MAR GREGORIOS COLLEGE OF ARTS & SCIENCE

Block No.8, College Road, Mogappair West, Chennai - 37

Affiliated to the University of Madras Approved by the Government of Tamil Nadu An ISO 9001:2015 Certified Institution

DEPARTMENT OF MATHEMATICS

SUBJECT NAME: REAL ANALYSIS-II

SUBJECT CODE: SM26B

SEMESTER: VI

PREPARED BY: PROF.S.C.PREMILA

UNIVERSITY OF MADRAS B.Sc. DEGREE COURSE IN MATHEMATICS SYLLABUS WITH EFFECT FROM 2020-2021

CORE-XIV: REAL ANALYSIS-II (Common to B.Sc. Maths with Computer Applications)

Inst.Hrs : 6 Credits : 4 Learning outcomes: Students will acquire knowledge about YEAR: III SEMESTER: VI

- The Real Numbers and the Analytic Properties of Real- Valued Functions.
- The Analytic concepts of Connectedness, Compactness, Completeness And Calculus.

UNIT I

Continuous Functions on Metric Spaces: Open sets- closed sets- Discontinuous function on R¹. Connectedness, Completeness and Compactness :More about open sets-Connected sets. Chapter 5 Section 5.4 to 5.6 Chapter 6 Section 6.1 and 6.2

UNIT II

Bounded sets and totally bounded sets: Complete metric spaces- compact metric spaces, continuous functions on a compact metric space, continuity of inverse functions, uniform continuity.

Chapter 6 Section 6.3 to 6.8

UNIT III

Calculus:Sets of measure zero, definition of the Riemann integral, existence of the Riemann integralproperties of Riemann integral.

Chapter 7 Section 7.1 to 7.4

UNIT IV

Derivatives- Rolle's theorem, Law of mean, Fundamental theorems of calculus.

Chapter 7 Section 7.5 to 7.8

UNIT V

Taylor's theorem- Pointwise convergence of sequences of functions, uniform convergence of sequences of functions.

Chapter 8 Section 8.5 Chapter 9 Section 9.1 and 9.2

Content and Treatment as in

-

"Methods of Real Analysis"- Richard R. Goldberg (Oxford and IBH Publishing Co)

Reference:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostal, Narosa Publishing House.

Unit - I Metric Spaces

Introduction

A Metric Space is a set equipped with a distance function, also called a metric, which enables us to measure the distance between two elements in the set.

1.1 Definition And Examples

 $Definition \ 1.1.1 \ \mathsf{A} \ Metric \ Space \ \text{is a non empty set} \ M \ \text{together with a function} \ d: \mathbf{M} \times \mathbf{M} \rightarrow \mathbf{M} \ d \ \mathbf{M} \ \mathbf{M} \ d \ \mathbf{M} \ \mathbf{M} \ d \ \mathbf{M} \$

R satisfying the following conditions.

(i) d(x, y) ≥ 0 for all x, y ∈ M
(ii) d(x, y) = 0 if and only if x = y
(iii) d(x, y) = d(y, x) for all x, y ∈ M
(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ M [Triangle Inequality] d is
called a metric or distance function on M and d(x, y) is called the distance between x and y

in M. The metric space M with the metric d is denoted by (M , d) or simply by M when the underlying metric is clear from the context.

Example 1.1.2 Let **R** be the set of all real numbers. Define a function $d : M \times M \rightarrow R$ by d(x, y) = |x - y|. Then d is a metric on **R** called the usual metric on **R**.

Proof.

```
Let x, y \in R.

Clearly d(x, y) = | x - y | \ge 0.

Moreover, d(x, y) = 0 \Leftrightarrow |x - y | = 0.

\Leftrightarrow x - y = 0.

\Leftrightarrow x - y = 0.

\Leftrightarrow x = y

d(x, y) = | x - y |

= | y - x |

= d(y, x).

\therefore d(x, y) = d(y, x).

Let x, y, z \in R. d(x, z)

= |x - z|
```

$$= |x - y + y - z|$$

$$\leq |x - y| + |y - z|$$

$$= d(x, y) + d(y, z).$$

 $: d(x \ , \ z) \leq d(x \ , \ y) + d(y \ , \ z).$

Hence d is a metric on ${\boldsymbol{R}}_{{\boldsymbol{\cdot}}}$

Note. When R is considered as a metric space without specifying its metric, it is the usual metric.

Example 1.1.2

Let M be any non-empty set. Define a function d : $M \times M \rightarrow \mathbf{R}$ by d(x , y) = $\begin{cases}
0 \text{ if } x = y \\
1 \text{ if } x \neq y
\end{cases}$

Then d is a metric on M called the discrete metric or trivial metric on M.

Proof.

Let x, y \in M. Clearly d(x, y) ≥ 0 and d(x, y) = 0 \Leftrightarrow x = y. $\begin{cases}
0 \text{ if } x = y \\
1 \text{ if } x \neq y
\end{cases}$ = d(y, x).Let x, y, z \in M. We shall prove that d(x, z) \le d(x, y) + d(y, z). **Case (i)** Suppose x = y = z. Then d(x, z) = 0, d(x, y) = 0, d(y, z) = 0. \therefore d(x, z) \le d(x, y) + d(y, z). **Case (ii)** Suppose x = y and z distinct. Then d(x, z) = 1, d(x, y) = 0, d(y, z) = 1 ... d(x, z) \le d(x, y) + d(y, z). **Case (iii)** Suppose x = z and y distinct. Then d(x, z) = 0, d(x, y) = 1, d(y, z) = 1.

 $: d(x, z) \le d(x, y) + d(y, z).$

Case (iv) Suppose y = z and x distinct.

Then d(x, z) = 1, d(x, y) = 1, d(y, z) = 0. $\therefore d(x, z) \le d(x, y) + d(y, z)$. **Case** (v) Suppose $x \ne y \ne z$. Then d(x, z) = 1, d(x, y) = 1, d(y, z) = 1. $\therefore d(x, z) \le d(x, y) + d(y, z)$. In all the cases, $d(x, z) \le d(x, y) + d(y, z)$.

Hence d is a metric on M.

1.2 OPEN SETS IN A METRIC SPACE

Definition 1.2.1 Let (M , d) be a metric space. Let $a \in M$ and r be a positive real number. The open ball or the open sphere with center a and radius r is denoted by B_d (a , r) and is the subset of M defined by B_d (a , r) = {x $\in M /d(a , x) < r$ }. We write B(a , r) for B_d (a , r) if the metric d under consideration is clear.

Note. Since $d(a, a) = 0 < r, a \in B_d(a, r)$.

Examples 1.2.2

- 1. In **R** with usual metric B(a, r) = (a r, a + r).
- 2. In \mathbf{R}^2 with usual metric B(a, r) is the and radius r.

interior of the circle with center a

3. In a discrete metric space M, B(a, r) =

1

Definition 1.2.3 Let (M , d) be a metric space. A subset A of M is said to be open in M if for each $x \in A$ there exists a real number r > 0 such that $B(x, r) \subseteq A$.

 $\begin{cases} M \text{ if } r>1 \\ \{a\} \text{ if } r \leq \end{cases}$

Note. By the definition of open set, it is clear that \emptyset and M are open sets.

Examples 1.2.3

1. Any open interval (a , b) is an open set in ${\bf R}$ with usual metric. For,

Let $x \in (a, b)$.

Choose a real number r such that $0 < r \leq \min \left\{ \text{ x-a , b-x } \right\}.$

Then $B(x, r) \subseteq (a, b)$. \therefore (a, b) is open in R.

2. Every subset of a discrete metric space M is open. For,

Let A be a subset of M.

If $A = \emptyset$, then A is open.

Otherwise, let $x \in A$.

Choose a real number r such that $0 < r \le 1$.

Then $B(x, r) = \{x\} \subseteq A$ and hence A is open.

3. Set of all rational numbers \mathbf{Q} is not open in \mathbf{R} . For, Let $x \in \mathbf{Q}$.

For any real number r > 0, B(x, r) = (x - r, x + r) contains both rational and irrational numbers.

 \therefore B(x , r) \nsubseteq Q and hence Q is not open.

Theorem 1.2.4 Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a,r) be an open ball in M.

Let $x \in B(a, r)$.

Then d(a, x) < r.

Take $r_1 = r - d(a, x)$. Then $r_1 > 0$.

We claim that $B(x, r_1) \subseteq B(a, r)$.

Let $y \in B(x, r_1)$. Then $d(x, y) < r_1$.

Now, $d(a, y) \leq d(a, x) + d(x, y)$

 $< d(a, x) + r_1$

```
= d(a, x) + r - d(a, x) = r.
```

∴d(a , y) < r.

```
\thereforey \in B(a , r).
```

 $\therefore B(x, r_1) \subseteq B(a, r).$

Hence B(a, r) is an open ball.

Theorem1.2.5 In any metric space M, the union of open sets is open.

Proof.

Let $\{A_{\alpha}\}$ be a family of open sets in M.

We have to prove $A = U A_{\alpha}$ is open in M.

Let $x \in A$.

Then $x \in A_{\alpha}$ for some α .

Since A_{α} is open, there exists an open ball B(x, r) such that $B(x, r) \subseteq A_{\alpha}$.

 \therefore B(x , r) \subseteq A.

Hence A is open in M.

Theorem 1.2.6 In any metric space M, the intersection of a finite number of open sets is open.

Proof.

Let A₁, A₂,, A_n be open sets in M.

We have to prove $A = A_1 \cap A_2 \cap \dots \cap A_n$ is open in M.

Let $x \in A$.

Then $x \in \forall A_i i = 1, 2, ..., n$.

Since each A_i is open, there exists an open ball B(x, r_i) such that B(x, r_i) \subseteq A_i.

Take $r = min \{ r_1, r_2, ..., r_n \}$.

Clearly r > 0 and $B(x, r) \subseteq B(x, r_i) \forall i = 1, 2, ..., n$.

Hence $B(x, r) \subseteq A_i \forall i = 1, 2, ..., n$.

 \therefore B(x, r) \subseteq A.

: A is open in M.

Theorem 1.2.7 Let (M , d) be a metric space and $A \subseteq M$. Then A is open in M if and only if A can be expressed as union of open balls.

Proof.

Suppose that A is open in M.

Then for each $x \in A$ there exists an open ball $B(x, r_x)$ such that $B(x, r_x) \subseteq A$.

 $\therefore A = \bigcup_{x \in A} B(x, r_x).$

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls.

Since open balls are open and union of open sets is open, A is open.

1.3 Interior of a set

Definition1.3.1 Let (M , d) be a metric space and $A \subseteq M$. A point $x \in A$ is said to be an interior point of A if there exists a real number r > 0 such that $B(x, r) \subseteq A$. The set of all interior points is called as interior of A and is denoted by **Int** A.

Note1.3.2 Int $A \subseteq A$.

Example1.3.3In **R** with usual metric, let A = [1, 2]. 1 is not an interior points of A, since for any real number r > 0, B(1, r) = (1 - r, 1 + r) contains real numbers less than 1. Similarly, 2 is also not an interior point of A. In fact every point of (1, 2) is a limit point of A. Hence **Int**A = (1, 2).

Note1.3.4(1)Int $\emptyset = \emptyset$ and Int M = M.

(2) A is open \Leftrightarrow **Int** A = A.

(3) $A \subseteq B \Rightarrow$ Int $A \subseteq$ Int B

```
Theorem1.3.5 Let (M , d) be a metric space and A ⊆ M. Then Int A = Union of all open sets contained in A.
```

Proof.

Let G = U{ B / B is an open set contained in A } We have to

prove **Int** A = G.

Let $x \in Int \land$.

Then x is an interior point of A.

: there exists a real number r > 0 such that $B(x, r) \subseteq A$.

Since open balls are open, B(x, r) is an open set contained in A.

 $:: B(x, r) \subseteq G.$

 $\therefore x \in G$.

Let $x \in G$.

Then there exists an open se B such that $B \subseteq A$ and $x \in B$.

Since B is open and $x \in B$, there exists a real number r > 0 such that $B(x, r) \subseteq B \subseteq A$.

 \therefore x is an interior point of A.

 $\therefore x \in Int \land$.

Int A = G.

Note1.3.6 Int A is an open set and it is the largest open set contained in A.

Theorem1.3.7 Let M be a metric space and A , $B \subseteq M$. Then

(1) Int $(A \cap B) = (Int A) \cap (Int A)$ (2)

Int $(A \cup B) \supseteq (Int A) \cup (Int A)$ Proof.

(1) $A \cap B \subseteq A \Rightarrow Int (A \cap B) \subseteq Int A$. Similarly, Int $(A \cap B) \subseteq Int B$. $\therefore Int (A \cap B) \subseteq (Int A) \cap (Int A)$ (a) Int $A \subseteq A$ and Int $B \subseteq B$. $\therefore (Int A) \cap (Int A) \subseteq A \cap B$ Now, $(Int A) \cap (Int A)$ is an open set contained in $A \cap B$. But, Int $(A \cap B)$ is the largest open set contained in $A \cap B$. $\therefore (Int A) \cap (Int A) \subseteq Int (A \cap B)$ (b) From (a) and (b), we get Int $(A \cap B) = (Int A) \cap (Int A)$

(2) A ⊆ A ∪ B⇒Int A⊆ Int (A ∪ B) Similarly, Int B⊆ Int (A ∪ B) \therefore Int (A ∪ B) ⊇ (Int A) ∪ (Int A)

Note1.3.8 Int ($A \cup B$)need not be equal to(Int A) \cup (Int A)

For,

In \mathbf{R} with usual metric, let A = (0, 1] and B = (1, 2).

 $A \cup B = (0, 2).$

:.Int (A U B) = (0, 2)

Now, Int A (0, 1) and Int B = (1, 2) and hence (Int A) \cup (Int A) = (0, 2) - { 2 }.

 \therefore Int (A U B) \neq (Int A) U (Int A)

1.4 Subspace

Definition1.4.1 Let (M , d) be a metric space. Let M_1 be a nonempty subset of M. Then M_1 is also a metric space under the same metric d. We call (M_1 , d) is a subspace of (M, d).

Theorem1.4.2 Let M be a metric space and M_1 a subspace of M. Let $A \subseteq M_1$. Then A is open in M_1 if and only if $A = G \cap M_1$ where G is open in M.

Proof.

Let $B_1(a, r)$ be the open ball in M_1 with center a and radius r.

Then $B_1(a, r) = B(a, r) \cap M_1$ where B(a, r) is the open ball in M with center a and radius r. Let A be an open set in M_1 .

Then A = $\bigcup_{x \in A} B_1(x, r(x))$

 $=U_x \in_A [B(x, r(x)) \cap M_1)]$

 $= [U_x \in_A B(x, r(x))] \cap M_1$

= $G \cap M_1$ where $G = \bigcup_{x \in A} B(x, r(x))$ which is open in M.

Conversely, let $A = G \cap M_1$ where G is open in M.

We shall prove that A is open in M_1 .

Let $x \in A$.

Then $x \in G$ and $x \in M_1$.

Since G is open in M, there exists an open ball B(x, r) such that $B(x, r) \subseteq G$.

 $\therefore B(x, r) \cap M_1 \subseteq G \cap M_1.$

i.e. $B_1(a, r) \subseteq A$.

 \therefore A is open in M₁.

Example1.4.3 Consider the subspace $M_1 = [0, 1] \cup [2, 3]$ of **R**.

A = [0, 1] is open in M₁ since A = $(-\frac{1}{2}, \frac{3}{2}) \subseteq M_1$ where $(-\frac{1}{2}, \frac{3}{2})$ is open in **R**. Similarly, B = [2, 3], C = $[0, \frac{1}{2}]$, D = $(\frac{1}{2}, \frac{1}{2})$ 1] are open in M₁.

Note that A, B, C, D are not open in R.

1.5 Closed Sets.

Definition1.5.1A subset A of a metric space M is said to be closed in M if its complement is open in M.

Examples 1.5.2

1. In ${f R}$ with usual metric any closed interval [a , b] is closed. For,

$$[a, b]^{c} = \mathbf{R} - [a, b] = (-\infty, a) \cup (b, \infty).$$

 $(-\infty, a)$ and (b, ∞) are open sets in R and hence $(-\infty, a) \cup (b, \infty)$ is open in **R**. i.e. $[a, b]^c$ is open

in **R**.

 \therefore [a , b] is open in \mathbf{R} .

2. Any subset A of a discrete metric space M is closed since A^c is open as every subset of M is open.

Note. In any metric space M, \emptyset and M are closed sets since $\emptyset^c = M$ and $M^c = \emptyset$ which are open in M. Thus \emptyset and M are both open and closed in M.

Theorem 1.5.3 In any metric space M, the union of a finite number of closed sets is closed.

Proof.

Let A_1 , A_2 ,, A_n be closed sets in a metric space M.

Let $A = A_1 \cup A_2 \cup \dots \cup A_n$.

We have to prove A is open in M.

Now, $A^{c} = [A_{1}UA_{2} U ... UA_{n}]^{c}$

 $= A_1^c \cap A_2^c \cap \ldots \cap A_n^c$ [By De Morgan's law.] Since

 A_i is closed in M, A_i^c is open in M.

Since finite intersection of open sets is open, $A_1^c \cap A_2^c \cap \ldots \cap A_n^c is_{open}$ in M. i.e. A^c is open in M.

in M.

: A is closed in M.

Theorem 1.5.4 In any metric space M, the intersection of closed sets is closed.

Proof.

Let $\{A_{\alpha}\}$ be a family of closed sets in M.

We have to prove $A = \bigcap A_{\alpha}$ is open in M.

Now, $A^c = (\bigcap A_{\alpha})^c$

 $= \cup A_{\alpha}^{c}$ [ByDe Morgan's law.]

Since A_{α} is closed in M, $A^{c}_{\ \alpha}$ is open in M. Since union of

open sets is open, UA^c_α is open.

i.e. A^c is open in M.

: A is closed in M.

Theorem 1.5.5 Let M_1 be a subspace of a metric space M. Let $F_1 \subseteq M_1$. Then F_1 is closed in M_1 if and only if $F_1 = F \cap M_1$ where F is a closed set in M.

Proof.

Suppose that F_1 is closed in M_1 .

Then $M_1 - F_1$ is open in M_1 .

 \therefore M₁ – F₁ = A \cap M₁ where A is open in M.

Now, $F_1 = A^c \cap M_1$.

Since A is open in M, A^c is closed in M.

Thus, $F_1 = F \cap M_1$ where $F = A^c$ is closed in M.

Conversely, assume that $F_1 = F \cap M_1$ where F is closed in M.

Since F is closed in M, F^c is open in M.

 $:: F^{c} \cap M_{1}$ is open in M_{1} .

Now, $M_1 - F_1 = F^c \cap M_1$ which is open in M_1 .

: F_1 is closed in M_1 .

1.6 Closure.

Definition1.6.1 Let A be a subset of a metric space (M , d). The closure of A, denoted by A_, is defined as the intersection of all closed sets which contain A.

i.e. $A_{-} = \cap \{ B \mid B \text{ is closed in } M \text{ and } B \supseteq A \}$

Note 1.6.2

- (1) Since intersection of closed sets is closed, A_{-} is a closed set.
- (2) A ⊇A.
- (3) A_is the smallest closed set containing A.
- (4) A is closed \Leftrightarrow A = A_ .

$$=$$
 (5) A = A_.

Theorem 1.6.3Let (M , d) be a metric space. Let A , $B \subseteq M$. Then

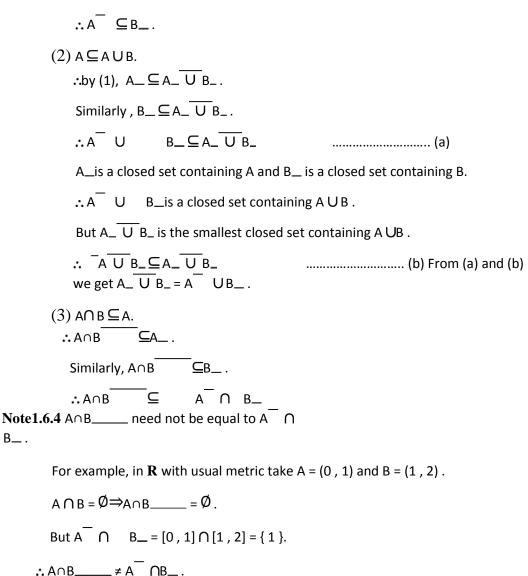
⊆	_ ⊆	(1)	$A B \Rightarrow A$	B
U	U	(2)	A_ B = A_	В
	\cap	(3)	A∩B_ ⊆A_	В

Proof.

(1) Let $A \subseteq B \cdot B \supseteq B \supseteq A$.

Thus B_ is a closed set containing A.

But A_ is the smallest closed set containing A.



∴A∩B____≠A ∩B_

1.7 Limit Point.

Definition 1.7.1 Let (M , d) be a metric space and $A \subseteq M$. A point $x \in M$ is said to be a limit point of A if every open ball with center x contains a point of A other than x.

L

i.e. $B(x, r) \cap (A - \{x\}) \neq \emptyset$ for all r > 0.

The set of all limit points of A is denoted by A.

Example 1.7.2 In **R** with usual metric let A = (0, 1).

Every open ball with center 0, B(0, r) = (-r, r) contains points of (0, 1) other than 0.

:0 is a limit point of A.

Similarly, 1 is a limit point of A and in fact every point of A is also a limit Point of A. For each real

number x < 0, if we choose r such that $0 < r \le -x_{-}^{x}$, then B(x, r)

2 contains no point of (0, 1), and hence x is not a limit point of limit point of A.

Similarly, every real number x > 0 is not a limit point of A.

Hence A = [0, 1].

Example 1.7.3 In R with usual metric, Z has no limit point.

For,

Let x be any real number.

If x is an integer, then B(x, $\frac{1}{2}$) = (x - $\frac{1}{2}$, x + $\frac{1}{2}$) has no integer other than x. \therefore x is not a limit point of Z.

If x is not an integer, choose r such that 0 < r < x-n where n is the integer closest to x.

Then B(x, r) = (x - r, x + r) contains no integer.

Hence x is not a limit point of Z.

Thus no real number x is a limit point of Z.

$$\therefore \mathbf{Z} = \mathbf{0}$$
.

Example 1.7.4 In R with usual metric, every real number is a limit point of Q .

For,

Let x be any real number.

Every open ball B(x, r) = (x - r, x + r) contains infinite number of rational numbers.

 \therefore x is a limit point of **Q**.

$\mathbf{\dot{\mathbf{Q}}}^{\mathsf{I}} = \mathbf{R}.$

Theorem 1.7.5 Let (M , d) be a metric space and $A \subseteq M$. Then x is a limit point of A if and only if every open ball with center x contains infinite number of points of A.

Proof.

Let x be a limit point of A.

We have to prove every open ball with center x contains infinite number of points of A.

Suppose not.

Then there exists an open ball B(x, r) contains only a finite number of points of A and hence of $(A - \{x\})$.

Let B(x, r)
$$\cap$$
 (A - {x}) = {x₁, x₂, ..., x_n}.

Let $r_1 = \min \{ d(x, x_i) / i = 1, 2,, n \}.$

Since $x \neq x_i$, $d(x, x_i) > 0 \forall i = 1, 2, \dots$, n and hence $r_1 > 0$.

Moreover, $B(x, r_1) \cap (A - \{x\}) = \emptyset \therefore x$ is not a

limit point of A.

This is a contradiction.

 \therefore every open ball with center x contains infinite number of points of A.

Conversely, assume that every open ball with center x contains infinite number of points of A.

Then, every open ball with center x contains infinite number of points of $A - \{x\}$.

Hence x is a limit point of A.

Note 1.7.6 Any finite subset of a metric space has no limit points.

Theorem 1.7.7 Let M be a metric space and $A \subseteq M$. Then A = AU A \cdot .

Proof.

Let $x \in A \cup A^{\perp}$.

We claim that $x \in A$.

Suppose $x \notin A$.

Then, $x \in M - A$.

Since A is closed , M - A is open.

 \therefore there exists an open ball B(x , r) such that B(x , r) \subseteq M - A .

 \therefore B(x, r) \cap A = $\overline{\emptyset}$.

∴ B(x , r) ∩ A = Ø . [∵ A ⊆A].

 $\therefore x \notin A \cup A^{\top}$, which is a contradiction.

 $\therefore x \in A$.

Let $x \in A$.

We have to prove $x \in A \cup A^{\perp}$.

If $x \in A$, then $x \in A \cup A^{\perp}$.

Suppose x ∉ A.

We claim that $x \in A^{\perp}$.

Suppose x∉AI.

Then there exists an open ball B(x, r) such that $B(x, r) \cap (A - \{x\}) = \emptyset$.

 $\therefore B(x, r) \cap A = \emptyset \cdot [\because x \notin A] \therefore A \subseteq B(x, r)$

r)^c .

Since B(x, r) is open, $B(x, r)^{c}$ is closed.

Thus $B(x, r)^{c}$ is a closed set containing A.

But, A is the smallest closed set containing A.

Hence $A \subseteq B(x, r)^c$.

Now, $x \notin B(x, r)^c$.

 $\therefore x \notin A$, which is a contradiction.

 $\therefore x \in A$ and hence $x \in A \cup A$.

From (1) and (2), we get $A = \overline{AU} A$.

Corollary1.7.8 A is closed if and only if A contains all its limit points.

Proof.

A is closed $\Leftrightarrow A = A_{-}$.

 $\Leftrightarrow A \subseteq A$.

Corollary 1.7.9 $x \in A \Leftrightarrow B(x, r) \cap A \neq \emptyset \forall r > 0.$

I

Proof.

$$x \in A \Longrightarrow x \in A \cup A$$

$$\therefore \quad \in x \land or x \in A_{I}.$$

If $x \in A$, then $x \in B(x, r) \cap A$. If $x \in A$, then $B(x, r) \cap (A - \{x\}) \neq \emptyset \forall r > 0$. Thus $B(x, r) \cap A \neq \emptyset \forall r > 0$. Conversely, let $B(x, r) \cap A \neq \emptyset \forall r > 0$. We have to prove $x \in A$. If $x \in A$, then $x \in A$. If $x \notin A$, then $A = A - \{x\}$. $\therefore B(x, r) \cap (A - \{x\}) \neq \emptyset \forall r > 0$. $\therefore x$ is a limit point of A. $\therefore x \in A^{\perp}$. $\therefore x \in A^{\perp}$.

Corollary 1.7.10 $x \in A \Leftrightarrow \overline{G} \cap A \neq \emptyset$ for all open set G containing x.

Proof.

Let $x \in A$.

We have to prove $G \cap A \neq \emptyset$ for all open set G containing x.

Let G be an open set containing x.

Then there exists an open ball B(x, r) such that $B(x, r) \subseteq G$.

Since $x \in A$, $B(x, r) \cap A \neq \emptyset$ and hence $G \cap A \neq \emptyset$.

Conversely, assume that $G \cap A \neq \emptyset$ for every open set containing x.

Then $B(x, r) \cap A \neq \emptyset \forall r > 0$.

 $\therefore x \in A$.

1.8 Bounded Sets in a Metric space.

Definition 1.8.1 Let (M , d) be a metric space. A subset A of M is said to be bounded if there exists a positive real number k such that $d(x, y) \le k \forall x, y \in A$.

Example 1.8.2 Any finite subset A of a metric space (M, d) is bounded.

For,

Let A be any finite subset of M.

If $A = \emptyset$ then A is obviously bounded.

Let $A \neq \emptyset$. Then {d(x, y)/x, y \in A} is a finite set of real numbers. Let $k = \max \{d(x, y)/x, y \in A\}$. Clearly $d(x, y) \le k$ for all x, y $\in A$. \therefore A is bounded.

Example 1.8.3 [0,1] is a bounded subset of **R** with usual metric since $d(x, y) \le 1$ for all $x, y \in [0,1]$.

Example 1.8.4 (0, ∞) is an unbounded subset of **R**.

Example 1.8.5 Any subset A of a discrete metric space M is bounded since $d(x, y) \le 1$ for all

x, y \in A.

Note 1.8.6 Every open ball B(x, r) in a metric space (M, d) is bounded.

For,

Let s, $t \in B(x, r)$.

 $d(s, t) \le d(s, x) + d(x, t) < r + r.$

∴ d(s , t) < 2r.

Hence B(x, r) is bounded.

Definition 1.8.7 Let (M , d) be a metric space and A \subseteq M. The diameter of A, denoted by d(A), is defined by d(A)= l.u.b {d(x , y)/x , y \in A}.

Example 1.8.8 In R with usual metric the diameter of any interval is equal to the length of the interval. The diameter of [0, 1] is 1.

1.9 Complete Metric Spaces.

Definition 1.9.1 Let (M , d) be a metric space. Let (x_n) be a sequence in M. Let $x \in M$. We say that (x_n) converges to x if for every $\varepsilon > 0$ there exists a positive integer N such that $d(x_n, x) < \varepsilon$ for all $n \ge N$. If (x_n) converges to x, then x is called a limit of (x_n) and we write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Note 1.9.2 (1) $x_n \rightarrow x$ if and only if for every $\varepsilon > 0$ there exists a positive integer N such that $x_n \in B(x, \varepsilon) \forall n \ge N$. Thus, the open ball B(x, r) contains all but a finite number of terms of the sequence.

(2) $x_n \rightarrow x$ if and only if ($d(x_n, x) \rightarrow 0$.

Theorem 1.9.3 The limit of a convergent sequence in a metric space is unique.

Proof.

Let (M , d) be a metric space and let (x_n) be a sequence in M.

Suppose that (x_n) has two limits say x and y.

Let $\varepsilon > 0$ be given.

Since $x_n \rightarrow x$, there exists a positive integer N₁ such that $d(x_n, x) < \epsilon/2$ for all $n \ge N_1$.

Since $x_n \rightarrow y$, there exists a positive integer N_2 such that $d(x_n, x) < \epsilon/2$ for all $n \ge N_2$.

Let $N = max \{ N_1, N_2 \}$.

Then, $d(x, y) \leq d(x, x_N) + d(x_N, y)$

y) < ε.

Since $\varepsilon > 0$ is arbitrary, d(x, y) = 0.

∴ x = y.

Theorem1.9.4 Let (M, d) be a metric space and $A \subseteq B$. Then

- (i) X is a limit point of A \Leftrightarrow there exists a sequence (x_n) of distinct points in A such that $x_n \to x$.
- $(ii) \qquad X \in A \Leftrightarrow \text{there exists a sequence } (x_n) \text{ in } A \text{ such that } x_n \to x \text{ .}$

Proof.

(i) Let x be a limit point of A.

Then every open ball B(x, r) contains infinite number of points of A.

