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Module 1

Graphs and Subgraphs

1.1 Introduction

Graph theory is a branch of mathematics which deals the problems, with the

help of diagrams. There are may applications of graph theory to a wide variety

of subjects which include operations research, physics, chemistry, computer

science and other branches of science. In this chapter we introduce some basic

concepts of graph theory and provide variety of examples. We also obtain

some elementary results.

1.2 What is a graph ?

Definition 1.2.1. A graph G consists of a pair (V (G), X(G)) where V (G)

is a non empty finite set whose elements are called points or vertices and

X(G) is a set of unordered pairs of distinct elements of V (G). The elements

of X(G) are called lines or edges of the graph G. If x = {u, v} ∈ X(G), the

line x is said to join u and v. We write x = uv and we say that the points u

and v are adjacent. We also say that the point u and the line x are incident

with each other. If two lines x and y are incident with a common point then

they are called adjacent lines. A graph with p points and q lines is called a

(p, q) graph. When there is no possibility of confusion we write V (G) = V and

X(G) = X .
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Figure 1.1: A an example of a (4, 3) graph

1.3 Representation of a graph

It is customary to represent a graph by a diagram and refer to the diagram

itself as the graph. Each point is represented by a small dot and each line

is represented by a line segment joining the two points with which the line

is incident. Thus a diagram of graph depicts the incidence relation holding

between its points and lines. In drawing a graph it is immaterial whether the

lines are drawn straight or curved, long or short and what is important is the

incidence relation between its points and lines.

Example 1.3.1.

1. Let V = {a, b, c, d} and X = {{a, b}, {a, c}{a, d}}, G = (V,X) is a (4, 3)

graph. This graph can be represented by the diagram given in figure

1.1. In this graph the points a and b are adjacent whereas b and c are

nonadjacent.

2. Let V = {1, 2, 3, 4} and X = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Then G = (V,X) is a (4, 6) graph. This graph is represented by the

diagram given in figure 1.2 Although the lines {1, 2} and {2, 4} intersect

in the diagram, their intersection is not a point of the graph. Figure 1.3

is another diagram for the graph given in figure 1.2.

3. The (10, 15) graph given in figure 1.4 is called the Petersen graph.

Remark 1.3.1. The definition of a graph does not allow more than one line

joining two points. It also does not allow any line joining a point to itself.

Such a line joining a point to itself is called a loop.
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Figure 1.2: An example of a (4, 6) graph
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Figure 1.3: Another representation of graph shown in figure 1.1
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Figure 1.4: Peterson graph
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Figure 1.5: A multiple graph

Figure 1.6: A pseudograph

Definition 1.3.1. If more than one line joining two vertices are allowed, the

resulting object is called a multigraph. Line joining the same points are

called multi lines. If further loops are also allowed, the resulting object is

called Pseudo graph.

Example 1.3.2. Figure1.5 is a multigraph and figure 1.6 is a pseudo graph.

Remark 1.3.2. Let G be a (p, q) graph. Then q 6

(

p

2

)

and q =

(

p

2

)

iff

any two distinct points are adjacent.

Definition 1.3.2. A Graph in which any two distinct points are adjacent is

called a complete graph. The complete graph with p points is denoted by

Kp. K3 is called a triangle. The graph given Fig. 1.3 is K4 and K5 is shown

in Fig.1.7
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Figure 1.7: K5

Definition 1.3.3. A graph whose edge set is empty is called a null graph or

a totally disconnected graph.

Definition 1.3.4. A graph G is called labeled if its p points are distinguished

from one another by names such as v1, v2 · · · vp.

The graphs given in Fig. 1.1 and Fig. 1.3 are labelled graphs and the graph

in Fig. 1.7 is an unlabelled graph.

Definition 1.3.5. A graph G is called a bigraph or bipartite graph if V

can be partitioned into two disjoint subsets V1 and V2 such that every line of

G joins a point of V1 to a point of V2. (V1, V2)is called a bipartition of G. If

further G contains every line joining the points of V1 to the points of V2 then

G is called a complete bigraph. If V1 contains m points and V2 contains n

points then the complete bigraph G is denoted by Km,n. The graph given in

Fig. 1.1 is K1,3. The graph given in Fig. 1.8 is K3,3. K1,m is called a star for

m ≥ 1.

1.4 Exercise

1. Draw all graphs with 1, 2, 3 and 4 points.

2. Find the number of points and lines in Km,n.

3. Let V = {1, 2, 3, · · · , n}. Let X = { {i, j}| i, j ∈ V and are relatievly

prime}. The resulting graph (V,X) is denoted by Gn. Draw G4 and G5.

1.5 Degrees

Definition 1.5.1. The degree of a point vi in a graph G is the number of

lines incident with vi .The degree of vi is denoted by dG(vi) or deg vi or d(vi).
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Figure 1.8: bigraph

A point v of degree 0 is called an isolated point. A point v of degree 1 is

called an endpoint.

Theorem 1.5.1. The sum of the degrees of the points of a graph G is twice

the number of lines. That is,
∑

i degvi = 2q.

Proof. Every line of G is incident with two points. Hence every line contribute

2 to the sum of the degrees of the points. Hence
∑

i degvi = 2q.

Corollary 1.5.1. In any graph G the number of points of odd degree is even.

Proof. Let v1, v2, · · · , vk denote the point of odd degree and w1, w2 · · · , wm

denote the points of even degree in G. By theorem 1.5.1,
∑k

i=1 deg(vi) +
∑w

i=1 degwi = 2q which is even. Further
∑m

i=1 degwi is even. Hence
∑m

i=1 degvi

is also even. But degvi is odd for each i. Hence k must be even.

Definition 1.5.2. For any graph G,we define

δ(G) = min{degv/v ∈ V (G)} and

∆(G) = max{degv/v ∈ V (G)}.

It all the points of G have the same degree r, then δ(G) = ∆(G) = r and this

case G is called a regular graph of degree r. A regular graph of degree 3 is

called a cubic graph. For example, the complete graph Kp is regular of degree

p− 1.

Theorem 1.5.2. Every cubic graph has an even number of points.

Proof. Let G be a cubic graph with p points, then
∑

degv = 3p which is even

by theorem 1.5.1. Hence p is even.
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1.6 Solved Problems

Problem 1. Let G be a (p, q) graph all of whose points have degree k or k+1.

If G has t > 0 points of degree k, show that t = p(k + 1)− 2q.

Solution

Since G has t points of degree k, the remaining p− t points have degree k+1.

Hence
∑

v∈V d(v) = tk + (p− t)(k + 1).

∴ tk + (p− t)(k + 1) = 2q

∴ t = p(k + 1)− 2q.

Problem 2. Show that in any group of two or more people, there are always

two with exactly the same number of friends inside the group.

Solution. We construct a graph G by taking the group of people as the set of

points and joining two of them if they are friends, then degv is equal to number

of friends of v and hence we need only to prove that at least two points of G

have the same degree. Let V (G) = {v1, v2, · · · , vp.}. Clearly 0 ≤ degvi ≤ p−1

for each i. Suppose no two points of G have the same degree. Then the degrees

of v1, v2, · · · , vp. are the integers 0, 1, 2, · · · , p − 1 in some order. However a

point of degree p − 1 is joined to every other point of G and hence no point

can have degree zero which is a contradiction. Hence there exist two points of

G with equal degree.

Problem 3. Prove that δ ≤ 2q/p ≤ ∆

Solution

Let V (G) = {v1, v2, · · · , vp}. We have δ ≤ degvi ≤ ∆. for all i. Hence

pδ ≤

p
∑

i=1

degvi ≤ p∆.

∴ pδ ≤ 2q ≤ p∆ (by theorem2.1)

∴ δ ≤
2q

p
≤ ∆

Problem 4. Let G be a k-regular bibgraph with bipartion (V1, V2) and k > 0.

Prove that |V1| = |V2| .

Solution

Since every line of G has one end in V1 and other end in V2 it follows that
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∑

v∈V1
d(v) =

∑

v∈V2
d(v) = q. Also d(v) = k for all v ∈ V = V1 ∪ V2. Hence

∑

v∈V1
d(v) = k|V1| and

∑

v∈V2
d(v) = k|V2| so that k |V1| = k|V2|. Since k > 0,

we have |V1| = |V2|.

1.7 Exercise

1. Given an example of a regular graph of degree 0

2. Give three examples for a regular graph of degree 1

3. Give three examples for a regular graph of degree 2

4. What is the maximum degree of any point in a graph with p points?

5. Show that a graph with p points is regular of degree p− 1 if and only if

it is complete

6. Let G be a graph with at least two points show that G contains two

vertices of the same degree

7. A (p, q) graph has t points of degree m and all other points are of degree

n. Show that (m− n)t+ pn = 2q.

1.8 Subgraphs

Definition 1.8.1. A graph H = (V1, X1) is called subgraph of G = (V,X).

V1 ⊆ V and X1 ⊆ X . If H is a subgraph of G we say that G is a supergraph

of H . H is called a spanning subgraph of G if H is the maximal subgraph

of G with point set V1. Thus, if H is an induced subgraph of G, two points are

adjacent in H they are adjacent in G. If V2 ⊆ V , then the induced subgraph

of G induced by V2 and is denoted by G[X ]. If X2 ⊆ X , then the sub graph

of G with line set X2 and is denoted by G[X2]

Examples. Consider the petersen graph G given in Fig. 1.4. The graph

given in Fig.1.9 is a subgraph of G. The graph given in Fig.1.10 is an induced

subgraph of G. The graph given in Fig.1.10 is an induced subgraph of G. The

graph given in Fig1.11 is a spanning subgraph of G.
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Figure 1.9: Subgraph
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Figure 1.10: Induced subgraph
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Figure 1.11: Spanning subgraph
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Definition 1.8.2. Let G = (V,X) be a graph.Let vi ∈ V . The subgraph

of G obtained by removing the point vi and all the lines incident with vi is

called the subgraph obtained by the removal of the point vi and is

denoted by G-vi. Thus if G− vi = (Vi, Xi) then Vi = V − vi and Xi = {x/x ∈

X and x is not incident with vi}. Clearly G− vi is an induced subgraph of G.

Let xi ∈ X . Then G− xi = (V,X − xj) is called the subgraph of G obtained

by the removal of the line xj . Clearly G − xj is a spanning subgraph of G

which contains all the lines of G except xj . The removal of a set of points or

lines from G is defined to be the removal of single elements in succession.

Definition 1.8.3. Let G = (V,X) be a graph. Let vi, vj be two points which

are not adjacent in G. Then G + vivj = (V,X
⋃

{vi, vj}) is called the graph

obtained by the addition of the line vivj to G

Clearly G+vivj is the smallest super graph of G containing the line vivj .We

listed these concepts in Fig1.12. The proof given in the following theorem is

typical of several proofs in theory.

Theorem 1.8.1. The maximum number of lines among all p point graph no

triangles is
[

p2

4

]

. ([x] denotes the greatest integer not exceeding the the real

number x).

Proof. The result can be easily verified for p ≤ 4. For p > 4, we will prove by

induction separately for odd p and for every p.

Part 1. For odd p.

Suppose the result is true for all odd p ≤ 2n+ 1. Now let G be a (p, q) graph

with p = 2n + 3 and no triangles. Ifq = 0, then q ≤
[

p2

4

]

. Hence let q > 0.

Let u and v be a pair of adjacent points. The subgraph G′ = G− {u, v} has
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2n + 1 points and no triangles. Hence induction hypothesis,

q(G′) ≤

[

(2n+ 1)2

4

]

=

[

4n2 + 4n+ 1

4

]

=

[

n2 + n+
1

4

]

= n2 + n

Since G has no triangles, no point of G′ can be adjacent to both u and G.

Now, lines in G are of three types.

1. Lines of G′(≤ n2 + n in number by(1))

2. Lines between G′ and {u, v}(≤ 2n+ 1 innumberby(2))

3. Line uv

Hence

q ≤ (n2 + n) + (2n+ 1) + 1 = n2 + 3n + 2

=
1

4
(4n2 + 12n+ 8)

=

(

4n2 + 12n+ 9

4
−

1

4

)

=

[

(2n+ 3)2

4

]

=

[

p2

4

]

Also for p = 2n + 3, the graph Kn+1,n+2 has no triangles and has (n +

1)(n+ 2) = n2 + 3n+ 2 = [p
2

4
] lines. Hence this maximum q is attained.

Part 2. For even p.

Suppose the result is true for all even p ≤ 2n. Now let G be a (p, q) graph

with p = 2n+ 2 and no triangles. As before, let u and v be a pair of adjacent

points in G and let G′ = G− {u, v}.

Now G′ has 2n points and no triangles. Hence by hypothesis,

q(G′) ≤

[

(2n)2

4

]

= n2

Lines in G are of three types.
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(i) Lines of G′

(ii) Lines between G′ and {u, v}

(iii) line uv.

Hence q ≤ n2 + 2n + 1 = (n + 1)2 = (2n+2)2

4
= [p2/4]. Hence the result holds

for even p also. We see that for p = 2n+2. Kn+1,n+1 is a (p, [p
2

4
] graph without

triangles.

1.9 Exercise

1. Show that Kp − v = Kp−1 for any point v of Kp.

2. Show that an induced subgraph of a complete graph is complete.

3. Let G = (V,X) be a (p, q) graph. Let v ∈ V and x ∈ X . Find the

number of points and lines in G− v and G− x.

4. If every induced proper subgraph of a graph G is complete and p > 2

then show that G is complete.

5. If every induced proper subgraph of a graph G is totally disconnected,

then show that G is totally disconnected.

6. Show that in a graph G every induced graph is complete iff every induced

graph with two points is complete.

1.10 Isomorphism

Definition 1.10.1. Two graphs G1 = (V1, X1) and G2 = (V2, X2) are said

to be isomorphic if there exists a bijection f : V1 → V2 such that u, v are

adjacent in G1 if and only if f(u), f(v) are adjacent in G2. If G1 is isomorphic

to G2, we write G1
∼= G2. The map f is called an isomorphism from G1 to G2.

Example 1.10.1. 1. The graph given in Fig. 2.2 and Fig. 2.3 are isomor-

phic.

