

 1

 2

SYLLABUS

UNIT – I

Form – Form property- variables- data types- string –numbers- writing simple programs-toolbox-

creating controls-name property- command button-access keys-image controls-text boxes-labels-

check box – Frame – Message boxes.

UNIT – II

Displaying information – Determinate loops – Indeterminate loops- Conditionals – built- in

suctions (String, Numeric) – functions and procedures. – Lists – arrays –control arrays- combo

boxes- projects with multiple forms- Menus- MDI forms.

UNIT – III

Database Management System – Advantages – Components – class diagram – Events-

Normalization – 1 NF – 2 NF – 3 NF.

`

UNIT IV

Oracle – an introduction – SQL *plus Environment – SQL – Logging into SQL * plus- SQL

*plus commands – Errors – Oracle Tables: DDL – Naming rules and conventions – Data types-

Constraints – Creating oracle Table- Displaying table information- Altering an existing table –

Dropping, Renaming, truncating table.

UNIT – V

DML – Insert and select commands – Data access techniques: ADO – Connection object –

Recordset object. Forms and Reports : Design of Form and report – Form layout – data reports.

 3

UNIT - I

HISTORY OF VISUAL BASIC

Alan Cooper is considered the father of Visual Basic. Alan Cooper created the drag-

and-drop design for the user interface of Visual Basic.

The History of Visual Basic dates back to 1991 when VB 1.0 was introduced. The core

of Visual Basic was built on the older BASIC language. Visual Basic 1.0 for Windows was

released in May 1991 at a trade show in Atlanta, Georgia.

Visual Basic 2.0 was released in November 1992. The programming environment was

easier to use, and its speed was improved. Notably, forms became core objects, thus laying

the foundational concepts of class modules.

Visual Basic 3.0 was released in 1993 and came in Standard and Professional versions.

VB3 included version 1.1 of the Microsoft Jet Database Engine that could read and write Jet

(or Access) 1.x databases.

Visual Basic 4.0 was released in August 1995. It was the first version that could create

32-bit as well as 16-bit Windows programs. It also introduced the ability to write non-GUI

classes in Visual Basic. While previous versions of Visual Basic had used VBX controls,

Visual Basic now used OLE controls (with files names ending in .ocx). These were later to be

named ActiveX controls.

Visual Basic 5.0 was released in February 1997. Visual Basic 5.0 also introduced the

ability to create custom user controls, as well as the ability to compile to native Windows

executable code, speeding up calculation-intensive code execution. A free, downloadable

Control Creation Edition was also released for creation of ActiveX controls.

Visual Basic 6.0 released in mid 1998 improved in a number of areas including the

ability to create web-based applications. VB6 has been the most successful version in the

history of Visual Basic. Visual Basic can be used in a number of different areas, for example,

Education, Engineering, Research, Medicine, Business, Commerce, Marketing and Sales,

Accounting, Consulting, Law, and Science.

The evolution of Visual Basic can be summarized by the following table.

VERSION YEAR

Version 1 (for Windows) March 20, 1991

Version 1 (for MS-DOS) September 1992

Version 2 November 1992

Version 3, VBA (VB for Applications) June 1993

 4

Version 4 (16- and 32- bit Support) October 1996

Version 5 (No 16-bit support) April 1997

Version 6 (Part of Visual Studio) October 1998

Version 7 (.Net) February 2002

Version 7.1 (.Net 2003) April 2003

VBA.Net for Office 2003 October 2003

Version 8.0 (.Net 2.0, Visual Studio 2005) November 2005

Version 9 (.Net 3.5, Visual Studio 2008) November 2007

Version 10 (Visual Studio 2010 and .Net Framework 4.0) October 2008

FEATURES OF VISUAL BASIC

 Visual Basic is a third-generation high level programming language

which evolved from the earlier DOS version called BASIC.

 In V B, program is done in a graphical environment.

 Visual Basic is an event-driven programming language. VB programs are built

around events. All the activities in a VB program are triggered by one event or another.

 It is object-oriented. It revolves around ready-made objects.

 It provides a Graphical User Interface (GUI) with icons, and buttons, that help users

to simply ‘Point and Click’.

 It provides prebuilt objects called controls which can be placed on the screen using

simple ‘drag and drop’ facility.

 It enables modular program development.

 It provides a complete set of tools to the users for Rapid Application

Development

(RAD).

 It is the fastest and easiest way to develop Windows based application.

 With Visual Basic, building prototypes become easy.

 It provides several functions, keywords, and statements which directly relate to GUI.

 It allows users to create their own ActiveX controls.

 It eliminates the need for writing numerous lines of code to create controls.

 5

INTRODUCTION TO FORM

 Form is a window, initially blank, on which other controls can be placed.

 It is a container of other controls.

 Forms are the basic building blocks of a VB application.

 It is the window or the screen with which users interact when they run an application.

 It is saved with .frm extension.

 Form has properties, events, and methods which are used to control its

appearance and behavior.

 The form can be resized and moved around the screen.

Example

Source Code

Private Sub Command1_Click()

Text4.Text = Val(Text1.Text) + Val(Text2.Text) + Val(Text3.Text)

End Sub

Private Sub Command2_Click()

Text5.Text = Val(Text4.Text) / 3

 6

End Sub

Private Sub Command3_Click()

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

End Sub

Private Sub Command4_Click()

End

End Sub

 FORM PROPERTIES

 A form in Visual Basic has as many as 50 properties.

 Each of these properties will affect the appearance and behavior of a form.

 Form properties can be set at design time in the Properties Window or at run time

by

Writing Code.

 Design time is when the user is building the interface, setting properties, and writing

code. Runtime is when the application is being executed.

 The properties window can be accessed using the shortcut key F4 or by right clicking

mouse button and choosing properties option.

 To access a property of a control, press Ctrl+Shift+First letter of the property.

PROPERTY DESCRIPTION

Name It is the name by which the form is referred in the code.

Caption It is the meaningful name that appears on the Title Bar of a form.

BackColor It determines the background color of a form. It can be set by using the

color palette which appears beside the property.

 7

Picture It specifies the name of the file that contains the picture to be displayed on

the form. This property can be set at design time or at runtime.

Font Properties It includes the Font, FontName, FontSize, FontBold, FontItalic,

FontStrikethru, and FontUnderline.

Visible It is a Boolean property. If the property is set to true, the form is visible.

Otherwise, the form is not visible.

Window State The value of this property specifies the window state of the form at

runtime. The values include 0-normal, 1-minimized, and 2-maximized.

Position

Properties

Properties like Left, Top, Height, and Width can be set at design time or at

runtime to locate the form at a place of the user’s choice.

MDI Child It is a Boolean property. If its value is set to true, the form will behave as an

MDI child.

Control Box It is a Boolean property. If it is set to true, the control box (minimize,

maximize, close buttons) is visible on the top left hand corner of the form.

Min Button and

Max Button

These properties have Boolean values true or false. If the properties are set

to false, the user cannot minimize or maximize the form at run time. The

default values are true.

Moveable It is Boolean property. If its value is set to false, the form cannot be

moved during runtime. The default value is true.

Border Style This property determines the type of window that the user will see during

runtime. This property determines whether a form is movable or can be

resized.

Example

Private Sub Form_Load() Form1.Cls

Form1.WindowState = vbMaximized

End Sub

 FORM EVENTS

 A form comes to life when the user clicks to start a VB application.

 The lifecycle of a form has many events.

 8

EVENT DESCRIPTION

Load During the load event, the form with all its properties and variables is

loaded in memory. The load event occurs whenever the ‘show’ method

is executed or a form property is referenced.

Initialize During the initialize event, all variables associated with a form are

initialized.

Activate The activate event occurs when a form gets user input. This event also

occurs when the ‘show’ method or ‘setFocus’ method of the form is

called.

Deactivate The deactivate event occurs when another form gets the focus.

Paint The paint event fires automatically when a form is refreshed (when

areas of a form are uncovered or when a form is resized).

Unload The unload event occurs when the user closes a form. During this

event, the form is unloaded from memory.

QueryUnload The QueryUnload event occurs before the Unload event is fired. The

QueryUnload event allows the option to abort the Unload event.

Terminate The terminate event is the final event in the lifecycle of a form. All

memory held by the form variables are released during this event.

Example

Private Sub Form_Paint()

DrawWidth = 5

Circle (Rnd * 3000, Rnd * 7000), Rnd * 800, vbYellow

Line(1000,1000) – (5000,5000), RGB(0,255,0)

Form1.Circle(500,500), 300, RGB(255,0,0)

End Sub

 FORM METHODS

METHOD DESCRIPTION

Cls The Cls method clears the object, generally the Form and Picturebox

object.

 9

Hide The Hide method makes a Form invisible to the user. It will not unload a

form.

Show The Show method displays a Form to the user. It internally sets the

visible property to true.

Refresh The Refresh method repaints or redraws an object completely.

SetFocus The SetFocus method moves focus to the specified Form, the specified

control on the active form, or the specified field on the active datasheet.

Move The Move method allows a programmer to position a Form at a desired

location.

Line The Line method is used to draw a line, rectangle, or box.

Circle The Circle method is used to draw a circle, ellipse, or an arc.

Pset The Pset method is used to draw a point with a given color at a given

location.

Point The point method returns the color of the screen at a given location.

Example

Private Sub UserForm_Click()

UserForm1.PrintForm

End Sub

VARIABLES

 A variable is an identifier that points to a memory location in which data used during

computation is stored.

 A variable can be used to hold different types of data at different times during

program execution.

 Variable declaration is the process which is used to inform a program that a

particular word is a variable.

 A variable has to have a name and data type.

 Variables can be declared in the declaration section of a form module, standard

module, or class module or within a procedure.

 10

 Variables in VB can be declared using Dim, Static, Private, or public keywords.

 If a variable is not declared before use, VB automatically creates a variable with that

name. This is called implicit declaration.

 The keyword option explicit in the declaration section of a form module, standard

module, or class module makes variable declaration compulsory.

Go to Tools -> Options -> Editor and check the Require Variable Declaration

option. This will automatically insert the Option Explicit statement in any new

module.

Syntax

variablename [As Type]

Example

Dim a As Integer

Dim flag As Boolean

 RULES FOR NAMING VARIABLES

 Must begin with an alphabet.

 Must not have an embedded period or a special character.

 Must not exceed 255 characters.

 Must be unique within the same scope.

 A module-level variable cannot have the same name as any procedures or

types

defined in the module.

 A local variable can have the same name as public procedures, types, or variables

defined in other modules.

 It is safer to have names of variables different from procedure names or controls in

other modules.

Example

Dim a As Double

Dim b As Double

Dim res As Double

Private Sub Command1_Click()

 11

a = Val(Text1.Text)

b = Val(Text2.Text)

res = a + b

Text3.Text = res

End Sub

 SCOPE OF A VARIABLE

 The place of creation and use of a variable is called its scope.

 In VB, the scope of a variable can be a procedure, a form module, a standard module, a

class module and so on.

 Lifetime of a variable is defined as the period between creating a variable and

destroying it.

 TYPES

 Procedure-level Variables – Dim, Static keywords

 Module-level Variables – Private, Public keywords

PROCEDURE-LEVEL VARIABLE

 A procedure-level local variable is declared inside a procedure using Dim keyword.

 A procedure-level variable can be accessed only inside the procedure where it is

declared.

 The value of a procedure-level variable is local to that procedure.

 The value of a variable in one procedure cannot be accessed from another procedure.

 A Procedure-level variable exists only as long as the procedure is executing.

 When the procedure finishes, the value of a procedure-level variable disappears.

Example

Dim cnt As Integer

Dim flag As Boolean

 Procedure-level static variable is declared with static keyword. It is local to the

procedure in which it is declared but it exists the entire time the application is running.

 A static variable will preserve its value even when its procedure ends.

 The value of a static variable will remain in memory even if its procedure terminates.

Example

Static counter As Integer

 12

Example - 1

Private Sub Command1_Click()

Dim cnt As Integer

cnt = cnt + 1

MsgBox "cnt = " & cnt

End Sub

Output

cnt = 1

cnt = 1

cnt = 1

Example - 2

Private Sub Command2_Click()

Static count As Integer

count = count + 1

MsgBox "count = " & count

End Sub

Output

count = 1

count = 2

count = 3

MODULE-LEVEL VARIABLE

 A module-level private variable is declared in the declaration section of a module

using the private keyword.

 A module-level private variable is available to all procedures within a module.

 A module-level private variable will not be available to procedures in other modules.

Example

Private temp As Integer

 A module-level public variable is declared in the declaration section of a module

using the public keyword.

 A module-level public variable is available to all modules in an application.

 Public variables cannot be declared inside a procedure.

 Local variables will have preference over public variables. This is called shadowing.

 13

Example

Public val As Integer

Scope Private Public

Procedure-level Variables are private to the

procedure in which they are

declared.

Not applicable. Procedure-level

variables cannot be public.

Module-level Variables are private to the module

in which they are declared.

Variables are available to all

modules in an application.

Example

Public x As Integer

x = 15

Dim x As Integer

x = 10

Accessing the value of ‘x’ inside the procedure will give the value 10. Accessing the

value of ‘x’ outside the procedure will give the value 15.

To access the module-level public variable inside the procedure use the following

Debug.print Module1.x

The above statement will give the value 15.

DATA TYPES

 A variable should have a name and data type.

 The data type of a variable what type of values can be stored in the variable and how

these variables are stored in the computer’s memory.

 Arrays also have data types.

 The arguments and return type of functions also have data types.

S.No.
DATA

TYPE
SIZE PURPOSE

1 Integer 2 bytes It is used to hold whole numbers. Its range

is

-215 to -215-1.

 14

2 Long 4 bytes It is used to hold long integers. It is much

slower than integer.

3 Single 4 bytes It is used to hold number with decimal

point.

4 Double 8 bytes It is used to hold number with decimal

point. It has a larger range than a single data

type.

5 String 1. Variable length -

0 to 2 billion

10 bytes + string

length

2. Fixed length – 1

to 65,400

It is used to store text or string values. It is

the most commonly used data type. By

default, a string variable or argument is a

variable-length string. A variable-length

string can grow or shrink as data is assigned

to it. Fixed length string variables will be

padded with enough trailing spaces or will

be truncated if assigned string is long.

6 Byte 1 byte It is used to hold one byte of data. It can

store values from 0 to 255. It cannot hold

negative numbers.

7 Boolean 2 Bytes It is used for holding True or False values.

Zero represents false and non-zero represents

true.

8 Currency 8 bytes It is used to store monetary values.

9 Date 8 bytes It is used to hold date and time data. It can

store dates from January 1, 100 and

December 31, 9999.

11 Object 4 bytes It is used to hold references to objects

within an application or other applications.

Example: Form, Controls, Procedure,

record set

12 User-defined Number required by elements. The range of

each element is the same as the range of its

data type.

EXAMPLE

 15

Dim x As Integer

Dim db As Database 'object data type

Dim rs As Recordset ' object data type

Dim ItemName as String ' a variable-length string

Dim ItemCode as String * 10 ' a fixed-length string

 ItemCode will be padded with enough trailing spaces to make it to 10 characters.

 If the value assigned to ItemCode has more than 10 characters, VB truncates the

characters.

 If both of the variants contain numbers, the + operator performs addition. If both the

variants contain strings, then the + operator performs string concatenation.

 If one of the variants contains a number and the other a string, you have a problem. VB

first attempts to convert the string into a number. If the conversion is successful, the +

operator adds the two values; if unsuccessful, it generates a Type mismatch error.

 It is better to use ‘&’ operator for string concatenation rather than ‘+’ operator.

 STRING FUNCTIONS

STRING

FUNCTION

DESCRIPTION SYNTAX

Trim Removes leading and trailing spaces in a

string.

Trim(string)

Ltrim Removes leading spaces in a string. LTrim(string)

Rtrim Removes trailing spaces in a string. RTrim(string)

Len Returns an integer value which is the

length of a string including empty

spaces.

Len(string)

LCase Converts all the characters of a string to

small letters

LCase(string)

UCase Converts all the characters of a string to

capital letters

UCase(string)

Left Extracts a specified number of characters

from the beginning of a string.

Left(string, length)

 16

Right Extracts a specified number of characters

from the end of a string.

Right(string, length)

Mid Extracts a substring from the original

string.
Mid(string, start[, length])

StrComp Compares string1 and string2 and returns

a value that represents the result of the

comparison. It returns -1 if string1 <

string2. It returns 0 if both strings are

equal. It returns 1 if string1 > string 2.

StrComp(string1, string2[,
compare])

StrReverse Reverses a string. StrReverse(string1)

InStr Returns the position of the first

occurrence of one string within another.

InStr([start,]string1, string2[,

compare])

InStrRev Returns the position of the last

occurrence of one string within another

string.

InstrRev(string1, string2[, start[,

compare]])

Replace Finds a string in an expression and

replaces with another string.

Replace(expression, find,

replacewith

[, start [, count[, compare]]])

Str() Returns the string equivalent of a

number.
Str(number)

Val() Converts a string to a number. Val(string)

String() Returns “character” n times. String(n, "Character")

Split Used to breakup a string at specified
places.

Split(expression[, delimiter[,

count[, compare]]])

 NUMBERS (MATH FUNCTIONS)

MATH

FUNCTION

DESCRIPTION

SYNTAX

Abs Returns the absolute (unsigned) value of

the argument.

Abs(num)

Sqr Returns the square root value of the

argument

Sqr(num)

Rnd Returns a random value between 0 and 1 Rnd[(num)]

Randomize It uses number to initialize the Rnd

function’s random-number generator,

giving it a new seed value.

Randomize

 17

Sgn Returns sign of a number Sgn(Num)

Round Rounds a number n to m decimal places Round (n, m)

Log Returns the natural logarithm of the

argument

Log(num)

Exp Exp of a number x is the value of ex Exp()

Sin Returns the sine value of the argument in

radians

Sin(num)

 WRITING SIMPLE PROGRAMS

 How to Concat two string in Visual basic?

Sub Main()

Dim str1, str2, str3 As String

str1 = "Visual"

str2 = "Basic"

str3 = "Program"

Console.WriteLine(str1 + " " + str2 + " " + str3)

Console.ReadLine()

End Sub

End Module

Output: Visual basic program

 Create a VB application using string functions.

Private Sub Command1_Click()

Text2.Text = Len(Text1.Text)

End Sub

 18

Private Sub Command2_Click()

Text2.Text = StrReverse(Text1.Text)

If Text1.Text = Text2.Text Then

MsgBox "Given string is palindrome"

Else

End If

End Sub

MsgBox "Given string is not palindrome"

Private Sub Command3_Click()

Text2.Text = UCase(Text1.Text)

End Sub

Private Sub Command4_Click()

Text2.Text = LCase(Text1.Text)

End Sub

Private Sub Command5_Click()

Text1.Text = ""

Text2.Text = ""

End Sub

Private Sub Command6_Click()

End

End Sub

 Create a VB application using math functions.

 19

Private Sub Form_Load() Text2.Visible

= False

End Sub

Private Sub Command1_Click()

Text2.Visible = False

Text3.Text = Abs(Val(Text1.Text)) End Sub

Private Sub Command2_Click()

Text2.Visible = False

Text3.Text = Sqr(Val(Text1.Text)) End Sub

Private Sub Command3_Click()

Text2.Visible = False

Text3.Text = Rnd(Val(Text1.Text)) End Sub

Private Sub Command4_Click()

Text2.Visible = False

Text3.Text = Sgn(Val(Text1.Text)) End Sub

 20

Private Sub Command5_Click()

Text2.Visible = True Text2.SetFocus

Text3.Text = Round(Val(Text1.Text), Val(Text2.Text)) End Sub

Private Sub Command6_Click()

Text2.Visible = False

Text3.Text = Log(Val(Text1.Text))

End Sub

Private Sub Command7_Click()

Text2.Visible = False

Text3.Text = Exp(Val(Text1.Text))

End Sub

Private Sub Command8_Click()

End

End Sub

 This program display a message whether the label is being click once or click twice.

In this program, insert a label and rename it as MyLabel and change its caption to "CLICK ME".

Next, key in the following codes:

Private Sub MyLabel_Click()

MyLabel.Caption = "You Click Me Once"

End Sub

Private Sub MyLabel_DblClick()

MyLabel.Caption = "You Click Me Twice!"

End Sub

 21

The Output

Running the program and click the label once, the "CLICK ME" caption will change to "You

Click Me Once". If you click the label twice, the "CLICK ME" caption will change to "You

Click Me Twice!".

 Change the background color of the form.

Private Sub Option1_Click(Index As Integer)

Select Case Index

Case 0

 22

Form1. BackColor = vbRed

Case 1

Form1. BackColor = vbGreen

Case 2

Form1. BackColor = vbBlue

End Select

End Sub

TOOLBOX

The tool box in Visual Basic contains many ready-made objects called controls. The

toolbox contains 21 standard controls by default.

The important controls are discussed below

1. Label Box

• Label control allows users to display text which cannot be changed.

2. Text Box / Edit Field / Edit Control

• Text control is used to accept user input or to display text to the user.

• It allows users to edit data in a text control.

3. Command Button

 23

• Command button is used to carry out a command.

• When a user clicks a command button, the computer will perform the task associated with that

button.

4. Option Button

• Option button allows users to display multiple choices.

• It allows users to select only one option among the available mutually exclusive options.