Thus, for each natural number n , we can choose $x_n \in B(x, \frac{1}{n})$ such that

 $x_n \neq x_1, x_2, x_{3, ..., } x_{n-1}$. Now, (x_n) is a sequence of distinct points in A and $d(x_n, x) < \frac{1}{n} \forall n$.

 $\begin{array}{l} \dot{\cdot} \; (\; d(x_n \; , \; x) \;) \rightarrow 0. \; \dot{\cdot} \; x_n \\ \rightarrow x \; . \end{array}$

Conversely, assume that there exists a sequence (x_n) of distinct points in A such that $x_n \to x$.

We have to prove x is a limit point of A.

Let it be given an open ball $B(x, \varepsilon)$.

Since $x_n \rightarrow x$, there exists a positive integer N such that $d(x_n, x) < \epsilon \forall n$

 \geq N.

 $\therefore x_n \in B(x, \varepsilon) \forall n \ge N.$

Since x_n are distinct points of A, B(x, ϵ) contains infinite number of points of A.

Thus, every open ball with center x contains infinite number of points of A.

Hence x is a limit point of A.

(ii) Let
$$x \in \overline{A}$$
.

Then $x \in A \cup A^{|}$.

If $x \in A$ then the constant sequence x, x, x, is a sequence in A converges to x.

If $x \notin A$, then $x \in A^{|}$.

 \therefore x is a limit point of A.

 \therefore by (i), there exists a sequence (x_n) in A converges to x.

Conversely, assume that there exists a sequence (x_n) in A such that $x_n \to x$. Then every open ball $B(x, \epsilon)$ contains points in the sequence and hence points of A. $\therefore x \in A$.

Definition 1.9.5 Let (M , d) be a metric space. Let (x_n) be a sequence in M. Then (x_n) is said to be a Cauchy sequence in M if for every $\varepsilon > 0$ there exists a positive integer N such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge N$.

Theorem 1.9.6 Every convergent sequence in a metric space (M , d) is a Cauchy sequence.

Proof. Let (x_n) be a convergent sequence in M converges to $x \in M$.

We have to prove (x_n) is Cauchy.

Let $\varepsilon > 0$ be given.

Since $x_n \rightarrow x$, there exists a positive integer N such that $d(x_n, x) < \epsilon/2$ for all $n \ge N$.

 $\therefore d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \epsilon/2 +$

 $\epsilon/2$ for all n , m \geq N.

 $\therefore d(x_n, x_m) < \epsilon \text{ for all } n, m \ge N.$

Hence (x_n) is a Cauchy sequence.

Definition1.9.7 A metric space M is said to be complete if every Cauchy sequence in M converges to a point in M.

Example 1.9.8 R with usual metric is complete.

Theorem 1.9.9 A subset A of a complete metric space M is complete if and only if A is closed.

Proof.

Suppose that A is complete.

We have to prove A is closed.

For that it is enough to prove A contains all its limit points.

Let x be a limit point of A.

Then there exists a sequence (x_n) in A such that $x_n \to x$.

Since A is complete $x \in A$.

 \therefore A contains all its limit points.

Hence A is closed.

Conversely, assume that A is a closed subset of M.

Let (x_n) be a Cauchy sequence in A.

Then (x_n) be a Cauchy sequence in M.

Since M is complete, there exists $x\in M$ such that $x_n\to x$.

Thus (\boldsymbol{x}_n) is a sequence in A such that $\boldsymbol{x}_n \to \boldsymbol{x}$.

 $\therefore x \in \overline{A}.$

Since A is closed A = A and hence $x \in A$.

Thus every Cauchy sequence (x_n) in A converges to a point in A.

: A is complete.

Note 1.9.10 Every closed interval [a , b] with usual metric is complete since it is a closed subset of the complete metric space **R**.

Theorem 1.9.11 [Cantor's Intersection Theorem]

Let M be a metric space. Then M is complete if and only if for every sequence (F_n) of nonempty closed subsets of M such that $\mathsf{F}_1\supseteq F2\supseteq\ldots,\mathsf{F}_n\supseteq\ldots$ and (d(F_n)) $\to 0$, $\bigcap_{n=1}^\infty F_n\neq \emptyset$

Proof.

Let M be a complete metric space.

Let (F_{n}) be a sequence of nonempty closed subsets of M such that

 $F_1 \supseteq F_2 \supseteq \dots F_n \supseteq \dots \qquad \dots \qquad (1)$

and ($d(F_n$)) $\!\rightarrow\! 0$, (2)

We have to prove $\bigcap_{n=1}^{\infty} F_n \neq \emptyset_{.}$

For each natural number n , we choose a point x_n in $\mathsf{F}_n.$ By (1), x_n , x_{n+1} , x_{n+2} , all lie in F_n . i.e. $x_m \in F_n \forall m \ge n$ (3) We claim that (x_n) is a Cauchy sequence in M. Let $\varepsilon > 0$ be given. Since $(d(F_n)) \rightarrow 0$, there exists a positive integer N such that $d(F_n) < \varepsilon \forall n \ge 0$ Ν. Then by (3), x_m , $x_n \in F_N$. : $d(x_m, x_n) < \varepsilon$. [By (4)] Thus $d(x_m, x_n) < \varepsilon \forall m, n \ge N$. \therefore (x_n) is a Cauchy sequence in M. Since M is complete, there exists $x \in M$ such that $x_n \rightarrow x$. We show that $x \in \bigcap_{n=1}^{\infty} F_n$. For any natural number n, x_n , x_{n+1} , x_{n+2} is a sequence in F_n converges to x. $\therefore x \in \overline{F_n}$ Since F_n is closed, $F_n = \overline{F_n}$. $\therefore x \in F_n$. $\therefore x \in \bigcap_{n=1}^{\infty} F_n$

Hence $\bigcap_{n=1}^{\infty} F_n \neq \emptyset_{-}$

Conversely, assume that for every sequence (F_n) of nonempty closed subsets of M such that $\mathsf{F}_1\supseteq\mathsf{F}_2\supseteq...\,\mathsf{F}_n\supseteq...$ and ($\mathsf{d}(\mathsf{F}_n)$) $\to 0$, $\bigcap_{n=1}^\infty F_n\neq \emptyset$.

We have to prove M is complete.

Let (x_n) be a Cauchy sequence in M.

We claim that $x_n \rightarrow x$ for some $x \in M$.

Define a decreasing sequence of sets $F_1 \supseteq F_2 \supseteq \dots \supseteq F_n$ as follows $F_1 = \{x_1, x_2, \dots, x_n, \dots, \}.$ $F_2 = \{x_2, x_3, \dots, x_n, \dots, \}.$ $F_n = \{x_n, x_{n+1}, \dots, \dots, \}$ \dots $\therefore \overline{F_1} \supseteq \overline{F_2} \supseteq \dots \supseteq \overline{F_n} \dots$

Thus (F_n) is a decreasing sequence of closed sets.

Since (x_n) is a Cauchy sequence, for given $\varepsilon > 0$ there exists a positive integer N such that $d(x_n , x_m) < \varepsilon \forall n, m \ge N$. $:: d(F_N) < \varepsilon$.

Now, $F_n \subseteq F_N \forall n \ge N \Rightarrow d(F_n) < \epsilon \forall n \ge N$.

But $d(F_n) = d(F_n)$.

$$\therefore d(\overline{F_n}) < \varepsilon \forall n \ge N$$
(5)

$$\therefore (d(F_n)) \rightarrow_0$$

Hence by hypothesis, $\bigcap_{n=1}^{\infty} \overline{F_n} \neq \emptyset_{-}$

Let $x \in \bigcap_{n=1}^{\infty} \overline{F_n}$. Then $x, x_n \in \overline{F_n} \therefore d(x_n, x_n) \leq d(\overline{F_n})$.

 $:: d(x_n, x) < \epsilon \ \forall \ n \ge N \ [By (5)] :: \longrightarrow x_n$

х.

: M is complete.

Note 1.9.12 In the above theorem $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point, since if it contains distinct points x and y, then $d(F_n) \ge d(x, y)$ for all n and hence ($d(F_n)$) does not converge to 0.

1.10 Baire's Category Theorem.

Definition 1.10.1 A subset A of a metric space M is said to be nowhere dense in M if

Int $\overline{A} = \emptyset$.

Definition 1.10.2 A subset A of a metric space M is said to be of first category in M if A can be expressed as a countable union of nowhere dense sets.

If A is not of first category, then we say it is of second category.

Example1.10.3 In **R** with usual metric, every finite subset A is nowhere dense.

Example 1.10.4 In R with usual metric, the subset Q is of first category.

For,

Since Q is countable it can be expressed as countable union of singleton sets and each singleton set is nowhere dense in R. Thus, Q is countable union of nowhere dense sets. Hence Q is of first category.

Example 1.10.5 If M is a discrete metric space, then any nonempty subset A of M is not nowhere dense set. Also A is of second category.

Theorem 1.10.6 Let M be a metric space and $A \subseteq M$. Then A is nowhere dense if and only if each nonempty open set contains an open ball disjoint from A.

Proof.

Suppose that A is nowhere dense.

Let G be a nonempty open set.

Since A is nowhere dense, Int A = \emptyset .

∴ A does not contain G.

: there exists $x \in G$ such that $x \notin \overline{A}$.

 $X \notin \overline{A} \Rightarrow$ there exists an open ball B(x , r₁) such that B(x , r₁) $\cap A = \emptyset$.

G is open \Rightarrow there exists an open ball B(x, r₂) such that B(x, r₂) \subseteq G.

Let $r = min \{ r_1, r_2 \}$.

Then G contains B(x, r) and disjoint from A.

Conversely, assume every nonempty open set contains an open ball disjoint from A.

We claim that Int $A = \overline{\emptyset}$.

Let $x \in A$.

We claim that x is not an interior point of A.

Suppose x is an interior point.

Then there exists an open ball B(x , r) such that $B(x , r) \subseteq \overline{A}$.

Now, every open ball in B(x, r) intersects with A, which is a contradiction.

Hence x is not an interior point of A.

$$\therefore$$
 Int $A = \emptyset$.

: A is nowhere dense set.

Theorem 1.10.7 [Baire's Category Theorem] Any

complete metric space is of second category.

Proof.

Let M be a complete metric space.

We claim that M is not of first category.

Let (A_n) be a countable collection of nowhere dense sets in M.

We shall prove that $U_{n=1}^{\infty}\,A_n\neq_{\,\text{M.}}$

Since M is open and A₁ is nowhere dense, there exists an open ball B₁ of radius less than 1 such that $B_1 \cap A_1 = \emptyset$.

Let F_1 be the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_1 .

Now, Int F_1 is open and A_2 is nowhere dense.

: Int F_1 contains an open ball B_2 of radius less than $\frac{1}{2}$ such that $B_2 \cap A_2 = \emptyset$.

Let F_2 be the concentric closed ball whose radius is $\overline{2}$ times that of B_2 .

Now, Int F_2 is open and A_3 is nowhere dense.

: Int F_2 contains an open ball B_3 of radius less than $\frac{1}{4}$ such that $B_3 \cap A_3 = \emptyset$.

Let F_3 be the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_3 .

Proceeding like this we get a sequence of nonempty closed balls F_n such that

 $F_1 \supseteq F_2 \supseteq \dots F_n \supseteq \dots$ and d(Fn) < $\frac{1}{2n}$.

: (d(F_n)) $\rightarrow 0$ as $n \rightarrow \infty$.

Since M is complete, By Cantor's intersection theorem, there exists a point x \in M

Such that $x \in \bigcap_{n=1}^{\infty} F_{n}$.

Moreover, $F_n \cap A_n = \emptyset \forall n$.

∴x∉A_n∀n.

$$\therefore x \notin \bigcup_{n=1}^{\infty} A_n$$

 $: U_{\infty n=1} A_n \neq M.$

Hence M is of second category.

Corollary 1.10.8 R is of second category.

Proof.

R is a complete metric space. Hence, **R** is of second category.

Unit II CONTINUITY

2.1 Continuity of functions.

Definition 2.1.1 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. Let $a \in M_1$. A function $f : M_1 \rightarrow M_2$ is said to be **continuous at a** if for each $\epsilon > 0$, there exists $\delta > 0$ such that $0 < d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \epsilon$. The function f is said to be continuous if it is continuous at every point of M_1 .

Note 2.1.2 d₁(x, a) <
$$\delta \Rightarrow$$
 d₂(f(x), f(a)) < $\epsilon \Leftrightarrow x \in B(a, \delta) \Rightarrow$ f(x) $\in B(f(a), \epsilon)$.
 $\Leftrightarrow f(B(a, \delta)) \subseteq B(f(a), \epsilon)$.

Theorem 2.1.3 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f : M_1 \rightarrow M_2$ is continuous if and only if $f^{-1}(V)$ is open in M_1 whenever V is open in M_2 .

Proof. Assume that f is continuous.

Let V be open in M_1 .

We have to prove $f^{-1}(v)$ is open in M₁.

If $f^1(v) = \phi$, then it is open.

Let $f^{1}(v) \neq \phi$.

We shall prove that for each x $\in f^{-1}(V)$ there exists an open ball B(x, δ) such that B(x, δ)

 $\subseteq f^{-1}(v).$

Let $x \in f^{-1}(V)$. Then $f(x) \in V$.

Since V is open, there exists an open ball $B(f(x), \varepsilon)$ such that

 $B(f(x), \varepsilon) \subseteq V.$ (1)

Now, since f is continuous, there exists an open ball $B(x, \delta)$ such that $f(B(x, \delta)) \subseteq B(f(x), \epsilon)$.

By (1), f(B(x ,
$$\delta$$
)) \subseteq V and hence B(x , δ) \subseteq f¹(\vee).

∴f⁻¹(V)is open.

Conversely, assume that $f^{1}(V)$ is open in M₁ whenever V is open in M₂.

To prove f is continuous, we shall prove that f is continuous at every point of M₁.

Let $x \in M_1$ and let $\varepsilon > 0$ be given.

We know that, $B(f(x), \epsilon)$ is an open set in M_2 .

By hypothesis, $f^{-1}(B(f(x), \varepsilon))$ is open in M_1 .

Also, $x \in f^{1}(B(f(x), \varepsilon))$.

: there exists $\delta > 0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$.

 $:: f(B(x, \delta)) \subseteq B(f(x), \epsilon).$

: f is continuous at x.

Since $x \in M_1$ is arbitrary, f is continuous on M_1 .

Note 2.1.4 f is continuous if and only if inverse image of every open set is open.

Theorem 2.1.5 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f : M_1 \rightarrow M_2$ is continuous if and only if $f^{-1}(W)$ is closed in M_1 whenever W is closed in M_2 .

Proof. Assume that f is continuous.

Let W be a closed set in M_2 .

Then W^{C} is an open set in M_{2} .

By hypothesis, $f^{1}(W^{C})$ is open in M₁.

But
$$f^1(W) = [f^1(W)]^C$$
.

 M_1 .

Conversely, assume that $f^{1}(W)$ is closed in M₁ whenever W is closed in M₂.

To prove f is continuous, we shall prove that $f^{1}(v)$ is open in M_1 whenever V is open in M_2 . Let V be an open set in M_2 . \therefore V is a closed set in M₂.

С

By hypothesis, $f^{-1}(V^{C})$ is a closed set in M_{1} .

(i.e)
$$\left[f^{-1}(V)\right]^{C}$$
 is a closed set in M₁.

: $f^{-1}(V)$ is an open set in M_1 .

Thus, inverse image of every open set is open under f. : f is continuous.

Note 2.1.6 f is continuous if and only if inverse image of every closed set is closed.

Theorem 2.1.7 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. Then $f : M_1 \rightarrow M_2$ is continuous if and only if $f(A^-) \subseteq f_{-}(_A^-)$ for all $A \subseteq M_1$.

Proof. Assume that f is continuous.

We have to prove $f(A^{-}) \subseteq f_{-}(A_{-})$ for all $A \subseteq M_1$.

Let $A \subseteq M_1$. Then $f(A) \subseteq M_2$.

f_(_A_) is a closed set in M_2 .

Since f is continuous, $f^{-1}(f_{A_{-}})$) is closed in M_1 .

Since $f_(A_) \supseteq f(A)$, $f^{-1}(f_(A_)) \supseteq A$.

But A_ is the smallest closed set containing A.

$$:A_\subseteq f^{-1}(f_(_A_)).$$

∴f(A_) ⊆ f_(_A_) .

Conversely, let $f(A^{-}) \subseteq f_{-}(A^{-})$ for all $A \subseteq M_1$.

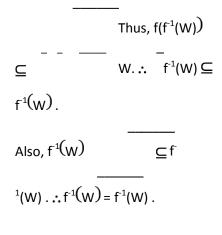
To prove f is continuous, we shall prove that $f^{-1}(W)$ is closed in M_1 whenever W is closed in M_2 .

Let W be a closed set in M_2 .

By hypothesis, $f(f^{-1}(W)) \subseteq ff_{--1}(W)$.

⊆w_

= W (Since W is closed.).



Hence $f^{1}(W)$ is closed.

.f is continuous.

Theorem 2.1.8 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. Let $x \in M_1$. A function $f : M_1 \rightarrow M_2$ is continuous at x if and only if $x_n \rightarrow x$ in $M_1 \Rightarrow f(x_n) \rightarrow f(x)$ in M_2 .

Proof.

Suppose that f is continuous at x.

Let (x_n) be a sequence in M_1 such that $\,x_n \,{\rightarrow}\,x$.

We shall prove that $f(x_n) \rightarrow f(x)$.

Let $\varepsilon > 0$ be given.

Since f is continuous at x, there exists $\delta > 0$ such that $d_1(y, x) < \delta \Rightarrow d_2(x)$

.

Since $x_n \rightarrow x$, there exists positive integer N such that $d_1(x_n, x) < \delta \forall n$

≥N .

∴
$$d_2(f(x_n), f(x)) < ε \forall n \ge N$$
. [By (1)]

 $:: f(x_n) \rightarrow f(x)$.

Conversely, assume that $x_n \rightarrow x \Rightarrow f(x_n) \rightarrow f(x)$.

We have to prove f is continuous at x.

Suppose not. Then there exists $\varepsilon > 0$ such that for all $\delta > 0$ f(B(x, δ))

⊈B(f(x) , ε).

Thus for each natural number n, f $(B(x, \frac{1}{2})) \nsubseteq B(f(x), \varepsilon)$

Choose x_n such that $x_n \in B(x_n, \delta)$ but $f(x_n) \nsubseteq B(f(x), \epsilon)$. $\therefore d_1(x_n, x)$

)< \int_{n}^{1} for all n and d₂ (f(x_n), f(x)) $\geq \varepsilon$ for all n.

 \therefore x_n \rightarrow x and f(x_n) does not converge to f(x).

This is a contradiction.

∴ f is continuous at x.

Problem 2.1.9 Let (M_1, d_1) and (M_2, d_2) be two metric spaces. Then prove that any constant function $f: M_1 \rightarrow M_2$ is continuous.

Solution.

Let $f: M_1 \rightarrow M_2$ be given by f(x) = c where $c \in M_2$ is a constant.

We have to show that f is continuous.

Let V be an open set in M_2 .

Now,
$$f^{1}(V) = \begin{cases} \emptyset & \text{if } x \\ M_{1} & \text{if } x \in V \end{cases}$$

In both cases , $f^{1}(V)$ is an open set.

Thus, inverse image of every open set is open under f.

: f is continuous.

Problem 2.1.10 Let M_1 , M_2 , M_3 be metric spaces. If $f : M_1 \rightarrow M_2$ and $g : M_2 \rightarrow M_3$ are continuous, then prove that gof : $M_1 \rightarrow M_2$ is also continuous.

i.e. composition of two continuous functions is continuous.

Solution.

Let W be an open set in M_3 .

Since g is continuous, $g^{-1}(W)$ is open in M_2 .

Since f is continuous, $f^{-1}(g^{-1}(W))$ is open in M_1 .

Now, $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$.

 $:: (g \circ f)^{-1}(W)$ is open in M₁.

Hence $g \circ f$ is continuous.

Problem 2.1.11 Let f be a continuous real valued function defined on a metric space M. Let $A = \{x \in M | f(x) \ge a \text{ where } a \mathbb{R} \}$. Prove that A is closed.

Solution.

$$A = \{ x \in M | f(x) \ge a \text{ where } a \in \mathbf{R} \}$$
$$= \{ x \in M | f(x) \in [a, \infty) \}$$
$$= f^{-1}([a, \infty)).$$

Now,[a, ∞) is a closed subset of **R**.

Since f is continuous, $f^{-1}([a, \infty))$ is a closed subset of M.

```
: A is closed.
```

Problem 2.1.12 Let $f : M \to R$ and $f : M \to R$ be continuous functions. Prove that $f+g : M \to R$ is continuous.

Solution.

Let $x \in M$.

We show that f + g is continuous at x.

Let $\, x_n \,$ be a sequence in M such that $\, x_n \rightarrow x \, .$

Since f and g are continuous, $f(x_n) \rightarrow f(x)$ and $g(x_n) \rightarrow g(x)$. $\therefore f(x_n) +$

 $g(x_n) \rightarrow f(x) + g(x) \; .$

i.e.
$$(f+g)(x_n) \rightarrow (f+g)(x)$$
. $\therefore f+g$ is

continuous at x.

Note 2.1.13 In a similar way, we can prove that f – g, fg, cf if c $\in \mathbf{R}$ and $^{\mathsf{f}}$

g

if $g(x) \neq 0 \forall x \in M$ are continuous.

2.2 Homeomorphism.

Definition 2.2.1 Let (M_1, d_1) and (M_2, d_2) be two metric spaces.

A function $f: M_1 \rightarrow M_2$ is said to be a homeomorphism if the following holds.

- (1) f is a bijection.
- (2) f is continuous.
- (3) f^1 is continuous.

 M_1 and M_2 are said to be homeomorphic if there exists a homeomorphism between them.

Definition 2.2.2 A function $f: M_1 \rightarrow M_2$ is said to be an open mapping if for every open set G in M_1 , f(G) is open in M_2 .

i.e. image of every open set in M_1 under f is open in M_2 .

Definition 2.2.3 A function $f: M_1 \rightarrow M_2$ is said to be a closed mapping if for every closed set F in M₁, f(F) is closed in M₂.

i.e. image of every closed set in M_1 under f is closed in M_2 .

Theorem 2.2.4 Let $f: M_1 \rightarrow M_2$ be a bijection. Then the following are equivalent.

- (1) f is a homeomorphism
- (2) f is a continuous open map
- (3) f is a continuous closed map **Proof.**

We shall prove that $(1) \Leftrightarrow (2)$ and $(1) \Leftrightarrow (3)$.

Suppose that f is a homeomorphism.

Then f and f⁻¹ are continuous.

We have to prove f is an open mapping.

Let G be an open set in M_1 .

Since $f^1: M_2 \rightarrow M_1$ is continuous, $(f^1)^{-1}(G)$ is open in M_1 .

i.e. f(G) is open in M_2 .

 \therefore f is an open map.

Conversely, assume that f is a continuous open map.

We prove that f^1 is continuous.

Let G be an open set in M_{1.}

Since f is an open mapping, f(G) is open in M_2 .

i.e. $(f^{-1})^{-1}(G)$ is open in M₂.

 \therefore f⁻¹ is continuous.

The proof of $(1) \Leftrightarrow (3)$ is similar.

Note 2.2.5 Let $f : M_1 \rightarrow M_2$ be a homeomorphism. Then a subset G of M_1 is open in M_1 if and only if f(G) is open in M_2 .

For,

Since f is a homeomorphism, f is a continuous open mapping.

Since f is open mapping, G is open in $M_1 \Rightarrow f(G)$ is open in M_2 .

Since f is continuous, f(G) is open in $M_2 \Rightarrow f^1(f(G)) = G$ is open in M_1 .

 \therefore G is open in M₁ \Leftrightarrow f(G) is open in M₂.

Thus a homeomorphism $f: M_1 \rightarrow M_2$ gives not only a 1 - 1 correspondence between the elements of the two spaces but also a 1 - 1 correspondence between their open sets.

Note 2.2.6 Let $f: M_1 \rightarrow M_2$ be a homeomorphism. Then a subset F of M_1 is closed in M_1 if and only if f(F) is closed in M_2 .

1-x

Example 2.2.7 The metric spaces (0, 1) and (0, ∞) with usual metric are homeomorphic.

For, Define $f: (0, 1) \rightarrow (0, \infty)$ by $f(x) = \underline{}^x$.

We show that f is 1 - 1 and on to.

Let x, y
$$\in$$
 (0, 1).

$$f(x) = f(y) \Rightarrow \frac{x}{1-x} = \frac{x}{1-y}$$

$$\Rightarrow x (1-y) = y (1-x)$$

$$\Rightarrow x - x y = y - x y$$

 \Rightarrow x = y .

Hence f is 1 – 1.

Let
$$y \in (0, \infty)$$
.
Now, $f(x) = y \Rightarrow \frac{x}{1-x_{\pm}y}$
$$\Rightarrow x = y (1-x)$$

 \Rightarrow x = y - xy

$$\Rightarrow x + xy = y$$
$$\Rightarrow x (1 + y) = y$$
$$\Rightarrow x = \frac{y}{1 + y}$$

 $\therefore \frac{y}{1+y} \in (0, 1) \text{ is the pre image of y under f.}$

: f is on to. Thus f is a bijection and hence f^{-1} : (0, ∞) \rightarrow (0, 1) by f(x) = ____x is a

bijection.

1 + x

Also, f and f^{-1} are continuous.

 \therefore f is a homeomorphism.

2.3 Uniform Continuity.

Definition 2.3.1 Let (M_1, d_1) and (M_2, d_2) be a metric space. A function $f : M_1 \to M_2$ is said to be uniformly continuous on M_1 , if for every $\epsilon > 0$ there exists $\delta > 0$ such that $d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \epsilon$.

Note 2.3.2 Every uniformly continuous function is continuous but the converse need not be true.

Example 2.3.3 The function $f : [0, 1] \rightarrow \mathbf{R}$ given by $f(x) = x^2$ is uniformly continuous on [0, 1].

For,

Let
$$\varepsilon > 0$$
 be given.
Let x, y $\in [0, 1]$.
Now, $|f(x) - f(y)| = |x^2 - y^2|$
 $= |x + y| |x - y|$
 $\leq 2 |x - y|$
Choose $\delta = \frac{\varepsilon}{2}$.

Then, $|\mathbf{x} - \mathbf{y}| < \delta \Rightarrow \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y}) < \epsilon$. \therefore f is uniformly continuous on [0, 1].

2.4 Discontinuities of R

Definition 2.4.1

A function f: R \Box R is said to approach to a limit ℓ as x tends to a if given $\varepsilon > 0$ there exists $\delta > 0$ such that $0 < |x-a| < \delta \Longrightarrow |f(x) - \ell | < 0$ and we write $x \to a \stackrel{\lim [m]}{\longrightarrow} \ell$.

Definition 2.4.2

A function f is that to have ℓ as the right limit at x=a if given $\varepsilon > 0$ there exists $\delta > 0$ such that $a < x < a + \delta \Longrightarrow | f(x) - \ell | < \varepsilon$ and we write $x \to a^+ = \ell$

Also we denote the right limit ℓ by f(a+)

A function f is that to have ℓ as the right limit at x=a if given ϵ > 0 there exists δ > 0 such that $a < x < a - \delta \Longrightarrow | f(x) - \ell | < \epsilon$ and we write $x \xrightarrow{\lim_{t \to a} -t} \ell$

Also we denote the right limit ℓ by f(a-)

Note 1

$$\lim_{x \to a} f(x) = \ell \text{ if and only if } x \to a^+ f(x) = \lim_{x \to a^-} f(x) = \ell.$$

i.e.

 $\lim_{x\to a} \frac{\lim x}{f(x)} = \ell$ if and only if the left and right limits of f(x) at x = a exist and are

equal.

Note 2

The definition of continuity of f at x=a can be formulated as follows. f is continuous at a if and only if f(a+) = f(a-)=f(a).

Note 3

If $x \rightarrow a^{\text{lim}} f(x)$ does not exist then one of the following happens.

- $\lim_{x\to a^+} f(x) \text{ does not exists.}$ 1.
- $\lim_{x\to a^-} f(x) \text{ does not exists.}$ 2.

 $\lim_{x\to a^+} \frac{\lim_{x\to a^-} f(x)}{f(x)}$ and $x\to a^- f(x)$ exists and are not equal. 3.

Definition 2.4.3

If a function f is discontinuous at a then a is called a point of discontinuity for the function.

If *a* is a point of discontinuity of a function then any one of the following cases arises.

 $\lim_{x\to a} \overline{f(x)}$ exists but is not equal to f(a). i. $\lim_{x\to a^+} \frac{\lim_{x\to a^-} f(x)}{f(x)}$ and $x\to a^- f(x)$ exists and are not equal. ii. Either $x \rightarrow a - f(x)$ or $x \rightarrow a + f(x)$ does not exists. iii.

Definition 2.4.4

Let *a* be a point of discontinuity for f(x). *a* is said to be a point of discontinuity of the first kind if $x \rightarrow a+ f(x)$ and $x \rightarrow a-f(x)$ exists and both of them are finite and not equal. *a* is said to be a point of discontinuity of the second kind if either $x \rightarrow a+ f(x)$ or $x \rightarrow a- f(x)$ does not exist.

Definition 2.4.5

Let $A \subseteq R$. A function f : A \Box R is called monotonic increasing if x, y \Box A and x<y \Rightarrow f(x) \leq f(y).

f is called monotonic decreasing if x, $y \Box A$ and $x > y \Longrightarrow f(x) \ge f(y)$.

f is called monotonic if it is either monotonic increasing or monotonic decreasing.

Theorem 2.4.6

Let f:[a, b] \Box R be a monotonic increasing function. Then f has a left limit and a right limit at every point of (a, b). Also f has a right limit at *a* and f has a left limit at *b*. Further

 $x < y \Longrightarrow f(x+) \le f(y-)$

Similar result is true for monotonic decreasing functions.

Proof

Let f : [a, b] 🛛 R be monotonic increasing.

Let $x\square[a, b]$. Then {f(t) | $a \le t < x$ } is bounded above by f(x).

We claim that $f(x-) = \ell$

Let $\epsilon > 0$ be given. By definition of *l*.u.b there exists t such that $a \le t < x$ and $\ell - \epsilon < f(t) \le \ell$.

 $\therefore t < u < x \Longrightarrow \ell - \varepsilon < f(t) \le f(u) \le \ell$

(: f is monotonic increasing)

$$\Rightarrow \ell - \varepsilon < f(u) \le \ell$$

 $\therefore x \text{-} \delta < u \text{-} x \Longrightarrow \ell \text{-} \epsilon < f(u) \le \ell \text{ where } \delta = x \text{-} t$

Similarly we can prove that f(x+) = g. I. b. $\{f(t) \mid x < t \le b\}$.

