
1

2

Syllabus

CORE - II OBJECT ORIENTED PROGRAMMING CONCEPTS USING C++

I YEAR / II SEM

 OBJECTIVES: To inculcate knowledge on Object-oriented programming concepts using C++.

• To gain Knowledge on programming with C++.

• OUTCOMES: To write programs using OOP concepts like Abstraction, Encapsulation,

Inheritance and Polymorphism

• UNIT - I Introduction to C++ - key concepts of Object-Oriented Programming –Advantages –

Object Oriented Languages – I/O in C++ - C++ Declarations. Control Structures : - Decision

Making and Statements : If ..else, jump, goto, break, continue, Switch case statements - Loops in

C++ : for, while, do - functions in C++ - inline functions – Function Overloading.

UNIT - II Classes and Objects: Declaring Objects – Defining Member Functions – Static

Member variables and functions – array of objects –friend functions – Overloading member

functions – Bit fields and classes – Constructor and destructor with static members.

 UNIT- III Operator Overloading: Overloading unary, binary operators – Overloading Friend

functions – type conversion – Inheritance: Types of Inheritance – Single, Multilevel, Multiple,

Hierarchal, Hybrid, Multi path inheritance – Virtual base Classes – Abstract Classes.

 UNIT - IV Pointers – Declaration – Pointer to Class , Object – this pointer – Pointers to derived

classes and Base classes – Arrays – Characteristics – array of classes – Memory models – new

and delete operators – dynamic object – Binding, Polymorphism and Virtual Functions.

 UNIT - V Files – File stream classes – file modes – Sequential Read / Write operations – Binary

and ASCII Files – Random Access Operation – Templates – Exception Handling - String –

Declaring and Initializing string objects – String Attributes – Miscellaneous functions .

3

UNIT I

❖ Introduction to C++

C++, as we all know is an extension to C language and was developed by Bjarne stroustrup at

bell labs. C++ is an intermediate level language, as it comprises a confirmation of both high level

and low level language features. C++ is a statically typed, free form, multiparadigm, compiled

general-purpose language.

C++ is an Object Oriented Programming language but is not purely Object Oriented. Its

features like Friend and Virtual, violate some of the very important OOPS features, rendering

this language unworthy of being called completely Object Oriented. Its a middle level language.

Benefits of C++ over C Language

The major difference being OOPS concept, C++ is an object oriented language whereas C is a

procedural language. Apart form this there are many other features of C++ which gives this

language an upper hand on C laguage.

Following features of C++ makes it a stronger language than C,

1. There is Stronger Type Checking in C++.

2. All the OOPS features in C++ like Abstraction, Encapsulation, Inheritance etc makes it

more worthy and useful for programmers.

3. C++ supports and allows user defined operators (i.e Operator Overloading) and function

overloading is also supported in it.

4. Exception Handling is there in C++.

5. The Concept of Virtual functions and also Constructors and Destructors for Objects.

6. Inline Functions in C++ instead of Macros in C language. Inline functions make complete

function body act like Macro, safely.

https://www.studytonight.com/cpp/cpp-and-oops-concepts.php
https://www.studytonight.com/c/overview-of-c.php
https://www.studytonight.com/cpp/overview-of-inheritance.php
https://www.studytonight.com/cpp/operator-overloading.php
https://www.studytonight.com/cpp/exception-handling-in-cpp.php
https://www.studytonight.com/cpp/constructors-and-destructors-in-cpp.php

4

7. Variables can be declared anywhere in the program in C++, but must be declared before

they are used.

Syntax and Structure of C++ program

Here we will discuss one simple and basic C++ program to print "Hello this is C++" and its

structure in parts with details and uses.

#include <iostream.h>

using namespace std;

int main()

{

 cout << "Hello this is C++";

}

Header files are included at the beginning just like in C program. Here iostream is a header file

which provides us with input & output streams. Header files contained predeclared function

libraries, which can be used by users for their ease.

Using namespace std, tells the compiler to use standard namespace. Namespace collects

identifiers used for class, object and variables. NameSpace can be used by two ways in a

program, either by the use of using statement at the beginning, like we did in above mentioned

program or by using name of namespace as prefix before the identifier with scope resolution (::)

operator.

Example: std::cout << "A";

main(), is the function which holds the executing part of program its return type is int.

cout <<, is used to print anything on screen, same as printf in C language. cin and cout are same

as scanf and printf, only difference is that you do not need to mention format specifiers

like, %d for int etc, in cout & cin.

Comments in C++ Program

For single line comments, use // before mentioning comment, like

https://www.studytonight.com/cpp/variables-scope-details.php

5

cout<<"single line"; // This is single line comment

For multiple line comment, enclose the comment between /* and */

/*this is

 a multiple line

 comment */

Variables can be declared anywhere in the entire program, but must be declared, before they are

used. Hence, we don't need to declare variable at the start of the program.

Datatypes and Modifiers in C++

They are used to define type of variables and contents used. Data types define the way you use

storage in the programs you write. Data types can be of two types:

1. Built-in Datatypes

2. User-defined or Abstract Datatypes

Built-in Data Types

These are the datatypes which are predefined and are wired directly into the compiler. For

eg: int, char etc.

User defined or Abstract data types

These are the type, that user creates as a class or a structure. In C++ these are classes where as in

C language user-defined datatypes were implemented as structures.

Basic Built in Datatypes in C++

char for character storage (1 byte)

int for integral number (2 bytes)

float single precision floating point (4 bytes)

double double precision floating point numbers (8 bytes)

Example:

char a = 'A'; // character type

int a = 1; // integer type

float a = 3.14159; // floating point type

double a = 6e-4; // double type (e is for exponential)

6

Other Built in Datatypes in C++

bool Boolean (True or False)

void Without any Value

wchar_t Wide Character

Enum as Datatype in C++: Enumerated type declares a new type-name along with a sequence of

values containing identifiers which has values starting from 0 and incrementing by 1 every time.

For Example: enum day(mon, tues, wed, thurs, fri) d; Here an enumeration of days is defined

which is represented by the variable d. mon will hold value 0, tue will have 1 and so on. We can

also explicitly assign values, like, enum day(mon, tue=7, wed);. Here, mon will be 0, tue will be

assigned 7, so wed will get value 8.

Modifiers in C++

In C++, special words(called modifiers) can be used to modify the meaning of the predefined

built-in data types and expand them to a much larger set. There are four datatype modifiers in

C++, they are:

1. long

2. short
3. signed
4. unsigned

The above mentioned modifiers can be used along with built in datatypes to make them more

precise and even expand their range.

Below mentioned are some important points you must know about the modifiers,

1. long and short modify the maximum and minimum values that a data type will hold.

2. A plain int must have a minimum size of short.

3. Size hierarchy : short int < int < long int

4. Size hierarchy for floating point numbers is : float < double < long double

5. long float is not a legal type and there are no short floating point numbers.

6. Signed types includes both positive and negative numbers and is the default type.

7

Unsigned, numbers are always without any sign, that is always positive. Operators in C++

Operators are special type of functions, that takes one or more arguments and produces a new

value. For example : addition (+), substraction (-), multiplication (*) etc, are all operators.

Operators are used to perform various operations on variables and constants.

Types of operators

1. Assignment Operator

2. Mathematical Operators

3. Relational Operators

4. Logical Operators

5. Bitwise Operators

6. Shift Operators

7. Unary Operators

8. Ternary Operator

9. Comma Operator

https://www.studytonight.com/cpp/functions-in-cpp

8

 Assignment Operator (=)

Operates '=' is used for assignment, it takes the right-hand side (called rvalue) and copy it into

the left-hand side (called lvalue). Assignment operator is the only operator which can be

overloaded but cannot be inherited.

 Arithmetic or Mathematical Operators

There are operators used to perform basic mathematical operations. Addition (+) , subtraction (-)

, diversion (/) multiplication (*) and modulus (%) are the basic mathematical operators. Modulus

operator cannot be used with floating-point numbers.

C++ and C also use a shorthand notation to perform an operation and assignment at same

type. Example,

int x=10;

x += 4 // will add 4 to 10, and hence assign 14 to X.

x -= 5 // will subtract 5 from 10 and assign 5 to x.

 Relational Operators

These operators establish a relationship between operands. The relational operators are : less than

(<) , grater thatn (>) , less than or equal to (<=), greater than equal to (>=), equivalent (==) and

not equivalent (!=).You must notice that assignment operator is (=) and there is a relational

operator, for equivalent (==). These two are different from each other, the assignment operator

assigns the value to any Variables, whereas equivalent operator is used to compare values, like in

if-else conditions, Example

int x = 10; //assignment operator

x=5; // again assignment operator

if(x == 5) // here we have used equivalent relational operator, for comparison

{

 cout <<"Successfully compared";

}

https://www.studytonight.com/c/overview-of-c.php
https://www.studytonight.com/cpp/variables-scope-details.php

9

 Logical Operators

The logical operators are AND (&&) and OR (||). They are used to combine two different

expressions together.If two statement are connected using AND operator, the validity of both

statements will be considered, but if they are connected using OR operator, then either one of

them must be valid. These operators are mostly used in loops (especially while loop) and in

Decision making.

 Bitwise Operators

There are used to change individual bits into a number. They work with only integral data

types like char, int and long and not with floating point values.

• Bitwise AND operators &

• Bitwise OR operator |

• And bitwise XOR operator ^

• And, bitwise NOT operator ~

They can be used as shorthand notation too, & = , |= , ^= , ~= etc.

 Shift Operators

Shift Operators are used to shift Bits of any variable. It is of three types,

• Left Shift Operator <<

• Right Shift Operator >>

• Unsigned Right Shift Operator >>>

 Unary Operators

These are the operators which work on only one operand. There are many unary operators, but

increment ++ and decrement -- operators are most used. Other Unary Operators : address of &,

dereference *, new and delete, bitwise not ~, logical not !, unary minus - and unary plus +.

 Ternary Operator

The ternary if-else ? : is an operator which has three operands.

https://www.studytonight.com/cpp/loops-in-cpp
https://www.studytonight.com/cpp/datatypes-and-modifiers-in-cpp.php
https://www.studytonight.com/cpp/datatypes-and-modifiers-in-cpp.php

10

int a = 10;

a > 5 ? cout << "true" : cout << "false"

 Comma Operator

This is used to separate variable names and to separate expressions. In case of expressions, the

value of last expression is produced and used. Example :

int a,b,c; // variables declaration using comma operator

a=b++, c++; // a = c++ will be done.

❖ Key Concepts of object-oriented programming

Object-oriented programming – As the name suggests uses objects in programming. Object-

oriented programming aims to implement real-world entities like inheritance, hiding,

polymorphism, etc in programming. The main aim of OOP is to bind together the data and the

functions that operate on them so that no other part of the code can access this data except that

function.

Characteristics of an Object Oriented Programming language

❖ Class: The building block of C++ that leads to Object-Oriented programming is a Class.

It is a user-defined data type, which holds its own data members and member functions,

which can be accessed and used by creating an instance of that class. A class is like a

blueprint for an object. For Example: Consider the Class of Cars. There may be many

cars with different names and brand but all of them will share some common properties

like all of them will have 4 wheels, Speed Limit, Mileage range etc. So here, Car is the

class and wheels, speed limits, mileage are their properties.

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#objects

11

• A Class is a user-defined data-type which has data members and member functions.

• Data members are the data variables and member functions are the functions used to

manipulate these variables and together these data members and member functions define

the properties and behavior of the objects in a Class.

• In the above example of class Car, the data member will be speed limit, mileage etc and

member functions can apply brakes, increase speed etc.

We can say that a Class in C++ is a blue-print representing a group of objects which shares

some common properties and behaviors.

❖ Object: An Object is an identifiable entity with some characteristics and behavior. An

Object is an instance of a Class. When a class is defined, no memory is allocated but

when it is instantiated (i.e. an object is created) memory is allocated.

class person

{

 char name[20];

 int id;

public:

 void getdetails(){}

};

int main()

{

 person p1; // p1 is a object

}

Object take up space in memory and have an associated address like a record in Pascal or

structure or union in C.

When a program is executed the objects interact by sending messages to one another. Each

object contains data and code to manipulate the data. Objects can interact without having to

know details of each other’s data or code, it is sufficient to know the type of message

accepted and type of response returned by the objects.

❖ Encapsulation:

In normal terms, Encapsulation is defined as wrapping up of data and information under a

single unit. In Object-Oriented Programming, Encapsulation is defined as binding together

the data and the functions that manipulate them.

Consider a real-life example of encapsulation, in a company, there are different sections like

https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/encapsulation-in-c/

12

the accounts section, finance section, sales section etc. The finance section handles all the

financial transactions and keeps records of all the data related to finance. Similarly, the sales

section handles all the sales-related activities and keeps records of all the sales. Now there

may arise a situation when for some reason an official from the finance section needs all the

data about sales in a particular month. In this case, he is not allowed to directly access the

data of the sales section. He will first have to contact some other officer in the sales section

and then request him to give the particular data. This is what encapsulation is. Here the data

of the sales section and the employees that can manipulate them are wrapped under a single

name “sales section”.

Encapsulation also leads to data abstraction or hiding. As using encapsulation also hides the

data. In the above example, the data of any of the section like sales, finance or accounts are

hidden from any other section.

❖ Abstraction

Data abstraction is one of the most essential and important features of object-oriented

programming in C++. Abstraction means displaying only essential information and hiding

the details. Data abstraction refers to providing only essential information about the data to

the outside world, hiding the background details or implementation.

Consider a real-life example of a man driving a car. The man only knows that pressing the

accelerators will increase the speed of the car or applying brakes will stop the car but he does

not know about how on pressing accelerator the speed is actually increasing, he does not

know about the inner mechanism of the car or the implementation of accelerator, brakes etc

in the car. This is what abstraction is.

• Abstraction using Classes: We can implement Abstraction in C++ using classes. The

class helps us to group data members and member functions using available access

specifiers. A Class can decide which data member will be visible to the outside world and

which is not.

• Abstraction in Header files: One more type of abstraction in C++ can be header files. For

example, consider the pow() method present in math.h header file. Whenever we need to

calculate the power of a number, we simply call the function pow() present in the math.h

header file and pass the numbers as arguments without knowing the underlying algorithm

https://www.geeksforgeeks.org/abstraction-in-c/

13

according to which the function is actually calculating the power of numbers.

❖ Polymorphism

The word polymorphism means having many forms. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one form.

A person at the same time can have different characteristic. Like a man at the same time is a

father, a husband, an employee. So the same person posses different behavior in different

situations. This is called polymorphism.

An operation may exhibit different behaviors in different instances. The behavior depends

upon the types of data used in the operation.

C++ supports operator overloading and function overloading.

• Operator Overloading: The process of making an operator to exhibit different behaviors

in different instances is known as operator overloading.

• Function Overloading: Function overloading is using a single function name to perform

different types of tasks. Polymorphism is extensively used in implementing inheritance.