2. The two graphs given in Fig.1.13 are isomorphic. f(ui) = vi is an iso-

morphism between these two graphs.
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Figure 1.13:

Figure 1.14:

3. The three graphs given in Fig.1.14 are isomorphic with each other.

Theorem 1.10.1. Let f be an isomorphism of the graph G1 = (V1, X1) to the

graph G2 = (V2, X2). Let v ∈ V1. Then deg v = deg f(v). i.e., isomorphism

preserves the degree of vertices.

Proof. A point u ∈ V1 is adjacent to v in G1 iff f(u) is adjacent to f(v) in G2.

Also f is bijection. Hence the number of points in V1 which are adjacent to v

is equal to the number of points in V2 which are adjacent to f(v). Hence deg

v = deg f(v).

Remark 1.10.1. Two isomorphic graphs have the same number of points

and the same number of lines. Also it follows from Theorem 1.10.1that two

isomorphic graphs have equal number of points with a given degree. However

these conditions are not sufficient to ensure that two graphs are isomorphic.

For example consider the two graphs given in figure 1.15. By theorem 1.10.1,

under any isomorphism w4 must correspond to v3;w1, w5, w6 must correspond

to v1, v5, v6 in some order. The remaining two points w2, w3 are adjacent

whereas v2, v4 are not adjacent. Hence there does not exist an isomorphism
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Figure 1.15:

Figure 1.16:

between these two graphs. However both graphs have exactly one vertex of

degree 3, three vertices of degree 1 and two vertices of degree 2.

Definition 1.10.2. An isomorphism of a graph G onto itself is called an

automorphism of G.

Remark 1.10.2. Let Γ(G) denote the set of all automorphism of G. Clearly

the identity map i : V → V defined by i(v) = v is an automorphism of G

so that i ∈ Γ(G). Further if α and β are automorphisms of G then α.β and

α−1 are also automorphism of G. Hence Γ(G) is a group and is called the

automorphism group of G.

Definition 1.10.3. Let G = (V,X) be a graph. The complement G of G

is defined to be the graph which has V as its set of points and two points

are adjacent in G iff they are not adjacent in G. G is said to be a self

complementary graph if G is isomorphic to G.

For example the graphs given in Fig.1.16 are self complementary graphs.

It has been conjectured by Ulam that the collection of vertex deleted sub-

graphs G− v determines G upto isomorphism.

Solved Problems

Problem 5. Prove that any self complementary graphs has 4n or 4n+1 points
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Solution. Let G = (V (G), X(G)) be a self complementary graph with p

points.

Since G is self complementary, G is isomorphic to G.

∴ |X(G)| = |X(G)|. Also

|X(G)|+ |X(G)| =

(

p

2

)

= p(p−1)
2

∴ 2|X(G)| =
p(p− 1)

2

∴ |X(G)| =
p(p− 1)

4
is an integer.

Further one of p or p− 1 is odd. Hence p or p− 1 is a multiple of 4. ∴ p is of

the the form 4n or 4n + 1.

Problem 6. Prove that Γ(G) = Γ(G).

Solution. Let f ∈ Γ(G) and let u, v ∈ V (G).

Then u, v are adjacent in G ⇔ u, v are not adjacent in G.

⇔ f(u), f(v) are not adjacent in G

(since f is an automorphism of G)

⇔ f(u), f(v) are adjacent in G.

Hence f is an automorphism of G.

∴ f ∈ Γ(G) and hence Γ(G) ⊆ Γ(G).

Similarly Γ(G) ⊆ Γ(G) so that Γ(G) = Γ(G).

1.11 Exercise

1. Prove that any graph with p points is isomorphic to a subgraph of Kp.

2. Show that isomorphism is an equivalence relation among graphs.

3. Show that the two graphs given in Fig. 2.17 are not isomorphic.
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4. Show that upto isomorphism there are exactly four graphs on three ver-

tices.

5. Prove that a graph G is complete iff G is totally disconnected.

6. Let G be (p, q) graph degG(v) = p− 1− degG(v).

7. Prove that Γ(Kn) ∼= Sn, the symmetric group of degree n.

1.12 Ramsey Numbers

We start by considering the following puzzle. In any set of six people there

will always be either a subset of three who are mutually acquainted, or a

subset of three who are mutually strangers. This situation may be represented

by a graph G with six points representing the six people in which adjacency

indicates acquaintances. The above puzzle then asserts that G contains three

mutually adjacent points or three mutually non-adjacent points. Equivalently

G or G contains a triangle.

Theorem 1.12.1. For any graph G with 6 points, G or G contains a triangle.

Proof. Let v be a point of G. Since G contains 5 points other than v, v must

be either adjacent to three points in G or non-adjacent to three points in

G.Hence v must be adjacent to three points either in G or in G Without loss

of generality, let us assume that v is adjacent to three points u1, u2, u3 in G. If

two of these three points are adjacent, G contains a triangle. Otherwise these

three points from a triangle in G. Hence G or G contains a triangle.

It is easy to see that the above theorem is not true for graphs with less

than 6 points and we have this as an exercise to the reader. Thus 6 is the

smallest positive integer such that any graph G on 6 points contains K3 or K3.

This suggests the following general question. What is the least positive integer

r(m,n) such that for any graph G with r(m,n) points, G contains Km or Kn.

For example r(3, 3) = 6 . The numbers r(m,n) are called Ramsey numbers

after F. Ramsey who proved the existence of r(m,n). The determination of

the Ramsey numbers is difficult unsolved problem. Solved Problems

18



Problem 7. Prove that r(m,n) = r(n,m).

Solution Let r(m,n) = s. LetG be any graph on s points. Then G also has

s points. Since r(m,n) = s,G has either Km or Kn as an induced subgraph.

Hence G has Kn or Km as an induced subgraph. Thus an arbitrary graph

on s points contains Kn or Km as an induced subgraph. ∴ r(n,m) ≤ s. i.e,

r(n,m) ≤ r(m,n). Interchanging m and n we get r(m,n) ≤ r(n,m). Hence

r(m,n) = r(n,m).

Problem 8. Prove that r(2, 2) = 2

Solution Let G be a graph on 2 points. Let V (G) = {u, v}. Then u and v

are either adjacent in G or adjacent in G. Hence G or G contains K2. Thus

if G is any graph on two points, then G or G contains K2 and clearly 2 is the

least positive integer with this property. Hence r(2, 2) = 2.

1.13 Exercise

1. Prove, by suitable examples, that theorem 1.12.1 is not true graphs with

less than 6 points.

2. Find r(1, 1).

3. Find r(k, 1) for any positive integer k.

4. Find r(2, 3).

5. Find r(2, k) for any positive integer k.

1.14 Indepedent Sets and Coverings

Definition 1.14.1. A covering of a graph G = (V,X) is a subset K of V

such that every line of G is incident with a vertex in K. A covering K is called

a minimum covering if G has no covering K ′ with |K ′| < |K|. The number

of vertices in a minimum covering of G is called the covering number of G

and is denoted by β.

A subset S of V is called an independent set of G if no two vertices S

are adjacent in G. An independent set S is said to be maximum if G has
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no independent set S ′ with |S ′| > |S|. The number of vertices in a maximum

independent set is called independence number of G and is denoted α.

Example

Consider the graph given in Fig. 1.18 {v6} is an independent set. {v1, v3} is a

maximum independent set. {v1, v2, v3, v4, v5} is a covering and {v2, v3, v4, v5}

is a minimum covering.

Theorem 1.14.1. A set S ⊆ V is an independent set of G if and only if V is

a covering of G.

Proof. By definition, S is independent iff no two vertices of S are adjacent.That

is, iff every line of S is incident with at least one point of V − S. That is, iff

V − S. is a covering of G.

Corollary 1.14.1. α + β = p

Proof. Let S be a maxium independent set of G and K be a minimum covering

of G.

∴ |S| = α and |K| = β.

Now V − S is a covering of G and K is a minimum covering of G. Hence

|K| ≤ |V − S| so that β ≤ p− α

∴ β + α ≤ p (1.1)

Also V −K is an independent set and S is a maximum independent set

Hence |S| ≤ |V −K| so that α ≥ p− β.

α + β ≥ p (1.2)

From 1.1 and (1.2) , we get α + β = p.

In the following definition we give the line analogue of coverings indepen-

dence.

Definition 1.14.2. A line covering of G is a subset L of X such that

every vertex is incident with a line of L. The number of line in a minimum

line covering of G is called the line covering number of G and is denoted
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by β ′. A set of lines is called independent if no two of them are adjacent.

The number of lines in a maximum independent set of lines is called the edge

independence number and is denoted by α′. Gallai has proved that for any

non-trivial graph, α′+β ′ = p, though it is not true that the complement of an

independent set of lines is a line covering.

Result α′ + β ′ = p.

Proof. Let S be a maximum independent set of lines of G so that |S| = α′.

Let M be a set of lines, one incident for each of the p − 2α′ points of G not

covered by any line of S. Clearly S
⋃

M is a line covering of G.

∴ |S ∪M | ≥ β ′

∴ α′ + P − 2α′ ≥ β ′

∴ p ≥ α′ + β ′ (1.3)

Now, let T be a minimum line cover of G, so that |T | = β ′. T cannot have a

line x both of whose ends are also incident with lines of T other than x (since,

otherwise T −{x} will become a line covering of G). Hence G|T |, the spanning

subgraph of G induced by T , is the union of stars. Hence each line of T is in-

cident with at least one endpoint of G[T ]. Let W be a set of endpoints of G[T ]

consisting of exactly one end point for each line of T . Hence |W | = |T | = β ′

and each star has exactly one point not in W . Hence

p = |W |+ (number of stars in G[T ]) (1.4)

∴ p = β ′ + (number of stars in G[T ]) (1.5)

By choosing one line from each star of G[T ], we get set of independent lines of

G. Hence

α′ ≥ (number of stars in G[T ])

Hence (1.5) gives p ≤ β ′ + α′.

Therefore by ((1.3)), α′ + β ′ = p. This complete the proof.
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1.15 Exercise

1. Find α, β, α′ and β ′ for the complete graph Kp.

2. Prove or disprove. Every covering of a graph contains a minimum cover.

3. Prove or disprove. Every independent set of lines is contained in a max-

imum independent set of lines.

4. Give an example to show that the complement of an independent set of

lines need not be a line covering.

5. Give an example to show that the complement of a line covering need be

an independent set of lines.

1.16 Intersection graphs and line graphs

Definition 1.16.1. Let F = {S1, S2, · · · , Sp}be a non- empty family of dis-

tinct non empty subsets of a given set S. The intersection graph of F,

denoted Ω(F ) is defined as follows:

The set of points V of Ω(F ) is F itself and two points Si, Sj are adjacent if

i 6= j and Si

⋂

Sj 6= ∅. A graph G is called an intersection graph on S if there

exist a family F of subsets of S such that G is isomorphic to Ω(F ).

Theorem 1.16.1. Every graph is an intersection graph.

Proof. Let G = (V,X) be a graph. Let V = {v1, v2, · · · , vp}. Let S = V ∪X

For each vi ∈ V , let Si = {vi} ∪ {x ∈ X|vi ∈ x}.

Cleary F = {S1, S2, · · · , Sp} is a family of distinct non-empty subsets of S

Further if vi, vj are adjacent in V then vivj ∈ Si∩Sj and hence Si∩Sj 6= ∅.

Conversly if Si∩Sj 6= ∅ then the element common to Si∩Sj is the line joining

vi and vj so that vi, vj are adjacent in G. Thus f : V → F defined by f(vi) = Si

is an isomorphism of G to Ω(F ). Hence G is an intersection graph.

Definition 1.16.2. Let G = (V,X) be a graph with X 6= ∅. Then X can be

thought of a family of 2 element subsets of V. The intersection graph Ω(X) is
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called the line graph of G and is denoted by L(G). Thus the points of L(G)

are lines of G and two points in L(G) are adjacent iff the corresponding lines

are adjacent in G.

A example of a graph and line graph are given in Fig.1.19.

Theorem 1.16.2. Let G be a (p, q) graph. L(G) is a (q, qL) graph where

qL = 1
2
(
∑p

i=1 di
2)− q.

Proof. By definition, number of points in L(G) is q. To find the number of

lines in L(G). Any two of the di lines incident with vi are adjacent in L(G)

and hence we get di(di−1)
2

lines in L(G).

Hence qL =

p
∑

i=1

di(di − 1)

2

=
1

2
(

p
∑

i=1

di
2)−

1

2
(

p
∑

i=1

di)

=
1

2
(

p
∑

i=1

di
2)−

1

2
(2q)

=
1

2
(

p
∑

i=1

di
2)− q

1.17 Exercise

Show that the line graphs of the two graphs given in Fig.1.20 are isomorphic.

The two graphs given in figure 2.20 constitute the only pair of non-isomorphic

connected graphs having isomorphic line graphs. In all other cases, L(G) ∼=

L(G′) implies G ∼= G′ as claimed in the following theorem.

Theorem 1.17.1. (Whitney.) Let G and G′ be connected graphs with iso-

morphic line graphs. Then G and G′ are isomorphic unless one is K3 and the

other K1,3.

Definition 1.17.1. A Graph G is called a line graph if G ∼= L(H) for some

graph H .
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Example K4 − x is a line graph as seen in Fig.1.19. The following theorem is

called Beineke’s forbidden subgraph characteristics of line graphs.

Theorem 1.17.2. (Beineke.) G is a line graph iff none of the nine graphs

of Fig. 2.20 is an induced subgraph of G.

1.18 Operations on graphs

Definition 1.18.1. Let G1 = (V1, X1) and G2 = (V2, X2) be two graphs with

V1 ∩ V2 = Φ. We define:

• The union G1 ∪G2 to be (V,X) where

V = V1 ∪ V2 and X = X1 ∪X2

.

• The sum G1 + G2 as G1∪G2
together with all the lines joining points of

V1 to points of V2.

• The product G1 × G2 having V = V1 × V2 and u = (u1, u2) and v =

(v1, v2) are adjacent to v1 in G1 and u2 = v2.

• The composition G1[G2] as having V = V1 × V2 and u = (u1, u2) and

v = (v1, v2) are adjacent if u1 is adjacent to v1 in G1 or (u1 = v1 and u2

is adjacent to v2 in G2).