5. Check Box

• Check box acts as toggle switches, turning options on or off.

• Check box allows users to display multiple choices.

• It allows users to select one or more options among the available options.

6. Frame

• Frame control allows users to group controls together.

• To group controls, draw the Frame first, and then draw the controls inside the frame.

7. Picture Box

• A picture box control is used to display a picture in bitmap, icon, metafile, JPEG or GIF

formats.

• It clips the graphic if the control isn’t large enough to display the entire image.

• It can be used as a container.

8. Image

• An image control is used to display an image.

• It uses fewer resources than a picture box.

• It cannot be used as a container.

9. Timer

• Timer control is used to control actions that must take place at or after set intervals.

 24

• It is invisible while the program is running.

10. List Box

• The list box control is used to display a list of items.

• It allows the user to choose any one item from the list.

• It can display only a set of items that are available.

• Items can only be added to the list during run-time, not at design time.

11. Combo Box

• Combo box is a combination of list box and text box.

• It is a drop-down list box.

• It is used to display a list of items and it allows the user to choose any one item from it.

• It allows the users to enter new items to the combo box when the program is running.

12. HScrollBar

• Horizontal Scroll Bar control helps users to navigate through a long list of items, to indicate

the current position on a scale, or as an input device or indicator of speed or quantity.

• The position of the slider determines the value returned by a scroll bar.

13. VScrollBar

• Vertical Scroll Bar control helps users to navigate through a long list of items, to indicate the

current position on a scale, or as an input device or indicator of speed or quantity.

• The position of the slider determines the value returned by a scroll bar.

14. Line and Shape Controls

• Line and Shape Controls are used to draw lines and various shapes such as squares, circles, etc.

15. Pointer Control

• Pointer control is used to select objects that are placed on a form.

 25

16. Common Dialog Box

• The common dialog box control is used to perform open, save, print, and similar operations on

files.

17. Drive, Directory, and File List Controls

• Drive, Directory, and File controls can be used to display available drives, directories and

files.

• They are used to provide file management facilities.

• The user can select a valid drive on the system.

• The user can see a hierarchical structure of drives, directories and files in the system.

18. Data Control

• Data control is used to access data and manipulate data in a database.

19. DBGrid Control

• DBGrid control is used to create tables and spreadsheet.

20. OLE (Object Linking and Embedding)

• The OLE control allows users to link a VB program to another object or program.

• For example, from within a VB program, users can call Microsoft Excel, or MS Paint,

complete the work and get back to the VB application

1.7.1 CREATING CONTROLS

Toolbox provides a set of tools that you use at design time to place controls on a form. In

addition to the default toolbox layout, you can create your own custom layouts by selecting Add

Tab from the context menu and adding controls to the resulting tab. We discuss the nine controls

indicated on the Toolbox in the Figure.

 26

FIGURE 1 Nine Elementary Controls.

1.7.1.1 THE FRAME CONTROL

Frames are passive objects used to group related sets of controls for visual effect. You

rarely write event procedures for frames. The preceding frame has a group of three text boxes

attached to it. When you drag the frame, the attached controls follow as a unit. If you hide the

frame, the attached controls will be hidden as well.

1.7.1.2 THE CHECK BOX CONTROL

A check box, which consists of a small square and a caption, presents the user with a

yes/no choice. The Value property of a check box is 0 when the square is empty and is 1 when

the square is checked. At run time, the user clicks on the square to toggle between the unchecked

and checked states. So doing also trig-gers the Click event.

1.7.1.3 THE OPTION BUTTON CONTROL

Option buttons are used to give the user a single choice from several options. Normally, a

group of several option buttons is attached to a frame or picture box with the single-click- draw

 27

technique. Each button consists of a small circle accompanied by text that is set with the Caption

property. When a circle or its accompanying text is clicked, a solid dot appears in the circle and

the button is said to be “on.” At most one option button in a group can be on at the same time.

Therefore, if one button is on and another button in the group is clicked, the first button will turn

off. By convention, the names of option buttons have the prefix opt.

1.7.1.4 THE HORIZONTAL AND VERTICAL SCROLL BAR CONTROLS

There are two types of scroll bars. When the user clicks on one of the arrow buttons, the

thumb moves a small amount toward that arrow. When the user clicks between the thumb and

one of the arrow buttons, the thumb moves a large amount toward that arrow. The user can also

move the thumb by dragging it. The main properties of a scroll bar control are Min, Max, Value,

SmallChange, and LargeChange, which are set to integers. At any time, hsbBar. Value is a

number between hsbBar.Min and hsbBar. Max determined by the position of the thumb. If the

thumb is halfway between the two arrows, then hsbBar. Value is a number halfway between

hsbBar.Min and hsbBar.Max. If the thumb is near the left arrow button, then hsbBar. Value is an

appropriately proportioned value near hsbBar.Min. When an arrow button is clicked,

hsbBar.Value changes by hsbBar.SmallChange and the thumb moves accordingly. When the bar

between the thumb and one of the arrows is clicked, hsbBar.Value changes by

hsbBar.LargeChange and the thumb moves accordingly. When the thumb is dragged,

hsbBar.Value changes accordingly. The default values of Min, Max, SmallChange, and

LargeChange are 0, 32767, 1, and 1, respectively. However, these values are usually reset at

design time.

1.7.1.5 THE TIMER CONTROL

The timer control, which is invisible during run time, triggers an event after a specified

amount of time. The length of time, measured in milliseconds, is set with the Interval property to

be any number from 0 to 65,535 (about 1 minute and 5 seconds). The event triggered each time

Timer1.Interval milliseconds elapses is called Timer1_Timer(). In order to begin timing, a timer

must first be turned on by setting its Enabled property to True. A timer is turned off either by

setting its Enabled property to False or by setting its Interval property to 0. The standard pre- fix

for the name of a timer control is tmr.

 28

1.7.1.6 THE SHAPE CONTROL

The shape control assumes one of six possible predefined shapes depending on the value

of its Shape property. Figure 10-5 shows the six shapes and the values of their corresponding

Shape properties. Shapes are usually placed on a form at design time for decoration or to high-

light certain parts of the form. By convention, names of shape controls have the prefix shp.

FIGURE 10-5 The Six Possible Shapes for a Shape Control

1.7.1.7 THE LINE CONTROL

The Line control, which produces lines of various thickness, styles, and colors, is primarily

used to enhance the visual appearance of forms. The most useful properties of lines are

BorderColor (color of the line), BorderWidth (thickness of the line), BorderStyle (solid, dashed,

dotted, etc.), and Visible. Figure 10-8 shows several effects that can be achieved with lines. By

con- vention, names of line controls have the prefix lin.

FIGURE 10-8 Several Effects Achieved with Line Controls

1.7.1.8 THE IMAGE CONTROL

The image control is designed to hold pictures stored in graphics files such as .BMP files

 29

cre- ated with Windows’ Paint, .ICO files of icons that come with Visual Basic, or .GIF and

JPEG images used on the World Wide Web. Pictures are placed in image controls with the

Picture property. If you double-click on the Picture property during design time, a file-selection

dia- log box appears and assists you in selecting an appropriate file. However, prior to setting the

Picture property, you should set the Stretch property. If the Stretch property is set to False (the

default value), the image control will be resized to fit the picture. If the Stretch property is set to

True, the picture will be resized to fit the image control. Therefore, with Stretch property True,

pictures can be reduced (by placing them into a small image control) or enlarged (by plac- ing

them into an image control bigger than the picture). Figure 10-9 shows a picture created with

Paint and reduced to several different sizes. By convention, names of image controls have the

prefix img.

A picture can be assigned to an image control at run time. However, a statement such as

imgBox.Picture = “filespec”

will not do the job. Instead, we must use the LoadPicture function in a statement such as

imgBox.Picture = LoadPicture(“filespec”)

Image controls enhance the visual appeal of programs. Also, because image controls respond to

the Click event and can receive the focus, they can serve as pictorial command buttons.

 The Naming property

The Name property is a string used by clients to identify, find, or announce an object for

the user. All objects support the Name property. For example, the text on a button control is

its name, while the name for a list box or edit control is the static text that immediately precedes

the control in the tabbing order.

Every control has it’s properties one of the common properties of controls is name

property. Name property is the one by which the control is identified and it is referred as the

object name of that control.

COMMAND BUTTON

 The command button control is used to begin, interrupt, or end a process.

 When clicked, it invokes a command that has been written on its Click event

Procedure.

http://www.pearsoncustom.com/link/visualbasic/visualbasic.html

 30

 Most Visual Basic applications have command buttons that allow the user to

simply click them to perform actions.

COMMAND BUTTON PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the Command Button is referred in the

code.

Caption It is the meaningful name that appears on a command button.

Appearance The Appearance property sets whether or not an object is painted at

runtime with 3-D effects. 0 – Flat, 1 – 3-D

Style The Style property determines if the command button will display

text only or graphics also. 0 - Standard, 1- Graphical

Visible It is a Boolean property. If the property is set to true, the

command button is visible. Otherwise, it is hidden.

Enabled It is a Boolean property. By default, this property’s value is True,

which means that the control can respond to user-

generated events.

Cancel It is a Boolean property. It indicates whether the command button is

the cancel button on a form. Pressing Esc key will activate this

button. The default value is False.

BackColor It determines the background color of a command button. It can be

set by using the color palette.

Font Properties The font properties of a command button include the Font,

FontName, FontSize, FontBold, FontItalic, FontStrikethru, and

FontUnderline

Position Properties Properties like Left, Top, Height, and Width can be set at design

time and runtime to locate the form at a place of the user’s choice.

Picture The Picture property specifies the picture that will be displayed on

the command button when it is down or selected.

DisabledPicture The DisabledPicture property specifies the picture that will be

displayed when the command button is disabled.

 31

 COMMAND BUTTON EVENTS

EVENT DESCRIPTION

Click The Click event occurs when a command button is clicked. The code written

in the Click event procedure is invoked. Clicking a command button control

also generates the MouseDown and MouseUp events.

DragDrop The DragDrop event occurs when a user clicks on an object and drags it to a

different location on the screen.

DragOver The DragOver event occurs when the user drags an object over another

control.

KeyDown The KeyDown event occurs when the user presses a key while a form or

control has the focus.

KeyPress The KeyPress event occurs when the user presses and releases a key or key

combination while a form or control has the focus.

KeyUp The KeyUp event occurs when the user releases a key while a form or control

has the focus.

MouseDown The MouseDown event occurs when the user presses any mouse button.

MouseMove The MouseMove event occurs when the user moves the mouse across the

screen.

MouseUp The MouseUp event occurs when the user releases any mouse button.

GotFocus The GotFocus event occurs when the specified object receives the focus.

LostFocus The LostFocus event occurs when the specified object loses the focus.

 COMMAND BUTTON METHODS

METHOD DESCRIPTION

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

Refresh The Refresh method repaints or redraws an object completely.

ZOrder It places a specified form or control at the front or back of the z-

order within its graphical level.

 32

EXAMPLE

Create a VB application to perform arithmetic operations using textbox control and

command button control.

Private Sub Command1_Click()

Text3.Text = Val(Text1.Text) + Val(Text2.Text)

End Sub

Private Sub Command2_Click()

Text3.Text = Val(Text1.Text) - Val(Text2.Text)

End Sub

Private Sub Command3_Click()

Text3.Text = Val(Text1.Text) * Val(Text2.Text)

End Sub

Private Sub Command4_Click()

Text3.Text = Val(Text1.Text) / Val(Text2.Text)

End Sub

Private Sub Command5_Click()

Text3.Text = Val(Text1.Text) Mod Val(Text2.Text)

 33

End Sub

Private Sub Command6_Click() Text1.Text = ""

Text2.Text = "" Text3.Text = ""

End Sub

Private Sub Command7_Click()

End

End Sub

 Access Keys

An access key is an underlined character in the text of a menu, menu item, or the label of

a control such as a button. With an access key, the user can "click" a button by pressing the Alt

key in combination with the predefined access key. For example, if a button runs a procedure to

print a form, and therefore its Text property is set to "Print," adding an ampersand before the

letter "P" causes the letter "P" to be underlined in the button text at run time. The user can run the

command associated with the button by pressing Alt+P.

Controls that cannot receive focus can't have access keys.

Set the Text property to a string that includes an ampersand (&) before the letter that will be the

shortcut.

Example:

// Set the letter "P" as an access key.

button1.Text = "&Print";

To use an ampersand in a caption without creating an access key, include two ampersands (&&).

A single ampersand is displayed in the caption and no characters are underlined.

In the Properties window of Visual Studio, set the Text property to a string that includes an

ampersand ('&') before the letter that will be the access key. For example, to set the letter "P" as

the access key, enter &Print.

 IMAGE CONTROLS

 An image control is used to display an image.

 It uses fewer resources than a picture box.

 It cannot be used as a container of other controls.

 34

 IMAGE PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the image control is referred in the code.

Picture It specifies the graphic to be displayed in a control.

Stretch It is a Boolean property. It specifies a value that determines

whether a graphic resizes to fit the size of an image control.

Appearance It determines whether or not an object is painted with 3-D effects

at runtime. 0 – Flat, or 1 - 3-D.

BorderStyle It specifies the border style of a control.

0 - None, 1 - Fixed Single

Visible It is a Boolean property. If it is set to true, the image control will

be visible to the user.

Enabled It is a Boolean property. If it is set to true, the user can access the

control.

Position Properties Properties like Left, Top, Height, and Width can be set at design

time or runtime to locate the control at a place of the user’s choice.

ToolTipText It is the text that pops up when the mouse pointer is paused over a

control.

Tag It stores any extra data needed for your program.

DataFormat It returns a DataFormat object for use against a bindable property

of the component.

DataSource It specifies the data control through which the current control is

bound to a database.

DataField It binds a control to a field in the current record.

 IMAGE EVENTS

EVENT DESCRIPTION

Click The Click event occurs when a control is clicked.

 35

DblClick The DblClick event occurs when a control is double clicked.

DragDrop The DragDrop event occurs when a user clicks on an object and drags it to a

different location on the screen.

DragOver The DragOver event occurs when the user drags an object over another

control.

MouseDown The MouseDown event occurs when the user presses any mouse button.

MouseMove The MouseMove event occurs when the user moves the mouse across the

screen.

 IMAGE METHODS

METHOD DESCRIPTION

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

Refresh The Refresh method repaints or redraws an object completely.

ZOrder It places a specified form or control at the front or back of the z-order within

its graphical level.

Example

Create a VB application to toggle images using image controls and timer control.

 36

General Declarations

Dim flag As Integer Private Sub

Form_Load()

Image1.Visible = False

Image2.Visible = False

Image3.Picture = Image1.Picture

Timer1.Interval = 3000

flag = 1 End

Sub

Private Sub Timer1_Timer()

If flag = 1 Then

Image3.Picture = Image1.Picture

flag = 2

Else

Image3.Picture = Image2.Picture

flag = 1

End If End

Sub

Private Sub Command1_Click()

End

 37

End Sub

 TEXT BOX

 Text control is used to accept user input or to display text to the user.

 It allows users to edit data in a text control.

TEXTBOX PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the textbox is referred in the code.

Text It specifies the text which is contained in the textbox.

Appearance It determines whether or not an object is painted with 3-D effects at

runtime. 0 - Flat look, 1 - 3-D look.

BorderStyle It specifies the border style of a control. 0-None, 1-Fixed Single

Alignment It refers to alignment of text in a textbox.

0 - Left justify, 1- Right justify, 2 - Center

MultiLine It is a Boolean property. It specifies whether the textbox can display

multiple lines of text.

MaxLength It specifies the maximum number of characters that can be displayed in a

text box. A value of 0 indicates text of unlimited length.

PasswordChar It hides the actual text entered in a textbox with the specified character.

BackColor It determines the background color of a textbox. It can be set by using the

color palette which appears beside the property.

ForeColor It determines the text color of a textbox. It can be set by using the color

palette which appears beside the property.

DataFormat It specifies the data format as either number, currency, date, time,

percentage, Boolean etc.

DataSource It specifies the data control through which the current control is bound to a

database.

DataField It binds a control to a field in the current record.

ScrollBars It specifies a value indicating whether an object has horizontal or vertical

scroll bars. 0 - None, 1- Horizontal, 2 - Vertical, 3 - Both

 38

 TEXTBOX EVENTS

EVENT DESCRIPTION

Change It is triggered when the text property changes.

Click The Click event occurs when a control is clicked.

DblClick The DblClick event occurs when a control is double clicked.

GotFocus The GotFocus event occurs when the specified object receives the focus.

LostFocus It is triggered when the user leaves the textbox.

KeyDown The KeyDown event occurs when the user presses a key while a form or

control has the focus.

KeyUp The KeyUp event occurs when the user releases a key while a form or

control has the focus.

KeyPress It is triggered whenever a key is pressed.

MouseDown The MouseDown event occurs when the user presses any mouse button.

MouseMove The MouseMove event occurs when the user moves the mouse across the

screen.

MouseUp The MouseUp event occurs when the user releases any mouse button.

DragDrop The DragDrop event occurs when a user clicks on an object and drags it

to a different location on the screen.

DragOver The DragOver event occurs when the user drags an object over another

control.

TEXTBOX METHODS

METHOD DESCRIPTION

Refresh The Refresh method repaints or redraws an object completely.

 39

SetFocus The SetFocus method moves focus to the specified Form, the specified

control on the active form, or the specified field on the active datasheet.

Move The Move method allows a programmer to position a control at a desired

location.

Drag The Drag method is triggered when an object is dragged.

ZOrder The z-order method places a specified form or control at the front or back

of the z-order within its graphical level.

 LABEL

Label control allows users to display text which cannot be edited.

LABEL PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the label is referred in the code.

Caption It is the text that is displayed in the label.

Appearance It determines whether or not an object is painted with 3-D effects at

runtime. 0 - Flat look, 1 - 3-D look.

Border Style It specifies the border style of a control. 0-None, 1-Fixed Single

Alignment It refers to alignment of text in a label.

0 - Left justify, 1- Right justify, 2 - Center

AutoSize It is a Boolean property. It gets or sets a val`ue specifying if the control

should be automatically resized to display all its contents.

WordWrap If set to true, it automatically wraps text in a label. Default value is false.

Visible It is a Boolean property. If the property is set to true, the label is visible.

Otherwise, it is hidden.

Enabled It is a Boolean property. By default, this property’s value is True, which

means that the control can respond to user-generated events.

BackColor It determines the background color of a label. It can be set by using the

color palette which appears beside the property.

 40

ForeColor It determines the text color of a label. It can be set by using the color

palette which appears beside the property.

DataField It binds a control to a field in the current record.

DataMember It specifies the data member for a data connection.

ToolTipText It is the text that pops up when the mouse pointer is paused over a control.

 LABEL EVENTS

EVENT DESCRIPTION

Change It is triggered when the text in the label changes.

Click It is triggered when user clicks on a label.

DblClick It is triggered when user double clicks on a label.

DragDrop The DragDrop event occurs when a user clicks on an object and drags it

to a different location on the screen.

DragOver The DragOver event occurs when the user drags an object over another

control.

MouseDown The MouseDown event occurs when the user presses any mouse button.

MouseMove The MouseMove event occurs when the user moves the mouse across

the screen.

MouseUp The MouseUp event occurs when the user releases any mouse button.

LABEL METHODS

METHOD DESCRIPTION

Drag The Drag method is triggered when an object is dragged.

Move The Move method allows a programmer to position an object at a

desired location.

Refresh The Refresh method repaints or redraws an object completely.

ZOrder It places a specified form or control at the front or back of the z-order

within its graphical level.

 CHECK BOX

 41

 Check box acts as toggle switches, turning options on or off.

 Check box allows users to display multiple choices.

 It allows users to select one or more options among the available options.

CHECK BOX PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the Checkbox Box is referred in the code.

Caption It is the meaningful name that appears on a checkbox.

Value It specifies the value of an object.

0 - Unchecked, 1 - Checked, 2- Grayed. Default value is 0.

BackColor The BackColor property sets the background color used to display

text and graphics in an object.

ForeColor It specifies the foreground color used to display text and graphics in an

object.

Font Properties The font properties of a checkbox include the Font, FontName,

FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline.

Postion Properties Properties like Left, Top, Height, and Width can be set at design time

or at runtime to locate the control at a place of the user’s choice.

Picture The Picture property specifies the picture that will be displayed in the

checkbox.

DataFormat It specifies the data format. The data format can be either number,

currency, date, time, percentage, Boolean etc.

DataSource It specifies the data control through which the current control is bound

to a database.

DataField It binds a control to a field in the current record.

DataMember It specifies the data member for a data connection.

 CHECK BOX EVENTS

EVENT DESCRIPTION

 42

Click The Click event occurs when a checkbox is clicked.

DragDrop The DragDrop event occurs when a user clicks on an object and drags

it to a different location on the screen.

DragOver The DragOver event occurs when the user drags an object over

another control.

KeyDown The KeyDown event occurs when the user presses a key while a form

or control has the focus.

KeyPress The KeyPress event occurs when the user presses and releases a key

or key combination while a form or control has the focus.

KeyUp The KeyUp event occurs when the user releases a key while a form or

control has the focus.

MouseDown The MouseDown event occurs when the user presses any mouse

button.

MouseMove The MouseMove event occurs when the user moves the mouse across

the screen.

MouseUp The MouseUp event occurs when the user releases any mouse button.

