

1

2

SYLLABUS

UNIT - I

Computer systems – Python Programming Language Computational Thinking – Python

Data Types: Expressions, Operator, Variables, and Assignments – Strings – Lists – Objects

& Classes – Python standard library.

UNIT - II

Imperative programming: Python modules – Built-in-function: print() function –eval()

function – user-defined function & assignments -parameter passing.

UNIT - III

Text Data, Files & Exceptions: Strings, revisited – formatted output – files – errors &

Exceptions – Execution control Structures: decision control & the IF statement

UNIT - IV

For LOOP & Iteration Patterns – two-dimensional list- while loop – more loop patterns –

additional iteration control statements – Container and Randomness: Dictionaries – other

built-in container types – character encodings & strings – module random.

UNIT - V

Namespaces – encapsulation in functions – global vs local namespaces exceptional flow

control – modules as namespaces.

3

UNIT I

PROGRAMMING LANGUAGE INTRODUCTION

A programming language is a systematic notation by which we describe

computational processes to others. Computational process in present context means a

set of steps that a machine can perform for solving a problem. Computer science is

fundamentally about computational problem solving.

The definition of computer science as computational problem solving begs the

question:

What is computation?

One characterization of computation is given by the notion of an algorithm. For

now, consider an algorithm to be a series of steps that can be systematically followed

for producing the answer to a certain type of problem.

We look at fundamental issues of computational problem solving next.

COMPUTATIONAL PROBLEM

What is meant by computational problem?

A computational problem is a mathematical object representing a collection of

questions that computers might be able to solve.

The mathematical object is "a collection of questions". A "collection" is another

term that represent as a "set". Sets as one kindof mathematical object.

The connection between the two definitions is: each instancerepresents a slightly

different question that a computer might be ableto solve.

For example, the problem of factoring

"Given a positive integer n, find a nontrivial prime factor of n."The Essence of Computational

Problem Solving,

In order to solve a problem computationally, two things are needed:

 Representation that captures all the relevant aspects of theproblem,

 Algorithm that solves the problem by use of the

representation.

Limits of Computational Problem Solving

Once an algorithm for solving a given problem is developed or found, an

important question is, “Can a solution to the problem be found in a reasonable amount

of time?” If not, then the particular algorithm is of limited practical use.

Another problem The Traveling Salesman problem is a classic computational

4

problem in computer science. The problem is to find the shortest route of travel for a

salesman needing to visit a given set of cities. In a brute force approach, the lengths of

all possible routes would be calculated and compared to find the shortest one. For five

cities, the number of possible routes is 5! , Forten cities, the number of possible routes

is 10!and so on.

Any algorithm that correctly solves a given problem must solve the problem in

a reasonable amount of time, otherwise it is oflimited practical use.

COMPUTER ALGORITHM

What is Algorithm?

An algorithm is a set of instructions designed to perform a specific task. This

can be a simple process, such as multiplying two numbers, or a complex operation,

such as playing a compressed video file.

For example:Task:

To make a cup of tea.

Algorithm:

Step 1: Add water and milk to the kettle.Step 2: Boil it, add tea leaves.

Step 3: Add sugar, and the serve it in a cup.

What is Computer Algorithm?

Computer algorithms are central to computer science. They provide step-by-step

methods of computation that a machine can carry out. Having high-speed machines

(computers) that can consistently follow and execute a given set of instructions

provides areliable and effective means of realizing computation.

“a set of steps to accomplish or complete a task that is describedprecisely enough

that a computer can run it”.

Described precisely: It’s difficult for a machine to know how much water to be

added in the above-mentioned algorithm. These algorithms run on computers or any

computational gadgets like GPS,Hangouts etc.

Characteristics of an Algorithm:

 Must take an input.

 Must give some output.

 Definiteness – instructions are clear and unambiguous.

 Finiteness – algorithm terminates after a finite number ofsteps.

5

 Effectiveness – every instruction must be understandable andsimple.

Computer Hardware

Computer hardware comprises the physical part of a computer system. It

includes the all-important components of the central processing unit (CPU) and main

memory .It also includes peripheral components such as a keyboard, monitor, mouse,

and printer.

Fundamental Hardware Components:

Computer hardware is a collection of several components working together.

Some parts are essential and others are added advantages. Computer hardware is made

up of CPU and peripherals.

The central processing unit (CPU) is the “brain” of a computer system,

containing digital logic circuitry able to interpret and execute instructions.

Main memory is where currently executing programs reside, which the CPU can

directly and very quickly access.

Main memory is volatile; that is, the contents are lost whenthe power is turned

off. In contrast, secondary memory is nonvolatile, and therefore provides long-term

storage of programs and data.

This kind of storage, for example, can be magnetic (hard drive), optical (CD or

DVD), or nonvolatile flash memory (such as in a USB drive).

Input/output devices include anything that allows for input (such as the mouse

and keyboard) or output (such as a monitor or printer). Finally, buses transfer data

between components within a computer system, such as between the CPUand main

memory.

An operating system acts as the “middle man” between the hardware and

executing application program. For example, it controls the allocation of memory for

the various programs that may be executing on a computer. Operating systems also

provide a particular user interface. Thus, it is the operating system installed on a given

computer that determines the “look and feel” of the user interface and how the user

interacts with the system, and not the particular model computer.

‘An operating system is software that has the job of managing the hardware resources

of a given computer and providing a particular user interface’.

Computer Software

A set of instructions that drives computer to do stipulatedtasks is called a

program.

Software instructions are programmed in a computer language, translated into

6

machine language, and executed by computer. Software can be categorized into two

types

What is Software?

Software is a logical execution and a set of instructions thatdrives computer to

do stipulated tasks is called a program.

What is computer software?

Software instructions are programmed in a computer language, translated into

machine language, and executed by computer. Computer software is a set of

commands that tells the computer how to work.

Computer software is a set of program instructions, including related data and

documentation, that can be executed by computer.

Software can be categorized into two types

I. System Software

II. Application Software

I. System Software

System software is a type of computer program that is designed to run a

computer's hardware and application programs. It is the interface between the hardware

and user applications.

“System Software is a set of programs that control and manage the operations of

computer hardware.”

Examples of system software:Windows, Linux etc.

Software generally follows three main parts as

1. Syntax

7

2. Semantics

3. Program Translation

1. Syntax

Programming languages are languages just as “natural languages” such as English.

Syntaxand semanticsare important concepts that apply to all languages.

Syntax errors are caused by invalid syntax. The syntax of a language is a set of

characters and the acceptable sequences of those characters. English, for example,

includes the letters of the alphabet, punctuation, and properly spelled words and

sentences.

The following is a syntactically correct sentence in English

Print(“hello world!!”)

The following, however, is not syntactically correct,

“prnt(“hello world”)”

In this sentence, the sequence of word “prnt” is not a word in the English

language.

2. Semantics

The semantics of a language is a set of characters thatmake meaningful words.

Semantic errors are caused by errors in program logic. It is referred as logic errors.

In other words, The semantics of a language is the meaning associated with

each syntactically correct sequenceof characters.

Now consider the following sentence, “green sleep furiously.”

This sentence is syntactically correct, but it is semantically incorrect, and thus

has no meaning in the sentence.

3. Program Translation

A central processing unit (CPU) is designed to interpret and execute a specifi c

set of instructionsrepresented in binary form (i.e., 1s and 0s) called machine code.

The source code which is written by the programmer needs to be translated.

When translated, the source code becomes object code which is understandable by the

computer.

There are three main types of translators as follows

1. Assembler

2. Compilers

8

3. Interpreters

The three main types of translators

Type Description

Assembler
Assemblers convert assembly language

mnemonicsinto machine code.

Interpreters

Interpreters convert each instruction of the

source code into the object code as the program

is being run. This gives a better interactive

environment butis slower.

Compilers
A compiler converts the entire source code into

machine code so that it can be run on the

machine without further translation.

Most of the programs are written in a “high-level” programming language such

as Python. Since the instructions of such programs are not in machine code that a CPU

can execute, a translator program must be used. There are two fundamental types of

translators.