We note that Km +Kn = Km,n.

Theorem 1.18.1. Let G1 be a (p1, q1) and G2 a (p2, q2) graph.

1. G1 ∪G2 is a (p1 + p2, q1 + q2) graph.

2. G1 +G2 is a (p1 + p2, q1 + q2 + p1p2) graph.

3. G1 ×G2is a (p1p2, q1p2 + q2p1) graph.

4. G1[G2] is (p1p2, p1q2 + p22q1) graph.

Proof.
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1. is obvious.

2.

number of lines in G1 +G2 = number of lines in G1 + number of lines inG2

+ number of lines joining points of V1 of points ofV2.

= q1 + q2 + p1p2. Hence we get (2)

3. Clearly number of points in G1 ×G2 is p1p2.

Now, let (u1, u2) ∈ V1 × V2. The points adjacent to (u1, u2) are (u1, v2)

where u2 is adjacent to v2 (v1, u2) where adjacent to u1.

∴ deg(u1, u2) = degu1 + degu2

The total number of lines in G1 ×G2

=
1

2
[
∑

i,j

deg(ui) + deg(vj)]

=
1

2

p1
∑

i=1

p2
∑

j=1

(degui + degvj) where ui ∈ V1, vj ∈ V2

=
1

2

p1
∑

i=1

(p2degui +

p2
∑

j=1

degvj)

=
1

2

p1
∑

i=1

(p2degui + 2q2)

=
1

2
(2p2q1 + 2p1q2)

= p2q1 + p1q2

The proof of (4) is left to the reader.

1.19 Exercise

1. Prove (4) of Theorem1.17.1.

2. If G1 and G2 are regular, determine whether G1 + G2, G1 × G2 and G1

are regular.
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3. What is Km +Kn ?

4. Express K4 − x in terms of K2 and K2.

5. Express the graph in Fig. 2.21 in terms of K3 and K2.

6. Express the graph G of Fig. 2.19 in terms of K1 and K3.

7. Define two more binary operations on graphs in your own way.

Revision Questions Determine which of the following statements are true

and which are false.

1. If G is a (p, q) graph q ≤

(

p

2

)

2. If G is a (p, q) graph and q =

(

p

2

)

then G is complete.

3. A subgraph of a complete graph is complete.

4. An induced subgraph of a complete graph is complete.

5. A subgraph of a bipartite graph is bipartite.

6. In any graph G the number of points of odd degree is even.

7. Any complete graph is regular.

8. Any complete bigraph is regular.

9. A regular graph of degree 0 is totally disconnected.

10. The only regular graph of degree 1 is K2.

11. The only connected regular graph of degree i is K2.

12. A graph G is regular iff δ = ∆.

13. An induced subgraph of regular graph is regular.

14. If G is regular, then G− V is regular.

15. If G is complete, then G− V is complete.
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16. Any two isomorphic graphs have the same number of points and same

number of lines.

17. Any two graphs having the same number of points and same number of

lines are isomorphic.

18. Isomorphism preserves the degree of vertices.

19. If G1 and G2 are regular, G1 +G2 is regular.

20. If G1 and G2 are regular G1[G2] is regular.

Answers

1, 2, 4, 5, 6, 7, 9, 11, 12, 15, 16, 18 and 20 are true.

1.20 Walks, Trails and Paths

Definition 1.20.1. A walk of a graph G is an alternating sequence of points

and lines v0, x1, v1, x2, v2, · · · , vn−1, xn, vn beginning and ending with points

such that each line xi is incident with vi−1 and vi.

We say that the walks join v0 and vn and it is called a v0-vn walk. v0 is

called the initial point and v1 is called the terminal point of the walk. The

above walk is also denoted by v0, v1, · · · , vn the lines of the walks being self

evident. n, the number of lines in the walk, is called the length of this walk.

A single point is considered as a walk of length 0. A walk is called a trail if

all its lines are distinct and is called a path if all its points are distinct.

Example 1.20.1. For the graph given in 1.23 v1, v2, v3, v4, v2, v1, v2, v5 is a

walk. v1, v2, v4, v3, v2, v5 is a trail but not a path. v1, v2, v4, v5 is a path. Obliv-

iously, every path is a trail and a trail need not be a path.

The graph consisting of a path with n points is denoted by Pn.

Definition 1.20.2. A v0 − vn walk is called closed if v0 = vn. A closed walk

v0, v1, · · · , vn = v0 in which n > 3 and v0, v1, · · · , vn−1 are is distinct is called

of length n. A graph consisting of a cycle of length n is denoted by Cn.

C3 is called a triangle.

Theorem 1.20.1. In a graph G, any u− v walk contains a u− v path.
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mum degree inG cannot exceed 7-1=6.

This contradicts the first digit ind.

Hence the given sequence is not graphic.

Problem 7. Prove that the sequence(6, 6, 5, 4, 3, 3, 1) is not graphic.

Solution. Let d = (6, 6, 5, 4, 3, 3, 1).

Supposed is graphic. LetG be a realization ofd.

Since there are 7 digits in the sequence,G has seven vertices.

The first two digits of d shows that there are two vertices which are adjacent to all the

remaining 6 vertices.

Thus every vertex is adjacent to these two vertices and henceevery vertex is of degree at

least two.

This contradicts the last digit ind.

Hence the given sequence is not graphic.

Matrices of a graph
We study about two representations of a graph in matrix form.A matrix is a con-

venient and useful way of representing a graph to a computer.Further the algebra of

matrices can be used to identify certain properties of graphs.

Definition 1.4.10.Let G = (V (G), E(G)) be a graph withV (G) = {v1, v2, · · · vν} and

E(G) = {e1, e2, · · · eǫ}. Then theincidence matrixof G is the ν × ǫ matrix defined

by M(G) = [mij], where mij is the number of times(0, 1 or 2) that vi and ej are

incident.

Figure 1.4.6

v1

e1
v2

v3

v4

e2
e3e5e7

e4
e6
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The incidence matrix of the above graph is as follows:

M(G)=











e1 e2 e3 e4 e5 e6 e7

v1 1 1 0 0 1 0 1

v2 1 1 1 0 0 0 0

v3 0 0 1 1 1 0 0

v4 0 0 0 0 1 2 1











Remark 1.4.11. 1. Since each edge is incident with exactly two vertices, each column

sum of M is 2.

2. Sum of the i th row of M is equal to the degree ofvi.

3. If G is simple, then the matrixM is a binary matrix with0′ s and 1′ s.

Definition 1.4.12.Let G = (V (G), E(G)) be a graph withV (G) = v1, v2, · · · vν . Then

the adjacency matrix ofG is the ν × ν matrix defined by

A(G) = [aij], where aij is the number of edges joiningvi and vj.

The incidence matrix of the graphG shown in Figure 1.4.6 is as follows:

A(G)=











v1 v2 v3 v4

v1 0 2 1 1

v2 2 0 1 0

v3 1 1 0 1

v4 1 0 1 0











Remark 1.4.13. 1. The adjacency matrixA(G) is symmetric.

2. If G is simple, then the entries along the principal diagonal arezero.

3. The sum of theith row (column) ofA(G) is equal to the degree ofvi.

Exercises

1. Find the degrees of the vertices of the graphG given in Figure 1.3.1.
2. Find the incidence matrixM and adjacency matrixA of the graph given in Figure

1.3.1.
3. If G is simple, prove that the entries on the diagonals of bothMM ′ and A2 are

the degrees of the vertices ofG.
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16. Any two isomorphic graphs have the same number of points and same

number of lines.

17. Any two graphs having the same number of points and same number of

lines are isomorphic.

18. Isomorphism preserves the degree of vertices.

19. If G1 and G2 are regular, G1 +G2 is regular.

20. If G1 and G2 are regular G1[G2] is regular.

Answers

1, 2, 4, 5, 6, 7, 9, 11, 12, 15, 16, 18 and 20 are true.

1.20 Walks, Trails and Paths

Definition 1.20.1. A walk of a graph G is an alternating sequence of points

and lines v0, x1, v1, x2, v2, · · · , vn−1, xn, vn beginning and ending with points

such that each line xi is incident with vi−1 and vi.

We say that the walks join v0 and vn and it is called a v0-vn walk. v0 is

called the initial point and v1 is called the terminal point of the walk. The

above walk is also denoted by v0, v1, · · · , vn the lines of the walks being self

evident. n, the number of lines in the walk, is called the length of this walk.

A single point is considered as a walk of length 0. A walk is called a trail if

all its lines are distinct and is called a path if all its points are distinct.

Example 1.20.1. For the graph given in 1.23 v1, v2, v3, v4, v2, v1, v2, v5 is a

walk. v1, v2, v4, v3, v2, v5 is a trail but not a path. v1, v2, v4, v5 is a path. Obliv-

iously, every path is a trail and a trail need not be a path.

The graph consisting of a path with n points is denoted by Pn.

Definition 1.20.2. A v0 − vn walk is called closed if v0 = vn. A closed walk

v0, v1, · · · , vn = v0 in which n > 3 and v0, v1, · · · , vn−1 are is distinct is called

of length n. A graph consisting of a cycle of length n is denoted by Cn.

C3 is called a triangle.

Theorem 1.20.1. In a graph G, any u− v walk contains a u− v path.
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Proof. We prove the result by induction on the length of the walk. Any walk

of length 0 or 1 is obviously a path. Now, assume the result for all walks of

length less than n. If u = u0, u1, · · · , un = v be a u− v walk of length n. If all

the points of the walk are distinct it is already a path. If not, there exists i and

j such that 0 ≤ i < j ≤ n and ui = uj. Now u = u0, · · · , ui, uj+1, · · · , un = v

is a u− v walk of length less than n which by induction hypothesis contains a

u− v path.

Theorem 1.20.2. If δ ≥ k, then G has a path of length k.

Proof. Let v1 be an arbitrary point.Choose v2 adjacent to v1. Since δ ≥ k, there

exists at least k − 1 vertices other than v1 which are adjacent to v2. Choose

v1 6= v1 such that v3 is adjacent to v2. In general having chosen v1, v2, · · · , vi

where 1 < i ≤ δ there exist a point vi+1 6= v0, v1, · · · , vn such that vi+1 is

adjacent to vi. This process yields a path of length k in G.

Aliter.Let P = (v0, v1, · · · , vn) be the longest path in G. Then every vertex

adjacent to v0 lies on P . Sinced(v0) ≥ δ it follows that length of P ≥ δ ≥ k.

Hence P1 = (v0, v1, · · · , vk) is a path of length k in G.

Theorem 1.20.3. A closed walk of odd length contains a cycle.

Proof. Let v = v0, v1, · · · , vn = v be a closed walk of odd length. Hence n ≥ 3.

If n = 3 this walk is itself the cycle C3 and hence the result is trivial. Now

assume the result for all walks of length less than n. If the given walk of length

n is itself is a cycle there is nothing to prove.If not there exists two positive

integers i and j such that i < j, {i, j} 6= {0, n} and vi = vj . Now vi, vi+1, · · · , vj

and v = v0, v1, · · · , vi, vj+1, · · · , vn = v are closed walks contained in the given

walk and the sum of their lengths is n. Sin ce n is odd at least one of these

walks is of odd length which by induction hypothesis contains a cycle.

Solved Problem

Problem 9. If A is the adjacency matrix of a graph with V = {v1, v2, · · · , vp},prove

that for any n ≥ 1 the (i, j)th entry of An is the number of vi − vj walks of

length n in G.

Solution We prove the result by induction on n. The number of vi − vj walks

of length 1

28

31



=

{

1, if vi and vj are adjacent;

0, otherwise.

= aij .

Hence the result is true for n = 1.

We now assume that the result is true for n − 1. Let An−1 = (a
(n−1)
ij ) so

that a
(n−1)
ij is number of vi − vj walks of length n − 1 in G. Now An−1A =

(a
(n−1)
ij )aij.Hence (i, j)th entry of

An =

p
∑

k=1

a
(n−1)
ik akj (1.6)

Also every vi − vj walk of length n inG consists of a vi − vj walk of length

n− 1 followed by a vertex vj which is adjacent to vk. Hence vj is adjacent to

vk then akj = 1 and a
(n−1)
ij represents the number of vi − vj walks of length n

whose last edge is vivj . Hence the right hand side of equation (1.6) gives the

number of vi − vj walks of length n in G. This completes the induction and

the proof.

1.21 Connectness and components

Definition 1.21.1. Two points u and v of a graph G are said to be connected

if there exists a u− v path in G.

Definition 1.21.2. A graph G is said to be connected if every pair of its

points are connected. A graph which is not connected is said to be discon-

nected.

For example, for n > 1 the graph Kn consisting of n points and no lines is

disconnected. The union of two graphs is disconnected.

It is an easy exercise to verify that connectedness of points is an equivalence

relation on the set of points V . Hence v is partitioned into nonempty subsets

V1, V2, · · · , Vn such that two vertices u and v are connected iff both u and v

belongs to the same set Vi.Let Gi denote the induced subgraph of G with vertex
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set Vi. Clearly the subgraphs G1, G2, · · · , Gn are connected and are called the

Components of G.

Clearly a graph G is connected iff it has exactly one component. 1.24 gives

a disconnected graph with 5 components.

Theorem 1.21.1. A graph G with p points and δ ≥ p−1
2

is connected.

Proof. Suppose G is not connected. Then G has more than one component.

Consider any component G1 = (V1, X1) of G. Let v1 ∈ V1. Since δ ≥ p−1
2

there

exist at least p−1
2

points in G1 adjacent to v1 and hence V1 contains at least
p−1
2

+ 1 = p+1
2

points. Thus each component of G contains at least p+1
2

points

and G has at least two components. Hence number of points in G ≥ p + 1

which is a contradiction. Hence G is connected.

Theorem 1.21.2. A graph G is connected iff for any partition of V into

subsets V1 and V2 there is a line of G joining a point of V1 to a point of V2.