 CHECK BOX METHODS

METHOD DESCRIPTION

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

Refresh The Refresh method repaints or redraws an object completely.

SetFocus The SetFocus method is used to transfer focus to the control.

ZOrder It places a specified form or control at the front or back of the z-order within

its graphical level.

Example

 43

Create a VB application for text formatting using textbox, checkbox, option button,

and frame controls.

Private Sub Check1_Click()

If Check1.Value = 1 Then

Text1.FontBold = True

Else

Text1.FontBold = False

End If

End Sub

Private Sub Check2_Click()

If Check2.Value = 1 Then

Text1.FontItalic = True

Else

Text1.FontItalic = False

End If

End Sub

Private Sub Check3_Click()

If Check3.Value = 1 Then

Text1.FontUnderline = True

Else

Text1.FontUnderline = False

 44

End If

End Sub

Private Sub Option1_Click()

If Option1.Value = True Then

Text1.FontSize = 10

End If End Sub

Private Sub Option2_Click()

If Option2.Value = True Then

Text1.FontSize = 20

End If End Sub

Private Sub Option3_Click()

If Option3.Value = True Then

Text1.FontSize = 30

End If End Sub

Private Sub Option4_Click()

Text1.ForeColor = RGB(255, 0, 0)

End Sub

Private Sub Option5_Click()

Text1.ForeColor = RGB(0, 255, 0)

End Sub

Private Sub Option6_Click()

Text1.ForeColor = RGB(0, 0, 255)

End Sub

 FRAME

 Frame control allows users to group controls together.

 To group controls, draw the Frame first, and then draw the controls inside the frame.

FRAME PROPERTIES

 45

PROPERTY DESCRIPTION

Name It is the name by which the frame is referred in the code.

Caption It is the meaningful name that appears on a frame.

Appearance The Appearance property sets whether or not an object is painted at

runtime with 3-D effects.

BorderStyle It specifies the border style of a control.

0 - None, 1- Fixed Single

Visible It is a Boolean property. If the property is set to true, the frame is

visible. Otherwise, it is hidden.

Enabled It is a Boolean property. By default, this property’s value is True,

which means that the control can respond to user-generated events.

BackColor It determines the background color of a frame. It can be set by using

the color palette which appears beside the property.

ForeColor It determines the text color of a frame. It can be set by using the color

palette which appears beside the property.

 FRAME EVENTS

EVENT DESCRIPTION

Click The Click event occurs when a frame is clicked.

DblClick The DblClick event occurs when a frame is double clicked.

DragDrop The DragDrop event occurs when a user clicks on an object and drags it to a

different location on the screen.

DragOver The DragOver event occurs when the user drags an object over another

control.

MouseDown The MouseDown event occurs when the user presses any mouse button.

MouseMove The MouseMove event occurs when the user moves the mouse across the

screen.

MouseUp The MouseUp event occurs when the user releases any mouse button.

 FRAME METHODS

 46

METHOD DESCRIPTION

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

Refresh The Refresh method repaints or redraws an object completely.

ZOrder It places a specified form or control at the front or back of the z-order

within its graphical level.

 MESSAGE BOXES: MSGBOX AND INPUTBOX FUNCTIONS

 MsgBox statement can be used to display outputs and messages to the user.

 MsgBox function can be used for inputs.

Syntax

MsgBox message, typecode [, title]

Result = MsgBox(prompt, typecode [, title])

Both message and title are strings, and can be straight text (in quotes), variables, string

functions, or combination of these, joined by ampersands (&). Typecode is a number formed

by adding together the codes that control which buttons are to appear, which symbol is to be

displayed, and which button is to be highlighted when the box opens. Result is an integer.

VALUE BUTTON SET CONSTANT

0 OK vbOKOnly

1 OK, Cancel vbOKCancel

2 Abort, Retry, Ignore vBAbortRetryIgnore

3 Yes, No, Cancel vbYesNoCancel

4 Yes, No vbYesNo

5 Retry, Cancel vbRetryCancel

VALUE SYMBOL DESCRIPTION

16

vbCritical

 47

32

vbQuestion

48

vbExclamation

64

vbInformation

The value returned by the MsgBox function shows which button was clicked.

VALUE BUTTON

1 OK

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

The InputBox Function is used to get inputs from the users. An InputBox will always

display OK and Cancel, and cannot hold symbols.

Syntax

Result = InputBox(prompt[, title] [, default_value])

The default_value is a string that can be displayed in the entry slot of the box, and will

be returned if the user presses OK. Clicking Cancel, or pressing the [Esc] key, produces a

Null value, which can cause problems. The return value is of Variant type.

 48

UNIT II

 DISPLAYING INFORMATION

Visual basic displays the information in text on a form using the Print method. The general

format of the Print method applied to a form is

Formname.Print expression

Where, expression is any visual basic expression. An empty Print statement can be used

to add a blank line. To suppress the automatic carriage return and line feed, place a semicolon at

the end of a Print statement.

The Me keyword can be used to identify the current form. If the form name is left out, the

expression will be printed on the current form. To use Print statements in the Form_Load event

to display information when the form starts up, include Show statement before any print

statements. When the following code is written in the Form_Load and the program is run the text

will be displayed on the form.

Private Sub Form_Load()

Show

Print “Welcome to Visual Basic”

End Sub

When the form is minimized and restored, the text will disappear if the Auto Redraw is

set to False. Once the Auto Redraw property is set to True, Visual basic saves a copy of the

object in memory. Whenever Visual basic processes on Object, refresh statement, will redraw the

object immediately and generate the Paint event if the object supports this.

 FONTS

Proportionally spaced fonts are those fonts in which character may be of different widths.

For Example: Arial. Non-proportionally spaced fonts are those fonts in which characters are of

the same width. For example: Courier New. The Print statement can be made to display its

information in a particular position on the form by setting the currentX and currentY.

FormName . CurrentX = Value

FormName . CurrentY = Value

 49

Where, the value may be any numeric expression. Whenever the Cls method is used to

clear a form, Visual Basic reset the CurrentX and CurrentY values to zero. To display

information at the beginning of seventh line space set CurrentX and CurrentY as follows:

CurrentY = Me . TextHieght (“X”) * 6

CurrentX = 0

Where, the TextHeight returns the amount of vertical space need to display the string.

 TAB AND SPC COMMANDS

The Tab function lets to move to a specific column and start printing there. Its syntax is

Print Tab (ColumnNumber%)

Where, ColumnNumber% is an integral expression. If the current column position is

greater than its value, Tab skips to this column on the next line.

The Spc function inserts the specified number of spaces into a line starting at the current

print position. Its syntax is

Spc(Integer%)

 FORMAT FUNCTION

The format function works with a number and a template called a format string. The

syntax is

Format (NumericExpression, FormatString$)

For example, the following Form_Load event procedure is run.

Private Sub Form_Load()

Show

Me.Font.Size = 12

Me.Print Format(123.456789, "###.##")

Me.Print Format(123.45, "###.###")

Me.Print Format(123456789.991, "#,#.##")

Me.Print Format(100000000, "#00,,") & ("million")

Me.Print Format(123.45, "0000.000")

Me.Print Format(Now, "General Date")

 50

Me.Print Format(Now, "Short Time")

End Sub

Output

 LOOPING STATEMENTS

Looping statements are used to repeat a group of statements until certain specified

conditions are met. This can be achieved by a repetition structure which allows the

programmer to repeat an action until given condition is true. This repeated structure forms a

loop. Two types of loops are available, determinate loop and indeterminate loop.

 DETERMINATE LOOPS

Repeating the loop for a certain number of fixed times is called a determinate loop.

FOR … NEXT STATEMENT

It is an entry-controlled loop. The test condition is evaluated and if the condition is

true, then the body of the loop is executed. When the test condition becomes false, control is

transferred out of the loop and execution continues with the statement immediately after the

body of the loop. It allows positive and negative increments.

Syntax

 51

EXAMPLE

Create a VB application to calculate the sum and average of ‘n’ numbers using For …

Next statement.

sum = 0

avg = 0

For i = 1 To n

arr(i) = InputBox("Enter a number") sum = sum + arr(i)

Next i

avg = sum / n

Text2.Text = sum Text3.Text = avg

End Sub

 DO … LOOP STATEMENT

 The Do … Loop statement can be either entry-controlled or exit-controlled.

 In an exit-controlled loop, the body of the loop is always executed at least once.

 In a Do … While loop, the body of the loop is executed while the test condition is

true. When the test condition becomes false, control is transferred out of the loop and

execution continues with the statement immediately after the body of the loop.

 In a Do … Until loop, the body of the loop is executed while the test condition is

false. When the test condition becomes true, control is transferred out of the loop and

execution continues with the statement immediately after the body of the loop.

For counter = start To end [Step stepValue]

[statements]

[Exit For]

[statements]

Next [counter]

 52

Syntax

ENTRY-CONTROLLED EXIT-CONTROLLED

Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

Do

[statements] [Exit Do]

[statements]

Loop [{While | Until}condition]

Example

Create a VB application to calculate the sum and average of ‘n’ numbers using Do …

While statement.

Private Sub Command2_Click()

Dim i As Integer

Dim sum As Integer

Dim avg As Integer

Dim cnt As Integer

n = Val(Text1.Text)

sum = 0

avg = 0

i = 1

Do While i <= n

arr(i) = InputBox("Enter a number")

sum = sum + arr(i)

i = i + 1

Loop

avg = sum / n

Text2.Text = sum

Text3.Text = avg

End Sub

Example

Create a VB application to calculate the sum and average of ‘n’ numbers using Do …

Until statement.

 53

Private Sub Command3_Click() Dim i

As Integer

Dim sum As Integer Dim

avg As Integer Dim cnt As

Integer n =

Val(Text1.Text) sum = 0

avg = 0

i = 1
Do Until i > n

arr(i) = InputBox("Enter a number") sum = sum

+ arr(i)

i = i + 1 Loop

avg = sum / n

Text2.Text = sum

Text3.Text = avg

End Sub

 WHILE … WEND STATEMENT

 It is an entry-controlled loop. The test condition is evaluated and if the condition is

true, then the body of the loop is executed. When the test condition becomes false,

control is transferred out of the loop and execution continues with the statement

immediately after the body of the loop.

Syntax

While condition

[statements]

Wend

Example

Create a VB application to calculate the sum and average of ‘n’ numbers using while

statement.

Private Sub Command1_Click() Dim i

As Integer

Dim sum As Integer Dim

avg As Integer Dim cnt As

 54

Integer n =

Val(Text1.Text) sum = 0

avg = 0

i = 1

While i <= n

arr(i) = InputBox("Enter a number")

sum = sum + arr(i)

i = i + 1

Wend

avg = sum / n

Text2.Text = sum

Text3.Text = avg

End Sub

 INDETERMINATE LOOPS

Indeterminate loop, which repeats the action of execution until certain condition is to be

satisfied.

 CONDITIONALS

Branching statements are used to change the order of execution of statements based

on certain conditions. Branching statements include if statement and select … case

statements.

 IF STATEMENT

If ... Else statement is a two-way decision statement. It is used to control the flow of

execution of statements based on the outcome of a condition.

Syntax

If condition Then [ifstatements] [Else elsestatements]

If the test condition is true, then if statements is executed. Otherwise, else statements

is executed.

Example

Create a VB application to check whether a number is odd or even.

Private Sub Command1_Click()

 55

Dim n As Integer

n = Val(Text1.Text) If n Mod 2 = 0 Then

MsgBox n & " is even"

Else

MsgBox n & " is odd"

End If

End Sub

IF … ELSEIF STATEMENT

If ... Else if statement is used when multipath decisions are involved.

Syntax

The conditions will be tested in sequence. As soon as a condition is found to be true,

the statement-block associated with it will be executed and the rest of the ladder is skipped.

When all n conditions are false, then the else statements-block will be executed.

Example

Create a VB application to print the biggest of three numbers.

If condition Then

[ifstatements]

[ElseIf condition-n Then

[elseifstatements]

[Else

[elsestatements]]

End If

Private Sub Command1_Click() Dim a As

Integer

Dim b As Integer Dim c As

Integer Dim big As Integer

big = 0

a = Val(Text1.Text)

b = Val(Text2.Text)

c = Val(Text3.Text)

If ((a > b) And (a > c)) Then

 56

big = a

ElseIf (b > c) Then

big = b

Else

big = c

End If

MsgBox "Biggest Number is " & big

End Sub

NESTED IF STATEMENT

Nested If ... Else statement is used when a series of decisions are involved.

Syntax

If condition Then

If condition Then

[ifstatements]

Else

[elsestatements]]

End If

Else

[elsestatements]]

End If

Example

Create a VB application to calculate bonus of a person based on his age, gender, and

balance.

Private Sub Command1_Click()

Dim age As Integer

Dim gender As String

Dim balance As Integer

Dim bonus As Double

age = Val(Text1.Text)

gender = Trim(Text2.Text)

 57

balance = Val(Text3.Text) If (age > 60)

Then

If (gender = "f" Or gender = "F") Then

bonus = 0.05 * balance

ElseIf (gender = "m" Or gender = "M") Then

bonus = 0.04 * balance

Else

Else

bonus = 0.03 * balance

End If

bonus = 0.02 * balance

End If

MsgBox ("Bonus = " & bonus)

End Sub

SELECT STATEMENT

Select … Case statement is used when there are many alternate paths all based on the

value of a variable.

Syntax

Select Case testexpression

[Case expressionlist-n

[statements-n]]

...

[Case Else

[elsestatements]]

End Select

Example

Create a VB application to print the day of a week using select … case statement.

Private Sub Command1_Click()

Dim n As Integer

n = Val(Text1.Text)

Select Case n

 58

Case 1:

MsgBox "Day is Sunday"

Case 2:

MsgBox "Day is Monday"

Case 3:

MsgBox "Day is Tuesday"

Case 4:

MsgBox "Day is Wednesday"

Case 5:

MsgBox "Day is Thursday"

Case 6:

MsgBox "Day is Friday"

Case 7:

MsgBox "Day is Saturday"
Case Else:

MsgBox "Enter a number between 1 and 7"

End Select

End Sub

 BUILT-IN-FUNCTIONS

Visual Basic provides many built-in functions which (usually) accept one or more arguments,

and return a value based on the argument(s).

 STRING FUNCTIONS

STRING

FUNCTION

DESCRIPTION SYNTAX

Trim Removes leading and trailing spaces in a

string.

Trim(string)

Ltrim Removes leading spaces in a string. LTrim(string)

Rtrim Removes trailing spaces in a string. RTrim(string)

Len Returns an integer value which is the

length of a string including empty

spaces.

Len(string)

LCase Converts all the characters of a string to

small letters

LCase(string)

 59

UCase Converts all the characters of a string to

capital letters

UCase(string)

Left Extracts a specified number of characters

from the beginning of a string.

Left(string, length)

Right Extracts a specified number of characters

from the end of a string.

Right(string, length)

Mid Extracts a substring from the original

string.
Mid(string, start[, length])

StrComp Compares string1 and string2 and returns

a value that represents the result of the

comparison. It returns -1 if string1 <

string2. It returns 0 if both strings are

equal. It returns 1 if string1 > string 2.

StrComp(string1, string2[,

compare])

StrReverse Reverses a string. StrReverse(string1)

InStr Returns the position of the first

occurrence of one string within another.

InStr([start,]string1, string2[,

compare])

InStrRev Returns the position of the last

occurrence of one string within another

string.

InstrRev(string1, string2[, start[,

compare]])

Replace Finds a string in an expression and

replaces with another string.

Replace(expression, find,
replacewith

[, start [, count[, compare]]])

Str() Returns the string equivalent of a

number.
Str(number)

String() Returns “character” n times. String(n, "Character")

Split Used to breakup a string at specified

places.

Split(expression[, delimiter[,

count[, compare]]])

Join Used to build a larger string out of

smaller strings.

Join(list[, delimiter])

EXAMPLE

Create a VB application using string functions.

 60

Private Sub Command1_Click()

Text2.Text = Len(Text1.Text)

End Sub

Private Sub Command2_Click()

Text2.Text = StrReverse(Text1.Text)

If Text1.Text = Text2.Text Then

MsgBox "Given string is palindrome"

Else

End If

End Sub

MsgBox "Given string is not palindrome"

Private Sub Command3_Click()

Text2.Text = UCase(Text1.Text)

End Sub

Private Sub Command4_Click()

Text2.Text = LCase(Text1.Text)

End Sub

 61

Private Sub Command5_Click()

Text1.Text = ""

Text2.Text = ""

End Sub

Private Sub Command6_Click()

End

End Sub

 MATH FUNCTIONS (Numeric)

MATH

FUNCTION

DESCRIPTION SYNTAX

Abs Returns the absolute (unsigned) value of

the argument.

Abs(num)

Sqr Returns the square root value of the

argument

Sqr(num)

Rnd Returns a random value between 0 and 1 Rnd[(num)]

Randomize It uses number to initialize the Rnd

function’s random-number generator,

giving it a new seed value.

Randomize

Sgn Returns sign of a number Sgn(Num)

Round Rounds a number n to m decimal places Round (n, m)

Log Returns the natural logarithm of the

argument

Log(num)

Exp Exp of a number x is the value of ex Exp()

Sin Returns the sine value of the argument in

Radians

Sin(num)

Cos Returns the cosine value of the argument
in

Radians

Cos(num)

Tan Returns the tangent value of the

argument in

Radians

Tan(num)

 62

EXAMPLE

Create a VB application using math functions.

Private Sub Form_Load()

Text2.Visible = False

End Sub

Private Sub Command1_Click()

Text2.Visible = False

Text3.Text = Abs(Val(Text1.Text))

End Sub

Private Sub Command2_Click()

Text2.Visible = False

Text3.Text = Sqr(Val(Text1.Text))

End Sub

Private Sub Command3_Click()

Text2.Visible = False

Text3.Text = Rnd(Val(Text1.Text))

End Sub

 63

Private Sub Command4_Click()

Text2.Visible = False

Text3.Text = Sgn(Val(Text1.Text))

End Sub

Private Sub Command5_Click()

Text2.Visible = True Text2.SetFocus

Text3.Text = Round(Val(Text1.Text), Val(Text2.Text))

End Sub

Private Sub Command6_Click()

Text2.Visible = False

Text3.Text = Log(Val(Text1.Text))

End Sub

Private Sub Command7_Click()

Text2.Visible = False

Text3.Text = Exp(Val(Text1.Text))

End Sub

OPERATORS

An operator is a symbol that is used to manipulate data and variables called operands

to produce a resultant value. Visual Basic supports the following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operator

 Concatenation Operators

 ARITHMETIC OPERATORS

Arithmetic operators are used to perform arithmetic operations.

 64

OPERATOR DESCRIPTION EXAMPLE RESULT

+ Addition 5+6 11

- Subtraction, Unary minus 14-6 8

* Multiplication 5*4 20

/ Division 25/5 5

\ Integer Division 20/3 6

Mod Modulo Division 20/3 2

^ Exponentiation 3^3 27

Example

Private Sub Command1_Click()

Text3.Text = Val(Text1.Text) + Val(Text2.Text)

End Sub

 RELATIONAL OPERATORS

Relational operators are used to compare two quantities. An expression containing a

relational operator is called a relational expression. The value of a relational expression is

either true or false.

OPERATOR DESCRIPTION EXAMPLE RESULT

= Equal to 10 > 8 True

<> Not equal to 5<>4 True

< Less than 20<5 False

> Greater than 25 > 10 True

<= Less than or equal to 21 <=21 True

>= Greater than or equal to 5>=5 True

Is Compares references

 65

 LOGICAL OPERATORS

Logical operators are used to combine two or more conditions and make decisions.

An expression containing a logical operator is called a logical expression. A logical

expression returns either true or false.

OPERATOR DESCRIPTION EXAMPLE

And True, if both the operands are true (age > 21) And (salary > 50000)

Or True, if one of the operands is true (num == 0) Or (num == 1)

Not Negation of Operand Not a

 ASSIGNMENT OPERATOR

Assignment operator is used to assign the result of an expression to a variable.

OPERATOR DESCRIPTION EXAMPLE RESULT

= Assigns result of an expression to a variable a = 3+5*2 a=13

 CONCATENATION OPERATORS

Concatenation operator is used for joining strings.

OPERATOR DESCRIPTION EXAMPLE RESULT

+ Joins a number with a string or

joins two strings

“abc” + “def” abcdef

& Joins two strings “Jenefa” & ” “ &

“Joy”

Jenefa

Joy

 FUNCTIONS AND PROCEDURES

We use procedures and functions to create modular programs. Visual Basic statements are

grouped in a block enclosed by Sub, Function and matching End statements. The difference

between the two is that functions return values, procedures do not.A procedure and function is a

piece of code in a larger program. They perform a specific task. The advantages of using

procedures and functions are:

 66

 Reducing duplication of code

 Decomposing complex problems into simpler pieces

 Improving clarity of the code

 Reuse of code

 Information hiding

 FUNCTIONS

A function is a block of Visual Basic statements inside Function, End Function statements.

Functions return values.There are two basic types of functions. Built-in functions and user

defined ones. The built-in functions are part of the Visual Basic language. There are various

mathematical, string or conversion functions.

In the preceding example, we use two math functions and one string function. Built-in functions

help programmers do some common tasks. In the following example, we have a user defined

function.

