
1

2

CORE–III JAVA AND DATA STRUCTURES

OBJECTIVES:

 To enable the students to learn the basic concepts of Javaprogramming

 To use class and objects to createapplications

 To have an overview of interfaces, packages, multithreading

andexceptions.

 To familiarize students with basic data structures and their use

inalgorithms.

OUTCOMES:

 Students will be able to develop Java Standalone applications

andApplets.

 Choose the appropriate data structure for modeling a givenproblem.

UNIT - I

History and Evolution of Java - Features of Java - Object Oriented Concepts –

Bytecode - Lexical Issues - Data Types – Variables- Type Conversion and Casting-

Operators - Arithmetic Operators - Bitwise - Relational Operators - Assignment Operator

- The conditional Operator - Operator Precedence- Control Statements – Arrays.

UNIT - II

Classes - Objects - Constructors - Overloading method - Static and fixed

methods - Inner Classes - String Class- Overriding methods - Using super-Abstract class

- this keyword – finalize() method – Garbage Collection.

UNIT - III

Packages - Access Protection - Importing Packages - Interfaces - Exception

Handling - Throw and Throws-The Java Thread Model- Creating a Thread and Multiple

Threads - Thread Priorities Synchronization-Inter thread Communication - Deadlock

- Suspending, Resuming and stopping threads – Multithreading-I/O Streams -

File Streams - Applets .

3

UNIT - IV

Abstract Data Types(ADTs)-List ADT-Array based implementation-linked list

implementation-singly linked list-doubly linked list-circular linked list-Stack ADT

operations-Applications-Evaluating arithmetic expressions-Conversion of infix to postfix

expression-Queue ADT-operations-Applications of Queues.

UNIT - V

Trees-Binary Trees- representation - Operations on Binary Trees- Traversal of a

Binary Tree -Binary Search Trees, Graphs- Representation of Graphs - Traversal in

Graph -Dijkstra’s Algorithm, Depth-First vs Breadth-First Search.

TEXT BOOKS:

1. E.Balagurusamy,” Programming with Java: A Primer”, Tata McGraw

Hill 2014, 5thEdition.

2. Mark Allen Weiss, “Data Structures and Algorithms Analysis in C++”,

Person Education 2014, 4thEdition.

REFERENCES:

. 1. Herbert Schildt, “JAVA 2: The Complete Reference”, McGraw Hill

2018, 11thEdition.

2. Aho, Hopcroft and Ullman, “Data Structures and Algorithms “, Pearson

Education2003.

3. S. Sahni, “Data Structures, Algorithms and Applications in JAVA”,

Universities Press 2005, 2ndEdition

WEB REFERENCES:

 NPTEL & MOOC courses titled Java and DataStructures

 https://nptel.ac.in/courses/106106127/

 https://nptel.ac.in/courses/106105191/

https://nptel.ac.in/courses/106106127/
https://nptel.ac.in/courses/106105191/

4

UNIT I

Java is an object-oriented programming language developed by James Gosling and

colleagues at Sun Microsystems in the early 1990s. Unlike conventional languages which are

generally designed either to be compiled to native (machine) code, or to be interpreted from source

code at runtime, Java is intended to be compiled to a bytecode, which is then run (generally using

JIT compilation) by a Java Virtual Machine

The language itself borrows much syntax from C and C++ but has a simpler object model

and fewer low-level facilities. Java is only distantly related to JavaScript, though they have similar

names and share a C-like syntax.

History

Java was started as a project called "Oak" by James Gosling in June 1991. Gosling's goals

were to implement a virtual machine and a language that had a familiar C-like notation but with

greater uniformity and simplicity than C/C++. The first public implementation was Java 1.0 in

1995. It made the promise of "Write Once, Run Anywhere", with free runtimes on popular

platforms. It was fairly secure and its security was configurable, allowing for network and file

access to be limited. The major web browsers soon incorporated it into their standard

configurations in a secure "applet" configuration. popular quickly. New versions for large and

small platforms (J2EE and J2ME) soon were designed with the advent of "Java 2". Sun has not

announced any plans for a "Java 3".

In 1997, Sun approached the ISO/IEC JTC1 standards body and later the Ecma

International to formalize Java, but it soon withdrew from the process. Java remains a proprietary

de facto standard that is controlled through the Java Community Process. Sun makes most of its

Java implementations available without charge, with revenue being generated by specialized

products such as the Java Enterprise System. Sun distinguishes between its Software Development

Kit (SDK) and Runtime Environment (JRE) which is a subset of the SDK, the primary distinction

being that in the JRE the compiler is not present.

Philosophy

There were five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology

2. It should allow the same program to be executed onmultiple operating systems.

3. It should contain built-in support for using computer networks.

https://www.freejavaguide.com/object_oriented_programming.html
https://www.freejavaguide.com/virtual_machine.html
https://www.freejavaguide.com/java_applet.html
https://www.freejavaguide.com/object_oriented_programming.html

5

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what was considered the good parts of other object-

orientedlanguages.

To achieve the goals of networking support and remote code execution, Java programmers

sometimes find it necessary to use extensions such as CORBA, Internet Communications Engine,

or OSGi.

Object orientation

The first characteristic, object orientation ("OO"), refers to a method of programming and language

design. Although there are many interpretations of OO, one primary distinguishing idea is to design

software so that the various types of data it manipulates are combined together with their relevant

operations. Thus, data and code are combined into entities called objects. An object can be thought

of as a self-contained bundle of behavior (code) and state (data). The principle is to separate the

things that change from the things that stay the same; often, a change to some data structure

requires a corresponding change to the code that operates on that data, or vice versa. This

separation into coherent objects provides a more stable foundation for a software system's design.

The intent is to make large software projects easier to manage, thus improving quality and reducing

the number of failed projects.

Another primary goal of OO programming is to develop more generic objects so that software can

become more reusable between projects. A generic "customer" object, for example, should have

roughly the same basic set of behaviors between different software projects, especially when these

projects overlap on some fundamental level as they often do in large organizations. In this sense,

software objects can hopefully be seen more as pluggable components, helping the software

industry build projects largely from existing and well-tested pieces, thus leading to a massive

reduction in development times. Software reusability has met with mixed practical results, with

two main difficulties: the design of truly generic objects is poorly understood, and a methodology

for broad communication of reuse opportunities is lacking. Some open source communities want to

help ease the reuse problem, by providing authors with ways to disseminate information about

generally reusable objects and object libraries.

6

Platform independence

The second characteristic, platform independence, means that programs written in the Java language

must run similarly on diverse hardware. One should be able to write a program once

This is achieved by most Java compilers by compiling the Java language code "halfway" to

bytecode (specifically Java bytecode)—simplified machine instructions specific to the Java

platform. The code is then run on a virtual machine (VM), a program written in native code on the

host hardware that interprets and executes generic Java bytecode. Further, standardized libraries are

provided to allow access to features of the host machines (such as graphics, threading and

networking) in unified ways. Note that, although there's an explicit compiling stage, at some point,

the Java bytecode is interpreted or converted to native machine instructions by the JIT compiler.

There are also implementations of Java compilers that compile to native object code, such

as GCJ, removing the intermediate bytecode stage, but the output of these compilers can only be

run ona single architecture.

Sun's license for Java insists that all implementations be "compatible". This resulted in a legal

dispute with Microsoft after Sun claimed that the Microsoft implementation did not support the

RMI and JNI interfaces and had added platform-specific features of their own. In response,

Microsoft no longer ships Java with Windows, and in recent versions of Windows, Internet

Explorer cannot support Java applets without a third-party plug-in. However, Sun and others have

made available Java run-time systems at no cost for those and other versions of Windows.

The first implementations of the language used an interpreted virtual machine to achieve

portability. These implementations produced programs that ran more slowly than programs

compiled to native executables, for instance written in C or C++, so the language suffered a

reputation for poor performance. More recent JVMimplementations produce programs that run

significantly faster than before, using multiple techniques.

The first technique is to simply compile directly into native code like a more traditional compiler,

skipping bytecodes entirely. This achieves good performance, but at the expense of portability.

Another technique, known as just-in-time compilation (JIT), translates the Java bytecodes into

native code at the time that the program is run which results in a program that executes faster than

interpreted code but also incurs compilation overhead during execution. More sophisticated VMs

use dynamic recompilation, in which the VM can analyze the behavior of the running program and

selectively recompile and optimize critical parts of the program. Dynamic recompilation can

https://www.freejavaguide.com/java_applet.html
https://www.freejavaguide.com/virtual_machine.html

7

achieve optimizations superior to static compilation because the dynamic compiler can base

optimizations on knowledge about the runtime environment and the set of loaded classes. JIT

compilation and dynamic recompilation allow Java programs to take advantage of the speed of

native code without losing portability.

Portability is a technically difficult goal to achieve, and Java's success at that goal has been

mixed. Although it is indeed possible to write programs for the Java platform that behave

consistently across many host platforms, the large number of available platforms with small errors

or inconsistencies led some to parody Sun's "Write once, run anywhere" slogan as "Write once,

debug everywhere".

Platform-independent Java is however very successful with server-side applications, such as Web

services,servlets, and Enterprise JavaBeans, as well as with Embedded systems based on OSGi,

using Embedded Java environments.

Automatic garbage collection

One idea behind Java's automatic memory management model is that programmers should be

spared the burden of having to perform manual memory management. In some languages the

programmer allocates memory to create any object stored on the heap and is responsible for later

manually deallocating that memory to delete any such objects. If a programmer forgets to deallocate

memory or writes code that fails to do so in a timely fashion, a memory leak can occur: the program

will consume a potentially arbitrarily large amount of memory. In addition, if a region of memory is

deallocated twice, the program can become unstable and may crash. Finally, in non garbage

collected environments, there is a certain degree of overhead and complexity of user-code to track

and finalize allocations.

In Java, this potential problem is avoided by automatic garbage collection. The programmer

determines when objects are created, and the Java runtime is responsible for managing the object's

lifecycle. The program or other objects can reference an object by holding a reference to it (which,

from a low-level point of view, is its address on the heap). When no references to an object remain,

the Java garbage collector automatically deletes the unreachable object, freeing memory and

preventing a memory leak. Memory leaks may still occur if a programmer's code holds a reference

to an object that is no longer needed—in other words, they can still occur but at higher conceptual

levels.

https://www.freejavaguide.com/java_servlet.html

8

The use of garbage collection in a language can also affect programming paradigms. If, for

example, the developer assumes that the cost of memory allocation/recollection is low, they may

choose to more freely construct objects instead of pre-initializing, holding and reusing them. With

the small cost of potential performance penalties (inner-loop construction of large/complex

objects), this facilitates thread-isolation (no need to synchronize as different threads work on

different object instances) and data-hiding. The use of transient immutable value-objects minimizes

side-effect programming.

Features of JAVA

Object Oriented

In Java, everything is an Object. Java can be easily extended since it is based on

the Object model.
[

Platform Independent
[

Unlike many other programming languages including C and C++, when Java is compiled,

it is not compiled into platform specific machine, rather into platform-independent byte code. This

byte code is distributed over the web and interpreted by the Virtual Machine (JVM) on whichever

platform it is being run on.

Simple Java is designed to be easy to learn. If you understand the basic concept of OOP

Java, it would be easy to master.

Secure

With Java's secure feature it enables to develop virus-free, tamper-free systems.

Authentication techniques are based on public-key encryption.

Architecture-neutral

Java compiler generates an architecture-neutral object file format, which makes the

compiled code executable on many processors, with the presence of Java runtime system.

Portable

Being architecture-neutral and having no implementation dependent aspects of the

specification makes Java portable. The compiler in Java is written in ANSI C with a clean

portability boundary, which is a POSIX subset.

Robust

Java makes an effort to eliminate error-prone situations by emphasizing mainly on compile

time error checking and runtime checking.

9

Multithreaded

With Java's multithreaded feature it is possible to write programs that can perform many

tasks simultaneously. This design feature allows the developers to construct interactive applications

that can run smoothly.

Interpreted

Java byte code is translated on the fly to native machine instructions and is not stored

anywhere. The development process is more rapid and analytical since the linking is an

incremental and light-weight process.

High Performance

With the use of Just-In-Time compilers, Java enables high performance.

Distributed

Java is designed for the distributed environment of the internet.

Dynamic

Java is considered to be more dynamic than C or C++ since it is designed to adapt to an

evolving environment. Java programs can carry an extensive amount of run-time information that

can be used to verify and resolve accesses to objects at run-time.

Java lexical structure

Computer languages, like human languages, have a lexical structure. A source code of a

Java program consists of tokens. Tokens are atomic code elements. In Java we have comments,

identifiers, literals, operators, separators, and keywords.

Java programs are composed of characters from the Unicode character set.

Java comments

Comments are used by humans to clarify source code. There are three types of

comments in Java.

Comment type Meaning

// comment
Single-line

comments

/* comment

*/

Multi-line

comments

/**

documentation */

Documentation

comments

10

Java white space

White space in Java is used to separate tokens in the source file. It is also used to improve

readability of the source code.

int i = 0;

White spaces are required in some places. For example between the int keyword and the

variable name. In other places, white spaces are forbidden. They cannot be present in variable

identifiers or language keywords.

int a=1;

int b = 2;

int c = 3;

The amount of space put between tokens is irrelevant for the Java compiler. The white

space should be used consistently in Java source code.

Java identifiers

Identifiers are names for variables, methods, classes, or parameters. Identifiers can have

alphanumerical characters, underscores and dollar signs ($). It is an error to begin a variable name

with a number. White space in names is not permitted.

Identifiers are case sensitive. This means that Name, name, or NAME refer to three

different variables. Identifiers also cannot match language keywords.

There are also conventions related to naming of identifiers. The names should be

descriptive. We should not use cryptic names for our identifiers. If the name consists of multiple

words, each subsequent word is capitalized.

String name23;

int _col;

short car_age;

These are valid Java identifiers.

String 23name;

int %col;

short car age;

These are invalid Java identifiers.

Java literals

A literal is a textual representation of a particular value of a type. Literal types include

boolean, integer, floating point, string, null, or character. Technically, a literal will be assigned a

value at compile time, while a variable will be assigned at runtime.

11

Java operators

An operator is a symbol used to perform an action on some value. Operators are

used in expressions to describe operations involving one or more operands.

+ - * / % ^ & | ! ~

= += -= *= /= %= ^= ++ --

== != <>&= >>= <<= >= <=

|| &&>><< ?:

This is a partial list of Java operators.

Java separators

A separator is a sequence of one or more characters used to specify the

boundary between separate, independent regions in plain text or other data stream.

[] () { } , ; . "

String language = "Java";

The double quotes are used to mark the beginning and the end of a string. The

semicolon ; character is used to end each Java statement.

System.out.println("Java language");

Parentheses (round brackets) always follow a method name. Between the

parentheses we declare the input parameters. The parentheses are present even if the

method does not take any parameters. The System.out.println() method takes one

parameter, a string value. The dot character separates the class name (System) from the

member (out) and the member from the method name (println()).

int[] array = new int[5] { 1, 2, 3, 4, 5 };

The square brackets [] are used to denote an array type. They are also used to

access or modify array elements. The curly brackets {} are used to initiate arrays. The

curly brackets are also used enclose the body of a method or a class.

int a, b, c;

The comma character separates variables in a single declaration.

Java keywords

A keyword is a reserved word in Java language. Keywords are used to perform a

specific task in the computer program. For example, to define variables, do repetitive

tasks or perform logical operations.

Java is rich in keywords.

abstract continue for new switch

12

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static var

class finally long strictfp void

const float native super volatile

 while

Java conventions

Each language can have its own set of conventions. Conventions are not strict

rules; they are merely recommendations for writing good quality code. We mention a few

conventions that are recognized by Java programmers. (And often by other programmers

too).

Class names begin with an uppercase letter.

Method names begin with a lowercase letter.

The public keyword precedes the static keyword when both are used.

The parameter name of the main() method is called args.

Constants are written in uppercase.

Each subsequent word in an identifier name begins with a capital letter.

Data Types in Java

Data types specify the different sizes and values that can be stored in the

variable. There are two types of data types in Java:

Primitive data types: The primitive data types include boolean, char, byte,

short, int, long, float and double.

Non-primitive data types: The non-primitive data types

include Classes, Interfaces, and Arrays.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data

manipulation. These are the most basic data types available in Java language.

There are 8 types of primitive data types:

boolean data type

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/java-tutorial

13

byte data type

char data type

short data type

int data type

long data type

float data type

double data type

Data

Type

Default

Value

Default

size

Boolean false 1 bit

Char '\u0000' 2 byte

Byte 0 1 byte

Short 0 2 byte

Int 0 4 byte

Long 0L 8 byte

Float 0.0f 4 byte

Double 0.0d 8 byte

14

Boolean Data Type

The Boolean data type is used to store only two possible values: true and false.

This data type is used for simple flags that track true/false conditions.

The Boolean data type specifies one bit of information, but its "size" can't be

defined precisely.

Example: Boolean one = false

Byte Data Type

The byte data type is an example of primitive data type. It isan 8-bit signed two's

complement integer. Its value-range lies between -128 to 127 (inclusive). Its minimum

value is -128 and maximum value is 127. Its default value is 0.

The byte data type is used to save memory in large arrays where the memory

savings is most required. It saves space because a byte is 4 times smaller than an integer.

It can also be used in place of "int" data type.

Example: byte a = 10, byte b = -20

Short Data Type

The short data type is a 16-bit signed two's complement integer. Its value-range

lies between -32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum

value is 32,767. Its default value is 0.

The short data type can also be used to save memory just like byte data type. A

short data type is 2 times smaller than an integer.

Example: short s = 10000, short r = -5000

Int Data Type

The int data type is a 32-bit signed two's complement integer. Its value-range lies

between - 2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum

value is - 2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.

The int data type is generally used as a default data type for integral values

unless if there is no problem about memory.

Example: int a = 100000, int b = -200000

Long Data Type

The long data type is a 64-bit two's complement integer. Its value-range lies

between -9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -

1)(inclusive). Its minimum value is - 9,223,372,036,854,775,808and maximum value is

9,223,372,036,854,775,807. Its default value is 0. The long data type is used when you

need a range of values more than those provided by int.

Example: long a = 100000L, long b = -200000L

15

Float Data Type

The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is

unlimited. It is recommended to use a float (instead of double) if you need to save memory in large

arrays of floating point numbers. The float data type should never be used for precise values, such

as currency. Its default value is 0.0F.

Example: float f1 = 234.5f

Double Data Type

The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is

unlimited. The double data type is generally used for decimal values just like float. The double data

type also should never be used for precise values, such as currency. Its default value is 0.0d.

Example: double d1 = 12.3

Char Data Type

The char data type is a single 16-bit Unicode character. Its value-range lies between

'\u0000' (or 0) to '\uffff' (or 65,535 inclusive).The char data type is used to store characters.

Example: char letterA = 'A'

Java Variables

Variables are containers for storing data values.

In Java, there are different types of variables, for example:

String - stores text, such as "Hello". String values are surrounded by double

quotes

int - stores integers (whole numbers), without decimals, such as 123 or -123

float - stores floating point numbers, with decimals, such as 19.99 or -19.99

char - stores single characters, such as 'a' or 'B'. Char values are surrounded by

single quotes

boolean - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

Syntax

type variable = value;

Where type is one of Java's types (such as int or String), and variable is the name

of the variable (such as x or name). The equal sign is used to assign values to the

variable.

To create a variable that should store text, look at the following example:

16

Example

Create a variable called name of type String and assign it the value "John":

String name ="John";

System.out.println(name);

To create a variable that should store a number, look at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum =15;

System.out.println(myNum);

Example

int myNum;

myNum =15;

System.out.println(myNum);

Example

Change the value of myNum from 15 to 20:

int myNum =15;

myNum =20;// myNum is now 20

System.out.println(myNum);

Final Variables

we can add the final keyword if we don't want others to overwrite existing values (this will

declare the variable as "final" or "constant", which means unchangeable and read-only):

Example

finalint myNum =15;

17

myNum =20;// will generate an error: cannot assign a value to a final variable

Java Identifiers

All Java variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age,

sum, totalVolume).