One, called a compiler , it translates programs directly into machine code to be

executed by the CPU

Program Execution by a Computer

Another called interpreter, which executes program instruction. Thus, an

interpreter can immediately execute instructions as they are entered. This is referred as

interactive mode

Interpreter

II. Application Software

An application is any program designed for the end user. It is capable of dealing

with user inputs and helps the user to complete the task. Application softwares are

installed according to user's requirements. Applications software includes database

programs, word processors, browsers and spreadsheets.

9

Application Software Type Examples

Word Processing Software MS Word, WordPad and Notpad

Database Software Oracle, MS Access etc.

Spreadsheet Software Apple Numbers, Microsoft Excel

Multimedia Software Real Player, Media Player

SYSTEM SOFTWARE APPLICATIONSOFTWARE

The software which provides

a platform for the user to

interact with the hardware of

a computer are known as

system software

These software which runs

on an operating system(os is

a system software) serving

specific purpose are called

application softwares

System softwares are needed

torun application softwares

Application softwares are not

needed to run system softwares

Run in the background and act

asa platform

Runs in the foreground and

interact with the user

Example: language processors,

operating system and disk

drivers.

Example: video players, text

editors and browser

Difference between Software and Hardware

Software Vs Hardware

10

Collection of programs to

bringcomputer hardware

system

Physical components of

computer system

Software products evolve by

adding new features to existing

programs to support hardware

Hardware design is based on

architectural decisions to make

it work over a range of

environmental conditions and

time.

Software cannot be executed

without hardware

Hardware cannot perform any

task without software.

Software is debugged in case

ofproblem

Hardware is repaired in case

ofproblem

It includes numbers, alphabets,

alphanumeric symbols,

identifiers, keywords, etc.

It consists of electronic

components like ICs, diodes,

registers, crystals, boards,

insulators, etc

The Process of Computational Problem Solving

The process of computational problem solving involves understanding the

problem, designing a solution and writing the solution. It is a process, with

programming being only one of the steps. Before a program is written, a design for the

program must be developed. And before a design can be developed, the problem to be

solved must be well understood. Once written, the program must bethoroughly tested.

Fig 1.5 Process of problem solving

1. Problem Analysis Understanding the Problem

11

Once a problem is clearly understood, the fundamental computational issues for

solving. For each of the problems the representation is straightforward. For example,

The calendar month problem, need to store the month andyear, the number days

in each month, and the names of the days of week. It obtained by direct calculation by

use of the algorithm.

For (MCGW) problem, need to store the current state of the problem. A brute-

force algorithmic approach of trying all possible solutions works very well, and only a

relatively small number of steps for reaching a solution.

For both the Traveling Salesman problem and the game of chess, the brute-force

approach is infeasible. To understand and finding solutions of the problem. For some

problems, there is only one solution. For others, there may be a number (or infinite

number) of solutions. Thus, a program may be stated as finding,

 A solution

 An approximate solution

 A best solution

 All solutions

Possible Solutions are

1. Direct Solution

2. Brute-force Solution

3. Clever Solution

2. Program design Data and algorithm

For the MCGW problem, a list can be used to represent the correct location

(east and west) of the man, cabbage, goat, and wolf as discussed earlier, reproduced

below,

man cabbage goat wolf[W, E, W, E]

For the Calendar Month problem, the data include the month and year (entered

by the user), the number of days in eachmonth, and the names of the days of the week.

A useful structuring of the data is given below,

[Month ,year]

[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

[‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’,‘Friday’, ‘Saturday’]

12

The month and year are grouped in a single list since they are naturally

associated. Similarly, the names of the days of the week and the number of days in

each month are grouped. Finally, the first day of the month, as determined by the

algorithm it can be represented by a single integer,

0 – Sunday, 1 – Monday, . . ., 6 – Saturday

For the Traveling Salesman problem, the distance between each pair of cities

must be represented.

One possible way of structuring the data is as a table

Travelling salesman- data table Describing the Needed Algorithms

When solving a computational problem, either suitable existing algorithms may

be found or new algorithms must be developed.

For the MCGW problem, there are standard search algorithms that can be used.

For the calendar month problem, a day of the week algorithm already exists.

For the Traveling Salesman problem, there are various (nontrivial) algorithms

that can be utilized.

Finally, for the game of chess, since it is infeasible to look ahead at the final

outcomes of every possible move, there are algorithms that make a best guess at which

moves to make.

3. Program implementation

Decisions are made after analyzing an describing the dataand algorithm. To take

decision for the implementation phase in Python programming, the implementation

needs to be expressed in a syntactically correct and appropriate way, using the

instructions and features available in Python.

4. Program testing

Writing computer programs is difficult and challenging. Given this fact, software

testing is crucial part of softwaredevelopment . testing is done incrementally as a

program is being developed, when the program is complete, and when the program

needs to be updated. History of Python:

 Python was developed by Guido van Rossum in the late eighties and early nineties at

the National Research Institute for Mathematics and Computer Science in the

13

Netherlands.

 Python is derived from many other languages, including ABC, Modula-3, C, C++,

Algol-68, SmallTalk, and Unix shell and other scripting languages.

 Python is copyrighted. Like Perl, Python source code is now available under the GNU

General Public License (GPL).

 Python is now maintained by a core development team at theinstitute, although Guido

van Rossum still holds a vital role in directing its progress.

Definition:

 Python is a high-level, interpreted, interactive and object- oriented scripting language.

 Python is designed to be highly readable.

 It uses English keywords frequently where as other languages use punctuation, and it has

fewer syntactical constructions than other languages.

 Python is a great Software working in Web Development Domain.

Why Learn Python?

 Python is easy to learn. Its syntax is easy and code is very readable.

 Python has a lot of applications. It's used for developing webapplications, data science,

rapid application development, and so on.

 Python allows you to write programs in fewer lines of code than most of the

programming languages.

 The popularity of Python is growing rapidly. Now it's one of the most popular

programming languages.

Some of the key advantages of Python:

 Python is Interpreted − Python is processed at run time by the interpreter. You do not

need to compile your program beforeexecuting it. This is similar to PERL and PHP.

 Python is Interactive − You can actually sit at a Python prompt and interact with the

interpreter directly to write yourprograms.

 Python is Object-Oriented − Python supports Object- Oriented style or technique of

programming that encapsulates code within objects.

 Python is a Beginner's Language − Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from

simpletext processing to WWW browsers to games.

Characteristics of Python:

 It supports functional and structured programming methods as well as OOP.

14

 It can be used as a scripting language or can be compiled to byte-code for building

large applications.

 It provides very high-level dynamic data types and supports dynamic type checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Features of Python:

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined

syntax. This allows the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visibleto the eyes.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

 A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows,and Macintosh.

 Interactive Mode: Python has support for an interactive mode which allows interactive

testing and debugging of snippets ofcode.

 Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

 Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to orcustomize their tools to be more efficient.

 Databases: Python provides interfaces to all major commercial databases.

 GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries andwindows systems, such as Windows MFC, Macintosh,

and the X Window system of Unix.

 Scalable: Python provides a better structure and support forlarge programs than shell

scripting.

Some other features:

 It supports functional and structured programming methodsas well as OOP.

 It can be used as a scripting language or can be compiled tobyte-code for building

large applications.

 It provides very high-level dynamic data types and supportsdynamic type checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX,CORBA, and Java.

Applications of Python:

Python is in use since 1991. During this time period, Pythonis used for a variety

15

of software for different purposes. So, let’s have a look at all python application

examples that are available in the market.

 Graphical User Interface(GUI)

 Web Frameworks & Applications

 Enterprise and Business Applications

 Operating Systems

 Language Development

 Prototyping

 Software Development Applications

 Console Based Applications

 3-D CAD Applications

 Applications for Images

Printing and Reading in python

Printing to the Screen:

The simplest way to produce output is using the print statement where you can

pass zero or more expressions separated by commas. This function converts the

expressions you pass into a string and writes the result to standard output as follows −

Example:

Output:

 print ("Python is really a great language")

 Python is really a great language

Reading Keyboard Input:

Python provides two built-in functions to read a line of text from standard input,

which by default comes from the keyboard. These functions are −

 raw_input

 input

The raw_input Function:

The raw_input([prompt]) function reads one line from standard input and

returns it as a string (removing the trailing newline). This prompts you to enter any

string and it would displaysame string on the screen.

