

f2
i

)1/2

dα

=

∫ b

a
|ȳ||f̄ |dα

= |ȳ|

∫ b

a
|f̄ |dα

(i.e.) |ȳ|2 ≤ |ȳ|

∫ b

a
|f̄ |dα

⇒ |ȳ| ≤

∫ b

a
|f̄ |dα

∣

∣

∣

∣

∣

∫ b

a
f̄dα

∣

∣

∣

∣

∣

≤

∫ b

a
|f̄ |dα

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that {fn} of function
n = 1, 2, ... converges uniformly on E to a function f is every ǫ > 0 there is
an integer N such that n ≥ N ⇒ |fn(x) − f(x)| < ǫ.
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Note 4.33 If {fn} converges pointwise on E, then there exists a function
f such that for every ǫ > 0 and for every x in E there is an integer N
depending on ǫ and x such that |fn(x) − f(x)| < ǫ ∀n ≥ N . If {fn}
converges uniformly on E, it is possible for each ǫ > 0, to find one integer
N which will do for all x in E. We say that the series

∑∞
n=1 fn(x) converges

uniformly on E if the {sn} of partial sums defined by sn(x) =
∑n

i=1 fi(x)
converges uniformly on E.

Theorem 4.34 Cauchy’s Criterian for Uniform Convergence: The
sequence of functions {fn}, defined on E, converges uniformly on E iff for
every ǫ > 0 there exists an integer N such that n, m ≥ N, x ∈ E ⇒ |fn(x) −
fm(x)| < ǫ.
Proof: For the ’only if’ part we assume that {fn} → f uniformly. To Prove:
There exists N such that x ∈ E n, m ≥ N ⇒ |fn(x)−fm(x)| < ǫ. Let ǫ > 0
such that |fn(x) − f(x)| ≤ ǫ/2...... (1) ∀n ≥ N ∀x ∈ E
Now, for n, m ≥ N

|fn(x) − fm(x)| = |fn(x) − f(x) + f(x) − fm(x)|

≤ |fn(x) − f(x)| + |f(x) − fm(x)|

≤ ǫ/2 + ǫ/2 (by (1))

(i.e.) |fn(x) − fm(x)| ≤ ǫ

For the ′if ′ part we assume that there exists N > 0 such that n, m ≥ N, x ∈
E ⇒ |fn(x) − fm(x)| ≤ ǫ........ (2)
For fixed x, (2) implies that {fn(x)} is a cauchy sequence ∴ {fn(x)} →
f(x)(|fn(x) − f(x)| → 0). To Prove: {fn} → f uniformly. In (2), keeping
n fixed and taking limit as m → ∞ we get |fn(x) − f(x)| ≤ ǫ ∀n ≥ N
∀x ∈ E. ∴ {fn} → f uniformly.

Theorem 4.35 Suppose

lim
n→∞

fn = f(x), (x ∈ E).

Put Mn = supx∈E |fn(x)−f(x)|, then {fn} → f uniformly on E iff Mn → 0
as n → ∞.
Proof: For the ’only if’ part, we assume that {fn} → f . To Prove: Mn → 0
as n → ∞. By hypothesis, given ǫ > 0, there exists N > 0 such that
|fn(x) − f(x)| ≤ ǫ ∀n ≥ N ∀x ∈ E ⇒ sup x ∈ E|fn(x) − f(x)| ≤ ǫ
∀n ≥ N ⇒ Mn ≤ ǫ ∀n ≥ N (i.e.) Mn → 0 as n → ∞. For the ’if’
part, let Mn → 0 as n → ∞. Then there exists N > 0 such that Mn ≤ ǫ
∀n ≥ N ⇒ supx∈E |fn(x) − f(x)| ≤ ǫ ∀n ≥ N ⇒ |fn(x) − f(x)| ≤ ǫ
∀n ≥ N, x ∈ E ⇒ {fn} → f uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose
{fn} is a sequence of function defined on E and suppose that |f1(x)| ≤ Mn
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(x ∈ E, n = 1, 2...) then
∑

fn converges uniformly on E its
∑

Mn converges.
Proof: Assume that

∑

Mn converges. To Prove:
∑

fn converges uniformly.
Let ǫ > 0 be given. Let {sn} and {tn} be the sequences of partial sums of
∑

fn and
∑

Mn respectively. Since
∑

Mn converges, {tn} also converges.
Since any convergence sequence is a Cauchy sequence {tn} is also a Cauchy
sequence. Then there exists N > 0 such that |tn − tm| ≤ ǫ ∀n, m ≥ N . Let
m > n(≥ N)

|tn − tm| =

∣

∣

∣

∣

∣

m
∑

n+1

Mk

∣

∣

∣

∣

∣

≤ ǫ.......(1)