Now we shall prove that $x < y \implies f(x+) \le f(y-)$ Let x < y.

Now,
$$f(x+) = g.l.b \{f(t)/x < t \le b\}$$

= g.l.b { $f(t)/x < t \le y$ } (1)

(: f is monotonic increasing)

Also
$$f(y-) = I.u.b \{f(t)/a \le t < y\}$$

= $I.u.b \{f(t)/x \le t < y\}$ (2)

∴ $f(x+) \le f(y-)$ [by (1) and (2)]

The proof for monotonic decreasing functions is similar.

Theorem 2.4.7

Let f:[a, b] \Box R be a monotonic function. Then the set of points of [a, b] at which f is discontinuous is countable.

Proof

We shall prove the theorem for a monotonic increasing function.

Let $E = \{x \mid x \square [a, b] \text{ and } f \text{ is discontinuous at } x\}.$

Let $x\square E$. Then f(x+) and f(x-) exists and $f(x-) \le f(x) \le f(x+)$

If f(x-) = f(x+) then f(x-) = f(x)=f(x+)

 \therefore f is continuous at x, which is a contradiction.

 \therefore f(x-) \neq f(x+)

 \therefore f(x-) < f(x+)

Now choose a rational number r(x) such that f(x-) < r(x) < f(x+)

This defines a map r from E to Q which maps x to r(x).

We claim that r is 1-l.

Let
$$x_1 < x_2$$
.

 $\therefore f(x_1+) < f(x_2-).$

Also $f(x_1-) < r(x_1) < f(x_1+)$

And
$$f(x_2-) < r(x_2) < f(x_2+)$$

 \therefore r(x₁) < f(x₁+) < f(x₂-) < r(x₂) Thus

$$x_1 < x_2 \Longrightarrow r(x_1) < r(x_2)$$
. $\therefore r : E \Box Q \text{ is } 1 - I$

 \therefore E is countable.

2.5 Connectedness

Definition 2.5.1 A separation of a metric space M is a pair A, B of nonempty disjoint open subsets of M whose union is M.

M is said to be a connected metric space if there is no separation for M.

Example 2.5.2 Any discrete metric space with more than one element is connected.

For,

Let M be a metric space with more than two elements.

Choose an element $a \in M$ and let $A = \{a\}$.

Then A^c is a proper subset of M.

Now, A and A^c forms a separation of M.

: M is not connected.

Theorem 2.5.3 Let (M, d) be a metric space. Then M is connected if and only if \emptyset and M are the only sets which are both open and closed in M.

Proof.

Suppose that M is connected.

We have to prove \emptyset and M are the only sets which are both open and closed in M.

Suppose not.

Then there exists a proper subset A of M which is both open and closed in M.

Now, A and A^c forms a separation of M, which is a contradiction.

Conversely, assume that \emptyset and M are the only sets which are both open and closed in M.

We have to prove M is connected.

Suppose not.

Then there exists a separation A, B of M.

A is a proper subset of M which is both open and closed in M, a contradiction.

 \therefore M is connected.

Theorem 2.5.4 Let (M, d) be a metric space. Then the following are equivalent.

(i) The sets A and B form a separation of M.

(ii) A and B are nonempty disjoint closed sets in M whose union is M.

(iii) A and B are nonempty disjoint sets in M whose union is M and $A \cap B_{-} = A_{-} \cap B = \emptyset$.

Proof.

We shall prove that (i) \Leftrightarrow (ii) and (ii) \Leftrightarrow (iii) (i) \Rightarrow (ii).

Suppose that A and B forms a separation of M.

Then A and B are nonempty disjoint sets in M whose union is M.

We have to prove A and B are closed in M.

Now, $A = B^c$ and $B = A^c$.

Since A and B are open in M, A^c and B^c are closed in M.

i.e., A and B are closed in M.

 \therefore (i) \Rightarrow (ii).

The proof of (ii) \Rightarrow (i) is similar.

(ii) \Rightarrow (iii).

Suppose that A and B are nonempty disjoint closed sets in M whose union is M.

```
We have to prove A \cap B = A \cap B = \emptyset.
```

Since B is closed, B = B.

```
\therefore A \cap B = A \cap B = \emptyset.
```

Similarly, $A_{\cap}B = \emptyset$.

(iii) \Rightarrow (i).

Suppose that A and B are nonempty disjoint sets in M whose union is M and

 $A \cap B = A \cap B = \emptyset.$

We have to prove A and B are closed in M.

Let $x \in A_{-}$. Since $A \cup B = \emptyset$, $x \notin B$. Since $A \cup B = M$, $x \in A$. $\therefore A_{-} \subseteq A$. But $A \subseteq A_{-}$. $\therefore A = A$ and hence A is closed. Similarly, B is closed.

Theorem 2.5.5 Let M be a connected metric space. Let A be a connected subset of M. If B is a subset of M such that $A \subseteq B \subseteq A$ then B is connected. In particular, A is connected.

Proof.

Suppose B is not connected.

Then there exists a separation B_1 , B_2 of B.

Since B_1 and B_2 are open in B, $B_1 = G_1 \cap B$ and $B_2 = G_2 \cap B$, where G_1 and G_2 are open in M.

Now, $B = B_1 \cup B_2 = (G_1 \cap B) \cup (G_2 \cap B) = (G_1 \cup G_2) \cap B$.

 \therefore B \subseteq G_1 \cup G_2 and hence A \subseteq G_1 \cup G_2 .

Take $A_1 = G_1 \cap A$ and $A_2 = G_2 \cap A$.

Then A_1 and A_2 are open in A.

Also,
$$A_1 \cup A_2 = (G_1 \cap A) \cup (G_2 \cap A)$$

$$= (G_1 \cup G_2) \cap A$$

$$= A [Since A \subseteq G_1 \cup G_2]$$

$$A_1 \cap A_2 = (G_1 \cap A) \cap (G_2 \cap A)$$

$$= (G_1 \cap G_2) \cap A$$

$$\subseteq (G_1 \cap G_2) \cap B [Since A \subseteq B]$$

$$= (G_1 \cap B) \cap (G_2 \cap B)$$

$$= B_1 \cap B_2$$

$$= \emptyset.$$

Since A is connected, either $A_1 = \emptyset$ or $A_2 = \emptyset$. Without loss of generality , assume that $A_1 = \emptyset$.

i.e.
$$G_1 \cap A = \emptyset$$
.

Since G_1 is open, $G_1 \cap A_- = \emptyset$.

 $:: G_1 \cap B = \emptyset$. [Since $B \subseteq A_$]

i.e. $B_1 = \emptyset$, which is a contradiction.

: B is connected .

2.6 Connected subsets of R.

Theorem 2.6.1 A subspace of R is connected if and only if it is an interval.

Proof.

Suppose that A is a connected subset of ${\boldsymbol{R}}$.

We have to prove A is an interval.

Suppose not .

Then, there exists a , b , $c \in \mathbf{R}$ such that a < b < c and a , $c \in A$ but $b \notin A$.

Define $A_1 = (-\infty, b) \cap A$ and $A_2 = (b, \infty) \cap A$.

Since (- ∞ , b) and (b , ∞) are open in ${I\!\!R}$, ${\sf A}_1$ and ${\sf A}_2$ are open in A.

Moreover, $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = A$.

Clearly a $\in A_1$ and c $\in A_2$.

 $\therefore A_1 \neq \emptyset$ and $A_2 \neq \emptyset$.

Thus, A is the union of a pair of nonempty disjoint open sets A_1 and A_2 .

: A is not connected, which is a contradiction.

Hence A is an interval.

Conversely, assume that A is an interval.

We have to prove A is connected.

Suppose not.

Then, there exists nonempty disjoint closed sets A_1 and A_2 in A such that $A = A_1$

U A2.

Choose $x \in A_1$ and $z \in A_2$. Since A_1

 $\bigcap A_2 = \emptyset$, $x \neq z$. $\therefore x < z$ or z < x.

Without loss of generality we assume that x < z.

Now, x , $z \in A$ and A is an interval.

 $\therefore [x, z] \subseteq A \subseteq A_1 \cup A_2.$

Hence every element of [x, z] is either in A_1 or in A_2 .

Let $y = I.u.b. \{ [x, z] \cap A_1 \}$.

Clearly $x \leq y \leq z$.

By the definition of l.u.b. , for each $\varepsilon > 0$ there exists $t \in [x, z] \cap A_1$ such that $y - \varepsilon < t \leq y$.

 $\therefore (y - , y + \varepsilon) \cap ([x, z] \cap A_1) \neq \emptyset \forall \varepsilon > 0.$

 $\therefore y \in \overline{[x, z] \cap A_1}.$

Since $[x, z] \cap A_1$ is closed in A, $y \in [x, z] \cap A_1$

 $\therefore y \in A_1. \quad \dots \dots \dots (1)$

Again, by the definition of $\,y,\,for\,each\,\epsilon>0$ there exists $s\in A_2\,such\,$ that $y\leq s< y+\epsilon$.

 $\label{eq:approx_state} \therefore \left(y - \ , \ y + \epsilon \right) \cap A_2 \ \neq \emptyset \ \forall \ \epsilon > 0 \ .$

 $\therefore y \in \overline{A_2}$.

Since A_2 is closed in $A, y \in A_2$ (2) $\therefore y \in A_1 \cap A_2$ [

By(1)&(2)].

This is a contradiction to $\mathsf{A}_1 \cap \mathsf{A}_2 = \emptyset$.

Hence A is connected.

2.7 Connectedness and continuity.

Theorem 2.7.1 Let M_1 be a connected metric space. Let M_2 be any metric space. Let $f: M_1 \rightarrow M_2$ be

a continuous function. Then f(M_1) is a connected subset of M_2 .

i.e. continuous image of a connected set is connected.

Proof.

Let f (M_1) = A so that f is a continuous function from M_1 on to A.

We claim that A is connected.

Suppose A is not connected.

Then, there exists a proper subset B of A which is both open and closed in A.

Hence $f^{-1}(B)$ is a proper subset of M_1 which is both open and in M_1 .

 \therefore M₁ is not connected which is a contradiction.

Hence A is connected.

Theorem 2.7.2 [intermediate value Theorem]

Let f be a real valued continuous function defined on an interval **I**. Then f takes every value between any two value it assumes.

Proof.

Let a , $b \in I$ and let $f(a) \neq f(b)$.

Without loss of generality we assume that f(a) < f(b).

Let c be a real number such that f(a) < c < f(b).

The interval I is a connected subset of R.

Since f is continuous, f(I) is a connected subset of R .

Hence f(I) is an interval.

Also f(a), $f(b) \in f(I)$. \therefore [f(a), f(b)] \subseteq f(I). \therefore c \in f(I). [Since f(a) < c < f(b)] \therefore c = f(x) for some x \in I.

Unit III Compactness

3.1 Compact Metric Spaces.

Definition 3.1.1 Let M be a metric space. A collection of open sets $\{G_{\alpha}\}$ is said to be an **open cover** for M if U G_{α} = M. A sub collection of $\{G_{\alpha}\}$ which itself is an open cover is called a **subcover**.

Definition 3.1.2 A metric space M is said to be **compact** if every open cover for M has a finite subcover.

i.e. for each collection of open sets $\{G_{\alpha}\}$ such that $\bigcup G_{\alpha} = M$, there exists a finite sub collection $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ such that $\bigcup_{i=1}^n G_{\alpha i} = M$.

Theorem 3.1.3 Let M be a metric space. Let $A \subseteq M$. Then A is compact if and only if for every collection $\{G_{\alpha}\}$ of open sets in M such that $\bigcup G_{\alpha} \supseteq A$ there exists a finite sub collection $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ such that $\bigcup_{i=1}^n G_{\alpha i} \supseteq A$.

i.e. A is compact if and only if every open cover for A by sets open in M has a finite subcover.

Proof.

Let A be a compact subset of M.

Let $\{G_{\alpha}\}$ be a collection of open sets in M such that $\bigcup G_{\alpha} \supseteq A$.

Then $(U G_{\alpha}) \cap A = A$.

 $:: U(G_{\alpha} \cap A) = A.$

Since G_{α} is open in M, $G_{\alpha} \cap A$ is open in A.

 $\therefore \{G_{\alpha} \cap A\}$ is an open cover for A.

Since A is compact, this open cover has a finite subcover say

$$\{G_{\alpha_1} \cap A, G_{\alpha_2} \cap A, \dots, G_{\alpha_n} \cap A\}$$

$$\therefore \bigcup_{n = 1} (G_{\alpha_i} \cap A) = A.$$

$$\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cap A = A.$$

 $:: U_{ni=1} G_{\alpha i} \supseteq A.$

Conversely, assume that for every collection $\{G_{\alpha}\}$ of open sets in M such that $\bigcup G_{\alpha} \supseteq A$ there exists a finite sub collection $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ such that $\bigcup_{n=1}^{n} G_{\alpha_n} \supseteq A$.

We have to prove A is compact.

Let $\{H_{\alpha}\}$ be an open cover for A.

Then H_{α} is open in A $\forall \alpha$.

 $:: H_{\alpha} = G_{\alpha} \cap A$ where G_{α} is open in $M \forall \alpha$.

Now $UH_{\alpha} = A \Rightarrow U(G_{\alpha} \cap A) = A$.

 \Rightarrow (U G_{α}) \cap A = A.

Hence by our assumption, there exists a finite sub collection $\{G\alpha_1, G\alpha_2, \dots, G\alpha_n\}$ such that $\bigcup_{i=1}^n G_{\alpha_i} \supseteq A$.

$$:: (U^n_{i=1} G_{\alpha i}) \cap A = A.$$

$$\therefore \bigcup_{i=1}^{n} (G_{\alpha i} \cap A) = A.$$

 $U^n I=1 H_{\alpha I} = A.$

Thus $\{H_{\alpha_1}, H_{\alpha_2}, \dots, H_{\alpha_n}\}$ is a finite subcover of the given open cover $\{H_{\alpha}\}$ of A.

: A is compact.

Theorem 3.1.4 Any compact subset A of a metric space (M, d) is closed.

Proof.

We shall prove that A^c is open.

Let $y \in A^c$.

Now, for each $x \in A$, $x \neq y$.

$$:: d(x, y) = r_x > 0 \text{ and } B(x, \overline{2}^{rx}) \cap B(y, \overline{2}) = \emptyset_r.$$

Clearly the collection { B(x, $\frac{x}{2}$) / $_2 x \in A$ } is an open cover for A by sets open in M.

Since A is compact, there exists x_1 , x_2 ,, $x_n \in A$ such that

Then V_y is an open set containing y.

Since B(x,
$$\frac{r_{x_i}}{2}$$
) $\cap_{B(y, \frac{r_{x_i}}{2})} = \emptyset$, $V_y \cap_{B(x, \frac{r_{x_i}}{2})} = \emptyset \forall_{i = 1, 2, ..., n}$.
 $\therefore V_y \cap [\bigcup_{i=1}^n B\left(x, \frac{r_{x_i}}{2}\right)] = \emptyset$.
 $\therefore V_y \cap A = \emptyset$. [By (1)]
 $\therefore V_y \subseteq A^c$.

Thus, for each $y \in A^c$ there exists an open set V_y containing y such that $V_y \subseteq A^c$

$$\therefore$$
 Ac = $U_y \in A_c V_y$.

 $\therefore A^c$ is open .

Hence A is closed.

Theorem 3.1.5 Any compact subset A of a metric space M is bounded.

Proof.

•

Let $x \in A$.

Now, { $B(x, n) / n \in \mathbb{N}$ } is an open cover for A by sets open in M.

Since A is compact, there exists natural numbers $n_1, n_2, ..., n_k$, such that $\bigcup_{i=1}^k B(x, n_k) \supseteq A$.

Let N = max {
$$n_1, n_2, ..., n_k$$
}.
Then $\bigcup_{i=1}^k B(x, n_k) = B(x, N)$.
 $\therefore B(x, N) \supseteq A$.

Since B(x, N) is bounded and subset of a bounded set is bounded, A is bounded.

Theorem 3.1.6 A closed subset A of a compact metric space M is compact.

Proof.

Let $\{G_{\alpha}\}$ be a collection of open sets in M such that $\bigcup G_{\alpha} \supseteq A$.

 $:: A^{c}U UG_{\alpha} = M.$

Since A is closed, A^c is open.

 $:: \{G_{\alpha}\} \cup \{A^{c}\}$ is an open cover for M.

Since M is compact this open cover has a finite subcover say

$$\left\{ G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}, A^c \right\}_{::}$$

$$\therefore (U^n_{i=1} G_{\alpha i}) \cup A^c = M.$$

 $\div U^n_{i=1} \, G_{\alpha i} \underline{\supset} \, A.$

Hence A is compact.

Theorem 3.1.7 [Heine Borel Theorem]

Any closed interval [a , b] is a compact subset of R.

Proof.

Let $\{G_{\alpha}\}$ be a collection of open sets in **R** such that $\bigcup G_{\alpha} \supseteq \mathbf{R}$. Let $S = \{x \in [a, b] / a\}$

[a , x] can be covered by a finite number of G_{α} 's. }

Clearly $a \in S$ and hence $S \neq \emptyset$.

Since S is bounded above by b, l.u.b of S exists.

```
Let c = I.u.b of S.
```

```
Clearly c \in [a, b].
```

 \therefore c \in G α_1 for some index α_1 .

Since G_{α_1} is open , there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq G_{\alpha_1}$.

i.e. $(c - \varepsilon, c + \varepsilon) \subseteq G\alpha_1$.

Choose $x_1 \in [a, b]$ such that $x_1 < c$ and $[x_1, c] \subseteq G^{\alpha_1}$.

Since $x_1 < c$, [a, x_1] is covered by a finite number of G_{α} 's.

These finite number of G_{α} 's together with G^{α_1} covers [a , c].

 \therefore by the definition of S , c ∈ S.

Now, we claim that c = b.

Suppose c ≠ b.

Then choose $x_2 \in [a, b]$ such that $x_2 > c$ and $[c, x_2] \subseteq G_{\alpha 1}$.

Since [a , c] is covered by a finite number of G_{α} 's , these finite number of G_{α} 's together with $G_{\alpha 1}$ covers [a , x_2].

 $\therefore x_2 \in S$, which is a contradiction to c is l.u.b of S [$\because x_2 > c$].

Hence c = b.

 \div [a , x] can be covered by a finite number of $G_{\alpha}{'s}.$

 \therefore [a , b] is a compact subset of ${f R}$.

Theorem 3.1.8 A subset A or R is compact if and only if A is closed and bounded.

Proof.

If A is compact, then A is closed and bounded.

Conversely, assume that A is closed and bounded subset of ${f R}$.

Since A is bounded, A has a lower bound and an upper bound say a and b respectively.

Then $A \subseteq [a, b]$.

Since A is closed in \mathbf{R} , A \cap [a, b] is closed in [a, b]. I.e. A is

closed in [a , b].

Thus, A is a closed subset of the compact space [a, b].

Hence A is compact.

3.2 Compactness and Continuity.

Theorem 3.2.1 Let M_1 be a compact metric space and M_2 be any metric space. Let $f : M_1 \rightarrow M_2$ be a continuous function. Then $f(M_1)$ is compact.

i.e. Continuous image of a compact metric space is compact.

Proof.

Without loss of generality we assume that $f(M_1) = M_2$.

Let $\{G_\alpha\}$ be a collection of open sets in M_2 such that $U\,G_\alpha$ = $\mathsf{M}_2.$

 $:: U G_{\alpha} = f(M_2).$

 $:: f^{-1}(UG_{\alpha}) = M_1. \qquad :: Uf^{-1}$

 $^{1}(G_{\alpha}) = M_{1}.$

Since f is continuous, $f^{-1}(G_{\alpha})$ is open in $M_1 \forall \alpha$.

:.{
$$f^{-1}(G_{\alpha})$$
 } is an open cover for M₁.

Since M1 is compact, this open cover has a finite subcover say $\{f_{-1}(G_{\alpha 1}), f_{-1}(G_{\alpha 2}), \dots, f_{-1}(G_{\alpha n})\}$.

Hence M₂ is compact.

Corollary 3.2.2 Let f be a continuous map from a compact metric space M_1 into any metric space M_2 . Then f(M_1) is closed and bounded.

Proof.

Since f is continuous, f(M_1) is compact and hence closed and bounded.

Theorem 3.2.3 Any continuous mapping f defined on a compact metric space (M₁, d₁) into any

other metric space (M_2, d_2) is uniformly continuous on M_1 .

Proof.

Let \mathcal{E} > 0 be given.

Let $x \in M_1$.

Since f is continuous at x, for $\epsilon/2>0$, there exists $\delta_x>0$ such that

 $\frac{\delta_x}{2}$) / x $\in M_1$ is an open cover for M₁.

Since M_1 is compact, there exists x_1 , x_2 , , $x_n \!\in\! \mathsf{M}_1$ such that

$$U_{i=1}^{n} B(x_{i}, \frac{\delta_{x_{i}}}{2}) = M_{1}$$

Let $\delta = \min \left\{ \frac{\delta_{x_{1}}}{2}, \frac{\delta_{x_{2}}}{2}, \dots, \frac{\delta_{x_{n}}}{2} \right\}.$

Now, we shall prove that $d_1(p, q) < \delta \Rightarrow d_2(f(p), f(q)) < \epsilon \forall p, q \in M_1$.

Let p , q \in M₁such that d₁(p , q) < δ

$$P \in M_{1} \Rightarrow P \in \bigcup_{i=1}^{n} B(x_{i}, \frac{\delta_{x_{i}}}{2})$$
$$\Rightarrow P \in B(x_{i}, \frac{\delta_{x_{i}}}{2}) \text{ for some i such that } 1 \le i \le n$$
$$\Rightarrow --$$

: by (1),
$$d_2(f(p), f(x_i)) < \varepsilon/2$$
 (2)

Similarly, $d_2(f(q), f(x_i)) < \epsilon/2$ (3)

Now, $d_2(f(p), f(q)) \le d_2(f(p), f(x_i)) + d_2(f(x_i), f(q))$

$$< \varepsilon/2 + \varepsilon/2$$
 [By (2) and (3)] : $d_2(f(p), f(q)) < \varepsilon$.

Thus, $d_1(p, q) < \delta \Rightarrow d_2(f(p), f(q)) < \epsilon \forall p, q \in M_1$.

Hence f is uniformly continuous.

3.3 Equivalent forms of Compactness.

Definition 3.3.1 A collection \mathbf{F} of subsets of a set M is said to have finite intersection property if the intersection of any finite number of elements of \mathbf{F} is nonempty.

Theorem3.3.2 A metric space M is compact if and only if every collection of closed sets in M with finite intersection property has nonempty intersection.

Proof.

Suppose that M is compact.

Let $\{F_\alpha\}$ be a collection of closed subsets of M with finite intersection property.

We have to prove $\bigcap F_{\alpha} \neq \emptyset$.

Suppose $\bigcap F_{\alpha} = \emptyset$.

Then $(\bigcap F_{\alpha})^{c} = M$.

 $: U F_{\alpha}^{c} = M.$ [By De Morgan's laws]

Since each F_{α} is closed, each F_{α}^{c} is open.

Thus, { F_{α}^{c} } is an open cover for M.

Since M is compact, this open cover has a finite subcover say

$$\{F_{\alpha_{1}}^{c}, F_{\alpha_{2}}^{c}, \dots, F_{\alpha_{n}}^{c}\}$$

$$\therefore \bigcup_{i=1}^{n} F_{\alpha_{i}}^{c} = M.$$

$$\therefore (\bigcap_{i=1}^{n} F_{\alpha_{i}})^{c} = M.$$

$$\therefore \bigcap_{i=1}^{n} F_{\alpha_{i}} = \emptyset.$$

This is a contradiction to the collection $\{F_{\alpha}\}$ has finite intersection property.

$$\therefore \bigcap F_{\alpha} \neq \emptyset$$
.

Conversely, assume that every collection of closed sets in M with finite intersection property has nonempty intersection.

We have to prove M is compact.

Let $\{G_{\alpha}\}$ be an open cover for M.

 $: U_{G_{\alpha}} = M.$

$$\therefore (\bigcup G_{\alpha})^{c} = \emptyset_{\perp}$$

 $\therefore \bigcap G_{\alpha}^{c} = \emptyset$.

Since each G_{α} is open , each $G_{\alpha}{}^{c}$ is closed.

Hence $\mathbf{F} = \{ \mathbf{G}_{\alpha}^{c} \}$ is a collection of closed sets whose intersection is empty. \therefore by hypothesis,

this collection does not have finite intersection property.

Hence there exists a finite sub collection $\{G_{\alpha^1}^{\ c}, G_{\alpha^2}^{\ c}, \dots, G_{\alpha^n}^{\ c}\}$ such that $\bigcap_{n=1}^{c} G_{\alpha i c} = \emptyset$

$$\therefore (\bigcup_{i=1}^{n} G_{\alpha_i})^{c} = \emptyset$$

$$: \cup_{i=1}^{n} G_{\alpha_{i} = M}$$

.

Thus the given open cover $\{G_{\alpha}\}$ of M has a finite subcover $\{G_{\alpha 1}, G_{\alpha 2}, \dots, G_{\alpha n}\}$.

Hence M is compact.

Definition 3.3.3 A metric space M is said to be totally bounded if for every

 \mathcal{E} 0, there exists a finite number of elements x_1 , x_2 ,, $x_n \in M$ such that

 $B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \dots B(x_n, \varepsilon) = M.$

A nonempty subset A of a metric space M is said to be totally bounded if the subspace A is totally bounded metric space.

Theorem 3.3.4 Any compact metric space is totally bounded.

Proof.

Let M be a compact metric space.

We have to prove M is totally bounded.

Let $\varepsilon > 0$ be given.

Now, { $B(x, \varepsilon) / x \in M$ } is an open cover for M.

Since M is compact, there exists points x_1 , x_2 ,, $x_n \in M$ such that

 $\mathsf{M}=\mathsf{B}(\mathsf{x}_1\,,\,\varepsilon)\,\mathsf{U}\,\mathsf{B}(\mathsf{x}_2\,,\,\varepsilon)\,\mathsf{U}\,.....\,\mathsf{U}\,\mathsf{B}(\mathsf{x}_n\,,\,\varepsilon)\;.$

Hence M is totally bounded.

Theorem 3.3.5 Any totally bounded subset A of a metric space M is bounded.

Proof.

Let A be a totally bounded subset of a metric space M.

Then for given $\mathcal{E} > 0$, there exists points $x_1, x_2, \dots, x_n \in A$ such that

 $A = B_1(x_1, \epsilon) \cup B_1(x_2, \epsilon) \cup \dots \cup B_1(x_n, \epsilon) \text{ where } B_1(x_i, \epsilon) \text{ are open balls in } A.$

Since open balls are bounded sets and finite union of bounded sets is bounded, A is bounded.

Note3.3.6 The converse of the above theorem is not true. For,

Let M be an infinite set with discrete metric.

Then M is bounded.

Also, $B(x, 1) = \{x\}$ for all $x \in M$.

Since M is infinite, M cannot be expressed as finite union of open balls of radius 1.

Hence M is not totally bounded.

Definition 3.3.7 Let (x_n) be a sequence in a metric space M. If $n_1 < n_2 < < n_k <$ is a sequence of positive integers, then (x_{nk}) is a subsequence of (x_n) .

Theorem 3.3.8 A metric space M is totally bounded if and only if every sequence in M contains a Cauchy subsequence.

Proof.

Suppose that every sequence in M contains a Cauchy subsequence.

We have to prove M is totally bounded.

Let $\varepsilon > 0$ be given.

Choose $x_1 \in M$.

If $B(x_1, \varepsilon) = M$, then M is totally bounded.

If $B(x_1, \varepsilon) \neq M$, Then choose $x_2 \in B(x_1, \varepsilon) - M$ so that $d(x_1, x_2) \ge \varepsilon$.

If $B(x_1, \varepsilon) \cup B(x_2, \varepsilon) = M$, then M is totally bounded.

Otherwise, choose $x_3 \in [B(x_1, \varepsilon) \cup B(x_2, \varepsilon)] - M$ so that $d(x_3, x_1) \ge \varepsilon$ and $d(x_3, x_2) \ge \varepsilon$.

We proceed this process and if the process is terminated at a finite stage means M is totally bounded.

Suppose not, then we get a sequence (x_n) in M such that $d(x_n, x_m) \ge \varepsilon$ if $n \ne m$

 \therefore (x_n) cannot be a Cauchy sequence, which is a contradiction.

Conversely, suppose that M is totally bounded.

Let $S_1 = \{ x_{11}, x_{12},, x_{1n}, \}$ be a sequence in M.

If one of the terms in the sequence is repeated infinitely, then S_1 contains a constant subsequence which is in fact a Cauchy sequence.

So, we assume that no terms of S_1 is repeated infinitely so that the range of S_1 is infinite.

Since M is totally bounded, M can be covered by a finite number of open balls of radius 2.

Hence one of these balls contains infinite number of terms of the sequence S₁.

 \therefore S₁ contains a subsequence S₂ = { x₂₁, x₂₂,, x_{2n}, } which lies within an open ball of $\frac{1}{2}$.

Similarly, S₂ contains a subsequence S₃ = { x_{31} , x_{32} ,, x_{3n} , } which lies within an open $\frac{1}{3}$ ball of radius $\frac{1}{3}$.

We repeat the process of forming successive subsequences and finally we take the diagonal sequence $S = \{x_{11}, x_{22},, x_{nn},\}$.

We claim that S is a Cauchy subsequence of S_1 .

If m > n then both xmmand xnn lie within an open ball of radius n .

Hence S is a Cauchy subsequence of S_1 .

Thus every sequence in M has a convergent subsequence.

Corollary3.3.9 A nonempty subset of a totally bounded set is totally bounded.

Proof.

Let A be a totally bounded subset of a metric space M.

Let B be a nonempty subset of A.

Let (x_n) be a sequence in B.

Since $B \subseteq A$, (x_n) is a sequence in A.

Since A is totally bounded, (x_n) has a Cauchy subsequence.

Thus every sequence in B has a Cauchy subsequence.

∴ B is totally bounded.

3.4 Sequentially Compact.

Definition 3.4.1 A metric space M is said to be sequentially compact if every sequence in M has a convergent subsequence.

Theorem 3.4.2 Let (x_n) be a Cauchy sequence in a metric space M. If (x_n) has a subsequence (x_{nk}) converges to x, then (x_n) converges to x.

Proof.

Suppose that (x_n) has a subsequence (x_{nk}) which converges to x.

We have to prove $x_n\!\rightarrow x$.

Let $\varepsilon > 0$ be given.