Note: It is recommended to use descriptive names in order to create

understandable and maintainable code:

Example

// Good

int minutesPerHour =60;

// OK, but not so easy to understand what m actually is

int m =60;

The general rules for constructing names for variables (unique identifiers) are:

 Names can contain letters, digits, underscores, and dollar signs

 Names must begin with a letter

 Names should start with a lowercase letter and it cannot contain

whitespace

 Names can also begin with $ and _ (but we will not use it in this tutorial)

 Names are case sensitive ("myVar" and "myvar" are different variables)

 Reserved words (like Java keywords, such as int or boolean) cannot be

used as names

18

Difference Between Type Casting and Type Conversion

S.N. Type

Casting

Type

Conversion

1 Type casting

is a

mechanism

in which one

data type is

converted to

another data

type using a

casting ()

operator by

a

programmer.

Type conversion

allows a compiler to

convert one data type

to another data type at

the compile time of a

program or code.

2 It can be

used both

compatible

data type

and

incompatible

data type.

Type

conversion is

only used with

compatible

data types, and

hence it does

not require any

casting

operator.

3 It requires a

programmer

to manually

casting one

data into

It does not

require any

programmer

intervention to

convert one

19

another type. data type to

another

because the

compiler

automatically

compiles it at

the run time of

a program.

4 It is used

while

designing a

program by

the

programmer.

It is used or

take place at

the compile

time of a

program.

5 When

casting one

data type to

another, the

destination

data type

must be

smaller than

the source

data.

When

converting one

data type to

another, the

destination

type should be

greater than the

source data

type.

6 It is also

known as

narrowing

conversion

because one

larger data

It is also

known as

widening

conversion

because one

smaller data

20

Operators in Java

Java provides many types of operators which can be used according to the need.

They are classified based on the functionality they provide. Some of the types are-

1. Arithmetic Operators

2. Unary Operators

3. Assignment Operator

4. Relational Operators

type

converts to a

smaller data

type.

type converts

to a larger data

type.

7 It is more

reliable and

efficient.

It is less

efficient and

less reliable.

8 There is a

possibility

of data or

information

being lost in

type casting.

In type

conversion,

data is unlikely

to be lost when

converting

from a small to

a large data

type.

8 float b = 3.0;

int a

= (int) b

int x = 5, y = 2,

c;

float q

= 12.5, p;

p =

q/x;

https://www.geeksforgeeks.org/java-arithmetic-operators-with-examples/
https://www.geeksforgeeks.org/java-unary-operator-with-examples/
https://www.geeksforgeeks.org/java-assignment-operator-with-examples/
https://www.geeksforgeeks.org/java-relational-operators-with-examples/

21

5. Logical Operators

6. Ternary Operator

7. Bitwise Operators

8. Shift Operators

9. instance of operator

 Arithmetic Operators: They are used to perform simple arithmetic

operations on primitive data types.

 * : Multiplication

 / : Division

 % : Modulo

 + : Addition

 – : Subtraction

 Unary Operators: Unary operators need only one operand. They are

used to increment, decrement or negate a value.

 – :Unary minus, used for negating the values.

 + :Unary plus, indicates positive value (numbers are positive without

this, however). It performs an automatic conversion to int when the type of its operand is

byte, char, or short. This is called unary numeric promotion.

 ++ :Increment operator, used for incrementing the value by 1. There

are two varieties of increment operator.

 Post-Increment : Value is first used for computing the result and then

incremented.

 Pre-Increment : Value is incremented first and then result is computed.

 — : Decrement operator, used for decrementing the value by 1. There

are two varieties of decrement operator.

 Post-decrement : Value is first used for computing the result and then

decremented.

 Pre-Decrement : Value is decremented first and then result is computed.

 ! : Logical not operator, used for inverting a boolean value.

 Assignment Operator : ‘=’ Assignment operator is used to assign a

value to any variable. It has a right to left associativity, i.e value given on right hand side

of operator is assigned to the variable on the left and therefore right hand side value must

be declared before using it or should be a constant.

https://www.geeksforgeeks.org/java-logical-operators-with-examples/
https://www.geeksforgeeks.org/java-ternary-operator-with-examples/
https://www.geeksforgeeks.org/operators-in-java/
https://www.geeksforgeeks.org/operators-in-java/
https://www.geeksforgeeks.org/java-instanceof-and-its-applications/

22

General format of assignment operator is,

variable = value;

 In many cases assignment operator can be combined with other operators

to build a shorter version of statement called Compound Statement. For example,

instead of a = a+5, we can write a += 5.

 +=, for adding left operand with right operand and then assigning it to

variable on the left.

 -=, for subtracting left operand with right operand and then assigning it to

variable on the left.

 *=, for multiplying left operand with right operand and then assigning it

to variable on the left.

 /=, for dividing left operand with right operand and then assigning it to

variable on the left.

 %=, for assigning modulo of left operand with right operand and then

assigning it to variable on the left.

 Relational Operators : These operators are used to check for relations

like equality, greater than, less than. They return boolean result after the comparison and

are extensively used in looping statements as well as conditional if else statements.

General format is,

variable relation_operator value

 Some of the relational operators are-

 ==, Equal to : returns true if left hand side is equal to right hand side.

 !=, Not Equal to : returns true if left hand side is not equal to right hand

side.

 <, less than : returns true if left hand side is less than right hand side.

 <=, less than or equal to : returns true if left hand side is less than or

equal to right hand side.

 >, Greater than : returns true if left hand side is greater than right hand

side.

 >=, Greater than or equal to: returns true if left hand side is greater

than or equal to right hand side.

23

 Logical Operators : These operators are used to perform “logical AND”

and “logical OR” operation, i.e. the function similar to AND gate and OR gate in digital

electronics. One thing to keep in mind is the second condition is not evaluated if the first

one is false, i.e. it has a short-circuiting effect. Used extensively to test for several

conditions for making a decision.

Conditional operators are-

 &&, Logical AND : returns true when both conditions are true.

 ||, Logical OR : returns true if at least one condition is true.

 Ternary operator : Ternary operator is a shorthand version of if-else

statement. It has three operands and hence the name ternary. General format is-

condition ? if true : if false

The above statement means that if the condition evaluates to true, then execute

the statements after the ‘?’ else execute the statements after the ‘:’.

 Bitwise Operators : These operators are used to perform manipulation

of individual bits of a number. They can be used with any of the integer types. They are

used when performing update and query operations of Binary indexed tree.

 &, Bitwise AND operator: returns bit by bit AND of input values.

 |, Bitwise OR operator: returns bit by bit OR of input values.

 ^, Bitwise XOR operator: returns bit by bit XOR of input values.

 ~, Bitwise Complement Operator: This is a unary operator which

returns the one’s compliment representation of the input value, i.e. with all bits inversed.

 Shift Operators : These operators are used to shift the bits of a number

left or right thereby multiplying or dividing the number by two respectively. They can be

used when we have to multiply or divide a number by two. General format-

 number shift_op number_of_places_to_shift;

 <<, Left shift operator: shifts the bits of the number to the left and fills

0 on voids left as a result. Similar effect as of multiplying the number with some power

of two.

24

 >>, Signed Right shift operator: shifts the bits of the number to the

right and fills 0 on voids left as a result. The leftmost bit depends on the sign of initial

number. Similar effect as of dividing the number with some power of two.

 >>>, Unsigned Right shift operator: shifts the bits of the number to the

right and fills 0 on voids left as a result. The leftmost bit is set to 0.

 instance of operator : Instance of operator is used for type checking. It

can be used to test if an object is an instance of a class, a subclass or an interface.

General format-

object instance of class/subclass/interface

Precedence and Associativity of Operators

Precedence and associative rules are used when dealing with hybrid equations

involving more than one type of operator. In such cases, these rules determine which part

of the equation to consider first as there can be many different valuations for the same

equation. The below table depicts the precedence of operators in decreasing order as

magnitude with the top representing the highest precedence and bottom shows the lowest

precedence.

https://www.geeksforgeeks.org/java-instanceof-and-its-applications/

25

Control Flow in Java

Java compiler executes the java code from top to bottom. The statements are executed

according to the order in which they appear. However, Java provides statements that can be used

to control the flow of java code. Such statements are called control flow statements.

Java provides three types of control flow statements.

1. Decision Making statements

2. Loop statements

3. Jump statements

Decision-Making statements:

Decision-making statements evaluate the Boolean expression and control the program flow

depending upon the condition result. There are two types of decision-making statements in java,

I.e., If statement and switch statement.

If Statement:

In Java, the "if" statement is used to evaluate a condition. The control of the

program is diverted depending upon the condition result that is a Boolean value, either

true or false. In java, there are four types of if-statements given below.

1. if statement

2. if-else statement

3. else-if statement

4. Nested if-statement

Let's understand the if-statements one by one.

1. if statement:

This is the most basic statement among all control flow statements in java. It evaluates a

Boolean expression and enables the program to enter a block of code if the expression evaluates to

true.

Syntax of if statement is given below.

1. if(<condition>) {

https://www.javatpoint.com/java-tutorial

26

2. //block of code

3. }

4.

5. Consider the following example in which we have used the if statement i

n the java code.

6.

7. public class Student {

8. public static void main(String[] args) {

1. int x = 10;

9. int y = 12;

10. if(x+y > 20) {

11. System.out.println("x + y is greater than 20");

12. }

13. }

14.

15.

16. }

Output:

x + y is greater than 20

2. if-else statement

The if-else statement is an extension to the if-statement, which uses another

block of code, I.e., else block. The else block is executed if the condition of the if-block

is evaluated as false.

Consider the following example.

1. public class Student {

2. public static void main(String[] args) {

3. int x = 10;

4. int y = 12;

5. if(x+y < 10) {

6. System.out.println("x + y is less than 10");

7. } else {

https://www.javatpoint.com/java-if-else

27

8. System.out.println("x + y is greater than 20");

9. }

10. }

Output:

x + y is greater than 20

3. lse-if statement

The else-if statement contains the if-statement followed by multiple else-if statements. In

other words, we can say that it is the chain of if-else statements that create a decision tree where the

program may enter any block of code. We can also define an else statement at the end of the chain.

Consider the following example.

1. public class Student {

2. public static void main(String[] args) {

3. String city = "Delhi";

4. if(city == "Meerut") {

5. System.out.println("city is meerut");

6. }else if (city == "Noida") {

7. System.out.println("city is noida");

8. }else if(city == "Agra") {

9. System.out.println("city is agra");

10. }else {

11. System.out.println(city);

12. }

13. }

14. }

15.

Output:

Delhi

4. Nested if-statement

In nested if-statements, the if statement contains multiple if-else statements as a

separate block of code. Consider the following example.

28

1. public class Student {

2. public static void main(String[] args) {

3. String address = "Delhi, India";

4.

5. if(address.endsWith("India")) {

6. if(address.contains("Meerut")) {

7. System.out.println("Your city is meerut");

8. }else if(address.contains("Noida")) {

9. System.out.println("Your city is noida");

10. }else {

11. System.out.println(address.split(",")[0]);

12. }

13. }else {

14. System.out.println("You are not living in india");

15. }

16. }

17. }

Output:

Delhi

Switch Statement:

In Java, Switch statements are similar to if-else-if statements. The switch statement

enables us to check the variable for the range of values defined for multiple case statements. The

switch statement is easier to use instead of if-else-if statements. It also enhances the readability of

the program. The syntax to use the switch statement is given below.

1. switch <variable> {

2. Case <option 1>:

3. //block of statements

4. ..

5. ..

6. ..

7. Case <option n>:

8. //block of statements

https://www.javatpoint.com/java-switch

29

9. Default:

10. //block of statements

11. }

Consider the following example to understand the flow of the switch statement.

1. public class Student implements Cloneable {

2. public static void main(String[] args) {

3. int num = 2;

4. switch (num){

5. case 0:

6. System.out.println("number is 0");

7. break;

8. case 1:

9. System.out.println("number is 1");

10. break;

11. default:

12. System.out.println(num);

13. }

14. }

15. }

Output:

2

While using switch statements, we must notice that the case expression will be of the same

type as the variable. However, it will also be a constant value. The switch permits only int, string,

and Enum type variables to be used.

Loop Statements

In programming, sometimes we need to execute the block of code repeatedly while some

condition evaluates to true. However, loop statements are used to execute the set of instructions in

a repeated order. The execution of the set of instructions depends upon a particular condition.

In Java, we have three types of loops that execute similarly. However, there are

differences in their syntax and condition checking time.

30

1. for loop

2. while loop

3. do-while loop

Java for loop

In java, for loop is similar to C and C ++. It enables us to initialize the loop variable, check

the condition, and increment/decrement in a single line of code. The syntax to use the for loop is

given below.

1. for(<initialization>, <condition>, <increment/decrement>) {

2. //block of statements

3. }

The flow chart for the for-loop is given below.

Consider the following example to understand the proper functioning of the for

loop in java.

1. public class Calculattion {

2. public static void main(String[] args) {

3.

4. int sum = 0;

5. for(int j = 1; j<=10; j++) {

6. sum = sum + j;

7. }

8. System.out.println("The sum of first 10 natural numbers is " + sum);

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

31

9. }

10. }

Output:

The sum of first 10 natural numbers is 55

Java for-each loop

Java provides an enhanced for loop to traverse the data structures like array or collection.

In the for-each loop, we don't need to update the loop variable. The syntax to use the for-each

loop in java is given below.

1. for(type var : collection){

2. //statements

3. }

Consider the following example to understand the functioning of the for-each

loop in java.

1. public class Calculattion {

2. public static void main(String[] args) {

3. //

4. String[] names = {"Java","C","C++","Python","JavaScript"};

5. System.out.println("Printing the content of the array names:\n");

6. for(String name:names) {

7. System.out.println(name);

8. }

9. }

10. }

Output:

Printing the content of the array names:

Java

C

C++

Python

JavaScript

32

Java while loop

The while loop is also used to iterate over the number of statements multiple times.

However, if we don't know the number of iterations in advance, it is recommended to use a while

loop. Unlike for loop, the initialization and increment/decrement doesn't take place inside the loop

statement in while loop.

It is also known as the entry-controlled loop since the condition is checked at the start of

the loop. If the condition is true, then the loop body will be executed; otherwise, the statements

after the loop will be executed.

The syntax of the while loop is given below.

1. While(<condition>){

2. //loop statements

3. }

The flow chart for the while loop is given in the following image.

Consider the following example.

https://www.javatpoint.com/java-while-loop

33

1. public class Calculattion {

2. public static void main(String[] args) {

3. //

4. int i = 0;

5. System.out.println("Printing the list of first 10 even numbers \n");

6. while(i<=10) {

7. System.out.println(i);

8. i = i + 2;

9. }

10. }

11. }

Output:

Printing the list of first 10 even numbers

0

2

4

6

8

10

Java do-while loop

The do-while loop checks the condition at the end of the loop after executing the loop

statements. However, it is recommended to use the do-while loop if we don't know the condition in

advance, and we need the loop to execute at least once.

It is also known as the exit-controlled loop since the condition is not checked in advance.

The syntax of the do-while loop is given below.

1. do

2. {

3. //statements

4. } while (<Condition>);

The flow chart of the do-while loop is given in the following image.

https://www.javatpoint.com/java-do-while-loop

34

Consider the following example to understand the functioning of the do-while

loop in java.

1. public class Calculattion {

2. public static void main(String[] args) {

3. //int i = 0;

4. System.out.println("Printing the list of first 10 even numbers \n");

5. do {

6. System.out.println(i);

7. i = i + 2;

8. }while(i<=10);

9. }

10. }

Output:

Printing the list of first 10 even numbers

0

2

4

35

6

8

10

Jump Statements

Jump statements are used to transfer the control of the program to the specific statements.

In other words, jump statements transfer the execution control to the other part of the program.

There are two types of jump statements in java, i.e., break and continue.

Java break statement

As the name suggests, the break statement is used to break the current flow of the

program and transfer the control to the next statement outside the current flow. It is used to break

the loop and switch statement. However, it breaks only the inner loop in the case of the nested

loop.

The break statement cannot be used independently in the java program, i.e., it

can only be written inside the loop or switch statement.

The break statement example with loop

Consider the following example in which we have used the break statement with

the for loop.

1. public class BreakExample {

2.

3. public static void main(String[] args) {

4. //

5. for(int i = 0; i<= 10; i++) {

6. System.out.println(i);

7. if(i==6) {

8. break;

9. }

10. }

11. }

12. }

Output:

https://www.javatpoint.com/java-break

36

0

1

2

3

4

5

6

break statement example with labeled for loop

1. public class Calculattion {

2.

3. public static void main(String[] args) {

4. //

5. a:

6. for(int i = 0; i<= 10; i++) {

7. b:

8. for(int j = 0; j<=15;j++) {

9. c:

10. for (int k = 0; k<=20; k++) {

11. System.out.println(k);

12. if(k==5) {

13. break a;

14. }

15. }

16. }

17.

18. }

19. }

20.

21.

22. }

37

Output:

0

1

2

3

4

5

Java continue statement

Unlike break statement, the continue statement doesn't break the loop, whereas, it skips the

specific part of the loop and jumps to the next iteration of the loop immediately.

Consider the following example to understand the functioning of the continue statement in

java.

1. public class ContinueExample {

2.

3. public static void main(String[] args) {

4. //

5.

6. for(int i = 0; i<= 2; i++) {

7.

8. for (int j = i; j<=5; j++) {

9.

10. if(j == 4) {

11. continue;

12. }

13. System.out.println(j);

14. }

15. }

16. }

17.

18. }

Output:

https://www.javatpoint.com/java-continue
https://www.javatpoint.com/java-continue

38

0

1

2

3

5

1

2

3

5

2

3

5

Java Arrays

Normally, an array is a collection of similar type of elements which has

contiguous memory location.

Java array is an object which contains elements of a similar data type. Additionally, The

elements of an array are stored in a contiguous memory location. It is a data structure where we

store similar elements. We can store only a fixed set of elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd

element is stored on 1st index and so on.

Unlike C/C++, we can get the length of the array using the length member. In C/C++, we

need to use the sizeof operator.

In Java, array is an object of a dynamically generated class. Java array inherits the Object

class, and implements the Serializable as well as Cloneable interfaces. We can store primitive

values or objects in an array in Java. Like C/C++, we can also create single dimentional or

multidimentional arrays in Java.

Moreover, Java provides the feature of anonymous arrays which is not available in C/C++.

39

Advantages

o Code Optimization: It makes the code optimized, we can retrieve or sort

the data efficiently.

o Random access: We can get any data located at an index position.

Disadvantages

o Size Limit: We can store only the fixed size of elements in the array. It doesn't

grow its size at runtime. To solve this problem, collection framework is used in Java which grows

automatically.

Types of Array in java

There are two types of array.

o Single Dimensional Array

o Multidimensional Array

Single Dimensional Array in Java

Syntax to Declare an Array in Java

1. dataType[] arr; (or)

2. dataType []arr; (or)

3. dataType arr[];

Instantiation of an Array in Java

1. arrayRefVar=new datatype[size];

Example of Java Array

Let's see the simple example of java array, where we are going to declare,

instantiate, initialize and traverse an array.

1. //Java Program to illustrate how to declare, instantiate, initialize

2. //and traverse the Java array.

3. class Testarray{

4. public static void main(String args[]){

5. int a[]=new int[5];//declaration and instantiation

40

6. a[0]=10;//initialization

7. a[1]=20;

8. a[2]=70;

9. a[3]=40;

10. a[4]=50;

11. //traversing array

12. for(int i=0;i<a.length;i++)//length is the property of array

13. System.out.println(a[i]);

14. }}

Output:

10

20

70

40

50

Multidimensional Array in Java

In such case, data is stored in row and column based index (also known as

matrix form).