Proof. Suppose G is connected.Let V = V1 ∪ V2 be a partition of a V into two

subset. Let u ∈ V1 and v ∈ V2. Since G is connected, there exists a u − v

path in G, say, u = v0, v1, v2, · · · , vn = v. Let i be the least positive integer

such that vi ∈ V2.(Such an i exists since vn = v ∈ V2). Then vi−1 ∈ V1 and

vi−1, vi are adjacent. Thus there is a line joining vi−1 ∈ V1 and vi ∈ V2. To

prove the converse, suppose G is not connected. Then G contains at least two

components. Let V1 denote the set of all vertices of one component and V2 the

remaining vertices of G. Clearly V = V1 ∪ V2 is a partition of V and there is

no line joining any point of V1 to any point of V2. Hence the theorem.

Theorem 1.21.3. If G is not connected then G is connected.

Proof. Since G is not connected, G has more than one component.Let u, v be

any two points of G. We will prove that there is a u−v path in G. If u, v belong

to different components in G, they are not adjacent in G and hence they are

adjacent in G.If u, v lie in the same component of G, choose w in a different

component. Then u, w, v is a u− v path in G. Hence G is connected.

Definition 1.21.3. For any two points u, v of a graph we define the distance

between u and v by d(u, v) =

{

the length of the shortest u− v path , if such a path exists;

∞, otherwise.

If G is a connected Graph, d(u, v) is always a non-negative integer. In this

case d is actually a metric on the set of points V (See problem 2).
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Theorem 1.21.4. A graph G with at least two points is bipartite iff all its

cycles are of even length.

Proof. Suppose G is a bipartite. Then V can be partitioned into two subsets

V1 and V2 such that every line joins a point of V1 to a point of V2. Now con-

sider any cycle v0, v1, v2, · · · , vn = v0 of length n. Suppose v0 ∈ V1. Then

v2, v4, v6 · · · ∈ V1 and v1, v3, v5 · · · ∈ V2.Further vn = v0 ∈ V1 and hence n

is even. Conversely,suppose all cycles in G are of even length. We may as-

sume without loss of generality that G is connected.(If not we consider the

components of G separately). Let v1 ∈ V . Define

V1 = {v ∈ V |d(v, v1) is even}

V2 = {v ∈ V |d(v, v1) is odd}.

Clearly, V1 ∩ V2 = ∅ and V1 ∪ V2 = V . We claim that every line of G joins a

point of V1 to a point of V2. Suppose two points u, v ∈ V1 are adjacent. Let

p be a shortest v1 − u path of length m and let Q be a shortest v1 − v path

of length n. Since u, v ∈ V1 both m and n are even. Now, let u1 be the last

point common to P and Q. Then the v1 − u1 path along P and the v1 − u1

path along Q are both shortest path and hence have the same length, say i.

Now the u1 − u path along P , the line uv followed by the v − u1 path along

Q form a cycle of length (m− i) + 1 + (n− i) = m+ n− 2i+ 1 which is odd

and this is a contradiction. Thus no two points of V1 are adjacent. Similarly

no two points of V2 are adjacent and hence G is bipartite. Hence the theorem.

To study the measure of connectedness of a graph G we consider the min-

imum number of points or lines to be removed from the graph in order to

disconnect it.

Definition 1.21.4. A cut point of a graph G is a point whose removal

increases the number of components.A bridge of a graph G is a line whose

removal increases the number of components.

Clearly if v is a cut point of a connected graph, G − v is disconnected.

For the graph given in Fig.1.25,1,2, and 3 are cut points. The lines {1, 2} and

{3, 4} are bridges. 5 is non-cut point.
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Theorem 1.21.5. Let v be a point of a connected graph G. The following

statements are equivalent.

1. v is a cut-point of G.

2. There exists a partition of V − {v} into subsets U and W such that for

each u ∈ U and w ∈ W , the point v is on every u− w path.

3. There exists two points u and w distinct from v such that v is on every

u− w path.

Proof. (1) ⇒ (2). Since v is a cut-point of G, G − v is disconnected. Hence

G − v has at least two components. Let U consist of the points of one of the

components of G−v and W consist of the points of the remaining components.

Clearly V − {v} = U ∪W is a partition of V − {v}. Let u ∈ U and w ∈ W .

Then u and w lie in different components of G − v. Hence there is no u − w

path in G− v.

Therefore every u− w path in G contains in v.

(2) ⇒ (3). This is trivial.

(3) ⇒ (1). Since v is on every u−w path in G there is no u−w path in G−v.

Hence G− v is not connected so that v is a cut point of G.

Theorem 1.21.6. Let x be a line of a connected graph G. The following

statements are equivalent.

1. x is bridge of G.

2. There exists a partition of V into two subsets U and W such that for

every point u ∈ U and w ∈ W , the line x is on every u− w path.

3. There exists two points u, w such that the line x is on every u−w path.

Proof. The proof is analogous to that of theorem 1.21.5 and is left as an exer-

cise.

Theorem 1.21.7. A line x of a connected graph G is a bridge iff x is not on

any cycle of G.
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Proof. Let x be a bridge of G. Suppose x lies on a cycle C of G. Let w1 and

w2 be any two points in G. Since G is connected, there exists a w1 − w2 path

P in G. If x is not on P , then P is a path in G− x. If x is on P , replacing x

by C−x, we obtain a w1−w2 walk in G−x. Walk contains a w1−w2 path in

G− x.Hence G− x is connected which is contradiction to (1). Hence x is not

on any cycle on G. Conversely, let x = uv be not on any cycle of G. Suppose

x is not a bridge. Hence G− x is connected.

∴ There is a u − v path in G − x. This path together with the line x = uv

forms a cycle containing x and contradicts (2).Hence x is a bridge.

Theorem 1.21.8. Every non-trivial connected graphs has at least two points

which are not cut points.

Proof. Choose two points u and v such that d(u, v) is maximum. We claim

that u and v are not cut points. Suppose v is a cut point.Hence G − v has

more than one component. Choose a point w in a component that does not

contain u.Then v lies on every u − w path and hence d(u, w) > d(u, v) which

is impossible.Hence v is not a cut point. Similarly u is not a cut point. Hence

the theorem.

1.22 Exercise

1. Prove that connectedness of points is an equivalence relation on the

points of G.

2. Prove that for a connected graph G the distance function d(u, v) is ac-

tually a metric on G. i.e, d(u, v) ≥ 0 and d(u, v) = 0 iff u = v, d(u, v) =

d(v, u) and d(u, w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V.

3. Prove theorem 4.9.

4. If x = uv is a bridge for a connected graph G 6= K2, show that either u

or v is a cut point of G.

5. Prove that if x is a bridge of a connected graph G, then G−x has exactly

two components. Give an example to show that a similar result is not

true for a cut point.
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6. The girth of a graph is defined to be the length of its shortest cycle. Find

the girths of (i) Km (ii)Km,n (iii)Cn (iv) The Peterson graph.

7. The circumference of a graph is defined to be the length of its longest

cycle. Find the circumference of the graphs given in problem 6.

8. Prove that if G is connected then its line graph is also connected.

9. Prove that any graph G with δ ≥ r ≥ 2 contains a cycle of length at

least r + 1.

10. Prove that if there exists two distinct cycles each containing a line x,

then there exists a cycle not containing x.

11. Prove that if a graph G has exactly two points of odd degree there must

be a path joining these two points.

12. Give an example of a connected graph in which every line is a bridge.

13. Prove that any graph with p points satisfying the conditions of problem

12 must have exactly p− 1 lines.

14. Give an example of a graph which has a cut point but does not have a

bridge.

15. Prove that if v is a cut point of G, then v is not a cut point of G

1.23 Blocks

Definition 1.23.1. A connected non-trivial graph having no cut point is a

block. A block of a graph is a subgraph that is a block and is maximal with

respect to this property.

A graph and its blocks are given in 1.26. In the following theorem we give

several equivalent conditions for a given block.

Theorem 1.23.1. LetG be a connected graph with at least three point,following

statements are equivalent.

1. G is a block.
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2. Any two points of G lie on a common cycle.

3. Any point and any line of G lie on a common cycle.

4. Any two lines of G lie on a common cycle.

Proof. (1) ⇒ (2) Suppose G is a block. We shall prove by induction on the

distance d(u, v) between u and v any two vertices u and v lie on a common

cycle. Suppose d(u, v) = 1. Hence u and v are adjacent. By hypothesis,

G 6= K2 and G has no cut points. Hence the line x = uv is not a bridge and

Theorem 1.21.7 x is on a cycle of G. Hence the points u and v lie on a common

cycle of G. Now assume that the result is true for any two vertices at distance

k and let d(u, v) = k ≥ 2. Consider a u − v path of length k. Let w be the

vertex that precedes v on this path. Then d(u, v) = k−1. Hence by induction

hypothesis there exists a cycle C that contains u and w. Now since G is a

block, w is not a cut point of G and so G − w is. Hence there exists a u − v

path P not containing w. Let v′ be the last point common to P and C. (See

Fig.1.27). Sinceu is common to P and C, such a v′ exists. Now, let Q denote

the u− v′ path along the cycle C not containing the point w.Then, Q followed

by the v′ − v path along P , the line vw and the w − v path along the cycle

that contains both u and v. This completes the induction.

Thus any two points of G lie on a common cycle of G.

(2) ⇒ (1).Suppose any two points of G lie on a common cycle of G. Suppose v

is a cut point of G. Then there exists two points u and w distinct from v such

that every u − w path contains v.(Refer Theorem 4.8). Now, by hypothesis

uand w lie on a common cycle and this cycle determines two u−w paths and

at least one of these paths does not contain v which is a contradiction. Hence

G has no cut points so that G is a block.

(2) ⇒ (3). Let u be a point and vw a line of G. By hypothesis u and v lie on

a common cycle C. If w lies on C, then the line uw together with the v − w

path of C containing u is the required cycle containing u and the line vw. If w

is not on C, let C ′ be a cycle containing u and w. This cycles determines two

w − u paths and at least one of these paths does not contain v. Denote this

path by P . Let u′ be the first point common to P and C.(u′ may be u itself).

Then the line vw followed by the w − u′ sub path of P and the u′ − v path in

C containing u form a cycle containing u and the line vw. (3) ⇒ (2) is trivial.
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(3) ⇒ (4). The proof is analogous to the proof of (2) ⇒ (3) and is left as an

exercise. (4) ⇒ (3) is trivial.

1.24 Exercise

1. Prove that each line of a graph lies in exactly one of its blocks.

2. Prove that the lines of any cycle of G lie entirely in a single block of G

3. Prove that if a point v is common to two distinct block ofG, then v is a

cut point of G.

4. Prove that a graph G is a block iff for any three distinct points of G,

there is a path joining any two of them which does not contain the third.

5. Prove that a graph G is a block iff for any three distinct points of G,

there is a path joining any two of them which contains the third.

1.25 Connectivity

We define two parameters of a graph, its connectivity and edge connectivity

which measures the extend to which it is connected.

Definition 1.25.1. The connectivity κ = κ(G) of a graph G is the minimum

number of points whose removal results in a disconnected or trivial graph. The

connectivity λ = λ(G) of G is the minimum number of lines whose removal

results in a disconnected or trivial graph.

Example 1.25.1.

1. The connectivity and line connectivity of a disconnected graph is 0.

2. The connectivity of a connected graph with a cut point is 1.

3. The line connectivity of a connected graph with a bridge is 1.

4. The complete graph Kp cannot be disconnected by removing any number

of points, but the removal of p−1 points results in a trivial graph.Hence

κ(Kp) = p− 1
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Theorem 1.25.1. For any graph G ,κ ≤ λ ≤ δ.

Proof. We first prove λ ≤ δ. If G has no lines, λ = δ = 0. Other wise

removal of all the lines incident with a point of minimum degree results in a

disconnected graph . Hence λ ≤ δ. Now to prove κ ≤ λ, we consider the

following cases.

Case(i)G is disconnected or trivial.Then κ = λ = 0

Case(ii)G is a connected graph with a bridge x. Then λ = 1.Further in case

G = K2 or one of the points incident withx is a cut point. Hence κ = 1 so

that κ = λ = 1.

Case(iii)λ ≥ 2.Then there exist λ lines the removal of which disconnects

graph. hence the removal of λ − 1 of lines results in a graph G with bridge

x = uv. For each of these λ−1 line select an incident point different from u or

v .The removal of these λ−1 points removes all the λ−1 lines. If the resulting

graph is disconnected, then κ ≤ λ− 1.If not x is a bridge of this subgraph and

hence the removal of u or v results in a disconnected or trivial graph. Hence

κ ≤ λ and this completes the proof.

Remark 1.25.1. The inequalities in theorem 1.25.1 are often strict. For the

graph given in fig 1.28 κ = 2, λ = 3 and δ = 4.

Definition 1.25.2. A graph G is said to be n-connected if κ(G) ≥ n and

n-line connected if λ(G) ≥ n.

Thus a non trivial graph is 1− connected iff it is connected. A non trivial

graph is 2− connected iff it is block having more than one line. Hence K2 is

the only block which is not 2− connected.

1.26 Solved Problems

Problem 10. Prove that G is k− connected graph then q ≥ pk

2
.

Solution.Since G is k− connected, k ≤ δ(by theorem 1.25.1).

∴ q =
1

2

≥
1

2
pδ ( since d(v) ≥ δ for all v

≥
pk

2
.
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Problem 11. Prove that there is no 3− connected graph with 7 edges.

Solution Suppose G is a 3− connected graph with 7 edges.G has 7 edges

⇒ p ≥ 5. Now q ≥ 3p
2
. Therefore q ≥ 15

2
. Hence q ≥ 8 which is a contradiction.

Hence there is no 3− connected graph with 7 edges.

1.27 Exercise

1. Find the connectivity of Km,n.

2. Show that if G is n− line connected andE is a set of n lines,the the

number of components in the graph G−E is either 1 or 2.

3. give an example to show that the analogue of the above result is not true

for a n− connected graph.

4. Give an example of a closed walk of even length which does not contain

a cycle.

5. Give an example to show that the union of two distinct u− v walks need

not contain a cycle.

6. Prove that the union of two distinct u− v paths contain a cycle.

7. Show that if a line is in a closed trail of G then it is in a cycle of G.

8. Determine which of the following statements are true and which are false.

(a) Any u− v walk contains a u− v path.

(b) The union of any two distinct u− v walks contains a cycle.