Now, for x ∈ E,

|sn(x) − sm(x)| =

∣

∣

∣

∣

∣

m
∑

n+1

fk(x)

∣

∣

∣

∣

∣

≤
m
∑

n+1

|fk(x)|

≤
m
∑

n+1

Mk ≤ ǫ (by (1))

∴ |sn(x) − sm(x)| < ǫ

∴ By Cauchy’s criteria 4.34 the {sn} converges uniformly on E. ∴

∑

fn

converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose {fn}
converges to f uniformly on a set E, in a metric space. Let x be a limit
point of E and suppose that limt→x fn(t) = An(n = 1, 2, 3...), then {An}
converges limt→x f(t) = limn→∞ An. In other words limt→x limn→∞ fn(t) =
limn→∞ limt→x fn(t).
Proof: Let ǫ > 0 be given. Since {fn} converges to f uniformly on E, by
Theorem 4.34, there exists an integer N > 0 such that |fn(t) − fm(t)| ≤ ǫ
∀n, m ≥ N, t ∈ E...... (1)
Letting t → x in (1) we get |An − Am| ≤ ǫ ∀n, m ≥ N(∵ limt→x = An)
(i.e.) {An} is a Cauchy sequence of real numbers. Since R is complete, {An}
converges to some A( in R) (i.e.) {An} → A. ∴ there exists N1 > 0 such
that |An − A| ≤ ǫ/3, ∀n ≥ N1...... (2)
Now,

|f(t) − A| = |f(t) − fn(t)| + (fn(t) − An) + |(An − A)|

≤ |f(t) − fn(t)| + |fn(t) − An| + (An − A)|.......(3)

Since {fn} → f uniformly, there exists N2 > 0 such that |fn(t)−f(t)| ≤ ǫ/3
∀n ≥ N2, t ∈ E....... (4)
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Since x is a limit point of E and ∵ limt→x fn(t) = An, there exists a neigh-
bourhood V of x such that |fn(t) − An| ≤ ǫ/3 ∀t ∈ V ∩ E....... (5)
Let N3 = max{N1, N2}. Now using (2),(4) and (5) in (3) we get

|f(t) − A| ≤ ǫ/3 + ǫ/3 + ǫ/3 ∀n ≥ N3 ∀t ∈ V ∩ E.

(i.e.) |f(t) − A| ≤ ǫ

(i.e.) lim
t→x

f(t) = A (or)

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

An

= lim
n→∞

lim
t→x

fn(t))

∴ lim
t→x

f(t) = lim
n→∞

An

Theorem 4.38 If {fn} is a sequence of continuous functions on E, and if
{fn} converges to f uniformly on E then f is continuous on E.
Proof: Enough To Prove: limt→x f(t) = f(x)

lim
t→x

f(t) = lim
t→x

lim
n→∞

fn(t)) (∵ fn → f uniformly)

lim
t→x

f(t) = lim
n→∞

(lim
t→x

fn(t)) (by Theorem 4.37)

= lim
n→∞

fn(x) (∵ fn is continuous)

= f(x) (∵ fn → f uniformly)

Remark 4.39 The converse of the above theorem need not be true. (i.e.)
a sequence of continuous function may converse to a continuous function,
although the convergence is not uniform.

Example 4.40 fn(x) = n2x(1 − x2)n, 0 ≤ x ≤ 1, n = 1, 2, 3, ... Clearly,
each fn is continuous. Also f is continuous. But the convergence is not
uniform. By Theorem 4.35, for let

Mn = sup
x∈[0,1]

|fn(x) − f(x)|

= sup
x∈[0,1]

|n2x(1 − x2)n − 0|

= n2 sup
x∈[0,1]

{x(1 − x2)n}

9 0 as n → ∞.