Since (x_n) is a Cauchy sequence, there exists a positive integer N such that $d(x_n, x_m) < \frac{\varepsilon}{2} \forall n$

, $m \geq N_1$ (1) Since $x_{nk} \rightarrow x$, there exists a positive integer N_2 such

that $d(x_{nk}, x) < \frac{\epsilon}{2} \forall n_k \ge N_2$ (2) Let $N = \max \{ N_1, N_2 \}$. Fix $n_k \ge N$. Now. $d(x_n, x) \le d(x_n, x_{nk}) + d(x_{nk}, x)$ $< \frac{\epsilon}{2} + \frac{\epsilon}{2} \forall n \ge N$ $\therefore d(x_n, x) < \epsilon \forall n \ge N$. $\therefore x_n \rightarrow x$.

Definition 3.4.3 A metric space M has Bolzano – Weierstrass property if every infinite subset of M has a limit point.

Theorem 3.4.4 In a metric space M the following are equivalent.

(i)	M is compact.
-----	---------------

- (ii) M has Bolzano Weierstrass property
- (iii) M is sequentially compact
- (iv) M is totally bounded and complete.

Proof.

(i) \Rightarrow (ii)

Let M be compact metric space.

Let A be an infinite subset of M.

Suppose that A has no limit point.

Let $x \in M$.

Since x is not a limit point if A, there exists an open ball $B(x, r_x)$ such that

 $B(x, r_x) \cap (A - \{x\}) = \emptyset$.

B(x, r_x) contains at most one point of A (contains x if $x \in A$).

Now, { $B(x, r_x) / x \in M$ } is an open cover for M.

Since M is compact, there exists points x_1 , x_2 ,, $x_n \in M$ such that

 $M = B(x_1, r_{x1}) \cup B(x_2, r_{x2}) \cup \dots \cup B(x_n, r_{xn}).$

 $\therefore A \subseteq B(x_1, r_{x1}) \cup B(x_2, r_{x2}) \cup \dots \cup B(x_n, r_{xn}).$

Since each $B(x_1, r_{xi})$ has at most one point of A, A must be finite.

This is a contradiction to A is infinite.

Hence A has a limit point.

 $(ii) \Rightarrow (iii)$

Suppose that M has Bolzano – Weierstrass property.

We have to prove M is sequentially compact.

Let (x_n) be a sequence in M.

If the range of (x_n) is finite , then a term of the sequence is repeated infinitely and hence (x_n) has a constant subsequence which is convergent.

Otherwise (x_n) has infinite number of distinct terms.

By hypothesis, this infinite set has a limit point say x.

: for any r > 0, the open ball B(x, r) contains infinite number of terms of the sequence (x_n) .

Choose a positive integer n_1 such that $x_{n1} \in B(x, 1)$.

Now, choose $n_2 > n_1$ such that $x_{n_2} \in B(x, \frac{1}{2})$.

In general, for each positive integer k we choose $n_k > n_{k-1}$ such that $x_{nk} \in B(x, \overline{k})$.

Then (x_{nk}) is a subsequence of (x_n) and $d(x_{nk}, x) < \frac{1}{k} \forall k$.

 $\therefore x_{nk} \rightarrow x$.

Thus (x_{nk}) is a convergent subsequence of (x_n) .

Hence M is sequentially compact.

 $(iii) \Rightarrow (iv)$

Suppose that M is sequentially compact.

Then every sequence in M has a convergent subsequence.

We have every Cauchy sequence is convergent.

Thus, every sequence in M has a Cauchy subsequence.

Hence M is totally bounded.

Now, we prove that M is complete.

Let (x_n) be a Cauchy sequence in M.

By hypothesis, (x_n) contains a convergent subsequence (x_{nk}) .

Let $x_{nk} \rightarrow \ x$.

Then $x_n \rightarrow x$.

: M is complete.

 $(iv) \Rightarrow (i)$

Suppose that M is totally bounded and complete.

We have to prove M is compact.

Suppose not.

Then there exists an open cover $\{G_{\alpha}\}$ for M which has no finite subcover.

Take $r_n = 2^n \frac{1}{2}$

Since M is totally bounded, M can be covered by a finite number of open balls of radius r₁.

Since M is not covered by a finite number of G_{α} 's, at least one of these open balls say $B(x_1, r_1)$ cannot be covered by finite number of G_{α} 's.

Now, $B(x_1, r_1)$ is totally bounded.

Hence as before we can find $x_2 \in B(x_1, r_1)$ such that $B(x_2, r_2)$ cannot be covered by finite number of G_{α} 's.

Proceeding like this we get a sequence (x_n) in M such that $B(x_n, r_n)$ cannot be covered by finite number of G_{α} 's and $x_{n+1} \in B(x_n, r_n)$.

Let m and n be positive integers with n < m.

Now, $d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$

$$< r_{n} + r_{n+1} + \dots + r_{m-1}$$

```
<<u>nl-1 (Zln + Zln + ......)</u>
```

 \therefore (x_n) is a Cauchy sequence in M.

Since M is complete, there exists $x \in M$ such that $x_n {\rightarrow} \, x$.

Now, $x \in G_{\alpha}$ for some α .

Since G_α is open, there exists $\epsilon > 0$ such that B(x , $\epsilon) \subseteq G_\alpha$.

We have
$$x_n \rightarrow x$$
 and $r_n = \frac{1}{2^n} \rightarrow 0$.

 \div there exists a positive integer N such that

$$d(x_n, x) < \frac{\varepsilon}{2} \text{ and } r_n < \frac{\varepsilon}{2} \forall n \ge N.$$

Fix $n \ge N$.

We claim that $\mathsf{B}(x_n\,,\,r_n)\subseteq\mathsf{B}(x\,,\,\epsilon)$. $y\in\mathsf{B}(x_n\,,$

$$\begin{split} r_n) &\Rightarrow d(x_n, y) < r_n < \frac{\varepsilon}{2} \\ &\Rightarrow d(x_n, x) + d(x_n, y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &\Rightarrow d(x, y) < \varepsilon \\ &\Rightarrow y \in B(x, \varepsilon) \,. \end{split}$$

 $\therefore B(x_n, r_n) \subseteq B(x, \epsilon) \subseteq G_{\alpha}.$

Thus, $B(\boldsymbol{x}_n$, $\boldsymbol{r}_n)$ is covered by a single \boldsymbol{G}_α , which is a contradiction.

Hence M is compact.

UNIT-IV

DERIVATIVES

CONTinuity and Differentiation

Let X, Y be the metric spaces. Suppose $E \subset X$, f maps E into Y and p is a limit point of E we write $f(x) \to q$ as $x \to p$ or

$$\lim_{x \to p} f(x) = q.$$

If there is a point $q \in Y$ with the following property, for every $\epsilon > 0$ there exists S > 0 such that $d_y(f(x), q) < \epsilon \forall x \in E$ for which $0 < d_X(x, p) < S$. (i.e.)

$$\lim_{x \to n} f(x) = q.$$

if given $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x, p) < S \Rightarrow d_Y(f(x), q) < \epsilon$.

Definition 3.1 Let X and Y be any two metric spaces and $E \subset X$. Let f and g be any complex functions defined on E then we define f + g as follows. (f + g)(x) = f(x) + g(x)

Theorem 3.2 Let X and Y be any two metric spaces and $E \subset X$. p is a limit point of E. Then

$$\lim_{x \to p} f(x) = q \text{ iff } \lim_{n \to \infty} f(p_n) = q$$

for every sequence $\{p_n\}$ in E such that $p_n \neq p$ and

$$\lim_{n \to \infty} p_n = p.$$

Proof: Suppose

$$\lim_{x \to p} f(x) = q$$

⇒ Given $\epsilon > 0$, there exists S > 0 such that $0 < d_X(x,p) < S ⇒ d_Y(f(x),q) < \epsilon \forall x \in E....(1)$

 $\{p_n\}$ is a sequence of points in E such that $\{p_n\} \to p$ as $n \to \infty(p_n \neq p)$ (This is possible $\therefore p$ is a limit point of E) \Rightarrow there exists N depending on S such that $d_X(p_n, p) < S \ \forall n \ge N$. Now By (1) we have, $d_Y(f(p_n), q) < \epsilon \ \forall n \ge N$ (i.e.)

$$\lim_{n \to \infty} f(p_n) = q$$

Conversely, Suppose

$$\lim_{n \to \infty} f(p_n) = q$$

for every $\{p_n\}$ in E such that $p_n \neq p$ and

$$\lim_{n \to \infty} p_n = p$$

To Prove

$$\lim_{x \to p} f(x) = q$$

Suppose this result is false, for some $\epsilon > 0$ and for every S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x),q) \ge \epsilon$. Let $S_n = \frac{1}{n}$, n = 1, 2, 3... For S > 0 without loss of generality choose a point $p \in E$ such that $d_X(p_1,p) < S_1(=1) \Rightarrow d_Y(f(p_1),q) \ge \epsilon$. Similarly, for $S_2 > 0$ choose a point $p_2 \in E$ such that $d_X(p_2,p) < S_1 = (1/2) \Rightarrow d_Y(f(p_2),q) \ge \epsilon$. Proceeding for $S_n > 0$, choose a point $p_n \in E$ such that $d_X(p_n,p) < S_1(=1/n) \Rightarrow d_Y(f(p_n),q) \ge \epsilon$. \therefore we have a sequence $\{p_n\}$ in E such that $d_X(p_n,p) < \frac{1}{n} \Rightarrow d_Y(f(p_n),q) \ge \epsilon$. Now $\{p_n\} \to p$ as $n \to \infty$ [$\therefore 1/n \to 0$ as $n \to \infty$]. But $f(p_n)$ does not converge to q \therefore our assumption is wrong. Hence for every $\epsilon > 0$ there exists S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x),q) < \epsilon \quad \forall x \in E$.

$$\therefore \lim_{x \to p} f(x) = q.$$

Corollary 3.3 If f has a limit at p then this limit is unique. **Proof:** Suppose q is a limit of f at p. (i.e.)

$$\lim_{x \to p} f(x) = q.$$

 \therefore By the previous theorem, we have

$$\lim_{n \to \infty} f(p_n) = q$$

for every $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \rightarrow p$. But we know that, Every convergence sequence converges to a unique limit. $\therefore f$ has a unique limit at p.

Definition 3.4 Suppose we have two complex f and g then $f \pm g, fg, \lambda f$, $\frac{f}{g}(g \neq 0)$ are defined on a set E as follows.

1.
$$(f+g)(x) = f(x) + g(x)$$

- 2. $(f \cdot g)(x) = f(x) \cdot g(x)$
- 3. $(\lambda f)(x) = \lambda f(x)$
- 4. $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}, g(x) \neq 0.$

Similarly we define \bar{f}, \bar{g} map E into \mathbb{R}^k . Then we can define $\bar{f} \pm \bar{g}, \bar{f}\bar{g}, \lambda \bar{f}, \frac{\bar{f}}{\bar{g}}, (\bar{g} \neq 0)$.

Definition 3.5 Continuous at a point: Suppose X, Y are metric spaces and $E \subset X, p \in E$ and f maps E into Y. Then f is said to be continuous at p if for every $\epsilon > 0$, there exists a $S > 0 \Rightarrow 0 < d_X(x,p) < S \Rightarrow$ $d_Y(f(x), f(p)) < \epsilon \ \forall x \in E$. **Remark 3.6** Suppose f is continuous at $p \Rightarrow$ for every $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x,p) < S \Rightarrow d_Y(f(x), f(p)) < \epsilon \ \forall x \in E \Rightarrow x \in N_S(p) \Rightarrow f(x) \in N_\epsilon(f(p)) \ \forall x \in E \Rightarrow f(N_S(p)) \subset N_\epsilon(f(p)).$

Theorem 3.7 Let X, Y be metric space and $E \subset X$. p is a limit point of E and $f: E \to Y$. Then f is continuous at p iff

$$\lim_{x \to p} f(x) = f(p)$$

Proof: Suppose f is continuous at p. \Leftrightarrow for every $\epsilon > 0$ there exists S > 0 such that $0 < d_X(x,p) < S \Rightarrow d_Y(f(x),f(p)) < \epsilon \quad \forall x \in E \Leftrightarrow$

$$\lim_{x \to p} f(x) = f(p)$$

Theorem 3.8 Suppose X, Y, Z are metric space and $E \subset E$. f maps E into Y, g maps the range of f into Z and h is a mapping of E into Z defined by h(x) = g(f(x)). If f is continuous at $p \in E$ and if g is continuous at f(p) then h is continuous at p. (The function h is called composite of f and g and we write as $h = g \circ f$)

Proof: Let $\epsilon > 0$ be given and g is continuous at f(p). $\therefore \eta > 0$ such that $d_Y(y, f(p)) < \eta \Rightarrow d_Z(g(y), g(f(p))) < \epsilon, y \in f(E).....(1)$ Since f is continuous at p for this $\eta > 0$, there exists S > 0 such that $d_X(x,p) < S \Rightarrow d_Y(f(x), f(p)) < \eta \quad \forall x, y \in E$

$$(i.e.)d_Y(f(x), f(p)) < \eta, f(X) \in f(E)$$

$$\Rightarrow d_Z(g(f(x)), (g(f(p)) < \epsilon \text{ by } (1))$$

$$\Rightarrow d_Z(g \circ f(x), (g \circ f)(p)) < \epsilon$$

$$\Rightarrow d_Z(h(x), h(p)) < \epsilon (h = g \circ f).$$

: we have, $d_X(x,p) < S \Rightarrow d_Z(h(x),h(p)) < \epsilon \ \forall x \in E \Rightarrow h$ is continuous at p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is continuous on X iff $f^{-1}(E)$ is open in X for every open get E in Y.

Proof: Suppose f is continuous on X. Let V be a open get in Y. To Prove: $f^{-1}(V)$ is open in X. Let $p \in f^{-1}(V)$; $p \in f^{-1}(V) \Rightarrow f(p) \subset V$. Since V is open, there exists $\epsilon > 0$ such that $N_{\epsilon}(f(p)) \subset V$ (1)

Since f is continuous at p, for $\epsilon > 0$ there exists S > 0 such that $f(N_S(p)) \subset N_{\epsilon}(f(p))$ (2)

From (1) and (2), $\Rightarrow f(N_S(p)) \subset V \Rightarrow N_S(p) \subset f^{-1}V \Rightarrow p$ is an interior point of $f^{-1}(V)$. Since p is arbitrary, $f^{-1}(V)$ is open in X. Conversely: Suppose $f^{-1}(V)$ is open in X for every open set V in Y. To Prove: f is continuous at $p, p \in X$. Let $\in > 0$ be given. Consider an open set $N_{\epsilon}(f(p))$ in Y, $f^{-1}(N_{\epsilon}(f(p)))$ is open in X. Now, $\Rightarrow p \in f^{-1}(N_{\epsilon}(f(p))) \Rightarrow p$ is an interior point of $f^{-1}(N_{\epsilon}(f(p))) \Rightarrow$ there exists S > 0 such that $N_S(p) \subset$ $f^{-1}(N_{\epsilon}(f(p))) \Rightarrow f(N_S(p)) \subset N_{\epsilon}(f(p)) \Rightarrow f$ is continuous at p. **Corollary 3.10** A mapping f of a metric space X into a metric space Y is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y.

Proof: Let *C* be a closed set in *Y*.*C^c* is open in $Y \Rightarrow f^{-1}(C^c)$ is open in *X*. (by Theorem **CD**) $\Rightarrow [f^{-1}(C)]^c$ is open in $X \Rightarrow f^{-1}(C)$ is closed in *X*. Conversely: Suppose $f^{-1}(C)$ is closed in *X* for every closed set *C* in *Y*. To Prove: *f* is continuous on *X*. Let *A* be an open set in $Y \Rightarrow A^c$ is closed in $Y \Rightarrow f^{-1}(A^c)$ is closed in *X*. (by our assumption) $\Rightarrow [f^{-1}(A)]^c$ is closed in $X \Rightarrow f^{-1}(A)$ is open in *X*. $\Rightarrow f$ is continuous on *X*. Let *A* be an open set *X* is closed in *Y* is closed in *Y* is closed in *X*. (by our assumption) $\Rightarrow [f^{-1}(A)]^c$ is closed in *X* is open in *X*. $\Rightarrow f$ is continuous on *X*. (by the previous theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric space X, then f + g, $f \cdot g$, $\frac{f}{g}(g \neq 0)$ are continuous on X.

Proof: At isolated point of X there is nothing prove. Fix a point $p \in X$ and suppose p is a limit point of X. Since f and g are continuous at p.

$$\lim_{x \to p} f(x) = f(p); \ \lim_{x \to p} g(x) = g(p)$$

Now,

$$\lim_{x \to p} (f+g)(x) = \lim_{n \to \infty} (f+g)p_n$$

where $p_n \to p$ as $n \to \infty$ and $p_n \neq p$

$$\lim_{x \to p} (f+g)(x) = \lim_{n \to \infty} (f(p_n) + g(p_n))$$
$$= \lim_{n \to \infty} f(p_n) + \lim_{n \to \infty} g(p_n)$$
$$= f(p) + g(p)$$

similarly the other results follow.

Theorem 3.12 Let $f_1, f_2, ..., f_k$ be real functions in a metric space X. Let \overline{f} be the mapping X into \mathbb{R}^k . defined by $\overline{f}(x) = (f_1(x), f_2(x), ..., f_k(x))x \in X$. Then

(a) \bar{f} is continuous iff each of the functions $f_1, f_2, ..., f_k$ is continuous.

(b) \bar{f} and \bar{g} are continuous mapping of X into \mathbb{R}^k then $\bar{f} + \bar{g}, \bar{f} \cdot \bar{g}$ are continuous on $X(\underline{f}_1, \underline{f}_2, ..., f_k$ are called components of \bar{f}).

Proof: Suppose \overline{f} is continuous at every $p \in X$. Then given $\epsilon > 0$ there exists S > 0 such that

$$\begin{aligned} |\bar{f}(x) - \bar{f}(p)| &< \epsilon \text{ if } 0 < d_X(x, p) < S \\ \Rightarrow \left(\sum_{i=1}^k (f_i(x) - f_i(p))^2\right)^{1/2} < \epsilon \text{ if } 0 < d_X(x, p) < S \\ \Rightarrow |f_i(x) - f_i(p)| < \left(\sum_{i=1}^k (f_i(x) - f_i(p))^2\right)^{1/2} < \epsilon \forall i = 1, 2, ..., k \\ \Rightarrow |f_i(x) - f_i(p)| < \epsilon \forall i = 1, 2, ..., k \text{ if } 0 < d_X(x, p) < S \end{aligned}$$

⇒ each f_i is continuous at p, $(1 \le i \le k, p \in X)$ ⇒ each f_i is continuous on X, $(1 \le i \le k)$. Conversely, Suppose f_i is continuous on X for each $i = 1, ..., k \Rightarrow f_i$ is continuous at every $p \in X \Rightarrow$ Given $\epsilon > 0$ there exists $S_i > 0$ such that $0 < d_X(x, p) < S_i \Rightarrow |f_i(x) - f_i(p)| < \frac{\epsilon}{\sqrt{k}} \forall i = 1, 2, ..., k$. Let $S = min(S_1, S_2, ..., S_k)$. Now,

$$0 < d_X(x, p) < S_i \Rightarrow |f_i(x) - f_i(p)| < \frac{\epsilon}{\sqrt{k}} \quad \forall i = 1, 2, ..., k$$

$$\Rightarrow |f_i(x) - f_i(p)|^2 < \frac{\epsilon^2}{(\sqrt{k})^2}$$

$$\Rightarrow \sum_{i=1}^k |f_i(x) - f_i(p)|^2 < \frac{\epsilon^2}{k} \cdot k$$

$$= \epsilon^2$$

$$\Rightarrow \sqrt{\sum_{i=1}^k |f_i(x) - f_i(p)|^2} < \epsilon$$

$$\Rightarrow |\bar{f}(x) - \bar{f}(p)| < \epsilon$$

$$(i.e.)0 < d_X(x, p) < S \Rightarrow |\bar{f}(x) - \bar{f}(p)| < \epsilon$$

 $\Rightarrow \bar{f} \text{ is continuous at every } p \in X \Rightarrow \bar{f} \text{ is continuous on } X$ (b) Let $\bar{f} = (f_1, f_2, ..., f_k)$ and $\bar{g} = (g_1, g_2, ..., g_k)$. Now, $\bar{f} + \bar{g} = (f_1 + g_1, f_2 + g_2, ..., f_k + g_k); \ \bar{f} \cdot \bar{g} = (f_1 \cdot g_1, f_2 \cdot g_2, ..., f_k \cdot g_k).$ Given \bar{f} and \bar{g} are continuous. by (a), each f_i, g_i are continuous $(i \leq i \leq k)$ (by Theorem (11)) $\Rightarrow f_i + g_i, f_i \cdot g_i$ are continuous. (by (a))

Theorem 3.13 Let $\bar{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ define $\phi_i : \mathbb{R}^k \to \mathbb{R}$ by $\phi_i(\bar{x}) = x_i$, (i = 1, 2, ..., k). ϕ_i is called the coordinate function, then ϕ_i is continuous. **Proof:** Let $\bar{x}, \bar{y} \in \mathbb{R}^k$. Given $\epsilon > 0$ choose $S = \epsilon$ such that

$$\begin{aligned} |\bar{x} - \bar{y}| < S \\ \Rightarrow |\phi_i(\bar{x}) - \phi_i(\bar{y})| &= |x_i - y_i| \\ &< \left(\sum_{i=1}^k |x_i - y_i|^2\right)^{1/2} \\ &= |\bar{x} - \bar{y}| \\ &< \epsilon \end{aligned}$$

 $\Rightarrow \phi_i$ is continuous on \mathbb{R}^k

Theorem 3.14 Every polynomial in \mathbb{R}^k is continuous.

Proof: By the above theorem $\phi_i : \mathbb{R}^k \to \mathbb{R}$ is continuous for every *i*. Now, $\phi_i^2(\bar{x}) = \phi_i(\bar{x}) \cdot \phi_i(\bar{x}) = x_i \cdot x_i = x_i^2 \quad \forall i$. In general $\phi_i^{n_i}(\bar{x}) = x_i^{n_i} \quad \forall i$. By Theorem \square , $\phi_i^{n_i}$ is continuous. Now,

$$\phi_1^{n_1} \cdot \phi_2^{n_2} \cdots \phi_k^{n_k} \bar{x} = \phi_1^{n_1}(\bar{x}) \cdot \phi_2^{n_2}(\bar{x}) \cdots \phi_k^{n_k}(\bar{x}) \\ = x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k}$$

Now $\phi_1^{n_1} \cdot \phi_2^{n_2} \cdots \phi_k^{n_k}$ is a monomial function, where $n_1, n_2, ..., n_k$ are positive integers. Every monomial function is continuous $C_{n_1, n_2, ..., n_k}$ is a complex constant $\Rightarrow C_{n_1, n_2, ..., n_k} \cdot x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k}$ is continuous on \mathbb{R}^k . $\Rightarrow \sum C_{n_1, n_2, ..., n_k} \cdot x_1^{n_1} \cdot x_2^{n_2} \cdots x_k^{n_k}$ is continuous on \mathbb{R}^k . \Rightarrow Every polynomial is continuous on \mathbb{R}^k .

Continuity and Compact: A mapping \overline{f} on a set E into X is said to be bounded, if there is a real number m such that $|\overline{f}(x)| < m \ \forall x \in X$.

Theorem 3.15 Suppose f is continuous function on a compact metric space X into a metric space Y. Then f(X) is compact. (i.e., continuous image of a compact metric space is compact)

Proof: Given that X is compact. To Prove: f(X) is compact. Let $\{V_{\alpha}\}$ be an open cover for $f(X) \Rightarrow$ each V_{α} is open in Y. Now, Given f is continuous $\Rightarrow f^{-1}(V_{\alpha})$ is open in X for each $\alpha \Rightarrow \{f^{-1}(V_{\alpha})\}$ is open cover for X. Since X is compact, there exists finitely may indices $\alpha_1, \alpha_2, ..., \alpha_n$ such that

$$X \subset f^{-1}(V_{\alpha_1}) \cup f^{-1}(V_{\alpha_2}) \cup \cdots \cup f^{-1}(V_{\alpha_n})$$
$$= \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$$
$$\Rightarrow f(X) \subset \bigcup_{i=1}^n ff^{-1}(V_{\alpha_i}) \subset \bigcup_{i=1}^n V_{\alpha_i}$$

 $\Rightarrow \{V_{\alpha}\} \Rightarrow$ has a finite sub cover. $\therefore f(X)$ is compact.

 \Rightarrow

Theorem 3.16 If \overline{f} is continuous mapping of a compact metric space X into \mathbb{R}^k . Then $\overline{f}(X)$ is closed and bounded. $\therefore \overline{f}$ is bounded.

Proof: Given \bar{f} is continuous and X is compact. $\Rightarrow \bar{f}(x)$ is a compact subset of \mathbb{R}^k . $\Rightarrow \bar{f}(x)$ is closed and bounded. (by Heine Borel theorem) Now, in particular $\Rightarrow \bar{f}(x)$ is bounded $\Rightarrow \bar{f}$ is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact metric space X and $M = \sup_{p \in X} f(p)$ and let $m = \inf_{p \in X} f(p)$. Then, there exists a points $p, q \in X$ such that $f(p) = m_1$, $f(q) = m_2$ (i.e., f attains maximum M at p and minimum m at q)

Proof: We know that, If E is bounded and $y = \sup E$ and $X = \inf E$ then $x, y \in \overline{E}$. Since f is continuous and X is compact $\Rightarrow f(X)$ is closed and bounded [By the above Theorem **G16**] and since f(X) is bounded. $m, M \in \overline{f(X)} = f(X)$ ($\because f(X)$ is closed) $\Rightarrow m, M \in f(X) \Rightarrow$ there exists $p, q \in X$ such that M = f(p), m = f(q). **Theorem 3.18** Suppose f is continuous 1-1 mapping of a compact metric space X into a metric space Y. Then the inverse mapping f^{-1} defined on Y by $f^{-1}(f(X)) = X$ is a continuous mapping of Y onto X.

Proof: Suppose f is a continuous 1-1 mapping of a compact metric space X into a metric space Y and also $f^{-1}(f(X)) = X$. To Prove: f^{-1} is continuous on Y, it is enough to prove that $(f^{-1})(V)$ is open in Y for every open set V in X. Let V be a open set in $X \Rightarrow V^c$ is closed in X. Since X is compact, V^c is compact in X. Since f is continuous, $f(V^c)$ is compact in $Y \Rightarrow f(V^c)$ is closed in $Y \Rightarrow (f(V^c))^c$ is closed in $Y \Rightarrow f(V)$ is open in Y. (: f is 1-1 and onto) $\Rightarrow (f^{-1}(V))^{-1}$ is open in $Y \Rightarrow f^{-1}$ is continuous on Y.

Definition 3.19 (Uniformly Continuous) Let X and Y be any two metric space then the $f : X \to Y$ is said it to be uniformly continuous on X if for every $\epsilon > 0$ there exists a S > 0 such that $d_X(p,q) < S \Rightarrow d_Y(f(p), f(q)) < \epsilon$ $\forall p, q \in X$.

Theorem 3.20 Let f be a continuous mapping of a compact metric space X into a metric space Y then f is uniformly continuous. (i.e.) Continuous function defined on a compact metric space is uniformly continuous.

Proof: Let $\epsilon > 0$ be given let f is continuous on $X \Rightarrow f$ is continuous at every point $p \in X$. Now, f is continuous at $p \Rightarrow$ there exists a positive real $\phi(p)$ such that $d_X(p,q) < \phi(p) \Rightarrow d_Y(f(p), f(q)) < \epsilon \ \forall q \in X$ (1)

Let $J(p) = N_{\frac{\phi(p)}{2}}\{p\} \Rightarrow J(p)$ is a closed in $X \Rightarrow J(p)$ is a open in X. $\therefore \{J(p)|p \in X\}$ is an open cover for X. Since X is compact, there exists finitely may $p \in S$. $p_1, p_2, ..., p_n$ such that $X \subset \bigcup_{i=1}^n J(p_i)$. Let $S = min\{(\frac{\phi(p)}{2}, ..., \frac{\phi(p)}{2})\}$. Clearly, S > 0. Let p, q be points in X such that $d_X(p,q) < S$. Now,

$$p \in X \subset \bigcup_{i=1}^{n} J(p_i)$$

$$\Rightarrow p \in J(p_m) \text{ for some } m, 1 \leq m \leq n$$

$$\Rightarrow d_X(p, p_m) < \frac{\phi(p_m)}{2} < \phi(p_m)$$

$$\Rightarrow d_Y(f(p), f(p_m)) < \epsilon/2....(2) \ (by(1))$$
Now $d_X(q, p_m) < d_X(q, p) + d(p, p_m)$

$$< S + \frac{\phi(p_m)}{2}$$

$$< \frac{\phi(p_m)}{2} + \frac{\phi(p_m)}{2}$$

$$= \phi(m)$$
(*i.e.*) $d_X(q, p_m) < \phi(p_m)$

$$\Rightarrow d_Y(f(q), f(p_m)) < \epsilon/2 \ by(1)....(3)$$

$$\Rightarrow d_Y(f(p), f(q)) < d_Y(f(q), f(p_m)) + d_Y(f(p_m)f(q))$$
$$= \epsilon/2 + \epsilon/2 \text{ (by (2) and (3))}$$
$$\therefore d_X(p,q) < S \Rightarrow d_Y(f(p), f(q)) < \epsilon$$

 $\Rightarrow f$ is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in \mathbb{R}^1 . Then

(a) there exists a continuous function on E which is not bounded,

(b) there exists continuous and bounded function on which has no maximum if in addition E is bounded,

(c) there exists a continuous function on E which is not uniformly continuous.

Proof: Case(i): Suppose *E* is bounded.

=

(a) To Prove: f is continuous but not bounded. Since E is bounded, there exists a limit point of x_0 of E such that $x_0 \notin E$. [:: E is not closed]. Define a map $f : E \to \mathbb{R}^1$ by $f(x) = \frac{1}{x-x_0}, x \in E$. :: f is continuous on E. To Prove: f is unbounded on E. Since x_0 is a limit point of E. $N_r(x_0) \cap E \neq \emptyset$ $\forall r > 0 \Rightarrow$ there exists x_1 such that $x_1 \in N_r(x_0) \cap E \Rightarrow x_1 \in N_r(x_0)$ and $x_1 \in E$

$$\Rightarrow |x_1 - x_0| < r \text{ and } x_1 \in E$$
$$\Rightarrow \frac{1}{|x_1 - x_0|} > \frac{1}{r} \text{ and } x_1 \in E$$
$$\Rightarrow |f(x_1)| > \frac{1}{r} \text{ and } x_1 \in E \ \forall r > 0$$

 $\forall r > 0$ there exists $x \in E$ such that $|f(x)| > \frac{1}{r} \Rightarrow f$ is unbounded on E. (b) Define $g: E \to R$ by $g(x) = \frac{1}{1+(x-x_0)^2}, x \in E$. Clearly, g is continuous. Now, $0 < g(x) < 1 \Rightarrow g(x)$ is a bounded function. Clearly, $\sup_{x \in E} g(x) = 1$. But $g(x) < 1 \quad \forall x \in E$. $\therefore g$ has no maximum on E.