Example:

16

Output:

The input Function :

The input([prompt]) function is equivalent to raw_input, except that it assumes

the input is a valid Python expression and returns the evaluated result to you.

Example:

Output:

Enter your input: welcome to python Received input is : welcome to python

Data Types

What is Data Types in python :

Each variable stored in memory has a datatype. Data types are actually classes

and if you create any variable of a specific datatype, it is an object. Python’s standard

data types can be groupedinto mainly four different classes

Types of datatypes :

1. Numeric :

a) Integer (int): In python, the value of an integer can be ofunlimited length.(it only

depends on the available memory)

b) Long (long): Long integers of unlimited length. But existsonly in python 2.x.

str = raw_input("Enter your input: ")

print ("Received input is : ", str)

Enter your input: Hello Python

Received input is : Hello Python

str = input("Enter your input: ")

print ("Received input is : ", str)

17

c) Float (float): Floating point numbers. Integers and floating point numbers are

separated by a decimal point. The maximum no. of places after the decimal for a float

is 15 in python.

d) Complex numbers (complex): Complex numbers arerepresented as (x + yj) where x

is the real part and y is the imaginary part.

Integer, long, float and complex all are immutable types.

Use type() function to check which class a variablebelongs to.

Example Program:

Output:

2. Sequences :

a) Python String (str) :

The string is actually a sequence of 8-bit characters (in Python 2.x) or a

sequence of Unicode characters (in Python 3.x). Strings are immutable i.e. we cannot

change any character of a String. To represent a String in python, single quote or

double quote is used. For multiline strings, atriple quote is used. To print a particular

character inside a String, use stringName[position]. Similarly, to print characters in a

a = 15

print("a type ", type(a))

b = 15.5

print("a type ", type(b))

c = 15 + 6j

print("c type ", type(c))

a type <class 'int'>

a type <class 'float'>

c type <class 'complex'>

18

range, use stringName [firstPosition,lastPosition + 1].

Example program :

Output:

b) Python list :

Lists are ordered sequence of variables. The list is mutable, i.e. you can alter

any item of a list. Also, list can contain items of different types. To declare a list

str1 = 'This is a String'

print (str1)

str2 = "This is also a String"

print (str2)

str3 = ''' This is a multiline

String '''

print (str3)

str4 = """ This is also a multiline

String """

print (str4)

print("Printing the first character of str1 "+str1[0])

print("Printing the first word of str1 "+str1[0:4])

This is a String

This is also a String

This is a multiline

String

This is also a multiline

String

Printing the first character of str1 T

Printing the first word of str1 This

19

bracket []is used. If you want to print or alter a variable inside a list, you can use

listname[variablePosition].

Example Program:

print ("now , first element is :"+myList[0])

Output:

 now , first element is :2

c) Python Tuple :

Python tuple is same as a list, the only difference is that it is immutable. To

represent tuple in python, we use parentheses ().

Example Program for a tuple :

myList = [1,"one",1.0]

print (myList)

print ("first element of the list is: "+str(myList[0]))

myList[0] = "2"

print ("first element is changed:")

[1, 'one', 1.0]

first element of the list is: 1

first element is changed:

myList = (1,"one",1.0)

print (myList)

print ("first element of the list is: "+str(myList[0]))

#myList[0] = "2"

print ("Any Element in tuple can not able to changed ")

print ("now , first element is: "+str(myList[0]))

20

Output:

It will throw an error on myList[0] = “2” line aswe cannot change any values in

the tuple.

3. Python Sets :

a) Set :

Set is an unordered collection of unique objects. Eachitem is separated by a

comma inside braces { }.

We can also pass a list to the set function to create anew set.

Example Program:

 print (mySet3)

Output :

(1, 'one', 1.0)

first element of the list is: 1

Any Element in tuple can not able to changed

now , first element is: 1

mySet1 = set("python")

print (mySet1)

myList = (1,"one","two")

mySet2 = set(myList)

print (mySet2)

mySet3 = set([1,1,1,1,1,1])

21

mySet3-contains only one “1” as all values of a setshould be unique.

We can perform set operations like add, remove,intersection, union etc on sets.

b) Frozen Sets :

The frozen set is similar as sets but they areimmutable.

4. Python mapping :Python Dictionary

Python Dictionary is a collection of key-value pairs. Dictionary is an unordered

collection. To get any value from the dictionary, we must know the key. Dictionaries

are definedwithin braces {}. Each element or key-value pairs can be of anytype.

Example Program :

Output:

Python Typecasting

We need to convert the values from one data type to anotherdata type. The process of

converting a value from one data type to another data type is called Typecasting or

simply Casting. In Python, the typecasting is performed using built-in functions. As all

{'h', 'o', 'y', 't', 'n', 'p'}

{1, 'two', 'one'}

{1}

D = {"sun":'Sunday',"k2":2}

print("Element for Key 1 is:"+D["sun"])

print ("Element for key key2: "+str(D["k2"]))

Element for Key 1 is:Sunday

Element for key key2: 2

22

the data types in Python are organized using classes, the type casting is performed

using constructor functions. The following are the constructor functions used to

perform typecasting.

S.No. Function Description

1

int()

It is used to convert an integer literal, float

literal, and string literal (String must

represent a whole number) to an integer

value.

2

float()
It is used to convert an integer literal, float

literal, and string literal (String must

represent a whole number) to a float value.

3

str()
It is used to convert a value of any data

type including strings, integer literals and

float literals to a string value.

Literals

Literal is a raw data given in a variable or constant. InPython, there are

various types of literals they are as follows:

1. Numeric Literal

2. String literals

3. Boolean literals

4. Special literals

5. Literal Collections

1. Numeric Literal:

Numeric Literals are unchangeable. Numeric literals can belong to 3 different

numerical types are : Integer Literals, Float Literals , Complex.

i) Integer Literals : It contain whole values in number. Integerliterals types are Binary

Literals(0b) , Decimal Literal, Octal Literal(0o), Hexadecimal Literal(0x). Integer

Literals Examples are When print the variables, all the literals are converted into

decimal values.

a = 0b1010 #Binary Literals print 10

b = 100 #Decimal Literal print 100

c = 0o310 #Octal Literal print 200

d = 0x12c #Hexadecimal Literal print 300

23

ii) Float Literals : It contain Whole value with fractional part.

For Examples

float_1 = 10.5 #print 10.5

float_2 = 1.5e2 #print 150.0 1.5e2 are floating-point literals. 1.5e2 is expressed with

exponential and is equivalent to 1.5 *102

iii) Complex : To assigned a complex literal to create imaginaryand real part of complex

number.

2. String literals: A string literal is a sequence of characters surrounded by quotes. We

can use both single, double or triple quotes for a string. And, a character literal is a

single character surrounded by single or double quotes.

For Example

The value with triple-quote"""assigned in the multiline_str is multi-line string

literal. The u"\u00dcnic\u00f6de" is a unicode literal which supports characters other

than English and r"raw \n string" is a raw string literal.

3. Boolean literals: A Boolean literal can have any of the twovalues: True or False.

For Example

For Example

x = 3.14j

print(x, x.imag, x.real) #3.14j in variable x. Then we use

imaginary literal (x.imag) and real literal (x.real) output is

3.14j 3.14 0.0

strings = "This is Python"

char = "C"

multiline_str = """This is a multiline string with more thanone

line code."""

unicode = u"\u00dcnic\u00f6de"

raw_str = r"raw \n string"

print(strings)#This is Python

print(char)#C

print(multiline_str)# This is a multiline string with more than

one line code

print(unicode)#Ünicöde

print(raw_str)#raw \n string

24

4. Special literals: Python contains one special literal i.e.None. Weuse it to specify to that

field that is not created .

5. Literal Collections: There are 4 different literal collections List Literals, Tuple

Literals, Dict Literals, and Set Literals. They represent more complex data and helps to

provide extendibility to Python programs.

Let us use an example to see how these Literals function:-

Variable

 A variable is a named location used to store data in the memory. when to create a

variable reserve some space in memory. The value of Variable which can be changed

later throughout programming.

To assigning different

 Data types into variable can store integers, decimals or characters in variable.