Syntax to Declare Multidimensional Array in Java

1. dataType[][] arrayRefVar; (or)

2. dataType [][]arrayRefVar; (or)

3. dataType arrayRefVar[][]; (or)

4. dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in Java

1. int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in Java

41

1. arr[0][0]=1;

2. arr[0][1]=2;

3. arr[0][2]=3;

4. arr[1][0]=4;

5. arr[1][1]=5;

6. arr[1][2]=6;

7. arr[2][0]=7;

8. arr[2][1]=8;

9. arr[2][2]=9;

Example of Multidimensional Java Array

Let's see the simple example to declare, instantiate, initialize and print the

2Dimensional array.

1. //Java Program to illustrate the use of multidimensional array

2. class Testarray3{

3. public static void main(String args[]){

4. //declaring and initializing 2D array

5. int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

6. //printing 2D array

7. for(int i=0;i<3;i++){

8. for(int j=0;j<3;j++){

9. System.out.print(arr[i][j]+" ");

10. }

11. System.out.println();

12. }

13. }}

Output:

1 2 3

2 4 5

4 4 5

42

Unit II

Objects and Classes in Java

1. Object in Java

2. Class in Java

3. Instance Variable in Java

4. Method in Java

5. Example of Object and class that maintains the records of student

6. Anonymous Object

In object-oriented programming technique, we design a program using objects

and classes.

An object in Java is the physical as well as a logical entity, whereas, a class in

Java is a logical entity only.

What is an object in Java

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen,

table, car, etc. It can be physical or logical (tangible and intangible). The example of an intangible

object is the banking system.

https://www.javatpoint.com/object-and-class-in-java#object
https://www.javatpoint.com/object-and-class-in-java#class
https://www.javatpoint.com/object-and-class-in-java#objectinstancevariable
https://www.javatpoint.com/object-and-class-in-java#objectmethod
https://www.javatpoint.com/object-and-class-in-java#objectex2
https://www.javatpoint.com/object-and-class-in-java#objectannonymous

43

An object has three characteristics:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as

deposit, withdraw, etc.

o Identity: An object identity is typically implemented via a unique ID.

The value of the ID is not visible to the external user. However, it is used internally by

the JVM to identify each object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as its

state. It is used to write, so writing is its behavior.

An object is an instance of a class. A class is a template or blueprint from

which objects are created. So, an object is the instance(result) of a class.

Object Definitions:

44

o An object is a real-world entity.

o An object is a runtime entity.

o The object is an entity which has state and behavior.

o The object is an instance of a class.

What is a class in Java

A class is a group of objects which have common properties. It is a template or blueprint

from which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

o Fields

o Methods

o Constructors

o Blocks

o Nested class and interface

Syntax to declare a class:

1. class <class_name>{

45

2. field;

3. method;

4. }

Instance variable in Java

A variable which is created inside the class but outside the method is known as an

instance variable. Instance variable doesn't get memory at compile time. It gets memory at

runtime when an object or instance is created. That is why it is known as an instance variable.

Method in Java

In Java, a method is like a function which is used to expose the behavior of an

object.

Advantage of Method

o Code Reusability

o Code Optimization

new keyword in Java

The new keyword is used to allocate memory at runtime. All objects get memory

in Heap memory area.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and

name. We are creating the object of the Student class by new keyword and printing the object's

value.

Here, we are creating a main() method inside the class.

File: Student.java

1. //Java Program to illustrate how to define a class and fields

2. //Defining a Student class.

3. class Student{

4. //defining fields

46

5. int id;//field or data member or instance variable

6. String name;

7. //creating main method inside the Student class

8. public static void main(String args[]){

9. //Creating an object or instance

10. Student s1=new Student();//creating an object of Student

11. //Printing values of the object

12. System.out.println(s1.id);//accessing member through reference varia

ble

13. System.out.println(s1.name);

14. }

15. }

Output:

0

null

Object and Class Example: main outside the class

In real time development, we create classes and use it from another class. It is a better

approach than previous one. Let's see a simple example, where we are having main() method in

another class.

We can have multiple classes in different Java files or single Java file. If you

define multiple classes in a single Java source file, it is a good idea to save the file name

with the class name which has main() method.

File: TestStudent1.java

1. //Java Program to demonstrate having the main method in

2. //another class

3. //Creating Student class.

4. class Student{

5. int id;

6. String name;

7. }

8. //Creating another class TestStudent1 which contains the main method

9. class TestStudent1{

47

10. public static void main(String args[]){

11. Student s1=new Student();

12. System.out.println(s1.id);

13. System.out.println(s1.name);

14. }

15. }

Output:

0

null

3 Ways to initialize object

There are 3 ways to initialize object in Java.

1. By reference variable

2. By method

3. By constructor

1) Object and Class Example: Initialization through reference

Initializing an object means storing data into the object. Let's see a simple example where

we are going to initialize the object through a reference variable.

File: TestStudent2.java

1. class Student{

2. int id;

3. String name;

4. }

5. class TestStudent2{

6. public static void main(String args[]){

7. Student s1=new Student();

8. s1.id=101;

9. s1.name="Sonoo";

10. System.out.println(s1.id+" "+s1.name);//printing members with a white

space

11. }

48

12. }

Output:

101 Sonoo

We can also create multiple objects and store information in it through reference

variable.

File: TestStudent3.java

1. class Student{

2. int id;

3. String name;

4. }

5. class TestStudent3{

6. public static void main(String args[]){

7. //Creating objects

8. Student s1=new Student();

9. Student s2=new Student();

10. //Initializing objects

11. s1.id=101;

12. s1.name="Sonoo";

13. s2.id=102;

14. s2.name="Amit";

15. //Printing data

16. System.out.println(s1.id+" "+s1.name);

17. System.out.println(s2.id+" "+s2.name);

18. }

19. }

Output:

101 Sonoo

102 Amit

49

2) Object and Class Example: Initialization through method

In this example, we are creating the two objects of Student class and initializing the value

to these objects by invoking the insertRecord method. Here, we are displaying the state (data) of

the objects by invoking the displayInformation() method.

File: TestStudent4.java

1. class Student{

2. int rollno;

3. String name;

4. void insertRecord(int r, String n){

5. rollno=r;

6. name=n;

7. }

8. void displayInformation(){System.out.println(rollno+" "+name);}

9. }

10. class TestStudent4{

11. public static void main(String args[]){

12. Student s1=new Student();

13. Student s2=new Student();

14. s1.insertRecord(111,"Karan");

15. s2.insertRecord(222,"Aryan");

16. s1.displayInformation();

17. s2.displayInformation();

18. }

19. }

Output:

111 Karan

222 Aryan

Object and Class Example: Employee

Let's see an example where we are maintaining records of employees.

File: TestEmployee.java

50

1. class Employee{

2. int id;

3. String name;

4. float salary;

5. void insert(int i, String n, float s) {

6. id=i;

7. name=n;

8. salary=s;

9. }

10. void display(){System.out.println(id+" "+name+" "+salary);}

11. }

12. public class TestEmployee {

13. public static void main(String[] args) {

14. Employee e1=new Employee();

15. Employee e2=new Employee();

16. Employee e3=new Employee();

17. e1.insert(101,"ajeet",45000);

18. e2.insert(102,"irfan",25000);

19. e3.insert(103,"nakul",55000);

20. e1.display();

21. e2.display();

22. e3.display();

23. }

24. }

Test it Now

Output:

101 ajeet 45000.0

102 irfan 25000.0

103 nakul 55000.0

Object and Class Example: Rectangle

There is given another example that maintains the records of Rectangle class.

File: TestRectangle1.java

https://www.javatpoint.com/opr/test.jsp?filename=TestEmployee

51

1. class Rectangle{

2. int length;

3. int width;

4. void insert(int l, int w){

5. length=l;

6. width=w;

7. }

8. void calculateArea(){System.out.println(length*width);}

9. }

10. class TestRectangle1{

11. public static void main(String args[]){

12. Rectangle r1=new Rectangle();

13. Rectangle r2=new Rectangle();

14. r1.insert(11,5);

15. r2.insert(3,15);

16. r1.calculateArea();

17. r2.calculateArea();

18. }

19. }

Test it Now

Output:

55

45

There are many ways to create an object in java. They are:

o By new keyword

o By newInstance() method

o By clone() method

o By deserialization

o By factory method etc.

Constructors in Java

1. Types of constructors

https://www.javatpoint.com/opr/test.jsp?filename=TestRectangle1
https://www.javatpoint.com/java-constructor#constypes

52

1. Default Constructor

2. Parameterized Constructor

2. Constructor Overloading

3. Does constructor return any value?

4. Copying the values of one object into another

5. Does constructor perform other tasks instead of the initialization

In Java, a constructor is a block of codes similar to the method. It is called when an

instance of the class is created. At the time of calling constructor, memory for the object is

allocated in the memory.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one constructor is called.

It calls a default constructor if there is no constructor available in the class. In such case,

Java compiler provides a default constructor by default.

There are two types of constructors in Java: no-arg constructor, and parameterized

constructor.

Note: It is called constructor because it constructs the values at the time of object creation.

It is not necessary to write a constructor for a class. It is because java compiler creates a default

constructor if your class doesn't have any.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

https://www.javatpoint.com/java-constructor#consdef
https://www.javatpoint.com/java-constructor#conspara
https://www.javatpoint.com/java-constructor#consoverloading
https://www.javatpoint.com/java-constructor#consdoesreturn
https://www.javatpoint.com/java-constructor#conscopy
https://www.javatpoint.com/java-constructor#consothertask
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java

53

Java Default Constructor

A constructor is called "Default Constructor" when it doesn't have any

parameter.

Syntax of default constructor:

1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at

the time of object creation.

1. //Java Program to create and call a default constructor

2. class Bike1{

3. //creating a default constructor

4. Bike1(){System.out.println("Bike is created");}

5. //main method

6. public static void main(String args[]){

7. //calling a default constructor

8. Bike1 b=new Bike1();

9. }

10. }

54

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a

default constructor.

Example of default constructor that displays the default values

1. //Let us see another example of default constructor

2. //which displays the default values

3. class Student3{

4. int id;

5. String name;

6. //method to display the value of id and name

7. void display(){System.out.println(id+" "+name);}

8.

9. public static void main(String args[]){

10. //creating objects

11. Student3 s1=new Student3();

12. Student3 s2=new Student3();

13. //displaying values of the object

14. s1.display();

15. s2.display();

16. }

17. }

Output:

0 null

55

0 null

Explanation:In the above class,you are not creating any constructor so compiler

provides you a default constructor. Here 0 and null values are provided by default

constructor.

Java Parameterized Constructor

A constructor which has a specific number of parameters is called a

parameterized constructor.

Why use the parameterized constructor?

The parameterized constructor is used to provide different values to distinct

objects. However, you can provide the same values also.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two

parameters. We can have any number of parameters in the constructor.

1. //Java Program to demonstrate the use of the parameterized constructor.

2. class Student4{

3. int id;

4. String name;

5. //creating a parameterized constructor

6. Student4(int i,String n){

7. id = i;

8. name = n;

9. }

10. //method to display the values

11. void display(){System.out.println(id+" "+name);}

12.

13. public static void main(String args[]){

14. //creating objects and passing values

15. Student4 s1 = new Student4(111,"Karan");

16. Student4 s2 = new Student4(222,"Aryan");

17. //calling method to display the values of object

18. s1.display();

56

19. s2.display();

20. }

21. }

Output:

111 Karan

222 Aryan

Constructor Overloading in Java

In Java, a constructor is just like a method but without return type. It can also be

overloaded like Java methods.

Constructor overloading in Java is a technique of having more than one constructor with

different parameter lists. They are arranged in a way that each constructor performs a different task.

They are differentiated by the compiler by the number of parameters in the list and their types.

Example of Constructor Overloading

1. //Java program to overload constructors

2. class Student5{

3. int id;

4. String name;

5. int age;

6. //creating two arg constructor

7. Student5(int i,String n){

8. id = i;

9. name = n;

10. }

11. //creating three arg constructor

12. Student5(int i,String n,int a){

13. id = i;

14. name = n;

15. age=a;

16. }

17. void display(){System.out.println(id+" "+name+" "+age);}

18.

https://www.javatpoint.com/method-overloading-in-java

57

19. public static void main(String args[]){

20. Student5 s1 = new Student5(111,"Karan");

21. Student5 s2 = new Student5(222,"Aryan",25);

22. s1.display();

23. s2.display();

24. }

25. }

Output:

111 Karan 0

222 Aryan 25

Difference between constructor and method in Java

There are many differences between constructors and methods. They are given

below.

Java Constructor JavaMethod

A constructor is used to

initialize the state of an object.

A method is

used to

expose the

behavior of an

object.

A constructor must not have

a return type.

A method

must have a

return type.

The constructor is invoked

implicitly.

The method is

invoked

explicitly.

58

The Java compiler provides

a default constructor if you don't

have any constructor in a class.

The

method is not

provided by

the compiler

in any case.

The constructor name must

be same as the class name.

The

method name

may or may

not be same

as the class

name.

Java Copy Constructor

There is no copy constructor in Java. However, we can copy the values from one

object to another like copy constructor in C++.

59

There are many ways to copy the values of one object into another in Java. They

are:

o By constructor

o By assigning the values of one object into another

o By clone() method of Object class

In this example, we are going to copy the values of one object into another using

Java constructor.

1. //Java program to initialize the values from one object to another object.

2. class Student6{

3. int id;

4. String name;

5. //constructor to initialize integer and string

6. Student6(int i,String n){

7. id = i;

8. name = n;

9. }

10. //constructor to initialize another object

11. Student6(Student6 s){

12. id = s.id;

13. name =s.name;

14. }

15. void display(){System.out.println(id+" "+name);}

16.

17. public static void main(String args[]){

18. Student6 s1 = new Student6(111,"Karan");

19. Student6 s2 = new Student6(s1);

20. s1.display();

21. s2.display();

22. }

23. }

Output:

60

111 Karan

111 Karan

Copying values without constructor

We can copy the values of one object into another by assigning the objects values to

another object. In this case, there is no need to create the constructor.

1. class Student7{

2. int id;

3. String name;

4. Student7(int i,String n){

5. id = i;

6. name = n;

7. }

8. Student7(){}

9. void display(){System.out.println(id+" "+name);}

10.

11. public static void main(String args[]){

12. Student7 s1 = new Student7(111,"Karan");

13. Student7 s2 = new Student7();

14. s2.id=s1.id;

15. s2.name=s1.name;

16. s1.display();

17. s2.display();

18. }

19. }

Output:

111 Karan

111 Karan

Method Overloading in Java

1. Different ways to overload the method

https://www.javatpoint.com/method-overloading-in-java#monumberofways

61

2. By changing the no. of arguments

3. By changing the datatype

4. Why method overloading is not possible by changing the return type

5. Can we overload the main method

6. method overloading with Type Promotion

If a class has multiple methods having same name but different in parameters, it

is known as Method Overloading.

If we have to perform only one operation, having same name of the methods

increases the readability of the program.

Suppose you have to perform addition of the given numbers but there can be any number

of arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for

three parameters then it may be difficult for you as well as other programmers to understand the

behavior of the method because its name differs.

So, we perform method overloading to figure out the program quickly.

Advantage of method overloading

Method overloading increases the readability of the program.

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

1) Method Overloading: changing no. of arguments

In this example, we have created two methods, first add() method performs addition of

two numbers and second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create

instance for calling methods.

1. class Adder{

2. static int add(int a,int b){return a+b;}

https://www.javatpoint.com/method-overloading-in-java#mobynumber
https://www.javatpoint.com/method-overloading-in-java#mobydatatype
https://www.javatpoint.com/method-overloading-in-java#moreturntype
https://www.javatpoint.com/method-overloading-in-java#momainmethod
https://www.javatpoint.com/method-overloading-in-java#motypepromotion
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-programs
https://www.javatpoint.com/static-keyword-in-java

62

3. static int add(int a,int b,int c){return a+b+c;}

4. }

5. class TestOverloading1{

6. public static void main(String[] args){

7. System.out.println(Adder.add(11,11));

8. System.out.println(Adder.add(11,11,11));

9. }}

Output:

22

33

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The first add

method receives two integer arguments and second add method receives two double arguments.

1. class Adder{

2. static int add(int a, int b){return a+b;}

3. static double add(double a, double b){return a+b;}

4. }

5. class TestOverloading2{

6. public static void main(String[] args){

7. System.out.println(Adder.add(11,11));

8. System.out.println(Adder.add(12.3,12.6));

9. }}

Output:

22

24.9

1. class Adder{

2. static int add(int a,int b){return a+b;}

3. static double add(int a,int b){return a+b;}

4. }

5. class TestOverloading3{

6. public static void main(String[] args){

7. System.out.println(Adder.add(11,11));//ambiguity

https://www.javatpoint.com/java-data-types

63

8. }}

Output:

Compile Time Error: method add(int,int) is already defined in class Adder

System.out.println(Adder.add(11,11)); //Here, how can java determine which sum()

method should be called?

Overloading of java main() method

Yes, by method overloading. You can have any number of main methods in a class by

method overloading. But JVM calls main() method which receives string array as arguments only.

Let's see the simple example:

1. class TestOverloading4{

2. public static void main(String[] args){System.out.println("main with Str

ing[]");}

3. public static void main(String args){System.out.println("main with Strin

g");}

4. public static void main(){System.out.println("main without args");}

5. }

Output:

main with String[]

Method Overloading and Type Promotion

One type is promoted to another implicitly if no matching datatype is found.

Let's understand the concept by the figure given below:

https://www.javatpoint.com/jvm-java-virtual-machine

64

As displayed in the above diagram, byte can be promoted to short, int, long, float or

double. The short datatype can be promoted to int, long, float or double. The char datatype can be

promoted to int,long,float or double and so on.

Example of Method Overloading with TypePromotion

1. class OverloadingCalculation1{

2. void sum(int a,long b){System.out.println(a+b);}

3. void sum(int a,int b,int c){System.out.println(a+b+c);}

4.

5. public static void main(String args[]){

6. OverloadingCalculation1 obj=new OverloadingCalculation1();

7. obj.sum(20,20);//now second int literal will be promoted to long

8. obj.sum(20,20,20);

9.

10. }

11. }

Output:40

 60

65

Example of Method Overloading with Type Promotion if matching found

If there are matching type arguments in the method, type promotion is not performed.

1. class OverloadingCalculation2{

2. void sum(int a,int b){System.out.println("int arg method invoked");}

3. void sum(long a,long b){System.out.println("long arg method invoked"

);}

4.

5. public static void main(String args[]){

6. OverloadingCalculation2 obj=new OverloadingCalculation2();

7. obj.sum(20,20);//now int arg sum() method gets invoked

8. }

9. }

Output:int arg method invoked

Example of Method Overloading with Type Promotion in case of ambiguity

If there are no matching type arguments in the method, and each method promotes

similar number of arguments, there will be ambiguity.

1. class OverloadingCalculation3{

2. void sum(int a,long b){System.out.println("a method invoked");}

3. void sum(long a,int b){System.out.println("b method invoked");}

4.

5. public static void main(String args[]){

6. OverloadingCalculation3 obj=new OverloadingCalculation3();

7. obj.sum(20,20);//now ambiguity

8. }

9. }

Output:Compile Time Error

66

STATIC AND FIXED METHODS:

Static Method in java:

 Static methods are methods that do not operate on objects. A static method acts related

to a class declare a static method by using the static keyword as a modifier. To declare a method

as static is as follows:

Static returntype methodname(parameter)

{

//body of the method

}

We can call a static method from the outside of a class as follow:

classname.staticmethodname(parameters);

A method declared as static has several restrictions:

 They can only call the other static method.

 They must only access static data.

 They cannot refer to this in any other way.

Program:

class staticdemo

{

static void print()

{

System.out.println("java programming");

}

public static void main(String args[])

{

print();

}

}

67

Fixed method:

 A fixed method is one which cannot be overridden by a subclass. A fixed method can be

declared by prefixing the word-final before a method. We can use the keyword final to donate a

constant.

Program:

class finaldemo

{

public static void main(String arg[])

{

double paperwidth=8.5;

double paperheight=11;

System.out.println("paper size in centimeter:"

+paperwidth*CM_PER_INCH+"by"+paperheight*CM_PER_INCH);

public static final double CM_PER_INCH=2.45;

}

}

Java Inner Classes

1. Java Inner classes

2. Advantage of Inner class

3. Difference between nested class and inner class

4. Types of Nested classes

Java inner class or nested class is a class which is declared inside the class or

interface.