(c) Let $f: E \to R$ be defined by $f(x) = \frac{1}{x-x_0}$, $x \in E$, where x_0 is a limit point of E. Clearly, f is continuous on E. Let $\epsilon > 0$ be given. Let S > 0 be arbitrary choose a point $x \in E$ such that $|x - x_0| < S$ and taking t very close to x_0 so as to satisfy |t - x| < S. Then,

$$|f(t) - f(x)| = \left| \frac{1}{t - x_0} - \frac{1}{x - x_0} \right|$$
$$= \left| \frac{x - x_0 - t + x_0}{(t - x_0)(x - x_0)} \right|$$
$$= \frac{|x - t|}{|t - x_0||x - x_0|}$$
$$> \frac{1}{t - x_0} > \epsilon$$

(If we choose $x \in (x_0 - S, x_0), t \in (x_0, x_0 + S)$ and |x - t| < S or $t \in (x_0 - S, x_0), x \in (x_0, x_0 + S)$ and $|x - t| < S \Rightarrow |t - x| > |x - x_0|$) So we

have taken t very close to x_0 and we made the difference $|f(t) - f(x)| > \epsilon$ although |t - x| < S. Since this is true for every $S > 0 \Rightarrow f$ is not uniformly continuous.

Case(ii): Suppose *E* is not bounded.

(a) Define f: E → R by f(x) = x. Clearly, f is continuous on E and f is not bounded on E. ∴ there exists function on E which is not bounded.
(b) Define g: E → R by g(x) = x²/(1+x²) ⇒ g is continuous. Now, as x² <

(b) Define $g: E \to R$ by $g(x) = \frac{x}{1+x^2} \Rightarrow g$ is continuous. Now, as $x^2 < 1 + x^2 \Rightarrow g(x) = \frac{x^2}{1+x^2} < 1$. $\therefore 0 < g(x) < 1 \quad \forall x \in E$. $\therefore g$ is a bounded. $\therefore g$ is a continuous and bounded function. $\sup_{x \in E} g(x) = 1$. But g has no maximum on E.

(c) If the boundedness is omitted then the result fails. Let E be the set of all integers. Then every function defined on E is uniformly continuous on $E \Rightarrow$ for every $\epsilon > 0$ choose S < 1 such that $|X - Y| < S \Rightarrow |f(x) - f(y)| = 0 < \epsilon$

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a metric space Y and E is a connected subset of X. Then f(E) is connected. i.e., continuous image of a connected subset of a metric space is connected. **Proof:** Given E is connected subset of X. To Prove: f(E) is a connected subset of Y. Suppose f(E) is not connected. $\Rightarrow f(E) = A \cup B$ where A and B are non-empty separated sets. Put $G = E \cap f^{-1}(A)$ and $H = E \cap f^{-1}(B)$

$$G \cup H = (E \cap f^{-1}(A)) \cup (E \cap f^{-1}(B))$$
$$= E \cap (f^{-1}(A) \cup f^{-1}(B))$$
$$= E \cap (f^{-1}(A \cup B))$$
$$= E \cap E$$
$$G \cup H = E$$

Clearly $G \neq \emptyset$ $H \neq \emptyset$ ($:: A \neq \emptyset, B \neq \emptyset$). Claim: G and H are separated

sets. i.e., To Prove $\bar{G} \cap H = \emptyset, G \cap \bar{H} = \emptyset$. Now

$$\begin{split} G &= E \cap f^{-1}(A) \\ \Rightarrow G \subset f^{-1}(A) \subset f^{-1}(\bar{A}) \\ \Rightarrow \bar{G} \subset \bar{f}^{-1}(\bar{A}) = f^{-1}(\bar{A}) \ [\because \bar{A} \text{ is closed and} \\ f \text{ is continuous } \Rightarrow f^{-1}(\bar{A})] \\ \Rightarrow f(\bar{G}) \subset ff^{-1}(\bar{A}) \subset \bar{A} \\ \Rightarrow f(\bar{G}) \subset \bar{A} \\ H &= E \cap f^{-1}(B) \\ \Rightarrow H \subset f^{-1}(B) \Rightarrow f(H) \subset ff^{-1}(B) = B \\ \Rightarrow f(H) \subset B \\ \Rightarrow f(\bar{G}) \cap f(H) \subset \bar{A} \cap B = \emptyset (\because A \text{ and } B \text{ are separated sets}) \\ \Rightarrow f(\bar{G}) \cap f(H) = \emptyset \\ \Rightarrow f(\bar{G} \cap H) = \emptyset \\ \Rightarrow \bar{G} \cap H = \emptyset \\ \text{similarly, } G \cap \bar{H} = \emptyset \end{split}$$

 \therefore G and H are separated sets. $\Rightarrow E$ can be expressed as a union of two non-empty separated sets. $\Rightarrow E$ is not connected. $\Rightarrow \Leftarrow$ to E is connected. $\therefore f(E)$ is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous real valued function on [a, b]. If f(a) < f(b) and c is the number such that f(a) < c < f(b) then there exists a point $x \in (a, b)$ such that f(x) = c. **Proof:** Every interval in \mathbb{R} is connected and f is continuous. By the previous

theorem, f[a, b] is connected in \mathbb{R} . $\Rightarrow f[a, b]$ is interval in \mathbb{R} . Let $f(a), f(b) \in f[a, b] \Rightarrow [f(a), f(b)] \subset f[a, b]$. Now, $f(a) < c < f(b) \Rightarrow c \in f[a, b] \Rightarrow c = f(x)$ for some $x \in [a, b]$.

Remark 3.24 Converse not true.

Proof: If any two points x_1 and x_2 and for any member c between $f(x_1)$ and $f(x_2)$ there is a point x in $[x_1, x_2]$ such that f(x) = c then f may be discontinuous. For example:

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Choose $x_1 \in (-\frac{\pi}{2}, 0), x_2 \in (0, \frac{\pi}{2})$. Clearly $x_1 < x_2$; $f(x_1)$ =negative $f(x_2)$ =positive. $\therefore f(0) = 0$. f is continuous all the points except at 0.

Differentiation:

Definition 3.25 Let f be real value function defined on [a, b], for any $x \in [a, b]$ form the quotient $\phi(t) = \frac{f(t) - f(x)}{t - x}$, $a < t < b, t \neq x$, and defined

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

provided the limit exists.

Remark 3.26 1. If f' is defined at a point, we say that f is differentiable at x.

2. If f' is defined at every point of a set $E \subset [a,b]$, we say that f is differentiable on E.

Theorem 3.27 Let f be defined on [a, b]. If f is differentiable at a point x in [a, b], then f is continuous at x. **Proof:** Given f is differentiable at x. (i.e.)

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 exists.

To Prove: f is continuous at x (i.e.) To Prove

$$\lim_{t \to x} f(t) = f(x)$$

Now

$$f(t) - f(x) = \frac{f(t) - f(x)}{t - x}(t - x)$$
$$\lim_{t \to x} (f(t) - f(x)) = \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x}(t - x) \right]$$
$$= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \cdot \lim_{t \to x} (t - x)$$
$$= f'(x) \cdot 0$$
$$= 0$$
$$\lim_{t \to x} (f(t) - f(x)) = 0$$
$$(\text{or)} \quad \lim_{t \to x} f(t) = f(x)$$

 $\therefore f$ is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) = |x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a, b] and are differentiable at at point x in [a, b] then f + g, fg, $\frac{f}{g}$ are differentiable at x. (a) (f + g)'(x) = f'(x) + g'(x)

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

(c) $(\frac{f}{g})'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}, g(x) \neq 0.$
Proof: Given f and g are differentiable at x.

$$(i.e.)f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 and $g'(x) = \lim_{t \to x} \frac{g(t) - g(x)}{t - x}$ exists.

(a)

$$\phi(t) = \frac{(f+g)(t) - (f+g)(x)}{t-x}$$
$$= \frac{f(t) + g(t) - (f(x) + g(x))}{t-x}$$
$$\phi(t) = \frac{f(t) - f(x)}{t-x} + \frac{g(t) - g(x)}{t-x}$$

Taking limits as $t \to x$

$$\lim_{t \to x} \phi(t) = \lim_{t \to x} \left\{ \frac{f(t) - f(x)}{t - x} + \frac{g(t) - g(x)}{t - x} \right\}$$
$$= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} + \lim_{t \to x} \frac{g(t) - g(x)}{t - x}$$
$$(i.e.)(f + g)'(x) = f'(x) + g'(x)$$

(i.e.) (f+g) is differentiable at x. (b) (fg)'(x) = f'(x)g(x) + f(x)g'(x). Let h = fg. Now,

$$\begin{aligned} (h(t) - h(x)) &= (fg)(t) - (fg)(x) \\ &= f(t)g(t) - f(x)g(x) \\ &= f(t)g(t) - f(t)g(x) + f(t)g(x) - f(x)g(x) \\ &= f(t)(g(t) - g(x)) + g(x)(f(t) - f(x)) \\ \frac{h(t) - h(x)}{t - x} &= f(t)\frac{(g(t) - g(x))}{t - x} + g(x)\frac{(f(t) - f(x))}{t - x} \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \left\{ f(t)\frac{g(t) - g(x)}{t - x} + g(x)\frac{f(t) - f(x)}{t - x} \right\} \\ &= \lim_{t \to x} f(t)\lim_{t \to x} \frac{g(t) - g(x)}{t - x} + \lim_{t \to x} g(x)\lim_{t \to x} \frac{f(t) - f(x)}{t - x} \\ h'(x) &= f(x)g'(x) + g(x)f'(x) \\ (fg)'(x) &= f(x)g'(x) + g(x)f'(x) \end{aligned}$$

fg is differentiable at x.

$$\begin{aligned} \left(\mathbf{c}\right) \left(\frac{f}{g}\right)'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}. \text{ Let } h = \frac{f}{g}. \\ \left(h(t) - h(x)\right) &= \frac{f}{g}(t) - \frac{f}{g}(x) \\ &= \frac{f(t)}{g(t)} - \frac{f(x)}{g(x)} \\ &= \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{g(t)g(x)} \\ &= \frac{g(x)(f(t) - f(x)) - f(x)(g(t) - g(x))}{g(t)g(x)} \\ \frac{h(t) - h(x)}{t - x} &= \frac{g(x)(f(t) - f(x)) - f(x)(g(t) - g(x))}{g(t)g(x)(t - x)} \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \frac{g(x)}{g(t)g(x)} \left(\frac{f(t) - f(x)}{t - x}\right) - \lim_{t \to x} \frac{f(x)}{g(t)g(x)} \left(\frac{g(t) - g(x)}{t - x}\right) \\ &= \frac{g(x)}{g^2(x)} \lim_{t \to x} \frac{f(t) - f(x)}{t - x} - \frac{f(x)}{g^2(x)} \lim_{t \to x} \frac{g(t) - g(x)}{t - x} \\ h'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)} \\ \left(\frac{f}{g}\right)'(x) &= \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)} \end{aligned}$$

Since f'(x), g'(x) exists and $g(x) \neq 0, \left(\frac{f}{g}\right)'(x)$ exists.

Example 3.30 (1) The derivative of any constant is zero. (2) $f(x) = x \Rightarrow f'(x) = 1$ (3) $f(x) = n \Rightarrow f'(x) = nx^{n-1}$

Theorem 3.31 Chain Rule: Suppose f is continuous on [a, b], f'(x) exists at some point x in [a, b], g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If $h(t) = g(f(t)), a \le$ $t \le b$ then h is differentiable at x, and h'(x) = g'(f(x))f'(x). **Proof:** Given

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \text{ exists, } t \in [a, b].$$

Let h(t) = g(f(t)). To Prove: h'(x) = g'(f(x))f'(x). Since f is differentiable at $x \in [a, b]$

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \text{ exists, } t \in [a, b] \text{ exists.}$$

(*i.e.*) $f'(x) + u(t) = \frac{f(t) - f(x)}{t - x}, t \in [a, b] \text{ where } \lim_{t \to x} u(t) = 0$
 $\Rightarrow (f'(x) + u(t))(t - x) = f(t) - f(x).....(1)$

62

Let y = f(x). Now g is differentiable at y(= f(x))

$$g'(y) = \lim_{s \to y} \frac{g(s) - g(y)}{s - y}, s \in I$$

(*i.e.*) $g'(y) + v(s) = \frac{g(s) - g(y)}{s - y}, s \in I$ where $\lim_{s \to y} v(s) = 0$
 $(g'(y) + v(s))(s - y) = g(s) - g(y).....(2)$

Let s = f(t). Now,

$$\begin{split} h(t) - h(x) &= g(f(t)) - g(f(x)) \\ &= (g'(f(x)) + v(s))(s - y) \ (by(2)) \\ h(t) - h(x) &= g'(f(x) + v(s))(f(t) - f(x)) \\ &= g'(f(x) + v(s))(f'(x) + u(t))(t - x) \ (by(1)) \\ \frac{h(t) - h(x)}{t - x} &= g'(f(x) + v(s))(f'(x) + u(t)) \\ \lim_{t \to x} \frac{h(t) - h(x)}{t - x} &= \lim_{t \to x} \{g'(f(x) + v(s))(f'(x) + u(t))\} \\ h'(x) &= \lim_{t \to x} g'(f(x) + v(s)) \lim_{t \to x} (f'(x) + u(t)) \\ &= \lim_{s \to y} (g'(f(x)) + v(s)) f'(x) \\ &= g'(f(x))f'(x) \\ \therefore h'(x) &= g'(f(x))f'(x) \end{split}$$

Example 3.32 Let

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Find $f'(x)(x \neq 0)$, and show that f'(0) does not exist. Solution:

$$f(x) = x \sin \frac{1}{x}$$

$$f'(x) = x \cos\left(\frac{1}{x}\right) \left(\frac{-1}{x^2}\right) + \sin\left(\frac{1}{x}\right)$$

$$= -\frac{1}{x} \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right)$$

$$= \sin\left(\frac{1}{x}\right) - \left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right), x \neq 0.$$

since $x \neq 0 f'(x)$ exists. To Prove: f'(0) does not exists.

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0}$$
$$= \lim_{t \to 0} \frac{t \sin \frac{1}{t} - 0}{t - 0}$$
$$= \lim_{t \to 0} \sin \frac{1}{t} \text{ which does not exists}$$

 $\therefore f'(0)$ does not exists.

Example 3.33 Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Find $f'(x)(x \neq 0)$, show that f'(0) = 0Solution: Let

$$f(x) = x^{2} \sin \frac{1}{x}$$

$$f'(x) = x^{2} \left(\cos \left(\frac{1}{x}\right)\right) \left(\frac{-1}{x^{2}}\right) + 2x \cdot \sin \frac{1}{x}$$

$$= 2x \cdot \sin \frac{1}{x} - \cos \frac{1}{x}, x \neq 0$$

$$f'(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0}$$

$$= \lim_{t \to 0} \frac{x^{2} \sin \frac{1}{t} - 0}{t - 0}$$

$$= \lim_{t \to 0} t \sin \frac{1}{t}$$

$$= 0 \quad (\because \left|t \sin \frac{1}{t}\right| \le 1)$$

$$\therefore f'(0) = 0$$

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real function defined on a metrics space X. We say that f has local maximum at a point p in X if there exists $\delta > 0$ such that $f(q) \leq f(p) \ \forall q \in X$ with $d(p,q) < \delta$. f has a local minimum at p in X, if $f(p) \leq f(q) \ \forall q \in X$ such that $d(p,q) < \delta$.

Theorem 3.35 Let f be defined on [a,b]; if f has a local maximum at a point $x \in (a,b)$ and if f' exists, then f'(x)=0. The analogous statement for local minimum is also true.

Proof: Case(i) Assume that f has local maximum at x. To Prove: f'(x) =

0. Since f has local maximum at x, there exists $\delta > 0$ such that $(q, x) < \delta \Rightarrow f(q) \le f(x)$

If
$$x - \delta < t < x$$
 then $\frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow \lim_{t \to x} \frac{h(t) - h(x)}{t - x} \ge 0$
(*i.e.*) $f'(x) \ge 0$ (1)
If $t^x < x^t < x + \delta$ then $\frac{f(t) - f(x)}{t - x} \le 0$
 $\Rightarrow \lim_{t \to x} \frac{h(t) - h(x)}{t - x} \le 0$
 $\Rightarrow f'(x) \le 0$ (2)

Since f'(x) exists, $(1),(2) \Rightarrow f'(x) = 0$.

Case(ii) Assume that f has a local minimum at x. We show that f'(x)=0. Then there exists $\delta > 0$ such that $d(q, x) < \delta \Rightarrow f(q) \ge f(x)$

If
$$x - \delta < t < x$$
 then $\frac{f(t) - f(x)}{t - x} \le 0$
 $\Rightarrow \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \le 0$
(*i.e.*) $f'(x) \le 0$ (3)
If $x < t < x + \delta$ then $\frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0$
 $\Rightarrow f'(x) \ge 0$ (4)

Since f'(x) exists, and from (3) and (4) we get f'(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are continuous real functions on [a,b], which are differentiable in (a,b), then there is a point $x \in (a,b)$ at which [f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). **proof:** Let h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t), $t \in [a,b]$. Since f and g are differentiable in (a,b), h(t) is also differentiable in (a,b). Now,

$$\begin{split} h(a) &= [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a) \\ &= f(b)g(a) - f(a)g(a) - g(b)f(a) + g(a)f(a) \\ &= f(b)g(a) - g(b)f(a) \\ h(b) &= [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b) \\ &= f(b)g(b) - f(a)g(b) - g(b)f(b) + g(a)f(b) \\ &= g(a)f(b) - f(a)g(b) \end{split}$$

Claim: h'(x) = 0 for some $x \in (a, b)$. If h(t) is a constant then $h'(x) = 0 \quad \forall x \in (a, b)$. If h(t) < h(a), a < t < b, then by Intermediate value theorem, there exists x in (a, b) at which h is minimum. $\therefore h'(x) = 0$ (by Theorem 5.35). If h(t) > h(a) then h attains its maximum at some point $x \in (a, b)$. $\therefore h'(x) = 0$ (by Theorem 5.35) (i.e.)

$$(f(b) - f(a))g'(x) - (g(b) - g(a))f'(x) = 0$$

(f(b) - f(a))g'(x) = (g(b) - g(a))f'(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function on [a, b] which is differentiable at (a, b) then there is a point $x \in (a, b)$ at which f(b) - f(a) = (b - a)f'(x).

Proof: Put g(x) = x in theorem 3.36. $\therefore g'(x) = 1 \Rightarrow (f(b) - f(a)) = (b - a)f'(x)$.

Theorem 3.38 Suppose f is differentiable in (a, b).

(a) If $f'(x) \ge 0 \ \forall x \in (a, b)$, then f is monotonically increasing.

(b) If $f'(x) = 0 \ \forall x \in (a, b)$, then f is a constant.

(c) If $f'(x) \leq 0 \ \forall x \in (a, b)$, then f is monotonically decreasing.

Proof: (a)By theorem **6.37**, If $x_1 < x_2$, then there exists $x_1 < x < x_2$ such that $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$ (1)

If $f'(x) \ge 0$ then $(1) \Rightarrow f(x_2) - f(x_1) \ge 0$ ($\because (x_2 - x_1)f'(x) \ge 0$) $\Rightarrow f(x_1) \le f(x_2)$ (i.e.) f is an increasing function

(b) If f'(x)=0 then $(1) \Rightarrow f(x_2) - f(x_1) = 0 \Rightarrow f(x_2) = f(x_1)$. $\therefore f$ is constant.

(c) If $f'(x) \leq 0$ then $(1) \Rightarrow f(x_2) - f(x_1) \leq 0 \Rightarrow f(x_1) \geq f(x_2)$. $\therefore f$ is an decreasing function.

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$, then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$. A similar result holds if $f'(a) > \lambda > f'(b)$.

Proof: Let $g(t) = f(t) - \lambda t, t \in [a, b]$ then, $g'(t) = f'(t) - \lambda; g'(a) = f'(a) - \lambda < 0.$ \therefore there exists $a < t_1 < b$ such that $g(t_1) < g(a)$. Also, $g'(b) = f'(b) - \lambda > 0.$ \therefore there exists $a < t_2 < b$ such that $g(t_2) < g(b).$ $\therefore g$ attains minimum at $x \in (a, b).$ $\therefore g'(x)=0$ (by Theorem **6.35**) (i.e.) $f'(x) - \lambda = 0 \Rightarrow f'(x) = \lambda.$

Corollary 3.40 If f is differentiable on [a, b], then f' is cannot have any simple discontinuity on [a, b]. But f' may have discontinuity of second kind. **Proof:** f' takes every value between f(a) and f(b). Let a < x < b. If f' is not continuous at x, then

1. f'(x+), f'(x-) exists,

- 2. $f'(x+) \neq f'(x-),$
- 3. $f'(x-) = f'(x+) \neq f'(x) \Rightarrow \Leftarrow$

 \therefore f' cannot have any simple discontinuity. In Example **3.33** f' has a discontinuity of second kind at $x \in [a, b]$.

Theorem 3.41 *L'Hospital's Rule:* Suppose f and g are differentiable in (a,b) and $g'(x) \neq 0 \ \forall x \in (a,b)$ where $-\infty \leq a < b \leq \infty$. Suppose $\frac{f'(x)}{g'(x)} \rightarrow A$ as $x \rightarrow a$ (1).

If $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$ (2) (or) if $g(x) \to \infty$ as $x \to a$ (3), then $\frac{f(x)}{g(x)} \to A$ as $x \to a$ (4). (The analogous statement is true if $x \to b$ (or) if $g(x) \to -\infty$ in (3)).

Proof: Case(i): Let $-\infty \le A < \infty$. We choose r and q such that A < r < q. Given

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$

Then there exists $c \in (a, b)$ such that $a < x < c \Rightarrow \frac{f'(x)}{g'(x)} < r$ (i) Now if a < x < y < c then by generalised mean value theorem, there exists $t \in (a, b)$ such that $\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(t)}{g'(t)} < r$ (ii) Suppose $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$. Then by taking limits as $x \to a$,

Suppose $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$. Then by taking limits as $x \to a$, then (ii) we get $\frac{f(y)}{g(y)} \le r < q$ (iii) Suppose $g(x) \to \infty$ as $x \to a$, then by keeping y fixed in (ii) we can find

Suppose $g(x) \to \infty$ as $x \to a$, then by keeping y fixed in (ii) we can find $c_1 \in (a, y)$ such that g(x) > g(y) and $g(x) > 0 \ \forall x \in (a, c_1)$. Multiply (ii) by $\frac{g(x)-g(y)}{g(x)}$, we get

$$\begin{aligned} \frac{f(x) - f(y)}{g(x)} < r\left(\frac{g(x) - g(y)}{g(x)}\right) \\ \Rightarrow \frac{f(x)}{g(x)} - \frac{f(y)}{g(x)} < r\left(1 - \frac{g(y)}{g(x)}\right) \\ \Rightarrow \frac{f(x)}{g(x)} < r - r\frac{g(y)}{g(x)} + \frac{f(y)}{g(x)} \end{aligned}$$

Since $g(x) \to \infty$ as $x \to a$, there exists $c_2 \in (a, c_1)$ such that $\frac{f(x)}{g(x)} < r \ \forall x \in (a, c_2) \ (\text{or}) \ \frac{f(x)}{g(x)} < q \ \forall x \in (a, c_2)$(iv) suppose $-\infty < A \le \infty$. By choosing p < A as above, we can show that there exists $c_3 \in (a, b)$ such that $p < \frac{f(x)}{g(x)} \ \forall a < x < c_3$(v)

Thus in all cases $\frac{f(x)}{g(x)} \to A$ as $x \to a$. Hence

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Derivatives Of Higher Order

Definition 3.42 If f has a derivative f' on an interval and if f' is differentiable, we see the second derivative f'' exists. Similarly if $f^{n-1}(x)$ is differentiable we say $f^{(n)}$ exists.

Theorem 3.43 Taylor's Theorem: Suppose f is a real function on [a, b], n is a positive integer, $f^{(n-1)}$ is continuous on [a, b], $f^{(n)}(t)$ exists $\forall t \in (a, b)$. Let α, β be distinct points of [a, b] and define

$$p(t) = \sum_{n=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t-\alpha)^k,$$

then there exists a point $x \in (\alpha, \beta)$ such that $f(\beta) = p(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n$. **Proof:** If n=1, then $f(\beta) = f(\alpha) + f'(x)(\beta - \alpha)$; $\frac{f(\beta) - f(\alpha)}{\beta - \alpha} = f'(x)$. This is just the mean value theorem. Suppose n > 1. Define a number M such that $f(\beta) = p(\beta) + M(\beta - \alpha)^n$(1) Let $g(t) = f(t) - p(t) - M(t - \alpha)^n$(2) Now,

$$g(\alpha) = f(\alpha) - p(\alpha) - M(\alpha - \alpha)^{n}$$

$$= f(\alpha) - p(\alpha)$$

$$g(\alpha) = f(\alpha) - f(\alpha) (\because p(\alpha) = f(\alpha))$$

$$= 0$$

$$g(\beta) = f(\beta) - p(\beta) - M(\beta - \alpha)^{n}$$

$$= 0 (by (1)).....(4)$$
Also $g^{(n)}(t) = f^{(n)}(t) - 0 - Mn!....(5)$

$$g^{(k)}(\alpha) = f^{(k)}(\alpha) - p^{(k)}(\alpha)$$

$$= f^{(k)}(\alpha) - f^{(k)}(\alpha)$$

$$= 0.....(6)$$

(i.e.) $g(\alpha) = g'(\alpha) = \cdots = g^{n-1}(\alpha) = 0$. Since $g(\alpha) = 0$ and $g(\beta) = 0$, there exists $x_1 \in (\alpha, \beta)$, by mean value theorem, such that $g'(x_1)=0$. Now since $g'(\alpha) = 0$; $g'(x_1) = 0$ again by mean value theorem there exists $x_2 \in (\alpha, x_1)$ such that $g''(x_2) = 0$. Proceeding this way we get $\alpha < x_n < x_{n-1}$, such that $g^{(n)}(x_n) = 0$ (i.e.) $f^{(n)}(x_n) - Mn! = 0$ (by (5)). $\therefore M = \frac{f^n(x_n)}{n!}$, sub M in $(1) \Rightarrow f(\beta) = p(\beta) + \frac{f^{(n)}(x_n)}{n!}(\beta - \alpha)^n, \forall x \in (\alpha, x_{n-1})$

UNIT V

RIEMANN INTEGRAL AND POINTWISE CONVERGENCE

The Riemann-Steiltjes integral and Sequences and series of functions

Definition 4.1 Let [a, b] be an interval. By a partition P of [a, b] we mean a finite set of points $x_0, x_1, ..., x_n$, where $a = x_0 \le x_1 \le ..., \le x_{i-1} \le x_i \le ..., \le x_n = b$.

Remark 4.2 1. $\Delta x_i = x_i - x_{i-1} \ \forall i = 1, 2, ..., n.$

2. Let f be a bounded real function on [a, b] then $m_i = \inf f(x), M_i = \sup f(x) \quad \forall x_{i-1} \le x \le x_i.$

3.

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$$
$$U(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$$
$$L(P, f) \le \int_a^b f(x) dx \le U(P, f)$$
$$L(P, f) \le U(P, f).$$

- 4. $\int_{a}^{b} f(x)dx = \sup L(P, f)$
- 5. $\int_{a}^{\overline{b}} f(x)dx = \inf U(P, f)$ (The inf and sup are taken over all partition P of [a, b]).
- 6. If the upper and lower reimann interval over is same then f is said to be Reimann integrable over $[a, b].f \in \mathcal{R}(\mathcal{R} \text{ is the set of all Reimann integrable functions})}$
- 7.

$$\int_{\underline{a}}^{\underline{b}} f(x)dx = \int_{a}^{\overline{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

Result 4.3 For every partition P of [a, b] and every bounded function f there exists 2 real numbers m, M such that $m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)$.

Solution: Let $m = \inf f(x)$ and $M = \sup f(x), a \le x \le b$. Let P =

 $\{x_0, x_1, \dots, x_n\}$ be the given partition of [a, b],

$$m \leq m_i \leq M_i \leq M$$

$$m\Delta x_i \leq m_i\Delta x_i \leq M_i\Delta x_i \leq M\Delta x_i \ (\Delta x_i \geq 0)$$

$$\sum_{i=1}^n m\Delta x_i \leq \sum_{i=1}^n m_i\Delta x_i \leq \sum_{i=1}^n M_i\Delta x_i \leq \sum_{i=1}^n M\Delta x_i$$

$$m(\sum_{i=1}^n \Delta x_i) \leq L(P, f) \leq U(P, f) \leq M \sum_{i=1}^n \Delta x_i \dots \dots (1)$$
Now,
$$\sum_{i=1}^n \Delta x_i = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n$$

$$= (x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1})$$

$$= x_n - x_0$$

$$= b - a \dots \dots (2)$$

sub (2) in (1) we get, $m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$.

Definition 4.4 Let α be a monotonically increasing function on [a, b]. Corresponding to each partition P of [a, b]we define $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$. Clearly, $\Delta \alpha_i \ge 0$

$$L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i$$
$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$$
$$\sup L(P, f, \alpha) = \int_{\underline{a}}^{\underline{b}} f d\alpha$$
$$U(P, f, \alpha) = \int_{a}^{\overline{b}} f d\alpha$$

where infimum and suprimum are taken over all partitions. If

$$\int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha,$$

then f is Reimann Stieljes integrable with respect to,

$$\int_{a}^{b} f d\alpha = \int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha,$$

we also write $f \in \mathcal{R}(\alpha)$.

Note 4.5 By taking $\alpha(x) = x$, we see that the Reimann integral is the special case of Riemann's Stieltjes integral.

Definition 4.6 The partition P^* of [a, b] is called a refinement of P if $P \subset P^*$. Given two partition P_1 and P_2 , we say that $P = P_1 \cup P_2$ is the common refinement of P_1 and P_2 .

Theorem 4.7 If P^* is an refinement of P, then $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.