Example: Suppose we have to write a function to add some integers, sometimes there are 2

integers, sometimes there are 3 integers. We can write the Addition Method with the same

name having different parameters; the concerned method will be called according to

parameters.

❖ Inheritance: The capability of a class to derive properties and characteristics from

another class is called Inheritance. Inheritance is one of the most important features of

https://www.geeksforgeeks.org/inheritance-in-c/

14

Object-Oriented Programming.

• Sub Class: The class that inherits properties from another class is called Sub class or

Derived Class.

• Super Class: The class whose properties are inherited by sub class is called Base Class

or Super class.

• Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to

create a new class and there is already a class that includes some of the code that we

want, we can derive our new class from the existing class. By doing this, we are reusing

the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

❖ Dynamic Binding: In dynamic binding, the code to be executed in response to

function call is decided at runtime. C++ has virtual functions to support this.

❖ Message Passing: Objects communicate with one another by sending and receiving

information to each other. A message for an object is a request for execution of a

procedure and therefore will invoke a function in the receiving object that generates

the desired results. Message passing involves specifying the name of the object, the

name of the function and the information to be sent.

❖ Advantages of object oriented languages.

o OOPs makes development and maintenance easier where as in Procedure-oriented

programming language it is not easy to manage if code grows as project size

grows.

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

15

o OOPs provide data hiding whereas in Procedure-oriented programming language

a global data can be accessed from anywhere.

o OOPs provide ability to simulate real-world event much more effectively. We can

provide the solution of real word problem if we are using the Object-Oriented

Programming language.

❖ I/O in C++

C++ comes with libraries that provide us with many ways for performing input and output.

In C++ input and output are performed in the form of a sequence of bytes or more

commonly known as streams.

• Input Stream: If the direction of flow of bytes is from the device (for example, Keyboard)

to the main memory then this process is called input.

• Output Stream: If the direction of flow of bytes is opposite, i.e. from main memory to

device (display screen) then this process is called output.

Header files available in C++ for Input/Output operations are:

1. iostream: iostream stands for standard input-output stream. This header file contains

definitions to objects like cin, cout, cerr etc.

2. iomanip: iomanip stands for input output manipulators. The methods declared in this files

are used for manipulating streams. This file contains definitions of setw, setprecision, etc.

16

3. fstream: This header file mainly describes the file stream. This header file is used to

handle the data being read from a file as input or data being written into the file as output.

The two keywords cout in C++ and cin in C++ are used very often for printing outputs and

taking inputs respectively. These two are the most basic methods of taking input and print ing

output in C++. To use cin and cout in C++ one must include the header file iostream in the

program.

• Standard output stream (cout): Usually the standard output device is the display screen.

The C++ cout statement is the instance of the ostream class. It is used to produce output on

the standard output device which is usually the display screen. The data needed to be

displayed on the screen is inserted in the standard output stream (cout) using the insertion

operator(<<).

#include <iostream>

using namespace std;

int main()

{

 char sample[] = "GeeksforGeeks";

 cout << sample << " - A computer science portal for geeks";

 return 0;

}

Output:

GeeksforGeeks - A computer science portal for geeks

In the above program the insertion operator(<<) inserts the value of the string

variable sample followed by the string “A computer science portal for geeks” in the standard

output stream cout which is then displayed on screen.

• standard input stream (cin): Usually the input device in a computer is the keyboard. C++

cin statement is the instance of the class iostream and is used to read input from the

standard input device which is usually a keyboard.

The extraction operator(>>) is used along with the object cin for reading inputs. The

extraction operator extracts the data from the object cin which is entered using the

keyboard.

17

#include <iostream.h>

int main()

{

 int age;

 cout << "Enter your age:";

 cin >> age;

 cout << "\nYour age is: " << age;

 return 0;

}

Input :

18

Output:

Enter your age:

Your age is: 18

The above program asks the user to input the age. The object cin is connected to the input

device. The age entered by the user is extracted from cin using the extraction operator (>>) and

the extracted data is then stored in the variable age present on the right side of the extraction

operator.

❖ C++ Declarations

A variable provides us with named storage that our programs can manipulate. Each variable in

C++ has a specific type, which determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations that can be

applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++

is case-sensitive .

18

There are following basic types of variable in C++

S.No Type & Description

1 bool
Stores either value true or false.

2 char
Typically a single octet (one byte). This is an integer type.

3 int
The most natural size of integer for the machine.

4 float
A single-precision floating point value.

5 double
A double-precision floating point value.

6 void
Represents the absence of type.

7 wchar_t
A wide character type.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing with

the given type and name so that compiler proceed for further compilation without needing

complete detail about the variable. A variable declaration has its meaning at the time of

compilation only, compiler needs actual variable definition at the time of linking of the

program.

A variable declaration is useful when you are using multiple files and you define your variable

in one of the files which will be available at the time of linking of the program. You will

use extern keyword to declare a variable at any place. Though you can declare a variable

multiple times in your C++ program, but it can be defined only once in a file, a function or a

block of code.

19

Example

#include <iostream>

using namespace std;

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main () {

 // Variable definition:

 int a, b;

 int c;

 float f;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c << endl ;

 f = 70.0/3.0;

 cout << f << endl ;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

30

23.3333

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for the variable.

A variable definition specifies a data type, and contains a list of one or more variables of that

type as follows −

type variable_list;

20

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names

separated by commas. Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the

compiler to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables is

undefined.

❖ Control structures
Control structures are used to alter the flow of execution of the program. Why do we need

to alter the program flow? The reason is “decision making“! In life, we may be given with a set

of option like doing “Electronics” or “Computer science”. We do make a decision by analyzing

certain conditions (like our personal interest, scope of job opportunities etc). With the decision

we make, we alter the flow of our life’s direction. This is exactly what happens in a C++

program. We use control structures to make decisions and alter the direction of program flow in

one or the other path(s) available.

There are three types of control structures available in C++

21

1) Sequence structure (straight line paths)

Sequential logic as the name suggests follows a serial or sequential flow in which the flow

depends on the series of instructions given to the computer. Unless new instructions are given,

the modules are executed in the obvious sequence. The sequences may be given, by means of

numbered steps explicitly. Also, implicitly follows the order in which modules are written.

Most of the processing, even some complex problems, will generally follow this elementary

flow pattern.

Sequential Control flow

2) Selection structure (one or many branches): Selection Logic simply involves a number of

conditions or parameters which decides one out of several written modules. The structures

which use these type of logic are known as Conditional Structures.

3) Loop structure (repetition of a set of activities)

The Iteration logic employs a loop which involves a repeat statement followed by a module

known as the body of a loop.

22

❖ Decision making and statements

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Sr.No Statement & Description

1 if statement
An ‘if’ statement consists of a boolean expression followed by one or more statements.

2 if...else statement
An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when
the boolean expression is false.

3 switch statement
A ‘switch’ statement allows a variable to be tested for equality against a list of values.

4 nested if statements
You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s).

5 nested switch statements
You can use one ‘switch’ statement inside another ‘switch’ statement(s).

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm

23

if statement in C++

 if statement is the most simple decision making statement. It is used to decide whether a

certain statement or block of statements will be executed or not i.e if a certain condition is

true then a block of statement is executed otherwise not.

Syntax:

 if(condition)

 {

 // Statements to execute if

 // condition is true

 }

 Flowchart

#include<iostream>

using namespace std;

 int main()

 {

 int i = 10;

 if (i > 15)

 {

 cout<<"10 is less than 15";

 }

 cout<<"I am Not in if";

 }

24

Output:
I am Not in if

if-else statement

The if statement alone tells us that if a condition is true it will execute a block of statements

and if the condition is false it won’t. But what if we want to do something else if the condition

is false. We can use the else statement with if statement to execute a block of code when the

condition is false.

Syntax:

if (condition)

{

 // Executes this block if

 // condition is true

}

else

{

 // Executes this block if

 // condition is false

}

Flowchart:

25

Example:

// C++ program to illustrate if-else statement

#include<iostream>

using namespace std;

int main()

 {

 int i = 20;

 if (i < 15)

 cout<<"i is smaller than 15";

 else

 cout<<"i is greater than 15";

 return 0;

 }

Output:

i is greater than 15

The block of code following the else statement is executed as the condition present in

the if statement is false.

nested-if statement

 Nested if statements means an if statement inside another if statement. Yes, C++

allows us to nested if statements within if statements, i.e, we can place an if statement

inside another if statement.

Syntax:

if (condition1)

{

 // Executes when condition1 is true

 if (condition2)

 {

 // Executes when condition2 is true

 }

}

26

Flowchart

Example:

// C++ program to illustrate nested-if statement

#include <iostream>

using namespace std;

int main()

{

 int i = 10;

 if (i == 10)

 {

 // First if statement

 if (i < 15)

 cout<<"i is smaller than 15\n";

 // Nested - if statement

 // Will only be executed if statement above

 // is true

 if (i < 12)

 cout<<"i is smaller than 12 too\n";

 else

 cout<<"i is greater than 15";

 }

 return 0;

}

27

Output:

i is smaller than 15

i is smaller than 12 too

if-else-if ladder
Here, a user can decide among multiple options. The C++ if statements are executed from the top

down. As soon as one of the conditions controlling the if is true, the statement associated with

that if is executed, and the rest of the C++ else-if ladder is bypassed. If none of the conditions are

true, then the final else statement will be executed.

Syntax:

if (condition)

 statement;

else if (condition)

 statement;

.

.

else

 statement;

// C++ program to illustrate if-else-if ladder

#include<iostream>

using namespace std;

int main()

{

 int i = 20;

28

 if (i == 10)

 cout<<"i is 10";

 else if (i == 15)

 cout<<"i is 15";

 else if (i == 20)

 cout<<"i is 20";

 else

 cout<<"i is not present";

}

Output:

i is 20

❖ Goto , break, continue, Switch case statements

Jump Statements in C++

These statements are used in C++ for unconditional flow of control through out the funtions in

a program. They support four type of jump statements:

1. break: This loop control statement is used to terminate the loop. As soon as the break

statement is encountered from within a loop, the loop iterations stops there and control

returns from the loop immediately to the first statement after the loop.

Syntax:

 break;

Basically break statements are used in the situations when we are not sure about the actual

number of iterations for the loop or we want to terminate the loop based on some

condition.

https://www.geeksforgeeks.org/break-statement-cc/

29

Example:

// CPP program to illustrate

// Linear Search

#include <iostream>

using namespace std;

void findElement(int arr[], int size, int key)

{

 // loop to traverse array and search for key

 for (int i = 0; i < size; i++) {

 if (arr[i] == key) {

 cout << "Element found at position: " << (i + 1);

 break;

 }

 }

}

// Driver program to test above function

int main()

{

 int arr[] = { 1, 2, 3, 4, 5, 6 };

 int n = 6; // no of elements

 int key = 3; // key to be searched

 // Calling function to find the key

 findElement(arr, n, key);

 return 0;

}

Output:

Element found at position: 3

2.Continue statement: Continue is also a loop control statement just like the break

statement. continue statement is opposite to that of break statement, instead of terminating the

loop, it forces to execute the next iteration of the loop.

As the name suggest the continue statement forces the loop to continue or execute the next

iteration. When the continue statement is executed in the loop, the code inside the loop

following the continue statement will be skipped and next iteration of the loop will begin.

Syntax:

continue;

https://www.geeksforgeeks.org/break-statement-cc/
https://www.geeksforgeeks.org/break-statement-cc/

30

#include <iostream>

using namespace std;

int main()

{

 // loop from 1 to 10

 for (int i = 1; i <= 10; i++) {

 // If i is equals to 6,

 // continue to next iteration

 // without printing

 if (i == 6)

 continue;

 else

 // otherwise print the value of i

 cout << i << " ";

 }

 return 0;

}

Output:

1 2 3 4 5 7 8 9 10

The continue statement can be used with any other loop also like while or do while in a similar

way as it is used with for loop above

31

3.goto statement

The goto statement is a jump statement which is sometimes also referred to as unconditional

jump statement. The goto statement can be used to jump from anywhere to anywhere within a

function.

Syntax:

Syntax1 | Syntax2

goto label; | label:

. | .

. | .

. | .

label: | goto label;

In the above syntax, the first line tells the compiler to go to or jump to the statement marked as

a label. Here label is a user-defined identifier which indicates the target statement. The

statement immediately followed after ‘label:’ is the destination statement. The ‘label:’ can also

appear before the ‘goto label;’ statement in the above syntax.

Below are some examples on how to use goto statement:

32

Example:

// C++ program to check if a number is

// even or not using goto statement

#include <iostream>

using namespace std;

// function to check even or not

void checkEvenOrNot(int num)

{

 if (num % 2 == 0)

 // jump to even

 goto even;

 else

 // jump to odd

 goto odd;

even:

 cout << num << " is even";

 // return if even

 return;

odd:

 cout << num << " is odd";

}

// Driver program to test above function

int main()

{

 int num = 26;

 checkEvenOrNot(num);

 return 0;

}

Disadvantages of using goto statement:

• The use of goto statement is highly discouraged as it makes the program logic very

complex.

• use of goto makes the task of analyzing and verifying the correctness of programs

(particularly those involving loops) very difficult.

• Use of goto can be simply avoided using break and continue statements.

https://www.geeksforgeeks.org/break-statement-cc/
https://www.geeksforgeeks.org/continue-statement-cpp/

33

4.Switch Statement

Switch case statements are a substitute for long if statements that compare a variable to

several integral values

• The switch statement is a multiway branch statement. It provides an easy way to

dispatch execution to different parts of code based on the value of the expression.

• Switch is a control statement that allows a value to change control of execution.

Syntax:
switch (n)

{

 case 1: // code to be executed if n = 1;

 break;

 case 2: // code to be executed if n = 2;

 break;

 default: // code to be executed if n doesn't match any cases

}

Important Points about Switch Case Statements:

1. The expression provided in the switch should result in a constant value otherwise it

would not be valid.

Valid expressions for switch:

// Constant expressions allowed

switch(1+2+23)

switch(1*2+3%4)

// Variable expression are allowed provided

// they are assigned with fixed values

34

switch(a*b+c*d)

switch(a+b+c)

2. Duplicate case values are not allowed.

3. The default statement is optional. Even if the switch case statement do not have a

default statement, it would run without any problem.

4. The break statement is used inside the switch to terminate a statement sequence.

When a break statement is reached, the switch terminates, and the flow of control

jumps to the next line following the switch statement.

5. The break statement is optional. If omitted, execution will continue on into the next

case. The flow of control will fall through to subsequent cases until a break is reached.

6. Nesting of switch statements are allowed, which means you can have switch

statements inside another switch. However nested switch statements should be avoided

as it makes program more complex and less readable.

35

Flowchart:

Example:

include <iostream>

using namespace std;

int main() {

int x = 2;

 switch (x)

 {

 case 1:

 cout << "Choice is 1";

 break;

 case 2:

36

 cout << "Choice is 2";

 break;

 case 3:

 cout << "Choice is 3";

 break;

 default:

 cout << "Choice other than 1, 2 and 3";

 break;

 }

return 0;

}

Output:

Choice is 2

❖ Loops in C++

 Loops in programming come into use when we need to repeatedly execute a block of

statements.