We use inner classes to logically group classes and interfaces in one place so that it can be

more readable and maintainable.

Additionally, it can access all the members of outer class including private data

members and methods.

Syntax of Inner class

1. class Java_Outer_class{

2. //code

https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class#nestedad
https://www.javatpoint.com/java-inner-class#nesteddiff
https://www.javatpoint.com/java-inner-class#nestedtypes

68

3. class Java_Inner_class{

4. //code

5. }

6. }

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as

follows:

1) Nested classes represent a special type of relationship that is it can access all the

members (data members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it

logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

Type Description

Member Inner

Class

A class created within class and outside

method.

Anonymous

Inner Class

A class created for implementing

interface or extending class. Its name is

decided by the java compiler.

Local Inner

Class

 A class created within method.

Static Nested

Class

A static class created within class.

Nested

Interface

An interface created within class or

interface.

https://www.javatpoint.com/member-inner-class
https://www.javatpoint.com/member-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/local-inner-class
https://www.javatpoint.com/local-inner-class
https://www.javatpoint.com/static-nested-class
https://www.javatpoint.com/static-nested-class
https://www.javatpoint.com/nested-interface
https://www.javatpoint.com/nested-interface

69

Difference between nested class and inner class in Java

Inner class is a part of nested class. Non-static nested classes are known as inner

classes.

Types of Nested classes

There are two types of nested classes non-static and static nested classes.The

non-static nested classes are also known as inner classes.

o Non-static nested class (inner class)

1. Member inner class

2. Anonymous inner class

3. Local inner class

STRINGS IN JAVA

Strings, which are widely used in Java programming, are a sequence of characters. In

Java programming language, strings are treated as objects.

o The Java platform provides the String class to create and manipulate

strings.

o Creating Strings

o The most direct way to create a string is to write −

o String greeting = "Hello world!";

o Whenever it encounters a string literal in your code, the compiler creates

a String object with its value in this case, "Hello world!'.

o As with any other object, you can create String objects by using the new keyword

and a constructor. The String class has 11 constructors that allow you to provide the initial value of

the string using different sources, such as an array of characters.

o Example

o publicclassStringDemo{

o

o publicstaticvoid main(String args[]){

o char[] helloArray ={'h','e','l','l','o','.'};

o String helloString =newString(helloArray);

70

o System.out.println(helloString);

o }

o }

o This will produce the following result −

o Output

o hello.

o Note − The String class is immutable, so that once it is created a String

object cannot be changed. If there is a necessity to make a lot of modifications to Strings

of characters, then you should use String Buffer & String Builder Classes.

o String Length

o Methods used to obtain information about an object are known as accessor

methods. One accessor method that you can use with strings is the length() method, which returns

the number of characters contained in the string object.

o The following program is an example of length(), method String class.

o Example

o publicclassStringDemo{

o

o publicstaticvoid main(String args[]){

o String palindrome ="Dot saw I was Tod";

o int len = palindrome.length();

o System.out.println("String Length is : "+ len);

o }

o }

o This will produce the following result −

o Output

o String Length is : 17

o Concatenating Strings

o The String class includes a method for concatenating two strings −

o string1.concat(string2);

o This returns a new string that is string1 with string2 added to it at the

end. You can also use the concat() method with string literals, as in −

https://www.tutorialspoint.com/java/java_string_buffer.htm

71

o "My name is ".concat("Zara");

o Strings are more commonly concatenated with the + operator, as in −

o "Hello," + " world" + "!"

o which results in −

o "Hello, world!"

o Let us look at the following example −

o Example

o publicclassStringDemo{

o

o publicstaticvoid main(String args[]){

o String string1 ="saw I was ";

o System.out.println("Dot "+ string1 +"Tod");

o }

o }

o This will produce the following result −

o Output

o Dot saw I was Tod

o Creating Format Strings

o You have printf() and format() methods to print output with formatted numbers.

The String class has an equivalent class method, format(), that returns a String object rather than a

PrintStream object.

o Using String's static format() method allows you to create a formatted

string that you can reuse, as opposed to a one-time print statement. For example, instead

of −

o Example

o System.out.printf("The value of the float variable is "+

o "%f, while the value of the integer "+

o "variable is %d, and the string "+

o "is %s", floatVar, intVar, stringVar);

o You can write –

72

o String fs;

o fs =String.format("The value of the float variable is "+

o "%f, while the value of the integer "+

o "variable is %d, and the string "+

o "is %s", floatVar, intVar, stringVar);

o System.out.println(fs);

Sr.No. Method & Description

73

1 char charAt(int index)

Returns the character at the specified index.

2 int compareTo(Object o)

Compares this String to another Object.

3 int compareTo(String anotherString)

Compares two strings lexicographically.

4 int compareToIgnoreCase(String str)

Compares two strings lexicographically,

ignoring case differences.

5 String concat(String str)

Concatenates the specified string to the end

of this string.

6 boolean contentEquals(StringBuffer sb)

Returns true if and only if this String

represents the same sequence of characters as the

specified StringBuffer.

7 static String copyValueOf(char[] data)

Returns a String that represents the

character sequence in the array specified.

8 static String copyValueOf(char[] data, int

offset, int count)

Returns a String that represents the

character sequence in the array specified.

9 boolean endsWith(String suffix)

Tests if this string ends with the specified

suffix.

10 boolean equals(Object anObject)

Compares this string to the specified object.

https://www.tutorialspoint.com/java/java_string_charat.htm
https://www.tutorialspoint.com/java/java_string_compareto.htm
https://www.tutorialspoint.com/java/java_string_compareto_anotherstring.htm
https://www.tutorialspoint.com/java/java_string_comparetoignorecase.htm
https://www.tutorialspoint.com/java/java_string_concat.htm
https://www.tutorialspoint.com/java/java_string_contentequals.htm
https://www.tutorialspoint.com/java/java_string_copyvalueof.htm
https://www.tutorialspoint.com/java/java_string_copyvalueof_dataoffsetcount.htm
https://www.tutorialspoint.com/java/java_string_copyvalueof_dataoffsetcount.htm
https://www.tutorialspoint.com/java/java_string_endswith.htm
https://www.tutorialspoint.com/java/java_string_equals.htm

74

11 boolean equalsIgnoreCase(String

anotherString)

Compares this String to another String,

ignoring case considerations.

12 byte[] getBytes()

Encodes this String into a sequence of bytes

using the platform's default charset, storing the

result into a new byte array.

13 byte[] getBytes(String charsetName)

Encodes this String into a sequence of bytes

using the named charset, storing the result into a

new byte array.

14 void getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin)

Copies characters from this string into the

destination character array.

15 int hashCode()

Returns a hash code for this string.

16 int indexOf(int ch)

Returns the index within this string of the

first occurrence of the specified character.

17 int indexOf(int ch, int fromIndex)

Returns the index within this string of the

first occurrence of the specified character, starting

the search at the specified index.

18 int indexOf(String str)

Returns the index within this string of the

first occurrence of the specified substring.

19 int indexOf(String str, int fromIndex)

Returns the index within this string of the

first occurrence of the specified substring, starting at

the specified index.

https://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
https://www.tutorialspoint.com/java/java_string_equalsignorecase.htm
https://www.tutorialspoint.com/java/java_string_getbytes.htm
https://www.tutorialspoint.com/java/java_string_getbytes_charsetname.htm
https://www.tutorialspoint.com/java/java_string_getchars.htm
https://www.tutorialspoint.com/java/java_string_getchars.htm
https://www.tutorialspoint.com/java/java_string_hashcode.htm
https://www.tutorialspoint.com/java/java_string_indexof.htm
https://www.tutorialspoint.com/java/java_string_indexof_fromindex.htm
https://www.tutorialspoint.com/java/java_string_indexof_str.htm
https://www.tutorialspoint.com/java/java_string_indexof_strfromindex.htm

75

20 String intern()

Returns a canonical representation for the

string object.

21 int lastIndexOf(int ch)

Returns the index within this string of the

last occurrence of the specified character.

22 int lastIndexOf(int ch, int fromIndex)

Returns the index within this string of the

last occurrence of the specified character, searching

backward starting at the specified index.

23 int lastIndexOf(String str)

Returns the index within this string of the

rightmost occurrence of the specified substring.

24 int lastIndexOf(String str, int fromIndex)

Returns the index within this string of the

last occurrence of the specified substring, searching

backward starting at the specified index.

25 int length()

Returns the length of this string.

26 boolean matches(String regex)

Tells whether or not this string matches the

given regular expression.

27 boolean regionMatches(boolean ignoreCase,

int toffset, String other, int ooffset, int len)

Tests if two string regions are equal.

28 boolean regionMatches(int toffset, String

other, int ooffset, int len)

Tests if two string regions are equal.

29 String replace(char oldChar, char newChar)

Returns a new string resulting from

https://www.tutorialspoint.com/java/java_string_intern.htm
https://www.tutorialspoint.com/java/java_string_lastindexof.htm
https://www.tutorialspoint.com/java/java_string_lastindexof_chfromindex.htm
https://www.tutorialspoint.com/java/java_string_lastindexof_str.htm
https://www.tutorialspoint.com/java/java_string_lastindexof_fromindex.htm
https://www.tutorialspoint.com/java/java_string_length.htm
https://www.tutorialspoint.com/java/java_string_matches.htm
https://www.tutorialspoint.com/java/java_string_regionmatches_ignorecase.htm
https://www.tutorialspoint.com/java/java_string_regionmatches_ignorecase.htm
https://www.tutorialspoint.com/java/java_string_regionmatches.htm
https://www.tutorialspoint.com/java/java_string_regionmatches.htm
https://www.tutorialspoint.com/java/java_string_replace.htm

76

replacing all occurrences of oldChar in this string

with newChar.

30 String replaceAll(String regex, String

replacement

Replaces each substring of this string that

matches the given regular expression with the given

replacement.

31 String replaceFirst(String regex, String

replacement)

Replaces the first substring of this string that

matches the given regular expression with the given

replacement.

32 String[] split(String regex)

Splits this string around matches of the given

regular expression.

33 String[] split(String regex, int limit)

Splits this string around matches of the given

regular expression.

34 boolean startsWith(String prefix)

Tests if this string starts with the specified

prefix.

35 boolean startsWith(String prefix, int toffset)

Tests if this string starts with the specified

prefix beginning a specified index.

36 CharSequence subSequence(int beginIndex,

int endIndex)

Returns a new character sequence that is a

subsequence of this sequence.

37 String substring(int beginIndex)

Returns a new string that is a substring of

https://www.tutorialspoint.com/java/java_string_replaceall.htm
https://www.tutorialspoint.com/java/java_string_replaceall.htm
https://www.tutorialspoint.com/java/java_string_replacefirst.htm
https://www.tutorialspoint.com/java/java_string_replacefirst.htm
https://www.tutorialspoint.com/java/java_string_split.htm
https://www.tutorialspoint.com/java/java_string_split_regexlimit.htm
https://www.tutorialspoint.com/java/java_string_startswith.htm
https://www.tutorialspoint.com/java/java_string_startswith_prefixtoffset.htm
https://www.tutorialspoint.com/java/java_string_subsequence.htm
https://www.tutorialspoint.com/java/java_string_subsequence.htm
https://www.tutorialspoint.com/java/java_string_substring.htm

77

this string.

38 String substring(int beginIndex, int

endIndex)

Returns a new string that is a substring of

this string.

39 char[] toCharArray()

Converts this string to a new character

array.

40 String toLowerCase()

Converts all of the characters in this String

to lower case using the rules of the default locale.

41 String toLowerCase(Locale locale)

Converts all of the characters in this String

to lower case using the rules of the given Locale.

42 String toString()

This object (which is already a string!) is

itself returned.

43 String toUpperCase()

Converts all of the characters in this String

to upper case using the rules of the default locale.

44 String toUpperCase(Locale locale)

Converts all of the characters in this String

to upper case using the rules of the given Locale.

https://www.tutorialspoint.com/java/java_string_substring_beginendindex.htm
https://www.tutorialspoint.com/java/java_string_substring_beginendindex.htm
https://www.tutorialspoint.com/java/java_string_tochararray.htm
https://www.tutorialspoint.com/java/java_string_tolowercase.htm
https://www.tutorialspoint.com/java/java_string_tolowercase_locale.htm
https://www.tutorialspoint.com/java/java_string_tostring.htm
https://www.tutorialspoint.com/java/java_string_touppercase.htm
https://www.tutorialspoint.com/java/java_string_touppercase_locale.htm

78

Method Overriding in Java

1. Understanding the problem without method overriding

2. Can we override the static method

3. Method overloading vs. method overriding

If subclass (child class) has the same method as declared in the parent class, it is

known as method overriding in Java.

In other words, If a subclass provides the specific implementation of the method

that has been declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

o Method overriding is used to provide the specific implementation of a

method which is already provided by its superclass.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. The method must have the same name as in the parent class

2. The method must have the same parameter as in the parent class.

3. There must be an IS-A relationship (inheritance).

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the parent

class but it has some specific implementation. The name and parameter of the method are the

same, and there is IS-A relationship between the classes, so there is method overriding.

45 String trim()

Returns a copy of the string, with leading

and trailing whitespace omitted.

46 static String valueOf(primitive data type x)

Returns the string representation of the

passed data type argument.

https://www.javatpoint.com/method-overriding-in-java#moverproblem
https://www.javatpoint.com/method-overriding-in-java#movercanstatic
https://www.javatpoint.com/method-overriding-in-java#moverdiff
https://www.tutorialspoint.com/java/java_string_trim.htm
https://www.tutorialspoint.com/java/java_string_valueof.htm

79

1. //Java Program to illustrate the use of Java Method Overriding

2. //Creating a parent class.

3. class Vehicle{

4. //defining a method

5. void run(){System.out.println("Vehicle is running");}

6. }

7. //Creating a child class

8. class Bike2 extends Vehicle{

9. //defining the same method as in the parent class

10. void run(){System.out.println("Bike is running safely");}

11.

12. public static void main(String args[]){

13. Bike2 obj = new Bike2();//creating object

14. obj.run();//calling method

15. }

16. }

Output:

Bike is running safely

Java method overriding is mostly used in Runtime Polymorphism which we

will learn in next pages.

Super Keyword in Java

The super keyword in Java is a reference variable which is used to refer

immediate parent class object.

Whenever you create the instance of subclass, an instance of parent class is created

implicitly which is referred by super reference variable.

Usage of Java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

80

super example: real use

Let's see the real use of super keyword. Here, Emp class inherits Person class so all the

properties of Person will be inherited to Emp by default. To initialize all the property, we are

using parent class constructor from child class. In such way, we are reusing the parent class

constructor.

1. class Person{

2. int id;

3. String name;

4. Person(int id,String name){

5. this.id=id;

6. this.name=name;

7. }

8. }

9. class Emp extends Person{

10. float salary;

11. Emp(int id,String name,float salary){

12. super(id,name);//reusing parent constructor

13. this.salary=salary;

14. }

15. void display(){System.out.println(id+" "+name+" "+salary);}

16. }

17. class TestSuper5{

18. public static void main(String[] args){

19. Emp e1=new Emp(1,"ankit",45000f);

20. e1.display();

21. }}

Output:

1 ankit 45000

Abstract class in Java

A class which is declared with the abstract keyword is known as an abstract class in Java.

It can have abstract and non-abstract methods (method with the body).

https://www.javatpoint.com/java-tutorial

81

Before learning the Java abstract class, let's understand the abstraction in Java

first.

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only

functionality to the user.

Another way, it shows only essential things to the user and hides the internal details, for

example, sending SMS where you type the text and send the message. You don't know the

internal processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract

and non-abstract methods. It needs to be extended and its method implemented. It cannot be

instantiated.

Points to Remember

o An abstract class must be declared with an abstract keyword.

o It can have abstract and non-abstract methods.

o It cannot be instantiated.

o It can have constructors and static methods also.

o It can have final methods which will force the subclass not to change the

body of the method.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-constructor

82

Example of abstract class

1. abstract class A{}

Abstract Method in Java

A method which is declared as abstract and does not have implementation is

known as an abstract method.

Example of abstract method

1. abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method

In this example, Bike is an abstract class that contains only one abstract method run. Its

implementation is provided by the Honda class.

1. abstract class Bike{

2. abstract void run();

83

3. }

4. class Honda4 extends Bike{

5. void run(){System.out.println("running safely");}

6. public static void main(String args[]){

7. Bike obj = new Honda4();

8. obj.run();

9. }

10. }

running safely

this keyword in java

There can be a lot of usage of java this keyword. In java, this is a reference

variable that refers to the current object.

Usage of java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.

2. this can be used to invoke current class method (implicitly)

3. this() can be used to invoke current class constructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this can be used to return the current class instance from the method.

7. The java.lang.Object.finalize() is called by the garbage collector on an

object when garbage collection determines that there are no more references to the

object. A subclass overrides the finalize method to dispose of system resources or to

perform other cleanup.

84

8. Declaration

9. Following is the declaration for java.lang.Object.finalize() method

10. protected void finalize()

11. Parameters

12. NA

13. Return Value

14. This method does not return a value.

15. Exception

16. Throwable − the Exception raised by this method

17. Example

18. The following example shows the usage of lang.Object.finalize() method.

19. package com.tutorialspoint;

20.

21. import java.util.*;

22.

23. publicclassObjectDemoextendsGregorianCalendar{

24.

25. publicstaticvoid main(String[] args){

26. try{

27. // create a new ObjectDemo object

28. ObjectDemo cal =newObjectDemo();

29.

30. // print current time

31. System.out.println(""+ cal.getTime());

32.

33. // finalize cal

34. System.out.println("Finalizing...");

35. cal.finalize();

36. System.out.println("Finalized.");

37.

38. }catch(Throwable ex){

39. ex.printStackTrace();

85

40. }

41. }

42. }

43. Let us compile and run the above program, this will produce the

following result −

44. Sat Sep 22 00:27:21 EEST 2012

45. Finalizing...

46. Finalized.

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically.

In other words, it is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But,

in java it is performed automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the

unreferenced objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we

don't need to make extra efforts.

How can an object be unreferenced?

There are many ways:

o By nulling the reference

o By assigning a reference to another

o By anonymous object etc.

86

1) By nulling a reference:

1. Employee e=new Employee();

2. e=null;

2) By assigning a reference to another:

1. Employee e1=new Employee();

2. Employee e2=new Employee();

3. e1=e2;//now the first object referred by e1 is available for garbage collect

ion

3) By anonymous object:

1. new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage

collected. This method can be used to perform cleanup processing. This method is

defined in Object class as:

1. protected void finalize(){}

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup

processing. The gc() is found in System and Runtime classes.

87

1. public static void gc(){}

Simple Example of garbage collection in java

1. public class TestGarbage1{

2. public void finalize(){System.out.println("object is garbage collected");

}

3. public static void main(String args[]){

4. TestGarbage1 s1=new TestGarbage1();

5. TestGarbage1 s2=new TestGarbage1();

6. s1=null;

7. s2=null;

8. System.gc();

9. }

10. }

 object is garbage collected

 object is garbage collected

Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql

etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can

be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

88

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use

any directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to

keep the package within the same directory, you can use . (dot).

89

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be

accessible but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

1. //save by A.java

2. package pack;

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. import pack.*;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

90

8. obj.msg();

9. }

10. }

Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

1. //save by A.java

2.

3. package pack;

4. public class A{

5. public void msg(){System.out.println("Hello");}

6. }

1. //save by B.java

2. package mypack;

3. import pack.A;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

8. obj.msg();

9. }

10. }

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name every time

when you are accessing the class or interface.

91

It is generally used when two packages have same class name e.g. java.util and java.sql

packages contain Date class.

Example of package by import fully qualified name

1. //save by A.java

2. package pack;

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. class B{

4. public static void main(String args[]){

5. pack.A obj = new pack.A();//using fully qualified name

6. obj.msg();

7. }

8. }

Output:Hello

If you import a package, all the classes and interface of that package will be imported

excluding the classes and interfaces of the subpackages. Hence, you need to import the subpackage

as well.