Proof: Let $P = \{x_0, x_1, ..., x_{i-1}, x_i, ..., x_n\}$ be a partition of [a, b] and let $P^* = \{x_0, x_1, x_2, ..., x_{i-1}, x^*, x_i, ..., x_n\}$ be an refinement of P. Let

$$m_{i} = \inf f(x), \ x_{i-1} \le x \le x_{i}$$
$$w_{1} = \inf f(x), \ x_{i-1} \le x \le x^{*}$$
$$w_{2} = \inf f(x), \ x^{*} \le x \le x_{i}$$

 $\therefore w_1 \ge m_i \text{ and } w_2 \ge m_i. \text{ Now,}$

$$L(P^*, f, \alpha) = m_1 \Delta \alpha_1 + m_2 \Delta \alpha_2 + \dots + m_{i-1} \Delta \alpha_{i-1} + w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) + m_{i+1} \Delta \alpha_{i+1} \dots + m_n \Delta \alpha_n \dots \dots (1) L(P, f, \alpha) = m_1 \Delta \alpha_1 + m_2 \Delta \alpha_2 + \dots + m_{i-1} \Delta \alpha_{i-1} + m_i \Delta \alpha_i + m_{i+1}(\Delta \alpha_{i+1}) + \dots + m_n \Delta \alpha_n \dots \dots (2)$$

(1)- $(2) \Rightarrow$

$$\begin{split} L(P^*, f, \alpha) - L(P, f, \alpha) &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) - m_i \Delta \alpha_i \\ &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- m_i(\alpha(x_i) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- m_i(\alpha(x_i) - \alpha(x^*)) - m_i(\alpha(x^*) - \alpha(x_{i-1})) \\ &= (w_1 - m_i)(\alpha(x^*) - \alpha(x_{i-1})) \\ &+ (w_2 - m_i)(\alpha(x_i) - \alpha(x^*)) \\ &\geq 0(\because w_1 \text{ and } w_2 \geq m_i) \\ L(P^*, f, \alpha) - L(P, f, \alpha) \geq 0 \\ &\Rightarrow L(P, f, \alpha) \leq L(P^*, f, \alpha) \\ &\therefore L(P, f, \alpha) \leq L(P^*, f, \alpha) \end{split}$$

Let $P^* = \{x_0, x_1, ..., x_{i-1}, x^*, x_i, ..., x_n\}$ be refinement of *P*. Let

$$M_i = \sup f(x), x_{i-1} \le x \le x_i$$
$$w_1 = \sup f(x), x_{i-1} \le x \le x^*$$
$$w_2 = \sup f(x), x^* \le x \le x_i$$
$$\therefore w_1 \ge M_i \text{ and } w_2 \ge M_i$$

Now

$$U(P^*, f, \alpha) = M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2 + \dots + M_{i-1} \Delta \alpha_{i-1} + w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) + M_{i+1} \Delta \alpha_{i+1} + \dots + M_n \Delta \alpha_n \dots \dots (1) U(P, f, \alpha) = M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2 + \dots + M_{i-1} \Delta \alpha_{i-1} + M_i \Delta \alpha_i + M_{i+1}(\Delta \alpha_{i+1}) + \dots + M_n \Delta \alpha_n \dots \dots (2)$$

(1)- $(2) \Rightarrow$

$$\begin{split} U(P^*, f, \alpha) - U(P, f, \alpha) &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) \\ &- \alpha(x^*)) - M_i \Delta \alpha_i \\ &= w_1(\alpha(x^*) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- M_i(\alpha(x_i) - \alpha(x_{i-1})) + w_2(\alpha(x_i) - \alpha(x^*)) \\ &- M_i(\alpha(x_i) - \alpha(x^*)) - M_i(\alpha(x^*) - \alpha(x_{i-1})) \\ &= (w_1 - M_i)(\alpha(x^*) - \alpha(x_{i-1})) \\ &+ (w_2 - M_i)(\alpha(x_i - \alpha(x^*))) \\ &\leq 0(\because w_1 \text{ and } w_2 \leq M) \\ (i.e.) \ U(P^*, f, \alpha) - U(P, f, \alpha) \leq 0 \\ &\Rightarrow U(P^*, f, \alpha) \leq U(P, f, \alpha) \\ &\therefore U(P^*, f, \alpha) \leq U(P, f, \alpha) \end{split}$$

If P^* contains k-points more than P, we repeat this reasoning k-times and get the result.

Theorem 4.8

$$\int_{\underline{a}}^{\underline{b}} f d\alpha \le \int_{a}^{\overline{b}} f d\alpha.$$

Proof: Let P_1 and P_2 be two partition of [a, b] and let $P^* = P_1 U P_2$. (i.e.) P^* is a common refinement of P_1 and P_2 . $L(P_1, f, \alpha) \leq L(P^*, f, \alpha) \leq U(P^*, f, \alpha) \leq U(P_2, f, \alpha) \Rightarrow L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$. Keeping P_1 fixed and taking infimum over all partition P_2 , we get

$$L(P, f, \alpha) \leq \int_{a}^{\bar{b}} f d\alpha.$$

Now, by taking suprimum over all partition P_1 we get

$$\int_{\underline{a}}^{b} f d\alpha \le \int_{a}^{b} f d\alpha.$$

Theorem 4.9 Criterion for Riemann Integrability: Let $f \in \mathcal{R}(\alpha)$ iff $\forall \in > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \in$.

Proof: Let $\in > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \in$ Claim: $f \in \mathcal{R}(\alpha)$. We know that

$$\begin{split} U(P,f,\alpha) &\geq \int_{a}^{\bar{b}} f d\alpha....(1) \\ L(P,f,\alpha) &\leq \int_{\underline{a}}^{b} f d\alpha....(2) \\ (2) \times -1 \Rightarrow -L(P,f,\alpha) &\geq -\int_{\underline{a}}^{b} f d\alpha....(3) \\ (1) + (3) \ U(P,f,\alpha) - L(P,f,\alpha) &\geq \int_{a}^{\bar{b}} f d\alpha - \int_{\underline{a}}^{b} f d\alpha \\ (or) \ \int_{a}^{\bar{b}} f d\alpha - \int_{\underline{a}}^{b} f d\alpha &\leq U(P,f,\alpha) - L(P,f,\alpha) \\ &\leq \epsilon \end{split}$$

Since ϵ is arbitrary,

$$\int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha. (i.e.) \ f \in \mathcal{R}(\alpha).$$

Conversely: Assume $f \in \mathcal{R}(\alpha)$. To Prove: let $\epsilon > 0$, there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$ let $\epsilon > 0$ be given

Then there exists two partition P_1 and P_2 such that $U(P_1, f, \alpha) < \int_a^b f d\alpha + \frac{\epsilon}{2}....(4)$ and $\int_a^b f d\alpha - \frac{\epsilon}{2} < L(P_2, f, \alpha).....(5)$ Let $P = P_1 U P_2$ (i.e.) P is the common refinement of P_1 and P_2 Now

$$U(P, f, \alpha) \leq U(P_1, f, \alpha)$$

$$\leq \int_a^b f d\alpha + \frac{\epsilon}{2} \text{ (by (4))}$$

$$< L(P_2, f, \alpha) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \text{ (by (5))}$$

$$= L(P_2, f, \alpha) + \epsilon$$

$$\leq L(P, f, \alpha) + \epsilon$$

$$\therefore U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$

Theorem 4.10 Let P be a partition \in : $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon...(1)$ (a) if (1) holds for some P and ϵ then (1) holds for every refinement of P. (b) if (1) holds for $P = \{x_0, x_1, ..., x_n\}$ and s_i, t_i are arbitrary points in $[x_{i-1}, x_i]$ then

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon$$

(c) if $f \in \mathcal{R}(\alpha)$ and the hypothesis of (b) holds then

$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha\right| < \epsilon.$$

Proof: (a) Let P^* be a refinement of P. We know that

$$U(P^*, f, \alpha) \le U(P, f, \alpha).....(2)$$

$$L(P^*, f, \alpha) \le L(P, f, \alpha) \text{ (by Theorem 1.7)}$$

$$-L(P^*, f, \alpha) \le -L(P, f, \alpha).....(3)$$

(2)+(3) gives

$$U(P^*, f, \alpha) - L(P^*, f, \alpha) \le U(P, f, \alpha) - L(P, f, \alpha)$$

< ϵ (by (1))
(*i.e.*) $U(P^*, f, \alpha) - L(P^*, f, \alpha) < \epsilon$

(b) $s_i, t_i \in [x_{i-1}, x_i]; f(s_i), f(t_i) \in f[x_{i-1}, x_i]; m_i \le f(s_i), f(t_i) \le M_i$

$$\therefore |f(s_i) - f(t_i)| \le M_i - m_i \ (\because M_i - m_i \ge 0)$$

$$\Rightarrow |f(s_i) - f(t_i)| \Delta \alpha_i \le (M_i - m_i) \Delta \alpha_i$$

$$\Rightarrow \sum_{i=1}^n |f(s_i) - f(t_i)| \Delta \alpha_i = \sum_{i=1}^n (M_i - m_i) \Delta \alpha_i$$

$$= \sum_{i=1}^n M_i \Delta \alpha_i - \sum_{i=1}^n m_i \Delta \alpha_i$$

$$= U(P, f, \alpha) - L(P, f, \alpha) \ (by \ (1))$$

$$\therefore \sum_{i=1}^n |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon.$$

(c) We have

$$m_{i} \leq f(t_{i}) \leq M_{i}$$

$$\Rightarrow m_{i} \Delta \alpha_{i} \leq f(t_{i}) \Delta \alpha_{i} \leq M_{i} \Delta \alpha_{i}$$

$$\Rightarrow \sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \leq \sum_{i=1}^{n} f(t_{i}) \Delta \alpha_{i} \leq \sum_{i=1}^{n} M_{i} \Delta \alpha_{i}$$

$$\Rightarrow L(P, f, \alpha) \leq \sum_{i=1}^{n} f(t_{i}) \Delta \alpha_{i} \leq U(P, f, \alpha) \dots (4)$$

$$L(P, f, \alpha) \leq \int_{a}^{b} f d\alpha \leq U(P, f, \alpha) \dots (5)$$

(4) and (5) \Rightarrow

$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha \right| \le U(P, f, \alpha) - L(P, f, \alpha)$$
$$= \epsilon \text{ (by (1))}$$
$$\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha \right| < \epsilon.$$

Theorem 4.11 If f is continuous on [a, b] then $f \in \mathcal{R}(\alpha)$. **Proof:** Let $\epsilon > 0$ be given. Choose $\eta > 0$ such that $[\alpha(b) - \alpha(a)]\eta < \epsilon...(1)$ Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous. Then there exists $\delta > 0$ such that $|x - \epsilon| < \delta \Rightarrow |f(x) - f(\epsilon)| < \eta$ (2) Let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b] such that $\Delta x_i < \delta \therefore (2)$ guarantees that $|M_i - m_i| < \eta$ (i.e.) $M_i - m_i < \eta$(3) Now,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i \Delta \alpha_i$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$< \eta(\sum_{i=1}^{n} \Delta \alpha_i) \text{ (by (3))}$$

$$= \eta[\Delta \alpha_1 + \Delta \alpha_2 + \dots + \Delta \alpha_n]$$

$$= \eta[(\alpha(x_1) - \alpha(x_0)) + (\alpha(x_2) - \alpha(x_1)) + \dots + (\alpha(x_n) - \alpha(x_{n-1}))]$$

$$= \eta(\alpha(x_n) - \alpha(x_0))$$

$$= \eta[\alpha(b) - \alpha(a)]$$

$$< \epsilon$$

: $U(P, f, \alpha) = U(P, f, \alpha) < \epsilon \text{ (by Theorem 177)}$

 $\therefore U(P, f, \alpha) - L(P, f, \alpha) < \epsilon \text{ (by Theorem } \square)$

By Theorem **4.9**, $f \in \mathcal{R}(\alpha)$.

Theorem 4.12 If f is monotonic on [a, b] and if α is continuous in [a, b], then $f \in \mathcal{R}(\alpha)$. **Proof:** Let epsilon > 0 be given. For every positive integer n, we choose a partition P such that $\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}$. This is possible since α is continuous. **Case(i):** f is monotonic increasing. $\therefore M_i = f(x_i); m_i = f(x_{i-1}) \ \forall i = 1$

1, 2, ..., n. Now,

$$\begin{split} U(P,f,\alpha) &- L(P,f,\alpha) \\ &= \sum_{i=1}^{n} M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i \Delta \alpha_i \\ &= \sum_{i=1}^{n} (M_i \Delta \alpha_i - m_i \Delta \alpha_i) \\ &= \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i \\ &= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) (\frac{\alpha(b) - \alpha(a)}{n}) \\ &= \frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} [f(x_i) - f(x_{i-1})] \\ &= \frac{\alpha(b) - \alpha(a)}{n} \{ (f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \dots \\ &+ (f(x_n) - f(x_{n-1})) \} \\ &= \frac{\alpha(b) - \alpha(a)}{n} [f(x_n) - f(x_0)] \\ &= \frac{\alpha(b) - \alpha(a)}{n} (f(b) - f(a)) \\ &< \epsilon \text{ as } n \to \infty. \\ \therefore f \in \mathcal{R}(\alpha). \end{split}$$

Case(ii): f is monotonic decreasing. $\therefore M_i = f(x_i); m_i = f(x_{i-1}) \ \forall i = 1, 2, ..., n.$ Now,

$$U(P,f,\alpha) - L(P,f,\alpha)$$

= $\sum_{i=1}^{n} (M_i \Delta \alpha_i - \sum_{i=1}^{n} m_i) \Delta \alpha_i$
= $\sum_{i=1}^{n} (M_i \Delta \alpha_i - m_i \Delta \alpha_i)$
= $\sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$
= $\sum_{i=1}^{n} (f(x_{i-1}) - f(x_i))(\frac{\alpha(b) - \alpha(a)}{n})$
= $\frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} [f(x_{i-1}) - f(x_i)]$

$$= \frac{\alpha(b) - \alpha(a)}{n} \{ (f(x_0) - f(x_1)) + (f(x_1) - f(x_2)) + \dots + (f(x_{n-1}) - f(x_n)) \}$$

$$= \frac{\alpha(b) - \alpha(a)}{n} [f(x_0) - f(x_n)]$$

$$= \frac{\alpha(b) - \alpha(a)}{n} (f(a) - f(b))$$

$$< \epsilon \text{ as } n \to \infty.$$

$$f \in \mathcal{R}(\alpha).$$

Hence the proof.

· · .

Theorem 4.13 Suppose f is bounded on [a,b], f has only finitely many point of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous, then $f \in \mathcal{R}(\alpha)$.

Proof: Let $\epsilon > 0$ be given. Put $M = \sup|f(x)|$. Let E be the set of points at which f is discontinuous. Since E is finite and α is continuous at every point of E, we can cover E by finitely many disjoint $[u_j, v_j] \subset [a, b]$ such that the sum of the corresponding differences

$$\sum_{j} [\alpha(v_j) - \alpha(u_j)] < \epsilon.$$

Also we place these intervals in such a way that every point of $E \cap (a, b)$ lies in the interval of some $[u_j, v_j]$. Remove the segments (u_j, v_j) from [a, b]. The remaining set K is compact. hence f is uniformly continuous on K. \therefore there exists $\delta > 0$ such that $|s - t| < \delta \Rightarrow |f(s) - f(t)| < \epsilon \quad \forall s, t \in K$. We form a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] as follows. Each u_j occurs in P, each v_j occurs in P. No point of any segment (u_j, v_j) occurs in P. If x_{i-1} is not one of the u_j 's then $\Delta x_i < \delta$. we observe that $M_i - m_i \leq 2\mu$, $\forall i$ and $M_i - m_i \leq \epsilon$ unless x_{i-1} is one of the u_j 's. $\therefore U(P, f, \alpha) - L(P, f, \alpha) \leq [\alpha(b) - \alpha(a)]\epsilon + 2M\epsilon$. (By Theorem **111**) Since ϵ is arbitrary, Theorem **113** guarantees that $f \in \mathcal{R}(\alpha)$.

Theorem 4.14 Suppose $f \in \mathcal{R}(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b], then $h \in \mathcal{R}(\alpha)$ on [a, b].

Proof: Let $\epsilon > 0$ be given. Since $\phi : [m, M] \to R$ is continuous and [m, M] is compact, ϕ is uniformly continuous. \therefore There exists $\delta > 0$ such that $\delta < \epsilon, |s - t| < \delta \Rightarrow |\phi(s) - \phi(t)| < \epsilon$ for $s, t \in [m, M]$ (1)

Since $f \in \mathcal{R}(\alpha)$, there exists a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] such that $U(P, f, \alpha) - L(P, f, \alpha) < \delta^2$ (2)

To Prove: $h \in \mathcal{R}(\alpha)$. Let $M_i^* = \sup h(x), x_{i-1} \le x \le x_i$ and $m_i^* = \inf h(x), x_{i-1} \le x \le x_i$. Let $A = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le i \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; $B = \{i | 1 \le n, M_i - m_i < \delta\}$; B

 $\{i|1 \le i \le n, M_i - m_i \ge \delta\}$

$$\begin{aligned} \text{for } i \in A, |M_i - m_i| < \delta \Rightarrow |\phi(M_i) - \phi(m_i)| < \epsilon \text{ (by (1))} \\ \Rightarrow |M_i^* - m_i^*| < \epsilon.....(3) \\ \end{aligned}$$
$$\begin{aligned} \text{For } i \in B, |M_i^* - m_i^*| &\leq |M_i^*| + |m_i^*| \\ &\leq k + k \text{ where } k = \sup|\phi(t)|, t \in [m, M] \\ |M_i^* - m_i^*| &\leq 2k....(4) \\ \end{aligned}$$
$$\begin{aligned} \text{Also } \delta \sum_{i \in B} \Delta \alpha_i &\leq \sum_{i \in B} (M_i - m_i) \Delta \alpha_i \\ &\leq \sum_{i=1}^n (M_i - m_i) \Delta \alpha_i \\ &= \sum_{i=1}^n M_i \Delta \alpha_i - \sum_{i=1}^n m_i \Delta \alpha_i \\ &= U(P, f, \alpha) - L(P, f, \alpha) \\ &< \delta^2 \text{ (by (2))} \end{aligned}$$
$$(i.e.) \delta \sum_{i \in B} \Delta \alpha_i < \delta^2 \\ &\Rightarrow \sum_{i \in B} \Delta \alpha_i < \delta.....(5) \end{aligned}$$

$$\begin{aligned} \operatorname{Now} U(P,h,\alpha) - L(P,h,\alpha) &= \sum_{i=1}^{n} M_{i}^{*} \Delta \alpha_{i} - \sum_{i=1}^{n} m_{i}^{*} \Delta \alpha_{i} \\ &= \sum_{i=1}^{n} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} \\ &= \sum_{i \in A} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} + \sum_{i \in B} (M_{i}^{*} - m_{i}^{*}) \Delta \alpha_{i} \\ &< \epsilon \sum_{i \in A} \Delta \alpha_{i} + 2k \sum_{i \in B} \Delta \alpha_{i} \text{ (by (3) and (4))} \\ &< \epsilon \sum_{i=1}^{n} \Delta \alpha_{i} + 2k \sum_{i \in B} \Delta \alpha_{i} \\ &< \epsilon [\alpha(b) - \alpha(a)] + 2k\delta \\ &< \epsilon [\alpha(b) - \alpha(a)] + 2k\epsilon \ (\because \delta < \epsilon) \\ &= \epsilon [\alpha(b) - \alpha(a) + 2k] \end{aligned}$$

(i.e.) $U(P, h, \alpha) - L(P, h, \alpha) < \epsilon[\alpha(b) - \alpha(a) + 2k]$ since ϵ is arbitrary, Theorem $\square \mathfrak{G}$, implies that $h \in \mathcal{R}(\alpha)$.

Lemma 4.15 If $f \in \mathcal{R}(\alpha)$ and $f \ge 0$ on [a, b] then $\int_a^b f d\alpha \ge 0$.

Proof: Since $f \ge 0$, $M_i \ge 0 \forall_i$.

$$\therefore \sum_{i=1}^{n} M_i \Delta \alpha_i \ge 0$$

$$\Rightarrow U(P, h, \alpha) \ge 0$$

$$\Rightarrow \inf U(P, h, \alpha) \ge 0$$

$$\Rightarrow \int_a^b f d\alpha \ge 0.$$

Properties of Integral

Theorem 4.16 (a) If $f_1, f_2 \in \mathcal{R}(\alpha)$ on [a, b] then $f_1 + f_2 \in \mathcal{R}(\alpha), cf_1 \in \mathcal{R}(\alpha)$ for every constant c and $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha, \int_a^b cf_1 d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$ $c \int_a^b f_1 d\alpha.$

(b) If $f_1(x) \leq f_2(x)$ on [a, b] then $\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha$. (c) If $f \in \mathcal{R}(\alpha)$ on [a, b] and a < c < b, then $f \in \mathcal{R}(\alpha)$ on [a, c] and on [a, b] and $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$

(d) If $f \in \mathcal{R}(\alpha)$ on [a, b] and if $|f(x)| \le M$ then $|\int_a^b f d\alpha| \le [\alpha(b) - \alpha(a)].$ (e) If $f \in R(\alpha_1)$ and $f \in R(\alpha_2)$ then $f \in R(\alpha_1 + \alpha_2)$ and $\int_a^b f d(\alpha_1 + \alpha_2) =$ $\int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}. \quad If \ f \in \mathcal{R}(\alpha) \ and \ c \ is \ positive \ constant \ then \ f \in \mathcal{R}(\alpha)$ and $\int_{a}^{b} f d\alpha = c \int_{a}^{b} f d\alpha.$

Proof: (a) Let $\epsilon > 0$ be given. Since $f_1 \in \mathcal{R}(\alpha)$ and $f_2 \in [a, b]$, there exists two partitions P_1 and P_2 of [a, b] such that $U(P_1, f_1, \alpha) - L(P_1, f_1, \alpha) < \epsilon$ (1) and $U(P_2, f_2, \alpha) - L(P_2, f_2, \alpha) < \epsilon$(2) Let $P = P_1 \cup P_2$ be the common refinement of [a, b]

Let
$$P = P_1 \cup P_2$$
 be the common refinement of $[a, b]$.
 $U(P = f \circ a) \leq U(P = f \circ a)$

$$\begin{aligned} L(P_{1}, f_{1}, \alpha) &\leq U(P_{1}, f_{1}, \alpha) \\ L(P_{1}, f_{1}, \alpha) &\leq L(P_{1}, f_{1}, \alpha) \\ \Rightarrow U(P, f_{1}, \alpha) + L(P_{1}, f_{1}, \alpha) &\leq U(P_{1}, f_{1}, \alpha) + L(P, f_{1}, \alpha) \\ \Rightarrow U(P, f_{1}, \alpha) - L(P_{1}, f_{1}, \alpha) &\leq U(P_{1}, f_{1}, \alpha) - L(P_{1}, f_{1}, \alpha) \\ U(P, f_{1}, \alpha) - L(P, f_{1}, \alpha) &< \epsilon \text{ (by (1))......(3)} \end{aligned}$$

Similarly $U(P, f_{2}, \alpha) - L(P, f_{2}, \alpha) < \epsilon \text{ (by (2))......(4)}$

 $(3)+(4) \Rightarrow$

$$U(P, f_{1}, \alpha) + U(P, f_{2}, \alpha) - (L(P, f_{1}, \alpha)) + L(P, f_{2}, \alpha)$$

$$< 2\epsilon.....(5)$$
Now $L(P, f_{1}, \alpha) + L(P, f_{2}, \alpha) \leq L(P, f_{1} + f_{2}, \alpha)$

$$\leq U(P, f_{1} + f_{2}, \alpha)$$

$$\leq U(P, f_{1}, \alpha) + U(P, f_{2}, \alpha).....(6)$$

 $(5),(6) \Rightarrow U(P, f_1 + f_2, \alpha) - L(P, f_1 + f_2, \alpha) < 2\epsilon. \therefore f_1 + f_2 \in \mathcal{R}(\alpha) \text{ on } [a, b].$ To prove:

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$

Since $f_1, f_2 \in \mathcal{R}(\alpha)$, there exists partition P_1 and P_2 of [a, b]

$$U(P_1, f_1, \alpha) < \int_a^b f_1 d\alpha + \epsilon \text{ (by Theorem III)}.....(1*)$$
$$U(P_2, f_2, \alpha) < \int_a^b f_2 d\alpha + \epsilon....(2*)$$

 $(1)+(2) \Rightarrow$

$$U(P_1, f_1, \alpha) + U(P_2, f_2, \alpha) < \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon.....(3*)$$

Let $P = P_1 \cup P_2$

$$U(P, f_1, \alpha) \le U(P_1, f_1, \alpha).....(4*)$$

$$U(P, f_2, \alpha) \le U(P_2, f_2, \alpha).....(5*)$$

 $(4^*) + (5^*) \Rightarrow$

$$U(P, f_1, \alpha) + U(P, f_2, \alpha) \le U(P_1, f_1, \alpha) + \le U(P_2, f_2, \alpha)$$

$$< \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon.....(6*) \text{ (by (3*))}$$

$$U(P, f_1 + f_2, \alpha) \le U(P, f_1, \alpha) + U(P, f_2, \alpha)$$

$$< \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha + 2\epsilon \text{ (by (6*))}$$

Taking infimum over all partition P,

$$\int_{a}^{b} (f_1 + f_2) d\alpha < \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha + 2\epsilon$$

Since ϵ is arbitrary,

$$\int_{a}^{b} (f_1 + f_2) d\alpha \le \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha \dots (7*)$$

Replacing f_1 and f_2 in (7^{*}) by $-f_1$ and $-f_2$ respectively we get,

$$\int_{a}^{b} (-f_1 - f_2) d\alpha \leq \int_{a}^{b} (-f_1) d\alpha + \int_{a}^{b} (-f_2) d\alpha$$
$$\Rightarrow \int_{a}^{b} (f_1 + f_2) d\alpha \geq \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha \dots (8*)$$

From (7^*) and (8^*) we get,

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$

To Prove: $cf_1 \in \mathcal{R}(\alpha)$ where c is a constant. For any partition P, of [a, b]

$$U(P, cf_1, \alpha) = \begin{cases} cU(P, f_1, \alpha) & c \ge 0\\ cL(P, f_1, \alpha) & c \le 0 \end{cases}$$

and

$$L(P, cf_1, \alpha) = \begin{cases} cL(P, f_1, \alpha) & c \ge 0\\ cU(P, f_1, \alpha) & c \le 0 \end{cases}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) = \begin{cases} c(U(P, f_1, \alpha) - L(P, f_1, \alpha)) & c \ge 0\\ -c(U(P, f_1, \alpha) - L(P, f_1, \alpha)) & c \le 0 \end{cases}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) = |c|(U(P, f_1, \alpha) - L(P, f_1, \alpha)).....(1A)$$

Since $f_1 \in \mathcal{R}(\alpha)$ there exists a partition P of [a, b] such that

$$U(P, f_1, \alpha) - L(P, cf_1, \alpha) < \frac{\epsilon}{|c|} \dots \dots (2A)$$

Sub (2A) in (1A), we get

$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) < |c| \frac{\epsilon}{|c|}$$
$$U(P, cf_1, \alpha) - L(P, cf_1, \alpha) < \epsilon$$
$$\therefore cf_1 \in \mathcal{R}(\alpha).$$

To Prove:

$$\begin{split} \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} cf_{1}d\alpha \\ \text{If } c \geq 0, \text{ then } U(P,cf_{1},\alpha) &= cU(P,f_{1},\alpha) \\ \Rightarrow \inf U(P,cf_{1},\alpha) &= \inf(cU(P,f_{1},\alpha)) \\ \Rightarrow \inf U(P,cf_{1},\alpha) &= c\inf U(P,cf_{1},\alpha) \\ \Rightarrow \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} cf_{1}d\alpha \\ \text{If } c \leq 0, \text{ then } L(P,cf_{1},\alpha) &= cU(P,f_{1},\alpha) \\ &= -|c|U(P,f_{1},\alpha) (\because c \leq 0) \\ \Rightarrow \sup L(P,cf_{1},\alpha) &= \sup(-|c|U(P,f_{1},\alpha)) \\ &= |c|\sup(-U(P,f_{1},\alpha)) \\ &= -|c|\inf(U(P,f_{1},\alpha)) \\ &= -|c|\inf(U(P,f_{1},\alpha)) \\ \Rightarrow \int_{a}^{b} cf_{1}d\alpha &= -|c| \int_{a}^{b} f_{1}d\alpha \\ &= c \int_{a}^{b} f_{1}d\alpha \\ \text{When } c = 0, \int_{a}^{b} cf_{1}d\alpha &= \int_{a}^{b} f_{1}d\alpha (= 0) \end{split}$$

To Prove:

$$f_1 \le f_2 \Rightarrow \int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$$

Proof of b: Given
$$f_1 \leq f_2 \Rightarrow f_2 - f_1 \geq 0$$

$$\Rightarrow \int_{a} (f_{2} - f_{1})d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{2} + \int_{a}^{b} (-f_{1})d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{2}d\alpha + \int_{a}^{b} (-f_{1})d\alpha \ge 0 \text{ (by (a))}$$

$$\Rightarrow \int_{a}^{b} f_{2}d\alpha - \int_{a}^{b} f_{1}d\alpha \ge 0$$

$$\Rightarrow \int_{a}^{b} f_{1}d\alpha \le \int_{a}^{b} f_{2}d\alpha$$

Proof of (c): Given $f \in \mathcal{R}(\alpha)$ on [a, b] and a < c < b for $\epsilon < 0$, there exists a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon....(1B)$$

Let $P^* = P \cup \{c\}$. Now P^* is a refinement of P and induces two partitions P_1 and P_2 of [a, c] and [c, b] respectively. Now,

$$\begin{split} U(P,f,\alpha) &\geq U(P^*,f,\alpha) \\ &= U(P_1,f,\alpha) + U(P_2,f,\alpha).....(2B) \\ &\Rightarrow U(P_1,f,\alpha) \leq U(P,f,\alpha)......(3B) \\ &\text{and } U(P_2,f,\alpha) \leq U(P,f,\alpha)......(4B) \\ &L(P,f,\alpha) \leq L(P^*,f,\alpha) \\ &= L(P_1,f,\alpha) + L(P_2,f,\alpha)......(5B) \\ &-L(P,f,\alpha) \geq -L(P_1,f,\alpha) - L(P_2,f,\alpha) \\ &-L(P_1,f,\alpha) \leq -L(P,f,\alpha)......(6B) \\ &\text{and } -L(P_2,f,\alpha) \leq -L(P,f,\alpha)......(7B) \\ (3B) + (6B) \Rightarrow U(P_1,f,\alpha) - L(P_1,f,\alpha) \leq U(P,f,\alpha) - L(P,f,\alpha) \text{ (by (1B))} \\ &< \epsilon \\ &\therefore f \in \mathcal{R}(\alpha) \text{ on } [a,c]. \\ (4B) + (7B) \Rightarrow U(P_2,f,\alpha) - L(P_2,f,\alpha) \leq U(P,f,\alpha) - L(P,f,\alpha) \text{ (by (1B))} \\ &< \epsilon \\ &\therefore f \in \mathcal{R}(\alpha) \text{ on } [c,b]. \end{split}$$

To Prove:

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

$$(2B) \Rightarrow U(P, f, \alpha) \ge U(P_1, f, \alpha) + U(P_2, f, \alpha)$$
$$\ge \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\Rightarrow \inf U(P, f, \alpha) \ge \int_a^c f d\alpha + \int_c^b f d\alpha \dots (8B)$$
$$(5B) \Rightarrow L(P, f, \alpha) \le L(P_1, f, \alpha) + L(P_2, f, \alpha)$$
$$\le \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\Rightarrow \sup U(P, f, \alpha) \le \int_a^c f d\alpha + \int_c^b f d\alpha$$
$$\int_a^b f d\alpha \le \int_a^c f d\alpha + \int_c^b f d\alpha \dots (9B)$$

 \therefore (8B) and (9B), we get

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

Proof of (d): Given $f \in \mathcal{R}(\alpha)$ and $|f(x)| \leq M$ To Prove: $|\int_a^b f d\alpha| \leq [\alpha(b) - \alpha(a)]$ we have, for any partition P of [a, b],

$$\begin{aligned} \int_{a}^{b} f d\alpha &\leq U(P, f, \alpha) \\ \left| \int_{a}^{b} f d\alpha \right| &\leq |U(P, f, \alpha)| \\ &= \left| \sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \right| \\ &< \sum_{i=1}^{n} |M_{i} \Delta \alpha_{i}| \\ &= \sum_{i=1}^{n} |M_{i}| \Delta \alpha_{i} \ (\because \Delta \alpha_{i} \geq 0) \\ &\leq \sum_{i=1}^{n} M \Delta \alpha_{i} \ (\because |f(x)| \leq M) \\ &= M \sum_{i=1}^{n} \Delta \alpha_{i} \\ \left| \int_{a}^{b} f d\alpha \right| &\leq M[\alpha(b) - \alpha(a)] \end{aligned}$$

Proof of (e): Given $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$. To Prove: $f \in \mathcal{R}(\alpha_1 + \alpha_2)$.