There are mainly two types of loops:

1. Entry Controlled loops: In this type of loops the test condition is tested before entering

the loop body. For Loop and While Loop are entry controlled loops.

2. Exit Controlled Loops: In this type of loops the test condition is tested or evaluated at the

end of loop body. Therefore, the loop body will execute atleast once, irrespective of

whether the test condition is true or false. do – while loop is exit controlled loop.

37

❖ For, while, do statement

 A for loop is a repetition control structure which allows us to write a loop that is executed a

specific number of times. The loop enables us to perform n number of steps together in one

line.

Syntax:

for (initialization expr; test expr; update expr)

{ // body of the loop

 // statements we want to execute

}

In for loop, a loop variable is used to control the loop. First initialize this loop variable to some

value, then check whether this variable is less than or greater than counter value. If statement is

true, then loop body is executed and loop variable gets updated . Steps are repeated till exit

condition comes.

• Initialization Expression: In this expression we have to initialize the loop counter to some

value. for example: int i=1;

• Test Expression: In this expression we have to test the condition. If the condition

evaluates to true then we will execute the body of loop and go to update expression

otherwise we will exit from the for loop. For example: i <= 10;

• Update Expression: After executing loop body this expression increments/decrements the

loop variable by some value. for example: i++;

38

// C++ program to illustrate for loop

#include <iostream>

using namespace std;

int main()

{

 for (int i = 1; i <= 10; i++)

 {

 cout << "Hello World\n";

 }

 return 0;

}

Output:

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

While Loop
While studying for loop we have seen that the number of iterations is known beforehand, i.e.

the number of times the loop body is needed to be executed is known to us. while loops are

used in situations where we do not know the exact number of iterations of loop beforehand.

The loop execution is terminated on the basis of test condition.

Syntax:

We have already stated that a loop is mainly consisted of three statements – initialization

expression, test expression, update expression. The syntax of the three loops – For, while and

do while mainly differs on the placement of these three statements.

initialization expression;
while (test_expression)
{
 // statements

 update_expression;
}

39

Flow Diagram:

Example:

// C++ program to illustrate while loop
#include <iostream>
using namespace std;

int main()
{
 // initialization expression
 int i = 1;

 // test expression
 while (i < 6)
 {
 cout << "Hello World\n";

 // update expression
 i++;
 }

 return 0;
}

Output:
Hello World
Hello World
Hello World
Hello World
Hello World

do while loop
In do while loops also the loop execution is terminated on the basis of test condition. The main

difference between do while loop and while loop is in do while loop the condition is tested at

the end of loop body, i.e do while loop is exit controlled whereas the other two loops are entry

40

controlled loops. Note: In do while loop the loop body will execute at least once irrespective of

test condition.

Syntax:

initialization expression;

do

{

 // statements

 update_expression;

} while (test_expression);

Note: Notice the semi – colon(“;”) in the end of loop.

Flow Diagram:

Example:

// C++ program to illustrate do-while loop

#include <iostream>

using namespace std;

int main()

{

 int i = 2; // Initialization expression

 do

 {

 // loop body

 cout << "Hello World\n";

 // update expression

 i++;

41

 } while (i < 1); // test expression

 return 0;

}

Output:

Hello World

In the above program the test condition (i<1) evaluates to false. But still as the loop is exit – controlled

the loop body will execute once.

❖ Functions in C++

A function is a set of statements that take inputs, do some specific computation and

produces output. The idea is to put some commonly or repeatedly done task together and

make a function so that instead of writing the same code again and again for different

inputs, we can call the function.

 The general form of a function is:

 return_type function_name([arg1_type arg1_name, ...])
 { code }

Why do we need functions?

• Functions help us in reducing code redundancy. If functionality is performed at multiple

places in software, then rather than writing the same code, again and again, we create a

function and call it everywhere. This also helps in maintenance as we have to change at one

place if we make future changes to the functionality.

• Functions make code modular. Consider a big file having many lines of codes. It becomes

really simple to read and use the code if the code is divided into functions.

• Functions provide abstraction. For example, we can use library functions without worrying

about their internal working.

Function Declaration

A function declaration tells the compiler about the number of parameters function takes, data-

types of parameters and return type of function. Putting parameter names in function

declaration is optional in the function declaration, but it is necessary to put them in the

42

definition. Below are an example of function declarations. (parameter names are not there in

below declarations)

// A function that takes two integers as parameters

// and returns an integer

int max(int, int);

// A function that takes a int pointer and an int variable as parameters

// and returns an pointer of type int

int *swap(int*,int);

// A function that takes a char as parameters

// and returns an reference variable

char *call(char b);

// A function that takes a char and an int as parameters

// and returns an integer

int fun(char, int);

Parameter Passing to functions: The parameters passed to function are called actual

parameters. For example, in the above program 10 and 20 are actual parameters.

The parameters received by function are called formal parameters. For example, in the above

program x and y are formal parameters. There are two most popular ways to pass parameters.

Pass by Value: In this parameter passing method, values of actual parameters are copied to

function’s formal parameters and the two types of parameters are stored in different memory

locations. So any changes made inside functions are not reflected in actual parameters of

caller.

Pass by Reference Both actual and formal parameters refer to same locations, so any changes

made inside the function are actually reflected in actual parameters of caller.

43

For example. in the below code, value of x is not modified using the function fun().

#include <iostream>

using namespace std;

void fun(int x) {

 x = 30;

}

int main() {

 int x = 20;

 fun(x);

 cout << "x = " << x;

 return 0;

}

Output:

x = 20

Main Function: The main function is a special function. Every C++ program must contain a

function named main. It serves as the entry point for the program. The computer will start

running the code from the beginning of the main function.

Types of main Function:

1) The first type is – main function without parameters :

// Without Parameters

int main()

{

 ...

 return 0;

}

2) Second type is main function with parameters :

// With Parameters

int main(int argc, char * const argv[])

{

 ...

 return 0;

}

The reason for having the parameter option for the main function is to allow input from the

command line.

44

When you use the main function with parameters, it saves every group of characters (separated

by a space) after the program name as elements in an array named argv. Since the main

function has the return type of int, the programmer must always have a return statement in the

code. The number that is returned is used to inform the calling program what the result of the

program’s execution was. Returning 0 signals that there were no problems.

❖ Inline functions

When the program executes the function call instruction the CPU stores the memory

address of the instruction following the function call, copies the arguments of the function

on the stack and finally transfers control to the specified function. The CPU then executes

the function code, stores the function return value in a predefined memory location/register

and returns control to the calling function. This can become overhead if the execution time

of function is less than the switching time from the caller function to called function

(callee). For functions that are large and/or perform complex tasks, the overhead of the

function call is usually insignificant compared to the amount of time the function takes to

run. However, for small, commonly-used functions, the time needed to make the function

call is often a lot more than the time needed to actually execute the function’s code. This

overhead occurs for small functions because execution time of small function is less than

the switching time.

C++ provides an inline functions to reduce the function call overhead. Inline function is a

function that is expanded in line when it is called. When the inline function is called whole

code of the inline function gets inserted or substituted at the point of inline function call.

This substitution is performed by the C++ compiler at compile time. Inline function may

increase efficiency if it is small. The syntax for defining the function inline is:

inline return-type function-name(parameters)

{

 // function code

 }

45

Inline functions provide following advantages:

1) Function call overhead doesn’t occur.

2) It also saves the overhead of push/pop variables on the stack when function is called.

3) It also saves overhead of a return call from a function.

4) When you inline a function, you may enable compiler to perform context specific

optimization on the body of function. Such optimizations are not possible for normal function

calls. Other optimizations can be obtained by considering the flows of calling context and the

called context.

5) Inline function may be useful (if it is small) for embedded systems because inline can yield

less code than the function call preamble and return.

Inline function disadvantages:

1) The added variables from the inlined function consumes additional registers, After in-lining

function if variables number which are going to use register increases than they may create

overhead on register variable resource utilization. This means that when inline function body is

substituted at the point of function call, total number of variables used by the function also gets

inserted. So the number of register going to be used for the variables will also get increased. So

if after function inlining variable numbers increase drastically then it would surely cause an

overhead on register utilization.

2) If you use too many inline functions then the size of the binary executable file will be large,

because of the duplication of same code.

3) Too much inlining can also reduce your instruction cache hit rate, thus reducing the speed of

instruction fetch from that of cache memory to that of primary memory.

4) Inline function may increase compile time overhead if someone changes the code inside the

inline function then all the calling location has to be recompiled because compiler would

require to replace all the code once again to reflect the changes, otherwise it will continue with

old functionality.

5) Inline functions may not be useful for many embedded systems. Because in embedded

systems code size is more important than speed.

6) Inline functions might cause thrashing because inlining might increase size of the binary

executable file. Thrashing in memory causes performance of computer to degrade.

46

The following program demonstrates the use of use of inline function.

#include <iostream>

using namespace std;

inline int cube(int s)

{

 return s*s*s;

}

int main()

{

 cout << "The cube of 3 is: " << cube(3) << "\n";

 return 0;

} //Output: The cube of 3 is: 27

❖ Function overloading

Function overloading is a feature in C++ where two or more functions can have the same name

but different parameters.When a function name is overloaded with different jobs it is called

Function Overloading.

In Function Overloading “Function” name should be the same and the arguments should be

different.Function overloading can be considered as an example of polymorphism feature in

C++.

Following is a simple C++ example to demonstrate function overloading.

#include <iostream>

using namespace std;

void print(int i) {

 cout << " Here is int " << i << endl;

}

void print(double f) {

 cout << " Here is float " << f << endl;

}

void print(char const *c) {

 cout << " Here is char* " << c << endl;

}

int main() {

 print(10);

 print(10.10);

47

 print("ten");

 return 0;

}

Output:

Here is int 10

Here is float 10.1

Here is char* ten

How Function Overloading works?

• Exact match:- (Function name and Parameter)

• If a not exact match is found:–

 ->Char, Unsigned char, and short are promoted to an int.

 ->Float is promoted to double

• If no match found:

 ->C++ tries to find a match through the standard conversion.

• ELSE ERROR

UNIT II

❖ Classes and objects

Class: A class in C++ is the building block, that leads to Object-Oriented programming. It is a

user-defined data type, which holds its own data members and member functions, which can be

accessed and used by creating an instance of that class. A C++ class is like a blueprint for an

object.

For Example: Consider the Class of Cars. There may be many cars with different names and

brand but all of them will share some common properties like all of them will have 4

wheels, Speed Limit, Mileage range etc. So here, Car is the class and wheels, speed limits,

mileage are their properties.

48

• A Class is a user defined data-type which has data members and member functions.

• Data members are the data variables and member functions are the functions used to

manipulate these variables and together these data members and member functions defines

the properties and behavior of the objects in a Class.

• In the above example of class Car, the data member will be speed limit, mileage etc and

member functions can be apply brakes, increase speed etc.

Object: An Object is an instance of a Class. When a class is defined, no memory is allocated

but when it is instantiated (i.e. an object is created) memory is allocated.

❖ Declaring objects and defining member functions

Defining Class and Declaring Objects

 A class is defined in C++ using keyword class followed by the name of class. The body of

class is defined inside the curly brackets and terminated by semicolon at the end.

Declaring Objects: When a class is defined, only the specification for the object is defined; no

memory or storage is allocated. To use the data and access functions defined in the class, you

need to create objects.

Syntax:

ClassName ObjectName;

Accessing data members and member functions: The data members and member functions

of class can be accessed using the dot(‘.’) operator with the object. For example if the name of

object is obj and you want to access the member function with the name printName() then you

will have to write obj.printName() .

49

Accessing Data Members

The public data members are also accessed in the same way given however the private data

members are not allowed to be accessed directly by the object. Accessing a data member

depends solely on the access control of that data member.

This access control is given by Access modifiers in C++. There are three access modifiers

: public, private and protected.

// C++ program to demonstrate

// accessing of data members

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 // Access specifier

 public:

 // Data Members

 string geekname;

 // Member Functions()

 void printname()

 {

 cout << "Geekname is: " << geekname;

 }

};

int main() {

 // Declare an object of class geeks

 Geeks obj1;

 // accessing data member

 obj1.geekname = "Abhi";

 // accessing member function

 obj1.printname();

 return 0;

}

Output:

Geekname is: Abhi

Member Functions in Classes

https://www.geeksforgeeks.org/access-modifiers-in-c/

50

There are 2 ways to define a member function:

• Inside class definition

• Outside class definition

To define a member function outside the class definition we have to use the scope resolution ::

operator along with class name and function name.

// C++ program to demonstrate function

// declaration outside class

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 string geekname;

 int id;

 // printname is not defined inside class definition

 void printname();

 // printid is defined inside class definition

 void printid()

 {

 cout << "Geek id is: " << id;

 }

};

// Definition of printname using scope resolution operator ::

void Geeks::printname()

{

 cout << "Geekname is: " << geekname;

}

int main() {

 Geeks obj1;

 obj1.geekname = "xyz";

 obj1.id=15;

 // call printname()

 obj1.printname();

 cout << endl;

 // call printid()

51

 obj1.printid();

 return 0;

}

Output:

Geekname is: xyz

Geek id is: 15

❖ Static Member variables and functions

• Static variables in a Function: When a variable is declared as static, space for it gets

allocated for the lifetime of the program. Even if the function is called multiple times,

space for the static variable is allocated only once and the value of variable in the previous

call gets carried through the next function call. This is useful for implementing co-routines

in C++ or any other application where previous state of function needs to be stored.

// C++ program to demonstrate

// the use of static Static

// variables in a Function

#include <iostream>

#include <string>

using namespace std;

void demo()

{

 // static variable

 static int count = 0;

 cout << count << " ";

 // value is updated and

 // will be carried to next

 // function calls

 count++;

}

int main()

{

 for (int i=0; i<5; i++)

 demo();

 return 0;

}

Output:

0 1 2 3 4

https://www.geeksforgeeks.org/coroutines-in-c-cpp/
https://www.geeksforgeeks.org/coroutines-in-c-cpp/

52

In the above program that the variable count is declared as static. So, its value is carried

through the function calls. The variable count is not getting initialized for every time the

function is called.

• Static variables in a class: As the variables declared as static are initialized only once as

they are allocated space in separate static storage so, the static variables in a class are

shared by the objects. There can not be multiple copies of same static variables for

different objects. Also because of this reason static variables can not be initialized using

constructors.