(c) The union of any two distinct u− v paths contains a cycle.

(d) A graph is connected iff it has only one component.

(e) The complement of a connected graph is connected

(f) Any subgraph of a connected graph is connected

(g) An induced subgraph of a connected graph is connected

(h) If a graph has a cut point ,then it has a bridge.

(i) If a graph has a bridge ,then it has a cut point.
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(j) If v is a cut point of a G then ω(G− v) = ω(G) + 1

(k) If x is a bridge of G,then ω(G− x) = ω(G) + 1

(l) In a connected graph every line can be a bridge.

(m) In a connected graph every point can be a cut point.

(n) A point common to two distinct blocks of a graph G is a cut point

of G.

(o) Every line of a graph G lies in exactly one block of G.

(p) If a graph is n− connected then it is n− line connected.

(q) Every block is 2− connected.

Answers

1,3,4,11,12,14,15 and 16 are true.
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u1

G

v1 u2 v2 w2

H

u1, u2 u1, v2 u1, w2

v1, u2 v1, v2 v1, w2

G[H]

Figure 1.3.7Exercises
1. Prove that every simple graph onn vertices is isomorphic to a subgraph ofKn.

2. Show that every induced subgraph of a complete graph is complete.

3. Show that every induced subgraph of a bipartite graph is bipartite.

4. Find a bipartite graph that is not isomorphic to a subgraph ofany k− cube.

5. Is G[H] = H[G]? Justify your assertion.

1.4 Degree sequences and Matrices

Definition 1.4.1. The degree of a vertexv in a graphG is the number of edges incident

with v, each loop counting as two. It is denoted bydG(v) or simply d(v). The mini-

mum degree of vertices ofG is denoted byδ(G). The maximum degree of vertices of

G is denoted by∆(G).

The following theorem is often called asthe fundamental theorem on graphs.

Theorem 1.4.2.The sum of the degrees of the vertices in any graph is twice the number

of edges. That is,
∑

v∈V

d(v) = 2ǫ.

Proof. Every edge ofG is incident with two vertices. Hence every edge contributestwo

to the sum of the degrees of the vertices.

Hence,
∑

v∈V

d(v) = 2ǫ.

Corollary 1.4.3. In any graph, the number of vertices of odd degree is even.

Proof. Let V1 denote the set of vertices of even degree; letV2 denote the set of vertices
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20 CHAPTER 1. GRAPHS AND SUBGRAPHS

of odd degree. Then,
∑

v∈V1

d(v) +
∑

v∈V2

d(v) =
∑

v∈V

d(v) = 2ǫ, which is even.

Further, d(v) is even for all v ∈ V1,
∑

v∈V2

d(v) is even.

Hence,
∑

v∈V2

d(v) is even.

Since d(v) is odd for all v ∈ V2, we have |V1| is even.

For the graph shown in Figure1.4.1, δ(G) = 3 and ∆(G) = 4.

Figure 1.4.1
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Definition 1.4.4. A graph is said to bek -regular if d(v) = k for all v ∈ V (G). A

regular graph is one that isk -regular for somek. 3 -regular graphs are also known as

cubic graphs.

1-regular

Figure 1.4.2

2 -regular 3 -regular

Remark 1.4.5. 1. The complete graphKn is regular of degreen− 1.

2. The complete bipartite graphKn,n is regular of degreen.

3. The k -cubeQk is regular of degreek − 1.

4. Peterson graph is3 -regular and hence a cubic graph.
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1.4. DEGREE SEQUENCES AND MATRICES 21

Figure 1.4.3

The Petersen Graph

Definition 1.4.6. Let G be any graph withV (G) = v1, v2, · · · , vν . Then the sequence

d(v1), d(v2), · · · , d(vν) is called thedegree sequenceof G.

For example, the degree sequence of the graph in Figure1.4.1 is (3, 3, 4, 4).

Figure 1.4.4
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Theorem 1.4.7.A sequenced(v1), d(v2), · · · , d(vν) of nonnegative integers is a degree

sequence ofG if and only if
ν
∑

i=1

d(vi) is even.

Proof. Assume thatd(v1), d(v2), · · · , d(vν) , where di ≥ 0, 1 ≤ i ≤ ν is the degree

sequence of a graphG. Then by Theorem 1.4.2,
ν
∑

i=1

d(vi) = 2ǫ, which is even.

Conversely, assume thatd(v1), d(v2), · · · , d(vν) are nonnegative integers such that
ν
∑

i=1

d(vi) is even. It is enough to construct a graph with vertex setvi and d(vi) = di for

all i. Since
ν
∑

i=1

d(vi) is even, the number of odd integers is even. First form an arbitrary

pairing of the vertices in{vi | d(vi) is even} and join each pair by an edge. Now the

49



22 CHAPTER 1. GRAPHS AND SUBGRAPHS

remaining degree needed at each vertex is even, which can be obtained by adding

[

d

2

]

loops at vi.

Definition 1.4.8. A sequenceD = (d1, d2, · · · , dn) is said to begraphic if there is a

simple graphG with degree sequenceD. Then G is called the realization ofD. For

example, the sequence(4, 4, 2, 2, 1, 1) is graphic since it is the degree sequence of the

graphG given below.

Figure 1.4.5

Theorem 1.4.9.If d = (d1, d2, · · · , dn) is graphic andd1 ≥ d2 ≥ . . . dn, then
n
∑

i=1

d(vi)

is even and
n
∑

i=1

d(vi) ≤ k(k − 1) +
n
∑

i=k+1

d(vi)di min{k, di} for 1 ≤ k ≤ n.

Proof. Since d is graphic, it has a realization graphG. Let V (G) = {v1, v2, · · · , vn}

and d(vi) = di. Then by Theorem 1.4.2,
ν
∑

i=1

d(vi) = 2ǫ, which is even.

ν
∑

i=1

d(vi) is the sum of the degrees of the verticesv1, v2, · · · , vn.

It can be divided into two parts, the first part is the contribution to this sum by edges

joining the verticesv1, v2, · · · , vk and the second part is the contribution to this sum by

edges joining one of the verticesvk+1, vk+2, · · · , vn.

Hence,
n
∑

i=1

d(vi) ≤ k(k − 1) +
n
∑

i=k+1

d(vi) di min{k, di} for 1 ≤ k ≤ n.

Solved problems

Problem 1. Find a functionf : N → N such that, for allk ∈ N, every graph of average

degree at leastf(k) has a bipartite subgraph of minimum degree at leastk.

Solution. Define a mapf : N → N by f(k) = 4k; ∀k ∈ N. The idea behind to

consider this function is following: Every graph with an average degree of4k have a
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subgraph H with minimum degree2k, and we will lose another factor of 2 in moving H

to its bipartite subgraph. LetH
′

be the bipartite subgraph ofH with the maximal num-

ber of edges. My claim is thatH
′

have minimum degree atleastk. If not, let v ∈ H
′

such thatdH
′ (v) < k : This meansv lost more than half of its neighbours in the process

to form H to H
′

. This meansv is on the same partition with its looses neighbours. But

in that case if we considerv in the other partition we can able to connect those previously

looses vertices tov and form a new bipartite subgraph ofH with more edges thenH
′

have, a contradiction. Hence it proves of my claim.

Problem 2. Determine the order and the size of the hypercubeQk. Prove also thatQk

is k -regular and bipartite.

Solution. Clearly, V (Qk) is the set of all orderedk -tuples of 0′ s and 1′ s. Number of

such tuples is2k. Therefore,ν(Qk) = 2k.

Since two vertices are joined if and only if they differ in exactly one coordinate, it follows

that each vertex is adjacent to exactlyk vertices. Thus,

ǫ(Qk) =
k + k + . . .+ k (2k times)

2
, since each edge is incident with two vertices.

= k.
2k

2
= k2k−1

Since two k -tuples form an edge if and only if they differ in exactly one position.

Thus each vertex has degreek and soQk is k -regular.

Now, let X = {k-tuples with even number of 0’s}

Y = {k-tuples with odd number of 0’s}. Now,

X ∪ Y = Qk and X ∩ Y = φ

Also, any two vertices ofX(or Y ) differ at least in two coordinates and hence they are

not adjacent. Thus any edge must have one end inX and the other end inY. Thus

(X,Y ) is a bipartition ofQk, which completes the proof.

Problem 3. Prove thatδ ≤ 2 ǫ

ν
≤ ∆.

Solution. For any vertexv in any graphG, δ(G) ≤ d(v) ≤ ∆(G).
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Taking the sum over all the vertices ofV, we get

|V |δ(G) ≤
∑

v∈V d(v) ≤ |V |∆(G).

⇒ νδ ≤ 2ǫ ≤ ∆ν

Dividing by ν, we get δ ≤ 2 ǫ

ν
≤ ∆.

Problem 4. If a k− regular bipartite graph withk > 0 has bi-partition(X,Y ), prove

that |X| = |Y |.

Solution Let G be a k− regular bipartite graph withk > 0. SinceG is bipartite, every

edge has one end inX and another end inY.

Hence the number of edges incident with the vertices ofX is equal to the number

of edges incident with the vertices ofY. Therefore,

k.|X| = k.|Y |, since each vertex is of degreek.

⇒ |X| = |Y |, since k > 0.

Problem 5. In any group of two or more people, prove that there are always two with

the same number of friends.

Solution We construct a graphG by taking the group ofn people as the set of vertices

and joining two of them if they are friends. Thend(v) = number of friends ofv and

hence we need only to prove that at least two vertices ofG have the same degree.

Let V (G) = {v1, v2, . . . , vn}. Clearly 0 ≤ d(vi) ≤ n− 1 for each i.

Suppose no two vertices ofG have the same degree. Then the degrees ofv1, v2, . . . , vn

are the integers0, 1, 2, . . . , n − 1 in some order. However a vertex of degreen − 1 is

joined to every other vertex ofG and hence no point can have degree 0, which is a con-

tradiction.

Hence there exist two vertices ofG with equal degree.

Problem 6. Prove that the sequence(7, 6, 5, 4, 3, 3, 2) is not graphic.

Solution. Let d = (7, 6, 5, 4, 3, 3, 2).

Supposed is graphic. LetG be a realization ofd.

Since there are 7 digits in the sequence,G has seven vertices and hence the maxi-
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mum degree inG cannot exceed 7-1=6.

This contradicts the first digit ind.

Hence the given sequence is not graphic.

Problem 7. Prove that the sequence(6, 6, 5, 4, 3, 3, 1) is not graphic.

Solution. Let d = (6, 6, 5, 4, 3, 3, 1).

Supposed is graphic. LetG be a realization ofd.

Since there are 7 digits in the sequence,G has seven vertices.

The first two digits of d shows that there are two vertices which are adjacent to all the

remaining 6 vertices.

Thus every vertex is adjacent to these two vertices and henceevery vertex is of degree at

least two.

This contradicts the last digit ind.

Hence the given sequence is not graphic.

Matrices of a graph
We study about two representations of a graph in matrix form.A matrix is a con-

venient and useful way of representing a graph to a computer.Further the algebra of

matrices can be used to identify certain properties of graphs.

Definition 1.4.10.Let G = (V (G), E(G)) be a graph withV (G) = {v1, v2, · · · vν} and

E(G) = {e1, e2, · · · eǫ}. Then theincidence matrixof G is the ν × ǫ matrix defined

by M(G) = [mij], where mij is the number of times(0, 1 or 2) that vi and ej are

incident.

Figure 1.4.6
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Module 2

Eulerian graphs, Hamiltonian

graphs and Trees

2.1 Eulerian graphs

Definition 2.1.1. A closed trail containing all the points and lines is called

an eulerian trail. A graph having an eulerian trail is called an eulerian graph.

Remark 2.1.1. In an eulerian graph, for every pair of points u and v there

exists at least two edge disjoint u−v trails and consequently there are at least

two edge disjoint u− v paths. The graph shown in figure 2.1 is eulerian.

Theorem 2.1.1. If G is a graph in which the degree of every vertex is at least

two then G contains a cycle.

Proof. First, we construct a sequence of verices v1, v2, v3, . . . as follows. Choose

any vertex v. Let v1 be any vertex adjacent to v. Let v2 be any vertex adjacent

Figure 2.1: A Eulerian graph
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to v1 other than v. At any stage, if the vertex vi, i ≥ 2 is already chosen, then

choose vi+1 to be any vertex adjacent to vi other than vi−1. Since degree of

each vertex is at least 2, the existence of vi+1 is always guaranteed. G has only

finite number of vertices, at some stage we have to choose a vertex which has

been chosen before. Let vk be the first such vertex and let vk = vi where i < k.

Then vivi+1 . . . vk is a cycle.

Theorem 2.1.2. Let G be a connected graph. Then the following statements

are equivalent.

(1) G is eulerian.

(2) every point has even degree.

(3) the set of edges of G can be partitioned into cycles.

Proof.

(1) ⇒ (2) Assume that G is eulerian. Let T be an eulerian trail in G, with

origin and terminus u. Each time a vertex v occurs in T in a place

other than the origin and terminus, two of the edges incident with v are

accounted for. Since an eulerian trail contains every edges of G, d(v) is

even for v 6= u. For u, one of the edges incident with u is accounted for

by the origin of T , another by the terminus of T and others are accounted

for in pairs. Hence d(u) is also even.

(2) ⇒ (3) Since G is connected and nontrivial every vertex of G has degree

at least 2. Hence G contains a cycle Z. The removal of the lines of Z

results in a spanning subgraph G1 in which again vertex has even degree.

If G1 has no edges, then all the lines of G form one cycle and hence (3)

holds. Otherwise, G1 has a cycle Z1. Removal of the lines of Z1 from G1

results in spanning subgraph G2 in which every vertex has even degree.

Continuing the above process, when a graph Gn with no edge is obtained,

we obtain a partition of the edges of G into n cycles.

(3) ⇒ (1) If the partition has only one cycle, then G is obviously eulerian,

since it is connected. Otherwise let z1, z2, . . . , zn be the cycles forming

a partition of the lines of G. Since G is connected there exists a cycle

zi 6= z1 having a common point v1 with z1. Without loss of generality,
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let it be z2. The walk beginning at v1 and consisting of the cycles z1 and

z2 in succession is a closed trail containing the edges of these two cycles.