 The assignment operator (=) is used to assign a value to a variable. Example: a=1

Assigning Values to Variables:

x = (1 == True)

y = (1 == False)

a = True + 4 #True=1(1+4=5)

b = False + 10 #False=0(0+10=10)

print("x is", x) #x is True

print("y is", y) #y is False

print("a:", a) #a: 5

print("b:", b) #b: 10

colors = ["red", "green", "yellow"] #list

numbers = (101, 202, 304) #tuple

student = {'name':'John Doe', 'address':'California',

'email':'john@doe.com'} #dictionary

vowels = {'a', 'e', 'i' , 'o', 'u'} #set

print(colors)

print(numbers)

print(student)

print(vowels)

25

a =10 # Assignment integer value into a

b=1000.0 # Assignment floating point value into b

name=" Python " # Assignment string value into name

print (a)

print (b)

print (name)

Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal

sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the

operand to the right of the = operator is the value stored in the variable.

For example

Output:

Multiple Assignment:

Python allows to assign a single value to several variablessimultaneously.

For example :a = b = c = 5

Here, an integer object is created with the value 5, and all three variables are

assigned to the same memory location, can also assign multiple objects to multiple

variables.

For example: a,b,c = 5,10,"Python"

Here, two integer objects with values 5 and 10 are assigned to variables a and b

respectively, and one string object with the value"Python" is assigned to the variable c.

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to

think of constants as containers that hold information which cannot be changed later.

Assigning value to a constant in Python:

10

1000.0

Python

26

In Python, constants are usually declared and assigned on a module. Here, the

module means a new file containing variables, functions etc which is imported to main

file. Inside the module, constants are written in all capital letters and underscores

separatingthe words.

Example 3: Declaring and assigning value to a constant

#Create a main.py

Output:

3.14

9.8

Rules and naming convention for variables and constants:

1. Should not use special symbols like !, @, #, $, %, etc. in a variable name.

2. Do not start the variable name with a digit

3. Use capital letters where possible to declare a constant. Forexample

PI, GRAVITY etc.

4. Constants are put into Python modules and meant not be changed.

5. Constant and variable names should have a combination of letters in lowercase (a to z)

or uppercase (A to Z) or digits (0to 9) or an underscore (_).

Identifier

 An identifier is a name given to entities like class, functions,variables etc. in Python, It

helps to differentiate one entity from another.

 Identifier begins with a letter a to z or A to Z or an underscore (_) trailed by zero or

more letters, underscores, and digits (0 to 9).

Rules naming conventions for Python identifiers:

1. Identifier begins with a letter a to z or A to Z or an underscore (_) trailed by zero or

#Create a constant.py

PI = 3.14

GRAVITY = 9.8

import constant

print(constant.PI)

print(constant.GRAVITY)

27

more letters, underscores, and digits (0 to 9). Ex : Acc_no1=100.

2. Cannot use keywords as an identifier name. Ex int=10 – invalid (int is keyword)

3. An identifier cannot start with a digit. Ex: 5A - invalid identifier, however, digits can

be added after the variable name Ex:A5 (valid).

4. Cannot use special symbols like !,@, #, $, % etc. in our identifier. Ex : A@=10 –

invalid.

5. An identifier can be of any length.

6. Class names start with an uppercase letter. All other identifiers start with a lowercase

letter.

7. Starting an identifier with a single leading underscore indicates that the identifier is

private.

8. Starting an identifier with two leading underscores indicates a strongly private

identifier.

9. If the identifier also ends with two trailing underscores, the identifier is a language-

defined special name.

Operators

 An Operators are special symbols in Python that carry out arithmetic or logical

computation.

 The value that the operator operates on is called the operand. For Example : 4 + 5 = 9.

Here, 4 and 5 are called operands and + is called operator.

Types of Operator

Python language supports the following types of operators.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Assignment Operators

4. Logical Operators

5. Bitwise Operators

6. Membership Operators

7. Identity Operators

28

1. Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

+ Addition

Adds values on either side of

the operator.

a + b = 30

- Subtraction

Subtracts right hand

operandfrom left hand

operand.

a – b = -10

*

Multiplication

Multiplies values on either

side of the operator

a * b = 200

/ Division Divides left hand operand

byright hand operand

b / a = 2

% Modulus

Divides left hand operand by

right hand operand and

returnsremainder

b % a = 0

** Exponent

Performs exponential

(power)calculation on

operators

a**b =10 to the

power 20

//

Floor Division - The division

of operands where the result

isthe quotient in which the

digits after the decimal point

are removed. But if one of the

operands is negative, the result

is floored, i.e., rounded away

from zero (towards negative

infinity) −

9//2 = 4 and

9.0//2.0 = 4.0,

-11//3 = -4,

-11.0//3 = -4.0

Example Program: CALCULATOR - USING ARITHMATICOPERATOR

29

Output:

2. Comparison or Relational Operators:

These operators compare the values on either sides of them and decide the

relation among them. They are also called Relational operators.

Assume variable a = 10 and b = 20, then −

Operator Description Example

a=int(input("Enter the A value:"))

op=input("Enter the operator:")

b=int(input("Enter the B value:"))

if op=="+":

print("Addition of A and B values are:",a+b)

elif op=="-":

print("Subtraction of A and B values are:",a-b)

elif op=="*":

print("Multiplication of A and B values are:",a*b)

elif op=="/":

print("division of A and B values are:",a/b)

elif op=="%":

print("Modulation of A and B values are:",a%b)else:

print("Invalid operator")

Enter the A value:5

Enter the operator:+

Enter the B value:4

Addition of A and B values are:9

Enter the A value:5

Enter the operator:&

Enter the B value:4

Invalid operator

30

==

If the values of two operands

are equal, then the condition

becomes true.

(a == b) is not true.

!=

If values of two operands are

not equal, then condition

becomes true.

(a != b) is true.

<>

If values of two operands are

not equal, then condition

becomes true.

(a <> b) is true.

This is similar to !=

operator.

>

If the value of left operand is

greater than the value of right

operand, then condition

becomes true.

(a > b) is not true.

<

If the value of left operand is

less than the value of right

operand, then condition

becomes true.

(a < b) is true.

>=

If the value of left operand is

greater than or equal to the

value of right operand, then

condition becomes true.

(a >= b) is not true.

<=

If the value of left operand is

less than or equal to the value

of right operand, then

condition becomes true.

(a <= b) is true.

Example Program: BIGGEST OF TWO NUMBERS

/Output:

a=int(input("Enter the A value:"))

b=int(input("Enter the B value:"))

if a>int b:

print("A is Biggest")

else:

print("B is Biggest")

31

3. Assignment Operators:

The Python Assignment Operators are handy to assign the values to the declared

variables. Equals (=) operator is the most commonly used assignment operator in

Python. For example: a=10, assign the value 10 into a.

The below table displays the list of available assignment operators in Python

language.

PYTHON

ASSIGNMENT

OPERATORS

EXAMPLE

EXPLANATION

= x = 25 Value 25 is assigned to x

+= x += 25 This is same as x = x + 25

-= x -= 25 Same as x = x – 25

*= x *= 25 This is same as x = x * 25

/= x /= 25 Same as x = x / 25

%= x %= 25 This is identical to x = x % 25

//= x //= 25 Same as x = x // 25

**= x **= 25 This is same as x = x ** 25

&= x &= 25 This is same as x = x & 25

|= x |= 25 This is same as x = x | 25

^= x ̂ = 25 Same as x = x ̂ 25

<<= x <<= 25 This is same as x = x << 25

>>= x >>= 25 Same as x = x >> 25

Example Program: Arithmetic Operation using ShorthandAssignment

Operator

Enter the A value:50

Enter the B value:30

A is Biggest

32

Output:

4. Logical Operators:

The logical operation is mainly done with conditional statements. These are

mainly used with two logical operands if the value of logical operands is either True or

False. The result of the logical operator is used for the final decision making. Three

different types of logical operators are available in python:

 OR or Logical OR

 AND or Logical AND

 NOT or Logical NOT

Logical OR :