// C++ program to demonstrate static

// variables inside a class

#include<iostream>

using namespace std;

class GfG

{

 public:

 static int i;

 GfG()

 {

 // Do nothing

 };

};

int main()

{

 GfG obj1;

 GfG obj2;

 obj1.i =2;

 obj2.i = 3;

 // prints value of i

 cout << obj1.i<<" "<<obj2.i;

}

We can see in the above program that we have tried to create multiple copies of the static

variable i for multiple objects. But this didn’t happen. So, a static variable inside a class

53

should be initialized explicitly by the user using the class name and scope resolution

operator outside the class as shown below:

// C++ program to demonstrate static

// variables inside a class

#include<iostream>

using namespace std;

class GfG

{

public:

 static int i;

 GfG()

 {

 // Do nothing

 };

};

int GfG::i = 1;

int main()

{

 GfG obj;

 // prints value of i

 cout << obj.i;

}

Output:1

Static Members of Class

• Class objects as static:

Just like variables, objects also when declared as static have a scope till the lifetime of

program. Consider the below program where the object is non-static.

// CPP program to illustrate

// when not using static keyword

#include<iostream>

using namespace std;

class GfG

{

 int i;

 public:

54

 GfG()

 {

 i = 0;

 cout << "Inside Constructor\n";

 }

 ~GfG()

 {

 cout << "Inside Destructor\n";

 }

};

int main()

{

 int x = 0;

 if (x==0)

 {

 GfG obj;

 }

 cout << "End of main\n";

}

Output:

Inside Constructor

Inside Destructor

End of main

• In the above program the object is declared inside the if block as non-static. So, the scope

of variable is inside the if block only. So when the object is created the constructor is

invoked and soon as the control of if block gets over the destructor is invoked as the scope

of object is inside the if block only where it is declared. Let us now see the change in

output if we declare the object as static.

// CPP program to illustrate

// class objects as static

#include<iostream>

using namespace std;

class GfG

{

 int i = 0;

 public:

 GfG()

55

 {

 i = 0;

 cout << "Inside Constructor\n";

 }

 ~GfG()

 {

 cout << "Inside Destructor\n";

 }

};

int main()

{

 int x = 0;

 if (x==0)

 {

 static GfG obj;

 }

 cout << "End of main\n";

}

Output:

Inside Constructor

End of main

Inside Destructor

We can clearly see the change in output. Now the destructor is invoked after the end of main.

This happened because the scope of static object is through out the life time of program.

Static functions in a class: Just like the static data members or static variables inside the class,

static member functions also does not depend on object of class. We are allowed to invoke a

static member function using the object and the ‘.’ operator but it is recommended to invoke

the static members using the class name and the scope resolution operator.

Static member functions are allowed to access only the static data members or other

static member functions, they can not access the non-static data members or member

functions of the class.

// C++ program to demonstrate static

// member function in a class

#include<iostream>

using namespace std;

56

class GfG

{

 public:

 // static member function

 static void printMsg()

 {

 cout<<"Welcome to GfG!";

 }

};

// main function

int main()

{

 // invoking a static member function

 GfG::printMsg();

}

Output:

Welcome to GfG!

❖ Array of objects

Like array of other user-defined data types, an array of type class can also be created. The array

of type class contains the objects of the class as its individual elements. Thus, an array of a class

type is also known as an array of objects. An array of objects is declared in the same way as an

array of any built-in data type.

The syntax for declaring an array of objects is

 class_name array_name [size] ;

To understand the concept of an array of objects, consider this example.

Example : A program to demonstrate the concept of array of objects

#include<iostream>

using namespace std;

class books {

 char tit1e [30];

 float price ;

 public:

 void getdata ();

https://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

57

 void putdata ();

} ;

void books :: getdata () {

 cout<<"Title:”;

 cin>>title;

 cout<<"Price:”;

 cin>>price;

}

void books :: putdata () {

 cout<<"Title:"<<title<< "\n";

 cout<<"Price:"<<price<< "\n”;

 const int size=3 ;

}

int main() {

 books book[size] ;

 for(int i=0;i<size;i++) {

 cout<<"Enter details o£ book "<<(i+1)<<"\n";

 book[i].getdata();

}

 for(int i=0;i<size;i++) {

 cout<<"\nBook "<<(i+l)<<"\n";

 book[i].putdata() ;

}

 return 0;

}

The output of the program is

 Enter details of book 1

Title: c++

Price: 325

Enter details of book 2

Title: DBMS

Price:. 455

Enter details of book 3

Title: Java

Price: 255

Book 1

Title: c++

Price: 325

Book 2

Title: DBMS

Price: 455

Book 3

Title: Java

Price: 255

In this example, an array book of the type class books and size three is declared. This implies

that book is an array of three objects of the class books. Note that every object in the array book

https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

58

can access public members of the class in the same way as any other object, that is, by using the

dot operator. For example, the statement book [i] . getdata () invokes the getdata () function for

the ith element of array book.

When an array of objects is declared, the memory is allocated in the same way as to

multidimensional arrays. For example, for the array book, a separate copy of title and price is

created for each member book[0], book[l] and book[2]. However, member functions are stored

at a different place in memory and shared among all the array members. For instance, the

memory space is allocated to the the array of objects book of the class books

❖ Friend functions

Friend Function Like friend class, a friend function can be given a special grant to access

private and protected members. A friend function can be:

a) A member of another class

b) A global function

class Node {

private:

 int key;

 Node* next;

 /* Other members of Node Class */

 friend int LinkedList::search();

 // Only search() of linkedList

 // can access internal members

};

https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory

59

Following are some important points about friend functions and classes:

1) Friends should be used only for limited purpose. too many functions or external classes are

declared as friends of a class with protected or private data, it lessens the value of

encapsulation of separate classes in object-oriented programming.

2) Friendship is not mutual. If class A is a friend of B, then B doesn’t become a friend of A

automatically.

3) Friendship is not inherited

A simple and complete C++ program to demonstrate friend Class

#include <iostream>

class A {

private:

 int a;

public:

 A() { a = 0; }

 friend class B; // Friend Class

};

class B {

private:

 int b;

public:

 void showA(A& x)

 {

 // Since B is friend of A, it can access

 // private members of A

 std::cout << "A::a=" << x.a;

 }

};

int main()

{

 A a;

 B b;

 b.showA(a);

 return 0;

}

Output:

A::a=0

60

A simple and complete C++ program to demonstrate friend function of
another class

#include <iostream>

class B;

class A {

public:

 void showB(B&);

};

class B {

private:

 int b;

public:

 B() { b = 0; }

 friend void A::showB(B& x); // Friend function

};

void A::showB(B& x)

{

 // Since showB() is friend of B, it can

 // access private members of B

 std::cout << "B::b = " << x.b;

}

int main()

{

 A a;

 B x;

 a.showB(x);

 return 0;

}

Output:

B::b = 0

61

❖ Overloading member functions

 we can have multiple definitions for the same function name in the same scope. The definition

of the function must differ from each other by the types and/or the number of arguments in the

argument list. You cannot overload function declarations that differ only by return type.

#include <iostream>

using namespace std;

void print(int i) {

 cout << " Here is int " << i << endl;

}

void print(double f) {

 cout << " Here is float " << f << endl;

}

void print(char const *c) {

 cout << " Here is char* " << c << endl;

}

int main() {

 print(10);

 print(10.10);

 print("ten");

 return 0;

}

Output:

Here is int 10

Here is float 10.1

Here is char* ten

❖ Bit fields and classes

 Classes and structures can contain members that occupy less storage than an integral type.

These members are specified as bit fields. The syntax for bit-field member-

declarator specification follows:

Syntax

declarator : constant-expression

The (optional) declarator is the name by which the member is accessed in the program. It must

be an integral type (including enumerated types). The constant-expression specifies the number

62

of bits the member occupies in the structure. Anonymous bit fields — that is, bit-field members

with no identifier — can be used for padding.

 The following example declares a structure that contains bit fields

// bit_fields1.cpp

// compile with: /LD

struct Date {

 unsigned short nWeekDay : 3; // 0..7 (3 bits)

 unsigned short nMonthDay : 6; // 0..31 (6 bits)

 unsigned short nMonth : 5; // 0..12 (5 bits)

 unsigned short nYear : 8; // 0..100 (8 bits)

};

The following list details erroneous operations on bit fields:

• Taking the address of a bit field.

• Initializing a non-const reference with a bit field.

❖ Constructor and Destructor with static members

A constructor is a member function of a class which initializes objects of a class. In C++,

Constructor is automatically called when object (instance of class) create. It is special member

function of the class.

How constructors are different from a normal member function?

A constructor is different from normal functions in following ways:

• Constructor has same name as the class itself

• Constructors don’t have return type

• A constructor is automatically called when an object is created.

• If we do not specify a constructor, C++ compiler generates a default constructor for us

(expects no parameters and has an empty body).

63

Types of Constructors

1. Default Constructors: Default constructor is the constructor which doesn’t take any

argument. It has no parameters.

// concept of Constructors

#include <iostream>

using namespace std;

class construct

{

public:

 int a, b;

 // Default Constructor

 construct()

 {

 a = 10;

 b = 20;

 }

};

int main()

{

 // Default constructor called automatically

 // when the object is created

 construct c;

 cout << "a: " << c.a << endl

 << "b: " << c.b;

 return 1;

}

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/

64

Output:

a: 10

b: 20

Note: Even if we do not define any constructor explicitly, the compiler will automatically

provide a default constructor implicitly.

2. Parameterized Constructors: It is possible to pass arguments to constructors. Typically,

these arguments help initialize an object when it is created. To create a parameterized

constructor, simply add parameters to it the way you would to any other function. When you

define the constructor’s body, use the parameters to initialize the object.

// parameterized constructors

#include <iostream>

using namespace std;

class Point

{

private:

 int x, y;

public:

 // Parameterized Constructor

 Point(int x1, int y1)

 {

 x = x1;

 y = y1;

 }

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

};

int main()

{

 // Constructor called

 Point p1(10, 15);

65

 // Access values assigned by constructor

 cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();

 return 0;

}

Output:
p1.x = 10, p1.y = 15

When an object is declared in a parameterized constructor, the initial values have to be passed

as arguments to the constructor function. The normal way of object declaration may not work.

The constructors can be called explicitly or implicitly.

 Example e = Example(0, 50); // Explicit call

 Example e(0, 50); // Implicit call

Uses of Parameterized constructor:

1. It is used to initialize the various data elements of different objects with different values

when they are created.

2. It is used to overload constructors.

3. Copy Constructor: A copy constructor is a member function which initializes an object

using another object of the same class. Detailed article on Copy Constructor.

Whenever we define one or more non-default constructors(with parameters) for a class, a

default constructor(without parameters) should also be explicitly defined as the compiler will

not provide a default constructor in this case. However, it is not necessary but it’s considered

to be the best practice to always define a default constructor.

#include "iostream"

using namespace std;

class point

{

private:

 double x, y;

https://www.geeksforgeeks.org/copy-constructor-in-cpp/

66

public:

 // Non-default Constructor &

 // default Constructor

 point (double px, double py)

 {

 x = px, y = py;

 }

};

int main(void)

{

 // Define an array of size

 // 10 & of type point

 // This line will cause error

 point a[10];

 // Remove above line and program

 // will compile without error

 point b = point(5, 6);

}

Output:

Error: point (double px, double py): expects 2 arguments, 0 provided

DESTRUCTOR

Destructor is a member function which destructs or deletes an object.

Syntax:

~constructor-name();

Properties of Destructor:

• Destructor function is automatically invoked when the objects are destroyed.

• It cannot be declared static or const.

• The destructor does not have arguments.

• It has no return type not even void.

• An object of a class with a Destructor cannot become a member of the union.

• A destructor should be declared in the public section of the class.

• The programmer cannot access the address of destructor.

67

When is destructor called?

A destructor function is called automatically when the object goes out of scope:

(1) the function ends

(2) the program ends

(3) a block containing local variables ends

(4) a delete operator is called

How destructors are different from a normal member function?

Destructors have same name as the class preceded by a tilde (~) .

Destructors don’t take any argument and don’t return anything.

class String {

private:

 char* s;

 int size;

public:

 String(char*); // constructor

 ~String(); // destructor

};

String::String(char* c)

{

 size = strlen(c);

 s = new char[size + 1];

 strcpy(s, c);

}

String::~String() { delete[] s; }

Static members in C++

#include <iostream>

using namespace std;

class A

{

public:

 A() { cout << "A's Constructor Called " << endl; }

};

class B

{

68

 static A a;

public:

 B() { cout << "B's Constructor Called " << endl; }

};

int main()

{

 B b;

 return 0;

}

Output:

B's Constructor Called

The above program calls only B’s constructor, it doesn’t call A’s constructor. The reason for

this is simple, static members are only declared in class declaration, not defined. They must be

explicitly defined outside the class using scope resolution operator.

If we try to access static member ‘a’ without explicit definition of it, we will get compilation

error. For example, following program fails in compilation.

#include <iostream>

using namespace std;

class A

{

 int x;

public:

 A() { cout << "A's constructor called " << endl; }

};

class B

{

 static A a;

public:

 B() { cout << "B's constructor called " << endl; }

 static A getA() { return a; }

};

int main()

{

 B b;

 A a = b.getA();

 return 0;

}

69

Output:

Compiler Error: undefined reference to `B::a'

#include <iostream>

using namespace std;

class A

{

 int x;

public:

 A() { cout << "A's constructor called " << endl; }

};

class B

{

 static A a;

public:

 B() { cout << "B's constructor called " << endl; }

 static A getA() { return a; }

};

A B::a; // definition of a

int main()

{

 B b1, b2, b3;

 A a = b1.getA();

 return 0;

}

Output:

A's constructor called

B's constructor called

B's constructor called

B's constructor called

Note that the above program calls B’s constructor 3 times for 3 objects (b1, b2 and b3), but

calls A’s constructor only once. The reason is, static members are shared among all objects.

That is why they are also known as class members or class fields. Also, static members can be

accessed without any object, see the below program where static member ‘a’ is accessed

without any object.

#include <iostream>

using namespace std;

70

class A

{

 int x;

public:

 A() { cout << "A's constructor called " << endl; }

};

class B

{

 static A a;

public:

 B() { cout << "B's constructor called " << endl; }

 static A getA() { return a; }

};

A B::a; // definition of a

int main()

{

 // static member 'a' is accessed without any object of B

 A a = B::getA();

 return 0;

}

Output:

A's constructor called

UNIT III

❖ Operator Overloading

C++ provides a special function to change the current functionality of some operators within

its class which is often called as operator overloading. Operator Overloading is the method by

which we can change the function of some specific operators to do some different task.

This can be done by declaring the function, its syntax is,

Return_Type classname :: operator op(Argument list)

{

 Function Body

71

}

In the above syntax Return_Type is value type to be returned to another object, operator op is

the function where the operator is a keyword and op is the operator to be overloaded.

Operator function must be either non-static (member function) or friend function.

Operator Overloading can be done by using three approaches, they are

1. Overloading unary operator.

2. Overloading binary operator.

3. Overloading binary operator using a friend function.

Below are some criteria/rules to define the operator function:

• In case of a non-static function, the binary operator should have only one argument and

unary should not have an argument.

• In the case of a friend function, the binary operator should have only two argument and

unary should have only one argument.

• All the class member object should be public if operator overloading is implemented.