Let $\alpha = \alpha_1 + \alpha_2$. For any partition p of [a, b],

$$\begin{split} U(P, f, \alpha) &= \sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \\ &= \sum_{i=1}^{n} M_{i} (\alpha(x_{i}) - \alpha(x_{i-1})) \\ &= \sum_{i=1}^{n} M_{i} [(\alpha_{1} + \alpha_{2})(x_{i}) - (\alpha_{1} + \alpha_{2})(x_{i-1})] \\ &= \sum_{i=1}^{n} M_{i} [\alpha_{1}(x_{i}) + \alpha_{2}(x_{i})] - [\alpha_{1}(x_{i-1}) + \alpha_{2}(x_{i-1})] \\ &= \sum_{i=1}^{n} M_{i} [\alpha_{1}(x_{i}) - \alpha_{1}(x_{i-1})] + \sum_{i=1}^{n} M_{i} [\alpha_{2}(x_{i}) - \alpha_{2}(x_{i-1})] \\ U(P, f, \alpha) &= U(P, f, \alpha_{1}) + U(P, f, \alpha_{2}) \dots (1C) \\ \text{Similarly } L(P, f, \alpha) &= L(P, f, \alpha_{1}) + L(P, f, \alpha_{2}) \dots (2C) \end{split}$$

since $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$, there exists partitions P_1 and P_2 of [a, b] such that

$$U(P_1, f, \alpha_1) - L(P_1, f, \alpha_1) < \epsilon$$

and $U(P_2, f, \alpha_2) - L(P_2, f, \alpha_2) < \epsilon$

Let P^* be the common refinement of P_1 and P_2 of [a, b]. $P^* = P_1 \cup P_2$

$$U(P^*, f, \alpha_1) - L(P^*, f, \alpha_1) < \epsilon.....(3C)$$

$$U(P^*, f, \alpha_2) - L(P^*, f, \alpha_2) < \epsilon....(4C) \text{ (by Theorem 1.10)}$$

Now,

$$\begin{split} U(P^*, f, \alpha) - L(P^*, f, \alpha) &= U(P^*, f, \alpha_1) + U(P^*, f, \alpha_2) \\ &\quad - \left[L(P^*, f, \alpha_1) + L(P^*, f, \alpha_2) \right] \text{ (by (1C) and (2C))} \\ &= \left[U(P^*, f, \alpha_1) - L(P^*, f, \alpha_1) \right] \\ &\quad + \left[U(P^*, f, \alpha_2) - L(P^*, f, \alpha_2) \right] \\ &\quad < \epsilon + \epsilon \text{ (by (3C) and (4C))} \\ U(P^*, f, \alpha) - L(P^*, f, \alpha) < 2\epsilon. \end{split}$$

Since ϵ arbitrary, we get $f \in \mathcal{R}(\alpha)$ (i.e.) $f \in \mathcal{R}(\alpha_1 + \alpha_2)$. To Prove:

$$\int_{a}^{b} d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$$

$$\begin{split} (1C) \Rightarrow U(P, f, \alpha) &= U(P, f, \alpha_1) + U(P, f, \alpha_2) \\ &\geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ \Rightarrow \inf U(P, f, \alpha) &\geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ &\int_a^b f d\alpha \geq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \dots \dots (5C) \\ (2C) \Rightarrow L(P, f, \alpha) &= L(P, f, \alpha_1) + L(P, f, \alpha_2) \\ &\leq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \\ &\sup U(P, f, \alpha) \leq \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2 \dots \dots (6C) \end{split}$$

from (5C) and (6C) we get,

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$$

(*i.e.*)
$$\int_{a}^{b} d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}.$$

To Prove: Given $f \in \mathcal{R}(\alpha)$ and c > 0To Prove: $f \in \mathcal{R}(\alpha)$, for any partition P,

$$\begin{split} U(P,f,c\alpha) &= \sum_{i=1}^{n} M_{i}\Delta(c\alpha_{i}) \\ &= \sum_{i=1}^{n} M_{i}(c\alpha(x_{i}) - c\alpha(x_{i-1})) \\ &= \sum_{i=1}^{n} M_{i}c[\alpha(x_{i}) - \alpha(x_{i-1})] \\ &= \sum_{i=1}^{n} cM_{i}\Delta\alpha_{i} \\ &= cU(P,f,\alpha).....(7C) \\ \text{Similarly } L(P,f,c\alpha) &= cL(P,f,\alpha) \\ U(P,f,c\alpha) - L(P,f,c\alpha) &= cU(P,f,\alpha) - cL(P,f,\alpha) \\ &= c[U(P,f,\alpha) - L(P,f,\alpha)].....(8C) \end{split}$$

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon > 0$, there exists partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \frac{\epsilon}{c} \dots \dots (9C)$$

sub (9C) in (8C) we get

$$U(P, f, c\alpha) - L(P, f, c\alpha) < c \cdot \frac{\epsilon}{c} = \epsilon$$

 $\therefore f \in \mathcal{R}(c\alpha)$. To Prove:

$$\int_{a}^{b} fd(c\alpha) = c \int_{a}^{b} fd\alpha$$

$$(7C) \Rightarrow U(P, f, c\alpha) = cU(P, f, \alpha)$$

$$\Rightarrow \inf U(P, f, c\alpha) = \inf cU(P, f, \alpha)$$

$$= c \inf U(P, f, \alpha)$$

$$\Rightarrow \int_{a}^{b} fd(c\alpha) = c \int_{a}^{b} fd\alpha$$

Theorem 4.17 If $f, g \in \mathcal{R}(\alpha)$ on [a, b], then (a) $f \cdot g \in \mathcal{R}(\alpha)$ (b) $|f| \in \mathcal{R}(\alpha)$ and

$$\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha.$$

Proof: (a) Let $\phi(t) = t^2$, clearly ϕ is continuous

$$h(x) = \phi(f(x)) \text{ (by Theorem 112)}$$
$$= f(x)^{2}$$
$$= f^{2}(x)$$
$$\therefore f^{2} \in \mathcal{R}(\alpha) \dots \dots (1) \ (\because f \in \mathcal{R}(\alpha))$$
Now, $f, g \in \mathcal{R}(\alpha)$
$$\Rightarrow f + g, f - g \in \mathcal{R}(\alpha) \text{ (by Theorem 116)}$$
$$\Rightarrow (f + g)^{2}, (f - g)^{2} \in \mathcal{R}(\alpha)$$
$$\Rightarrow (f + g)^{2} - (f - g)^{2} \in \mathcal{R}(\alpha)$$
$$\Rightarrow 4fg \in \mathcal{R}(\alpha)$$
$$\Rightarrow fg \in \mathcal{R}(\alpha) \text{ (by Theorem 116)}$$

(b) $|f| \in \mathcal{R}(\alpha)$ and $|\int_a^b f d\alpha| \leq \int_a^b |f| d\alpha$. To Prove: $|f| \in \mathcal{R}(\alpha)$. Let $\phi(t) = |t|$; $h(x) = \phi(f(x)) = |f(x)|$. \therefore By Theorem 1.1, $|f| \in \mathcal{R}(\alpha)$ To prove:

$$\left|\int_{a}^{b} f d\alpha\right| \leq \int_{a}^{b} |f| d\alpha.$$

Choose $c = \pm 1$ so that $c \int_a^b f d\alpha \ge 0$

$$\begin{aligned} \therefore |\int_{a}^{b} f d\alpha| &= c \int_{a}^{b} f d\alpha \\ &= \int_{a}^{b} c f d\alpha \text{ (by Theorem 116(a))} \\ &\leq \int_{a}^{b} |f| d\alpha \text{ ($\because cf \leq |f|$) by Theorem 116(b)} \end{aligned}$$

Hence the proof.

Definition 4.18 Unit Step Function:

$$I(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > o \end{cases}$$

Theorem 4.19 If a < s < b, f is bounded on [a, b], f is continuous at s and $\alpha(x) = I(x - s)$, then

$$\int_{a}^{b} f d\alpha = f(s).$$

Proof: Consider partitions $P = \{x_0, x_1, x_2, x_b\}$ of [a, b] where $x_0x_1 = s, s < x_2 < b, x_2 = b$. Now,

$$\begin{split} U(P,f,\alpha) &= \sum_{i=1}^{3} M_i \Delta \alpha_i \\ &= M_i \Delta \alpha_1 + M_2 \Delta \alpha_2 + M_3 \Delta \alpha_3 \\ &= M_1 [\alpha(x_1) - \alpha(x_0)] + M_2 [\alpha(x_2) - \alpha(x_1)] + M_3 [\alpha(x_3) - \alpha(x_2)] \\ &= M_1 [I(x_1 - s) - I(x_0 - s)] + M_2 [I(x_2 - s) - I(x_1 - s)] \\ &+ M_3 [I(x_3 - s) - I(x_2 - s)] \\ &= M_1 [I(s - s) - I(a - s)] + M_2 [I(x_2 - s) - I(s - s)] \\ &+ M_3 [I(b - s) - I(x_2 - s)] \\ &= M_1 [I(0) - I(a - s)] + M_2 [I(x_2 - s) - I(0)] \\ &+ M_3 [I(b - s) - I(x_2 - s)] \\ &= M_1 [0 - 0] + M_2 [1 - 0] + M_3 [1 - 1] \text{ (by definition of } i) \\ &= M_2 \end{split}$$

In a similar fashion we can get $L(P, f, \alpha) = m_2$.

$$\int_{a}^{b} f d\alpha = \inf U(P, f, \alpha) = \sup L(P, f, \alpha)$$
$$= \inf M_{2} = \sup m_{2}$$
$$= f(s) \ (\because x_{2} \to s, f(x_{2}) \to f(x) \text{ as } f \text{ is continuous at } s)$$

Theorem 4.20 Suppose $c_n \ge 0$ for $1, 2, 3..., \sum c_n$ converges, $\{s_n\}$ is a sequence of distinct point in (a, b) and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$. Let f be continuous on [a, b], then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n).$$

Proof: We have $|I(x - s_n)| \le 1$. $\therefore |c_n I(x - s_n)| \le c_n$. Since

$$\sum_{n=1}^{\infty} c_n$$

is convergent, by comparison test,

$$\sum_{n=1}^{\infty} c_n I(x - s_n)$$

also converges. Now,

$$\alpha(a) = \sum_{n=1}^{\infty} c_n I(a - s_n)$$

= 0.....(1) (:: $I(a - s_n) = 0$)
and $\alpha(b) = \sum_{n=1}^{\infty} c_n I(b - s_n)$
= $\sum_{n=1}^{\infty} c_n(2)$ (:: $I(b - s_n) = 0$)

Claim: α is monotonically increasing. Let x < y and let $x < s_k < y$

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$$
$$= c_1 + c_2 + \dots + c_{k-1}$$
$$\alpha(y) = \sum_{n=1}^{\infty} c_n I(y - s_n)$$
$$= c_1 + c_2 + \dots + c_{k-1} + c_k$$
$$\therefore \alpha(x) \le \alpha(y)$$

Hence the claim. Since

$$\sum_{n=1}^{\infty} c_n$$

is convergent, given $\epsilon > 0$, there exists N > such that

$$\sum_{n=N+1}^{\infty} c_n < \epsilon.....(3)$$

Let

$$\alpha_1(x) = \sum_{n=1}^N c_n I(x - s_n)$$

$$\alpha_2(x) = \sum_{n=N+1}^\infty c_n I(x - s_n)$$

Clearly $\alpha(x) = \alpha_1(x) + \alpha_2(x)$. Let $\alpha_{1i} = I(x - s_i), i = 1, 2, ..., N$.

$$\therefore \alpha_1(x) = \sum_{n=1}^N c_n \alpha_{1n}(x) = (c_1 \alpha_{11} + c_2 \alpha_{12} + \dots + c_N \alpha_{1N}) x (or) \alpha_1 = c_1 \alpha_{11} + c_2 \alpha_{12} + \dots + c_N \alpha_{1N}$$

Now,

$$\int_{a}^{b} f d\alpha_{1} = \int_{a}^{b} f d(c_{1}\alpha_{11} + c_{2}\alpha_{12} + \dots + c_{N}\alpha_{1N})$$

= $c_{1} \int_{a}^{b} f d\alpha_{11} + c_{2} \int_{a}^{b} f d\alpha_{12} + \dots + c_{N} \int_{a}^{b} f d\alpha_{1N}$ (by Theorem 116(e))
= $c_{1}f(s_{1}) + c_{2}f(s_{2}) + \dots + c_{N}f(s_{N})$ (by Theorem 119)
= $\sum_{n=1}^{N} c_{n}f(s_{n})......(4)$

Now,

$$\alpha_2(a) = \sum_{n=N+1}^{\infty} c_n I(a - s_n)$$
$$= 0.....(5)$$
$$\alpha_2(b) = \sum_{n=N+1}^{\infty} c_n I(b - s_n)$$
$$= \sum_{n=N+1}^{\infty} c_n$$
$$< \epsilon \text{ (by (3)).....(6)}$$

Let $M = |f(x)|, x \in [a, b]$. By Theorem 416(d),

$$\left| \int_{a}^{b} f d\alpha_{2} \right| \leq [\alpha_{2}(b) - \alpha_{2}(a)]$$
$$\leq M\epsilon \text{ (by (5)and(6))},$$
$$(i.e.) \left| \int_{a}^{b} f d\alpha_{2} \right| \leq M\epsilon$$
$$\Rightarrow \left| \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2} - \int_{a}^{b} f d\alpha_{1} \right| \leq M\epsilon$$

$$\Rightarrow \left| \int_{a}^{b} f d(\alpha_{1} + \alpha_{2}) - \int_{a}^{b} f d\alpha_{1} \right| \leq M\epsilon \text{ (by theorem find(d))}$$
$$\Rightarrow \left| \int_{a}^{b} f d\alpha - \sum_{n=1}^{N} c_{n} f(s_{n}) \right| \leq M\epsilon \text{ (by (4))}$$

Taking limits as $N \to \infty$,

$$\left| \int_{a}^{b} f d\alpha - \sum_{n=1}^{\infty} c_{n} f(s_{n}) \right| \leq M\epsilon$$
$$\therefore \left| \int_{a}^{b} f d\alpha \epsilon \right| = \sum_{n=1}^{\infty} c_{n} f(s_{n})$$

Theorem 4.21 Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b], Let f be a bounded real function on [a, b], then $f \in \mathcal{R}(\alpha)$ iff $f\alpha' \in \mathcal{R}$. In that case $\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx$. **Proof:** Let $\epsilon > 0$ be given. Since $\alpha' \in R$, there exists a partition P = $\{x_1, x_2, ..., x_n\}$ of [a, b] such that $U(P, \alpha') - L(P, \alpha') < \epsilon$ (1) By mean value theorem , there exists $t :\in [x_{i-1}, x_i]$ such that $\alpha(x_i) - \alpha(x_{i-1}) = \alpha'(t_i)(x_i - x_{i-1})$ (i.e.) $\Delta \alpha_i = \alpha'(t_i)\Delta x_i$ (2) By Theorem $\square\square(b), \forall s_i, t_i \in [x_{i-1}, x_i]$

$$\sum_{i=1}^{n} |\alpha'(s_i) - \alpha'(t_i)| \Delta x_i < \epsilon.....(3)$$

Now,

$$\begin{aligned} \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &= \left| \sum_{i=1}^{n} f(s_{i}) \alpha'(t_{i}) \Delta x_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &= \left| \sum_{i=1}^{n} f(s_{i}) [\alpha'(t_{i}) - \alpha'(s_{i})] \Delta x_{i} \right| \\ \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \\ &\leq \sum_{i=1}^{n} |f(s_{i})| |\alpha'(t_{i}) - \alpha'(s_{i})| \Delta x_{i} \quad \text{where } M = \sup |f(x)| \\ &= M \sum_{i=1}^{n} |\alpha'(t_{i}) - \alpha'(s_{i})| \Delta x_{i} \\ &\leq M \epsilon \text{ (by (3))} \end{aligned}$$
$$(i.e.) \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(s_{i}) \alpha'(s_{i}) \Delta x_{i} \right| \leq M \epsilon \\ \left| \sum_{i=1}^{n} f(s_{i}) \Delta \alpha_{i} - \sum_{i=1}^{n} f(\alpha')(s_{i}) \Delta x_{i} \right| \leq M \epsilon \dots (4) \end{aligned}$$

Since inequality (4) is true for any s_i in $[x_{i-1}, x_i]$, we can replace $(f\alpha')(s_i)$ by M'_i and m'_i , where $m'_i = \inf(f\alpha')s_i$, $M'_i = \sup(f\alpha')(s_i)$, $s_i \in [x_{i-1}, x_i]$

$$\left|\sum_{i=1}^{n} f(s_i) \Delta \alpha_i - \sum_{i=1}^{n} M'_i \Delta x_i\right| \le M \epsilon.....(5)$$

and
$$\left|\sum_{i=1}^{n} f(s_i) \Delta \alpha_i - \sum_{i=1}^{n} m'_i \Delta x_i\right| \le M \epsilon.....(6)$$

Again by replacing $f(s_i)$ by M_i in (5) and by m_i in (6) we get

$$\left| \sum_{i=1}^{n} M'_{i} \Delta \alpha_{i} - \sum_{i=1}^{n} M'_{i} \Delta x_{i} \right| \leq M\epsilon \text{ and}$$
$$\left| \sum_{i=1}^{n} m'_{i} \Delta \alpha_{i} - \sum_{i=1}^{n} m'_{i} \Delta x_{i} \right| \leq M\epsilon$$
$$\Rightarrow |U(P, f, \alpha) - U(P, f, \alpha')| \leq M\epsilon.....(7) \text{ and}$$
$$|L(P, f, \alpha) - L(P, f, \alpha')| \leq M\epsilon.....(8)$$

Since ϵ is arbitrary, (7) and (8)

$$\Rightarrow U(P, f, \alpha) = U(P, f, \alpha') \text{ and}$$

$$L(P, f, \alpha) = L(P, f, \alpha')$$

$$\Rightarrow \inf U(P, f, \alpha) = \inf U(P, f, \alpha') \text{ and}$$

$$\sup L(P, f, \alpha) = \sup L(P, f, \alpha')$$

$$\Rightarrow \int_{a}^{\bar{b}} f d\alpha = \int_{a}^{\bar{b}} (f \alpha') d\alpha \dots (9) \text{ and}$$

$$\int_{\underline{a}}^{b} f d\alpha = \int_{\underline{a}}^{b} (f \alpha') d\alpha \dots (10)$$

$$\therefore f \in \mathcal{R}(\alpha) \Leftrightarrow \int_{\underline{a}}^{b} f d\alpha = \int_{a}^{\bar{b}} f d\alpha$$

$$\Leftrightarrow \int_{\underline{a}}^{b} (f \alpha') d\alpha = \int_{a}^{\bar{b}} (f \alpha') d\alpha \text{ (by (9) and (10))}$$

$$\Leftrightarrow f(\alpha') \in \mathcal{R}.$$
Now,
$$\int_{a}^{b} f d\alpha = \int_{a}^{\bar{b}} f d\alpha$$

$$= \int_{a}^{\bar{b}} (f \alpha') dx \text{ (by (9))}$$

$$= \int_{a}^{b} (f \alpha') dx$$

$$= \int_{a}^{b} (f \alpha') dx$$

$$\therefore \int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

Remark 4.22 The above theorem gives the relation of \mathcal{R} integral and $\mathcal{R}(\alpha)$ integral.

Theorem 4.23 Change of Variable: Suppose ϕ is a strictly increasing function that maps an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by $\beta(y) = \alpha(\phi(y)), g(y) = f(\phi(y))$, then $g \in \mathcal{R}(\beta)$ and $\int_A^B gd(\beta) = \int_a^b fd\alpha$. **Proof:** $g(y) = (f \cdot \phi)x = f(\phi(y)) = f(x)$

$$[A, B] \xrightarrow{\phi} [a, b] \xrightarrow{f} \mathcal{R}$$
$$[A, B] \xrightarrow{\phi} [a, b] \xrightarrow{\alpha} \mathcal{R}$$
$$\beta(y) = (\alpha \cdot \phi)y$$
$$= \alpha(\phi(y))$$
$$= \alpha(x)$$

Let $P = \{x_0, x_1, x_2, ..., x_n\}$ be any partition of [a, b]. Since ϕ is onto for each *i*, there exists $y_i \in [A, B]$ such that $\phi(y_i) = x_i$, i = 0, 1, 2, ..., n. \therefore $\{y_0, y_1, y_2, ..., y_n\}$ is a partition of [A, B] every partition of [A, B] can be obtained in this way (since ϕ is monotonically increasing)

For
$$y \in [y_{i-1}, y_i]$$

 $g(y) = (f \cdot \phi)y$
 $g(y) = f(\phi(y))$
 $= f(x)$ where $x = \phi(y), x \in [x_{i-1}, x_i]$
 $\Rightarrow \sup g(y) = \sup f(x)$
 $\Rightarrow M_{i'} = M_i.....(1)$
Similarly $\inf g(y) = \inf f(x)$
 $m_{i'} = m_i.....(2)$
Now $\Delta\beta_i = \beta(y_i) - \beta(y_{i-1})$
 $= (\alpha \circ \phi)y_i - (\alpha \circ \phi)y_{i-1}$
 $= \alpha(\phi(y_i)) - \alpha(\phi(y_{i-1}))$
 $= \alpha(x_i) - \alpha(x_{i-1})$
 $= \Delta\alpha_i.....(3)$
 $\therefore U(Q, g, \beta) = \sum_{i=1}^n M'_i \Delta\beta_i$
 $= \sum_{i=1}^n M_i \Delta\alpha_i \text{ (by (1) and (3))}$
 $= U(P, f, \alpha).....(4)$
Similarly $L(Q, g, \beta) = L(P, f, \alpha).....(5)$

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$

$$\Rightarrow U(Q, g, \beta) - L(Q, g, \beta) < \epsilon \text{ (by (4) and (5))}$$

$$\therefore g \in \mathcal{R}(\beta)$$

Also $\int_{A}^{B} gd\beta = \inf U(Q, g, \beta)$

$$= \inf U(P, f, \alpha) \text{ (by (4))}$$

$$= \int_{a}^{b} fd\alpha.$$

Note 4.24 Let $\alpha(x) = x$ and $\phi' \in \mathcal{R}$ on [A, B].

$$\begin{array}{l} \therefore \beta(y) = (\alpha \circ \phi)y, \\ = \alpha(\phi(y)) \\ = \phi(y) \ \forall y \in [A, B] \\ \therefore \beta = \phi \\ \int_{A}^{B} gd\beta = \int_{a}^{b} fd\alpha \ (by \ previous \ theorem) \\ \int_{a}^{b} f(x)dx = \int_{A}^{B} gd\beta \\ = \int_{A}^{B} gd\phi \\ = \int_{A}^{B} g(y)\phi'(y)dy \ (by \ theorem \ 4.21) \end{array}$$

Integrations and Differentiations:

Theorem 4.25 Let $f \in R$ on [a, b], for $a \leq x \leq b$, put $F(x) = \int_a^x f(t)dt$, then F is continuous on [a, b], further more if f is continuous at some point x_0 of [a, b], then F is differentiable at x_0 and $F'(x_0) = f(x_0)$. **Proof:** Given $F(x) = \int_a^x f(t)dt$. To Prove: F(x) is continuous on [a, b]. Let $a \leq x \leq y \leq b$. Now,

$$\begin{split} F(y) - F(x) &= \int_{a}^{y} f(t)dt - \int_{a}^{x} f(t)dt \\ &= \int_{a}^{x} f(t)dt + \int_{x}^{y} f(t)dt - \int_{a}^{x} f(t)dt \\ &= \int_{x}^{y} f(t)dt \\ \Rightarrow |F(y) - F(x)| = |\int_{x}^{y} f(t)dt| \\ &\leq \int_{x}^{y} |f(t)|dt \\ &\leq \int_{x}^{y} Mdt \text{ where } M = \sup |f(t)|, \ t \in [a,b] \\ &= M(y-x) \\ (i.e.) \ |F(y) - F(x)| \leq M|y-x| \ (\because (y-x) = 0) \end{split}$$

Given $\epsilon > 0$, there exists $\delta = \frac{\epsilon}{M}$ such that $|y - x| < \delta \Rightarrow |F(y) - F(x)| < \epsilon$ (i.e.) F is continuous on [a, b]. (infact F is uniformly continuous on [a, b]). Suppose f is continuous at $x_0 \in [a, b]$. To Prove: $F'(x_0) = f(x_0)$. Given $\epsilon > 0$, there exists $\delta > 0$ such that $|t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \epsilon$ for $t \in [a, b]$ (1) Let $x_0 - \delta < s \le x_0 \le t \le x_0 + \delta$. Now,

$$\begin{split} F(t) - F(s) &= \int_{a}^{t} f(t)dt - \int_{a}^{s} f(t)dt \\ &= \int_{a}^{s} f(t)dt + \int_{s}^{t} f(t)dt - \int_{a}^{s} f(t)dt \\ F(t) - F(s) &= \int_{s}^{t} f(t)dt \\ &\Rightarrow \frac{F(t) - F(s)}{t - s} = \frac{1}{t - s} \int_{s}^{t} f(t)dt \\ &\Rightarrow \frac{F(t) - F(s)}{t - s} - f(x_{0}) = \frac{1}{t - s} \int_{s}^{t} f(t)dt - f(x_{0}) \\ \frac{F(t) - F(s)}{t - s} - f(x_{0}) &= \frac{1}{t - s} \{\int_{s}^{t} f(t)dt - (t - s)f(x_{0})\} \\ &= \frac{1}{t - s} \{\int_{s}^{t} f(t)dt - \int_{s}^{t} f(x_{0})dt\} \\ &= \frac{1}{t - s} \int_{s}^{t} (f(t) - f(x_{0}))dt \\ \left| \frac{F(t) - F(s)}{t - s} - f(x_{0}) \right| &= \left| \frac{1}{t - s} \int_{s}^{t} (f(t) - f(x_{0}))dt \right| \\ &\leq \frac{1}{t - s} \int_{s}^{t} |f(t) - f(x_{0})|dt \\ &\leq \frac{1}{t - s} \int_{s}^{t} dt (by (1)) \\ \left| \frac{F(t) - F(s)}{t - s} - f(x_{0}) \right| &< \epsilon \end{split}$$

It follows that $F'(x_0) = f(x_0)$.