The output of logical OR will be False only if both operands are False. If either

a=int(50)

b=int(5)

c=a+b

print("Addition of A , B and assign to c=",c)

a+=b

print ("Addition of A , B and assign to A = ",a)

a-=b

print ("Subtraction of A , B and assign to A = ",a)

a*=b

print ("Multiplication of A , B and assign to A = ",a)

a/=b

print ("Division of A , B and assign to A = ",a)

a%=b

print ("Modulation of A , B and assign to A = ",a)

Addition of A , B and assign to c=55 #c=50+5=55

Addition of A , B and assign to A = 55 #a=50+5=55(now a=55)

Subtraction of A , B and assign to A = 50 #a=55-5=50(now a=50)

Multiplication of A , B and assign to A = 250 #a=50*5=250(now
a=250)

Division of A , B and assign to A = 50.0 #a=250/5=50(now a=50)

Modulation of A , B and assign to A = 0.0 #a=50%5=0(now a=0)

33

of them has a True value, it will result True. The syntax ‘or’ is used for logical OR

operation. Following are the input and result of different OR operations :

Operand1 Operend2 Result

FALSE(0) FALSE(0) FALSE(0)

FALSE(0) TRUE(1) TRUE(1)

TRUE(1) FALSE(0) TRUE(1)

TRUE(1) TRUE(1) TRUE(1)

The final result is ‘False’ only if both operands are False.

Else, it is True always.

Logical AND :

The output of logical AND will be True only if both operands are True. If

anyone of them is False, the result will be False. Syntax ‘and’ is used for logical AND

operation. Input andresults for different AND operations are as follow :

Operand1 Operend2 Result

FALSE(0) FALSE(0) FALSE(0)

FALSE(0) TRUE(1) FALSE(0)

TRUE(1) FALSE(0) FALSE(0)

TRUE(1) TRUE(1) TRUE(1)

The final output is True only if both operands are True.

Else, it is False.

Logical NOT :

logical NOT is simple. It will just reverse the value. If the input is True, it will

return False and if the input is False, it willreturn True.

Operand Result

TRUE FALSE

FALSE TRUE

Example:Assume a= 10 and b = 20 then

34

Operator Description Example

and Logical

AND

If both the operands are true then

condition becomes true.

(a and b) is

true.

LogicalOR

If any of the two operands are

non-zero then condition

becomes true.

(a or b) istrue.

not Logical

NOT

sed to reverse the logical state of its

operand.

Not(a and b)

is false.

Example Program: To Find given year is Leaf Year Or NotUsing logical

operator

Output:

5. Bitwise Operators:

Bitwise operator works on bits and performs bit by bit operation. Assume if a =

60; and b = 13; Now in the binary format their values will be 0011 1100 and 0000

1101 respectively. Following table lists out the bitwise operators supported by Python

language with an example each in those, we use the above two variables (a and b) as

operands :

a = 0011 1100

b = 0000 110 1

y=int(input("Enter the Year:"))

if((y%400==0)or(y%4==0)and (y%100!=0)):

print("Given year is Leaf year.")

else:

print("Given year is Not Leaf Year")

Enter the Year:1999

Given year is Not Leaf Year

Enter the Year:2020

Given year is Leaf year.

35

a&b = 0000 1100

a|b = 0011 1101

a^b= 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Pythonlanguage.

Operator Description Example

& Binary

AND

Operator copies a bit to the

result if it exists in both

operands

(a & b) (means

0000 1100)

| Binary OR

It copies a bit if it exists in

either operand.

(a | b) = 61

(means 0011 1101)

^ BinaryXOR
It copies the bit if it is set in

one operand but not both.

(a ^ b) = 49

(means 0011 0001)

~ Binary

Ones

Complement

It is unary and has the

effect of 'flipping' bits.

(~a) = -61

(means 1100 0011

in 2's complement

form due to a signed

binary number.

<< Binary

Left Shift

The left operands value is

moved left by the number

of bits specified by the

right operand.

a << 2 = 240

(means 1111 0000)

>>Binary

Right Shift

The left operands value is

moved right by the number

of bits specified by the

right operand.

a >> 2 = 15

(means 0000 1111)

Example Program:

a,b =60,13

print("a & b=",a&b)

print("a | b=",a|b)

print("a ^ b=",a^b)

print("~ a=",~a)

Output:

36

Output:

6. Membership Operators :

Python’s membership operators test for membership in a sequence, such as

strings, lists, or tuples. There are two membership operators are:

 in

 not in

Operator Description Example

in

Evaluates to true if it finds

a variable in the specified

sequence and false

otherwise.

x in y, here in results in

a 1 if x is a member of

sequence y.

not in

Evaluates to true if it does

not finds a variable in the

specified sequence and

false otherwise.

x not in y, here not in

results in a 1 if x is not a

member of sequence y.

Example Program:

a & b=12

a | b=61

a ^ b=49

~ a=-61

a = int(input("Enter a value:"))

b = int(input("Enter b value:"))

li = [1, 2, 3, 4, 5]

if(ain li):

print(" a is available in the given list")

else:

print(" a is not available in the given list")

if(bnotin li):

print (" b is not available in the given list")

else:

print (" b is available in the given list")

Output:

37

7. Identity Operators :

Identity operators compare the memory locations of twoobjects. There are two

Identity operators as explained below –

Operator Description Example

is

Evaluates to true if the variables

on either side of the operator

point to the same object and

falseotherwise.

x is y, here is

results in 1 if id(x)

equals id(y).

is not

Evaluates to false if the

variables on either side of the

operator point to the same

object and trueotherwise.

x is not y, here is

not results in 1 if

id(x) is not equal

to id(y).

Example Program :

Enter a value:4

Enter b value:10

a is available in the given list

b is not available in the given list

a = int(input("Enter a value:"))

b = int(input("Enter b value:"))

if(ais b):

print ("Line 1 - a and b have same identity")

else:

print ("Line 1 - a and b do not have same identity")

if(id(a) == id(b)):

print ("Line 2 - a and b have same identity")

else:

print ("Line 2 - a and b do not have same identity")

38

Operators Precedence

The following table lists all operators from highestprecedence to lowest.

Operator Description

** Exponentiation (raise to the power)

~ + -
Complement, unary plus and minus (method

names for the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>><< Right and left bitwise shift

& Bitwise 'AND'td>

^ | Bitwise exclusive ̀ OR' and regular ̀ OR'

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -

= += *= **=
Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Expressions

 Expressions are representations of value.

 Python expressions only contain identifiers, literals, and operators.

Enter a value:20

Enter b value:20

Line 1 - a and b have same identity

Line 2 - a and b have same identity

Enter a value:20

Enter b value:10

Line 1 - a and b do not have same identity

Line 2 - a and b do not have same identity

39

 They are different from statement in the fact that statements do something while

expressions are representation of value.

 For example any string is also an expressions since it represents the value of the string

as well.

 Python has some advanced constructs through which you can represent values and

hence these constructs are also called expressions.

Ex: c=a+b

Types of Python ExpressionsList comprehension:

The syntax for list comprehension is shown below:[compute(var) for var in iterable]

For example, the following code will get all the number within 10 and put them

in a list.

Output:

 print([x for x in range(10)])

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Dictionary comprehension:

This is the same as list comprehension but will use curly braces: { k, v for k in

iterable }

For example, the following code will get all the numbers within 5 as the keys

and will keep the corresponding squares of thosenumbers as the values.

Generator expression:

The syntax for generator expression is shown below: (compute(var) for var in iterable

)

For example, the following code will initialize a generatorobject that returns

the values within 10 when the object is called.

Example:

print({x:x**2for x in range(5)})

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

print((x for x in range(10)))

print(list(x for x in range(10)))

40

Output:

Conditional Expressions: true_value if Condition else false_value

Example:

Output:

true

LIST

List, Structure of list and Python list

List: A sequence of elements or items written or printed togetherin a

meaningful single name.

For Example: list = ['one','two','three','four','five,'six']

Defining a Python list:

 In Python, a list is an ordered collection of objects.

 A list can contain different types of objects, even other lists.

 Lists are very similar to arrays.

 A list is enclosed by brackets [] with the first element atindex 0, where each

element is separated by a comma.

 It implements the sequence protocol, and also allows you toadd and remove objects

from the sequence.