• Operators that cannot be overloaded are . .* :: ?:

• Operator cannot be used to overload when declaring that function as friend

function = () [] ->.

❖ Overloading unary operator

Overloading Unary Operator: Let us consider to overload (-) unary operator. In unary

operator function, no arguments should be passed. It works only with one class objects.

It is a overloading of an operator operating on a single operand.

Example:

Assume that class Distance takes two member object i.e. feet and inches, create a

function by which Distance object should decrement the value of feet and inches by 1

(having single operand of Distance Type).

// C++ program to show unary operator overloading

#include <iostream>

using namespace std;

72

class Distance {

public:

 // Member Object

 int feet, inch;

 // Constructor to initialize the object's value

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Overloading(-) operator to perform decrement

 // operation of Distance object

 void operator-()

 {

 feet--;

 inch--;

 cout << "\nFeet & Inches(Decrement): " << feet << "'" << inch;

 }

};

// Driver Code

int main()

{

 // Declare and Initialize the constructor

 Distance d1(8, 9);

 // Use (-) unary operator by single operand

 -d1;

 return 0;

}

Output:

Feet & Inches(Decrement): 7'8

In the above program, it shows that no argument is passed and no return_type value is

returned, because unary operator works on a single operand. (-) operator change the

functionality to its member function.

73

❖ Overloading Binary operators

In binary operator overloading function, there should be one argument to be passed. It is

overloading of an operator operating on two operands.

 Let’s take the same example of class Distance, but this time, add two distance objects.

// C++ program to show binary operator overloading

#include <iostream>

using namespace std;

class Distance {

public:

 // Member Object

 int feet, inch;

 // No Parameter Constructor

 Distance()

 {

 this->feet = 0;

 this->inch = 0;

 }

 // Constructor to initialize the object's value

 // Parametrized Constructor

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Overloading (+) operator to perform addition of

 // two distance object

 Distance operator+(Distance& d2) // Call by reference

 {

 // Create an object to return

 Distance d3;

 // Perform addition of feet and inches

 d3.feet = this->feet + d2.feet;

 d3.inch = this->inch + d2.inch;

 // Return the resulting object

 return d3;

 }

74

};

// Driver Code

int main()

{

 // Declaring and Initializing first object

 Distance d1(8, 9);

 // Declaring and Initializing second object

 Distance d2(10, 2);

 // Declaring third object

 Distance d3;

 // Use overloaded operator

 d3 = d1 + d2;

 // Display the result

 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;

 return 0;

}

Output:

Total Feet & Inches: 18'11

Here in the above program, Distance operator+(Distance &d2), here return type of function is

distance and it uses call by references to pass an argument.

 d3 = d1 + d2; here, d1 calls the operator function of its class object and takes d2 as a

parameter, by which operator function return object and the result will reflect in the d3 object.

❖ Overloading Friend functions

In this approach, the operator overloading function must precede with friend keyword,

and declare a function class scope. Keeping in mind, friend operator function takes two

parameters in a binary operator, varies one parameter in a unary operator. All the

working and implementation would same as binary operator function except this

function will be implemented outside of the class scope.

Let’s take the same example using the friend function.

75

// C++ program to show binary operator overloading

#include <iostream>

using namespace std;

class Distance {

public:

 // Member Object

 int feet, inch;

 // No Parameter Constructor

 Distance()

 {

 this->feet = 0;

 this->inch = 0;

 }

 // Constructor to initialize the object's value

 // Parametrized Constructor

 Distance(int f, int i)

 {

 this->feet = f;

 this->inch = i;

 }

 // Declaring friend function using friend keyword

 friend Distance operator+(Distance&, Distance&);

};

// Implementing friend function with two parameters

Distance operator+(Distance& d1, Distance& d2) // Call by reference

{

 // Create an object to return

 Distance d3;

 // Perform addition of feet and inches

 d3.feet = d1.feet + d2.feet;

 d3.inch = d1.inch + d2.inch;

 // Return the resulting object

 return d3;

}

// Driver Code

int main()

76

{

 // Declaring and Initializing first object

 Distance d1(8, 9);

 // Declaring and Initializing second object

 Distance d2(10, 2);

 // Declaring third object

 Distance d3;

 // Use overloaded operator

 d3 = d1 + d2;

 // Display the result

 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;

 return 0;

}

Output:

Total Feet & Inches: 18'11

Here in the above program, operator function is implemented outside of class scope by

declaring that function as the friend function.

❖ Type conversion

A type cast is basically a conversion from one type to another. There are two types of type

conversion:

1. Implicit Type Conversion Also known as ‘automatic type conversion’.

• Done by the compiler on its own, without any external trigger from the user.

• Generally takes place when in an expression more than one data type is present. In such

condition type conversion (type promotion) takes place to avoid lose of data.

• All the data types of the variables are upgraded to the data type of the variable with

largest data type.

• bool -> char -> short int -> int ->

• unsigned int -> long -> unsigned ->

 long long -> float -> double -> long double

77

• It is possible for implicit conversions to lose information, signs can be lost

(when signed is implicitly converted to unsigned), and overflow can occur

(when long long is implicitly converted to float).

Example of Type Implicit Conversion:

#include <iostream>

using namespace std;

int main()

{

 int x = 10; // integer x

 char y = 'a'; // character c

 // y implicitly converted to int. ASCII

 // value of 'a' is 97

 x = x + y;

 // x is implicitly converted to float

 float z = x + 1.0;

 cout << "x = " << x << endl

 << "y = " << y << endl

 << "z = " << z << endl;

 return 0;

}

Output:

x = 107

y = a

z = 108

2. Explicit Type Conversion: This process is also called type casting and it is user-defined.

Here the user can typecast the result to make it of a particular data type.

In C++, it can be done by two ways:

• Converting by assignment: This is done by explicitly defining the required type in

front of the expression in parenthesis. This can be also considered as forceful casting.

Syntax:

(type) expression

where type indicates the data type to which the final result is converted.

Example:

78

// C++ program to demonstrate

// explicit type casting

#include <iostream>

using namespace std;

int main()

{

 double x = 1.2;

 // Explicit conversion from double to int

 int sum = (int)x + 1;

 cout << "Sum = " << sum;

 return 0;

}

Output:

Sum = 2

• Conversion using Cast operator: A Cast operator is an unary operator which forces

one data type to be converted into another data type. C++ supports four types of

casting:

1. Static Cast

2. Dynamic Cast

3. Const Cast

4. Reinterpret Cast

Example:

#include <iostream>

using namespace std;

int main()

{

 float f = 3.5;

 // using cast operator

 int b = static_cast<int>(f);

 cout << b;

}

https://www.geeksforgeeks.org/static_cast-in-c-type-casting-operators/
https://www.geeksforgeeks.org/casting-operators-in-c-set-1-const_cast/
https://www.geeksforgeeks.org/reinterpret_cast-in-cpp/

79

Output: 3

Advantages of Type Conversion:

• This is done to take advantage of certain features of type hierarchies or type

representations.

• It helps to compute expressions containing variables of different data types.

❖ Inheritance and its types introduction

The capability of a class to derive properties and characteristics from another class is

called Inheritance. Inheritance is one of the most important feature of Object Oriented

Programming.

Sub Class: The class that inherits properties from another class is called Sub class or

Derived Class.

Super Class:The class whose properties are inherited by sub class is called Base Class or

Super class.

Consider a group of vehicles. You need to create classes for Bus, Car and Truck. The methods

fuelAmount(), capacity(), applyBrakes() will be same for all of the three classes. If we create

these classes avoiding inheritance then we have to write all of these functions in each of the

three classes as shown in below figure:

You can clearly see that above process results in duplication of same code 3 times. This

increases the chances of error and data redundancy. To avoid this type of situation, inheritance

is used. If we create a class Vehicle and write these three functions in it and inherit the rest of

the classes from the vehicle class, then we can simply avoid the duplication of data and

increase re-usability. Look at the below diagram in which the three classes are inherited from

vehicle class:

80

Using inheritance, we have to write the functions only one time instead of three times as we

have inherited rest of the three classes from base class(Vehicle).

Implementing inheritance in C++: For creating a sub-class which is inherited from the base

class we have to follow the below syntax.

Syntax:

class subclass_name : access_mode base_class_name

{

 //body of subclass

};

Here, subclass_name is the name of the sub class, access_mode is the mode in which you

want to inherit this sub class for example: public, private etc. and base_class_name is the

name of the base class from which you want to inherit the sub class.

Note: A derived class doesn’t inherit access to private data members. However, it does inherit

a full parent object, which contains any private members which that class declares.

// C++ program to demonstrate implementation

// of Inheritance

#include <bits/stdc++.h>

using namespace std;

//Base class

class Parent

{

 public:

 int id_p;

};

// Sub class inheriting from Base Class(Parent)

81

class Child : public Parent

{

 public:

 int id_c;

};

//main function

int main()

 {

 Child obj1;

 // An object of class child has all data members

 // and member functions of class parent

 obj1.id_c = 7;

 obj1.id_p = 91;

 cout << "Child id is " << obj1.id_c << endl;

 cout << "Parent id is " << obj1.id_p << endl;

 return 0;

 }

Output:

Child id is 7

Parent id is 91

In the above program the ‘Child’ class is publicly inherited from the ‘Parent’ class so the

public data members of the class ‘Parent’ will also be inherited by the class ‘Child’.

 Modes of Inheritance

1. Public mode: If we derive a sub class from a public base class. Then the public member of

the base class will become public in the derived class and protected members of the base

class will become protected in derived class.

2. Protected mode: If we derive a sub class from a Protected base class. Then both public

member and protected members of the base class will become protected in derived class.

3. Private mode: If we derive a sub class from a Private base class. Then both public member

and protected members of the base class will become Private in derived class.

❖ Single inheritance

1. Single Inheritance: In single inheritance, a class is allowed to inherit from only one class.

i.e. one sub class is inherited by one base class only.

82

Syntax:
class subclass_name : access_mode base_class

{

 //body of subclass

};

// Single inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// sub class derived from a single base classes

class Car: public Vehicle{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

83

This is a vehicle

❖ Multiple Inheritance

Multiple Inheritance is a feature of C++ where a class can inherit from more than one classes.

i.e one sub class is inherited from more than one base classes.

Syntax:
class subclass_name : access_mode base_class1, access_mode
base_class2,

{

 //body of subclass

};

Here, the number of base classes will be separated by a comma (‘, ‘) and access mode for every

base class must be specified.

// C++ program to explain

// multiple inheritance

#include <iostream>

using namespace std;

// first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

84

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle, public FourWheeler {

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

❖ Multilevel Inheritance

In this type of inheritance, a derived class is created from another derived class .

// C++ program to implement

// Multilevel Inheritance

#include <iostream>

using namespace std;

// base class

85

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub_class derived from class vehicle

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are vehicles"<<endl;

 }

};

// sub class derived from the derived base class fourWheeler

class Car: public fourWheeler{

 public:

 car()

 {

 cout<<"Car has 4 Wheels"<<endl;

 }

};

// main function

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

❖ Hierarchical Inheritance

In this type of inheritance, more than one sub class is inherited from a single base class. i.e.

more than one derived class is created from a single base class.

86

// C++ program to implement

// Hierarchical Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

87

 Car obj1;

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

This is a Vehicle

❖ Hybrid inheritance

Hybrid Inheritance is implemented by combining more than one type of inheritance. For

example: Combining Hierarchical inheritance and Multiple Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

// C++ program for Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

//base class

class Fare

88

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle, public Fare

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

Fare of Vehicle

❖ Multipath inheritance

A derived class with two base classes and these two base classes have one common base class

is called multipath inheritance. An ambiguity can arrise in this type of inheritance.

89

Consider the following program:

// C++ program demonstrating ambiguity in Multipath

// Inheritance

#include <conio.h>

#include <iostream.h>

class ClassA {

public:

 int a;

};

class ClassB : public ClassA {

public:

 int b;

};

class ClassC : public ClassA {

public:

 int c;

};

class ClassD : public ClassB, public ClassC {

public:

 int d;

};

void main()

{

 ClassD obj;

90

 // obj.a = 10; //Statement 1, Error

 // obj.a = 100; //Statement 2, Error

 obj.ClassB::a = 10; // Statement 3

 obj.ClassC::a = 100; // Statement 4

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout << "\n A from ClassB : " << obj.ClassB::a;

 cout << "\n A from ClassC : " << obj.ClassC::a;

 cout << "\n B : " << obj.b;

 cout << "\n C : " << obj.c;

 cout << "\n D : " << obj.d;

}

Output:

A from ClassB : 10

A from ClassC : 100

B : 20

C : 30

D : 40

In the above example, both ClassB & ClassC inherit ClassA, they both have single copy of

ClassA. However ClassD inherit both ClassB & ClassC, therefore ClassD have two copies of

ClassA, one from ClassB and another from ClassC.

If we need to access the data member a of ClassA through the object of ClassD, we must

specify the path from which a will be accessed, whether it is from ClassB or ClassC, bco’z

compiler can’t differentiate between two copies of ClassA in ClassD.

❖ Virtual Base Classes

Virtual base classes are used in virtual inheritance in a way of preventing multiple “instances”

of a given class appearing in an inheritance hierarchy when using multiple inheritances.

Need for Virtual Base Classes:

Consider the situation where we have one class A .This class is A is inherited by two other

91

classes B and C. Both these class are inherited into another in a new class D as shown in figure

below.

As we can see from the figure that data members/function of class A are inherited twice to

class D. One through class B and second through class C. When any data / function member of

class A is accessed by an object of class D, ambiguity arises as to which data/function member

would be called? One inherited through B or the other inherited through C. This confuses

compiler and it displays error.

Syntax for Virtual Base Classes:

Syntax 1:

class B : virtual public A

{

};

Syntax 2:

class C : public virtual A

{

};

Note: virtual can be written before or after the public. Now only one copy of data/function

member will be copied to class C and class B and class A becomes the virtual base class.

Virtual base classes offer a way to save space and avoid ambiguities in class hierarchies that use

multiple inheritances. When a base class is specified as a virtual base, it can act as an indirect

base more than once without duplication of its data members. A single copy of its data members

92

is shared by all the base classes that use virtual base.

Example 1

#include <iostream>

using namespace std;

class A {

public:

 int a;

 A() // constructor

 {

 a = 10;

 }

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

 D object; // object creation of class d

 cout << "a = " << object.a << endl;

 return 0;

}

Output:

a = 10

Explanation :The class A has just one data member a which is public. This class is virtually

inherited in class B and class C. Now class B and class C becomes virtual base class and no

duplication of data member a is done.

❖ Abstract Classes.

Sometimes implementation of all function cannot be provided in a base class because we don’t

know the implementation. Such a class is called abstract class. For example, let Shape be a base

class. We cannot provide implementation of function draw() in Shape, but we know every

derived class must have implementation of draw(). Similarly an Animal class doesn’t have

93

implementation of move() (assuming that all animals move), but all animals must know how to

move. We cannot create objects of abstract classes.