Continuing this process, we can construct a closed trail containing all

the edges of G. Hence G is eulerian.

Corollary 2.1.1. Let G be a connected graph with exactly 2n(n ≥ 1), odd

vertices. Then the edge set of G can be partitioned into n open trails.

Proof. Let the odd vertices of G be labelled v1, v2, . . . , vn; w1, w2, . . . , wn in any

arbitrary order. Add n edges toG between the vertex pairs (v1, w1), (v2, w2), . . . , (vn, wn)

to form a new graph G′. No two of these n edges are incident with the same

vertex. Further every vertex of G′is of even degree and hence G′ has an eule-

rian trail T . If the n edges that we added to G are now removed from T , it

will split into n open trails. These are open trails in G and form a partition

of the edges of G.

Corollary 2.1.2. Let G be a connected graph with exactly two odd vertices.

Then G has an open trail containing all the vertices and edges of G.

Corollary 2.1.2 answers the question: Which diagrams can be drawn with-

out lifting one’s pen from the paper not covering any line segment more than

once?

Definition 2.1.2. A graph is said to be arbitrarily traversable(traceable)from

a vertex v if the following procedure always results in an eulerian trail. Start at

v by traversing any incident edge. On arriving at a vertex u, depart through

any incident edge not yet traversed and continue until all the lines are tra-

versed.

If a graph is arbitrary traversable from a vertex then it obviously eulerian.

The graph shown in figure 2.1 is arbitrarily traversable from v. From no

other point it is arbitrarily traversable.

Theorem 2.1.3. An eulerian graph G is arbitrarily traversable from a vertex

v in G iff every cycle in G contains v.
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Figure 2.2: A theta graph

2.1.1 Exercise

1. For what values of n, is Kn eulerian?

2. For what values of m and n is Kn,m is eulerian?

3. Show that if G has no vertices of odd degree, then there are edge disjoint

cycles C1, C2, . . . , Cn such that

E(G) = E(C1) ∪ E(C2) ∪ . . . ∪ E(Cm)

4. Show that every block of a connected graph G is eulerian then G is

eulerian.

2.2 Hamiltonian Graphs

Definition 2.2.1. A spanning cycle in a graph is called a hamiltonian cycle.

A graph having a hamiltonian cycle is called a hamiltonian graph.

Definition 2.2.2. A block with two adjacent vertices of degree 3 and all other

vertices of degree 2 is called a theta graph.

Example 2.2.1. The graph shown in figure 2.2is a theta graph. A theta graph

is obviously nonhamiltonian and every nonhamiltonian 2-connected graph has

a theta subgraph.

Theorem 2.2.1. Every hamiltonian graph is 2-connected.

Proof. Let G be a hamiltonian graph and let Z be a hamiltonian cycle in G.

For any vertex v of G, Z − v is connected and hence G− v is also connected.

Hence G has no cutpoints and thus G is 2-connected.
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Theorem 2.2.2. If G is hamiltonian, then for every nonempty proper subset

S of V (G), ω(G− S) ≤ |S| where ω(H) denote the number of components in

any graph H .

Proof. Let Z be a hamiltonian cycle of G. Let S be any nonempty proper

subset of V (G). Now, ω(Z − S) ≤ |S|. Also Z − S is a spanning subgraph of

G− S and hence ω(G− S) ≤ ω(Z − S). Hence ω(G− S) ≤ |S|.

Theorem 2.2.3. The bipartite graph Km,n is nonhamiltonian.

Proof. Let (V1, V2) be a bipartition of the graph with |V1| = m and |V2| = n.

The graph Km,n − V1 is the totally disconnected graph with n points. Hence

ω(Km,n − V1) = n > m = |V1|. Therefore Km,n is non hamiltonian.

Remark 2.2.1. The converse of theorem 2.2.2 is not true. For example,

Petersen graph satisfies the condition of the theorem but is nonhamiltonian.

Theorem 2.2.4. If G is a graph with p ≥ 3 vertices and δ ≥ p/2, then G is

hamiltonian.

Proof. Suppose the theorem is false. Let G be a maximal nonhamiltonian

graph with p vertices and δ ≥ p/2. Since p ≥ 3, G can not be complete.

Let u and v be nonadjacent vertices in G. By the choice of G, G + uv is

hamiltonian. Moreover, since G is nonhamiltonian, each hamiltonian cycle of

G + uv must contain the line uv. Thus G has a spanning path v1, v2, . . . , vp

with origin u = v1 and terminus v = vp. Let S = {vi : uvi+1 ∈ E} and

T = {vi : i < p and viv ∈ E} where E is the edge set of G. Clearly vp /∈ S ∪ T

and hence

|S ∪ T | < p (2.1)

Again if vi ∈ S∩T , then v1v2 . . . vivpvp−1 . . . vi+1vi is a hamiltonian cycle in G,

contrary to the assumption. Hence S ∩ T = ∅ so that

|S ∩ T | = 0. (2.2)

Also by the definition of S and T , d(u) = |S| and d(v) = |T |. Hence by

equations (2.1) and (2.2) , d(u) + d(v) = |S| + |T | = |S ∪ T | < p. Thus

d(u) + d(v) < p. But since δ ≥ p/2, we have d(u) + d(v) ≥ p which gives a

contradiction.
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Figure 2.3: A tree(left) and a forest(right)

Lemma 1. Let G be a graph with p points and let u and v be nonadjacent

points in G such that d(u) + d(v) ≥ p. Then G is hamiltonian if and only if

G+ uv is hamiltonian.

Proof. First, assume that G is hamiltonian. Then obviously G + uv is hamil-

tonian. Conversely, assume that G + uv is hamiltonian, but G is not. Then,

as in the proof of theorem 2.2.4, we obtain d(u) + d(v) < p. This contradicts

the hypothesis that d(u) + d(v) ≥ p. Thus G+ uv is hamiltonian implies G is

hamiltonian.

2.3 Trees

2.3.1 Characterization of Trees

Definition 2.3.1. A graph that contains no cycles is called a an acyclic graph.

A connected acyclic graph is called a tree.A graph without cycles is also called

a forest so that the components of a forest are trees.

Example 2.3.1. An example of a tree and a forest is shown in figure 2.3.

Theorem 2.3.1. Let G be a (p, q) graph. The following statements are equiv-

alent.

(1) G is a tree.

(2) every two points of G are joined by a unique path.

(3) G is connected and p = q + 1
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Figure 2.3: A tree(left) and a forest(right)

Lemma 1. Let G be a graph with p points and let u and v be nonadjacent

points in G such that d(u) + d(v) ≥ p. Then G is hamiltonian if and only if

G+ uv is hamiltonian.

Proof. First, assume that G is hamiltonian. Then obviously G + uv is hamil-

tonian. Conversely, assume that G + uv is hamiltonian, but G is not. Then,

as in the proof of theorem 2.2.4, we obtain d(u) + d(v) < p. This contradicts

the hypothesis that d(u) + d(v) ≥ p. Thus G+ uv is hamiltonian implies G is

hamiltonian.

2.3 Trees

2.3.1 Characterization of Trees

Definition 2.3.1. A graph that contains no cycles is called a an acyclic graph.

A connected acyclic graph is called a tree.A graph without cycles is also called

a forest so that the components of a forest are trees.

Example 2.3.1. An example of a tree and a forest is shown in figure 2.3.

Theorem 2.3.1. Let G be a (p, q) graph. The following statements are equiv-

alent.

(1) G is a tree.

(2) every two points of G are joined by a unique path.

(3) G is connected and p = q + 1
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(4) G is acyclic and p = q + 1

Proof.

(1) ⇒ (2) Assume that G is a tree. Let u and v be any two points of G. Since

G is connected there exists a u − v path in G. Now suppose that there

exists two distinct u− v paths, say:

P1 : u = v0, v1, v2, . . . , vn = v and P2 : u = w0, w1, . . . , wm = v

Let i be the least positive integer such that 1 ≤ i < m and wi /∈ P1 (such

an i exists since P1 and P2 are distinct). Hence wi−1 ∈ P1 ∩ P2. Let j

be the least positive integers such that i < j ≤ m and wj ∈ P1. Then

the wi−1 − wj path along P2 followed by the wjwi−1 path along P1 form

a cycle which is a contradiction. Hence there exists a unique u− v path

in G.

(2) ⇒ (3) Assume that every two points of G are joined by a unique path. This

implies that G is connected. We will show that p = q+1 by induction on

p. The result is trivial for connected graphs with 1 or 2 points. Assume

that the result is true for all graphs with fewer than p points. Let G be

a graph with p points. Let x = uv be any line in G. Since there exists a

unique u− v path in G, G− x is a disconnected graph with exactly two

components G1 and G2. Let G1 be a (p1, q1) graph and G2 be a (p2, q2)

graph. Then p1 + p2 = p and q1 + q2 = q − 1. Further by induction

hypothesis p1 = q1 + 1 and p2 = q2 + 1. Hence

p = p1 + p2 = q1 + q2 + 2 = q − 1 + 2 = q + 1

(3) ⇒ (4) Assume that G is connected and p = q + 1. We will show that G is

acyclic. Suppose G contains a cycle of length n. There are n points and

n lines on this cycle. Fix a point u on the cycle. Consider any one the

remaining p− n points not on the cycle, say v. Since G is connected we

can find a shortest u − v path in G. Consider the line on this shortest

path incident with v. The p − n lines thus obtained are all distinct.

Hence q ≥ (p−n)+n = p which is a contradiction since q+1 = p. Thus

G is acyclic.
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(4) ⇒ (1) Assume thatG is acyclic and p = q + 1. We will prove that G is a

tree. Since G is acyclic to prove that G is a tree we need only prove that

G is connected. Suppose G is not connected. Let G1, G2, . . . , Gk(k ≥ 2)

be the components of G. Since G is acyclic each of these components

is a tree. Thus qi + 1 = pi where Gi is a (pi, qi) graph. This implies

that
∑k

i=1 qi + 1) =
∑k

i=1 pi. That is, q + k = p and k ≥ 2, which is a

contradiction. Hence G is connected.

Corollary 2.3.1. Every non trivial tree G has at least two vertices of degree

one.

Proof. Since G is non trivial, d(v) ≥ 1 for all points v. Also
∑

d(v) = 2q =

2(p− 1) = 2p− 2. Hence d(v) = 1 for at least two vertices.

Theorem 2.3.2. Every connected graph has a spanning tree.

Proof. Let G be a connected graph. Let T be a minimal connected spanning

subgraph of G. Then for any line x of T , T − x is disconnected and hence x

is a bridge of T . Hence T is acyclic. Further T is connected and hence is a

tree.

Corollary 2.3.2. Let G be a (p, q) connected graph. Then q ≥ p− 1.

Proof. Let T be a spanning tree of G. Then the number of lines in T is p− 1.

Hence q ≥ p− 1.

Theorem 2.3.3. Let T be a spanning tree of a connected graph G. Let x = uv

be an edge of G not in T . Then T + x contains a unique cycle.

Proof. Since T is acyclic every cycle in T + x must contain x. Hence there

exists a one to one correspondence between cycles in T + x and u − v paths

in T . As there is a unique u − v path in tree T , there is a unique cycle in

T + x.
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2.3.2 Centre of a Tree

Definition 2.3.2. Let v be a point in a connected graph G. The eccentricity

e(v) of v is defined by e(v) = max{d(u, v) : u ∈ V (G)}. The radius r(G) is

defined by r(G) = min{e(v) : v ∈ V (G)}. The point v is called the central

point if e(v) = r(G) and the set of central points is called the centre of G.

Theorem 2.3.4. Every tree has a centre consisting of either one point or two

adjacent points.

Proof. The result is trivial if G = K1 or K2. So assume that let T be any

tree with p ≥ 2 points. T has at least two end points and maximum distance

from a given point u to any other point v occurs only when v is an end point.

Now delete all the end points from T . The resulting graph T ′ is also a tree

and eccentricity of each point in T ′ is exactly one less than the eccentricity of

the same point in T . Hence T and T ′ have the same centre. If the process

of removing the end points is repeated, we obtain successive trees having the

same centres as T and we eventually obtain a tree which is either K1 or K2.

Hence the centre of T consists of either one point or two adjacent points.

2.3.3 Exercise

1. Show that there does not exists a nonhamiltonian graph with arbitrarily

high eccentricity.

2. Prove that a graph G is tree iff G is connected and every line of G is a

bridge.

3. Prove that if G is a forest with p points and k components then G has

p− k lines.

4. Prove that the origin and terminus of a longest path in a tree have degree

one.

5. Show that every tree with exactly 2 vertices of degree one is a path.

6. Show that every tree is a bipartite graph. Which trees are complete

bipartite graphs.
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7. Prove that every block of a tree is K2.

8. Draw all trees with 4 and 5 vertices.

9. Prove that any edge of a connected graph G one of whose end point is

of degree one is contained in every spanning tree of G.

10. Prove that a line x of a connected graph is in every spanning tree of G

iff x is a bridge.
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Figure 3.4: A planar graph (left) and its embbeding (right)

M , then O(G− S) ≤ |S| for all S ⊆ V .

2. Using the above problem show that the following graph has no perfect

matching.

3.6 Planarity

Definition 3.6.1. A graph is said to be embedded in a surface S when it is

drawn on S such that no two edges intersect(meetins of edges at a vertex is

not considered an intersection). A graph is called planar if it can be drawn

on a plane without intersecting edges. A graph is called non planar if it is

not planar. A graph that is drawn on the plane without intersecting edges is

called a plane graph.

Example 3.6.1. The graph shown in figure (3.4) is planar.

Theorem 3.6.1. The complete graph K5 is non planar.

Proof. If possible, let K5 be planar. Then K5 contains a cycle of length 5 say

(s, t, u, v, w, s). Hence, without loss of generality, any plane embedding of K5

can be assumed to contain this cycle drawn in the form of a regular pentagon.

Hence the edge wt must lie either wholly inside the pentagon or wholly outside

it.