 For example, you can define a list of integers as follows: list

= [1,3,2,7,9,4]

 In Python, the size of the list can grow or shrink whenneeded.

<generator object <genexpr> at 0x0020B4F8>

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

x=1

if x==1:

print("true")

else:

print("false")

41

Creating List:

Creating a list is as simple as putting different comma-separated values in

square brackets.

Accessing List Values:

The syntax for accessing the elements of a list is the same as the syntax for

accessing the characters of a string. The expression inside the brackets specifies the

index. Python indexes starts its listsat 0 rather than 1.

Example 1:

Output:

Example 2:

a_list = [1,2,3,4]

b_list = ['a','b','c','d']

c_list = ['one','two','three','four','five,'six']

d_list = [1,2,'three','four']

a_list = [1,2,3,4]

num1 = a_list[0]

num2 = a_list[3]

print(num1)

print(num2)

1

4

42

Output:

Basic List Operations:

Lists respond to the + and * operators much like strings; theymean concatenation

and repetition here too, except that the result is anew list, not a string.

In fact, lists respond to all of the general sequence operationswe used on strings

in the prior chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

List length: The function len() returns the length of a list, whichis equal to the

number of its elements.

Example:

d_list = [1,2,'three','four']

num = d_list[1]

str = d_list[2]

print(num)

print(str)

2

three

43

Output:

4

"+" operator :It is used to concatenates lists.

Example:

Output:

using the * operator repeats a list a given number of times.

Example:

Output:

lt = [1,2,'three','four']

print(len(lt))

lt = [1,2,'three','four']

lt1=[5,'six',7]

lt2=lt+lt1

print ("Lists are in lt:",lt)

print("Lists are in lt1:",lt1)

print("Concatenation of two lists lt,lt1 are contain: ",lt2)

Lists are in lt: [1, 2, 'three', 'four']

Lists are in lt1: [5, 'six', 7]

Concatenation of two lists lt,lt1 are contain: [1, 2, 'three',

'four', 5, 'six', 7]

lt = [1,2,'three']

print(lt*4)

44

[1, 2, 'three', 1, 2, 'three', 1, 2, 'three', 1, 2, 'three']

Indexing, Slicing, and Matrixes:

Lists are sequences, indexing and slicing work the same wayfor lists as they do

for strings.

Assuming following input L = ['spam', 'Spam', 'SPAM!']

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2]

Spam
Negative: count from

the right

L[1:]

['Spam', 'SPAM!']
Slicing fetches

sections

Slice Elements: Python slice extracts elements, based on a start andstop.

Syntax:objectname[start,stop]

start- start the position of element slice extracts in the list.

Stop- End of the position of element slice extracts in the list.

Example 1 :

Output:

lt[2:6] - The 2 means to start at third element in the list (note that the slicing

index starts at 0). The 6 means to end at the sixth element in the list, but not include it.

lt = [1,2,'three',2,3,'five',2,2]

print("Element in list:",lt)

print("slice extracts elements are : ",lt[2:6])

Element in list: [1, 2, 'three', 2, 3, 'five', 2, 2]

slice extracts elements are : ['three', 2, 3, 'five']

45

The colon in the middle is how Python's lists recognize that we want to use slicing to

get objects inthe list.

Example 2:

Output:

lt = [1,2,'three',2,3,'five',2,2]

print("Element in list:",lt)

print("slice first three elements : ",lt[:3])

print("slice from 4th element, Python starts its lists at 0

rather than 1 : ",lt[3:])

Element in list: [1, 2, 'three', 2, 3, 'five', 2, 2]

slice first three elements : [1, 2, 'three']

slice from 4th element, Python starts its lists at 0 rather than

1 : [2, 3, 'five', 2, 2]

46

lt = [1,2,3,4,5]

print("the total length of the list 1 :",len(lt))

print("Returns item from the list1 with max value:",max(lt))

print("Returns item

value:",min(lt))

from the list1 with minimum

Built-in List Functions & Methods:

Python includes the following list functions are:

Sr.No. Function with Description

1 cmp(list1, list2) Compares elements of both lists.

2 len(list) Gives the total length of the list.

3 max(list) Returns item from the list with max value.

4 min(list) Returns item from the list with min value.

5 list(seq) Converts a tuple into list.

cmp() function: Python list method cmp() compares elements oftwo lists.

Syntax:cmp(list1, list2) Parameters:

 List1− This is the first list to be compared.

 List2− This is the second list to be compared.

Return Value: If elements are of the same type, perform the compare and return the

result. If elements are different types, checkto see if they are numbers.

 If numbers, perform numeric coercion if necessary and compare.

 If either element is a number, then the other element is "larger"(numbers are

"smallest").

 Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the lists, the longer list is "larger." If we exhaust

both lists and share the same data, the result is a tie, meaning that 0 is returned.

Example:

47

Output:

Python includes following other valuable list methods are:

Sr.No. Methods with Description

1 list.append(obj) Appends object obj to list

2
list.count(obj) Returns count of how many times obj

occurs in list

3 list.extend(seq) Appends the contents of seq to list

4
list.index(obj) Returns the lowest index in list that obj

appears

5
list.insert(index, obj) Inserts object obj into list at

offsetindex

6
list.pop(obj=list[-1]) Removes and returns last object

orobj from list

7 list.remove(obj) Removes object obj from list

8 list.reverse() Reverses objects of list in place

9
list.sort([func]) Sorts objects of list, use compare func

ifgiven

Inserting and Removing Elements:

append() - Appends adds its argument as a single element to the endof a list. The length

of the list itself will increase by one.

Example:

the total length of the list 1 : 5

Returns item from the list1 with max value: 5

Returns item from the list1 with minimum value: 1

48

Output:

Appending a list inside a list: We can also appending insideof another list.

Example:

lt = [1,2,'three','four']

print ("Lists Are in lt:",lt)

print("List Length=",len(lt))

lt.append(5)

print("After insert new element:",lt)

print("New List Length=",len(lt))

Lists Are in lt: [1, 2, 'three', 'four']

List Length= 4

After insert new element: [1, 2, 'three', 'four', 5]

New List Length= 5

lt = [1,2,'three','four']

lt1=[5,'six',7]

print ("Lists Are in lt:",lt)

print("List Length=",len(lt))

lt.append(lt1)

print("After insert list inside of another list:",lt)

print("New List Length=",len(lt))

Output:

Lists Are in lt: [1, 2, 'three', 'four']

List Length= 4

After insert new list inside of another list: [1, 2, 'three', 'four',

[5, 'six', 7]]

New List Length= 5

49

Inserting elements in List given position: We can also insert anelement in given

position on the list.

Syntax:objectname(position,element)

Example:

Output:

Insert an element at end of the list: Negative(-) is used to Inserts an element

into the last position of the list. Negative indicesstart from the end of the list.

Example:

Output:

Remove elements from List: This method is used to removethe element from

the list.

Syntax:objectname.remove(value).

Example:

lt = [1,2,'four']

print("Before insert an element in list:",lt)

lt.insert(2,3)

print("After inert an element given position 2 in the list: ",lt)

Before insert an element in list: [1, 2, 'four']

After inert an element given position 2 in the list: [1, 2, 3,

'four']

lt = [1,2,'three','five']

print("Before insert an element in list:",lt)

lt.insert(-1,4)

print("After inert an element given position -1 in the list: ",lt)

Before insert an element in list: [1, 2, 'three', 'five']

After inert an element given position -1 in the list: [1, 2,

'three', 4, 'five']

50

Output:

Clear or Emptying List: This method is used to remove allitems from the list.

Syntax:list.clear()

Example:

Output:

List Count: Count()- This function is used to count the value howmany time present

in the list.

Example:

lt = [1,2,'three','five']

print("Before remove an element in list:",lt)

lt.remove('three')

print("After remove an element in the list: ",lt)

Before remove an element in list: [1, 2, 'three', 'five']

After remove an element in the list: [1, 2, 'five']

lt = [1,2,'three','four']

print("List Length=",len(lt))

print ("Lists Are in lt:",lt)

lt.clear()

print("After clear Lists, That contain empty List:",lt)

List Length= 4

Lists Are in lt: [1, 2, 'three', 'four']

After clear Lists, That contain empty List: []

Syntax: list.count(x)- return the number of times x appears in

the list.

lt = [1,2,'three',2,3,'five',2,2]

print("Element in list:",lt)

print("Count the how many Number of times 2 is present in

the list : ",lt.count(2))

51

Output:

List Reverse: The reverse() method in list reverse theelements of the list in

place.