/ An abstract class

class Test

{

 // Data members of class

public:

 // Pure Virtual Function

 virtual void show() = 0;

 /* Other members */

};

A pure virtual function is implemented by classes which are derived from a Abstract class.

Following is a simple example to demonstrate the same.

#include<iostream>

using namespace std;

class Base

{

 int x;

public:

 virtual void fun() = 0;

 int getX() { return x; }

};

// This class inherits from Base and implements fun()

class Derived: public Base

{

 int y;

public:

 void fun() { cout << "fun() called"; }

};

int main(void)

{

 Derived d;

 d.fun();

 return 0;

}

Output:

fun() called

94

UNIT IV

❖ Pointers and Declaration
Pointers are symbolic representation of addresses. They enable programs to simulate call-by-

reference as well as to create and manipulate dynamic data structures . It’s general declaration in

C++ has the format:

Syntax:
datatype *var_name;

int *ptr; //ptr can point to an address which holds int data

How to use a pointer?

• Define a pointer variable

• Assigning the address of a variable to a pointer using unary operator (&) which returns the

address of that variable.

• Accessing the value stored in the address using unary operator (*) which returns the value of

the variable located at the address specified by its operand.

The reason we associate data type to a pointer is that it knows how many bytes the data is

stored in. When we increment a pointer, we increase the pointer by the size of data type to

which it points.

95

// C++ program to illustrate Pointers in C++

#include <bits/stdc++.h>

using namespace std;

void geeks()

{

 int var = 20;

 //declare pointer variable

 int *ptr;

 //note that data type of ptr and var must be same

 ptr = &var;

 // assign the address of a variable to a pointer

 cout << "Value at ptr = " << ptr << "\n";

 cout << "Value at var = " << var << "\n";

 cout << "Value at *ptr = " << *ptr << "\n";

}

//Driver program

int main()

{

 geeks();

}

Output:

Value at ptr = 0x7ffcb9e9ea4c

Value at var = 20

Value at *ptr = 20

❖ Pointer to class, object this pointer

A pointer to a C++ class is done exactly the same way as a pointer to a structure and to access

members of a pointer to a class you use the member access operator -> operator, just as you do

with pointers to structures. Also as with all pointers, you must initialize the pointer before using

it.

96

#include <iostream>

using namespace std;

class Box {

 public:

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0) {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 }

 double Volume() {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main(void) {

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 Box *ptrBox; // Declare pointer to a class.

 // Save the address of first object

 ptrBox = &Box1;

 // Now try to access a member using member access operator

 cout << "Volume of Box1: " << ptrBox->Volume() << endl;

 // Save the address of second object

 ptrBox = &Box2;

 // Now try to access a member using member access operator

 cout << "Volume of Box2: " << ptrBox->Volume() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Constructor called.

Constructor called.

Volume of Box1: 5.94

Volume of Box2: 102

97

This Pointer

To understand ‘this’ pointer, it is important to know how objects look at functions and data

members of a class.

1. Each object gets its own copy of the data member.

2. All-access the same function definition as present in the code segment.

Each object gets its own copy of data members and all objects share a single copy of member

functions. The compiler supplies an implicit pointer along with the names of the functions as

‘this’. The ‘this’ pointer is passed as a hidden argument to all non static member function calls

and is available as a local variable within the body of all non static functions. ‘this’ pointer is

not available in static member functions as static member functions can be called without any

object (with class name). For a class X, the type of this pointer is ‘X* ‘. Also, if a member

function of X is declared as const, then the type of this pointer is ‘const X * .

C++ lets object destroy themselves by calling the following code :

delete this;

Following are the situations where ‘this’ pointer is used:

1) When local variable’s name is same as member’s name

2) To return reference to the calling object

/* Reference to the calling object can be returned */

Test& Test::func ()

{

 // Some processing

 return *this;

}

When a reference to a local object is returned, the returned reference can be used to chain

function calls on a single object.

98

❖ Pointers to derived classes and base classes

The pointer of Base Class pointing different object of derived class:

Approach:
• A derived class is a class which takes some properties from its base class.

• It is true that a pointer of one class can point to other class, but classes must be a base and

derived class, then it is possible.

• To access the variable of the base class, base class pointer will be used.

• So, a pointer is type of base class, and it can access all, public function and variables of base

class since pointer is of base class, this is known as binding pointer.

• In this pointer base class is owned by base class but points to derived class object.

• Same works with derived class pointer, values is changed.

Below is the C++ program to illustrate the implementation of the base class pointer pointing to

the derived class.

// C++ program to illustrate the

// implementation of the base class

// pointer pointing to derived class

#include <iostream>

using namespace std;

// Base Class

class BaseClass {

public:

 int var_base;

 // Function to display the base

 // class members

 void display()

 {

 cout << "Displaying Base class"

 << " variable var_base: " << var_base << endl;

https://www.geeksforgeeks.org/difference-between-base-class-and-derived-class-in-c/
https://www.geeksforgeeks.org/functions-in-c/
https://www.geeksforgeeks.org/variables-and-keywords-in-c/
https://www.geeksforgeeks.org/c-classes-and-objects/
https://media.geeksforgeeks.org/wp-content/uploads/20210221202239/pointerstoderivedclass.png

99

 }

};

// Class derived from the Base Class

class DerivedClass : public BaseClass {

public:

 int var_derived;

 // Function to display the base

 // and derived class members

 void display()

 {

 cout << "Displaying Base class"

 << "variable var_base: " << var_base << endl;

 cout << "Displaying Derived "

 << " class variable var_derived: "

 << var_derived << endl;

 }

};

// Driver Code

int main()

{

 // Pointer to base class

 BaseClass* base_class_pointer;

 BaseClass obj_base;

 DerivedClass obj_derived;

 // Pointing to derived class

 base_class_pointer = &obj_derived;

 base_class_pointer->var_base = 34;

 // Throw an error

 base_class_pointer->display();

 base_class_pointer->var_base = 3400;

 base_class_pointer->display();

 DerivedClass* derived_class_pointer;

 derived_class_pointer = &obj_derived;

 derived_class_pointer->var_base = 9448;

 derived_class_pointer->var_derived = 98;

 derived_class_pointer->display();

 return 0;

100

}

Output:

Displaying Base class variable var_base: 34

Displaying Base class variable var_base: 3400

Displaying Base classvariable var_base: 9448

Displaying Derived class variable var_derived: 98

Conclusion:

• A pointer to derived class is a pointer of base class pointing to derived class, but it will hold

its aspect.

• This pointer of base class will be able to temper functions and variables of its own class and

can still point to derived class object.

❖ Arrays and characteristics
An array in C++ or be it in any programming language is a collection of similar data items

stored at contiguous memory locations and elements can be accessed randomly using indices of

an array. They can be used to store collection of primitive data types such as int, float, double,

char, etc of any particular type. To add to it, an array in C++ can store derived data types such

as the structures, pointers etc. Given below is the picture representation of an array.

 Array declaration in C++:

https://www.geeksforgeeks.org/functions-in-c/
https://www.geeksforgeeks.org/variables-and-keywords-in-c/

101

Advantages of an Array in C/C++:

1. Random access of elements using array index.

2. Use of less line of code as it creates a single array of multiple elements.

3. Easy access to all the elements.

4. Traversal through the array becomes easy using a single loop.

5. Sorting becomes easy as it can be accomplished by writing less line of code.

Disadvantages of an Array in C/C++:

1. Allows a fixed number of elements to be entered which is decided at the time of declaration.

Unlike a linked list, an array in C is not dynamic.

2. Insertion and deletion of elements can be costly since the elements are needed to be

managed in accordance with the new memory allocation.

Facts about Array in C/C++:

• Accessing Array Elements:

Array elements are accessed by using an integer index. Array index starts with 0 and goes

102

till size of array minus 1.

• Name of the array is also a pointer to the first element of array.

#include <iostream>

using namespace std;

int main()

{

 int arr[5];

 arr[0] = 5;

 arr[2] = -10;

 // this is same as arr[1] = 2

 arr[3 / 2] = 2;

 arr[3] = arr[0];

 cout << arr[0] << " " << arr[1] << " " << arr[2] << " "

 << arr[3];

 return 0;

}

Output

-449684907 4195777

❖ Array of classes
• Array classes knows its own size, whereas C-style arrays lack this property. So when

passing to functions, we don’t need to pass size of Array as a separate parameter.

• With C-style array there is more risk of array being decayed into a pointer. Array classes

don’t decay into pointers

• Array classes are generally more efficient, light-weight and reliable than C-style arrays.

Operations on array :-

1. at() :- This function is used to access the elements of array.

2. get() :- This function is also used to access the elements of array. This function is not the

member of array class but overloaded function from class tuple.

3. operator[] :- This is similar to C-style arrays. This method is also used to access array

elements.

https://www.geeksforgeeks.org/what-is-array-decay-in-c-how-can-it-be-prevented/

103

// C++ code to demonstrate working of array,

// to() and get()

#include<iostream>

#include<array> // for array, at()

#include<tuple> // for get()

using namespace std;

int main()

{

 // Initializing the array elements

 array<int,6> ar = {1, 2, 3, 4, 5, 6};

 // Printing array elements using at()

 cout << "The array elements are (using at()) : ";

 for (int i=0; i<6; i++)

 cout << ar.at(i) << " ";

 cout << endl;

 // Printing array elements using get()

 cout << "The array elements are (using get()) : ";

 cout << get<0>(ar) << " " << get<1>(ar) << " ";

 cout << get<2>(ar) << " " << get<3>(ar) << " ";

 cout << get<4>(ar) << " " << get<5>(ar) << " ";

 cout << endl;

 // Printing array elements using operator[]

 cout << "The array elements are (using operator[]) : ";

 for (int i=0; i<6; i++)

 cout << ar[i] << " ";

 cout << endl;

 return 0;

}

Output:

The array elemets are (using at()) : 1 2 3 4 5 6

The array elemets are (using get()) : 1 2 3 4 5 6

The array elements are (using operator[]) : 1 2 3 4 5 6

4. front() :- This returns the first element of array.

5. back() :- This returns the last element of array.

// C++ code to demonstrate working of

// front() and back()

104

#include<iostream>

#include<array> // for front() and back()

using namespace std;

int main()

{

 // Initializing the array elements

 array<int,6> ar = {1, 2, 3, 4, 5, 6};

 // Printing first element of array

 cout << "First element of array is : ";

 cout << ar.front() << endl;

 // Printing last element of array

 cout << "Last element of array is : ";

 cout << ar.back() << endl;

 return 0;

}

Output:

First element of array is : 1

Last element of array is : 6

6. size() :- It returns the number of elements in array. This is a property that C-style arrays lack.

7. max_size() :- It returns the maximum number of elements array can hold i.e, the size with

which array is declared. The size() and max_size() return the same value.

// C++ code to demonstrate working of

// size() and max_size()

#include<iostream>

#include<array> // for size() and max_size()

using namespace std;

int main()

{

 // Initializing the array elements

 array<int,6> ar = {1, 2, 3, 4, 5, 6};

 // Printing number of array elements

 cout << "The number of array elements is : ";

 cout << ar.size() << endl;

 // Printing maximum elements array can hold

 cout << "Maximum elements array can hold is : ";

105

 cout << ar.max_size() << endl;

 return 0;

}

Output:

The number of array elements is : 6

Maximum elements array can hold is : 6

8. swap() :- The swap() swaps all elements of one array with other.

// C++ code to demonstrate working of swap()

#include<iostream>

#include<array> // for swap() and array

using namespace std;

int main()

{

 // Initializing 1st array

 array<int,6> ar = {1, 2, 3, 4, 5, 6};

 // Initializing 2nd array

 array<int,6> ar1 = {7, 8, 9, 10, 11, 12};

 // Printing 1st and 2nd array before swapping

 cout << "The first array elements before swapping are : ";

 for (int i=0; i<6; i++)

 cout << ar[i] << " ";

 cout << endl;

 cout << "The second array elements before swapping are : ";

 for (int i=0; i<6; i++)

 cout << ar1[i] << " ";

 cout << endl;

 // Swapping ar1 values with ar

 ar.swap(ar1);

 // Printing 1st and 2nd array after swapping

 cout << "The first array elements after swapping are : ";

 for (int i=0; i<6; i++)

 cout << ar[i] << " ";

 cout << endl;

 cout << "The second array elements after swapping are : ";

 for (int i=0; i<6; i++)

 cout << ar1[i] << " ";

 cout << endl;

106

 return 0;

}

Output:

The first array elements before swapping are : 1 2 3 4 5 6

The second array elements before swapping are : 7 8 9 10 11 12

The first array elements after swapping are : 7 8 9 10 11 12

The second array elements after swapping are : 1 2 3 4 5 6

9. empty() :- This function returns true when the array size is zero else returns false.

10. fill() :- This function is used to fill the entire array with a particular value.

// C++ code to demonstrate working of empty()

// and fill()

#include<iostream>

#include<array> // for fill() and empty()

using namespace std;

int main()

{

 // Declaring 1st array

 array<int,6> ar;

 // Declaring 2nd array

 array<int,0> ar1;

 // Checking size of array if it is empty

 ar1.empty()? cout << "Array empty":

 cout << "Array not empty";

 cout << endl;

 // Filling array with 0

 ar.fill(0);

 // Displaying array after filling

 cout << "Array after filling operation is : ";

 for (int i=0; i<6; i++)

 cout << ar[i] << " ";

 return 0;

}

107

Output:

Array empty

Array after filling operation is : 0 0 0 0 0 0

❖ Memory models- New and delete operators

Memory Mode-Describes the interactions of threads through memory and their shared use

of data.

 • Tells us if our program has well defined behavior.

 • Constrains code generation for compiler

Dynamic memory allocation in C/C++ refers to performing memory allocation manually by

programmer. Dynamically allocated memory is allocated on Heap and non-static and local

variables get memory allocated on Stack.

What are applications?

• One use of dynamically allocated memory is to allocate memory of variable size which is

not possible with compiler allocated memory except variable length arrays.

• The most important use is flexibility provided to programmers. We are free to allocate and

deallocate memory whenever we need and whenever we don’t need anymore. There are

many cases where this flexibility helps. Examples of such cases are Linked List, Tree, etc.

How is memory allocated/deallocated in C++?

C uses malloc() and calloc() function to allocate memory dynamically at run time and uses

free() function to free dynamically allocated memory. C++ supports these functions and also

has two operators new and delete that perform the task of allocating and freeing the memory in

a better and easier way.

The new operator denotes a request for memory allocation on the Free Store. If sufficient

memory is available, new operator initializes the memory and returns the address of the newly

allocated and initialized memory to the pointer variable.

• Syntax to use new operator: To allocate memory of any data type, the syntax is:

• pointer-variable = new data-type;

Here, pointer-variable is the pointer of type data-type. Data-type could be any built-in data type

including array or any user defined data types including structure and class.