By Theorem 4.35, the convergence is not uniform.

Theorem 4.41 [Dini’s Theorem] Suppose K is compact and
(a) {fn} is a sequence of continuous functions on K.
(b) {fn} converges pointwise to a continuous functions f on K.
(c) fn(x) ≥ fn+1(x) ∀x ∈ K, n = 1, 2, 3...
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then fn → f uniformly on K.
Proof: Given K is compact. Let gn = fn − f . Since each fn is con-
tinuous and f is continuous, gn is continuous for all n. Since {fn} con-
verges pointwise to f, {gn} converges pointwise to 0. Since fn(x) ≥ fn+1(x)
∀x ∈ K, n = 1, 2... fn(x) − f(x) ≥ fn+1(x) − f(x). (i.e.) gn(x) ≥ gn+1(x)
∀x, n = 1, 2... (i.e.) {gn} is also a monotonic decreasing sequence. To prove
that {fn} converges to f uniformly. It is enough to prove that {gn} converges
to 0 uniformly. Let ǫ > 0 be given. For each n, let Kn = {x ∈ K|gn(x) ≥ ǫ}.
Now,

Kn = {x ∈ K|gn(x) ≥∈ [ǫ, ∞)}

= {x ∈ K|x ∈ g−1
n [ǫ, ∞)}

= g−1
n [ǫ, ∞).

Since [ǫ, ∞) is closed in R and gn is continuous, g−1
n [ǫ, ∞) is closed in K.

(i.e.) Kn is a closed subspace of the compact space K. ∴ Kn is compact
(∵ every closed subspace of a compact space is compact). Claim: Kn ⊃
Kn+1, n = 1, 2, 3... Let x ∈ Kn+1 ⇒ gn+1(x) ≥ ǫ. But gn(x) ≥ gn+1(x) (by
(1)). ∴ gn(x) ≥ gn+1(x) ≥ ǫ ⇒ gn(x) ≥ ǫ ⇒ x ∈ Kn ∴ Kn+1 ⊂ Kn. Fix
x ∈ K. Since {gn} converges pointwise to 0. {gn(x)} → 0. Then there exists
N(x) > 0 such that |gn(x) − 0| < ǫ ∀n ≥ N(x) ⇒ gn(x) < ǫ ∀n ≥ N(x) ⇒
x /∈ Kn ∀n ≥ N(x) ⇒ x /∈

⋂∞
n=1 Kn. Since x is arbitrary,

⋂∞
n=1 Kn = φ ⇒

KN = φ for some N. ∴ gN (x) < ǫ ∀x ∈ K. But

0 ≤ gn(x) ≤ gN (x) < ǫ ∀x ∈ K, ∀n ≥ N

gn(x) < ǫ ∀x ∈ K, ∀n ≥ N

(i.e.) |gn(x) − 0| < ǫ ∀x ∈ K, ∀n ≥ N

Hence {gn} → 0 uniformly.

Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 fn(x) = 1
nx+1 , 0 < x < 1, n = 1, 2, 3... {fn} → f pointwise

where f(x) = 0∀x ∈ (0, 1) and (0, 1) is not compact. Clearly, each fn is
continuous. Also f is continuous. Now,

n + 1 > n

⇒ (n + 1)x > nx

⇒ (n + 1)x + 1 > nx + 1

⇒
1

(n + 1)x + 1
<

1

nx + 1

⇒ fn+1(x) < fn(x)
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⇒ {fn} is a decreasing sequence. But {fn} → f uniformly. For, if {fn} → f
uniformly then, given ǫ > 0, there exists N > 0 such that

|fn(x) − f(x)| ≤ ǫ ∀n ≥ N, ∀x ∈ (0, 1)

(i.e.)

∣

∣

∣

∣

1

nx + 1
− 0

∣

∣

∣

∣

≤ ǫ ∀x ∈ (0, 1)
∣

∣

∣

∣

1

nx + 1

∣

∣

∣

∣

≤ ǫ ∀x ∈ (0, 1)

Put x =
1

n
. Then

1

2
≤ ǫ

⇒⇐

∴ The convergence is not uniform.