Syntax:list.reverse()

Parameters: NA

Return Value: This method does not return any value butreverse the given

object from the list.

Example:

Output:

Element in list: [1, 2, 'three', 2, 3, 'five', 2, 2]

Count the how many Number of times 2 is present in the list

: 4

lt = [1,2,3,4,5]

lt1=['one','two','three']

print("Elements in first lists are :",lt)

lt.reverse()

print("Elements in reversed first lists are :",lt)

print("Element in Second lists are :",lt1)

lt1.reverse()

print("Element in reversed second lists are : ",lt1)

Elements in first lists are : [1, 2, 3, 4, 5]

Elements in reversed first lists are : [5, 4, 3, 2, 1]

Element in Second lists are : ['one', 'two', 'three']

Element in reversed second lists are : ['three', 'two', 'one']

52

item.

List index():

The index() method returned the index of the first matching

Output:

Index value : 1

Exist “in” List and “not in” List:We can test if an itemexists in a list or

not, using the keyword "in" and “not in”

Example:

Output:

List sort and Reverse Sorting: List sort() method that performs anin-place sorting

Example:

Output:

Example:

lt = ['h','a','i',4,5]

print("Index value :",lt.index('a'))

lt = ['h','a','i',4,5]

print("Exist value in list using in:",'a'inlt)

print("Exist value in list using not in:",'a'notinlt)

Exist value in list using in: True

Exist value in list using not in: False

lt = [5,2,7]

lt1=['c','e','b','a']

lt.sort()

lt1.sort(reverse=True)

print("sorted value in list1:",lt)

print("reverse sorted value in the list:",lt1)

53

Remove duplicates from a Python List: The commonapproach to get a unique

collection of items is to use a dictionary. A Python dictionary is a mapping of unique

keys to values. So, converting Python list to dictionary will automatically remove any

duplicates because dictionaries cannot have duplicate keys.

Example:

Output:

PYTHON OBJECTS

Objects and their use:

In procedural programming, functions are the primary building blocks of

program design. In object-oriented programming, objects are the fundamental building

blocks in which functions are acomponent.

Object as something that has a set of attributes and its relatedset of behaviours.

Python Classes and Objects

Python is an object-oriented programming language. Unlike procedure-oriented

programming, where the main emphasis on functions, object-oriented programming

stress on objects.

Object is simply a collection of data and methods that act onthose data.

Class is a blueprint for the object. class as a prototype of an object ex: house. It

contains all the details about the doors, windows, floors etc. Based on these

descriptions we build the house.House is the object.

An object is also called an instance of a class and the process of creating this

object is called instantiation.

sorted value in list1: [2, 5, 7]

reverse sorted value in the list: ['e', 'c', 'b', 'a']

li = [1,2,3,1,4,2,5,3]

print("Original list:",li)

li = list(dict.fromkeys(li))

print("After removed duplicate values in the list",(li))

Original list: [1, 2, 3, 1, 4, 2, 5, 3]

After removed duplicate values in the list [1, 2, 3, 4, 5]

54

Class creates a user-defined data structure, which holds its own data members

and member functions, which can be accessed and used by creating an instance of that

class.

Some points on Python class:

 Classes are created by keyword class.

 Attributes are the variables(data) that belong to class.

 Attributes are always public and can be accessed using dot (.)operator.

Eg.: Myclass.MyattributeSyntax

Class classname:

statement 1

.

.

statement N

Software Objects:

An Object is an instance of a Class. A class is like a blueprintwhile an instance is

a copy of the class with actual values. You can

have many dogs to create many different instances, but without the class as a guide,

you would be lost, not knowing what information isrequired.

An object consists of :

 State : It is represented by attributes of an object. It alsoreflects the properties of an

object.

 Behavior : It is represented by methods of an object. It alsoreflects the response of an

object with other objects.

 Identity : It gives a unique name to an object and enablesone object to interact with

other objects.

55

Software objects are conceptually similar to real-world objects: they too consist

of state and related behavior.

An object stores its state in fields (variables in some programming languages)

and exposes its behavior through methods(functions in some programming languages).

Methods operate on an object's internal state and serve as theprimary mechanism

for object-to-object communication. Hiding internal state and requiring all interaction

to be performed through an object's methods is known as data encapsulation — a

fundamental principle of object-oriented programming.

 Consider a bicycle, for example:

A bicycle modeled as a software object.

56

example

import

UNIT II

MODULE

The term module refers to the design and/or implementation of specific

functionality to be incorporated into a program.

Modular programming is a software design technique to split your code into

separate parts. These parts are called modules. The focus for this separation should be

to have modules with no or just few dependencies upon other modules. Modules are

collection of functions (or entites).

Modules in python

A module is a python object that allows logically organize the python code.

Simply, Modules refers to a file containing python statements and definition. A file

containing python code for example sample.py , here sample is a module name that

written in python .

Let us create a module. Type the coding and save it as sample.py

python module sample

Here, we have defined a function add() inside a module named sample. The

function takes in two numbers and returns theirsum.

Import modules in Python

We can import the definitions inside a module to another module or the

interactive interpreter in Python.

We use the previously

defined modulePython prompt.

import sample

keyword to do this. To import our

, we type the following in the

def add(a, b):

"""This program adds two numbers and return the result"""

result = a + b

return result

57

This does not import the names of the functions definedin directly in the

current symboelxtaambplele. It only imports the

module nameexamplethere.Using the module name we can access

the function using the dot . operator.example.add (4,6)

 Output 10

Python import statement (pre defined modules)

We can import a module using the import statement andaccess the definitions

inside it using the dot operator as described above. Here is an example.

The value of pi is 3.141592653589793

Rename the module:

We can import a module by renaming it as follows:

Python from...import statement

We can import specific names from a module withoutimporting the module as

a whole. Here is an example.

import statement example

to import standard module math

import math

print("The value of pi is", math.pi)

When you run the program, the output will be:

import module by renaming it

import math as mt

print("The value of pi is", mt.pi)

We have renamed the module as mt.Note that the

module

invalid, and

is not recognized in our scope. Hence,

is the correct implementation.

is

mt.pi

math

math

math.pi

import only pi from math module

from math import pi

print("The value of pi is", pi)

58

pi

Here, we imported only the

Import all names

attribute from the module.

We can import all names(definitions) from a module usingthe following

construct:

Every module needs to provide a specification of how it is to be used. Any

program code making use of a particular module is referred to as a client of the

module. A module specification shouldbe sufficiently clear and complete.

The function’s specification is provided by the line immediately following the

function header, called a docstringin Python. A docstring is a string literal denoted by

triple quotes.

LOCATING MODULES

When you import a module, the python interpreter searches forthe module in the

following sequences:

 The Current directory

 If the module isn’t found, Python then searches eachdirectory in the shell variable

PYTHONPATH

 If all else fails, python checks the default path.

The PYTHONPATH is an environment variable, consisting of a list of

directories.

Syntax of PYTHONPATH is same as that of shell variable

PATH.

 For Windows, set PYTHONPATH=c:\python20\lib

 For Unix, set PYTHONPATH=/usr/local/lib/python

59

math

import all names from the standard module math

from math import *

print("The value of pi is", pi)

PYTHON MODULES:

Python modules provide all the benefits of modular software design. Usually,

Python module is a file containing Python definitions and statements. When a Python

file is directly executed, it is considered the main moduleof a program. Main modules

are given the special name main . Main modules provide the basis for a complete

Python program. As with the main module, imported modules may contain a set of

statements. The statements of importedmodules are executed only once, the first time

that the module is imported. The purpose of these statements is to perform any

initialization needed for the members of the imported module. The Python Standard

Library contains a set of predefined Standard (built-in) modules.

Create a Python module by entering the following in a fi le name simple.py.