Example:

// Pointer initialized with NULL

https://www.geeksforgeeks.org/variable-length-arrays-in-c-and-c/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/binary-tree-2/
https://www.geeksforgeeks.org/calloc-versus-malloc/

108

// Then request memory for the variable

int *p = NULL;

p = new int;

 OR

// Combine declaration of pointer

// and their assignment

int *p = new int;

Initialize memory: We can also initialize the memory using new operator:

pointer-variable = new data-type(value);

Example:

 int *p = new int(25);

 float *q = new float(75.25);

• Allocate block of memory: new operator is also used to allocate a block(an array) of

memory of type data-type.

pointer-variable = new data-type[size];

where size(a variable) specifies the number of elements in an array.

Example:

 int *p = new int[10]

Dynamically allocates memory for 10 integers continuously of type int and returns pointer

to the first element of the sequence, which is assigned to p(a pointer). p[0] refers to first

element, p[1] refers to second element and so on.

delete operator

Since it is programmer’s responsibility to deallocate dynamically allocated memory,

programmers are provided delete operator by C++ language.

Syntax:

// Release memory pointed by pointer-variable

delete pointer-variable;
Here, pointer-variable is the pointer that points to the data object created by new.

https://media.geeksforgeeks.org/wp-content/uploads/dynamic.png

109

Examples:

 delete p;

 delete q;

 delete[] pointer-variable;

Example:

 // It will free the entire array

 // pointed by p.

 delete[] p;

// C++ program to illustrate dynamic allocation

// and deallocation of memory using new and delete

#include <iostream>

using namespace std;

int main ()

{

 // Pointer initialization to null

 int* p = NULL;

 // Request memory for the variable

 // using new operator

 p = new(nothrow) int;

 if (!p)

 cout << "allocation of memory failed\n";

 else

 {

 // Store value at allocated address

 *p = 29;

 cout << "Value of p: " << *p << endl;

 }

 // Request block of memory

 // using new operator

 float *r = new float(75.25);

 cout << "Value of r: " << *r << endl;

 // Request block of memory of size n

 int n = 5;

 int *q = new(nothrow) int[n];

 if (!q)

 cout << "allocation of memory failed\n";

 else

 {

 for (int i = 0; i < n; i++)

110

 q[i] = i+1;

 cout << "Value store in block of memory: ";

 for (int i = 0; i < n; i++)

 cout << q[i] << " ";

 }

 // freed the allocated memory

 delete p;

 delete r;

 // freed the block of allocated memory

 delete[] q;

 return 0;

}

Output:

Value of p: 29

Value of r: 75.25

Value store in block of memory: 1 2 3 4 5

❖ Dynamic object-Binding
Binding refers to the process of converting identifiers (such as variable and performance names)

into addresses. Binding is done for each variable and functions. For functions, it means that

matching the call with the right function definition by the compiler. It takes place either at

compile time or at runtime.

Early Binding (compile-time time polymorphism) As the name indicates, compiler (or linker)

directly associate an address to the function call. It replaces the call with a machine language

111

instruction that tells the mainframe to leap to the address of the function.

By default early binding happens in C++. Late binding (discussed below) is achieved with the

help of virtual keyword)

#include<iostream>

using namespace std;

class Base

{

public:

 void show() { cout<<" In Base \n"; }

};

class Derived: public Base

{

public:

 void show() { cout<<"In Derived \n"; }

};

int main(void)

{

 Base *bp = new Derived;

 // The function call decided at

 // compile time (compiler sees type

 // of pointer and calls base class

 // function.

 bp->show();

 return 0;

}

Output:

In Base

Late Binding : (Run time polymorphism) In this, the compiler adds code that identifies the

kind of object at runtime then matches the call with the right function definition (Refer this for

details). This can be achieved by declaring a virtual function.

// CPP Program to illustrate late binding
#include<iostream>
using namespace std;

https://www.geeksforgeeks.org/virtual-function-cpp/
https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/virtual-function-cpp/

112

class Base
{
public:

 virtual void show() { cout<<" In Base \n"; }
};

class Derived: public Base
{
public:
 void show() { cout<<"In Derived \n"; }
};

int main(void)

{
 Base *bp = new Derived;
 bp->show(); // RUN-TIME POLYMORPHISM

 return 0;
}

Output:
In Derived

❖ Polymorphism and virtual Functions
The word polymorphism means having many forms. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one form. A real-life

example of polymorphism, a person at the same time can have different characteristics. Like a

man at the same time is a father, a husband, an employee. So the same person posses different

behavior in different situations. This is called polymorphism. Polymorphism is considered as

one of the important features of Object Oriented Programming.

In C++ polymorphism is mainly divided into two types:

• Compile time Polymorphism

• Runtime Polymorphism

113

1. Compile time polymorphism: This type of polymorphism is achieved by function

overloading or operator overloading.

2.Runtime polymorphism: This type of polymorphism is achieved by Function Overriding.

• Function overriding on the other hand occurs when a derived class has a definition for one

of the member functions of the base class. That base function is said to be overridden.

A virtual function is a member function which is declared within a base class and is re-

defined(Overriden) by a derived class. When you refer to a derived class object using a pointer

or a reference to the base class, you can call a virtual function for that object and execute the

derived class’s version of the function.

• Virtual functions ensure that the correct function is called for an object, regardless of the

type of reference (or pointer) used for function call.

• They are mainly used to achieve Runtime polymorphism

• Functions are declared with a virtual keyword in base class.

• The resolving of function call is done at Run-time.

Rules for Virtual Functions

1. Virtual functions cannot be static.

2. A virtual function can be a friend function of another class.

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/override-keyword-c/
https://www.geeksforgeeks.org/polymorphism-in-c/

114

3. Virtual functions should be accessed using pointer or reference of base class type to achieve

run time polymorphism.

4. The prototype of virtual functions should be the same in the base as well as derived class.

5. They are always defined in the base class and overridden in a derived class. It is not

mandatory for the derived class to override (or re-define the virtual function), in that case,

the base class version of the function is used.

6. A class may have virtual destructor but it cannot have a virtual constructor.

// CPP program to illustrate

// concept of Virtual Functions

#include <iostream>

using namespace std;

class base {

public:

 virtual void print()

 {

 cout << "print base class" << endl;

 }

 void show()

 {

 cout << "show base class" << endl;

 }

};

class derived : public base {

public:

 void print()

 {

 cout << "print derived class" << endl;

 }

 void show()

 {

 cout << "show derived class" << endl;

 }

};

int main()

{

 base* bptr;

https://www.geeksforgeeks.org/virtual-destructor/

115

 derived d;

 bptr = &d;

 // virtual function, binded at runtime

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

}

Output:

print derived class

show base class

Explanation: Runtime polymorphism is achieved only through a pointer (or reference) of base

class type. Also, a base class pointer can point to the objects of base class as well as to the

objects of derived class. In above code, base class pointer ‘bptr’ contains the address o f object

‘d’ of derived class.

UNIT V

❖ Files

A file can be a data set that you can read and write repeatedly. A stream of bytes generated by

a program (such as a pipeline). A stream of bytes received from or sent to a peripheral

device.Files are used to store data in a storage device permanently. File handling provides a

mechanism to store the output of a program in a file and to perform various operations on it.

1. Sequential Access –

It is the simplest access method. Information in the file is processed in order, one record

after the other. This mode of access is by far the most common; for example, editor and

compiler usually access the file in this fashion.

Read and write make up the bulk of the operation on a file. A read operation -read next-

 read the next position of the file and automatically advance a file pointer, which keeps track

116

I/O location. Similarly, for the writewrite next append to the end of the file and advance to

the newly written material.

Key points:

• Data is accessed one record right after another record in an order.

• When we use read command, it move ahead pointer by one

• When we use write command, it will allocate memory and move the pointer to the end

of the file

• Such a method is reasonable for tape.

2. Direct Access –

Another method is direct access method also known as relative access method. A filed-

length logical record that allows the program to read and write record rapidly. in no

particular order. The direct access is based on the disk model of a file since disk allows

random access to any file block. For direct access, the file is viewed as a numbered

sequence of block or record. Thus, we may read block 14 then block 59 and then we can

write block 17. There is no restriction on the order of reading and writing for a direct access

file.

A block number provided by the user to the operating system is normally a relative block

number, the first relative block of the file is 0 and then 1 and so on.

3. Index sequential method –

It is the other method of accessing a file which is built on the top of the sequential access

method. These methods construct an index for the file. The index, like an index in the back

of a book, contains the pointer to the various blocks. To find a record in the file, we first

search the index and then by the help of pointer we access the file directly.

Key points:

• It is built on top of Sequential access.

• It control the pointer by using index.

❖ Files stream classes
In C++, files are mainly dealt by using three classes fstream, ifstream, ofstream available in

fstream headerfile.

117

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files.

Now the first step to open the particular file for read or write operation. We can open file by

1. passing file name in constructor at the time of object creation

2. using the open method

For e.g.

Open File by using constructor

ifstream (const char* filename, ios_base::openmode mode = ios_base::in);

ifstream fin(filename, openmode) by default openmode = ios::in

ifstream fin(“filename”);

Open File by using open method

Calling of default constructor

ifstream fin;

fin.open(filename, openmode)

fin.open(“filename”);

❖ File modes

Member

Constant

Stands

For Access

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20191129162746/CPP-File-Handling.png

118

in * input

File open for reading: the internal stream buffer

supports input operations.

out output

File open for writing: the internal stream buffer

supports output operations.

binary binary

Operations are performed in binary mode rather

than text.

ate at end The output position starts at the end of the file.

app append

All output operations happen at the end of the file,

appending to its existing contents.

trunc truncate

Any contents that existed in the file before it is open

are discarded.

Default Open Modes :

ifstream ios::in

ofstream ios::out

fstream ios::in | ios::out

Below is the implementation by using ifsream & ofstream classes.

/* File Handling with C++ using ifstream & ofstream class object*/

/* To write the Content in File*/

/* Then to read the content of file*/

119

#include <iostream>

/* fstream header file for ifstream, ofstream,

 fstream classes */

#include <fstream>

using namespace std;

// Driver Code

int main()

{

 // Creation of ofstream class object

 ofstream fout;

 string line;

 // by default ios::out mode, automatically deletes

 // the content of file. To append the content, open in ios:app

 // fout.open("sample.txt", ios::app)

 fout.open("sample.txt");

 // Execute a loop If file successfully opened

 while (fout) {

 // Read a Line from standard input

 getline(cin, line);

 // Press -1 to exit

 if (line == "-1")

 break;

 // Write line in file

 fout << line << endl;

 }

 // Close the File

 fout.close();

 // Creation of ifstream class object to read the file

 ifstream fin;

 // by default open mode = ios::in mode

 fin.open("sample.txt");

 // Execute a loop until EOF (End of File)

 while (fin) {

120

 // Read a Line from File

 getline(fin, line);

 // Print line in Console

 cout << line << endl;

 }

 // Close the file

 fin.close();

 return 0;

}

❖ Sequential read operations

1. Sequential access is a term describing a group of elements (such as data in a memory array or a

disk file or on magnetic tape data storage) being accessed in a predetermined, ordered sequence.

... Sequential access is sometimes the only way of accessing the data, for example if it is on a

tape.

SEQUENTIAL INPUT AND OUTPUT OPERATIONS

• The file stream classes support a number of member functions for performing the input and

output operations on files.

• Functions like put () and get() are designed for handling a single character at a time whereas

write() and read() are designed to write and read blocks of binary data.

Put () and get () functions

• The function put () writes a single character to the associated stream and get () reads a single

character from the associated stream.

• Below program shows how these functions work on a file. The program requests for a string

and writes it character by character, to the file using the put () function in a for loop. The

length of the string is used to terminate the for loop.

• The program then displays the contents of the file on the screen. It uses the function get () to

121

fetch a character from the file and continues to do so until the end-of-file condition is reached.

The character read from the file is displayed on the screen using the operator<<.

#include<iostream.h>

#include<fstream.h>

#include<string.h>

Void main ()

{

Char string [20];

Cout<<”enter a string”<<endl;

Cin>>string;

}

❖ Sequential write operations
Steps to create (or write to) a sequential access file:

2. Declare a stream variable name: ofstream fout; //each file has its own stream buffer. ...

3. Open the file: fout.open("scores.dat", ios::out); fout is the stream variable name previously

declared. ...

4. Write data to the file: fout<<grade<<endl; fout<<"Mr. ...

5. Close the file:

❖ Binary Files
Writing

To write a binary file in C++ use write method. It is used to write a given number of bytes on the

given stream, starting at the position of the "put" pointer. The file is extended if the put pointer is

currently at the end of the file. If this pointer points into the middle of the file, characters in the

file are overwritten with the new data.

If any error has occurred during writing in the file, the stream is placed in an error state.

Syntax of write method

ostream& write(const char*, int);

Reading

122

To read a binary file in C++ use read method. It extracts a given number of bytes from the given

stream and place them into the memory, pointed to by the first parameter. If any error is occurred

during reading in the file, the stream is placed in an error state, all future read operation will be

failed then.

gcount() can be used to count the number of characters has already read. Then clear() can be used

to reset the stream to a usable state.

Syntax of read method
ifstream& write(const char*, int);

#include<iostream>

#include<fstream>

using namespace std;

struct Student {

 int roll_no;

 string name;

};

int main() {

 ofstream wf("student.dat", ios::out | ios::binary);

 if(!wf) {

 cout << "Cannot open file!" << endl;

 return 1;

 }

 Student wstu[3];

 wstu[0].roll_no = 1;

 wstu[0].name = "Ram";

 wstu[1].roll_no = 2;

 wstu[1].name = "Shyam";

 wstu[2].roll_no = 3;

 wstu[2].name = "Madhu";

 for(int i = 0; i < 3; i++)

 wf.write((char *) &wstu[i], sizeof(Student));

 wf.close();

 if(!wf.good()) {

 cout << "Error occurred at writing time!" << endl;

 return 1;

 }

 ifstream rf("student.dat", ios::out | ios::binary);

 if(!rf) {

 cout << "Cannot open file!" << endl;

 return 1;

 }

 Student rstu[3];

 for(int i = 0; i < 3; i++)

123

 rf.read((char *) &rstu[i], sizeof(Student));

 rf.close();

 if(!rf.good()) {

 cout << "Error occurred at reading time!" << endl;

 return 1;

 }

 cout<<"Student's Details:"<<endl;

 for(int i=0; i < 3; i++) {

 cout << "Roll No: " << wstu[i].roll_no << endl;

 cout << "Name: " << wstu[i].name << endl;

 cout << endl;

 }

 return 0;

}

Output

Student’s Details:

Roll No: 1

Name: Ram

Roll No: 2

Name: Shyam

Roll No: 3

Name: Madhu

Text file streams are those where the ios::binary flag is not included in their opening mode. These

files are designed to store text and thus all values that are input or output from/to them can suffer

some formatting transformations, which do not necessarily correspond to their literal binary

value.