Module Example

Sub Main()

Console.WriteLine(Math.Abs(-23))

Console.WriteLine(Math.Round(34.56))

Console.WriteLine("ZetCode has {0} characters", _Len("ZetCode"))

End Sub

End Module

Module Example

Dim x As Integer = 55

Dim y As Integer = 32

Dim result As Integer

Sub Main()

result = Addition(x, y)

Console.WriteLine(Addition(x, y))

End Sub

Function Addition(ByVal k As Integer, _ByVal l As Integer) As Integer

 67

Two values are passed to the function. We add these two values and return the result to

the Main() function.

Addition function is called. The function returns a result and this result is assigned to the result

variable.

This is the Addition function signature and its body. It also includes a return data type, for the

returned value. In our case is an Integer. Values are returned to the caller with

the Return keyword.

 PROCEDURES

A procedure is a block of Visual Basic statements inside Sub, End Sub statements. Procedures do

not return values.

This example shows basic usage of procedures. In our program, we have two procedures.

The Main() procedure and the user defined SimpleProcedure(). As we already know,

the Main() procedure is the entry point of a Visual Basic program.

 SimpleProcedure()

Return k+l
End Function

End Module

result = Addition(x, y)

Function Addition(ByVal k As Integer, _ByVal l As Integer) As Integer
Return k+l

End Function

Module Example

Sub Main()

SimpleProcedure()

End Sub

Sub SimpleProcedure()

Console.WriteLine("Simple procedure")

End Sub

End Module

 68

Each procedure has a name. Inside the Main() procedure, we call our user

defined SimpleProcedure() procedure.

Procedures are defined outside the Main() procedure. Procedure name follows the Sub statement.

When we call a procedure inside the Visual Basic program, the control is given to that procedure.

Statements inside the block of the procedure are executed. Procedures can take optional

parameters.

In the above example, we pass some values to the Addition() procedure.

 Addition(x, y)

Here we call the Addition() procedure and pass two parameters to it. These parameters are two

Integer values.

We define a procedure signature. A procedure signature is a way of describing the parameters

and parameter types with which a legal call to the function can be made. It contains the name of

the procedure, its parameters and their type, and in case of functions also the return value.

The ByVal keyword specifies how we pass the values to the procedure. In our case, the

procedure obtains two numerical values, 55 and 32. These numbers are added and the result is

printed to the console.

LISTS

Sub SimpleProcedure()

Console.WriteLine("Simple procedure")

End Sub

Module Example

Sub Main()

Dim x As Integer = 55

Dim y As Integer = 32

Addition(x, y)

End Sub

Sub Addition(ByVal k As Integer, ByVal l As Integer)

Console.WriteLine(k+l)

End Sub

End Module

Sub Addition(ByVal k As Integer, ByVal l As Integer)

Console.WriteLine(k+l)

End Sub

 69

 The list box control is used to display a list of items.

 It allows the user to choose any one item from the list.

 It can display only a set of items that are available.

 Items can only be added to the list during run-time, not at design time.

 LIST BOX PROPERTIES

PROPERTY DESCRIPTION

Name It is the name by which the ListBox is referred in the code.

List It specifies the items contained in a list box.

Columns It specifies a value that determines whether a list box scrolls

vertically in a single column or horizontally in snaking columns.

MultiSelect It specifies a value that determines whether a user can make

multiple selections in a control.

Sorted It is a Boolean property. It indicates whether the elements of a

control are automatically sorted alphabetically. The default value is

False.

Visible It is a Boolean property. If the property is set to true, the list box is

visible. Otherwise, it is hidden.

Enabled It is a Boolean property. By default, this property’s value is True,

which means that the control can respond to user-

generated events.

BackColor It determines the background color of a list box. It can be set by

using the color palette.

ForeColor It determines the forecolor of a list box. It can be set by using the

color palette.

DataFormat It specifies the data format as either number, currency, date, time,

percentage, Boolean etc.

DataSource It specifies the data control through which the current control is

bound to a database.

DataField It binds a control to a field in the current record.

 70

DataMember It specifies the data member for a data connection.

ItemData It denotes a specific number for each item in a listbox control.

 LIST BOX EVENTS

EVENT DESCRIPTION

Click The Click event occurs when an item in a listbox is clicked. The code

written in the Click event procedure is invoked.

DblClick The Click event occurs when an item in a listbox is double clicked.

ItemCheck The ItemCheck event occurs when an item in the listbox is checked.

It will work when the style of the listbox is set to 1- Checkbox

DragDrop The DragDrop event occurs when a user clicks on an object and

drags it to a different location on the screen.

DragOver The DragOver event occurs when the user drags an object over

another control.

KeyDown The KeyDown event occurs when the user presses a key while a

form or control has the focus.

KeyPress The KeyPress event occurs when the user presses and releases a key

or key combination while a form or control has the focus.

KeyUp The KeyUp event occurs when the user releases a key while a form

or control has the focus.

MouseDown The MouseDown event occurs when the user presses any mouse

button while the mouse pointer is over an object.

MouseMove The MouseMove event occurs when the user moves the mouse

across an object.

MouseUp The MouseDown event occurs when the user releases any mouse

button while the mouse pointer is over an object.

 LIST BOX METHODS

METHOD DESCRIPTION

 71

AddItem It is used to insert an item into a listbox at runtime.

RemoveItem It removes an item from a listbox at runtime as identified by the

listindex.

Clear It removes all items from a listbox.

Refresh The Refresh method refreshes a listbox when items are added to or

removed from a listbox.

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

SetFocus The SetFocus method is used to transfer focus to the listbox.

Example

Create a VB application to perform various operations on a listbox.

Private Sub Command1_Click()

List1.AddItem (Text1.Text)

End Sub

Private Sub Command2_Click()

If List1.ListIndex = -1 Then

MsgBox "Please select an item in the list box and then click remove button"

Else

List1.RemoveItem (List1.ListIndex)

End If

End Sub

Private Sub Command3_Click()

MsgBox "Number of items in listbox is " & List1.ListCount

End Sub

Private Sub Command4_Click()

List1.Clear Text1.Text = ""

 72

End Sub

Private Sub Command5_Click()

End

End Sub

 ARRAYS

This array discusses about the following topics.

1. Fixed Size Array

 1-D Array

 2-D Array

2. Dynamic Array

 Declaration

 Redim Keyword

 Preserve Keyword

3. LBound and UBound Functions

4. Control Array

Array and its types are discussed below

 73

 Array is a set of similar items having the same name and the elements of an array are

identified by their index (subscript) values.

 In VB, subscript numbering starts from 0 (zero) unless specified otherwise.

 The scope of array depends on the place and method of declaration.

 The values for the subscripts of an array can be passed using variables.

 Arrays are of three Categories:

a) Fixed-size Array

b) Multidimensional Array

c) Dynamic Array

 FIXED-SIZE ARRAY

 When the total number of elements the array will hold is known in advance, the size of

the array can be specified at the time of its declaration. Such types of arrays are

called fixed-size arrays.

 For fixed-size arrays, specifying the array size (upper bound) is compulsory.

 ONE DIMENSIONAL ARRAY

Declaration of 1-D Array Syntax :

To create a local array, declare the array inside a procedure using the Private

keyword / Dim keyword.

Dim arr(10) As Integer

1. To create a module-level array, declare the array in the declaration section of a

module using the Private keyword.

Private arr(10) As Integer

2. To create a public array, declare the array in the declaration section of a

module using Public keyword.

Public arr(10) As Integer

The following declaration statement creates an array with name ‘arr’ which can hold a

maximum of 11 elements.

Dim arr(10) As Integer

The first element is denoted by arr(0) and the last element is denoted by arr(10).

Dim | Private | Public ArrayName(subscript) As Data Type

 74

Dim a(1 to 10) As Integer

The above statement creates an array ‘a’ whose first element is denoted by a(1) and the

last element is denoted by a(10).

Dim x(10 to 20) As Integer

The above statement creates an array ‘x’ whose first element is denoted by x(10) and the

last element is denoted by x(10).

Example

Dim arr(5) As Integer

Dim n As Integer

Dim key As Integer

Private Sub Command1_Click()

Dim i As Integer

n = Val(Text1.Text)

For i = 1 To n

arr(i) = InputBox("Enter element")

Next i

End Sub

Private Sub Command2_Click()

Dim i As Integer

Dim flag As Boolean

Dim pos As Integer

key = Val(Text2.Text)

flag = False

For i = 1 To n

If (arr(i) = key) Then

flag = True

pos = i

Exit For

End If

Next i

 75

If (flag = True) Then

MsgBox key & " is found is postion " & pos

Else

MsgBox "Key not found"

End If

End Sub

 MULTI-DIMENSIONAL ARRAY

 An array having more than one dimension is called a multidimensional array.

 A table of data can be represented by a two dimensional array.

 An array having three dimensions is called a three dimensional array.

 A multidimensional array can have up to 60 dimensions.

 A multidimensional array takes up a lot of space.

Example

Dim stud(2, 1) As Integer

The above statement declares a 2-D array having three rows and two columns.

Dim sales(11, 2, 4) As Integer

The above statement declares a 3-D array which can be used to store sales details of a company

for 12 months, three departments and five products.

EXAMPLE 2-D ARRAY

DEPARTMENT BOYS GIRLS

BCA 130 80

BCS 110 50

BIT 90 30

General Declarations

Dim m As Integer

Dim n As Integer

Dim stud(5, 5) As Integer

Private Sub Command1_Click()

 76

Dim i As Integer

Dim j As Integer

m = Val(Text1.Text)

n = Val(Text2.Text)

For i = 1 To m

For j = 1 To n

stud(i, j) = InputBox("Enter value")

Next j

Next i

End Sub

Private Sub Command2_Click()

Dim rowtot As Integer

Dim coltot As Integer

Dim grandtot As Integer

grandtot = 0

For i = 1 To m

rowtot = 0

For j = 1 To n

rowtot = rowtot + stud(i, j)

Next j

MsgBox "Row total= " & rowtot

grandtot = grandtot + rowtot

Next i

For j = 1 To n

coltot = 0

For i = 1 To m

coltot = coltot + stud(i, j)

Next i

MsgBox "Column total= " & coltot

Next j

MsgBox "Grand Total = " & grandtot

 77

End Sub

 DYNAMIC ARRAY

 Dynamic arrays are used when the total number of elements the array will hold is not

known in advance.

 A dynamic array can be resized at any time and it helps to manage memory

efficiently.

 The ReDim is used in conjunction with the Dim statement while declaring dynamic

arrays.

 ReDim can be used to change the upper bound or lower bound of a dimension of a

dynamic array.

 ReDim cannot be used to change the number of dimensions of a dynamic array.

 ReDim cannot be used to change the data type of an array, unless the array is

previously declared as Variant.

 ReDim is an executable statement that can appear only inside a procedure.

Declaration of dynamic array syntax

Dim | Private | Public ArrayName[(subscript)] As Data Type

Example

Dim DynSales() As Integer

The above statement creates an open-ended array called DynSales.

ReDim DynSales(11, 5)

General Declarations

Dim arr() 'open-ended array

Private Sub Command2_Click()

ReDim arr(5)

arr(0) = 10

arr(1) = 20

arr(2) = 30

ReDim Preserve arr(3)

 78

MsgBox arr(0)

MsgBox arr(1)

MsgBox arr(2)

ReDim Preserve arr(UBound(arr) + 1) lb = LBound(arr)

ub = UBound(arr)

MsgBox "Lower Bound = " & lb

End Sub

Output

MsgBox "Upper Bound = " & ub

10 20 30

Lower Bound = 0

Upper Bound = 4

 LBOUND AND UBOUND FUNCTIONS

 The function LBound() returns the lower bound of an array.

 The function UBound() returns the upper bound of an array.

 In case of a single dimensional dynamic array, the array can be increased by one

element without losing the values of the existing elements using the UBound()

function.

Example

Private Sub Command1_Click()

Dim counter(25)

lb = LBound(counter)

ub = UBound(counter)

MsgBox "Lower Bound = " & lb

MsgBox "Upper Bound = " & ub

End Sub

Output

 79

Lower Bound = 0

Upper Bound = 25

 CONTROL ARRAY

Control Array is a set of identical controls that have a common name and identifying index

numbers.

Example

Scientific Calculator using Command Button Control Array

Steps

 Draw a Frame and change its caption to ‘Calculator’.

 Draw a Label inside the frame.

 Create a control array named ‘button’ using command buttons. The control array

consists of the elements 0 to 9, . (decimal point), =, +, -, *, /, Mod, x2, x3, sqrt, Sin,

Cos, Tan, Log, and 1/x with index from 0 to 24 respectively.

 Create command buttons On, Off, M+, MR and Clear.

Note:

Initially, draw a command button inside the frame (Do not double click command button to

 80

create it, and drag and drop inside frame. Instead draw it inside the frame). Change the name of

the command button as ‘button’ and change its caption to ‘0’. Copy the button and paste it. A

dialog box containing “You already have a control named ‘button’. Do you want to create a

control array?“ will appear. Click ‘Yes’ button. Create the control array using the above

procedure and change the caption of each button as appropriate.

Dim n As Double

Dim opr As Integer

Dim memory As Double

Private Sub Form_Load()

Label1.Caption = ""

End Sub

Private Sub button_Click(Index As Integer)

Select Case Index

Case 0 To 9

Label1.Caption = Label1.Caption & Index

Case 10

Label1.Caption = Label1.Caption & button(Index).Caption

Case 12 To 24

n = CDbl(Label1.Caption)

Label1.Caption = ""

opr = Index

Case 11

Select Case opr

Case 12

Label1.Caption = n + CDbl(Label1.Caption)

Case 13

Label1.Caption = n - CDbl(Label1.Caption)

Case 14

Label1.Caption = n * CDbl(Label1.Caption)

Case 15

Label1.Caption = n / CDbl(Label1.Caption)

 81

Case 16

Label1.Caption = n Mod CDbl(Label1.Caption)

Case 17

Label1.Caption = CDbl(n * n)

Case 18

Label1.Caption = CDbl(n * n * n)

Case 19

Label1.Caption = n ^ (1 / 2)

Case 20

Label1.Caption = Sin(n * 3.14 / 180)

Case 21

Label1.Caption = Cos(n * 3.14 / 180)

Case 22

Label1.Caption = Tan(n * 3.14 / 180)

Case 23

Label1.Caption = Log(n)

Case 24

Label1.Caption = 1 / n

End Select

End Select

End Sub

Private Sub Clear_Click()

Label1.Caption = ""

End Sub

Private Sub On_Click()

Dim i As Integer

For i = 1 To 19

button(i).Enabled = True

Next i

Off.Enabled = True

 82

Mem.Enabled = True

Mr.Enabled = True

Label1.Caption = ""

End Sub

Private Sub Off_Click()

Dim i As Integer

For i = 1 To 19

button(i).Enabled = False

Next i

Off.Enabled = False

Mem.Enabled = False

Mr.Enabled = False

Label1.Caption = ""

End Sub

Private Sub Mem_Click()

memory = CDbl(Label1.Caption)

End Sub

Private Sub Mr_Click()

Label1.Caption = memory

End Sub

COMBO BOX METHODS

METHOD DESCRIPTION

AddItem It is used to insert an item into a combobox at runtime.

RemoveItem It is used to remove an item from a combobox, as identified by its

listindex at runtime.

Clear It removes all items from a combobox.

 83

Refresh The Refresh method refreshes a combobox when items are added to

or removed from a combobox.

Drag The Drag method is triggered when an object is dragged.

Move The Move method is used to reposition an object across the screen.

EXAMPLE

Create a VB application to draw various shapes using listbox, combobox, and shape

controls.

Private Sub Form_Load()

List1.AddItem "Rectangle" List1.AddItem "Square"

List1.AddItem "Oval" List1.AddItem "Circle"

List1.AddItem "Round rectangle" Combo1.AddItem

 84

"Transparent" Combo1.AddItem "Solid"

Combo1.AddItem "Dash" Combo1.AddItem "Dot"

Combo1.AddItem "Dash dot" Combo1.AddItem "Dash

dot not"

End Sub

Private Sub List1_Click()

Select Case List1.ListIndex

Case 0

Shape1.Shape = 0

Case 1

Shape1.Shape = 1

Case 2

Shape1.Shape = 2

Case 3

Shape1.Shape = 3

Case 4

Shape1.Shape = 4

Case 5

Shape1.Shape = 5 End Select

End Sub

Private Sub Combo1_Change()

Select Case Combo1.ListIndex

Case 0

Shape1.BorderStyle = 0

Case 1

Shape1.BorderStyle = 1

Case 2

Shape1.BorderStyle = 2

Case 3

Shape1.BorderStyle = 3

Case 4

Shape1.BorderStyle = 4

Case 5

 85

Shape1.BorderStyle = 5 End Select

End Sub

Private Sub Combo1_Click()

Select Case Combo1.ListIndex

Case 0

Shape1.BorderStyle = 0

Case 1

Shape1.BorderStyle = 1

Case 2

Shape1.BorderStyle = 2

Case 3

Shape1.BorderStyle = 3

Case 4

Shape1.BorderStyle = 4

Case 5

Shape1.BorderStyle = 5

End Select

End Sub

 PROJECTS WITH MULTIPLE FORMS

Select File, New, Project from the main menu in Visual Studio. Then pick a Visual

Basic Windows Application to create. A form will be created with a default name of Form1. Add

a second form by right-clicking the project and selecting Add. Add Windows Form from the

menu that appears.

 WRITING THE VISUAL BASIC CODE TO ADD THE CHILDREN TO THE MDI

 PARENT

The next step is to add the two new forms Multiple Document Interface (MDI)

(MDIchild1 and MDIchild2) to the parent form (MDIparent). To do this click on the tab for the

parent form in Visual Studio and double click on the form to display the event procedures. We

will now write Visual Basic code to add the two child forms to the container parent form. To do

this we will set the MdiParent property of each child to reference the MDIparent form. Note that

because this is the Load event of the actual parent form, we refer to it with the

 86

keyword Me rather than by the form name. Having set the Mdiparent of each child we then need

to display the form using the form Show() method:

Output

 MENUS

 All Windows-compliant applications will have a menu system.

 A menu system contains a number of options, logically organized and easily

accessible by the user.

 Each menu item has a name, caption, and optionally a shortcut key.

 When a user clicks a menu option, a list of options is displayed. Clicking on any menu

item will generate a Click event. User can write code to respond to the click event.

 A menu system is tied to a form, it cannot exist independent of a form.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

MDIchild1.MdiParent = Me

MDIchild1.Show()

MDIchild2.MdiParent = Me

MDIchild2.Show()

End Sub

 87

Creating a Menu System

 Select Tools -> Menu Editor or click the Menu Editor icon on the tool bar or press

the keys Ctrl+E.

 This opens the Menu Editor. Type values for caption, name and shortcut (optional).

 If you want to enable selection by an Alt-keystroke combination, then type an

o ampersand (&) in front of the key letter in caption property.

 To insert a separator bar, select the menu item before which a separator bar should be

inserted and enter – (hyphen) in the caption box and type a name in the name box.

 MENU PROPERTIES AND EVENTS

PROPERTY DESCRIPTION

Name Specifies the name of the menu item. It helps to access the menu

item through code.

Caption Allows you to enter the menu or command name that you want to

appear on your menu bar or in a menu.

Checked Allows you to have a check mark appear initially at the left of a

menu item.

 88

Enabled Allows you to select whether you want the menu item to respond to

events, or clear if you want the item to be unavailable and appear

dimmed.

Shortcut Allows you to select a shortcut key for each command.

Visible Allows you to have the menu item appear on the menu.

WindowList Determines if the menu control contains a list of open MDI child

forms in an MDI application.

EVENT DESCRIPTION

Click Specifies code to be executed when a menu item is clicked.

 MDI FORM

 An MDI form is a container for other forms in an application.

 Multiple Document Interface (MDI) Form allows an application to have multiple

windows within the main window.

 It is used to display more than one document within the main window.

 Most of the control buttons and code for various forms can be shared.

 If a VB project contains an MDI form, any ordinary forms with MDIChild

property set to True will appear as windows within the MDI form at runtime.

 An MDI form can have menus, Picture box control, Toolbar and Data control.

Other types of controls can be placed within a Picture box.

 A VB project can contain only one MDI form.

 89

 As a general rule, only one Child form is set up at design time, and additional forms

can be created at run time either by using an array or by loading new instances of the

original form.