92

Subpackage in java

Package inside the package is called the subpackage. It should be created to

categorize the package further.

Let's take an example, Sun Microsystem has definded a package named java that contains

many classes like System, String, Reader, Writer, Socket etc. These classes represent a particular

group e.g. Reader and Writer classes are for Input/Output operation, Socket and ServerSocket

classes are for networking etc and so on. So, Sun has subcategorized the java package into

subpackages such as lang, net, io etc. and put the Input/Output related classes in io package,

Server and ServerSocket classes in net packages and so on.

Example of Subpackage

1. package com.javatpoint.core;

2. class Simple{

3. public static void main(String args[]){

4. System.out.println("Hello subpackage");

5. }

6. }

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output:Hello subpackage

Java provides a number of access modifiers to set access levels for classes,

variables, methods, and constructors. The four access levels are −

 Visible to the package, the default. No modifiers are needed.

 Visible to the class only (private).

 Visible to the world (public).

 Visible to the package and all subclasses (protected).

Default Access Modifier - No Keyword

Default access modifier means we do not explicitly declare an access modifier

for a class, field, method, etc.

93

A variable or method declared without any access control modifier is available to any

other class in the same package. The fields in an interface are implicitly public static final and the

methods in an interface are by default public.

Example

Variables and methods can be declared without any modifiers, as in the

following examples −

String version ="1.5.1";

boolean processOrder(){

returntrue;

}

Private Access Modifier - Private

Methods, variables, and constructors that are declared private can only be

accessed within the declared class itself.

Private access modifier is the most restrictive access level. Class and interfaces

cannot be private.

Variables that are declared private can be accessed outside the class, if public

getter methods are present in the class.

Using the private modifier is the main way that an object encapsulates itself and

hides data from the outside world.

Example

The following class uses private access control −

publicclassLogger{

privateString format;

publicString getFormat(){

returnthis.format;

}

publicvoid setFormat(String format){

this.format = format;

94

}

}

Here, the format variable of the Logger class is private, so there's no way for

other classes to retrieve or set its value directly.

So, to make this variable available to the outside world, we defined two public

methods: getFormat(), which returns the value of format, and setFormat(String), which sets its

value.

Public Access Modifier - Public

A class, method, constructor, interface, etc. declared public can be accessed from any

other class. Therefore, fields, methods, blocks declared inside a public class can be accessed from

any class belonging to the Java Universe.

However, if the public class we are trying to access is in a different package, then the

public class still needs to be imported. Because of class inheritance, all public methods and

variables of a class are inherited by its subclasses.

Example

The following function uses public access control −

publicstaticvoid main(String[] arguments){

// ...

}

The main() method of an application has to be public. Otherwise, it could not be

called by a Java interpreter (such as java) to run the class.

Protected Access Modifier - Protected

Variables, methods, and constructors, which are declared protected in a superclass can be

accessed only by the subclasses in other package or any class within the package of the protected

members' class.

The protected access modifier cannot be applied to class and interfaces. Methods, fields

can be declared protected, however methods and fields in a interface cannot be declared protected.

Protected access gives the subclass a chance to use the helper method or variable, while

preventing a nonrelated class from trying to use it.

95

Example

The following parent class uses protected access control, to allow its child class

override openSpeaker() method −

classAudioPlayer{

protectedboolean openSpeaker(Speaker sp){

// implementation details

}

}

classStreamingAudioPlayerextendsAudioPlayer{

boolean openSpeaker(Speaker sp){

// implementation details

}

}

Here, if we define openSpeaker() method as private, then it would not be accessible from

any other class other than AudioPlayer. If we define it as public, then it would become accessible

to all the outside world. But our intention is to expose this method to its subclass only, that’s why

we have used protected modifier.

Access Control and Inheritance

The following rules for inherited methods are enforced −

 Methods declared public in a superclass also must be public in all

subclasses.

 Methods declared protected in a superclass must either be protected or

public in subclasses; they cannot be private.

 Methods declared private are not inherited at all, so there is no rule for

them.

Interface in Java

An interface in Java is a blueprint of a class. It has static constants and abstract

methods.

96

The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body. It is used to achieve abstraction and

multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It

cannot have a method body.

Java Interface also represents the IS-A relationship.

It cannot be instantiated just like the abstract class.

Since Java 8, we can have default and static methods in an interface.

Since Java 9, we can have private methods in an interface.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

97

How to declare an interface?

An interface is declared by using the interface keyword. It provides total abstraction;

means all the methods in an interface are declared with the empty body, and all the fields are

public, static and final by default. A class that implements an interface must implement all the

methods declared in the interface.

Syntax:

1. interface <interface_name>{

2.

3. // declare constant fields

4. // declare methods that abstract

5. // by default.

6. }

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends

another interface, but a class implements an interface.

Java Interface Example

In this example, the Printable interface has only one method, and its implementation is

provided in the A6 class

.

98

1. interface printable{

2. void print();

3. }

4. class A6 implements printable{

5. public void print(){System.out.println("Hello");}

6.

7. public static void main(String args[]){

8. A6 obj = new A6();

9. obj.print();

10. }

11. }

Output:

Hello

Java Interface Example: Drawable

In this example, the Drawable interface has only one method. Its implementation is

provided by Rectangle and Circle classes. In a real scenario, an interface is defined by someone

else, but its implementation is provided by different implementation providers. Moreover, it is used

by someone else. The implementation part is hidden by the user who uses the interface.

File: TestInterface1.java

1. //Interface declaration: by first user

2. interface Drawable{

3. void draw();

4. }

5. //Implementation: by second user

6. class Rectangle implements Drawable{

7. public void draw(){System.out.println("drawing rectangle");}

8. }

9. class Circle implements Drawable{

10. public void draw(){System.out.println("drawing circle");}

11. }

12. //Using interface: by third user

13. class TestInterface1{

99

14. public static void main(String args[]){

15. Drawable d=new Circle();//In real scenario, object is provided by method

 e.g. getDrawable()

16. d.draw();

17. }}

Output:

drawing circle

Java Interface Example: Bank

Example of java interface which provides the implementation of Bank interface.

File: TestInterface2.java

1. interface Bank{

2. float rateOfInterest();

3. }

4. class SBI implements Bank{

5. public float rateOfInterest(){return 9.15f;}

6. }

7. class PNB implements Bank{

8. public float rateOfInterest(){return 9.7f;}

9. }

10. class TestInterface2{

11. public static void main(String[] args){

12. Bank b=new SBI();

13. System.out.println("ROI: "+b.rateOfInterest());

14. }}

Output:

ROI: 9.15

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is

known as multiple inheritance.

100

1. interface Printable{

2. void print();

3. }

4. interface Showable{

5. void show();

6. }

7. class A7 implements Printable,Showable{

8. public void print(){System.out.println("Hello");}

9. public void show(){System.out.println("Welcome");}

10.

11. public static void main(String args[]){

12. A7 obj = new A7();

13. obj.print();

14. obj.show();

15. }

16. }

Output

Hello

 Welcome

Multiple inheritance is not supported in the case of class because of ambiguity. However,

it is supported in case of an interface because there is no ambiguity. It is because its

implementation is provided by the implementation class. For example:

https://www.javatpoint.com/object-and-class-in-java

101

1. interface Printable{

2. void print();

3. }

4. interface Showable{

5. void print();

6. }

7.

8. class TestInterface3 implements Printable, Showable{

9. public void print(){System.out.println("Hello");}

10. public static void main(String args[]){

11. TestInterface3 obj = new TestInterface3();

12. obj.print();

13. }

14. }

Output:

Hello

As you can see in the above example, Printable and Showable interface have same

methods but its implementation is provided by class TestTnterface1.

Interface inheritance

A class implements an interface, but one interface extends another interface.

1. interface Printable{

2. void print();

3. }

4. interface Showable extends Printable{

5. void show();

6. }

7. class TestInterface4 implements Showable{

8. public void print(){System.out.println("Hello");}

9. public void show(){System.out.println("Welcome");}

10.

11. public static void main(String args[]){

12. TestInterface4 obj = new TestInterface4();

102

13. obj.print();

14. obj.show();

15. }

16. }

Output:

Hello

Welcome

Default Method in Interface

Let's see an example:

File: TestInterfaceDefault.java

1. interface Drawable{

2. void draw();

3. default void msg(){System.out.println("default method");}

4. }

5. class Rectangle implements Drawable{

6. public void draw(){System.out.println("drawing rectangle");}

7. }

8. class TestInterfaceDefault{

9. public static void main(String args[]){

10. Drawable d=new Rectangle();

11. d.draw();

12. d.msg();

13. }}

Output:

drawing rectangle

default method

Java 8 Static Method in Interface

we can have static method in interface. Let's see an example:

103

File: TestInterfaceStatic.java

1. interface Drawable{

2. void draw();

3. static int cube(int x){return x*x*x;}

4. }

5. class Rectangle implements Drawable{

6. public void draw(){System.out.println("drawing rectangle");}

7. }

8.

9. class TestInterfaceStatic{

10. public static void main(String args[]){

11. Drawable d=new Rectangle();

12. d.draw();

13. System.out.println(Drawable.cube(3));

14. }}

Output:

drawing rectangle

27

Exception Handling in Java

The Exception Handling in Java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can be maintained.

In this page, we will learn about Java exceptions, its type and the difference between

checked and unchecked exceptions.

What is Exception in Java

In Java, an exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime.

What is Exception Handling

Exception Handling is a mechanism to handle runtime errors such as

ClassNotFoundException, IOException, SQLException, RemoteException, etc.

104

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the

application. An exception normally disrupts the normal flow of the application that is why we

use exception handling. Let's take a scenario:

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;

5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

10. statement 10;

Suppose there are 10 statements in your program and there occurs an exception at

statement 5, the rest of the code will not be executed i.e. statement 6 to 10 will not be executed. If

we perform exception handling, the rest of the statement will be executed. That is why we use

exception handling in Java.

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy which is

inherited by two subclasses: Exception and Error. A hierarchy of Java Exception classes are given

below:

https://www.javatpoint.com/java-tutorial

105

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. Here, an error is

considered as the unchecked exception. According to Oracle, there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

106

Difference between Checked and Unchecked Exceptions

1) Checked Exception

The classes which directly inherit Throwable class except RuntimeException and Error are

known as checked exceptions e.g. IOException, SQLException etc. Checked exceptions are

checked at compile-time.

2) Unchecked Exception

The classes which inherit RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked

exceptions are not checked at compile-time, but they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError,

AssertionError etc.

107

Java Exception Keywords

There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

Try The "try" keyword is

used to specify a block where

we should place exception

code. The try block must be

followed by either catch or

finally. It means, we can't use

try block alone.

catch The "catch" block is

used to handle the exception.

It must be preceded by try

block which means we can't

use catch block alone. It can

be followed by finally block

later.

finally The "finally" block is

used to execute the important

code of the program. It is

executed whether an

exception is handled or not.

throw The "throw" keyword

is used to throw an exception.

throws The "throws"

keyword is used to declare

exceptions. It doesn't throw

108

an exception. It specifies that

there may occur an exception

in the method. It is always

used with method signature.

Java Exception Handling Example

Let's see an example of Java Exception Handling where we using a try-catch

statement to handle the exception.

1. public class JavaExceptionExample{

2. public static void main(String args[]){

3. try{

4. //code that may raise exception

5. int data=100/0;

6. }catch(ArithmeticException e){System.out.println(e);}

7. //rest code of the program

8. System.out.println("rest of the code...");

9. }

10. }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code

Both throw and throws are the concepts of exception handing in which throw is used to

explicitly throw an exception from a method or any block of code while throws are used in the

signature of the method to indicate that this method might throw one of the listed type exceptions.

The following are the important differences between throw and throws.

109

Sr.

No.

Key thr

ow

throws

1

Definition Throw is

a

keyword

which is

used to

throw an

exception

explicitly

in the

program

inside a

function

or inside

a block of

code.

Throws

is a

keyword

used in

the

method

signature

used to

declare

an

exceptio

n which

might

get

thrown

by the

function

while

executin

g the

code.

2

Internal

implementa

tion

Internally

throw is

implemen

ted as it is

allowed

to throw

only

single

exception

On other

hand we

can

declare

multiple

exceptio

ns with

throws

keyword

110

at a time

i.e we

cannot

throw

multiple

exception

with

throw

keyword.

that

could get

thrown

by the

function

where

throws

keyword

is used.

3

Type of exception With

throw

keyword

we can

propagate

only

unchecke

d

exception

i.e

checked

exception

cannot be

propagate

d using

throw.

On other

hand

with

throws

keyword

both

checked

and

uncheck

ed

exceptio

ns can be

declared

and for

the

propagat

ion

checked

exceptio

n must

use

throws

111

keyword

followed

by

specific

exceptio

n class

name.

4

Syntax Syntax

wise

throw

keyword

is

followed

by the

instance

variable.

On other

hand

syntax

wise

throws

keyword

is

followed

by

exceptio

n class

names.

5

Declaration In order

to use

throw

keyword

we should

know that

throw

keyword

is used

within the

On other

hand

throws

keyword

is used

with the

method

signature

.

112

THREADS IN JAVA

 Java is a multi-threaded programming language which means we can develop

multi-threaded program using Java. A multi-threaded program contains two or more parts that can

run concurrently and each part can handle a different task at the same time making optimal use of

the available resources specially when your computer has multiple CPUs.

By definition, multitasking is when multiple processes share common processing resources

such as a CPU. Multi-threading extends the idea of multitasking into applications where you can

subdivide specific operations within a single application into individual threads. Each of the

threads can run in parallel. The OS divides processing time not only among different applications,

but also among each thread within an application.

Multi-threading enables you to write in a way where multiple activities can proceed

concurrently in the same program.

Life Cycle of a Thread

A thread goes through various stages in its life cycle. For example, a thread is born,

started, runs, and then dies. The following diagram shows the complete life cycle of a thread.

Following are the stages of the life cycle −

 New − A new thread begins its life cycle in the new state. It remains in

this state until the program starts the thread. It is also referred to as a born thread.

 Runnable − After a newly born thread is started, the thread becomes

runnable. A thread in this state is considered to be executing its task.

method.

113

 Waiting − Sometimes, a thread transitions to the waiting state while the

thread waits for another thread to perform a task. A thread transitions back to the

runnable state only when another thread signals the waiting thread to continue executing.

 Timed Waiting − A runnable thread can enter the timed waiting state for

a specified interval of time. A thread in this state transitions back to the runnable state

when that time interval expires or when the event it is waiting for occurs.

 Terminated (Dead) − A runnable thread enters the terminated state

when it completes its task or otherwise terminates.

Thread Priorities

Every Java thread has a priority that helps the operating system determine the

order in which threads are scheduled.

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1)

and MAX_PRIORITY (a constant of 10). By default, every thread is given priority

NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should be

allocated processor time before lower-priority threads. However, thread priorities cannot

guarantee the order in which threads execute and are very much platform dependent.

114

Create a Thread by Implementing a Runnable Interface

If your class is intended to be executed as a thread then you can achieve this by

implementing a Runnable interface. You will need to follow three basic steps −

Step 1

As a first step, you need to implement a run() method provided by

a Runnable interface. This method provides an entry point for the thread and you will

put your complete business logic inside this method. Following is a simple syntax of the

run() method −

public void run()

Step 2

As a second step, you will instantiate a Thread object using the following

constructor −

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements

the Runnable interface and threadName is the name given to the new thread.

Step 3

Once a Thread object is created, you can start it by calling start() method, which

executes a call to run() method. Following is a simple syntax of start() method −

void start();

Example

Here is an example that creates a new thread and starts running it −

classRunnableDemoimplementsRunnable{

privateThread t;

privateString threadName;

RunnableDemo(String name){

 threadName = name;

System.out.println("Creating "+ threadName);

}

publicvoid run(){

115

System.out.println("Running "+ threadName);

try{

for(int i =4; i >0; i--){

System.out.println("Thread: "+ threadName +", "+ i);

// Let the thread sleep for a while.

Thread.sleep(50);

}

}catch(InterruptedException e){

System.out.println("Thread "+ threadName +" interrupted.");

}

System.out.println("Thread "+ threadName +" exiting.");

}

publicvoid start (){

System.out.println("Starting "+ threadName);

if(t ==null){

 t =newThread(this, threadName);

 t.start ();

}

}

}

publicclassTestThread{

publicstaticvoid main(String args[]){

RunnableDemo R1 =newRunnableDemo("Thread-1");

 R1.start();

RunnableDemo R2 =newRunnableDemo("Thread-2");

 R2.start();

}

}

This will produce the following result −

116

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Create a Thread by Extending a Thread Class

The second way to create a thread is to create a new class that extends Thread class using

the following two simple steps. This approach provides more flexibility in handling multiple

threads created using available methods in Thread class.

Step 1

You will need to override run() method available in Thread class. This method provides

an entry point for the thread and you will put your complete business logic inside this method.

Following is a simple syntax of run() method −

public void run()

Step 2

Once Thread object is created, you can start it by calling start() method, which executes

a call to run() method. Following is a simple syntax of start() method −

void start();

Example

Here is the preceding program rewritten to extend the Thread −

117

classThreadDemoextendsThread{

privateThread t;

privateString threadName;

ThreadDemo(String name){

 threadName = name;

System.out.println("Creating "+ threadName);

}

publicvoid run(){

System.out.println("Running "+ threadName);

try{

for(int i =4; i >0; i--){

System.out.println("Thread: "+ threadName +", "+ i);

// Let the thread sleep for a while.

Thread.sleep(50);

}

}catch(InterruptedException e){

System.out.println("Thread "+ threadName +" interrupted.");

}

System.out.println("Thread "+ threadName +" exiting.");

}

publicvoid start (){

System.out.println("Starting "+ threadName);

if(t ==null){

 t =newThread(this, threadName);

 t.start ();

}

}

}

118

publicclassTestThread{

publicstaticvoid main(String args[]){

ThreadDemo T1 =newThreadDemo("Thread-1");

 T1.start();

ThreadDemo T2 =newThreadDemo("Thread-2");

 T2.start();

}

}

This will produce the following result −

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Thread Methods

Following is the list of important methods available in the Thread class.

119

Sr.No. Method & Description

1 public void start()

Starts the thread in a separate path of execution,

then invokes the run() method on this Thread object.

2 public void run()

If this Thread object was instantiated using a

separate Runnable target, the run() method is invoked on

that Runnable object.

3 public final void setName(String name)

Changes the name of the Thread object. There

is also a getName() method for retrieving the name.

4 public final void setPriority(int priority)

Sets the priority of this Thread object. The

possible values are between 1 and 10.

5 public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a

daemon thread.

6 public final void join(long millisec)

The current thread invokes this method on a

second thread, causing the current thread to block until

the second thread terminates or the specified number of

milliseconds passes.

7 public void interrupt()

Interrupts this thread, causing it to continue

execution if it was blocked for any reason.

8 public final boolean isAlive()

Returns true if the thread is alive, which is any

time after the thread has been started but before it runs

to completion.

120

The previous methods are invoked on a particular Thread object. The following methods

in the Thread class are static. Invoking one of the static methods performs the operation on the

currently running thread.

Sr.No. Method & Description

1 public static void yield()
Causes the currently running thread to yield to

any other threads of the same priority that are waiting to

be scheduled.

2 public static void sleep(long millisec)

Causes the currently running thread to block for

at least the specified number of milliseconds.

3 public static boolean holdsLock(Object x)

Returns true if the current thread holds the lock

on the given Object.

4 public static Thread currentThread()

Returns a reference to the currently running

thread, which is the thread that invokes this method.

5 public static void dumpStack()

Prints the stack trace for the currently running

thread, which is useful when debugging a multithreaded

application.