Definition 4.44 If X is a metric space C (x) denotes the set of all complex
valued continuous bounded functions with domain X. C (X) = {f/f : X →
c, f is continuous and bounded}. If X is compact, C (X) = {f/f : X → c, f
is continuous} (∵ any continuous function on a compact space is bounded).
For any f in C (f), sup ‖f‖ = supx∈X |f(x)|, since f is bounded ‖f‖ < ∞.

Result 4.45 C (X) is a metric space. Given f, g ∈ C (X) define

(i) d(f, g) = ‖f − g‖

= sup
x∈E

|f(x) − g(x)|

≥ 0

∴ d(f, g) ≥ 0

(ii) d(f, g) = sup
x∈E

|f(x) − g(x)|

= sup
x∈E

|g(x) − f(x)|

= ‖g − f‖

= d(f, g)

(iii) d(f, g) = 0 ⇔ ‖f − g‖ = 0

⇔ sup
x∈E

|f(x) − g(x)|

⇔ |f(x) − g(x)| = 0∀x ∈ E

⇔ f(x) = g(x)

⇔ f = g
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(iv) d(f, g) = ‖f − g‖

= sup
x∈E

|f(x) − g(x)|

= sup
x∈E

|(f(x) − h(x)) + (h(x) − g(x))|

≤ sup
x∈E

{|(f(x) − h(x))| + |(h(x) − g(x))|}

≤ sup
x∈E

|(f(x) − h(x))| + sup
x∈E

|(f(x) − g(x))|

= ‖f − h‖ + ‖h − g‖

= d(f, h) + d(h, g)

(i.e.) d(f, g) ≤ d(f, h) + d(h, g)

∴ (C (X), d) is a metric space.

Result 4.46 (Analogue of Theorem 4.35) A sequence {fn} → f with
respect to the metric space C (X) iff {fn} → f uniformly on X.
Proof: ’only if’ part:
Assume that {fn} → f in C (X). ‖fn − f‖ → 0 as n → ∞ (i.e.) supx∈E |fn(x)−
f(x)| → 0 as n → ∞ (i.e.) Mn → 0 as n → ∞ (Theorem 4.35). {fn} → f
uniformly (by Theorem 4.35)
’if’ part:
Suppose {fn} → f uniformly. Then Mn → 0 as n → ∞ (Theorem 4.35)
(i.e.) sup x ∈ E|fn(x) − f(x)| → 0 as n → ∞ (i.e.)‖fn − f‖ → 0 as
n → ∞. ∴ {fn} → f in C (X)

Note 4.47 (i) Closed subsets of C (X) are called uniformly closed subsets.
(ii) If A ⊂ C (X) then the closure of A is called the uniform closure of A.

Theorem 4.48 C (X) is a complete metric space.
Proof: Let {fn} be a Cauchy sequence in C (X). Let ǫ > 0 be given. Then
there exists N > 0 such that ‖fn − fm‖ < ǫ ∀n, m ≥ N ...... (1)
(i.e.) supx∈E |fn(x) − fm(x)| ≤ ǫ ∀n, m ≥ N. ⇒ |fn(x) − fm(x)| ≤ ǫ
∀n, m ≥ N, x ∈ X. By Theorem 4.34, guarantees that {fn} converges uni-
formly, say f . (i.e.) limn→∞ fn(x) = f(x), x ∈ X. Claim: f ∈ C (X). Since
each fn is continuous and {fn} → f uniformly (Theorem 4.38). Theorem
4.38 demands that f is also continuous. Again, since {fn} → f uniformly,
there exists N1 > 0 such that |fn(x) − f(x)| < 1 ∀n ≥ N1, x ∈ X. In partic-
ular, |fN1

(x) − f(x)| < 1....... (2) ∀x ∈ X
Since fN1

(x) ∈ C (X), |fN1
(x)| ≤ K......... (3) ∀x ∈ X

Now,

|f(x)| = |(f(x) − fN1
(x)) + fN1

(x)|

|f(x)| ≤ |f(x) − fN1
(x)| + |fN1

(x)|

< 1 + K (by (2) and (3)) ∀x ∈ X

(i.e.) |f(x)| < 1 + K ∀x ∈ K.