Example

Dim a() As New Childform1

Dim i As Integer

Private Sub MDIForm_Load()

i = 0

End Sub

Private Sub New_Click()

ReDim a(i + 1)

a(i).RichTextBox1.Font = "ms sans serif"

 90

a(i).Caption = "Child" & Val(i + 1)

a(i).Show

a(i).SetFocus i = i + 1

End Sub

Private Sub Open_Click()

Dim fname As String

a(i).CommonDialog1.ShowOpen

fname = a(i).CommonDialog1.FileName

a(i).RichTextBox1.LoadFile (fname)

End Sub

Private Sub Save_Click()

Dim fname As String

a(i).CommonDialog1.ShowSave

fname = a(i).CommonDialog1.FileName

a(i).RichTextBox1.SaveFile (fname)

End Sub

Private Sub Print_Click()

Dim fname As String a(i).CommonDialog1.ShowPrinter

fname = a(i).CommonDialog1.FileName Printer.Print

fname

End Sub

Private Sub Close_Click()

Unload Screen.ActiveForm

End Sub

Private Sub Exit_Click()

End

End Sub

Private Sub Cut_Click()

 91

Clipboard.SetText (a(i).RichTextBox1.SelText)

a(i).RichTextBox1.SelText = ""

End Sub

Private Sub Copy_Click()

Clipboard.SetText (a(i).RichTextBox1.SelText)

End Sub

Private Sub Paste_Click() a(i).RichTextBox1.SelText = Clipboard.GetText

End Sub

Private Sub Clear_Click() a(i).RichTextBox1.Text = ""

End Sub

Private Sub List1_Click()

a(i).RichTextBox1.SelFontName = List1.List(List1.ListIndex)

End Sub

Private Sub FontName_Click()

a(i).RichTextBox1.SelFontName = List1.List(List1.ListIndex)

End Sub

Private Sub Combo1_Change()

a(i).RichTextBox1.SelFontSize = Val(Combo1.Text)

End Sub

Private Sub Combo1_Click()

a(i).RichTextBox1.SelFontSize = Val(Combo1.Text)

End Sub

Private Sub FontSize_Click()

a(i).RichTextBox1.SelFontSize = Val(Combo1.Text)

End Sub

 92

Private Sub Bold_Click()

a(i).RichTextBox1.SelBold = True

End Sub

Private Sub Italic_Click()

a(i).RichTextBox1.SelItalic = True

End Sub

Private Sub Underline_Click()

a(i).RichTextBox1.SelUnderline = True

End Sub

Private Sub Backcolor_Click()

a(i).CommonDialog1.ShowColor

a(i).RichTextBox1.Backcolor = a(i).CommonDialog1.Color

End Sub

Private Sub Forecolor_Click()

a(i).CommonDialog1.ShowColor

a(i).RichTextBox1.SelColor = a(i).CommonDialog1.Color

End Sub

Private Sub Contents_Click()

a(i).CommonDialog1.ShowHelp

End Sub

 93

UNIT III

 INTRODUCTION TO DATABASE MANAGEMENT SYSTEM

A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit meaning and

hence is a database.

A datum – a unit of data – is a symbol or a set of symbols which is used to represent something.

This relationship between symbols and what they represent is the essence of what we mean by

information.

As the name suggests, the database management system consists of two parts. They are:

 Database and

 Management System

WHAT IS A DATABASE?

To find out what database is, we have to start from data, which is the basic building block of any

DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 etc).

Record: Collection of related data items, e.g. in the above example the three data items had no

meaning. But if we organize them in the following way, then they collectively represent

meaningful information.

Roll Name
Age

1 ABC 19

Table or Relation: Collection of related records.

Roll Name Age

1 ABC 19

 94

2 DEF 22

3 XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are called Tuples

or Records.

Database: Collection of related relations. Consider the following collection of tables:

T1

Roll Name Age

1 ABC 19

2 DEF 22

3 XYZ 28

T2

Roll Address

1 KOL

2 DEL

3 MUM

T3

Roll Year

1 I

2 II

3 I

T4

Year Hostel

I H1

 95

II H2

We now have a collection of 4 tables. They can be called a “related collection” because we can

clearly find out that there are some common attributes existing in a selected pair of tables.

Because of these common attributes we may combine the data of two or more tables together to

find out the complete details of a student. Questions like “Which hostel does the youngest

student live in?” can be answered now, although Age and Hostel attributes are in different tables.

A database in a DBMS could be viewed by lots of different people with different responsibilities

Figure 1 Empolyees are accessing Data through DBMS

For example, within a company there are different departments, as well as customers,

who each need to see different kinds of data. Each employee in the company will have different

levels of access to the database with their own customized front-end application. In a database,

data is organized strictly in row and column format. The rows are called Tuple or Record. The

data items within one row may belong to different data types. On the other hand, the columns are

often called Domain or Attribute. All the data items within a single attribute are of the same

data type.

 WHAT IS MANAGEMENT SYSTEM?

 96

A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit meaning and

hence is a database. The collection of data, usually referred to as the database, contains

information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store

and retrieve database information that is both convenient and efficient. By data, we mean known

facts that can be recorded and that have implicit meaning.

The management system is important because without the existence of some kind of rules

and regulations it is not possible to maintain the database. We have to select the particular

attributes which should be included in a particular table; the common attributes to create

relationship between two tables; if a new record has to be inserted or deleted then which tables

should have to be handled etc. These issues must be resolved by having some kind of rules to

follow in order to maintain the integrity of the database.

Database systems are designed to manage large bodies of information. Management of

data involves both defining structures for storage of information and providing mechanisms for

the manipulation of information. In addition, the database system must ensure the safety of the

information stored, despite system crashes or attempts at unauthorized access. If data are to be

shared among several users, the system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists have developed a

large body of concepts and techniques for managing data.

 DATABASE MANAGEMENT SYSTEM (DBMS) AND ITS APPLICATIONS

A Database management system is a computerized record-keeping system. It is a

repository or a container for collection of computerized data files. The overall purpose of DBMS

is to allow the users to define, store, retrieve and update the information contained in the

database on demand. Information can be anything that is of significance to an individual or

organization.

Databases touch all aspects of our lives. Some of the major areas of application are as follows:

 Banking

 Airlines

 Universities

 Manufacturing and selling

 97

 Human resources

ENTERPRISE INFORMATION

 Sales: For customer, product, and purchase information.

 Accounting: For payments, receipts, account balances, assets and other accounting

information.

 Human resources: For information about employees, salaries, payroll taxes, and benefits,

and for generation of paychecks.

 Manufacturing: For management of the supply chain and for tracking production of items

in factories, inventories of items in warehouses and stores, and orders for items.

 BANKING AND FINANCE

 Banking: For customer information, accounts, loans, and banking transactions.

 Credit card transactions: For purchases on credit cards and generation of monthly

statements.

 Finance: For storing information about holdings, sales, and purchases of financial

instruments such as stocks and bonds; also for storing real-time market data to enable

online trading by customers and automated trading by the firm.

 Universities: For student information, course registrations, and grades (in addition to

standard enterprise information such as human resources and accounting.

 Airlines: For reservations and schedule information. Airlines were among the first to use

databases in a geographically distributed manner.

 Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

 ADVANTAGES OF DBMS

Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing same

data multiple times). In a database system, by having a centralized database and centralized

control of data by the DBA the unnecessary duplication of data is avoided. It also eliminates the

extra time for processing the large volume of data. It results in saving the storage space.

 98

Improved Data Sharing: DBMS allows a user to share the data in any number of application

programs.

Data Integrity: Integrity means that the data in the database is accurate. Centralized control of

the data helps in permitting the administrator to define integrity constraints to the data in the

database. For example: in customer database we can enforce integrity that it must accept the

customer only from Noida and Meerut city.

Security: Having complete authority over the operational data, enables the DBA in ensuring that

the only mean of access to the database is through proper channels. The DBA can define

authorization checks to be carried out whenever access to sensitive data is attempted.

Data Consistency: By eliminating data redundancy, we greatly reduce the opportunities for

inconsistency. For example: is a customer address is stored only once, we cannot have

disagreement on the stored values. Also updating data values is greatly simplified when each

value is stored in one place only. Finally, we avoid the wasted storage that results from

redundant data storage.

Efficient Data Access: In a database system, the data is managed by the DBMS and all access to

the data is through the DBMS providing a key to effective data processing.

Enforcements of Standards: With the centralized of data, Database Administrators (DBA) can

establish and enforce the data standards which may include the naming conventions, data quality

standards etc.

Data Independence: Ina database system, the database management system provides the

interface between the application programs and the data. When changes are made to the data

representation, the data obtained by the DBMS is changed but the DBMS is continues to provide

the data to application program in the previously used way. The DBMs handles the task of

transformation of data wherever necessary.

 99

Reduced Application Development and Maintenance Time: DBMS supports many important

functions that are common to many applications, accessing data stored in the DBMS, which

facilitates the quick development of application.

 DISADVANTAGES OF DBMS

 It is bit complex. Since it supports multiple functionality to give the user the best, the

underlying software has become complex. The designers and developers should have

thorough knowledge about the software to get the most out of it.

 Because of its complexity and functionality, it uses large amount of memory. It also

needs large memory to run efficiently.

 DBMS system works on the centralized system, i.e.; all the users from all over the world

access this database. Hence any failure of the DBMS, will impact all the users.

 DBMS is generalized software, i.e.; it is written work on the entire systems rather

specific one. Hence some of the application will run slow.

 COMPONENTS OF DBMS

There are the following components of DBMS:

 Software

 Hardware

 Procedures

 Data

 Users

 SOFTWARE

 The main component of a Database management system is the software. It is the set of

programs which is used to manage the database and to control the overall computerized

database.

 The DBMS software provides an easy-to-use interface to store, retrieve, and update data

in the database.

 This software component is capable of understanding the Database Access Language and

converts it into actual database commands to execute or run them on the database.

 HARDWARE

 100

 This component of DBMS consists of a set of physical electronic devices such as

computers, I/O channels, storage devices, etc that create an interface between computers

and the users.

 This DBMS component is used for keeping and storing the data in the database.

 PROCEDURES

 Procedures refer to general rules and instructions that help to design the database and to

use a database management system.

 Procedures are used to setup and install a new database management system (DBMS), to

login and logout of DBMS software, to manage DBMS or application programs, to take

backup of the database, and to change the structure of the database, etc.

DATA

 It is the most important component of the database management system.

 The main task of DBMS is to process the data. Here, databases are defined, constructed,

and then data is stored, retrieved, and updated to and from the databases.

 The database contains both the metadata (description about data or data about data) and

the actual (or operational) data.

 USERS

 The users are the people who control and manage the databases and perform different

types of operations on the databases in the database management system. There are three

types of user who play different roles in DBMS:

 Application Programmers

 Database Administrators

 End-Users

APPLICATION PROGRAMMERS

The users who write the application programs in programming languages (such as Java, C++, or

Visual Basic) to interact with databases are called Application Programmer.

DATABASE ADMINISTRATORS (DBA)

A person who manages the overall DBMS is called a database administrator or simply DBA.

END-USERS

 101

The end-users are those who interact with the database management system to perform different

operations by using the different database commands such as insert, update, retrieve, and delete

on the data, etc.

 CLASS DIAGRAM

Class diagram describes the attributes and operations of a class and also the constraints imposed

on the system. The class diagrams are widely used in the modeling of object oriented systems

because they are the only Unified Modeling Language (UML) diagrams, which can be mapped

directly with object-oriented languages. A class diagram in the Unified Modeling

Language (UML) is a type of static structure diagram that describes the structure of a system by

showing the system's classes, their attributes, operations (or methods), and the relationships

among objects. A UML class diagram is made up of a set of classes and a set of relationships

between classes.

Class diagram is a static diagram. It represents the static view of an application. Class diagram

is not only used for visualizing, describing, and documenting different aspects of a system but

also for constructing executable code of the software application.

Class diagram shows a collection of classes, interfaces, associations, collaborations, and

constraints. It is also known as a structural diagram.

 PURPOSE OF CLASS DIAGRAMS

The purpose of class diagram is to model the static view of an application. Class diagrams are

the only diagrams which can be directly mapped with object-oriented languages and thus widely

used at the time of construction. UML (Unified Modeling Language) is a standard language for

specifying, visualizing, constructing, and documenting the artifacts of software systems.

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of the

application, however class diagram is a bit different. It is the most popular UML diagram in the

coder community.

The purpose of the class diagram can be summarized as

 Analysis and design of the static view of an application.

 Describe responsibilities of a system.

 Base for component and deployment diagrams.

 Forward and reverse engineering.

 UNIFIED MODELING LANGUAGE (UML) - BASIC NOTATIONS

 102

UML is popular for its diagrammatic notations. We all know that UML is for visualizing,

specifying, constructing and documenting the components of software and non-software

systems. Hence, visualization is the most important part which needs to be understood and

remembered.

UML notations are the most important elements in modeling. Efficient and appropriate use of

notations is very important for making a complete and meaningful model. The model is useless,

unless its purpose is depicted properly.Hence, learning notations should be emphasized from the

very beginning. Different notations are available for things and relationships. UML diagrams

are made using the notations of things and relationships. Extensibility is another important

feature which makes UML more powerful and flexible.

Structural Things: Graphical notations used in structural things are most widely used in UML.

These are considered as the nouns of UML models. Following are the list of structural things.

 Classes

 Object

 Interface

 Collaboration

 Use case

 Active classes

 Components

 Nodes

Class Notation

UML class is represented by the following figure. The diagram is divided into four parts.

 The top section is used to name the class.

 The second one is used to show the attributes of the class.

 The third section is used to describe the operations performed by the class.

 The fourth section is optional to show any additional components.

 103

Classes are used to represent objects. Objects can be anything having properties and

responsibility.

Object Notation

The object is represented in the same way as the class. The only difference is the name which is

underlined as shown in the following figure.

As the object is an actual implementation of a class which is known as the instance of a class.

Hence, it has the same usage as the class.

Interface Notation

Interface is represented by a circle as shown in the following figure. It has a name which is

generally written below the circle.

 104

Interface is used to describe the functionality without implementation. Interface is just like a

template to define different functions, not the implementation. When a class implements the

interface, it also implements the functionality as per requirement.

Collaboration Notation

Collaboration is represented by a dotted eclipse as shown in the following figure. It has a name

written inside the eclipse.

Collaboration represents responsibilities. Generally, responsibilities are in a group.

Use Case Notation

Use case is represented as an eclipse with a name inside it. It may contain additional

responsibilities.

 105

Use case is used to capture high level functionalities of a system.

 Actor Notation

An actor can be defined as some internal or external entity that interacts with the system.

An actor is used in a use case diagram to describe the internal or external entities.

 Initial State Notation

Initial state is defined to show the start of a process. This notation is used in almost all

diagrams.

The usage of Initial State Notation is to show the starting point of a process.

 Final State Notation

Final state is used to show the end of a process. This notation is also used in almost all diagrams

to describe the end.

 106

The usage of Final State Notation is to show the termination point of a process.

Active Class Notation

Active class looks similar to a class with a solid border. Active class is generally used to

describe the concurrent behavior of a system.

Active class is used to represent the concurrency in a system.

Component Notation

A component in UML is shown in the following figure with a name inside. Additional elements

can be added wherever required.

Component is used to represent any part of a system for which UML diagrams are made.

Node Notation

A node in UML is represented by a square box as shown in the following figure with a name. A

node represents the physical component of the system.

 107

Node is used to represent the physical part of a system such as the server, network, etc.

BEHAVIORAL THINGS

Dynamic parts are one of the most important elements in UML. UML has a set of powerful

features to represent the dynamic part of software and non-software systems. These features

include interactions and state machines.

Interactions can be of two types −

 Sequential (Represented by sequence diagram)

 Collaborative (Represented by collaboration diagram)

INTERACTION NOTATION

Interaction is basically a message exchange between two UML components. The following

diagram represents different notations used in an interaction.

 108

Interaction is used to represent the communication among the components of a system.

STATE MACHINE NOTATION

State machine describes the different states of a component in its life cycle. The notations are

described in the following diagram.

State machine is used to describe different states of a system component. The state can be

active, idle, or any other depending upon the situation.

 GROUPING THINGS

Organizing the UML models is one of the most important aspects of the design. In UML, there

is only one element available for grouping and that is package.

Package Notation

Package notation is shown in the following figure and is used to wrap the components of a

system.

 109

Annotational Things

In any diagram, explanation of different elements and their functionalities are very important.

Hence, UML has notes notation to support this requirement.

 Note Notation

This notation is shown in the following figure. These notations are used to provide necessary

information of a system.

 RELATIONSHIPS

A model is not complete unless the relationships between elements are described properly.

The Relationship gives a proper meaning to a UML model. Following are the different types of

relationships available in UML.

 Dependency

 Association

 Generalization

 Extensibility

Dependency Notation

Dependency is an important aspect in UML elements. It describes the dependent elements and

the direction of dependency.

Dependency is represented by a dotted arrow as shown in the following figure. The arrow head

represents the independent element and the other end represents the dependent element.

 110

Dependency is used to represent the dependency between two elements of a system

Association Notation

Association describes how the elements in a UML diagram are associated. In simple words, it

describes how many elements are taking part in an interaction.

Association is represented by a dotted line with (without) arrows on both sides. The two ends

represent two associated elements as shown in the following figure. The multiplicity is also

mentioned at the ends (1, *, etc.) to show how many objects are associated.

Association is used to represent the relationship between two elements of a system.

Generalization Notation

Generalization describes the inheritance relationship of the object-oriented world. It is a parent

and child relationship.

Generalization is represented by an arrow with a hollow arrow head as shown in the following

figure. One end represents the parent element and the other end represents the child element.

Generalization is used to describe parent-child relationship of two elements of a system.

 111

Extensibility Notation

All the languages (programming or modeling) have some mechanism to extend its capabilities

such as syntax, semantics, etc. UML also has the following mechanisms to provide extensibility

features.

 Stereotypes (Represents new elements)

 Tagged values (Represents new attributes)

 Constraints (Represents the boundaries)

Extensibility notations are used to enhance the power of the language. It is basically additional

elements used to represent some extra behavior of the system. These extra behaviors are not

covered by the standard available notations.

 HOW TO DRAW A CLASS DIAGRAM?

Class diagrams are the most popular UML diagrams used for construction of software

applications. It is very important to learn the drawing procedure of class diagram.

Class diagrams have a lot of properties to consider while drawing but here the diagram will be

considered from a top level view.

Class diagram is basically a graphical representation of the static view of the system and

represents different aspects of the application. A collection of class diagrams represent the

whole system.

The following points should be remembered while drawing a class diagram −

 The name of the class diagram should be meaningful to describe the aspect of the

system.

 Each element and their relationships should be identified in advance.

 112

 Responsibility (attributes and methods) of each class should be clearly identified

 For each class, minimum number of properties should be specified, as unnecessary

properties will make the diagram complicated.

 Use notes whenever required to describe some aspect of the diagram. At the end of the

drawing it should be understandable to the developer/coder.

 Finally, before making the final version, the diagram should be drawn on plain paper and

reworked as many times as possible to make it correct.

The following diagram is an example of an Order System of an application. It describes a

particular aspect of the entire application.

 First of all, Order and Customer are identified as the two elements of the system. They

have a one-to-many relationship because a customer can have multiple orders.

 Order class is an abstract class and it has two concrete classes (inheritance relationship)

SpecialOrder and NormalOrder.

 The two inherited classes have all the properties as the Order class. In addition, they have

additional functions like dispatch () and receive ().

The following class diagram has been drawn considering all the points mentioned above.

WHERE TO USE CLASS DIAGRAMS?

Class diagram is a static diagram and it is used to model the static view of a system. The static

view describes the vocabulary of the system.

 113

Class diagram is also considered as the foundation for component and deployment diagrams.

Class diagrams are not only used to visualize the static view of the system but they are also used

to construct the executable code for forward and reverse engineering of any system.

Generally, UML diagrams are not directly mapped with any object-oriented programming

languages but the class diagram is an exception.

Class diagram clearly shows the mapping with object-oriented languages such as Java, C++,

etc. From practical experience, class diagram is generally used for construction purpose.

In a nutshell it can be said, class diagrams are used for

 Describing the static view of the system.

 Showing the collaboration among the elements of the static view.

 Describing the functionalities performed by the system.

 Construction of software applications using object oriented languages.

 BENEFITS OF CLASS DIAGRAM

 Class Diagram illustrates data models for even very complex information systems

 It provides an overview of how the application is structured before studying the actual

code. This can easily reduce the maintenance time

 It helps for better understanding of general schematics of an application.

 Allows drawing detailed charts which highlights code required to be programmed

 Helpful for developers and other stakeholders.

 EVENTS

The events can be modeled in terms of UML. The event as change agents that have

consequences and as information objects that represent information. To create object oriented

structures that represent events in terms of attributes, associations, operations, state charts, and

messages. An outline gives a run-time environment for the processing of events with multiple

participants.

 114

The graphical representation of the class - MyClass as shown above:

 MyClass has 3 attributes and 3 operations

 Parameter p3 of op2 is of type int

 op2 returns a float

 op3 returns a pointer (denoted by a *) to Class6

Relationship Type Graphical Representation

Inheritance (or Generalization):

 Represents an "is-a" relationship.

 An abstract class name is shown in italics.

 SubClass1 and SubClass2 are specializations of Super

Class.

 A solid line with a hollow arrowhead that point from the

child to the parent class

Simple Association:

 A structural link between two peer classes.

 There is an association between Class1 and Class2

 A solid line connecting two classes

Aggregation:

A special type of association. It represents a "part of" relationship.

 Class2 is part of Class1.

 Many instances (denoted by the *) of Class2 can be

 115

associated with Class1.

 Objects of Class1 and Class2 have separate lifetimes.

 A solid line with an unfilled diamond at the association end

connected to the class of composite

Composition:

A special type of aggregation where parts are destroyed when the

whole is destroyed.

 Objects of Class2 live and die with Class1.

 Class2 cannot stand by itself.

 A solid line with a filled diamond at the association

connected to the class of composite

Dependency:

 Exists between two classes if the changes to the definition

of one may cause changes to the other (but not the other

way around).

 Class1 depends on Class2

 A dashed line with an open arrow

 RELATIONSHIP NAMES

 Names of relationships are written in the middle of the association line.