Example

The following ThreadClassDemo program demonstrates some of these methods

of the Thread class. Consider a class DisplayMessage which implements Runnable −

// File Name : DisplayMessage.java

// Create a thread to implement Runnable

publicclassDisplayMessageimplementsRunnable{

privateString message;

121

publicDisplayMessage(String message){

this.message = message;

}

publicvoid run(){

while(true){

System.out.println(message);

}

}

}

Following is another class which extends the Thread class −

// File Name : GuessANumber.java

// Create a thread to extentd Thread

publicclassGuessANumberextendsThread{

privateint number;

publicGuessANumber(int number){

this.number = number;

}

publicvoid run(){

int counter =0;

int guess =0;

do{

 guess =(int)(Math.random()*100+1);

System.out.println(this.getName()+" guesses "+ guess);

 counter++;

}while(guess != number);

System.out.println("** Correct!"+this.getName()+"in"+ counter +"guesses.**");

}

}

Following is the main program, which makes use of the above-defined classes −

122

// File Name : ThreadClassDemo.java

publicclassThreadClassDemo{

publicstaticvoid main(String[] args){

Runnable hello =newDisplayMessage("Hello");

Thread thread1 =newThread(hello);

 thread1.setDaemon(true);

 thread1.setName("hello");

System.out.println("Starting hello thread...");

 thread1.start();

Runnable bye =newDisplayMessage("Goodbye");

Thread thread2 =newThread(bye);

 thread2.setPriority(Thread.MIN_PRIORITY);

 thread2.setDaemon(true);

System.out.println("Starting goodbye thread...");

 thread2.start();

System.out.println("Starting thread3...");

Thread thread3 =newGuessANumber(27);

 thread3.start();

try{

 thread3.join();

}catch(InterruptedException e){

System.out.println("Thread interrupted.");

}

System.out.println("Starting thread4...");

Thread thread4 =newGuessANumber(75);

 thread4.start();

System.out.println("main() is ending...");

}

}

123

This will produce the following result. You can try this example again and again

and you will get a different result every time.

Output

Starting hello thread...

Starting goodbye thread...

Hello

Hello

Hello

Hello

Hello

Hello

Goodbye

Goodbye

Goodbye

Goodbye

Goodbye

.......

DEADLOCK

Deadlock describes a situation where two or more threads are blocked forever, waiting

for each other. Deadlock occurs when multiple threads need the same locks but obtain them in

different order. A Java multithreaded program may suffer from the deadlock condition because

the synchronized keyword causes the executing thread to block while waiting for the lock, or

monitor, associated with the specified object. Here is an example.

Example

publicclassTestThread{

publicstaticObjectLock1=newObject();

publicstaticObjectLock2=newObject();

publicstaticvoid main(String args[]){

ThreadDemo1 T1 =newThreadDemo1();

ThreadDemo2 T2 =newThreadDemo2();

 T1.start();

 T2.start();

124

}

privatestaticclassThreadDemo1extendsThread{

publicvoid run(){

synchronized(Lock1){

System.out.println("Thread 1: Holding lock 1...");

try{Thread.sleep(10);}

catch(InterruptedException e){}

System.out.println("Thread 1: Waiting for lock 2...");

synchronized(Lock2){

System.out.println("Thread 1: Holding lock 1 & 2...");

}

}

}

}

privatestaticclassThreadDemo2extendsThread{

publicvoid run(){

synchronized(Lock2){

System.out.println("Thread 2: Holding lock 2...");

try{Thread.sleep(10);}

catch(InterruptedException e){}

System.out.println("Thread 2: Waiting for lock 1...");

synchronized(Lock1){

System.out.println("Thread 2: Holding lock 1 & 2...");

}

}

}

}

}

125

When you compile and execute the above program, you find a deadlock situation and

following is the output produced by the program −

Output

Thread 1: Holding lock 1...

Thread 2: Holding lock 2...

Thread 1: Waiting for lock 2...

Thread 2: Waiting for lock 1...

The above program will hang forever because neither of the threads in position

to proceed and waiting for each other to release the lock,

APPLETS

An applet is a Java program that runs in a Web browser. An applet can be a

fully functional Java application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java

application, including the following −

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not

define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for

the applet is downloaded to the user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of

the Web browser or a separate runtime environment.

 The JVM on the user's machine creates an instance of the applet class

and invokes various methods during the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The

security of an applet is often referred to as sandbox security, comparing the applet to a child

playing in a sandbox with various rules that must be followed.

126

 Other classes that the applet needs can be downloaded in a single Java

Archive (JAR) file.

Life Cycle of an Applet

Four methods in the Applet class gives you the framework on which you build

any serious applet −

 init − This method is intended for whatever initialization is needed for your applet.

It is called after the param tags inside the applet tag have been processed.

 start − This method is automatically called after the browser calls the init method.

It is also called whenever the user returns to the page containing the applet after having gone off to

other pages.

 stop − This method is automatically called when the user moves off the page on

which the applet sits. It can, therefore, be called repeatedly in the same applet.

 destroy − This method is only called when the browser shuts down normally.

Because applets are meant to live on an HTML page, you should not normally leave resources

behind after a user leaves the page that contains the applet.

 paint − Invoked immediately after the start() method, and also any time the applet

needs to repaint itself in the browser. The paint() method is actually inherited from the java.awt.

A "Hello, World" Applet

Following is a simple applet named HelloWorldApplet.java −

import java.applet.*;

import java.awt.*;

publicclassHelloWorldAppletextendsApplet{

publicvoid paint (Graphics g){

 g.drawString ("Hello World",25,50);

}

}

These import statements bring the classes into the scope of our applet class −

 java.applet.Applet

 java.awt.Graphics

Without those import statements, the Java compiler would not recognize the

classes Applet and Graphics, which the applet class refers to.

127

The Applet Class

Every applet is an extension of the java.applet.Applet class. The base Applet class

provides methods that a derived Applet class may call to obtain information and services from the

browser context.

These include methods that do the following −

 Get applet parameters

 Get the network location of the HTML file that contains the applet

 Get the network location of the applet class directory

 Print a status message in the browser

 Fetch an image

 Fetch an audio clip

 Play an audio clip

 Resize the applet

Additionally, the Applet class provides an interface by which the viewer or browser

obtains information about the applet and controls the applet's execution. The viewer may −

 Request information about the author, version, and copyright of the applet

 Request a description of the parameters the applet recognizes

 Initialize the applet

 Destroy the applet

 Start the applet's execution

 Stop the applet's execution

The Applet class provides default implementations of each of these methods.

Those implementations may be overridden as necessary.

The "Hello, World" applet is complete as it stands. The only method overridden

is the paint method.

Invoking an Applet

An applet may be invoked by embedding directives in an HTML file and

viewing the file through an applet viewer or Java-enabled browser.

128

The <applet> tag is the basis for embedding an applet in an HTML file.

Following is an example that invokes the "Hello, World" applet −

<html>

<title>The Hello, World Applet</title>

<hr>

<appletcode="HelloWorldApplet.class"width="320"height="120">

 If your browser was Java-enabled, a "Hello, World"

 message would appear here.

</applet>

<hr>

</html>

Note − You can refer to HTML Applet Tag to understand more about calling

applet from HTML.

The code attribute of the <applet> tag is required. It specifies the Applet class to run.

Width and height are also required to specify the initial size of the panel in which an applet runs.

The applet directive must be closed with an </applet> tag.

If an applet takes parameters, values may be passed for the parameters by adding

<param> tags between <applet> and </applet>. The browser ignores text and other tags between

the applet tags.

Non-Java-enabled browsers do not process <applet> and </applet>. Therefore, anything

that appears between the tags, not related to the applet, is visible in non-Java-enabled browsers.

The viewer or browser looks for the compiled Java code at the location of the document.

To specify otherwise, use the codebase attribute of the <applet> tag as shown −

<applet codebase = "https://amrood.com/applets" code = "HelloWorldApplet.class"

 width = "320" height = "120">

If an applet resides in a package other than the default, the holding package must be

specified in the code attribute using the period character (.) to separate package/class components.

For example −

<applet = "mypackage.subpackage.TestApplet.class"

 width = "320" height = "120">

https://www.tutorialspoint.com/html/html_applet_tag.htm

129

Getting Applet Parameters

The following example demonstrates how to make an applet respond to setup parameters

specified in the document. This applet displays a checkerboard pattern of black and a second color.

The second color and the size of each square may be specified as parameters to the applet

within the document.

CheckerApplet gets its parameters in the init() method. It may also get its parameters in the

paint() method. However, getting the values and saving the settings once at the start of the applet,

instead of at every refresh, is convenient and efficient.

The applet viewer or browser calls the init() method of each applet it runs. The viewer

calls init() once, immediately after loading the applet. (Applet.init() is implemented to do nothing.)

Override the default implementation to insert custom initialization code.

The Applet.getParameter() method fetches a parameter given the parameter's name (the

value of a parameter is always a string). If the value is numeric or other non-character data, the

string must be parsed.

The following is a skeleton of CheckerApplet.java −

import java.applet.*;

import java.awt.*;

publicclassCheckerAppletextendsApplet{

int squareSize =50;// initialized to default size

publicvoid init(){}

privatevoid parseSquareSize (String param){}

privateColor parseColor (String param){}

publicvoid paint (Graphics g){}

}

Here are CheckerApplet's init() and private parseSquareSize() methods −

publicvoid init (){

String squareSizeParam = getParameter ("squareSize");

 parseSquareSize (squareSizeParam);

String colorParam = getParameter ("color");

130

Color fg = parseColor (colorParam);

 setBackground (Color.black);

 setForeground (fg);

}

privatevoid parseSquareSize (String param){

if(param ==null)return;

try{

 squareSize =Integer.parseInt (param);

}catch(Exception e){

// Let default value remain

}

}

The applet calls parseSquareSize() to parse the squareSize parameter. parseSquareSize()

calls the library method Integer.parseInt(), which parses a string and returns an integer.

Integer.parseInt() throws an exception whenever its argument is invalid.

Therefore, parseSquareSize() catches exceptions, rather than allowing the applet to fail on

bad input.

The applet calls parseColor() to parse the color parameter into a Color value. parseColor()

does a series of string comparisons to match the parameter value to the name of a predefined color.

You need to implement these methods to make this applet work.

Specifying Applet Parameters

The following is an example of an HTML file with a CheckerApplet embedded in it. The

HTML file specifies both parameters to the applet by means of the <param> tag.

<html>

<title>Checkerboard Applet</title>

<hr>

<appletcode="CheckerApplet.class"width="480"height="320">

<paramname="color"value="blue">

<paramname="squaresize"value="30">

</applet>

131

<hr>

</html>

Note − Parameter names are not case sensitive.

Application Conversion to Applets

It is easy to convert a graphical Java application (that is, an application that uses the

AWT and that you can start with the Java program launcher) into an applet that you can embed in

a web page.

Following are the specific steps for converting an application to an applet.

 Make an HTML page with the appropriate tag to load the applet code.

 Supply a subclass of the JApplet class. Make this class public. Otherwise, the

applet cannot be loaded.

 Eliminate the main method in the application. Do not construct a frame window

for the application. Your application will be displayed inside the browser.

 Move any initialization code from the frame window constructor to the init

method of the applet. You don't need to explicitly construct the applet object. The browser

instantiates it for you and calls the init method.

 Remove the call to setSize; for applets, sizing is done with the width and height

parameters in the HTML file.

 Remove the call to setDefaultCloseOperation. An applet cannot be closed; it

terminates when the browser exits.

 If the application calls setTitle, eliminate the call to the method. Applets cannot

have title bars. (You can, of course, title the web page itself, using the HTML title tag.)

 Don't call setVisible(true). The applet is displayed automatically.

Event Handling

Applets inherit a group of event-handling methods from the Container class. The

Container class defines several methods, such as processKeyEvent and processMouseEvent, for

handling particular types of events, and then one catch-all method called processEvent.

In order to react to an event, an applet must override the appropriate event-specific

method.

import java.awt.event.MouseListener;

import java.awt.event.MouseEvent;

import java.applet.Applet;

import java.awt.Graphics;

publicclassExampleEventHandlingextendsAppletimplementsMouseListener{

132

StringBuffer strBuffer;

publicvoid init(){

 addMouseListener(this);

 strBuffer =newStringBuffer();

 addItem("initializing the apple ");

}

publicvoid start(){

 addItem("starting the applet ");

}

publicvoid stop(){

 addItem("stopping the applet ");

}

publicvoid destroy(){

 addItem("unloading the applet");

}

void addItem(String word){

System.out.println(word);

 strBuffer.append(word);

 repaint();

}

publicvoid paint(Graphics g){

// Draw a Rectangle around the applet's display area.

 g.drawRect(0,0,

 getWidth()-1,

 getHeight()-1);

// display the string inside the rectangle.

 g.drawString(strBuffer.toString(),10,20);

133

}

publicvoid mouseEntered(MouseEventevent){

}

publicvoid mouseExited(MouseEventevent){

}

publicvoid mousePressed(MouseEventevent){

}

publicvoid mouseReleased(MouseEventevent){

}

publicvoid mouseClicked(MouseEventevent){

 addItem("mouse clicked! ");

}

}

Now, let us call this applet as follows −

<html>

<title>Event Handling</title>

<hr>

<appletcode="ExampleEventHandling.class"

width="300"height="300">

</applet>

<hr>

</html>

Initially, the applet will display "initializing the applet. Starting the applet." Then once you

click inside the rectangle, "mouse clicked" will be displayed as well.

Displaying Images

An applet can display images of the format GIF, JPEG, BMP, and others. To display an

image within the applet, you use the drawImage() method found in the java.awt.Graphics class.

Following is an example illustrating all the steps to show images −

import java.applet.*;

import java.awt.*;

import java.net.*;

134

publicclassImageDemoextendsApplet{

privateImage image;

privateAppletContext context;

publicvoid init(){

 context =this.getAppletContext();

String imageURL =this.getParameter("image");

if(imageURL ==null){

 imageURL ="java.jpg";

}

try{

 URL url =new URL(this.getDocumentBase(), imageURL);

 image = context.getImage(url);

}catch(MalformedURLException e){

 e.printStackTrace();

// Display in browser status bar

 context.showStatus("Could not load image!");

}

}

publicvoid paint(Graphics g){

 context.showStatus("Displaying image");

 g.drawImage(image,0,0,200,84,null);

 g.drawString("www.javalicense.com",35,100);

}

}

Now, let us call this applet as follows −

<html>

<title>The ImageDemo applet</title>

<hr>

<appletcode="ImageDemo.class"width="300"height="200">

<paramname="image"value="java.jpg">

</applet>

135

<hr>

</html>

Playing Audio

An applet can play an audio file represented by the AudioClip interface in the

java.applet package. The AudioClip interface has three methods, including −

 public void play() − Plays the audio clip one time, from the beginning.

 public void loop() − Causes the audio clip to replay continually.

 public void stop() − Stops playing the audio clip.

To obtain an AudioClip object, you must invoke the getAudioClip() method of the Applet

class. The getAudioClip() method returns immediately, whether or not the URL resolves to an

actual audio file. The audio file is not downloaded until an attempt is made to play the audio clip.

Following is an example illustrating all the steps to play an audio −

import java.applet.*;

import java.awt.*;

import java.net.*;

publicclassAudioDemoextendsApplet{

privateAudioClip clip;

privateAppletContext context;

publicvoid init(){

 context =this.getAppletContext();

String audioURL =this.getParameter("audio");

if(audioURL ==null){

 audioURL ="default.au";

}

try{

 URL url =new URL(this.getDocumentBase(), audioURL);

 clip = context.getAudioClip(url);

}catch(MalformedURLException e){

 e.printStackTrace();

136

 context.showStatus("Could not load audio file!");

}

}

publicvoid start(){

if(clip !=null){

 clip.loop();

}

}

publicvoid stop(){

if(clip !=null){

 clip.stop();

}

}

}

Now, let us call this applet as follows −

<html>

<title>The ImageDemo applet</title>

<hr>

<appletcode="ImageDemo.class"width="0"height="0">

<paramname="audio"value="test.wav">

</applet>

<hr>

</html>

The java.io package contains nearly every class you might ever need to perform input

and output (I/O) in Java. All these streams represent an input source and an output destination.

The stream in the java.io package supports many data such as primitives, object, localized

characters, etc.

Stream

A stream can be defined as a sequence of data. There are two kinds of Streams −

137

 InPutStream − The InputStream is used to read data from a source.

 OutPutStream − The OutputStream is used for writing data to a

destination.

Java provides strong but flexible support for I/O related to files and networks but this

tutorial covers very basic functionality related to streams and I/O. We will see the most commonly

used examples one by one −

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are

many classes related to byte streams but the most frequently used classes

are, FileInputStream and FileOutputStream. Following is an example which makes use of

these two classes to copy an input file into an output file −

Example

import java.io.*;

publicclassCopyFile{

publicstaticvoid main(String args[])throwsIOException{

FileInputStreamin=null;

FileOutputStreamout=null;

try{

in=newFileInputStream("input.txt");

out=newFileOutputStream("output.txt");

int c;

while((c =in.read())!=-1){

out.write(c);

}

}finally{

138

if(in!=null){

in.close();

}

if(out!=null){

out.close();

}

}

}

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating

output.txt file with the same content as we have in input.txt. So let's put the above code in

CopyFile.java file and do the following −

$javac CopyFile.java

$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas

Java Character streams are used to perform input and output for 16-bit unicode. Though there

are many classes related to character streams but the most frequently used classes

are, FileReader and FileWriter. Though internally FileReader uses FileInputStream and

FileWriter uses FileOutputStream but here the major difference is that FileReader reads two bytes

at a time and FileWriter writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to copy an

input file (having unicode characters) into an output file −

Example

import java.io.*;

publicclassCopyFile{

publicstaticvoid main(String args[])throwsIOException{

FileReaderin=null;

FileWriterout=null;

139

try{

in=newFileReader("input.txt");

out=newFileWriter("output.txt");

int c;

while((c =in.read())!=-1){

out.write(c);

}

}finally{

if(in!=null){

in.close();

}

if(out!=null){

out.close();

}

}

}

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating

output.txt file with the same content as we have in input.txt. So let's put the above code in

CopyFile.java file and do the following −

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where the user's

program can take input from a keyboard and then produce an output on the computer screen. If

you are aware of C or C++ programming languages, then you must be aware of three standard

devices STDIN, STDOUT and STDERR. Similarly, Java provides the following three standard

streams −

140

 Standard Input − This is used to feed the data to user's program and

usually a keyboard is used as standard input stream and represented as System.in.

 Standard Output − This is used to output the data produced by the

user's program and usually a computer screen is used for standard output stream and

represented as System.out.

 Standard Error − This is used to output the error data produced by the

user's program and usually a computer screen is used for standard error stream and

represented as System.err.

Following is a simple program, which creates InputStreamReader to read

standard input stream until the user types a "q" −

Example

import java.io.*;

publicclassReadConsole{

publicstaticvoid main(String args[])throwsIOException{

InputStreamReader cin =null;

try{

 cin =newInputStreamReader(System.in);

System.out.println("Enter characters, 'q' to quit.");

char c;

do{

 c =(char) cin.read();

System.out.print(c);

}while(c !='q');

}finally{

if(cin !=null){

 cin.close();

}

}

}

}

141

Let's keep the above code in ReadConsole.java file and try to compile and execute it as

shown in the following program. This program continues to read and output the same character

until we press 'q' −

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Reading and Writing Files

As described earlier, a stream can be defined as a sequence of data.

The InputStream is used to read data from a source and the OutputStream is used for

writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

142

The two important streams are FileInputStream and FileOutputStream, which

would be discussed in this tutorial.

FileInputStream

This stream is used for reading data from the files. Objects can be created using

the keyword new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream

object to read the file −

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read

the file. First we create a file object using File() method as follows −

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper methods

which can be used to read to stream or to do other operations on the stream.

Sr.No. Method & Description

1 public void close() throws IOException{}

This method closes the file output stream.

Releases any system resources associated with the file.

Throws an IOException.

2 protected void finalize()throws IOException

{}

This method cleans up the connection to the

file. Ensures that the close method of this file output

stream is called when there are no more references to

this stream. Throws an IOException.