Theorem 4.26 The Fundamental Theorem of Calculus: If $f \in R$ on [a, b] and if there is a differentiable function F such that F' = f, then $\int_a^b f(x)dx = F(b) - F(a)$. **Proof:** Since $f \in R$ on [a, b], given $\in 0$, there exists a partition P =

 $\{x_0, x_1, x_2, ..., x_n\}$ of [a, b] such that $U(P, f) - L(P, f) < \epsilon$ (1)

Since F is differentiable we can apply the mean value theorem to it on $[x_{i-1}, x_i]$. There exists $t_i \in [x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = (x_{i-1} - x_i)F'(t_i) = \Delta x_i f(t_i) \ (\because F' = f)$$

Summing over i, we get,

By Theorem (c), (1) implies that

$$\left|\sum_{i=1}^{n} f(t_i)\Delta x_i - \int_a^b f(x)dx\right| < \epsilon.....(3)$$

Using (2) and (3) we get, $|(F(b) - F(a)) - \int_a^b f(x) dx| < \epsilon$. Since ϵ is arbitrary, $\int_a^b f(x) dx = F(b) - F(a)$. Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable functions on $[a, b], F' = f \in \mathcal{R}, G' = g \in \mathcal{R}$, then

$$\int_a^b f(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

Proof: Let H(x) = F(x)G(x). \therefore H'(x) = F(x)G'(x) + F'(x)G(x) = F(x)g(x) + f(x)G(x)..... (1)

Given f and $g \in \mathcal{R}$. Since F and G are differentiable, they are continuous. \therefore By Theorem $\square \square$, F and G are integrable $(\in \mathcal{R})$. \therefore By Theorem $\square \square$ $F(x)g(x) + f(x)G(x) \in \mathcal{R}$ (i.e.) $H'(x) \in R$. By fundamental theorem of calculus,

$$\int_{a}^{b} H'(x)dx = H(b) - H(a)$$

$$(i.e.) \int_{a}^{b} (F(x)g(x) + f(x)G(x))dx = F(b)G(b) - F(a)G(a)$$

$$\Rightarrow \int_{a}^{b} F(x)g(x)dx + \int_{a}^{b} f(x)G(x)dx = F(b)G(b) - F(a)G(a)$$

$$\Rightarrow \int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx$$

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let $f_1, f_2, ..., f_k$ be real functions on [a, b] and let $\overline{f} = (f_1, f_2, ..., f_k)$ be a mapping of $[a, b] \rightarrow \mathbb{R}^k$. Suppose α increases monotonically on [a, b], then $\overline{f} \in \mathcal{R}(\alpha) \Leftrightarrow$ for each $f_i \in \mathcal{R}(\alpha)$, and in this case

$$\int_{a}^{b} \bar{f} d\alpha = \left(\int_{a}^{b} f_{1} d\alpha, \int_{a}^{b} f_{2} d\alpha, \dots, \int_{a}^{b} f_{k} d\alpha\right)$$

Theorem 4.29 Fundamental Theorem of calculus for vector valued functions: If \bar{F} , \bar{f} map [a, b] into \mathbb{R}^k and if $\bar{f} \in \mathcal{R}$ on [a, b] and if $\bar{F}' = \bar{f}$ then $\int_a^b \bar{f}(t)dt = \bar{F}(b) - \bar{F}(a)$. **Proof:** Let

$$f = (f_1, f_2, ..., f_k)$$
$$\bar{F} = (F_1, F_2, ..., F_k)$$
$$\bar{F}' = (F'_1, F'_2, ..., F'_k)$$

Given $\overline{F}' = \overline{f}$. $\therefore (F'_1, F'_2, ..., F'_k) = (f_1, f_2, ..., f_k) \Rightarrow F'_i = f_i \quad \forall i = 1, 2, ..., k.$ Since $\overline{f} \in \mathcal{R}$, each $f_i \in \mathcal{R}$. \therefore By fundamental theorem of calculus, for any i.

$$\int_{a}^{b} F'_{i}(t)dt = F_{i}(b) - F_{i}(a)$$

(*i.e.*)
$$\int_{a}^{b} f_{i}(t)dt = F_{i}(b) - F_{i}(a)....(1)$$

Now,

$$\int_{a}^{b} \bar{f}(t)dt = \left(\int_{a}^{b} f_{1}(t)dt, \int_{a}^{b} f_{2}(t)dt, \dots, \int_{a}^{b} f_{k}(t)dt\right) \text{ (by definition)}$$

$$(1) \Rightarrow = (F_{1}(b) - F_{1}(a), F_{2}(b) - F_{2}(a), \dots, F_{k}(b) - F_{k}(a))$$

$$= (F_{1}(b), F_{2}(b), \dots, F_{k}(b)) - (F_{1}(a), F_{2}(a), \dots, F_{k}(a))$$

$$= \bar{F}(b) - \bar{F}(a)$$

$$\therefore \int_{a}^{b} \bar{f}(t)dt = \bar{F}(b) - \bar{F}(a)$$

Note 4.30 Schwartz inequality:

$$\left|\sum_{j=1}^{n} a_j \bar{b_j}\right|^2 \le \left(\sum_{j=1}^{n} |a_j|^2\right) \left(\sum_{j=1}^{n} |b_j|^2\right) \quad (or)$$
$$\left|\sum_{j=1}^{n} a_j \bar{b_j}\right| \le \left(\sum_{j=1}^{n} |a_j|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |b_j|^2\right)^{\frac{1}{2}}$$

Theorem 4.31 If \bar{f} maps [a, b] into \mathbb{R}^k and if $\bar{f} \in \mathcal{R}(\alpha)$ for some monotonically increasing function [a, b], then $|\bar{f}| \in \mathcal{R}(\alpha)$ and $|\int_a^b \bar{f}(t)d\alpha| \leq \int_a^b |\bar{f}(t)|d\alpha$. **Proof:**

$$\begin{split} \bar{f} &= (f_1, f_2, ..., f_k) \\ &|\bar{f}| = (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2)^{1/2} \\ &\text{Since } \bar{f} \in \mathcal{R}(\alpha) \\ &\Rightarrow f_i \in \mathcal{R}(\alpha) \ \forall i = 1, 2, ..., k \\ &\Rightarrow f_i^2 \in \mathcal{R}(\alpha) \\ &\Rightarrow (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2) \in \mathcal{R}(\alpha) \\ &\Rightarrow (f_1^2 + f_2^2 + f_3^2 + ... + f_k^2)^2 \in \mathcal{R}(\alpha) \text{(by Theorem 117)}, \phi(t) = t^{1/2}) \\ &\Rightarrow |\bar{f}| \in \mathcal{R}(\alpha) \end{split}$$

To Prove:

$$\left|\int_{a}^{b} \bar{f}(t) d\alpha\right| \leq \int_{a}^{b} |\bar{f}(t)| d\alpha$$

Let $\bar{y} = \int_a^b \bar{f}(t) d\alpha$. If $\bar{y} = 0$, then the inequality is trivial (for, $\bar{y} = 0 \Rightarrow$ L.H.S=0 and $|\bar{f}| \ge 0 \Rightarrow \int_a^b |\bar{f}(t)| d\alpha \ge 0$ (i.e.) R.H.S ≥ 0) Let $\bar{y} \ne 0$

$$\begin{split} \therefore \bar{y} &= \int_{a}^{b} \bar{f} d\alpha = \left(\int_{a}^{b} f_{1} d\alpha, \int_{a}^{b} f_{2} d\alpha, ..., \int_{a}^{b} f_{k} d\alpha \right) \\ &= (y_{1}, y_{2}, ..., y_{k}) \text{ where } y_{i} = \int_{a}^{b} f_{i} d\alpha \\ \text{Now } |\bar{y}|^{2} &= y_{1}^{2} + y_{2}^{2} + ... + y_{k}^{2} \\ (i.e.) |\bar{y}|^{2} &= \sum_{i=1}^{k} y_{i}^{2} \\ &= \sum_{i=1}^{k} y_{i} y_{i} \\ &= \sum_{i=1}^{k} y_{i} (\int_{a}^{b} f_{i} d\alpha) \\ &= \int_{a}^{b} (\sum_{i=1}^{k} y_{i} f_{i}) d\alpha \\ &\leq \int_{a}^{b} \left(\sum_{i=1}^{k} y_{i} f_{i} \right)^{1/2} \left(\sum_{i=1}^{k} |f_{i}|^{2} \right)^{1/2} d\alpha \text{ (by schwartz inequality)} \\ (i.e.) |\bar{y}|^{2} &\leq \int_{a}^{b} \left(\sum_{i=1}^{k} y_{i}^{2} \right)^{1/2} \left(\sum_{i=1}^{k} f_{i}^{2} \right)^{1/2} d\alpha \\ &= \int_{a}^{b} |\bar{y}| |\bar{f}| d\alpha \\ &= |\bar{y}| \int_{a}^{b} |\bar{f}| d\alpha \\ &= |\bar{y}| \leq \int_{a}^{b} |\bar{f}| d\alpha \\ \Rightarrow |\bar{y}| &\leq \int_{a}^{b} |\bar{f}| d\alpha \\ \left| \int_{a}^{b} \bar{f} d\alpha \right| &\leq \int_{a}^{b} |\bar{f}| d\alpha \end{split}$$

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that $\{f_n\}$ of function n = 1, 2, ... converges uniformly on E to a function f is every $\epsilon > 0$ there is an integer N such that $n \ge N \Rightarrow |f_n(x) - f(x)| < \epsilon$.

Note 4.33 If $\{f_n\}$ converges pointwise on E, then there exists a function f such that for every $\epsilon > 0$ and for every x in E there is an integer N depending on ϵ and x such that $|f_n(x) - f(x)| < \epsilon \quad \forall n \ge N$. If $\{f_n\}$ converges uniformly on E, it is possible for each $\epsilon > 0$, to find one integer N which will do for all x in E. We say that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E if the $\{s_n\}$ of partial sums defined by $s_n(x) = \sum_{i=1}^n f_i(x)$ converges uniformly on E.

Theorem 4.34 Cauchy's Criterian for Uniform Convergence: The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E iff for every $\epsilon > 0$ there exists an integer N such that $n, m \ge N, x \in E \Rightarrow |f_n(x) - f_m(x)| < \epsilon$.

Proof: For the 'only if' part we assume that $\{f_n\} \to f$ uniformly. To Prove: There exists N such that $x \in E$ $n, m \geq N \Rightarrow |f_n(x) - f_m(x)| < \epsilon$. Let $\epsilon > 0$ such that $|f_n(x) - f(x)| \leq \epsilon/2$ (1) $\forall n \geq N \quad \forall x \in E$ Now, for $n, m \geq N$

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

$$\leq \epsilon/2 + \epsilon/2 \text{ (by (1))}$$

(*i.e.*) $|f_n(x) - f_m(x)| \leq \epsilon$

For the 'if' part we assume that there exists N > 0 such that $n, m \ge N, x \in E \Rightarrow |f_n(x) - f_m(x)| \le \epsilon$ (2)

For fixed x, (2) implies that $\{f_n(x)\}$ is a cauchy sequence \therefore $\{f_n(x)\} \to f(x)(|f_n(x) - f(x)| \to 0)$. To Prove: $\{f_n\} \to f$ uniformly. In (2), keeping n fixed and taking limit as $m \to \infty$ we get $|f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N$ $\forall x \in E$. \therefore $\{f_n\} \to f$ uniformly.

Theorem 4.35 Suppose

$$\lim_{n \to \infty} f_n = f(x), \ (x \in E).$$

Put $M_n = \sup_{x \in E} |f_n(x) - f(x)|$, then $\{f_n\} \to f$ uniformly on E iff $M_n \to 0$ as $n \to \infty$.

Proof: For the 'only if' part, we assume that $\{f_n\} \to f$. To Prove: $M_n \to 0$ as $n \to \infty$. By hypothesis, given $\epsilon > 0$, there exists N > 0 such that $|f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N \quad \forall x \in E \Rightarrow \sup x \in E |f_n(x) - f(x)| \le \epsilon$ $\forall n \ge N \Rightarrow M_n \le \epsilon \quad \forall n \ge N$ (i.e.) $M_n \to 0$ as $n \to \infty$. For the 'if' part, let $M_n \to 0$ as $n \to \infty$. Then there exists N > 0 such that $M_n \le \epsilon$ $\forall n \ge N \Rightarrow \sup_{x \in E} |f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N \Rightarrow |f_n(x) - f(x)| \le \epsilon$ $\forall n \ge N, x \in E \Rightarrow \{f_n\} \to f$ uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose $\{f_n\}$ is a sequence of function defined on E and suppose that $|f_1(x)| \leq M_n$

 $(x \in E, n = 1, 2...)$ then $\sum f_n$ converges uniformly on E its $\sum M_n$ converges. **Proof:** Assume that $\sum M_n$ converges. To Prove: $\sum f_n$ converges uniformly. Let $\epsilon > 0$ be given. Let $\{s_n\}$ and $\{t_n\}$ be the sequences of partial sums of $\sum f_n$ and $\sum M_n$ respectively. Since $\sum M_n$ converges, $\{t_n\}$ also converges. Since any convergence sequence is a Cauchy sequence $\{t_n\}$ is also a Cauchy sequence. Then there exists N > 0 such that $|t_n - t_m| \le \epsilon \quad \forall n, m \ge N$. Let $m > n(\ge N)$

$$|t_n - t_m| = \left|\sum_{n+1}^m M_k\right| \le \epsilon....(1)$$

Now, for $x \in E$,

$$|s_n(x) - s_m(x)| = \left| \sum_{n+1}^m f_k(x) \right|$$

$$\leq \sum_{n+1}^m |f_k(x)|$$

$$\leq \sum_{n+1}^m M_k \leq \epsilon \text{ (by (1))}$$

$$\therefore |s_n(x) - s_m(x)| < \epsilon$$

 \therefore By Cauchy's criteria **1.34** the $\{s_n\}$ converges uniformly on E. $\therefore \sum f_n$ converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose $\{f_n\}$ converges to f uniformly on a set E, in a metric space. Let x be a limit point of E and suppose that $\lim_{t\to x} f_n(t) = A_n(n = 1, 2, 3...)$, then $\{A_n\}$ converges $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$. In other words $\lim_{t\to x} \lim_{n\to\infty} f_n(t) =$ $\lim_{n\to\infty} \lim_{t\to x} f_n(t)$.

Proof: Let $\epsilon > 0$ be given. Since $\{f_n\}$ converges to f uniformly on E, by Theorem **1.34**, there exists an integer N > 0 such that $|f_n(t) - f_m(t)| \le \epsilon$ $\forall n, m \ge N, t \in E$ (1)

Letting $t \to x$ in (1) we get $|A_n - A_m| \leq \epsilon \quad \forall n, m \geq N(\because \lim_{t \to x} = A_n)$ (i.e.) $\{A_n\}$ is a Cauchy sequence of real numbers. Since \mathbb{R} is complete, $\{A_n\}$ converges to some A(in $\mathbb{R})$ (i.e.) $\{A_n\} \to A$. \therefore there exists $N_1 > 0$ such that $|A_n - A| \leq \epsilon/3$, $\forall n \geq N_1$ (2) Now,

$$|f(t) - A| = |f(t) - f_n(t)| + (f_n(t) - A_n) + |(A_n - A)|$$

$$\leq |f(t) - f_n(t)| + |f_n(t) - A_n| + (A_n - A)|.....(3)$$

Since $\{f_n\} \to f$ uniformly, there exists $N_2 > 0$ such that $|f_n(t) - f(t)| \le \epsilon/3$ $\forall n \ge N_2, t \in E$ (4) Since x is a limit point of E and $\therefore \lim_{t\to x} f_n(t) = A_n$, there exists a neighbourhood V of x such that $|f_n(t) - A_n| \le \epsilon/3 \quad \forall t \in V \cap E$ (5) Let $N_3 = max\{N_1, N_2\}$. Now using (2),(4) and (5) in (3) we get

$$|f(t) - A| \le \epsilon/3 + \epsilon/3 + \epsilon/3 \quad \forall n \ge N_3 \quad \forall t \in V \cap E.$$

(*i.e.*) $|f(t) - A| \le \epsilon$
(*i.e.*) $\lim_{t \to x} f(t) = A$ (or)
 $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} A_n$
 $= \lim_{n \to \infty} \lim_{t \to x} f_n(t))$
 $\therefore \lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$

Theorem 4.38 If $\{f_n\}$ is a sequence of continuous functions on E, and if $\{f_n\}$ converges to f uniformly on E then f is continuous on E. **Proof:** Enough To Prove: $\lim_{t\to x} f(t) = f(x)$

$$\lim_{t \to x} f(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t)) \ (\because f_n \to f \text{ uniformly})$$
$$\lim_{t \to x} f(t) = \lim_{n \to \infty} (\lim_{t \to x} f_n(t)) \ (\text{by Theorem 1.37})$$
$$= \lim_{n \to \infty} f_n(x) \ (\because f_n \text{ is continuous})$$
$$= f(x) \ (\because f_n \to f \text{ uniformly})$$

Remark 4.39 The converse of the above theorem need not be true. (i.e.) a sequence of continuous function may converse to a continuous function, although the convergence is not uniform.

Example 4.40 $f_n(x) = n^2 x (1 - x^2)^n$, $0 \le x \le 1$, n = 1, 2, 3, ... Clearly, each f_n is continuous. Also f is continuous. But the convergence is not uniform. By Theorem [7.33], for let

$$M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)|$$

= $\sup_{x \in [0,1]} |n^2 x (1 - x^2)^n - 0|$
= $n^2 \sup_{x \in [0,1]} \{x (1 - x^2)^n\}$
 $\Rightarrow 0 \text{ as } n \to \infty.$

By Theorem 4.33, the convergence is not uniform.

Theorem 4.41 [Dini's Theorem] Suppose K is compact and (a) $\{f_n\}$ is a sequence of continuous functions on K. (b) $\{f_n\}$ converges pointwise to a continuous functions f on K. (c) $f_n(x) \ge f_{n+1}(x) \quad \forall x \in K, \ n = 1, 2, 3...$ then $f_n \to f$ uniformly on K.

Proof: Given K is compact. Let $g_n = f_n - f$. Since each f_n is continuous and f is continuous, g_n is continuous for all n. Since $\{f_n\}$ converges pointwise to f, $\{g_n\}$ converges pointwise to 0. Since $f_n(x) \ge f_{n+1}(x)$ $\forall x \in K, n = 1, 2..., f_n(x) - f(x) \ge f_{n+1}(x) - f(x)$. (i.e.) $g_n(x) \ge g_{n+1}(x)$ $\forall x, n = 1, 2...$ (i.e.) $\{g_n\}$ is also a monotonic decreasing sequence. To prove that $\{f_n\}$ converges to f uniformly. It is enough to prove that $\{g_n\}$ converges to 0 uniformly. Let $\epsilon > 0$ be given. For each n, let $K_n = \{x \in K | g_n(x) \ge \epsilon\}$. Now,

$$K_n = \{x \in K | g_n(x) \ge \in [\epsilon, \infty)\}$$
$$= \{x \in K | x \in g_n^{-1}[\epsilon, \infty)\}$$
$$= g_n^{-1}[\epsilon, \infty).$$

Since $[\epsilon, \infty)$ is closed in R and g_n is continuous, $g_n^{-1}[\epsilon, \infty)$ is closed in K. (i.e.) K_n is a closed subspace of the compact space $K_n \therefore K_n$ is compact (\because every closed subspace of a compact space is compact). Claim: $K_n \supset K_{n+1}$, n = 1, 2, 3... Let $x \in K_{n+1} \Rightarrow g_{n+1}(x) \ge \epsilon$. But $g_n(x) \ge g_{n+1}(x)$ (by (1)). $\therefore g_n(x) \ge g_{n+1}(x) \ge \epsilon \Rightarrow g_n(x) \ge \epsilon \Rightarrow x \in K_n \therefore K_{n+1} \subset K_n$. Fix $x \in K$. Since $\{g_n\}$ converges pointwise to 0. $\{g_n(x)\} \to 0$. Then there exists N(x) > 0 such that $|g_n(x) - 0| < \epsilon \quad \forall n \ge N(x) \Rightarrow g_n(x) < \epsilon \quad \forall n \ge N(x) \Rightarrow$ $x \notin K_n \quad \forall n \ge N(x) \Rightarrow x \notin \bigcap_{n=1}^{\infty} K_n$. Since x is arbitrary, $\bigcap_{n=1}^{\infty} K_n = \phi \Rightarrow$ $K_N = \phi$ for some N. $\therefore g_N(x) < \epsilon \quad \forall x \in K$. But

$$0 \le g_n(x) \le g_N(x) < \epsilon \ \forall x \in K, \ \forall n \ge N$$
$$g_n(x) < \epsilon \ \forall x \in K, \ \forall n \ge N$$
$$(i.e.) \ |g_n(x) - 0| < \epsilon \ \forall x \in K, \ \forall n \ge N$$

Hence $\{g_n\} \to 0$ uniformly.

Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 $f_n(x) = \frac{1}{nx+1}$, 0 < x < 1, n = 1, 2, 3... $\{f_n\} \to f$ pointwise where $f(x) = 0 \forall x \in (0, 1)$ and (0, 1) is not compact. Clearly, each f_n is continuous. Also f is continuous. Now,

$$\begin{aligned} n+1 &> n\\ \Rightarrow (n+1)x > nx\\ \Rightarrow (n+1)x + 1 > nx + 1\\ \Rightarrow \frac{1}{(n+1)x+1} < \frac{1}{nx+1}\\ \Rightarrow f_{n+1}(x) < f_n(x) \end{aligned}$$

 $\Rightarrow \{f_n\}$ is a decreasing sequence. But $\{f_n\} \rightarrow f$ uniformly. For, if $\{f_n\} \rightarrow f$ uniformly then, given $\epsilon > 0$, there exists N > 0 such that

$$|f_n(x) - f(x)| \le \epsilon \ \forall n \ge N, \ \forall x \in (0, 1)$$

(*i.e.*) $\left|\frac{1}{nx+1} - 0\right| \le \epsilon \ \forall x \in (0, 1)$
 $\left|\frac{1}{nx+1}\right| \le \epsilon \ \forall x \in (0, 1)$
Put $x = \frac{1}{n}$. Then $\frac{1}{2} \le \epsilon$
 $\Rightarrow \Leftarrow$

:. The convergence is not uniform.

Definition 4.44 If X is a metric space $\mathscr{C}(x)$ denotes the set of all complex valued continuous bounded functions with domain X. $\mathscr{C}(X) = \{f/f : X \to c, f \text{ is continuous and bounded}\}$. If X is compact, $\mathscr{C}(X) = \{f/f : X \to c, f \text{ is continuous}\}$ (\because any continuous function on a compact space is bounded). For any f in $\mathscr{C}(f)$, $\sup ||f|| = \sup_{x \in X} |f(x)|$, since f is bounded $||f|| < \infty$.

Result 4.45 $\mathscr{C}(X)$ is a metric space. Given $f, g \in \mathscr{C}(X)$ define

$$(i) \ d(f,g) = \|f - g\|$$

$$= \sup_{x \in E} |f(x) - g(x)|$$

$$\geq 0$$

$$\therefore \ d(f,g) \geq 0$$

$$(ii) \ d(f,g) = \sup_{x \in E} |f(x) - g(x)|$$

$$= \sup_{x \in E} |g(x) - f(x)|$$

$$= \|g - f\|$$

$$= d(f,g)$$

$$(iii) \ d(f,g) = 0 \Leftrightarrow \|f - g\| = 0$$

$$\Leftrightarrow \sup_{x \in E} |f(x) - g(x)|$$

$$\Leftrightarrow |f(x) - g(x)| = 0 \forall x \in E$$

$$\Leftrightarrow f(x) = g(x)$$

$$\Leftrightarrow f = g$$

$$\begin{array}{l} (iv) \ d(f,g) = \|f - g\| \\ = \sup_{x \in E} |f(x) - g(x)| \\ = \sup_{x \in E} |(f(x) - h(x)) + (h(x) - g(x))| \\ \leq \sup_{x \in E} |(f(x) - h(x))| + |(h(x) - g(x))| \\ \leq \sup_{x \in E} |(f(x) - h(x))| + \sup_{x \in E} |(f(x) - g(x))| \\ = \|f - h\| + \|h - g\| \\ = d(f, h) + d(h, g) \\ (i.e.) \ d(f,g) \leq d(f, h) + d(h, g) \end{array}$$

 $\therefore (\mathscr{C}(X), d)$ is a metric space.

Result 4.46 (Analogue of Theorem 4.35) A sequence $\{f_n\} \to f$ with respect to the metric space $\mathscr{C}(X)$ iff $\{f_n\} \to f$ uniformly on X. **Proof:** 'only if' part:

Assume that $\{f_n\} \to f$ in $\mathscr{C}(X)$. $||f_n - f|| \to 0$ as $n \to \infty$ (i.e.) $\sup_{x \in E} |f_n(x) - f(x)| \to 0$ as $n \to \infty$ (i.e.) $M_n \to 0$ as $n \to \infty$ (Theorem 1.35). $\{f_n\} \to f$ uniformly (by Theorem 1.35) 'if' part:

Suppose $\{f_n\} \to f$ uniformly. Then $M_n \to 0$ as $n \to \infty$ (Theorem **1.35**) (i.e.) $\sup x \in E|f_n(x) - f(x)| \to 0$ as $n \to \infty$ (i.e.) $||f_n - f|| \to 0$ as $n \to \infty$. $\therefore \{f_n\} \to f$ in $\mathscr{C}(X)$

Note 4.47 (i) Closed subsets of $\mathscr{C}(X)$ are called uniformly closed subsets. (ii) If $A \subset \mathscr{C}(X)$ then the closure of A is called the uniform closure of A.

Theorem 4.48 $\mathscr{C}(X)$ is a complete metric space.

Proof: Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(X)$. Let $\epsilon > 0$ be given. Then there exists N > 0 such that $||f_n - f_m|| < \epsilon \quad \forall n, m \ge N$ (1)

(i.e.) $\sup_{x \in E} |f_n(x) - f_m(x)| \leq \epsilon \quad \forall n, m \geq N. \Rightarrow |f_n(x) - f_m(x)| \leq \epsilon \forall n, m \geq N, x \in X.$ By Theorem **1.34**, guarantees that $\{f_n\}$ converges uniformly, say f. (i.e.) $\lim_{n\to\infty} f_n(x) = f(x), x \in X.$ Claim: $f \in \mathscr{C}(X)$. Since each f_n is continuous and $\{f_n\} \to f$ uniformly (Theorem **1.38**). Theorem **1.38** demands that f is also continuous. Again, since $\{f_n\} \to f$ uniformly, there exists $N_1 > 0$ such that $|f_n(x) - f(x)| < 1 \forall n \geq N_1, x \in X.$ In particular, $|f_{N_1}(x) - f(x)| < 1$ (2) $\forall x \in X$ Since $f_{N_1}(x) \in \mathscr{C}(X), |f_{N_1}(x)| \leq K$ (3) $\forall x \in X$ Now,

$$|f(x)| = |(f(x) - f_{N_1}(x)) + f_{N_1}(x)|$$

$$|f(x)| \le |f(x) - f_{N_1}(x)| + |f_{N_1}(x)|$$

$$< 1 + K \text{ (by (2) and (3)) } \forall x \in X$$

(*i.e.*) $|f(x)| < 1 + K \ \forall x \in K.$

 $\therefore f$ is bounded. Hence $f \in \mathscr{C}(X)$. It remains to prove that $\{f_n\} \to f$ in $\mathscr{C}(X)$. For, $\{f_n\} \to f$ uniformly $\Rightarrow M_n \to 0 \Rightarrow \sup_{x \in X} |f_n(x) - f(x)| \to 0$ as $n \to \infty$ (by Theorem 1.35) $\Rightarrow ||f_n - f|| \to 0$ as $n \to \infty$. So $\{f_n\} \to f$ in the metric space $\mathscr{C}(X)$. $\therefore \mathscr{C}(X)$ is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b] for n = 1, 2, 3... and suppose $f_n \to f$ uniformly on [a, b] then $f_n \in \mathcal{R}(\alpha)$ on [a, b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f d\alpha$. **Proof:** Let $\epsilon_n = \sup_{a \le x \le b} |f(x) - f_n(x)|$ (1) (Theorem 1.35)

$$\begin{array}{l} \therefore |f - f_n| \leq \epsilon_n \ \forall n = 1, 2, 3... \\ \quad -\epsilon \leq f - f_n \leq \epsilon_n \\ \Rightarrow f_n - \epsilon_n \leq f \leq f_n + \epsilon_n \\ \Rightarrow \int_a^b (f_n - \epsilon_n) d\alpha \leq \int_{\underline{a}}^b f d\alpha \leq \int_{\underline{a}}^{\overline{b}} f d\alpha \leq \int_a^b (f_n + \epsilon_n) d\alpha.....(2) \\ \Rightarrow \int_a^b f_n d\alpha - \int_a^b \epsilon_n d\alpha \leq \int_{\underline{a}}^b f d\alpha \leq \int_a^{\overline{b}} f d\alpha \leq \int_a^b f_n d\alpha + \int_a^b \epsilon_n d\alpha \\ \Rightarrow \int_a^{\overline{b}} f d\alpha - \int_{\underline{a}}^b f d\alpha \leq (\int_a^b f_n d\alpha + \int_a^b \epsilon_n d\alpha) - (\int_a^b f_n d\alpha - \int_a^b \epsilon_n d\alpha) \\ = 2 \int_a^b \epsilon_n d\alpha \\ = 2 \epsilon_n \int_a^b d\alpha \\ = 2 \epsilon_n [\alpha(b) - \alpha(a)] \\ (i.e.) \int_a^{\overline{b}} f d\alpha - \int_{\underline{a}}^b f d\alpha \leq 2 \epsilon_n (\alpha(b) - \alpha(a)) \\ \rightarrow 0 \ (\because \epsilon_n \to 0 \ \text{as} \ f_n \to f \ \text{uniformly by theorem } \blacksquare \square \square) \\ \therefore \int_a^{\overline{b}} f d\alpha = \int_{\underline{a}}^b f d\alpha \\ \end{array}$$

Hence $f \in \mathcal{R}(\alpha)$. II part: To prove:

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha$$

Now, $(2) \Rightarrow$

$$\begin{split} \int_{a}^{b} (f_{n} - \epsilon_{n}) d\alpha &\leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} (f_{n} + \epsilon_{n}) d\alpha \\ \int_{a}^{b} f_{n} d\alpha - \int_{a}^{b} \epsilon_{n} d\alpha \leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} f_{n} d\alpha + \int_{a}^{b} \epsilon_{n} d\alpha \\ \Rightarrow \int_{a}^{b} f_{n} d\alpha - \epsilon_{n} \int_{a}^{b} d\alpha \leq \int_{a}^{b} f d\alpha \leq \int_{a}^{b} f_{n} d\alpha + \epsilon_{n} \int_{a}^{b} d\alpha \\ \Rightarrow -\epsilon_{n} \int_{a}^{b} d\alpha \leq \int_{a}^{b} f d\alpha - \int_{a}^{b} f_{n} d\alpha \leq \epsilon_{n} \int_{a}^{b} d\alpha \\ \Rightarrow \left| \int_{a}^{b} f d\alpha - \int_{a}^{b} f_{n} d\alpha \right| \leq \epsilon_{n} \int_{a}^{b} d\alpha \\ = \epsilon_{n} (\alpha(b) - \alpha(a)) \\ \to 0 \text{ as } n \to \infty \ (\because \epsilon_{n} \to 0) \\ \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha = \int_{a}^{b} f d\alpha. \end{split}$$

Corollary 4.50 If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if $f(x) = \sum_{n=1}^{\infty} f_n(x) (a \le x \le b)$, the series converges uniformly on [a, b], then $\int_a^b f d\alpha = \sum_{n=1}^{\infty} \int_a^b f_n d\alpha$. (the series may be integrated term by term)

Proof: Given $\sum f_n = f$ (uniformly). Let $s_n = \sum_{k=1}^n f_k$. By hypothesis $\{s_n\} \to f$ uniformly. By Theorem 4.49,

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} s_{n} d\alpha$$
$$= \lim_{n \to \infty} \int_{a}^{b} \left(\sum_{k=1}^{n} f_{k} \right) d\alpha$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\int_{a}^{b} f_{k} d\alpha \right)$$
$$= \sum_{k=1}^{\infty} \int_{a}^{b} f_{k} d\alpha$$