 Good relation names make sense when the person read them out loud:

 "Every spreadsheet contains some number of cells",

 "an expression evaluates to a value"

 116

 They often have a small arrowhead to show the direction in which direction to read the

relationship, e.g., expressions evaluate to values, but values do not evaluate to

expressions.

Relationship - Roles

 A role is a directional purpose of an association.

 Roles are written at the ends of an association line and describe the purpose played by

that class in the relationship.

 E.g., A cell is related to an expression. The nature of the relationship is that the

expression is the formula of the cell.

NAVIGABILITY

The arrows indicate whether, given one instance participating in a relationship, it is possible to

determine the instances of the other class that are related to it.

The diagram above suggests that,

 Given a spreadsheet, we can locate all of the cells that it contains, but that

we cannot determine from a cell in what spreadsheet it is contained.

 Given a cell, we can obtain the related expression and value, but

given a value (or expression) we cannot find the cell of which those are attributes.

VISIBILITY OF CLASS ATTRIBUTES AND OPERATIONS

In object-oriented design, there is a notation of visibility for attributes and operations. UML

identifies four types of visibility: public, protected, private, and package.

The +, -, # and ~ symbols before an attribute and operation name in a class denote the visibility

of the attribute and operation.

 + denotes public attributes or operations

 - denotes private attributes or operations

 # denotes protected attributes or operations

 117

 ~ denotes package attributes or operations

Class Visibility Example

In the example above:

 attribute1 and op1 of MyClassName are public

 attribute3 and op3 are protected.

 attribute2 and op2 are private.

Access for each of these visibility types is shown below for members of different classes.

Access Right public (+) private (-) protected (#) Package (~)

Members of the same class yes yes yes yes

Members of derived classes yes no yes yes

Members of any other class yes no no in same package

 MULTIPLICITY

How many objects of each class take part in the relationships and multiplicity can be expressed

as:

 Exactly one - 1

 Zero or one - 0..1

 Many - 0..* or *

 One or more - 1..*

 Exact Number - e.g. 3..4 or 6

 Or a complex relationship - e.g. 0..1, 3..4, 6.* would mean any number of objects other

than 2 or 5

Multiplicity Example

 Requirement: A Student can take many Courses and many Students can be enrolled in

one Course.

 118

 In the example below, the class diagram (on the left), describes the statement of the

requirement above for the static model while the object diagram (on the right) shows the

snapshot (an instance of the class diagram) of the course enrollment for the courses

Software Engineering and Database Management respectively)

Aggregation Example - Computer and parts

 An aggregation is a special case of association denoting a "consists-of" hierarchy

 The aggregate is the parent class, the components are the children classes

Inheritance Example - Cell Taxonomy

 Inheritance is another special case of an association denoting a "kind-of" hierarchy

 Inheritance simplifies the analysis model by introducing a taxonomy

 The child classes inherit the attributes and operations of the parent class.

 119

Class Diagram - Diagram Tool Example

A class diagram may also have notes attached to classes or relationships. Notes are shown in

closed doted lines.

In the example above:

We can interpret the meaning of the above class diagram by reading through the points as

following.

1. Shape is an abstract class. It is shown in Italics.

2. Shape is a superclass. Circle, Rectangle and Polygon are derived from Shape. In other

words, a Circle is-a Shape. This is a generalization / inheritance relationship.

 120

3. There is an association between DialogBox and DataController.

4. Shape is part-of Window. This is an aggregation relationship. Shape can exist without

Window.

5. Point is part-of Circle. This is a composition relationship. Point cannot exist without a

Circle.

6. Window is dependent on Event. However, Event is not dependent on Window.

7. The attributes of Circle are radius and center. This is an entity class.

8. The method names of Circle are area(), circum(), setCenter() and setRadius().

9. The parameter radius in Circle is an in parameter of type float.

10. The method area() of class Circle returns a value of type double.

11. The attributes and method names of Rectangle are hidden. Some other classes in the

diagram also have their attributes and method names hidden.

 NORMALIZATION

Normalization should be part of the database design process. However, it is difficult to separate

the normalization process from the ER modelling process so the two techniques should be used

concurrently.

Use an Entity Relation Diagram (ERD) to provide the big picture, or macro view, of an

organization’s data requirements and operations. This is created through an iterative process that

involves identifying relevant entities, their attributes and their relationships.

Normalization procedure focuses on characteristics of specific entities and represents the micro

view of entities within the ERD.

Normalization is the branch of relational theory that provides design insights. It is the process of

determining how much redundancy exists in a table. The goals of normalization are to:

 Be able to characterize the level of redundancy in a relational schema

 Provide mechanisms for transforming schemas in order to remove redundancy

Normalization theory draws heavily on the theory of functional dependencies. Normalization

theory defines six normal forms (NF). Each normal form involves a set of dependency properties

that a schema must satisfy and each normal form gives guarantees about the presence and/or

absence of update anomalies. This means that higher normal forms have less redundancy, and as

a result, fewer update problems.

 121

 Normalization is the process of organizing the data in the database.

 Normalization is used to minimize the redundancy from a relation or set of relations. It is

also used to eliminate the undesirable characteristics like Insertion, Update and Deletion

Anomalies.

 Normalization divides the larger table into the smaller table and links them using

relationship.

 The normal form is used to reduce redundancy from the database table.

 NORMAL FORMS

All the tables in any database can be in one of the normal forms. Ideally we only want minimal

redundancy for PK to FK. Everything else should be derived from other tables. There are six

normal forms, but we will only look at the first three, which are:

 First normal form (1NF)

 Second normal form (2NF)

 Third normal form (3NF)

Normal Form Description

1NF A relation is in 1NF if it contains an atomic value.

2NF
A relation will be in 2NF if it is in 1NF and all non-key attributes are

fully functional dependent on the primary key.

3NF
A relation will be in 3NF if it is in 2NF and no transition dependency

exists.

First Normal Form (1NF)

In the first normal form, only single values are permitted at the intersection of each row and

column; hence, there are no repeating groups.

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values.

It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

 122

102

Jon

Kanpur

8812121212

9900012222

103 Ron Chennai 7778881212

104

Lester

Bangalore

9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Second Normal Form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

 123

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They

create a table that looks like this: Since a teacher can teach more than one subjects, the table can

have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because

non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of

 124

candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is

dependent on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal Form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be

removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

 125

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each

functional dependency X-> Y at least one of the following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create

a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on

emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

 126

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

 127

UNIT IV

 INTRODUCTION TO ORACLE SQL

Structured Query Language (SQL) is the set of statements with which all programs and users

access data in an Oracle database. Application programs and Oracle tools often allow users

access to the database without using SQL directly, but these applications in turn must use SQL

when executing the user's request. Oracle SQL is a superset of the American National Standards

Institute (ANSI) and the International Organization for Standardization (ISO) SQL:1999

standard.

SQL Developer is the graphical user interface (GUI) tool that Oracle supplies to query the

database, explore objects, run reports, and run scripts. It runs on Windows, Linux, and Mac

OSX. It can be used to access Oracle databases 9i, 10g, 11g and 12c, as well as other databases

such as Times Ten, Microsoft Access, MySQL, and SQL Server.

An Oracle database is a collection of data treated as a unit. The purpose of a database is to store

and retrieve related information. A database server is the key to solving the problems of

information management. In general, a server reliably manages a large amount of data in a

multiuser environment so that many users can concurrently access the same data. All this is

accomplished while delivering high performance. A database server also prevents unauthorized

access and provides efficient solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most flexible

and cost effective way to manage information and applications. Enterprise grid computing

creates large pools of industry-standard, modular storage and servers. With this architecture,

each new system can be rapidly provisioned from the pool of components. There is no need for

peak workloads, because capacity can be easily added or reallocated from the resource pools as

needed.

The database has logical structures and physical structures. Because the physical and logical

structures are separate, the physical storage of data can be managed without affecting the access

to logical storage structures.

 128

Oracle provides a number of utilities to facilitate the SQL development process:

 Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and delete

(drop) database objects, edit and debug PL/SQL code, run SQL statements and scripts,

manipulate and export data, and create and view reports. With SQL Developer, anyone

can connect to any target Oracle Database schema using standard Oracle Database

authentication.

 Once connected, the person can perform operations on objects in the database. The

person can also connect to schemas for selected third-party (non-Oracle) databases, such

as MySQL, Microsoft SQL Server, and Microsoft Access, view metadata and data in

these databases, and migrate these databases to Oracle.

 SQL*Plus is an interactive and batch query tool that is installed with every Oracle

Database server or client installation. It has a command-line user interface and a Web-

based user interface called iSQL*Plus.

 Oracle JDeveloper is a multiple-platform integrated development environment supporting

the complete lifecycle of development for Java, Web services, and SQL.

 It provides a graphical interface for executing and tuning SQL statements and a visual

schema diagrammer (database modeler). It also supports editing, compiling, and

debugging PL/SQL applications.

 Oracle Application Express is a hosted environment for developing and deploying

database-related Web applications. SQL Workshop is a component of Oracle Application

Express that lets view and manages database objects from a Web browser. SQL

Workshop offers quick access to a SQL command processor and a SQL script repository.

SQL *PLUS ENVIRONMENT

 129

SQL Queries are sent to the Oracle RDBMS using the tool called SQL *Plus. This is the

principal CLIENT tool for ORACLE. It is an environment through which any interaction with

the database is done using SQL commands.

SQL * Plus program can be used in conjunction with the SQL database language and its

procedural language extension PL/SQL. SQL * Plus enables the user to manipulate SQL

commands and PL/SQL statements and to perform additional tasks such as to

 Enter, edit, store, retrieve and run SQL commands

 Format and print calculations, query results in the form of reports.

 List column definitions for any table

 Access and copy data between SQL databases.

 STRUCTURED QUERY LANGUAGE (SQL)

SQL is a Structured Query Language and is the industry standard language to define and

manipulate the data in Relational Database Management" System. In a database environment, the

interactions between the Client and the Server are only through SQL. This one-point

communication language in Client-Server architecture facilitates the data base, connectivity and

processing.

Structured Query Language is a simple English-like language SQL is also pronounced as sequel

and consists of layers of increasing complexity and capability. End-users with little or no

experience in data processing can learn SQL features very quickly. It is a Fourth Generation

Language.

SQL was first introduced by IBM Research and was introduced into the commercial market first

by Oracle Corporation in 1979. A committee at the American National, Standards Institute has

endorsed SQL as the standard language for RDBMS.

SQL provides the following functionalities:

 Creation of tables.

 Querying the exact data.

 130

 Change the data structure and the data.

 Combine and calculate the data to get required information.

 NON PROCEDURAL LANGUAGE

SQL is a non-procedural language and is free of logic and procedural constructs. In SQL, all we

need to say is what we want and not how to go about it. It access not require, the user to specify

the methodology for accessing the data. SQL processes of records rather than one at a time. SQL

language can be used by Database Administrators application programmers decision support

personnel and management.

SQL facilitates interaction by embeddingSQL Standard programming languages such as

COBOL, FORTRAN, C etc. through a variety of RDBMS tools like SQL * Plus, Report

Generators, Duplication Generators, Form Generators.

 DATABASE ACCESS THROUGH SQL

SOL operates over database tables. Tables constitute tabular representation of data with data

residing in the form of a spreadsheet or rows and columns. Each row has a set of data items and

the kerns are called fields.

 LOGGING INTO SQL *PLUS

To enter into Oracle and interact with the database using SQL *Plus, a user name and a password

must be given. Logging to oracle can be done by using either the menu option or by entering

Plus 80w (From Oracle 8) in the Start - Run Option.

 131

The figure prompts the user to enter a username and a password. If the system is connected to

multi-user environment, the database s name must be provided in the "Host String".

 SHORTCUTS TO STARTING SQL *PLUS

While starting SQL *Plus, the username along with the password and the database (if required)

can be given. The username and the password must be separated by a slash (/). For example

consider a user called SCOTT and the password called TIGER. If the user is connected to the

personal database, SQL *Plus can be started by giving.

PLUS SQL SCOTT/TIGER (or) SQL PLUS SCOTT / TIGER

If the user is connected to a network, SQL *Plus can be started by giving PLUS SOW

SCOTT/TIGER @ ORACLE After this, the SQL prompt appears from where the commands can

be entered and executed.

 SQL BUFFER

The area where SQL * Plus stores the most recently typed SQL commands or PL/SQL

commands is called SQL Buffer. The command remains in the buffer until another command is

entered. Thus, if the same command or block has to be re executed or edited, it can be done

without retyping the same.

Note : SQL *Plus commands are not stored in the SQL Buffer and hence may not be rerun.

 132

 FEATURES OF SQL

The following are some of the features of SQL:

 Easy to learn.

 Flexible language.

 Individual statements are used to make simple queries.

 Portable language.

 Not only a query language, but also used to create database tables, insert, delete and

granting access to users and many more.

 Independent for the internal structure. Same result will be returned whether any indexes

have been done or not.

 SQL *PLUS COMMANDS

Based on the type of action that each command performs, SQL commands can be broadly

classified as follows:

Classifications Description Commands

DDL

(Date Definition Language)

Is used to define the structure

of a table, or modify the

structure Is used to

manipulate with the data

CREATE, ALTER DROP,

TRUNCATE, RENAME

DML

(Data Manipulation

Language)

Is used to restrict or grant

access to tables

INSERT, UPDATE,

DELETE

DCL

(Data Control Language)

Is used to restrict or grant

access to tables

GRANT, REVOKE

TCL

(Transacton Control

Language)

Is used to complete fully or

undo the transactions

COMMIT, SAVEPOINT,

ROLLBACK

 133

Queries Is used to select records from

the tables or other objects

SELECT

SQL*PLUS ERROR MESSAGES

SQL keyword errors occur when one of the words that the SQL query language reserves for its

commands and clauses is misspelled. For example, writing “UPDTE” instead of “UPDATE” will

produce SQL keyword error

SP2-0002 ACCEPT statement must specify a variable name

Cause: Required variable name was missing after the ACCEPT command.

Action: Re-enter the ACCEPT command with a variable argument to store the input

value.

SP2-0004 Nothing to append

Cause: There was no specified text entered after the APPEND command.

Action: Re-enter the APPEND command with the specified text.

SP2-0499 Misplaced APPEND keyword

Cause: The APPEND keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0501 Error in SELECT statement: Oracle_database_error_message

Cause: Invalid SELECT statement found in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0513 Misplaced CREATE keyword

Cause: The CREATE keyword was in the wrong position in the COPY command.

 134

Action: Check the syntax of the COPY command for the correct options.

SP2-0514 Misplaced REPLACE keyword

Cause: The REPLACE keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0515 Maximum number of columns (max_num_columns) exceeded

Cause: The maximum number of columns was exceeded in the COPY command.

Action: Reduce the number of columns and try again.

SP2-0516 Invalid command_name name NULL encountered

Cause: An invalid or null column name was specified in either the COLUMN or the

ATTRIBUTE command.

Action: Retry the operation with a valid column name.

SP2-0517 Missing comma or right parenthesis

Cause: A missing right parenthesis was identified in the COPY command.

Action: Retry the operation with a comma or right parenthesis.

SP2-0518 Missing USING clause

Cause: USING keyword is missing in the USING clause of the COPY command.

Action: Specify the USING keyword before the USING clause of the COPY command.

SP2-0519 FROM string missing Oracle Net @database specification

Cause: Missing connect string for the database that contains the data to be copied from in

the COPY command.

Action: Include a FROM clause to specify a source database other than the default.

 135

SP2-0645 Operating System error occurred

Unable to complete EDIT command

Cause: An operating system error occurred with the EDIT command.

Action: Check that the file was created successfully, and verify that the device you are

writing to is still available.

SP2-0650 New passwords do not match

Cause: The new passwords entered did not match.

Action: Re-issue the PASSWORD command and make sure that the new passwords are

entered correctly.

SP2-0659 Password unchanged

Cause: The PASSWORD command failed to change passwords because:

 No passwords were given.

 The new passwords did not match.

Action: Re-issue the PASSWORD command and make sure that the new passwords are

entered correctly.

ORACLE TABLES - DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) actually consists of the SQL commands that can be used to

define the database schema. It simply deals with descriptions of the database schema and is used

to create and modify the structure of database objects in the database.

Examples of DDL commands:

 CREATE – is used to create the database or its objects (like table, index, function, views,

store procedure and triggers).

 ALTER-is used to alter the structure of the database.

 DROP – is used to delete objects from the database.

 RENAME –is used to rename an object existing in the database.

 TRUNCATE–is used to remove all records from a table, including all spaces allocated for

the records are removed.

 COMMENT –is used to add comments to the data dictionary.

https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-rename/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/

 136

Data Creation through SQL section deals with creation of tables, altering its structure, inserting

and retrieving records and querying complex data using SQL

 NAMING RULES AND CONVENTIONS

Naming conventions are an important part of coding conventions. Naming conventions are the

rules for how “things” are named. In the case of a database, the “things” being named are schema

objects such as tables, sequences, indexes, views, triggers as well as constraints. In a database it

is essential to choose names with particular care.

If one thinks of a database with several data providers and consumers (usually including

applications and interfaces to and from other databases), it is easy to imagine that objects cannot

be easily be renamed. They should be given suitable names from the very beginning.

Compared to the naming of classes in object-oriented programming languages, the database

developer also has to struggle with the restricted hierarchy of namespaces. While Oracle is only

familiar with the schema for all object types and also the packages for PL/SQL code, in Java a

freely-definable hierarchy of Java packages can be generated to which classes can be added.

The length of an identifier may also be restricted. Fortunately, in Oracle 12cR2, the 30-byte

restriction for an identifier has been increased to 128 bytes.

 CHOICE OF SUITABLE NAMES

The domain knowledge should always be taken into account when choosing names. As a rule,

the domain knowledge is reflected in the name of the relation (table name). Not least due of the

length restriction for identifiers, it is recommended to introduce a human readable name

abbreviation (i.e. a mnemonic) for each table. Triggers, indexes, sequences and constraints are,

for example, assigned to tables. The way in which they are named should follow certain rules.

The affiliation of such an object to a table should be obvious; as well as the object type and

ultimately the technical execution.

Example:

All employees are included in the employee table (domain knowledge). The employee table is

given the abbreviation emp. There is a sequence named emp_seq. There is a trigger

named emp_seq_tg.

Using our naming convention, we now know the following:

 137

 The emp_seq sequence and the emp_seq_tg trigger belong to the employee table, since

they bear the abbreviation emp.

 Because the sequence bears a name in accordance with our convention:

 The employee.id technical key column is populated by the sequence.

 The sequence starts with 1 and ends with 1018-1, it as well as employee.id, will fit in a

64-bit signed integer.

 The sequence does not repeat.

 Since the trigger also bears a name in accordance with our convention, we know that

 This trigger populates the employee.id key column.

 The trigger does nothing else. (Which is good!)

There is already a lot of implicit knowledge being conveyed by the naming conventions. We

have also incorporated a few “best practices” into our naming conventions such as largely

eliminating triggers and the data types for sequences and id columns.

 DATA TYPES

Each literal or column value manipulated by Oracle has a data type. A value's data type

associates a fixed set of properties with the Value. Broadly classifying the data types, they can be

of two types

 BUILT-IN

 USER — DEFINED

Built-in data types are predefined set of data types set in Oracle. Based on the type of data that

can be stored, built-in data types pan be classified as

 Character Data types

 Numeric Data type

 Date Data type

 Raw Data type

 Long Raw Data type

 Lob Data type

 138

 CHARACTER DATA TYPE

Char (n)

Char datatype is a fixed length character data of length n bytes.

Default size is 1 byte and it can hold a maximum of 2000 bytes. Character data types had blank

spaces to the fixed length if the user enters a value lesser than the specified length.

Syntax

Char (n)

Example :

X char (4) stores upto 4 characters of data in the column X.

Varchar 2 (size)

Varchar 2 datatype are variable length character strings. They can store alpha-numeric

values and the size must be specified. The maximum length of varchar 2 datatype is 4000 bytes.

Unlike char datatype, blank spaces are not padded to the length of the string. So, this is more

preferred than &erecter datatypes since it does not store the maximum length.

Syntax

Varchar 2 (size)

Example :

X varchar2 (10) stores upto 10 characters of data in the column X.

 NUMERIC DATA TYPES (NUMBER)

The number data types can store numeric values where p stands for the precision and

stands for the scale. The precision can range between 1 to 38 and the scale ranges from - 84 to

127.

Syntax

Number (p, s)

Example :

Sal number — Here the scale is 0 and the precision is 38.

Sal number(7) — Here the scale is. 0 and the number is a fixed point number of 7 digits

 139

Sal number (7,3) — Stores 5 digits followed by 2 decimal points.

 DATE DATA TYPE

Date datatype is used to store date and time values. The default format is DD-MON-YY.

The valid data for a data ranges from January 1,4712 BC to December 31,4712 AD. Date

Data type stores 7 bytes one each for century, year, month, day, hour, minute and second.

 RAW DATA TYPE

RAW (n)

RAW datatype stores binary data of length n bytes. The maximum size is 255 bytes.

Specifying the size is a must for this datatype.

Syntax

Raw (n)

LONG Datatype

Stores character data of variable length upto 2 Gigabytes (GB) or 231-1

 LONG RAW DATA TYPE

Long Raw Data type stores into 2 Gigabytes (GB) of raw binary data. The use of long values are

restricted. The restrictions are:

 A Table cannot contain more than one LONG column.