3 public int read(int r)throws IOException{}

This method reads the specified byte of data

from the InputStream. Returns an int. Returns the next

byte of data and -1 will be returned if it's the end of the

file.

4 public int read(byte[] r) throws

143

IOException{}

This method reads r.length bytes from the input

stream into an array. Returns the total number of bytes

read. If it is the end of the file, -1 will be returned.

5 public int available() throws IOException{}

Gives the number of bytes that can be read from

this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer

to the following links −

 ByteArrayInputStream

 DataInputStream

FileOutputStream

FileOutputStream is used to create a file and write data into it. The stream would

create a file, if it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream

object.

Following constructor takes a file name as a string to create an input stream

object to write the file −

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to

write the file. First, we create a file object using File() method as follows −

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper

methods, which can be used to write to stream or to do other operations on the stream.

Sr.No. Method & Description

1 public void close() throws IOException{}

This method closes the file output stream.

https://www.tutorialspoint.com/java/java_bytearrayinputstream.htm
https://www.tutorialspoint.com/java/java_datainputstream.htm

144

Releases any system resources associated with the file.

Throws an IOException.

2 protected void finalize()throws IOException

{}

This method cleans up the connection to the

file. Ensures that the close method of this file output

stream is called when there are no more references to

this stream. Throws an IOException.

3 public void write(int w)throws

IOException{}

This methods writes the specified byte to the

output stream.

4 public void write(byte[] w)

Writes w.length bytes from the mentioned byte

array to the OutputStream.

There are other important output streams available, for more detail you can refer

to the following links −

 ByteArrayOutputStream

 DataOutputStream

Example

Following is the example to demonstrate InputStream and OutputStream −

import java.io.*;

publicclass fileStreamTest {

publicstaticvoid main(String args[]){

try{

byte bWrite []={11,21,3,40,5};

OutputStream os =newFileOutputStream("test.txt");

for(int x =0; x < bWrite.length ; x++){

https://www.tutorialspoint.com/java/java_bytearrayoutputstream.htm
https://www.tutorialspoint.com/java/java_dataoutputstream.htm

145

 os.write(bWrite[x]);// writes the bytes

}

 os.close();

InputStreamis=newFileInputStream("test.txt");

int size =is.available();

for(int i =0; i < size; i++){

System.out.print((char)is.read()+" ");

}

is.close();

}catch(IOException e){

System.out.print("Exception");

}

}

}

The above code would create file test.txt and would write given numbers in

binary format. Same would be the output on the stdout screen.

File Navigation and I/O

There are several other classes that we would be going through to get to know

the basics of File Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

Directories in Java

A directory is a File which can contain a list of other files and directories. You

use File object to create directories, to list down files available in a directory. For

complete detail, check a list of all the methods which you can call on File object and

what are related to directories.

https://www.tutorialspoint.com/java/java_file_class.htm
https://www.tutorialspoint.com/java/java_filereader_class.htm
https://www.tutorialspoint.com/java/java_filewriter_class.htm

146

Creating Directories

There are two useful File utility methods, which can be used to create directories

− The mkdir() method creates a directory, returning true on success and false on

failure. Failure indicates that the path specified in the File object already exists, or that

the directory cannot be created because the entire path does not exist yet.

 The mkdirs() method creates both a directory and all the parents of the

directory.

Following example creates "/tmp/user/java/bin" directory −

Example

import java.io.File;

publicclassCreateDir{

publicstaticvoid main(String args[]){

String dirname ="/tmp/user/java/bin";

File d =newFile(dirname);

// Create directory now.

 d.mkdirs();

}

}

Compile and execute the above code to create "/tmp/user/java/bin".

Note − Java automatically takes care of path separators on UNIX and Windows

as per conventions. If you use a forward slash (/) on a Windows version of Java, the path

will still resolve correctly.

Listing Directories

You can use list() method provided by File object to list down all the files and

directories available in a directory as follows −

Example

import java.io.File;

publicclassReadDir{

147

publicstaticvoid main(String[] args){

File file =null;

String[] paths;

try{

// create new file object

 file =newFile("/tmp");

// array of files and directory

 paths = file.list();

// for each name in the path array

for(String path:paths){

// prints filename and directory name

System.out.println(path);

}

}catch(Exception e){

// if any error occurs

 e.printStackTrace();

}

}

}

This will produce the following result based on the directories and files available

in your /tmp directory −

Output

test1.txt

test2.txt

ReadDir.java

ReadDir.class

148

Unit IV

ABSTRACT DATA TYPE

The Data Type is basically a type of data that can be used in different computer program.

It signifies the type like integer, float etc, the space like integer will take 4-bytes, character will

take 1-byte of space etc.

The abstract datatype is special kind of datatype, whose behavior is defined by a set of

values and set of operations. The keyword “Abstract” is used as we can use these datatypes, we

can perform different operations. But how those operations are working that is totally hidden

from the user. The ADT is made of with primitive datatypes, but operation logics are hidden.

Some examples of ADT are Stack, Queue, List etc.

Let us see some operations of those mentioned ADT −

 Stack −

o isFull(), This is used to check whether stack is full or not

o isEmpry(), This is used to check whether stack is empty or not

o push(x), This is used to push x into the stack

o pop(), This is used to delete one element from top of the stack

o peek(), This is used to get the top most element of the stack

o size(), this function is used to get number of elements present into the

stack

 Queue −

o isFull(), This is used to check whether queue is full or not

o isEmpry(), This is used to check whether queue is empty or not

o insert(x), This is used to add x into the queue at the rear end

o delete(), This is used to delete one element from the front end of the

queue

o size(), this function is used to get number of elements present into the

queue

 List −

o size(), this function is used to get number of elements present into the list

149

o insert(x), this function is used to insert one element into the list

o remove(x), this function is used to remove given element from the list

o get(i), this function is used to get element at position i

o replace(x, y), this function is used to replace x with y value

ARRAY IMPLEMENTATION OF LISTS LIST:

 A list is a sequential data structure, ie. a collection of items accessible one after another

beginning at the head and ending at the tail.

It is a widely used data structure for applications which do not need random access

Addition and removals can be made at any position in the list

lists are normally in the form of a1,a2,a3.....an. The size of this list is n.The first element of

the list is a1,and the last element is an.The position of element ai in a list is i.

List of size 0 is called as null list.

Basic Operations on a List

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

 Implementation of List:

 A list can be implemented in two ways

 1. Array list

 2. Linked list

 1.Storing a list in a static data structure(Array List)

 This implementation stores the list in an array.

 The position of each element is given by an index from 0 to n-1, where n is the

number of elements.

 The element with the index can be accessed in constant time (ie) the time to

access does not depend on the size of the list.

 The time taken to add an element at the end of the list does not depend on the

size of the list. But the time taken to add an element at any other point in the list depends

on the size of the list because the subsequent elements must be shifted to next index

value.So the additions near the start of the list take longer time than the additions near the

middle or end.

150

 Similarly when an element is removed,subsequent elements must be shifted to

the previous index value. So removals near the start of the list take longer time than

removals near the middle or end of the list.

 Problems with Array implementation of lists:

 Insertion and deletion are expensive. For example, inserting at position 0 (a new

first element) requires first pushing the entire array down one spot to make room,

whereas deleting the first element requires shifting all the elements in the list up one, so

the worst case of these operations is O(n).

 Even if the array is dynamically allocated, an estimate of the maximum size of

the list is required. Usually this requires a high over-estimate, which wastes considerable

space. This could be a serious limitation, if there are many lists of unknown size.

 Simple arrays are generally not used to implement lists. Because the running

time for insertion and deletion is so slow and the list size must be known in advance

 2. Storing a list in a dynamic data structure(Linked List)

 The Linked List is stored as a sequence of linked nodes which are not

necessarily adjacent in memory.

 Each node in a linked list contains data and a reference to the next node The list

can grow and shrink in size during execution of a program.

 The list can be made just as long as required.It does not waste memory space

because successive elements are connected by pointers.

 The position of each element is given by an index from 0 to n-1, where n is the

number of elements.

 The time taken to access an element with an index depends on the index

because each element of the list must be traversed until the required index is found.

 The time taken to add an element at any point in the list does not depend on the

size of the list,as no shifts are required

 Additions and deletion near the end of the list take longer than additions near

the middle or start of the list. because the list must be traversed until the required index is

found

 1. Array versus Linked Lists 1.Arrays are suitable for

- Randomly accessing any element.

 - Searching the list for a particular value

- Inserting or deleting an element at the end.

151

2.Linked lists are suitable for

-Inserting/Deleting an element.

 -Applications where sequential access is required.

-In situations where the number of elements cannot be predicted beforehand.

 LINKED LIST IMPLEMENTATION OF LISTS(POINTERS)

 The Linked List is stored as a sequence of linked nodes which are not

necessarily adjacent in memory.

 Each node in a linked list contains data and a reference to the next node The list

can grow and shrink in size during execution of a program.

In the array implementation,

 1. we are constrained to use contiguous space in the memory

 2. Insertion, deletion entail shifting the elements

 Pointers overcome the above limitations at the cost of extra space for pointers.

data structure that will be used for the nodes. For list where each node holds a

float:example, the following struct could be used to create a

struct Node

 {

int node ;

 struct Node *next;

};

 Linked List

o Linked List can be defined as collection of objects called nodes that are

randomly stored in the memory.

o A node contains two fields i.e. data stored at that particular address and

the pointer which contains the address of the next node in the memory.

o The last node of the list contains pointer to the null.

152

Uses of Linked List

o The list is not required to be contiguously present in the memory. The

node can reside any where in the memory and linked together to make a list. This

achieves optimized utilization of space.

o list size is limited to the memory size and doesn't need to be declared in

advance.

o Empty node can not be present in the linked list.

o We can store values of primitive types or objects in the singly linked list.

Why use linked list over array?

Till now, we were using array data structure to organize the group of elements that are to

be stored individually in the memory. However, Array has several advantages and disadvantages

which must be known in order to decide the data structure which will be used throughout the

program.

Array contains following limitations:

1. The size of array must be known in advance before using it in the

program.

2. Increasing size of the array is a time taking process. It is almost

impossible to expand the size of the array at run time.

3. All the elements in the array need to be contiguously stored in the

memory. Inserting any element in the array needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the limitations of an

array. Using linked list is useful because,

1. It allocates the memory dynamically. All the nodes of linked list are non-

contiguously stored in the memory and linked together with the help of pointers.

2. Sizing is no longer a problem since we do not need to define its size at

the time of declaration. List grows as per the program's demand and limited to the

available memory space.

Singly linked list or One way chain

Singly linked list can be defined as the collection of ordered set of elements. The

number of elements may vary according to need of the program. A node in the singly

153

linked list consist of two parts: data part and link part. Data part of the node stores actual

information that is to be represented by the node while the link part of the node stores the

address of its immediate successor.

One way chain or singly linked list can be traversed only in one direction. In

other words, we can say that each node contains only next pointer, therefore we can not

traverse the list in the reverse direction.

Consider an example where the marks obtained by the student in three subjects

are stored in a linked list as shown in the figure.

In the above figure, the arrow represents the links. The data part of every node

contains the marks obtained by the student in the different subject. The last node in the

list is identified by the null pointer which is present in the address part of the last node.

We can have as many elements we require, in the data part of the list.

Complexity

D

a

t

a

S

t

r

u

c

t

Time Complexity S

p

a

c

e

C

o

m

p

l

154

u

r

e

e

i

t

y

 Average Worst W

o

r

s

t

 A

c

c

e

s

s

S

e

a

r

c

h

I

n

s

e

r

t

i

o

n

D

e

l

e

t

i

o

n

A

c

c

e

s

s

S

e

a

r

c

h

I

n

s

e

r

t

i

o

n

D

e

l

e

t

i

o

n

S

i

n

g

l

y

L

i

n

k

θ

(

n

)

θ

(

n

)

θ

(

1

)

θ

(

1

)

O

(

n

)

O

(

n

)

O

(

1

)

O

(

1

)

O

(

n

)

155

e

d

L

i

s

t

Operations on Singly Linked List

There are various operations which can be performed on singly linked list. A list

of all such operations is given below.

Node Creation

1. struct node

2. {

3. int data;

4. struct node *next;

5. };

6. struct node *head, *ptr;

7. ptr = (struct node *)malloc(sizeof(struct node *));

Insertion

The insertion into a singly linked list can be performed at different positions.

Based on the position of the new node being inserted, the insertion is categorized into the

following categories.

SN Operation Description

1 Insertion at

beginning

It involves inserting

any element at the front of

the list. We just need to a

few link adjustments to

make the new node as the

https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-singly-linked-list-at-beginning

156

head of the list.

2 Insertion at end of

the list

It involves insertion

at the last of the linked list.

The new node can be

inserted as the only node in

the list or it can be inserted

as the last one. Different

logics are implemented in

each scenario.

3 Insertion after

specified node

It involves insertion

after the specified node of

the linked list. We need to

skip the desired number of

nodes in order to reach the

node after which the new

node will be inserted. .

Deletion and Traversing

The Deletion of a node from a singly linked list can be performed at different

positions. Based on the position of the node being deleted, the operation is categorized

into the following categories.

SN Operation Description

1 Deletion at

beginning

It involves deletion

of a node from the

beginning of the list. This is

the simplest operation

among all. It just need a

few adjustments in the node

pointers.

https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-at-end
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning

157

2 Deletion at the end

of the list

It involves deleting

the last node of the list. The

list can either be empty or

full. Different logic is

implemented for the

different scenarios.

3 Deletion after

specified node

It involves deleting

the node after the specified

node in the list. we need to

skip the desired number of

nodes to reach the node

after which the node will be

deleted. This requires

traversing through the list.

4 Traversing
In traversing, we

simply visit each node of

the list at least once in

order to perform some

specific operation on it, for

example, printing data part

of each node present in the

list.

5 Searching
In searching, we

match each element of the

list with the given element.

If the element is found on

any of the location then

location of that element is

returned otherwise null is

returned. .

Doubly linked list

Doubly linked list is a complex type of linked list in which a node contains a

pointer to the previous as well as the next node in the sequence. Therefore, in a doubly

linked list, a node consists of three parts: node data, pointer to the next node in sequence

(next pointer) , pointer to the previous node (previous pointer). A sample node in a

doubly linked list is shown in the figure.

https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-at-end
https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-singly-linked-list-after-specified-node
https://www.javatpoint.com/traversing-in-singly-linked-list
https://www.javatpoint.com/searching-in-singly-linked-list

158

A doubly linked list containing three nodes having numbers from 1 to 3 in their

data part, is shown in the following image.

 The prev part of the first node and the next part of the last node will always contain null

indicating end in each direction.

In a singly linked list, we could traverse only in one direction, because each node contains

address of the next node and it doesn't have any record of its previous nodes. However, doubly

linked list overcome this limitation of singly linked list. Due to the fact that, each node of the list

contains the address of its previous node, we can find all the details about the previous node as well

by using the previous address stored inside the previous part of each node.

Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the following image.

Generally, doubly linked list consumes more space for every node and therefore, causes more

expansive basic operations such as insertion and deletion. However, we can easily manipulate the

elements of the list since the list maintains pointers in both the directions (forward and

backward).

159

In the following image, the first element of the list that is i.e. 13 stored at address 1. The

head pointer points to the starting address 1. Since this is the first element being added to the list

therefore the prev of the list contains null. The next node of the list resides at address 4 therefore

the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1

in its next part.

Operations on doubly linked list

Node Creation

All the remaining operations regarding doubly linked list are described in the

following table.

160

SN Operation Description

1 Insertion at

beginning

Adding the node

into the linked list at

beginning.

2 Insertion at end
Adding the node

into the linked list to the

end.

3 Insertion after

specified node

Adding the node

into the linked list after the

specified node.

4 Deletion at

beginning

Removing the node

from beginning of the list

5 Deletion at the end
Removing the node

from end of the list.

6 Deletion of the node

having given data

Removing the node

which is present just after

the node containing the

given data.

7 Searching
Comparing each

node data with the item to

be searched and return the

location of the item in the

list if the item found else

return null.

8 Traversing
Visiting each node

of the list at least once in

order to perform some

specific operation like

searching, sorting, display,

etc

https://www.javatpoint.com/insertion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/insertion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/insertion-in-doubly-linked-list-after-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-beginning
https://www.javatpoint.com/deletion-in-doubly-linked-list-at-the-end
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/deletion-in-doubly-linked-list-after-the-specified-node
https://www.javatpoint.com/searching-in-doubly-linked-list
https://www.javatpoint.com/traversing-in-doubly-linked-list

161

Circular linked list is a linked list where all nodes are connected to form a

circle. There is no NULL at the end. A circular linked list can be a singly circular

linked list or doubly circular linked list.

Advantages of Circular Linked Lists:

1) Any node can be a starting point. We can traverse the whole list by starting from any

point. We just need to stop when the first visited node is visited again.

2) Useful for implementation of queue. Unlike this implementation, we don’t need to

maintain two pointers for front and rear if we use circular linked list. We can maintain a pointer

to the last inserted node and front can always be obtained as next of last.

3) Circular lists are useful in applications to repeatedly go around the list. For example,

when multiple applications are running on a PC, it is common for the operating system to put the

running applications on a list and then to cycle through them, giving each of them a slice of time

to execute, and then making them wait while the CPU is given to another application. It is

convenient for the operating system to use a circular list so that when it reaches the end of the list

it can cycle around to the front of the list.

4) Circular Doubly Linked Lists are used for implementation of advanced data

structures like Fibonacci Heap.

 STACK

A stack is an Abstract Data Type (ADT), commonly used in most programming

languages. It is named stack as it behaves like a real-world stack, for example – a deck of

cards or a pile of plates, etc.

http://quiz.geeksforgeeks.org/queue-set-2-linked-list-implementation/
http://en.wikipedia.org/wiki/Fibonacci_heap

162

A real-world stack allows operations at one end only. For example, we can place or

remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all data

operations at one end only. At any given time, we can only access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out.

Here, the element which is placed (inserted or added) last, is accessed first. In stack

terminology, insertion operation is called PUSH operation and removal operation is

called POP operation.

Stack Representation

The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack

can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to

implement stack using arrays, which makes it a fixed size stack implementation.

Basic Operations

Stack operations may involve initializing the stack, using it and then de-

initializing it. Apart from these basic stuffs, a stack is used for the following two primary

operations −

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

163

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the

same purpose, the following functionality is added to stacks −

 peek() − get the top data element of the stack, without removing it.

 isFull() − check if stack is full.

 isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this

pointer always represents the top of the stack, hence named top. The top pointer provides

top value of the stack without actually removing it.

Push Operation

The process of putting a new data element onto stack is known as a Push

Operation. Push operation involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next empty

space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to

allocate space dynamically.

164

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In

an array implementation of pop() operation, the data element is not actually removed, instead top is

decremented to a lower position in the stack to point to the next value. But in linked-list

implementation, pop() actually removes data element and deallocates memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

 Step 3 − If the stack is not empty, accesses the data element at

which top is pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

Applications of Stack

Following are some of the important applications of a Stack data structure:

1. Stacks can be used for expression evaluation.

2. Stacks can be used to check parenthesis matching in an expression.

3. Stacks can be used for Conversion from one form of expression to

another.

4. Stacks can be used for Memory Management.

5. Stack data structures are used in backtracking problems.

165

Expression Evaluation

Stack data structure is used for evaluating the given expression. For example,

consider the following expression

5 * (6 + 2) - 12 / 4

Since parenthesis has the highest precedence among the arithmetic operators, (6

+2) = 8 will be evaluated first. Now, the expression becomes

5 * 8 - 12 / 4

* and / have equal precedence and their associativity is from left-to-right. So,

start evaluating the expression from left-to-right.

5 * 8 = 40 and 12 / 4 = 3

Now, the expression becomes

40 - 3

And the value returned after the subtraction operation is 37.

 Parenthesis Matching

Given an expression, you have to find if the parenthesis is either correctly

matched or not. For example, consider the expression (a + b) * (c + d).

In the above expression, the opening and closing of the parenthesis are given

properly and hence it is said to be a correctly matched parenthesis expression. Whereas,

the expression, (a + b * [c + d) is not a valid expression as the parenthesis are

incorrectly given.