Suppose that wt is wholly inside the pentagon( the argument when it lies

wholly outside the pentagon is quite similar). Since the edge sv and su do not

cross the edge wt, they must be both lie outside the pentagon. The edge vt

cannot cross the edge su. Hence vt must be inside the pentagon. But now, the
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edge uw crosses one of the edges already drawn, giving a contradiction. Hence

K5 is not planar.

Definition 3.6.2. Let G be a graph embedded on a plane π. Then π − G is

the union of disjoint regions. Such regions are called faces of G. each plane

graph has exactly one unbounded face and it is called the exterior face. Let F

be a face of plane graph G and e be an edge of G. Let P be a point in F . e

is said to be in the boundary of F if for every point Q of π on e there exists a

curve joining P and Q which lies entirely in F .

Theorem 3.6.2. A graph can be embedded in the surface of a sphere iff it

can be embedded in a plane.

Proof. Let G be a graph embedded on a sphere. Place the sphere on the plane

L and call the point of contact S(south pole). At point S, draw a normal to

the plane and let N (North pole) be the point where this normal intersects the

surface of the sphere.

Assume that the sphere is placed in such a way that N is disjoint from

G. For each point P on the sphere, let P ′ be the unique point on the plane

where the line NP intersects the surface of the plane. There is a one to one

correspondence between the points of the sphere other than N and the points

on the plane. In this way, the vertices and the edges of G can be projected on

the plane L, which gives an embedding of G in L.

The reverse process obviously gives an embedding in the sphere for any

graph that is embedded in the plane L. This completes the proof.

Theorem 3.6.3. Every planar graph can be embedded in a plane such that

all edges are straight line segments

Definition 3.6.3. A graph is ployhedral if its vertices and edges may be

identified with the vertices and edges of a convex polyhedron in the three

dimensional space.

Theorem 3.6.4. A graph is polyhedral if and only if it is planar and 3 con-

nected.

Theorem 3.6.5. Every polyhedron that has at last two faces with the same

number of edges on the boundary.
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Proof. The corresponding graph G is 3 connected. Hence δ(G) ≥ 3 and the

number of faces adjacent to any chosen face f is equal to the number of edges

in the boundary of the face f ( if two faces have the edges u and vw with r 6= w

in common, then G − {r, w} is disconnected contradicting 3 connectedness).

Let f1, f2, . . . , fm be the faces of the polyhedron and ei be the number of edges

on the boundary of the ith face. Let the faces be labelled so that ei ≤ ei+1 for

every i. If no two faces have the same number of edges in their boundaries,

then ei+1 − ei ≥ 1 for every i. Hence em − e1 =
∑m−1

i=1 (ei+1 − ei) ≥ m − 1 so

that em ≥ e1 +m− 1. Since e1 ≥ 3, this implies that em ≥ m+ 2 so that the

mth face is adjacent to at least m+2 faces. This gives a contradiction as there

are only m faces. This proves the theorem.

Theorem 3.6.6 (Euler Theorem). If G is a connected plane graph having V ,

E, and F as the set of vertices, edges and faces respectively, then |V | − |E|+

|F | = 2.

Proof. The proof is by induction on the number of edges of G. Let |E| = 0.

Since G is connected, it is K1 so that |V | = 1, |F | = 1 and hence |V | − |E|+

|F | = 2. Now let G be a graph as in theorem and suppose that the theorem is

true for all connected plane graphs with at most |E| − 1 edges.

If G is a tree, then |E| = |V |−1 and |F | = 1 and hence |V |−|E|+|F | = 2. If

G is not a tree, let x be an edge contained in some cycle of G. Then G′ = G−x

is a connected plane graph such that |V (G′)| = |V |, |E(G′)| = |E| − 1 and

|F (G′)| = |F |−1. Hence by induction hypothesis |V (G′)|−|E(G′)|+|F (G′)| =

2 so that |V | − (|E| − 1) + |F | − 1 = 2. Hence |V | − |E|+ |F | = 2.

Theorem 3.6.7. If G is a plane (p, q) graph with r faces and k components

then p− q + r = k + 1.

Proof. Consider a plane embedding of G such that the exterior face of each

component contains all other components. Now let the ith component be a

(pi, qi) graph with ri faces for each i. By the theorem pi − qi + ri = 2. Hence

∑

pi −
∑

qi +
∑

ri = 2k (3.5)

But
∑

pi = p,
∑

qi = q and
∑

ri = r + (k − 1). Since the infinite face is
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counted k times in
∑

ri, hence equation (3.5) gives p− q + r + k − 1 = 2k so

that p− q + r = k + 1.

Corollary 3.6.1. If G is a (p, q) plane graph in which every face is an n cycle

then q = n(p− 2)/(n− 2).

Proof. Every face is an n-cycle. Hence each edge lies on the boundary of

exactly two faces. Let f1, f2, . . . , fr be the faces of G. Therefore

2q =

r
∑

i=1

(number of edges in the boundary of the face fi) = nr

This implies that r = 2q/n. By Eulers formula p− q + r = 2. That is

p− q + 2q/n = 2

q(2/n− 1) = 2− pq = n(p− 2)/(n− 2)

Corollary 3.6.2. In any connected plane (p, q) graph (p ≥ 3) with r faces

q ≥ 3r/2 and q ≤ 3p− 6.

Proof.

Case 1 Let G be a tree. Then r = 1, q = p − 1 and p ≥ 3. Hence q ≥ 3r/2

and q ≤ 3p− 6 since p− 1 ≤ 3p− 6 (as p ≥ 3).

Case 2 Let G have a cycle. let fi i = 1, 2, . . . , r be the faces of G. Since each

edge lies on the boundary of almost two faces,

2q ≥
r
∑

i=1

(number of edges in the boundary of face fi)

That is,

2q ≥ 3r

That is

q ≤ 3r/2 (3.6)

By Euler’s formula, p − q + r = 2. Substituting for r in equation (3.6),

we get q ≥ 3/2(2 + q − p). After simplification we get, q ≤ 3p− 6.
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Definition 3.6.4. A graph is called maximal planar if no line can be added to

it without losing planarity. In a maximal planar graph, each face is a triangle

and such a graph is sometimes called a triangulated graph.

Corollary 3.6.3. If G is a maximal planar (p, q) graph then q = 3p− 6.

Corollary 3.6.4. If G is a plane connected (p, q) graph without triangles and

p ≥ 3, then q ≤ 2p− 4.

Proof. If G is a tree, then q = p − 1. Hence we have p − 1 = q ≤ 2p − 4.

Now let G have a cycle. Since G has no triangles, the boundary of each face

has at least four edges. Since each edge lies on at most two faces we have,

2q ≥
∑r

i=1(number of edges in the boundary of the ith face). That is,

2q ≥ 4r. (3.7)

By Euler’s formula, we have p−q+r = 2. Substituting for r in equation (3.7),

we get 2q ≥ 4(2 + q − p). Hence 4p− 8 ≥ 2q so that q ≤ 2p− 4.

Corollary 3.6.5. The graphs K5 and K3,3 are not planar.

Proof. Note that K5 is a (5, 10) graph. For any planar (p, q) graph, q ≤ 3p−6.

But q = 10 and p = 5 do not satisfy this inequality. Hence K5 is not planar.

Also note that K3,3 is a (6, 9) bipartite graph and hence has no triangles. If

such a graph is planar, then by Corollary refq12, q ≤ 2p − 4. But p = 6 and

q = 9 do not satisfy this inequality. Hence K3,3 is not planar.

Corollary 3.6.6. Every planar graph G with p ≥ 3 points has at least three

points of degree less than 6.

By Corolary 3.6.2, q ≤ 3p−6. That is, 2q ≤ 6p−12. That is,
∑

di ≤ 6p−12

where di are the degrees of the vertices of G. Since G is connected, di ≤ 1 for

every i. If at most two di are less than 6, then
∑

di ≥ 1+1+6+ . . .+(p−2) =

6p− 10 which is a contradiction. Hence di < 6 for at least three values of i.

Theorem 3.6.8. Every planar graph G with at least 3 points is a subgraph

of a triangulated graph with the same number of points.
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Proof. Let G have p vertices. If p ≤ 4, then G must be a subgraph of Kp

which is a triangulated graph. Hence let p ≥ 5.

We construct a triangulated graph G′ which contains G as a subgraph as

follows:

Consider a plane embedding of G. If R is a face of G and v1 and v2 are two

vertices on the boundary of R without a connecting edge we connect v1 and v2

with an edge lying entirely in R. This yields a new plane graph. This yields a

new plane graph. This operation is continued until every pair of vertices on the

boundary of the same face are connected by an edge. The number of vertices

remains the same under these operation. Hence the process terminates after

some time yielding a plane triangulated graph G′. G is obviously a subgraph

of G′.

3.6.1 Characterization of Planar Graphs

Definition 3.6.5. Let x = uv be an edge of a graph G. Line x is said to be

subdivided when a new point w is adjoined to G and the line x is replaced

by the lines uw and wv. This process is also called an elementary subdivision

of the edge x. Two graphs are called homeomorphic if both can be obtained

from the same graph by a sequence of subdivisions of the lines.

Example 3.6.2. Any two cycles are homeomorphic.

Theorem 3.6.9 (Kuratowski Theorem). A graph is planar if and only if it

has no subgraph homeomorphic to K5 or K3,3.

Remark 3.6.1. The graphs K5 and K3,3 are called Kuratowski’s graphs.

Definition 3.6.6. Let u and v be two adjacent points in a graph G. The

graph obtained from G by the removal of u and v and the addition of a new

point w adjacent to those points to which u or v was adjacent is called an

elementary contraction of G. A graph G is contractible to a graph H if H can

be obtained from G by a sequence of elementary contractions.

Example 3.6.3. The Petersen graph given in figure 3.5 is contractible to K5

by contracting the lines 1a, 2b, 3c, 4d and 5e.
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Figure 3.5: Petersen Graph

Theorem 3.6.10. A graph is planar if and only if it does no have a subgraph

contractible to K5 or K3,3.

Since the Petersen graph is contractible to K5, it is not planar according

to the theorem 3.6.10.

Definition 3.6.7. Given a plane graph G, its geometrical dual G∗ is con-

structed as follows: Place a vertex in each face of G(including the exterior

face). For each edge x of G, draw an edge x∗ joining the vertices representing

the faces on both sides x such that x∗ crosses only the edge x. The result is

always a plane graph G∗(possibly with loops and multiple edges).
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Chapter 7 

Digraphs 

By indirections find directions out. 
William Shakespeare (Hamlet) 

This chapter and the following one deal with digraphs and their applications. In Section 
22 we give some basic definitions, and discuss whether we can 'direct' the edges of a 
graph so that the resulting digraph is strongly connected. This is followed by a brief 
discussion of critical path analysis, and, in Section 23, by a discussion of Eulerian and 
Hamiltonian trails and cycles, with particular reference to tournaments. We conclude 
the chapter by studying the classification of states of a Markov chain. 

22 Definitions 

A directed graph, or digraph, D consists of a non-empty finite set V(D) of elements 
called vertices, and a finite family 'A(D) of ordered pairs of elements of V(D) called 
arcs. We call V(D) the vertex set and A(D) the arc family of D. An arc (v, w) is usu
ally abbreviated to vw. Thus in Fig. 22.1, V(D) is the set {w, v, w, z] and A(D) consists 
of the arcs uv, vv, vw (twice), wv, wu and zw, the ordering of the vertices in an arc 
being indicated by an arrow. If D is a digraph, the graph obtained from D by 'remov
ing the arrows' (that is, by replacing each arc of the form vw by a corresponding edge 
vw) is the underlying graph of D (see Fig. 22.2). 

Fig. 22.1 Fig. 22.2 

D is a simple digraph if the arcs of D are all distinct, and if there are no Toops' 
(arcs of the form vv). Note that the underlying graph of a simple digraph need not be a 
simple graph (see Fig. 22.3). 

DIGRAPHS

UNIT- 5
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u z u z 

Fig. 22.3 Fig. 22.4 

We can imitate many of the definitions given in Section 2 for graphs. For example, 
two digraphs are isomorphic if there is an isomorphism between their underlying 
graphs that preserves the ordering of the vertices in each arc. Note that the digraphs in 
Figs. 22.1 and 22.4 are not isomorphic. 

Two vertices v and w of a digraph D are adjacent if there is an arc in A(D) of the 
form vw or wv. The vertices v and w are incident to such an arc. If D has vertex set 
{vi , . . . , vn], the adjacency matrix of D is the nxn matrix A = (azy), where a^ is the 
number of arcs from v/ to Vy. 

There are also natural generalizations to digraphs of the definitions of Section 5. A 
walk in a digraph D is a finite sequence of arcs of the form VQVJ, VJV2, . . . , vm-\vm' ^ e 

sometimes write this sequence as VQ —> vi —>•••—> vm, and speak of a walk from vo to 
vm. In an analogous way, we can define directed trails, directed paths and directed 
cycles or, simply, trails, paths and cycles, if there is no possibility of confusion. Note 
that, although a trail cannot contain a given arc vw more than once, it can contain both 
vw and wv; for example, in Fig. 22.1, z -» w —» v —» w —» M is a trail. 

We can also define connectedness. The two most useful types of connected digraph 
correspond to whether or not we take account of the direction of the arcs. These defini
tions are the natural extensions to digraphs of the definitions of connectedness given in 
Sections 2 and 5. 

A digraph D is connected if it cannot be expressed as the union of two digraphs, 
defined in the obvious way. This is equivalent to saying that the underlying graph of D 
is a connected graph. D is strongly connected if, for any two vertices v and w of D, 
there is a path from v to w. Every strongly connected digraph is connected, but not all 
connected digraphs are strongly connected; for example, the connected digraph of Fig. 
22.1 is not strongly connected since there is no path from v to z. 

The distinction between a connected digraph and a strongly connected one becomes 
clearer if we consider the road map of a city, all of whose streets are one-way. If the 
road map is connected, then we can drive from any part of the city to any other, ignor
ing the direction of the one-way streets as we go. If the map is strongly connected, 
then we can drive from any part of the city to any other, always going the 'right way' 
down the one-way streets. 