 LONG columns cannot appear in Integrity constraints

 They cannot appear in WHERE, ORDER BY clauses of SELECT statements

 Cannot be a part of expressions or conditions.

 Cannot appear in the SELECT list of CREATE TABLE as SELECT.

 LOB DATA TYPES

 140

In addition to the above data types, Oracle8 supports LOB data types. LOB is the acronym for

LARGE OBJECTS. The LOB data types stores up to 4 GB of data. This data type is used for

storing video clippings, large images, history documents etc.

 CONSTRAINTS

Data security and Data Integrity are the most important factors in deciding the success of a

system. Constraints are a mechanism, used by Oracle to restrict invalid data from being entered

into the table and thereby maintain the integrity of` the data. They are otherwise called a

Business Rules. These constraints can be broadly classified into 3 types:

 Entity Integrity Constraints

 Domain Integrity Constraints

 Referential Integrity Constraint's

 ENTITY INTEGRITY CONSTRAINT

Entity Integrity constraints can be classified as

 PRIMARY KEY

 UNIQUE KEY

Choosing a table‘s Primary Key

A primary key allows each row in a table to be uniquely identified and ensures that the duplicate

rows exist and no null values are entered. Selecting a primary key needs the following guideline:

 Choose a column whose data values are unique

 Choose a column whose data values never change.

A primary key value is used to identify a row in the table. Therefore, primary key values must

not contain any data that is used for any other purpose. Primary key can contain one to more

columns of the same table. Together they form a composite Primary Key.

Using Unique Key

Unique Key constraint is used to prevent the duplication of key values within the tows of a table.

If values are entered into a column defined with a unique key, repeating the same data for that

 141

column is not possible but it can contain any number of null values. According to Oracle one null

is not equal to another null.

 DOMAIN INTEGRITY CONSTRAINTS

Domain Integrity constraints are based on the column values and any deviations or violations are

prevented. The two types of Domain Integrity

Constraints are

 Not Null Constraints

 Check Constraints

Choosing NULL Constraints

By Default all columns can contain null values. NOT NULL constraints are used for columns

that absolutely require values at all times. NOT NULL constraints are often combined with other

types of constraints to further restrict the values that can exist in specific columns of a table.

Choosing Check Constraints

Check Constraints are used to check whether the values in the table satisfy the criteria is

specified for that column. They contain conditions. The conditions have the following

limitations.

Conditions must be a Boolean expression that can be evaluated using the values in the record

being inserted or updated Conditions must not contain sub-queries. Conditions cannot contain

any SQL functions. Conditions cannot contain pseudo columns.

 REFERENTIAL INTEGRITY CONSTRAINT

This constraint establishes the relationship between tables. A single or combination of columns,

which can be related to the other tables, is used to perform this operation. Foreign key is used to

establish the relationship. This kind of relationship can be referred to as a Parent-Child

relationship.

The table containing the referenced Key from wile-re other tables refer for value is called the

Parent table and the table containing the foreign key is called the child table.

Adding Constraints

Constraints can be added in two different ways. There are

 Adding at the time of creating tables

 142

 Adding after creating tables

The next section deals with the adding constraints at the time of creating tables. Every

constraints contains a name followed by the type of the constraint.

Adding Entity Integrity Constraints

Both Primary Key and Unique Key constraints can be added at the time of creation of tables. Let

us consider creating a table called item master, which contain item code, item_name and

unit_price.

Example

Create table Item master (item _code number primary key, Item name varchar2 (20) unique,

Unit Price number (9,2));

The table is created along with the constraints. If a constraint is given without specifying

thename of the constraint, Oracle by default assigns a name to the constraint that is unique. The

constraint starts with ‗SYS_C‘ followed by some numbers.

After creation, records are inserted into the table as follows:

INSERT INTO item_master VALUES (I, 'Pencils', 2.50);

If the same command is executed again, it raises an error.

INSERT INTO item master VALUES (l, 'Pencils', 2.50);

ERROR at line 1.

ORA-00001: unique constraint (HEMA.SYS_C00769) violated

By looking at this error message, the user may not understand which value is violated in order to

avoid this situation, a name has to be provided for every constraint that is easy to read. Refining

the above example

Create table Item_master (item_code number CONSTRAINT pkit_code primary key,

Item name varchar2(20) CONSTRAINT unque name unique, Unit_Price number (9,2));

Naming the constraints always provide better readability.

Adding Domain Integrity Constraints

 143

The user has to necessarily provide values for the columns containing NOT NULL values. NOT

NULL constraint is ideal in cases where the value for the column must exist-Consider an

organization that needs to store all the employee information. In this case, the employee name

column cannot be left blank.

 CREATING ORACLE TABLE (USING THE CREATE – COMMAND)

Oracle Database is made up of tables that contain rows (horizontal) and contains (vertical). Each

column contains a data value at the intersection of A row and a column the table definition

contains the name of the attribute (property of field).and the type of the data that the column

contains To create a table, use CREATE TABLE command. CREATE Command is used to

define the structure of a table or any object.

Syntax:

CREATE TABLE <table name.> (column 1 datatype, column 2 datatype ... c.);

Here, table name refers to the name of the table or entity, column Hi the name the-first column,

column2 the name of the second column and so on. For each column there must be an

appropriate data type which describes the type of data it can hold: The statement terminated by a

semi-colon.

The following example illustratesthe Creation of a table:

Example

Create table EMPLOYEE (Empno NUMBER Empname CHAR (10), Doj DATE);

This would display

Table created

In the above example, an entity called EMPLOYEE is created. It contains columns Emp to that

can hold numeric data, Empname that contains character data-and Doj that contains the type of

data. Table names are case-insensitive.

The structure of the data would look like.

Name Type

EMPNO NUMBER

 144

EMPNAME CHAR(10)

DOJ DATE

While creating tables, consider the following points

 Table name must start with alphabet

 Table name length must not exceed 30 characters

 No two tables can have the, same name

 Reserved words of Oracle are not allowed.

4.11.1 DISPLAYING TABLE INFORMATION (VIEWING THE TABLE STRUCTURE)

After creating the table, viewing the structure can be done using DESCRIBE followed by the

name of the table.

Syntax:

DESC [file] <tablename>

Example:

DESC EMPLOYEE

The output would look like

Name Type

EMPNO NUMBER

EMPNAME CHAR(10)

DOJ DATE

 USING THE ALTER - COMMAND

A table's structure can be altered using the ALTER Command. The Command allows the

structure of the existing table to be altered by adding new columns or fields dynamically and

modifying the existing fields data types. Using this command, one or more columns can be

added.

 145

Syntax:

Alter table <tablename> add (columnl datatype, Column2 datatype);

Alter table<tablename>modify (column1 datatype, column2 datatype);

Example :

Consider the previous example where a new column called Salary is to be added.

ALTER TABLE employee ADD (salary NUMBER);

 USING THE DROP - COMMAND

DROP command completely removes a table from the database. This command will also destroy

the table structure and the data stored in it. Following is its syntax,

DROP TABLE table_name

Here is an example explaining it,

DROP TABLE student;

The above query will delete the Student table completely. It can also be used on Databases, to

delete the complete database. For example, to drop a database,

DROP DATABASE Test;

The above query will drop the database with name Test from the system.

 USING RENAME – COMMAND

RENAME command is used to set a new name for any existing table. Following is the syntax,

RENAME TABLE old_table_name to new_table_name;

Here is an example explaining it.

RENAME TABLE student to students_info;

The above query will rename the table student to students_info.

 USING TRUNCATE – COMMAND

TRUNCATE command removes all the records from a table. But this command will not destroy

the table's structure. When we use TRUNCATE command on a table its (auto-increment)

primary key is also initialized. Following is its syntax,

TRUNCATE TABLE table_name

Here is an example explaining it,

TRUNCATE TABLE student;

The above query will delete all the records from the table student.

 146

UNIT V

 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) statements are used for managing data in database. DML

commands are not auto-committed. It means changes made by DML command are not

permanent to database, it can be rolled back.

 USING INSERT - COMMAND

Insert command is used to add one or more rows to a table. The values are separated commas

and the values are entered in the same ORDER as specified by the structure of the table.

Inserting records into tables can be done in different ways:

 Inserting records into all fields

 Inserting records into selective fields

 Continuous insertions.

 Inserting records using SELECT statement.

Use the INSERT command to enter data into a table. Insert data one row at a time, or select

several rows from an existing table and insert them all at once.

Following is its general syntax,

INSERT INTO table_name VALUES(data1, data2, ...)

Lets see an example,

Consider a table student with the following fields.

s_id name age

INSERT INTO student VALUES(101, 'Adam', 15);

The above command will insert a new record into student table.

s_id name age

101 Adam 15

 147

Insert value into only specific columns

We can use the INSERT command to insert values for only some specific columns of a row. We

can specify the column names along with the values to be inserted like this,

INSERT INTO student (id, name) values(102, 'Alex');

The above SQL query will only insert id and name values in the newly inserted record.

Exercise: Add two rows to the Personnel table, one with all the data filled in, the other with

required columns only (two separate queries). Use these SQL statements or similar:

INSERT INTO Personnel

VALUES("7777777", "Smith", "John", #7/17/1950#, "Chemistry");

INSERT INTO Personnel (StaffID, LastName, FirstName)

VALUES ("5555555", "Jones", "Jane");

NOTE: The date/time data type uses a # delimiter in Access; quotes in other databases.

When you execute the statements, Access will give you a warning (other database systems do

not!):

Click Yes to complete the execution step.

Case 1:

Consider inserting values into Selective fields.

Syntax:

Insert into <tablename> (Selective column1, selective column2) values (value 1, value 2)

Example:

 148

INSERT INTO Employee (empno, empname) VALUES (1330, ‗Saravanan‘);

Displays the feedback as 1 row created

Case 2:

Consider continuous insertion of records. In order to insert continuously use "&" (ampersand).

Syntax :

Insert into <tablename> Values (&Coll, &Col2, &Co13...);

Oracle prompts the user to insert values onto all the columns of the table. The following example

illustrates this.

Example

INSERT INTO employee VALUES (&eno, &name, &doj, &sal);

Output will be:

Enter value: for eno: 1247

Enter valuefor name: Mena

Enter value for doj name:10-jan-2000

Enter value for sal : 5000

old 1: insert into employee values (&eno, ‗&name‘, &doj, &sal);

new 1: insert into employee values (1247, 'meena', 10-jan-2000', 5000);

1 row created.

Now, consider inserting_ records continuously for selective fields. This is similar to case 2

Insert into <tablename> (selective column l, selective column2) Values (Coll, &co12);

The following example inserts records into the empno and empname columns.

Example :

INSERT INTO Employee(empno, empname) VALUES (&eno, '&name‘);

Output

Enter value for eno : 1440

Enter value for name : Diana

old 1: insert into employee values (&eno, ‗&name‘);

 149

new 1: insert into employee values (1440,‗Diana‘);

1 row created.

Case 3:

Multiple Records can be inserted using a single Insert command along with Select statement.

This case is dealt alter the section on Select Statement.

Note : Using Insert and Values combination, only one record can be inserted at a time.

 USING THE SELECT – COMMAND (RETRIEVING RECORDS)

Retrieving data from the database is the most common SQL operation. Database retrieval is

called a query and is performed using SELECT statement. A basic SELECT statement contains

two clauses or parts Select some data (columnname(s)) FROM a table or More tables (table

name(s)) Retrieval of records can be done in various ways:

 Selecting all records from a table

 Retrieving selective columns for all records from a table

 Selecting records based on conditions

 Selecting records in a sorted order

Consider the first case of selecting all the records from the table.

Example

SELECT empno, empname, doj, salary FROM employee;

Here, all the column names are given in the SELECT clause. This can be further simplified by

giving * as follows:

Example

SELECT * FROM employee;

This would display:

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10-MAR-2000 5000

1330 Saravanan

1247 Meena 10-JAN-2000 5000

 150

1440 Diana

* INDICATED ALL THE COLUMN NAMES.

Note in the above display, there are no values entered in DOJ and Salary Column for the

employee 1001 and 1004. Here the values in these columns are considered to have NULL values.

Anytime it can be updated using the Update Command. In the second case, the column names

must be specified in the SELECT statement.

Syntax :

SELECT Col1, Col2;

FROM<tablename>;

Example:

SELECT empname, salary FROM employee;

The records would be displayed as follows

EMPNAME SALARY

Kalai 5000

Saravanan

Meena 5000

Diana

This statement retrieves the column values of empname and salary.

5.1.2.1 Conditional Retrieval

Conditional retrieval enables selective rows to be selected. While selecting rows, restriction can

be applied through a condition that governs the selection. An additional clause called WHERE

must be given along with the SELECT statement to apply the condition to select a specific set of

rows! The order of precedence first goes to the WHERE clause and the records that match the

condition are alone selected.

Syntax:

Select (column name (s)) FROM (table name(s)) WHERE condition(s) consider selecting

employee records whose salary is equal to or greater than 3000. The query can be written as

 151

Example:

SELECT empno, empname, salary FROM employee where salary >=3000;

The records selected will be,

EMPNO EMPNAME SALARY

1237 Kalai 5000

1247 Meena 5000

Example :

SELECT * FROM employee WHERE salary = 1000;

The display would be no rows selected since there are no records matching the condition

specified in the WHERE clause.

CREATE TABLE employee2 AS SELECT empno, empname FROM EMPLOYEE;

The statements given above create new tables called employee 1 andemployees2 respectively. In

the case of employee' table, the structure, which exists in the employee table, is copied and the

records are inserted. In the case of employee2 table, two columns are copied from the employee

name with the records and me structure. The above Statements can alternately written as.

CREATE TABLE <tablename>

and

INSERT INTO <tablename>SELECT <columnlist> FROM <tablename>

as Inserting records using SELECT Statement.

Copying the Structure of one table can be copied on to another table without the records being

copied. In order to do this, along with the SELECT statement, add a WHERE clause which

yields to any FALSE condition. The following example explain this

CREATE TABLE employee3 AS SELECT * FROM employee WHERE 1=2;

 152

This statement creates a table called Employee3 whose structure is the same as Employee but the

records are not copied since WHERE clause evaluates to FALSE.

 DATA ACCESS TECHNIQUES

Data access refers to a user's ability to access or retrieve data stored within a database or other

repository. Users who have data access can store, retrieve, move or manipulate stored data,

which can be stored on a wide range of hard drives and external devices.

ODBC (Open Database Connectivity, Open Database interconnection) It is an integral part

of the database in Microsoft's WOSA (Windows Open Services Architecture). It establishes a set

of specifications. It also provides a set of standard APIs for database access application

programming interfaces (API). These APIs use SQL to complete most of their tasks. ODBC also

provides support for the SQL language can directly send SQL statements to ODBC. It is an early

database interface technology introduced by Microsoft. It is actually the predecessor of ADO.

DAO (Data Access Objects): The data Access object is used to expose the Microsoft Jet

Database Engine (which was first used for Microsoft Access and now supports other databases)

and allows developers to directly connect to other databases through ODBC, directly connect to

the Access table. DAO is most suitable for single-system applications or local distribution in a

small range. Its internal access to the Jet Database has been accelerated and optimized, and it is

also very convenient to use. Therefore, if the database is an Access database and is used locally,

we recommend that you use this Access method-application uniqueness.

RDO (Remote Data Objects) The remote data object is an ODBC-oriented data access

interface. It is combined with the easy-to-use DAO style and provides an interface, shows the

underlying functions and flexibility of all ODBC databases. Although RDO is restricted in its

access to Jet or Indexed sequential access method (ISAM) databases, it can only access relational

databases through the existing ODBC driver. However, RDO has proved the best interface that

have SQL Server, Oracle, and other large relational database developers often choose. RDO

provides more complex objects, attributes, and methods used to access stored procedures and

complex result sets. It is undoubtedly based on ODBC.

 153

OLE DB Is a strategic system-level programming interface of Microsoft used to manage data

within the entire organization. OLE DB is an open specification built on the ODBC function.

ODBC is specially developed to access relational databases. OLE DB is used to access relational

and non-relational information sources, such as the host Indexed sequential access method

(ISAM) / virtual storage access method (VSAM) and hierarchical database, email and file system

storage, text, graphics, and geographic data, as well as custom business objects.

OLE DB defines a set of COM interfaces, encapsulates various database management system

services, and allows you to create software components to implement these services. OLE DB

components include data providers (including and presenting data), data users (using data), and

service components (processing and transmitting data, such as query processors and cursor

engines).

OLE DB interfaces help to smoothly integrate components, so that OLE DB Component vendors

can quickly provide high-quality OLE DB components to the market. In addition, OLE DB

contains a "bridge" Connecting ODBC, which provides consistent support for various ODBC

relational database drivers. Claim to replace ODBC, but also compatible with ODBC.

ADO (ActiveX Data Object) is the successor of DAO/RDO. ADO 2.0 is more functionally

similar to RDO, and generally there is a similar between the two models. ADO "extends" the

object model used by DAO and RDO, which means it contains fewer objects, more attributes,

methods (and parameters), and events. As the latest database access mode, ADO is also easy to

use, so Microsoft has clearly stated that it will focus on ADO in the future and will not upgrade

DAO/RDO, therefore, ADO has become the mainstream of database development.

 ADO (ACTIVEX DATA OBJECT)

ADO involves three Data Storage Methods: DSN (Data Source Name), ODBC (open data

connection), and OLE DB. A Data Source Name (DSN) is a data structure that contains the

information about a specific database that an Open Database Connectivity (ODBC) driver needs

in order to connect to it. The following routine will explain in detail the specific access

implementation of these three methods. It can be said that it is the integration of system-level

programming interfaces such as ODBC and OLEDB, and the upgrade of application-level

programming interfaces such as DAO and RDO.

 154

 ADO is a Microsoft technology

 ADO stands for ActiveX Data Objects

 ADO is a Microsoft Active-X component

 ADO is automatically installed with Microsoft Internet Information Services (IIS)

 ADO is a programming interface to access data in a database

Accessing a Database from an Active Server Pages (ASP) Page

The common way to access a database from inside an ASP page is to:

1. Create an ADO connection to a database

2. Open the database connection

3. Create an ADO recordset

4. Open the recordset

5. Extract the data you need from the recordset

6. Close the recordset

7. Close the connection

 ADO DATABASE CONNECTION

Before a database can be accessed from a web page, a database connection has to be established.

 CREATE AN ODBC DATABASE CONNECTION

If you have an ODBC database called "northwind" you can connect to the database with the

following ASP code:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Open "northwind"

%>

With an ODBC connection, you can connect to any database, on any computer in your network,
as long as an ODBC connection is available.

An ODBC Connection to an MS Access Database

Here is how to create a connection to a MS Access Database:

1. Open the ODBC icon in your Control Panel.

2. Choose the System DSN tab.

3. Click on Add in the System DSN tab.

4. Select the Microsoft Access Driver. Click Finish.

 155

5. In the next screen, click Select to locate the database.

6. Give the database a Data Source Name (DSN).

7. Click OK.

Note that this configuration has to be done on the computer where the web site is located.

 ADO CONNECTION OBJECT

The ADO Connection Object is used to create an open connection to a data source. Through this

connection, data access and manipulate a database.

To access a database multiple times, establish a connection using the Connection object. Make a

connection to a database by passing a connection string via a Command or Recordset object.

However, this type of connection is only good for one specific, single query.

ProgID

set objConnection=Server.CreateObject("ADODB.connection")

Properties

Property Description

Attributes Sets or returns the attributes of a Connection object

CommandTimeout Sets or returns the number of seconds to wait while

attempting to execute a command

ConnectionString Sets or returns the details used to create a connection to a data

source

ConnectionTimeout Sets or returns the number of seconds to wait for a connection

to open

Mode Sets or returns the provider access permission

Provider Sets or returns the provider name

State Returns a value describing if the connection is open or closed

Version Returns the ADO version number

Methods

 156

Method Description

BeginTrans Begins a new transaction

Cancel Cancels an execution

Close Closes a connection

CommitTrans Saves any changes and ends the current transaction

Execute Executes a query, statement, procedure or provider specific
text

Open Opens a connection

RollbackTrans Cancels any changes in the current transaction and ends the

transaction

Events

Note: You cannot handle events using VBScript or JScript (only Visual Basic, Visual C++, and

Visual J++ languages can handle events).

Event Description

BeginTransComplete Triggered after the BeginTrans operation

CommitTransComplete Triggered after the CommitTrans operation

Disconnect Triggered after a connection ends

ExecuteComplete Triggered after a command has finished executing

RollbackTransComplete Triggered after the RollbackTrans operation

WillExecute Triggered before a command is executed

Collections

Collection Description

Errors Contains all the Error objects of the Connection object

Properties Contains all the Property objects of the Connection object

 157

 ADO RECORDSET OBJECT

The ADO Recordset object is used to hold a set of records from a database table. Recordset

object consist of records and columns (fields).

In ADO, this object is the most important and the one used most often to manipulate data from a

database.

Examples

GetRows

This example demonstrates how to use the GetRows method.

ProgID

set objRecordset=Server.CreateObject("ADODB.recordset")

When you first open a Recordset, the current record pointer will point to the first record and the

BOF and EOF properties are False. If there are no records, the BOF and EOF property are True.