105

∴ f is bounded. Hence f ∈ C (X). It remains to prove that {fn} → f in
C (X). For, {fn} → f uniformly ⇒ Mn → 0 ⇒ supx∈X |fn(x) − f(x)| → 0
as n → ∞ (by Theorem 4.35) ⇒ ‖fn − f‖ → 0 as n → ∞. So {fn} → f
in the metric space C (X). ∴ C (X) is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let α be monotonically increasing on [a, b]. Suppose fn ∈
R(α) on [a, b] for n = 1, 2, 3.... and suppose fn → f uniformly on [a, b] then
fn ∈ R(α) on [a, b] and

∫ b
a fdα = limn→∞

∫ b
a fdα.

Proof: Let ǫn = supa≤x≤b |f(x) − fn(x)|....... (1) (Theorem 4.35)

∴ |f − fn| ≤ ǫn ∀n = 1, 2, 3...

−ǫ ≤ f − fn ≤ ǫn

⇒ fn − ǫn ≤ f ≤ fn + ǫn

⇒

∫ b

a
(fn − ǫn)dα ≤

∫ b

a
fdα ≤

∫ b̄

a
fdα ≤

∫ b

a
(fn + ǫn)dα........(2)

⇒

∫ b

a
fndα −

∫ b

a
ǫndα ≤

∫ b

a
fdα ≤

∫ b̄

a
fdα ≤

∫ b

a
fndα +

∫ b

a
ǫndα

⇒

∫ b̄

a
fdα −

∫ b

a
fdα ≤ (

∫ b

a
fndα +

∫ b

a
ǫndα) − (

∫ b

a
fndα −

∫ b

a
ǫndα)

= 2

∫ b

a
ǫndα

= 2ǫn

∫ b

a
dα

= 2ǫn[α(b) − α(a)]

(i.e.)

∫ b̄

a
fdα −

∫ b

a
fdα ≤ 2ǫn(α(b) − α(a))

→ 0 (∵ ǫn → 0 as fn → f uniformly by theorem 4.35)

∴

∫ b̄

a
fdα =

∫ b

a
fdα

Hence f ∈ R(α). II part: To prove:

∫ b

a
fdα = lim

n→∞

∫ b

a
fndα
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Now, (2)⇒

∫ b

a
(fn − ǫn)dα ≤

∫ b

a
fdα ≤

∫ b

a
(fn + ǫn)dα

∫ b

a
fndα −

∫ b

a
ǫndα ≤

∫ b

a
fdα ≤

∫ b

a
fndα +

∫ b

a
ǫndα

⇒

∫ b

a
fndα − ǫn

∫ b

a
dα ≤

∫ b

a
fdα ≤

∫ b

a
fndα + ǫn

∫ b

a
dα

⇒ −ǫn

∫ b

a
dα ≤

∫ b

a
fdα −

∫ b

a
fndα ≤ ǫn

∫ b

a
dα

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα −

∫ b

a
fndα

∣

∣

∣

∣

∣

≤ ǫn

∫ b

a
dα

= ǫn(α(b) − α(a))

→ 0 as n → ∞ (∵ ǫn → 0)

lim
n→∞

∫ b

a
fndα =

∫ b

a
fdα.

Corollary 4.50 If fn ∈ R(α) on [a, b] and if f(x) =
∑∞

n=1 fn(x)(a ≤ x ≤
b), the series converges uniformly on [a, b], then

∫ b
a fdα =

∑∞
n=1

∫ b
a fndα.(the

series may be integrated term by term)
Proof: Given

∑

fn = f (uniformly). Let sn =
∑n

k=1 fk. By hypothesis
{sn} → f uniformly. By Theorem 4.49,

∫ b

a
fdα = lim

n→∞

∫ b

a
sndα

= lim
n→∞

∫ b

a

(

n
∑

k=1

fk

)

dα

= lim
n→∞

n
∑

k=1

(

∫ b

a
fkdα

)

=
∞
∑

k=1

∫ b

a
fkdα