Since every one-way system should be strongly connected, it is natural to ask when 
we can impose a one-way system on a street map in such a way that we can drive from 
any part of the city to any other. If, for example, the city consists of two parts con
nected only by a bridge, then we cannot impose such a one-way system on the city, 
since whatever direction we give to the bridge, one part of the city must be cut off. If, 
on the other hand, there are no bridges, then we can always impose such a one-way 
system. This result is stated formally in Theorem 22.1. 
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102 Colouring graphs 

For convenience, we define a graph G to be orientable if each edge of G can be 
directed so that the resulting digraph is strongly connected. For example, if G is the 
graph shown in Fig. 22.5, then G is orientable, since its edges can be directed to give 
the strongly connected digraph of Fig. 22.6. 

o <•> 
Fig. 22.5 Fig, 22.6 

Note that any Eulerian graph is orientable, since we simply follow any Eulerian 
trail, directing the edges in the direction of the trail as we go. We now give a necessary 
and sufficient condition (due to H.E. Robbins) for a graph to be orientable. 

THEOREM 22.1. Let G be a connected graph. Then G is orientable if and only if 
each edge ofG is contained in at least one cycle. 

Proof The necessity of the condition is clear. To prove the sufficiency, we choose 
any cycle C and direct its edges cyclically. If each edge of G is contained in C, then the 
proof is complete. If not, we choose any edge e that is not in C but which is adjacent to 
an edge of C. By hypothesis, e is contained in some cycle Cf whose edges we may 
direct cyclically, except for those edges that have already been directed - that is, those 
edges of C" that also lie in C. It is not difficult to see that the resulting digraph is 
strongly connected; the situation is illustrated in Fig. 22.7, with dashed lines denoting 
edges of C . We proceed in this way, at each stage directing at least one new edge, 
until all edges are directed. Since the digraph remains strongly connected at each stage, 
the result follows. // 

$ 

9 +* 
Fig. 22,7 

We conclude this section by discussing a 'critical path' problem relating to the, 
scheduling of a series of operations. Suppose that we have a job to perform, such as the 
building of a house, and that this job can be divided into a number of activities, such as 
laying the foundations, putting on the roof, doing the wiring, etc. Some of these activities 
can be performed simultaneously, whereas some may need to be completed before others 
can be started. Can we find an efficient method for determining which activities should be 
performed at which times so that the entire job is completed in minimum time? 

> 
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Fig. 22.8 

In order to solve this problem, we construct a 'weighted digraph', or activity net
work, in which each arc represents the length of time taken for an activity. Such a net
work is given in Fig. 22.8. The vertex A represents the beginning of the job, and the 
vertex L represents its completion. Since the entire job cannot be completed until each 
path from A to L has been traversed, the problem reduces to that of finding the longest 
path from A to L. This is accomplished by using a technique known as programme 
evaluation and review technique (PERT), which is similar to that we used for the short
est path problem in Section 8, except that as we move across the digraph from left to 
right, we associate with each vertex V a number l(V) indicating the length of the longest 
path from A to V. So for the digraph of Fig. 22.8, we assign: 

to vertex A, the number 0; 
to vertex B, the number 1(A) + 3 - that is, 3; 
to vertex C, the number 1(A) + 2 - that is, 2; 
to vertex D, the number 1(B) + 2 - that is, 5; 
to vertex E, the number max {1(A) + 9,1(B) + 4,1(C) + 6} - that is, 9; 
to vertex i7, the number 1(C) + 9 - that is, 11; 
to vertex G, the number max {1(D) + 3,1(E) + 1} - that is, 10; 
to vertex H, the number max {1(E) + 2,1(F) + 1} - that is, 12; 
to vertex /, the number 1(F) + 2 - that is, 13; 
to vertex / , the number max {1(G) + 5,1(H) + 5} - that is, 17; 
to vertex K, the number max {1(H) + 6,1(1) + 2} - that is, 18; 
to vertex L, the number max {1(H) + 9, l(J) + 5, l(K) + 3} - that is, 22. 

As in the shortest path problem, we keep track of these numbers by writing each one 
next to the vertex it represents. Note that, unlike the problem that we considered in 
Section 8, there is no 4zig-zagging\ since all arcs are directed from left to right. Thus, 
the longest path has length 22, and is given in Fig. 22.9. The job cannot therefore be 
completed until time 22. 

This longest path is often called a critical path, since any delay in an activity on 
this path creates a delay in the whole job. In scheduling a job, we therefore need to 
pay particular attention to the critical paths. 

We can also calculate the latest time by which any given operation must be 
completed if the work is not to be delayed. Working back from L, we see that we 
must reach K by time 22 - 3 = 19, / by time 22 - 5 = 17, H by time min { 1 7 - 5 , 
2 2 - 9 , 19-6} - 12, and so on. 
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Fig. 22.9 

Exercises 22 
22.1s Two of the digraphs in Fig. 22.10 are isomorphic. Which two are they? 

Fig. 22.10 

22.2s Let D be a simple digraph with n vertices and m arcs. 
(i) Prove that if D is connected, then n-\ <m< n(n - 1). 

(ii) Obtain corresponding bounds for m if D is strongly connected. 

22.3s Write down adjacency matrices for the digraphs in Figs 22.1 and 22.6. 

22.4 The converse D of a digraph D is obtained by reversing the direction of each arc of D. 
(i) Give an example of a digraph that is isomorphic to its converse, 

(ii) What is the connection between the adjacency matrices of D and D? 

22.5 (i) Without using Theorem 22.1, prove that every Hamiltonian graph is orientable. 
(ii) Show, by finding an orientation for each, that K„ (n > 3) and Krs (r, s > 2) are 

orientable. 
(iii) Find orientations for the Petersen graph and the graph of the dodecahedron. 

22.6s In the above scheduling problem, calculate the latest times at which we can reach the 
vertices G, E and B. 

22.7 Find the longest path from A to G in the network of Fig. 22.11. 
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23 Eulerian digraphs and tournaments 

In this section we obtain digraph analogues of some results of Sections 6 and 7. In 
particular, we study Hamiltonian cycles in a type of digraph called a tournament. 

A connected digraph D is Eulerian if there exists a closed trail containing every 
arc of D. Such a trail is an Eulerian trail. For example, the digraph in Fig. 23.1 is not 
Eulerian, although its underlying graph is an Eulerian graph. 

V W 

Fig. 23.1 

Our first aim is to give a necessary and sufficient condition, analogous to the one in 
Theorem 6.2, for a connected digraph to be Eulerian. Note that a necessary condition is 
that the digraph is strongly connected. 

We need some preliminary definitions. The out-degree of a vertex v of D is the 
number of arcs of the form vw, and is denoted by outdeg(v). Similarly, the in-degree of 
v is the number of arcs of D of the form wv, and is denoted by indeg(v). Note that the 
sum of the out-degrees of all the vertices of D is equal to the sum of their in-degrees, 
since each arc of D contributes exactly 1 to each sum. We call this result the hand
shaking dilemma! 

For later convenience, we define a source of D to be a vertex with in-degree 0, and 
a sink of D to be a vertex with out-degree 0. Thus, in Fig. 23.1, v is a source and w is 
a sink. Note that any Eulerian digraph with at least one arc has no sources or sinks. 
We can now state the basic theorem on Eulerian digraphs. 

THEOREM 23.1. A connected digraph is Eulerian if and only if for each vertex v of 
D outdeg(v) = indeg (v). 

Proof The proof is entirely analogous to that of Theorem 6.2 and is left as an exercise. // 

We leave it to you to define a semi-Eulerian digraph, and to prove results 
analogous to Corollaries 6.3 and 6.4. 

The corresponding study of Hamiltonian digraphs is, as may be expected, less suc
cessful than for Eulerian digraphs. A digraph D is Hamiltonian if there is a cycle that 
includes every vertex of D. A non-Hamiltonian digraph that contains a path passing 
through every vertex is semi-Hamiltonian. Little is known about Hamiltonian 
digraphs, and several theorems on Hamiltonian graphs do not generalize easily, if at all, 
to digraphs. 

It is natural to ask whether there is a generalization to digraphs of Dirac's theorem 
(Corollary 7.2). One such generalization is due to Ghouila-Houri; its proof is con
siderably more difficult than that of Dirac's theorem, and can be found in Bondy and 
Murty [7]. 
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106 Colouring graphs 

THEOREM 23.2. Let D he a strongly connected digraph with n vertices. If 
outdeg(r) > nil and indeg(v) 2 nil for each vertex v, then D is Hamilton!an. 

It seems thai such results will not come easily, and so we consider instead which 
types of digraph are Hamiltonian. In this respect, the tournaments are particularly 
important, the results in this case taking a very simple form. 

A tournament is a digraph in which any two vertices are joined by exactly one arc 
(see Fig. 23.2). Such a digraph can be used to record the result of a tennis tournament, 
or any other game in which draws are not allowed. In Fig. 23.2, for example, team z 
beats team w, but is beaten by team v, and so on. 

Fig. 23.2 

Because tournaments may have sources or sinks, they are not in general 
Hamiltonian. However, the following theorem, due to L. Redei and P. Camion, shows 
that every tournament is 'nearly Hamiltonian'. 

THEOREM 23.3. (i) Every non-Hamiltonian tournament is semi-Hamiltonian; 
(ii) every strongly connected tournament is Hamiltonian. 

Proof, (i) The statement is clearly true if the tournament has fewer than four vertices. 
We prove the result by induction on the number of vertices, and assume that every 
non-Hamiltonian tournament on n vertices is semi-Hamiltonian. 

Let T be a non-Hamiltonian tournament on n + 1 vertices, and let T be the tourna
ment on n vertices obtained by removing from T a vertex v and its incident arcs. By the 
induction hypothesis, T' has a semi-Hamiltonian path v\ —> v2 -> • * * —» vn. There are 
now three cases to consider: 

(1) if vvj is an arc in T, then the required path is 

v -> V l ->v2- • • ~^vn. 

(2) if vv\ is not an arc in 7, which means that viv is, and if there exists an i such that 
vv, is an arc in J, then choosing i to be the first such, the required path is (see 
Fig. 23.3) 

V] —> V2 —> ' ' ' —» V/_!-> V —> Vj --» ' ' • —> Vn. 

(3) if there is no arc in T of the form vvt, then the required path is 

Vi —> V2 —» * ' * —> Vn —> V. 
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Fig. 23.3 Fig. 23.4 

(ii) We prove the stronger result that a strongly connected tournament T on n ver
tices contains cycles of length 3, 4 , . . . , n. To show that T contains a cycle of length 3, 
let v be any vertex of T, and let W be the set of all vertices w such that vw is an arc in 
T, and Z be the set of all vertices z such that zv is an arc. Since T is strongly connected, 
W and Z must both be non-empty, and there must be an arc in T of the form w V , 
where wf is in W and z is in Z (see Fig. 23.4). The required cycle of length 3 is then 
v —> w' -^zf -> v. 

It remains only to show that, if there is a cycle of length k, where k<n, then there is 
one of length k+\. Let vi —> • • • —> vk —> vj be such a cycle. Suppose first that there 
exists a vertex v not contained in this cycle, such that there exist arcs in T of the form 
W( and of the form vyv. Then there must be a vertex v,- such that both v ^ v and vvt are 
arcs in T. The required cycle is then (see Fig. 23.5) 

VX - » V2 • ~> V/_ i -» V - » V/ - ^ ' v^-

F/flf. 23.5 

^ / c - 1 

F/g. 23.5 

If no vertex exists with the above-mentioned property, then the set of vertices not 
contained in the cycle may be divided into two disjoint sets W and Z, where W is the set 
of vertices w such that v{W is an arc for each /, and Z is the set of vertices z such that zvt 

is an arc for each /. Since T is strongly connected, W and Z must both be non-empty, 
and there must be an arc in T of the form wY, where w/ is in W and z is in Z. The 
required cycle is then (see Fig. 23.6) 

vi • w —> z —> V3 vk-^vh// 
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Exercises 23 
23.1s Verify the handshaking dilemma for the tournaments of Figs. 23.2 and 23.7. 

a 

em- / < \ — - & b 

Fig. 23.7 * > m 
d c 

23.2s In the tournament of Fig. 23.7, find 
(i) cycles of length 3, 4 and 5; 

(ii) an Eulerian trail; 
(iii) a Hamiltonian cycle. 

23.3s Prove that a tournament cannot have more than one source or more than one sink. 

23.4 Let 7̂  be a tournament on n vertices. If X denotes a summation over all the vertices of T, 
prove that 

(i) X outdeg(v) = E indeg(v); 
(ii) X outdeg(v)2 = X indeg(v)2. 

23.5 Let D be the digraph whose vertices are the pairs of integers 
11, 12, 1 3 , 2 1 , 2 2 , 2 3 , 3 1 , 3 2 , 3 3 , 

and whose arcs join ij to Id if and only if j = k. Find an Eulerian trail in D and use it to 
obtain a circular arrangement of nine Is, nine 2s and nine 3s in which each of the 27 
possible triples (111, 233, etc.) occurs exactly once. (Problems of this kind arise in com
munication theory.) 

23.6 A tournament T is irreducible if it is impossible to split the set of vertices of T into two 
disjoint sets V\ and V2 so that each arc joining a vertex of V\ and a vertex of V2 is 
directed from V{ to V2. 

(i) Give an example of an irreducible tournament. 
(ii) Prove that a tournament is irreducible if and only if it is strongly connected. 

23.7 A tournament is transitive if the existence of arcs uv and vw implies the existence of the 
arc uw. 

(i) Give an example of a transitive tournament. 
(ii) Show that in a transitive tournament the teams can be ranked so that each team 

beats all the teams which follow it in the ranking. 
(iii) Deduce that a transitive tournament with at least two vertices cannot be strongly 

connected. 

23.8* The score of a vertex of a tournament is its out-degree, and the score sequence of a 
tournament is the sequence formed by arranging the scores of its vertices in non-
decreasing order; for example, the score-sequence of the tournament in Fig. 23.2 is 
(0, 2, 2, 2, 4). Show that if {sh . . . , sn) is the score-sequence of a tournament T, then 

(i) s} +- • • +sn = n(n- l)/2; 
(ii) for each positive integer k < n, S\ + • • • + sk > k{k - l)/2, with strict inequality for 

all k if and only if T is strongly connected; 
(iii) T is transitive if and only if $k = k - 1 for each k. 
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