Recordset objects can support two types of updating:

 Immediate updating - all changes are written immediately to the database once you call

the Update method.

 Batch updating - the provider will cache multiple changes and then send them to the

database with the UpdateBatch method.

In ADO there are 4 different cursor types defined:

 Dynamic cursor - Allows you to see additions, changes, and deletions by other users.

 Keyset cursor - Like a dynamic cursor, except that you cannot see additions by other

users, and it prevents access to records that other users have deleted. Data changes by

other users will still be visible.

 Static cursor - Provides a static copy of a recordset for you to use to find data or

generate reports. Additions, changes, or deletions by other users will not be visible. This

is the only type of cursor allowed when you open a client-side Recordset object.

 Forward-only cursor - Allows you to only scroll forward through the Recordset.

Additions, changes, or deletions by other users will not be visible.

The cursor type can be set by the CursorType property or by the CursorType parameter in the

Open method.

 158

Note: Not all providers support all methods or properties of the Recordset object.

 PROPERTIES

Property Description

AbsolutePage Sets or returns a value that specifies the page number in the

Recordset object

AbsolutePosition Sets or returns a value that specifies the ordinal position of the

current record in the Recordset object

CacheSize Sets or returns the number of records that can be cached

CursorLocation Sets or returns the location of the cursor service

CursorType Sets or returns the cursor type of a Recordset object

DataMember Sets or returns the name of the data member that will be retrieved
from the object referenced by the DataSource property

DataSource Specifies an object containing data to be represented as a Recordset

object

EditMode Returns the editing status of the current record

EOF Returns true if the current record position is after the last record,
otherwise false

PageSize Sets or returns the maximum number of records allowed on a single
page of a Recordset object

RecordCount Returns the number of records in a Recordset object

Sort Sets or returns the field names in the Recordset to sort on

Source Sets a string value or a Command object reference, or returns a
String value that indicates the data source of the Recordset object

State Returns a value that describes if the Recordset object is open,

closed, connecting, executing or retrieving data

Status Returns the status of the current record with regard to batch updates

or other bulk operations

StayInSync Sets or returns whether the reference to the child records will

change when the parent record position changes

 159

 METHODS

Method Description

AddNew Creates a new record

Cancel Cancels an execution

Clone Creates a duplicate of an existing Recordset

Close Closes a Recordset

CompareBookmarks Compares two bookmarks

Delete Deletes a record or a group of records

Find Searches for a record in a Recordset that satisfies a

specified criteria

GetRows Copies multiple records from a Recordset object into a
two-dimensional array

GetString Returns a Recordset as a string

Move Moves the record pointer in a Recordset object

MoveFirst Moves the record pointer to the first record

MoveLast Moves the record pointer to the last record

MoveNext Moves the record pointer to the next record

MovePrevious Moves the record pointer to the previous record

Requery Updates the data in a Recordset by re-executing the

query that made the original Recordset

Resync Refreshes the data in the current Recordset from the

original database

Save Saves a Recordset object to a file or a Stream object

Update Saves all changes made to a single record in a Recordset

object

 EVENTS

 160

Note: You cannot handle events using VBScript or JScript (only Visual Basic, Visual C++, and

Visual J++ languages can handle events).

Event Description

EndOfRecordset Triggered when you try to move to a record after the
last record

FetchComplete Triggered after all records in an asynchronous

operation have been fetched

FetchProgress Triggered periodically in an asynchronous operation,

to state how many more records that have been

fetched

FieldChangeComplete Triggered after the value of a Field object change

MoveComplete Triggered after the current position in the Recordset
has changed

WillMove Triggered before the current position in the Recordset

changes

 Collections

Collection Description

Fields Indicates the number of Field objects in the Recordset

object

Properties Contains all the Property objects in the Recordset object

 FORMS AND REPORTS

Forms and reports are an important part of the database application. Designer use them to create

an integrated application, making it easier for user to perform their task. Decision maker and

clerical workers use from and report on a daily basis. Normally forms were used as input and

report were used to display result. Now a day forms are also used to display result, Basic use of

forms are:

 Collect data
Display query data

Display analysis and computation result

 161

Switch board

Direct manipulation of object like Graphics

Reports are typically printed on paper, but they are increasingly begin created for direct display

on the screen. Report can be used to format the data and present results from complex analysis.

Forms and reports have several common features.

 DESIGN OF FORMS AND REPORT

The most important concept to remember when designing forms and reports is to understand

that they are the primary concert of the user. The key of effective design is to determine the

needs of the user. As a designer, you talk with to learn what they want to accomplish. Then

you use your experience to provide features that make the form more useful. Researchers in

human factors have developed several guidelines to help you design forms. Some factors are:

a. User Control: match user task, Respond to user control and event User customization.

b. Consistency: Layout, design, and color, action.

c. Feedback: Method(Visual, text, Audio, Graphics)

d. Forgiveness: Correction of errors, Confirmation on delete and updates.

 FORM LAYOUT

Individual forms or windows are your primary means of communication with people who use

your application. Forms are used to collect data, display results and organize the overall

system. Several standard layouts are provided by the DBMS to simplify the development of

many common forms. Normally we will be working with four basic types of form.

a. Tabular Forms:-

One of the simplest forms is the tabular forms, which displays the columns and rows from a

table or query. It can be used as a sub form and is rarely used as a stand-alone form.

Microsoft Access provides an even simpler version of form called a datasheet.

b. Single-Row or Columnar Forms:-

A single-row form displays data for one row at a time. The goal is to display every column.

Its greatest feature is that the designer can display the data at any location on the form. It is

useful for designing a form like a traditional paper form.

c. Subform Forms:-

A subform is usually a datasheet (or tabular form) embedded on the main form. A subform

generally shows a one-to-many relationship.

d. Switchboard:-

It provides overall structure of an application. It directs the user to other form & report in the

application. It often contains image and reflect the style of the company.

 162

 DATA REPORTS

Several issue are involve in designing report as in the development of form, you and users

need to determine the content and layout of reports. Issues in designing report are:

a. Report usage and user need.
b. Report layout choice like tabular, subgroup, chart, etc.

c. Paper size

d. How often it is generated.

e. Even that triggers report.

f. How large is the report.

g. Colors

h. Security control, etc.

 TYPES OF REPORT

a. Tabular and level report
It is basically means printing column of data like output of query in tabular reports, data are

presented in tabular forms .Example grade sheets of all students.

b. Group and subtotal Report

The most common types of report is based on groups and compute, subtotals common

example may be printing receipt or a bills.

Form, Report, and Control objects are Microsoft Access objects. You can set properties for these

objects from within a Sub, Function, or event procedure. Set properties for form and report

sections also possible.

 SET A PROPERTY OF A FORM OR REPORT

Refer to the individual form or report within the Forms or Reports collection, followed by the

name of the property and its value. For example, to set the Visible property of the Customers

form to True (-1), use the following line of code:

VBCopy

Forms!Customers.Visible = True

You can also set a property of a form or report from within the object's module by using the

object's Me property. Code that uses the Me property executes faster than code that uses a fully

qualified object name. For example, to set the RecordSource property of the Customers form to

an SQL statement that returns all records with a CompanyName field entry beginning with "A"

from within the Customers form module, use the following line of code:

 163

VBCopy

Me.RecordSource = "SELECT * FROM Customers " _& "WHERE CompanyName Like 'A*'"

 SET A PROPERTY OF A CONTROL

Refer to the control in the Controls collection of the Form or Report object on which it resides.

You can refer to the Controls collection either implicitly or explicitly, but the code executes

faster if you use an implicit reference. The following examples set the Visible property of a text

box called CustomerID on the Customers form:

VBCopy

' Faster method.

Me!CustomerID.Visible = True

VBCopy

' Slower method.

Forms!Customers.Controls!CustomerID.Visible = True

The fastest way to set a property of a control is from within an object's module by using the

object's Me property. For example, you can use the following code to toggle the Visible property

of a text box called CustomerID on the Customers form:

VBCopy

With Me!CustomerID

.Visible = Not .Visible

End With

 SET A PROPERTY OF A FORM OR REPORT SECTION

Refer to the form or report within the Forms or Reports collection, followed by

the Section property and the integer or constant that identifies the section. The following

examples set the Visible property of the page header section of the Customers form to False:

VBCopy

Forms!Customers.Section(3).Visible = False

VBCopy

 164

Me!Section(acPageHeader).Visible = False

CREATING A DATA REPORT IN VISUAL BASIC 6 (VB6)

Once you have gone to all the trouble of developing and managing a database, it is nice to have

the ability to obtain printed or displayed information from your data. The process of obtaining

such information is known as creating a data report.

There are two steps to creating a data report. First, we need to create a Data Environment. This is

designed within Visual Basic and is used to tell the data report what is in the database. Second,

we create the Data Report itself. This, too, is done within Visual Basic. The Data Environment

and Data Report files then become part of the Visual Basic project developed as a database

management system.

The Visual Basic 6.0 data report capabilities are vast and using them is a detailed process. The

use of these capabilities is best demonstrated by example. We will look at the rudiments of report

creation by building a tabular report for our phone database.

 EXAMPLE - PHONE DIRECTORY - BUILDING A DATA REPORT

We will build a data report that lists all the names and phone numbers in our phone database. We

will do this by first creating a Data Environment, then a Data Report. We will then reopen the

phone database management project and add data reporting capabilities.

 CREATING A DATA ENVIRONMENT

1. Start a new Standard EXE project.

2. On the Project menu, click Add Data Environment. If this item is not on the menu,

click Components. Click the Designers tab, and choose Data Environment and click OK to

add the designer to your menu.

3. We need to point to our database. In the Data Environment window, right-click

the Connection1 tab and select Properties. In the Data Link Properties dialog box,

choose Microsoft Jet 3.51 OLE DB Provider. Click Next to get to the Connection tab. Click

the ellipsis button. Find your phone database (mdb) file. Click OK to close the dialog box.

4. We now tell the Data Environment what is in our database. Right-click the Connection1 tab

and click Rename. Change the name of the tab to Phone. Right-click this newly named tab and

click Add Command to create a Command1 tab. Right-click this tab and choose Properties.

Assign the following properties:

Command Name - PhoneList

Connection - Phone

DataBase Object - Table

ObjectName - PhoneList

 165

5. Click OK. All this was needed just to connect the environment to our database.

6. Display the properties window and give the data environment a name property of denPhone.

Click File and Save denPhone As. Save the environment in an appropriate folder. We will

eventually add this file to our phone database management system. At this point, my data

environment window looks like this (I expanded the PhoneList tab by clicking the + sign):

 CREATING A DATA REPORT

Once the Data Environment has been created, we can create a Data Report. We will drag things

out of the Data Environment onto a form created for the Data Report, so make sure your Data

Environment window is still available.

1. On the Project menu, click Add Data Report and one will be added to your project. If this item

is not on the menu, click Components. Click the Designers tab, and choose Data Report and click

OK to add the designer to your menu.

2. Set the following properties for the report:

Name - rptPhone

Caption - Phone Directory

DataSource - denPhone (your phone data environment - choose, don’t type)

DataMember - PhoneList (the table name - choose don’t type)

3. Right-click the Data Report and click Retrieve Structure. This establishes a report format

based on the Data Environment.

4. Note there are five sections to the data report: a Report Header, a Page Header, a Detail

section, a Page Footer, and a Report Footer. The headers and footers contain information you

want printed in the report and on each page. To place information in one of these regions, right-

click the selected region, click Add Control, then choose the control you wish to place. These

controls are called data report controls and properties are established just like you do for usual

controls. Try adding some headers.

 166

5. The Detail section is used to layout the information you want printed for each record in your

database. We will place two field listings (Name, Phone) there. Click on the Name tab in the

Data Environment window and drag it to the Detail section of the Data Report. Two items should

appear: a text box Name and a text box Name (PhoneList). The first text box is heading

information. Move this text box into the Page Header section. The second text box is the actual

value for Name from the PhoneList table. Line this text box up under the Name header. Now,

drag the Phone tab from the Data Environment to the Data Report. Adjust the text boxes in the

same manner. Our data report will have page headers Name and Phone. Under these headers,

these fields for each record in our database will be displayed. When done, the form should look

something like this:

In this form, I’ve resized the labels a bit and added a Report Header. Also, make sure you close

up the Detail section to a single line. Any space left in this section will be inserted after each

entry.

6. Click File and Save rptPhone As. Save the environment in an appropriate folder. We will now

reopen our phone database manager and attach this and the data environment to that project and

add capabilities to display the report.

 ACCESSING THE DATA REPORT

1. Reopen the phone directory project. Add a command button named cmdReport and give it a

Caption of Show Report. (There may be two tabs in your toolbox, one named General and one

named DataReport. Make sure you select from the General tools.)

2. We will now add the data environment and data report files to the project. Click the Project

menu item, then click Add File. Choose denPhone and click OK. Also add rptPhone. Look at

your Project Window. Those files should be listed under Designers.

3. Use this code in cmdReport_Click:

 167

Private Sub cmdReport_Click()

rptPhone.Show

End Sub

4. This uses the Show method to display the data report.

5. Save the application and run it. Click the Show Report button and this should appear:

	SYLLABUS
	UNIT – I
	UNIT – II
	UNIT – III
	UNIT IV
	UNIT – V
	UNIT - I
	INTRODUCTION TO FORM
	Source Code
	FORM PROPERTIES
	FORM EVENTS
	FORM METHODS
	VARIABLES
	variablename [As Type] Example
	RULES FOR NAMING VARIABLES
	SCOPE OF A VARIABLE
	TYPES
	PROCEDURE-LEVEL VARIABLE
	Output
	Output (1)
	MODULE-LEVEL VARIABLE
	Example
	DATA TYPES
	EXAMPLE
	STRING FUNCTIONS
	WRITING SIMPLE PROGRAMS
	Create a VB application using string functions.
	Create a VB application using math functions.
	This program display a message whether the label is being click once or click twice.
	The Output
	Change the background color of the form.
	TOOLBOX
	1. Label Box
	2. Text Box / Edit Field / Edit Control
	3. Command Button
	4. Option Button
	5. Check Box
	6. Frame
	7. Picture Box
	8. Image
	9. Timer
	10. List Box
	11. Combo Box
	12. HScrollBar
	13. VScrollBar
	14. Line and Shape Controls
	15. Pointer Control
	16. Common Dialog Box
	17. Drive, Directory, and File List Controls
	18. Data Control
	19. DBGrid Control
	20. OLE (Object Linking and Embedding)
	1.7.1 CREATING CONTROLS
	COMMAND BUTTON
	COMMAND BUTTON PROPERTIES
	COMMAND BUTTON METHODS
	Access Keys
	IMAGE CONTROLS
	IMAGE PROPERTIES
	IMAGE METHODS
	General Declarations
	TEXT BOX
	TEXTBOX PROPERTIES
	TEXTBOX METHODS
	LABEL PROPERTIES
	LABEL METHODS
	CHECK BOX PROPERTIES
	CHECK BOX METHODS
	FRAME
	FRAME PROPERTIES
	FRAME METHODS
	UNIT II
	FONTS
	TAB AND SPC COMMANDS
	FORMAT FUNCTION
	Output (2)
	DETERMINATE LOOPS
	FOR … NEXT STATEMENT
	Syntax
	DO … LOOP STATEMENT
	WHILE … WEND STATEMENT
	Syntax (1)
	INDETERMINATE LOOPS
	CONDITIONALS
	IF STATEMENT
	Example (1)
	IF … ELSEIF STATEMENT
	Syntax (2)
	Example (2)
	[Else
	End If
	NESTED IF STATEMENT
	SELECT STATEMENT
	Syntax (3)
	BUILT-IN-FUNCTIONS
	STRING FUNCTIONS (1)
	MATH FUNCTIONS (Numeric)
	OPERATORS
	ARITHMETIC OPERATORS
	RELATIONAL OPERATORS
	LOGICAL OPERATORS
	ASSIGNMENT OPERATOR
	CONCATENATION OPERATORS
	FUNCTIONS
	PROCEDURES
	LISTS
	LIST BOX PROPERTIES
	LIST BOX METHODS
	ARRAYS
	FIXED-SIZE ARRAY
	ONE DIMENSIONAL ARRAY
	MULTI-DIMENSIONAL ARRAY
	Dim stud(2, 1) As Integer
	General Declarations (1)
	DYNAMIC ARRAY
	General Declarations (2)
	LBOUND AND UBOUND FUNCTIONS
	Example (3)
	CONTROL ARRAY
	Example (4)
	COMBO BOX METHODS
	PROJECTS WITH MULTIPLE FORMS
	WRITING THE VISUAL BASIC CODE TO ADD THE CHILDREN TO THE MDI
	Output (3)
	MENU PROPERTIES AND EVENTS
	UNIT III
	WHAT IS A DATABASE?
	WHAT IS MANAGEMENT SYSTEM?
	DATABASE MANAGEMENT SYSTEM (DBMS) AND ITS APPLICATIONS
	ENTERPRISE INFORMATION
	BANKING AND FINANCE
	ADVANTAGES OF DBMS
	DISADVANTAGES OF DBMS
	COMPONENTS OF DBMS
	SOFTWARE
	HARDWARE
	PROCEDURES (1)
	DATA
	USERS
	APPLICATION PROGRAMMERS
	DATABASE ADMINISTRATORS (DBA)
	END-USERS
	CLASS DIAGRAM
	PURPOSE OF CLASS DIAGRAMS
	UNIFIED MODELING LANGUAGE (UML) - BASIC NOTATIONS
	Class Notation
	Object Notation
	Interface Notation
	Collaboration Notation
	Use Case Notation
	Actor Notation
	Initial State Notation
	Final State Notation
	Active Class Notation
	Component Notation
	Node Notation
	BEHAVIORAL THINGS
	INTERACTION NOTATION
	STATE MACHINE NOTATION
	GROUPING THINGS
	Package Notation
	Note Notation
	RELATIONSHIPS
	Dependency Notation
	Association Notation
	Generalization Notation
	Extensibility Notation
	HOW TO DRAW A CLASS DIAGRAM?
	WHERE TO USE CLASS DIAGRAMS?
	BENEFITS OF CLASS DIAGRAM
	EVENTS
	RELATIONSHIP NAMES
	NAVIGABILITY
	VISIBILITY OF CLASS ATTRIBUTES AND OPERATIONS
	MULTIPLICITY
	NORMALIZATION
	NORMAL FORMS
	First Normal Form (1NF)
	Second Normal Form (2NF)
	teacher_details table:
	Third Normal Form (3NF)
	employee table:
	UNIT IV (1)
	SQL *PLUS ENVIRONMENT
	STRUCTURED QUERY LANGUAGE (SQL)
	NON PROCEDURAL LANGUAGE
	DATABASE ACCESS THROUGH SQL
	LOGGING INTO SQL *PLUS
	SHORTCUTS TO STARTING SQL *PLUS
	SQL BUFFER
	FEATURES OF SQL
	SQL *PLUS COMMANDS
	SQL*PLUS ERROR MESSAGES
	ORACLE TABLES - DATA DEFINITION LANGUAGE (DDL)
	NAMING RULES AND CONVENTIONS
	CHOICE OF SUITABLE NAMES
	Example:
	DATA TYPES (1)
	CHARACTER DATA TYPE
	Varchar 2 (size)
	Syntax (4)
	Example :
	DATE DATA TYPE
	RAW DATA TYPE
	Syntax (5)
	LONG RAW DATA TYPE
	LOB DATA TYPES
	CONSTRAINTS
	ENTITY INTEGRITY CONSTRAINT
	DOMAIN INTEGRITY CONSTRAINTS
	REFERENTIAL INTEGRITY CONSTRAINT
	Adding Constraints
	Adding Entity Integrity Constraints
	Example (5)
	Adding Domain Integrity Constraints
	CREATING ORACLE TABLE (USING THE CREATE – COMMAND)
	Syntax:
	Example (6)
	4.11.1 DISPLAYING TABLE INFORMATION (VIEWING THE TABLE STRUCTURE)
	Syntax: (1)
	Example: (1)
	USING THE ALTER - COMMAND
	USING THE DROP - COMMAND
	USING RENAME – COMMAND
	USING TRUNCATE – COMMAND
	UNIT V
	USING INSERT - COMMAND
	Case 1:
	Syntax: (2)
	Example: (2)
	Case 2:
	Syntax :
	Example (7)
	Example : (1)
	Output (4)
	Case 3:
	USING THE SELECT – COMMAND (RETRIEVING RECORDS)
	Example (8)
	Syntax : (1)
	Example: (3)
	5.1.2.1 Conditional Retrieval
	Syntax: (3)
	Example: (4)
	Example : (2)
	DATA ACCESS TECHNIQUES
	ADO (ACTIVEX DATA OBJECT)
	ADO DATABASE CONNECTION
	CREATE AN ODBC DATABASE CONNECTION
	ADO CONNECTION OBJECT
	ProgID
	Properties
	Events
	Collections
	PROPERTIES
	EVENTS (1)
	Collections (1)
	DESIGN OF FORMS AND REPORT
	FORM LAYOUT
	DATA REPORTS
	TYPES OF REPORT
	SET A PROPERTY OF A FORM OR REPORT
	SET A PROPERTY OF A CONTROL
	SET A PROPERTY OF A FORM OR REPORT SECTION
	CREATING A DATA REPORT IN VISUAL BASIC 6 (VB6)