Click here to know how balanced parenthesis concept is implemented using

a Stack Data Structure.

 Expression Conversion

Converting one form of expressions to another is one of the important

applications of stacks.

 Infix to prefix

 Infix to postfix

 Prefix to Infix

https://www.faceprep.in/procoder/knowledgebase/balanced-parentheses-using-stack/
https://www.faceprep.in/procoder/knowledgebase/balanced-parentheses-using-stack/
https://www.faceprep.in/procoder/knowledgebase/infix-to-prefix-conversion-using-stack/
https://www.faceprep.in/procoder/knowledgebase/infix-to-postfix-conversion-using%20stack/

166

 Prefix to Postfix

 Postfix to Infix

 Postfix to Infix

 Arithmetic Expression Evalution

 Difficulty Level : Easy

 Last Updated : 24 Mar, 2021

The stack organization is very effective in evaluating arithmetic expressions. Expressions

are usually represented in what is known as Infix notation, in which each operator is written

between two operands (i.e., A + B). With this notation, we must distinguish between (A + B)*C

and A + (B * C) by using either parentheses or some operator-precedence convention. Thus, the

order of operators and operands in an arithmetic expression does not uniquely determine the order

in which the operations are to be performed.

 1. Polish notation (prefix notation) –

It refers to the notation in which the operator is placed before its two operands. Here no

parentheses are required, i.e.,

 +AB

 2. Reverse Polish notation(postfix notation) –

It refers to the analogous notation in which the operator is placed after its two operands.

Again, no parentheses is required in Reverse Polish notation, i.e.,

 AB+

Stack-organized computers are better suited for post-fix notation than the

traditional infix notation. Thus, the infix notation must be converted to the postfix

notation. The conversion from infix notation to postfix notation must take into

consideration the operational hierarchy.

There are 3 levels of precedence for 5 binary operators as given below:

https://www.geeksforgeeks.org/easy/

167

Highest: Exponentiation (^)

Next highest: Multiplication (*) and division (/)

Lowest: Addition (+) and Subtraction (-)

For example –

 Infix notation: (A-B)*[C/(D+E)+F]

Post-fix notation: AB- CDE +/F +*

Here, we first perform the arithmetic inside the parentheses (A-B) and (D+E).

The division of C/(D+E) must be done prior to the addition with F. After that multiply

the two terms inside the parentheses and bracket.

Now we need to calculate the value of these arithmetic operations by using a

stack.

The procedure for getting the result is:

1. Convert the expression in Reverse Polish notation(post-fix notation).

2. Push the operands into the stack in the order they appear.

3. When any operator encounters then pop two topmost operands for

executing the operation.

4. After execution push the result obtained into the stack.

5. After the complete execution of expression, the final result remains on

the top of the stack.

For example –

Infix notation: (2+4) * (4+6)

Post-fix notation: 2 4 + 4 6 + *

Result: 60

The stack operations for this expression evaluation is shown below:

168

 Infix expression:The expression of the form a op b. When an operator is in-between

every pair of operands.

Postfix expression:The expression of the form a b op. When an operator is followed for every

pair of operands.

Why postfix representation of the expression?

The compiler scans the expression either from left to right or from right to left.

Consider the below expression: a op1 b op2 c op3 d

If op1 = +, op2 = *, op3 = +

The compiler first scans the expression to evaluate the expression b * c, then again scan the

expression to add a to it. The result is then added to d after another scan.

The repeated scanning makes it very in-efficient. It is better to convert the expression to

postfix(or prefix) form before evaluation.

The corresponding expression in postfix form is: abc*+d+. The postfix expressions can be

evaluated easily using a stack. We will cover postfix expression evaluation in a separate post.

Algorithm

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, output it.

3. Else,

 1 If the precedence of the scanned operator is greater than the precedence of the operator in

the stack(or the stack is empty or the stack contains a ‘(‘), push it.

 2 Else, Pop all the operators from the stack which are greater than or equal to in precedence

than that of the scanned operator. After doing that Push the scanned operator to the stack. (If you

encounter parenthesis while popping then stop there and push the scanned operator in the stack.)

4. If the scanned character is an ‘(‘, push it to the stack.

5. If the scanned character is an ‘)’, pop the stack and and output it until a ‘(‘ is encountered, and

discard both the parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. Print the output

8. Pop and output from the stack until it is not empty.

169

Output:

abcd^e-fgh*+^*+i-

Basic features of Queue

1. Like stack, queue is also an ordered list of elements of similar data types.

2. Queue is a FIFO(First in First Out) structure.

3. Once a new element is inserted into the Queue, all the elements inserted

before the new element in the queue must be removed, to remove the new element.

4. peek() function is oftenly used to return the value of first element

without dequeuing it.

Applications of Queue

Queue, as the name suggests is used whenever we need to manage any group of objects in

an order in which the first one coming in, also gets out first while the others wait for their turn, like

in the following scenarios:

1. Serving requests on a single shared resource, like a printer, CPU task

scheduling etc.

2. In real life scenario, Call Center phone systems uses Queues to hold

people calling them in an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in

the same order as they arrive i.e First come first served.

Implementation of Queue Data Structure

Queue can be implemented using an Array, Stack or Linked List. The easiest

way of implementing a queue is by using an Array.

Initially the head(FRONT) and the tail(REAR) of the queue points at the first

index of the array (starting the index of array from 0). As we add elements to the queue,

the tail keeps on moving ahead, always pointing to the position where the next element

will be inserted, while the head remains at the first index.

https://www.studytonight.com/c/arrays-in-c.php
https://www.studytonight.com/data-structures/stack-data-structure
https://www.studytonight.com/data-structures/introduction-to-linked-list

170

When we remove an element from Queue, we can follow two possible approaches

(mentioned [A] and [B] in above diagram). In [A] approach, we remove the element

at head position, and then one by one shift all the other elements in forward position.

In approach [B] we remove the element from head position and then move head to the

next position.

In approach [A] there is an overhead of shifting the elements one position

forward every time we remove the first element.

In approach [B] there is no such overhead, but whenever we move head one position

ahead, after removal of first element, the size on Queue is reduced by one space each time.

171

Algorithm for ENQUEUE operation

1. Check if the queue is full or not.

2. If the queue is full, then print overflow error and exit the program.

3. If the queue is not full, then increment the tail and add the element.

Algorithm for DEQUEUE operation

1. Check if the queue is empty or not.

2. If the queue is empty, then print underflow error and exit the program.

3. If the queue is not empty, then print the element at the head and

increment the head.

Applications of Queue Data Structure

 Difficulty Level : Basic

Queue is used when things don’t have to be processed immediately, but have to be

processed in First In First Out order like Breadth First Search. This property of Queue makes it

also useful in following kind of scenarios.

1) When a resource is shared among multiple consumers. Examples include CPU

scheduling, Disk Scheduling.

2) When data is transferred asynchronously (data not necessarily received at same rate as sent)

between two processes. Examples include IO Buffers, pipes, file IO, etc.

UNIT V

Trees

Tree represents the nodes connected by edges. We will discuss binary tree or binary search

tree specifically.

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a

special condition that each node can have a maximum of two children. A binary tree has the

benefits of both an ordered array and a linked list as search is as quick as in a sorted array and

insertion or deletion operation are as fast as in linked list.

https://www.geeksforgeeks.org/basic/
http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Breadth-first_search

172

Important Terms

Following are the important terms with respect to tree.

 Path − Path refers to the sequence of nodes along the edges of a tree.

 Root − The node at the top of the tree is called root. There is only one

root per tree and one path from the root node to any node.

 Parent − Any node except the root node has one edge upward to a node

called parent.

 Child − The node below a given node connected by its edge downward

is called its child node.

 Leaf − The node which does not have any child node is called the leaf

node.

 Subtree − Subtree represents the descendants of a node.

 Visiting − Visiting refers to checking the value of a node when control is

on the node.

 Traversing − Traversing means passing through nodes in a specific

order.

173

 Levels − Level of a node represents the generation of a node. If the root

node is at level 0, then its next child node is at level 1, its grandchild is at level 2, and so

on.

 keys − Key represents a value of a node based on which a search

operation is to be carried out for a node.

Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have a

value less than its parent's value and the node's right child must have a value greater than

its parent value.

We're going to implement tree using node object and connecting them through

references.

Tree Node

The code to write a tree node would be similar to what is given below. It has a

data part and references to its left and right child nodes.

struct node {

int data;

struct node *leftChild;

struct node *rightChild;

};

In a tree, all nodes share common construct.

BST Basic Operations

The basic operations that can be performed on a binary search tree data structure,

are the following −

 Insert − Inserts an element in a tree/create a tree.

174

 Search − Searches an element in a tree.

 Preorder Traversal − Traverses a tree in a pre-order manner.

 Inorder Traversal − Traverses a tree in an in-order manner.

 Postorder Traversal − Traverses a tree in a post-order manner.

We shall learn creating (inserting into) a tree structure and searching a data item

in a tree in this chapter. We shall learn about tree traversing methods in the coming

chapter.

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted,

first locate its proper location. Start searching from the root node, then if the data is less than the

key value, search for the empty location in the left subtree and insert the data. Otherwise, search for

the empty location in the right subtree and insert the data.

Search Operation

Whenever an element is to be searched, start searching from the root node, then if the data

is less than the key value, search for the element in the left subtree. Otherwise, search for the

element in the right subtree.

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned

properties −

 The value of the key of the left sub-tree is less than the value of its parent

(root) node's key.

 The value of the key of the right sub-tree is greater than or equal to the

value of its parent (root) node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the

right sub-tree and can be defined as −

left_subtree (keys) < node (key) ≤ right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST properties. Each

node has a key and an associated value. While searching, the desired key is compared to the keys in

BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

175

We observe that the root node key (27) has all less-valued keys on the left sub-

tree and the higher valued keys on the right sub-tree.

Basic Operations

Following are the basic operations of a tree −

 Search − Searches an element in a tree.

 Insert − Inserts an element in a tree.

 Pre-order Traversal − Traverses a tree in a pre-order manner.

 In-order Traversal − Traverses a tree in an in-order manner.

 Post-order Traversal − Traverses a tree in a post-order manner.

Node

Define a node having some data, references to its left and right child nodes.

struct node {

int data;

struct node *leftChild;

struct node *rightChild;

};

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-

mentioned properties −

 The value of the key of the left sub-tree is less than the value of its parent

(root) node's key.

 The value of the key of the right sub-tree is greater than or equal to the

value of its parent (root) node's key.

176

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the

right sub-tree and can be defined as −

left_subtree (keys) < node (key) ≤ right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST

properties. Each node has a key and an associated value. While searching, the desired

key is compared to the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

We observe that the root node key (27) has all less-valued keys on the left sub-

tree and the higher valued keys on the right sub-tree.

Basic Operations

Following are the basic operations of a tree −

 Search − Searches an element in a tree.

 Insert − Inserts an element in a tree.

 Pre-order Traversal − Traverses a tree in a pre-order manner.

 In-order Traversal − Traverses a tree in an in-order manner.

 Post-order Traversal − Traverses a tree in a post-order manner.

Node

Define a node having some data, references to its left and right child nodes.

struct node {

int data;

struct node *leftChild;

struct node *rightChild;

};

177

Graph Representations

In graph theory, a graph representation is a technique to store graph into the

memory of computer.

To represent a graph, we just need the set of vertices, and for each vertex the

neighbors of the vertex (vertices which is directly connected to it by an edge). If it is a

weighted graph, then the weight will be associated with each edge.

There are different ways to optimally represent a graph, depending on the

density of its edges, type of operations to be performed and ease of use.

1. Adjacency Matrix

o Adjacency matrix is a sequential representation.

o It is used to represent which nodes are adjacent to each other. i.e. is there

any edge connecting nodes to a graph.

o In this representation, we have to construct a nXn matrix A. If there is

any edge from a vertex i to vertex j, then the corresponding element of A, ai,j = 1,

otherwise ai,j= 0.

o If there is any weighted graph then instead of 1s and 0s, we can store the

weight of the edge.

Example

Consider the following undirected graph representation:

Undirected graph representation

178

Directed graph represenation

See the directed graph representation:

In the above examples, 1 represents an edge from row vertex to column vertex,

and 0 represents no edge from row vertex to column vertex.

Undirected weighted graph represenation

Pros: Representation is easier to implement and follow.

Cons: It takes a lot of space and time to visit all the neighbors of a vertex, we

have to traverse all the vertices in the graph, which takes quite some time.

179

2. Incidence Matrix

In Incidence matrix representation, graph can be represented using a matrix of size:

Total number of vertices by total number of edges.

It means if a graph has 4 vertices and 6 edges, then it can be represented using a

matrix of 4X6 class. In this matrix, columns represent edges and rows represent vertices.

This matrix is filled with either 0 or 1 or -1. Where,

o 0 is used to represent row edge which is not connected to column vertex.

o 1 is used to represent row edge which is connected as outgoing edge to

column vertex.

o -1 is used to represent row edge which is connected as incoming edge to

column vertex.

Example

Consider the following directed graph representation.

3. Adjacency List

o Adjacency list is a linked representation.

o In this representation, for each vertex in the graph, we maintain the list of

its neighbors. It means, every vertex of the graph contains list of its adjacent vertices.

o We have an array of vertices which is indexed by the vertex number and

for each vertex v, the corresponding array element points to a singly linked list of

neighbors of v.

180

Example

Let's see the following directed graph representation implemented using linked list:

We can also implement this representation using array as follows:

Pros:

o Adjacency list saves lot of space.

o We can easily insert or delete as we use linked list.

o Such kind of representation is easy to follow and clearly shows the

adjacent nodes of node.

Cons:

o The adjacency list allows testing whether two vertices are adjacent to

each other but it is slower to support this operation.

	UNIT - I
	UNIT - II
	UNIT - III
	UNIT - IV
	UNIT - V
	TEXT BOOKS:
	REFERENCES:
	WEB REFERENCES:
	Example
	Example (1)
	Example (2)
	Example (3)

	Final Variables
	Example

	Java Identifiers
	Example
	Difference Between Type Casting and Type Conversion

	Control Flow in Java
	Decision-Making statements:
	If Statement:
	Switch Statement:
	Loop Statements
	Java for loop
	Java for-each loop
	Java while loop
	Java do-while loop
	Jump Statements
	Java break statement
	Java continue statement

	Java Arrays
	Advantages
	Disadvantages
	Types of Array in java
	Single Dimensional Array in Java
	Example of Java Array

	Multidimensional Array in Java
	Example of Multidimensional Java Array

	Objects and Classes in Java
	What is an object in Java
	What is a class in Java
	Syntax to declare a class:
	Instance variable in Java
	Method in Java
	Advantage of Method

	new keyword in Java
	Object and Class Example: main within the class
	Object and Class Example: main outside the class

	3 Ways to initialize object
	1) Object and Class Example: Initialization through reference
	2) Object and Class Example: Initialization through method
	Object and Class Example: Employee
	Object and Class Example: Rectangle

	Constructors in Java
	Rules for creating Java constructor
	Types of Java constructors
	Java Default Constructor
	Syntax of default constructor:

	Example of default constructor
	Rule: If there is no constructor in a class, compiler automatically creates a default constructor.
	Example of default constructor that displays the default values
	Java Parameterized Constructor
	Why use the parameterized constructor?
	Example of parameterized constructor

	Constructor Overloading in Java
	Example of Constructor Overloading

	Difference between constructor and method in Java
	Java Copy Constructor
	Copying values without constructor

	Method Overloading in Java
	Advantage of method overloading
	Different ways to overload the method
	1) Method Overloading: changing no. of arguments
	2) Method Overloading: changing data type of arguments
	Overloading of java main() method

	Method Overloading and Type Promotion
	Example of Method Overloading with TypePromotion
	Example of Method Overloading with Type Promotion if matching found
	Example of Method Overloading with Type Promotion in case of ambiguity
	STATIC AND FIXED METHODS:
	Fixed method:

	Java Inner Classes
	Syntax of Inner class
	Advantage of java inner classes
	Difference between nested class and inner class in Java
	Types of Nested classes
	o Creating Strings
	o Example
	o Output

	o String Length
	o Example
	o Output

	o Concatenating Strings
	o Example
	o Output

	o Creating Format Strings
	o Example

	Method Overriding in Java
	Usage of Java Method Overriding
	Rules for Java Method Overriding

	Example of method overriding
	Java method overriding is mostly used in Runtime Polymorphism which we will learn in next pages.

	Super Keyword in Java
	Usage of Java super Keyword
	super example: real use

	Abstract class in Java
	Abstraction in Java
	Ways to achieve Abstraction
	Abstract class in Java
	Points to Remember

	Abstract Method in Java
	Example of Abstract class that has an abstract method

	this keyword in java
	Usage of java this keyword
	8. Declaration
	11. Parameters
	13. Return Value
	15. Exception
	17. Example

	Java Garbage Collection
	Advantage of Garbage Collection
	How can an object be unreferenced?
	1) By nulling a reference:
	2) By assigning a reference to another:
	3) By anonymous object:

	finalize() method
	gc() method
	Simple Example of garbage collection in java

	Java Package
	Advantage of Java Package
	Simple example of java package
	How to compile java package
	How to run java package program
	How to access package from another package?
	1) Using packagename.*

	Example of package that import the packagename.*
	2) Using packagename.classname

	Example of package by import package.classname
	3) Using fully qualified name

	Example of package by import fully qualified name
	Subpackage in java
	Example of Subpackage

	Default Access Modifier - No Keyword
	Example

	Private Access Modifier - Private
	Example

	Public Access Modifier - Public
	Example

	Protected Access Modifier - Protected
	Example
	Access Control and Inheritance

	Interface in Java
	Why use Java interface?
	How to declare an interface?
	Syntax:
	The relationship between classes and interfaces

	Java Interface Example
	Java Interface Example: Drawable
	Java Interface Example: Bank
	Multiple inheritance in Java by interface
	Interface inheritance
	Default Method in Interface
	Java 8 Static Method in Interface

	Exception Handling in Java
	What is Exception in Java
	What is Exception Handling
	Advantage of Exception Handling
	Types of Java Exceptions

	Difference between Checked and Unchecked Exceptions
	1) Checked Exception
	2) Unchecked Exception
	3) Error

	Java Exception Keywords
	Java Exception Handling Example
	Life Cycle of a Thread
	Thread Priorities
	Create a Thread by Implementing a Runnable Interface
	Step 1
	Step 2
	Step 3
	Example
	Output

	Create a Thread by Extending a Thread Class
	Step 1
	Step 2
	Example
	Output

	Thread Methods
	Example
	Output

	Example
	Output
	Life Cycle of an Applet
	A "Hello, World" Applet
	The Applet Class
	Invoking an Applet
	Getting Applet Parameters
	Specifying Applet Parameters
	Application Conversion to Applets
	Event Handling
	Displaying Images
	Playing Audio
	Stream
	Byte Streams
	Character Streams

	Standard Streams
	Reading and Writing Files
	FileInputStream

	FileOutputStream
	File Navigation and I/O
	Directories in Java
	Creating Directories

	Listing Directories
	Uses of Linked List
	Why use linked list over array?
	Singly linked list or One way chain
	Complexity
	Operations on Singly Linked List
	Node Creation
	Insertion
	Deletion and Traversing

	Doubly linked list
	Memory Representation of a doubly linked list
	Operations on doubly linked list
	Stack Representation
	Basic Operations
	Push Operation
	Pop Operation
	Expression Evaluation
	Arithmetic Expression Evalution
	Basic features of Queue
	Applications of Queue
	Implementation of Queue Data Structure
	Algorithm for ENQUEUE operation
	Algorithm for DEQUEUE operation

	Important Terms
	Binary Search Tree Representation
	Tree Node
	BST Basic Operations
	Insert Operation
	Search Operation
	Representation
	Basic Operations (1)
	Node
	Representation (1)
	Basic Operations (2)
	Node (1)

	Graph Representations
	1. Adjacency Matrix
	Example

	2. Incidence Matrix
	Example

	3. Adjacency List
	Example