Checking state flags

The following member functions exist to check for specific states of a stream (all of them return

a bool value):

bad()

Returns true if a reading or writing operation fails. For example, in the case that we try to

write to a file that is not open for writing or if the device where we try to write has no

space left.

fail()

124

Returns true in the same cases as bad(), but also in the case that a format error happens,

like when an alphabetical character is extracted when we are trying to read an integer

number.

eof()

Returns true if a file open for reading has reached the end.

good()

It is the most generic state flag: it returns false in the same cases in which calling any of

the previous functions would return true. Note that good and bad are not exact opposites

(good checks more state flags at once).

The member function clear() can be used to reset the state flags.

get and put stream positioning

All i/o streams objects keep internally -at least- one internal position:

ifstream, like istream, keeps an internal get position with the location of the element to be read in

the next input operation.

ofstream, like ostream, keeps an internal put position with the location where the next element has

to be written.

Finally, fstream, keeps both, the get and the put position, like iostream.

These internal stream positions point to the locations within the stream where the next reading or

writing operation is performed. These positions can be observed and modified using the following

member functions:

125

tellg() and tellp()

These two member functions with no parameters return a value of the member type streampos,

which is a type representing the current get position (in the case of tellg) or the put position (in the

case of tellp).

seekg() and seekp()

These functions allow to change the location of the get and put positions. Both functions are

overloaded with two different prototypes. The first form is:

seekg (position);

seekp (position);

Using this prototype, the stream pointer is changed to the absolute position position (counting

from the beginning of the file). The type for this parameter is streampos, which is the same type

as returned by functions tellg and tellp.

The other form for these functions is:

seekg (offset, direction);

seekp (offset, direction);

Using this prototype, the get or put position is set to an offset value relative to some specific point

determined by the parameter direction. offset is of type streamoff. And direction is of

type seekdir, which is an enumerated type that determines the point from where offset is counted

from, and that can take any of the following values:

ios::beg offset counted from the beginning of the stream

ios::cur offset counted from the current position

ios::end offset counted from the end of the stream

126

The following example uses the member functions we have just seen to obtain the size of a file:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// obtaining file size

#include <iostream>

#include <fstream>

using namespace std;

int main () {

 streampos begin,end;

 ifstream myfile ("example.bin",

ios::binary);

 begin = myfile.tellg();

 myfile.seekg (0, ios::end);

 end = myfile.tellg();

 myfile.close();

 cout << "size is: " << (end-begin) << "

bytes.\n";

 return 0;

}

size is: 40 bytes.

 Edit

&

Run

❖ ASCII Files
An ASCII File is a file that contains unformatted ASCII text: only characters, numbers,

punctuation, tabs, and carriage return characters. You can create and edit an ASCII

file using Microsoft Notepad. ... txt, it is usually referred to as a text file, but you can save

it with other extensions such as . bat

❖ Random Access operation
Random-access file is a term used to describe a file or set of files that are accessed directly

instead of requiring that other files be read first. Computer hard drives access files directly, where

tape drives commonly access files sequentially. Direct access, Hardware terms, Sequential file.

Here we will discuss how to access files randomly, forward and backward. Before moving

forward or backward within a file, one important factor is the current position inside the file.

Therefore, we must understand that there is a concept of file position (or position inside a file) i.e.

a pointer into the file. While reading from and writing into a file, we should be very clear from

where (which location inside the file) our process of reading or writing will start. To determine

this file pointer position inside a file, we have two functions tellg() and tellp().

Position in a File

Let’s say we have opened a file stream myfile for reading (getting), myfile.tellg () gives us the

current get position of the file pointer. It returns a whole number of type long, which is the

position of the next character to be read from that file. Similarly, tellp () function is used to

https://www.cplusplus.com/doc/tutorial/files/
https://www.cplusplus.com/doc/tutorial/files/
https://www.cplusplus.com/doc/tutorial/files/

127

determine the next position to write a character while writing into a file. It also returns a long

number.

For example, given an fstream object aFile:

Streampos original = aFile.tellp(); //save current position

aFile.seekp(0, ios::end); //reposition to end of file

aFile << x; //write a value to file

aFile.seekp(original); //return to original position

So tellg () and tellp () are the two very useful functions while reading from or writing into the

files at some certain positions.

Setting the Position

The next thing to learn is how can we position into a file or in other words how can we move

forward and backward within a file. Suppose we want to open a file and start reading from 100th

character. For this, we use seekg () and seekp () functions. Here seekg () takes us to a certain

position to start reading from while seekp () leads to a position to write into. These functions

seekg () and seekp () requires an argument of type long to let them how many bytes to move

forward or backward. Whether we want to move from the beginning of a file, current position or

the end of the file, this move forward or backward operation, is always relative to some position..

From the end of the file, we can only move in the backward direction. By using positive value, we

tell these functions to move in the forward direction .Likewise, we intend to move in the

backward direction by providing a negative number. By writing:

aFile. seekg (10L, ios::beg)

We are asking to move 10 bytes forward from the begining of the file. Similarly, by writing:

aFile. seekg (20L, ios::cur)

We are moving 20 bytes in the forward direction starting from the current position. Remember,

128

the current position can be obtained using the tellg () function.By writing:

aFile. seekg (-10L, ios:cur)

The file pointer will move 10 bytes in the backward direction from the current position. With

seekg (-100L, ios::end), we are moving in the backward direction by 100 bytes starting from the

end of the file. We can only move in the forward direction from the beginning of the file and

backward from the end of the file.

❖ Templates
A template is a simple and yet very powerful tool in C++. The simple idea is to pass data type

as a parameter so that we don’t need to write the same code for different data types. For

example, a software company may need sort() for different data types. Rather than writing and

maintaining the multiple codes, we can write one sort() and pass data type as a parameter.

C++ adds two new keywords to support templates: ‘template’ and ‘typename’. The second

keyword can always be replaced by keyword ‘class’.

Templates are expanded at compiler time. This is like macros. The difference is, the compiler

does type checking before template expansion. The idea is simple, source code contains only

function/class, but compiled code may contain multiple copies of same function/class.

Function Templates We write a generic function that can be used for different data types.

Examples of function templates are sort(), max(), min(), printArray().

Know more on Generics in C++ .

#include <iostream>

https://www.geeksforgeeks.org/generics-in-c/

129

using namespace std;

// One function works for all data types. This would work

// even for user defined types if operator '>' is overloaded

template <typename T>

T myMax(T x, T y)

{

 return (x > y)? x: y;

}

int main()

{

 cout << myMax<int>(3, 7) << endl; // Call myMax for int

 cout << myMax<double>(3.0, 7.0) << endl; // call myMax for double

 cout << myMax<char>('g', 'e') << endl; // call myMax for char

 return 0;

}

Output:

7

7

g

❖ Exception handling
One of the advantages of C++ over C is Exception Handling. Exceptions are run-time anomalies

or abnormal conditions that a program encounters during its execution. There are two types of

exceptions: a)Synchronous, b)Asynchronous(Ex:which are beyond the program’s control, Disc

failure etc). C++ provides following specialized keywords for this purpose.

try: represents a block of code that can throw an exception.

catch: represents a block of code that is executed when a particular exception is thrown.

throw: Used to throw an exception. Also used to list the exceptions that a function throws, but

doesn’t handle itself.

Following are main advantages of exception handling over traditional error handling.

1) Separation of Error Handling code from Normal Code: In traditional error handling codes,

there are always if else conditions to handle errors. These conditions and the code to handle

errors get mixed up with the normal flow. This makes the code less readable and maintainable.

With try catch blocks, the code for error handling becomes separate from the normal flow.

130

2) Functions/Methods can handle any exceptions they choose: A function can throw many

exceptions, but may choose to handle some of them. The other exceptions which are thrown,

but not caught can be handled by caller. If the caller chooses not to catch them, then the

exceptions are handled by caller of the caller.

In C++, a function can specify the exceptions that it throws using the throw keyword. The caller

of this function must handle the exception in some way (either by specifying it again or

catching it)

3) Grouping of Error Types: In C++, both basic types and objects can be thrown as exception.

We can create a hierarchy of exception objects, group exceptions in namespaces or classes,

categorize them according to types.

Exception Handling in C++

Following is a simple example to show exception handling in C++. The output of program

explains flow of execution of try/catch blocks.

#include <iostream>

using namespace std;

int main()

{

 int x = -1;

 // Some code

 cout << "Before try \n";

 try {

 cout << "Inside try \n";

 if (x < 0)

 {

 throw x;

 cout << "After throw (Never executed) \n";

 }

 }

 catch (int x) {

 cout << "Exception Caught \n";

 }

 cout << "After catch (Will be executed) \n";

 return 0;

}

Output:

Before try

131

Inside try

Exception Caught

After catch (Will be executed)

String, Declaring and initializing string objects, String attributes and Miscellaneous functions.

C++ has in its definition a way to represent sequence of characters as an object of class. This class

is called std:: string. String class stores the characters as a sequence of bytes with a functionality

of allowing access to single byte character.

Creating and initializing C++ strings

Create an empty string and defer initializing it with character data.

Initialize a string by passing a literal, quoted character array as an argument to the constructor.

Initialize a string using the equal sign (=).

Use one string to initialize another.

Use a portion of either a C char array or a C++ string.

std:: string vs Character Array

A character array is simply an array of characters can terminated by a null character. A string is

a class which defines objects that be represented as stream of characters.

Size of the character array has to allocated statically, more memory cannot be allocated at run

time if required. Unused allocated memory is wasted in case of character array. In case of strings,

memory is allocated dynamically. More memory can be allocated at run time on demand. As no

memory is preallocated, no memory is wasted.

There is a threat of array decay in case of character array. As strings are represented as objects, no

array decay occurs.

Implementation of character array is faster than std:: string. Strings are slower when compared to

implementation than character array.

Character array do not offer much inbuilt functions to manipulate strings. String class defines a

number of functionalities which allow manifold operations on strings.

Operations on strings

Input Functions

1. getline() :- This function is used to store a stream of characters as entered by the user in the

object memory.

2. push_back() :- This function is used to input a character at the end of the string.

3. pop_back() :- Introduced from C++11(for strings), this function is used to delete the last

character from the string.

// C++ code to demonstrate the working of

// getline(), push_back() and pop_back()

#include<iostream>

#include<string> // for string class

using namespace std;

https://www.geeksforgeeks.org/what-is-array-decay-in-c-how-can-it-be-prevented/

132

int main()

{

 // Declaring string

 string str;

 // Taking string input using getline()

 // "geeksforgeek" in giving output

 getline(cin,str);

 // Displaying string

 cout << "The initial string is : ";

 cout << str << endl;

 // Using push_back() to insert a character

 // at end

 // pushes 's' in this case

 str.push_back('s');

 // Displaying string

 cout << "The string after push_back operation is : ";

 cout << str << endl;

 // Using pop_back() to delete a character

 // from end

 // pops 's' in this case

 str.pop_back();

 // Displaying string

 cout << "The string after pop_back operation is : ";

 cout << str << endl;

 return 0;

}

Input:

geeksforgeek

Output:

The initial string is : geeksforgeek

The string after push_back operation is : geeksforgeeks

The string after pop_back operation is : geeksforgeek

Capacity Functions

4. capacity() :- This function returns the capacity allocated to the string, which can be equal to or

133

more than the size of the string. Additional space is allocated so that when the new characters are

added to the string, the operations can be done efficiently.

5. resize() :- This function changes the size of string, the size can be increased or decreased.

6.length():-This function finds the length of the string

7.shrink_to_fit() :- This function decreases the capacity of the string and makes it equal to the

minimum capacity of the string. This operation is useful to save additional memory if we are sure

that no further addition of characters have to be made.

// C++ code to demonstrate the working of

// capacity(), resize() and shrink_to_fit()

#include<iostream>

#include<string> // for string class

using namespace std;

int main()

{

// Initializing string

string str = "geeksforgeeks is for geeks";

// Displaying string

cout << "The initial string is : ";

cout << str << endl;

// Resizing string using resize()

str.resize(13);

// Displaying string

cout << "The string after resize operation is : ";

cout << str << endl;

// Displaying capacity of string

cout << "The capacity of string is : ";

cout << str.capacity() << endl;

//Displaying length of the string

cout<<"The length of the string is :"<<str.length()<<endl;

// Decreasing the capacity of string

// using shrink_to_fit()

str.shrink_to_fit();

// Displaying string

cout << "The new capacity after shrinking is : ";

cout << str.capacity() << endl;

return 0;

134

}

Output:

The initial string is : geeksforgeeks is for geeks

The string after resize operation is : geeksforgeeks

The capacity of string is : 26

The length of the string is : 13

The new capacity after shrinking is : 13

Iterator Functions

8. begin() :- This function returns an iterator to beginning of the string.

9. end() :- This function returns an iterator to end of the string.

10. rbegin() :- This function returns a reverse iterator pointing at the end of string.

11. rend() :- This function returns a reverse iterator pointing at beginning of string.

// C++ code to demonstrate the working of

// begin(), end(), rbegin(), rend()

#include<iostream>

#include<string> // for string class

using namespace std;

int main()

{

 // Initializing string`

 string str = "geeksforgeeks";

 // Declaring iterator

 std::string::iterator it;

 // Declaring reverse iterator

 std::string::reverse_iterator it1;

 // Displaying string

 cout << "The string using forward iterators is : ";

 for (it=str.begin(); it!=str.end(); it++)

 cout << *it;

 cout << endl;

 // Displaying reverse string

 cout << "The reverse string using reverse iterators is : ";

 for (it1=str.rbegin(); it1!=str.rend(); it1++)

 cout << *it1;

 cout << endl;

 return 0;

135

}

Manipulating Functions

12. copy(“char array”, len, pos) :- This function copies the substring in target character

array mentioned in its arguments. It takes 3 arguments, target char array, length to be copied and

starting position in string to start copying.

13. swap() :- This function swaps one string with other.

// C++ code to demonstrate the working of

// copy() and swap()

#include<iostream>

#include<string> // for string class

using namespace std;

int main()

{

 // Initializing 1st string

 string str1 = "geeksforgeeks is for geeks";

 // Declaring 2nd string

 string str2 = "geeksforgeeks rocks";

 // Declaring character array

 char ch[80];

 // using copy() to copy elements into char array

 // copies "geeksforgeeks"

 str1.copy(ch,13,0);

 // Diplaying char array

 cout << "The new copied character array is : ";

 cout << ch << endl << endl;

 // Displaying strings before swapping

 cout << "The 1st string before swapping is : ";

 cout << str1 << endl;

 cout << "The 2nd string before swapping is : ";

 cout << str2 << endl;

 // using swap() to swap string content

136

 str1.swap(str2);

 // Displaying strings after swapping

 cout << "The 1st string after swapping is : ";

 cout << str1 << endl;

 cout << "The 2nd string after swapping is : ";

 cout << str2 << endl;

 return 0;

}

Output:

The new copied character array is : geeksforgeeks

The 1st string before swapping is : geeksforgeeks is for geeks

The 2nd string before swapping is : geeksforgeeks rocks

The 1st string after swapping is : geeksforgeeks rocks

The 2nd string after swapping is : geeksforgeeks is for geeks