Then execute the instructions in the Python shell asshown and observe the results.

module simple import simple

print('module simple loaded') ???

def func1(): simple.func1()

print('func1 called') ???

def func2(): simple.func2()

print('func2 called') ???

Modules and Namespaces

In Python, each module has its own namespace. Namespace is a collection of

names and containing all built-in names is created.A namespace is basically a system

to make sure that all the names in a program are unique and can be used without any

conflict. It enables programs to avoid potential name clashesby associating each

identifier with the namespace from which it originates.

var1 is in the global namespacevar1 = 5

def some_func():

var2 is in the local namespacevar2 = 6

def some_inner_func():

var3 is in the nested local# namespace

var3 = 7

FUNCTIONS

What is a Function?

60

A function is a block of code which is used to perform someaction, and it is also

called as reusable code.

A function provides higher modularity and code re-usability.

What is a Python Main Function?

As Python is an interpreted language, it follows a top-down approach. Python is

interpreted there is no static entry point to the program and the source code is executed

sequentially and it doesn’t call any methods unless you manually call it. The most

important factor in any programming language is the ‘modules’. The module is a

program that can be included or imported to the other programs sothat it can be reused

in the future without writing the same module again. However, there is a special

function in Python that helps us toinvoke the functions automatically by operating the

system during run-time or when the program is executed, and this is what we call asthe

main function. Even though it is not mandatory to use mainfunction in Python, it is

a good practice to use this function asit improves the logical structure of the code.

What is a function in Python?

 In Python, a function is a group of related statements thatperforms a specific task.

 Functions help break our program into smaller and modular chunks. As our program

grows larger and larger, functions make it more organized and manageable.

 Functions are very useful features of Python to perform your task with less coding. It

contains codes which you can add to perform certain tasks. You can call it much time

to perform the same operation.

 Furthermore, it avoids repetition and makes the code reusable.

 A function is a block of organized, reusable code that is used to perform a single,

related action.

 Functions provide better modularity for your application and a high degree of code

reusing.

As you already know.

 Python gives you many built-in functions like print(), etc. but you can also create your

own functions. These functions arecalled user-defined functions.

Types of Functions:

Basically, we can divide functions into the following two types:

 Built-in functions

 User defined Function

Built-in functions- Functions that are built into Python.Python has a set of built-in

61

functions are:

Function Description

abs() Returns the absolute value of a number

eval() Evaluates and executes an expression

exec() Executes the specified code (or object)

filter()
Use a filter function to exclude items in

aniterable object

float() Returns a floating point number

id() Returns the id of an object

input() Allowing user input

int() Returns an integer number

isinstance()
Returns True if a specified object is an

instance of a specified object

issubclass()
Returns True if a specified class is a

subclassof a specified object

iter() Returns an iterator object

len() Returns the length of an object

list() Returns a list

map()
Returns the specified iterator with the

specified function applied to each item

max() Returns the largest item in an iterable

min() Returns the smallest item in an iterable

next() Returns the next item in an iterable

object() Returns a new object

oct() Converts a number into an octal

open() Opens a file and returns a file object

pow() Returns the value of x to the power of y

print() Prints to the standard output device

round() Rounds a numbers

set() Returns a new set object

62

setattr() Sets an attribute (property/method) of

an

 object

slice() Returns a slice object

sorted() Returns a sorted list

str() Returns a string object

sum() Sums the items of an iterator

tuple() Returns a tuple

type() Returns the type of an object

User-defined functions:

 Functions defined by the users themselves.

 Functions that we define ourselves to do certain specific task are referred as user-

defined functions.

 Functions that readily come with Python are called built-in functions. If we use

functions written by others in the form oflibrary, it can be termed as library functions.

 All the other functions that we write on our own fall under user-defined functions. So,

our user-defined function could be a library function to someone else.

Advantages of user-defined functions:

 By using a function on your programming, you don’t have tocreate the same code again

and again.

 User-defined functions help to decompose a large program into small segments which

makes program easy to understand, maintain and debug.

 If repeated code occurs in a program. Function can be used toinclude those codes and

execute when needed by calling thatfunction.

 Programmers working on large project can divide the workload by making different

functions.

Defining a Function:

Define functions to provide the required functionality. Hereare simple rules to

define a function in Python.

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You

63

can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement

- the documentation string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller.

 A return statement with no arguments is the same as return None.

Syntax:

By default, parameters have a positional behavior and you need to

inform them in the same order that they were defined. The following function takes a

string as input parameter and prints it onstandard screen.

Example:

Here function is now fully defined, but if we run the program at this point,

nothing will happen since we didn't call the function. So, outside of the defined

function block, let's call the function withfun()

Calling a Function:

Defining a function only gives it a name, specifies the parameters that are to be

included in the function and structures theblocks of code.

Once the basic structure of a function is finalized, you can execute it by calling

it from another function or directly from the Python prompt. Following is the example

to call fun() function

Example:

64

def functionname(parameters):

"function_docstring"

function_suite

return [expression]

def fun():

print (“Wlcome Function”)

Output:

Welcome Function

fun()- is function call, It call fun function and print the string

Welcome Function.

Python Function Parameters calling values:

A parameter is the variable which is part of the method’s signature (method

declaration). Parameters are specified within the pair of parentheses in the function

definition, separated by commas.When we call the function, we supply the values in the

same way.

Returning a Value:

Not only can you pass a parameter value into a function, a function can also

produce a value.

The return statement is used to return from a function.

The statement return [expression] exits a function, optionally passing back an

expression to the caller.

A return statement with no arguments is the same as return

None.

Syntax:

Example : Factorial Program

65

def fun(): #Function definition

print (“Welcome Function”)

fun() #function call

def fun():

statements

.

.

return [expression]

Output:

Enter the number : 5 Factorial of 5 = 120

Function Calling Non-value- Returning Function:

Returning Multiple Values

In Python, we can return multiple values from a function.

Following are different ways.

 Using Object (Return by object): create a class to holdmultiple values and return an

object of the class.

Example:

Output:

66

def fact(n): #function definition

if n==1:

returnn #function return

elif n>1:

return n*fact(n-1) # returning a value

n=int(input("Enter the number :"))

print("Factorial of ",n ," = ",fact(n)) # function calling

value or passing parameter n

class Test:

def init (self):

self.str = "Welcome python"

self.x = 20

This function returns an object of Test

def fun():

returnTest()

t = fun()

print(t.str)

print(t.x)

67

Welcome python

20

68

Using a list: A list is like an array of items created using square brackets. They

are different from arrays as they can contain items of different types. Lists are different

from tuples as they are mutable.

Example:

Output: ['welcome python', 20]

Using a Dictionary: A Dictionary is similar to hash or mapin other languages.

Example:

Output: {'str': 'welcome to python', 'x': 20}

Parameter passingFunction Arguments:

We can call a function by using the following types of formalarguments −

 Required arguments

 Keyword arguments

 Default arguments

def fun():

str1 = "welcome python"

x = 20

return [str1, x];

list1 = fun()

print(list1)

def fun():

d = dict();

d['str'] = "welcome to python"

d['x'] = 20

return d

d = fu006E()

print(d)

69

 Variable-length arguments

Required arguments:

Required arguments are the arguments passed to a function in correct positional

order. Here, the number of arguments in thefunction call should match exactly with the

function definition.

Example:

To call the function fun(), you definitely need to pass oneargument, otherwise

it gives a syntax error as like below

Passing number of correct argument into function:

Output:

Welcome Function

Keyword arguments:

Keyword arguments are related to the function calls. When you use keyword

arguments in a function call, the caller identifies the arguments by the parameter name.

def fun(st):

print(st)

fun()

Traceback (most recent call last):

File "D:\workspace\HelloWorld\gayathri\function.py", line 3,

in <module>

fun()

TypeError: fun() missing 1 required positional argument: 'st'

def fun(st):

print(st)

st="Welcome Function"

fun(st) # passing one string argument

70

This allows you to skip arguments or place them out of order because the Python

interpreter is able to use the keywords provided to match the values with parameters.

You can also make keyword calls to the fun () functionin the following ways :

Example:

Output:

My string

Default arguments:

A default argument is an argument that assumes a default value if a value is not

provided in the function call for that argument.The main advantage of default argument

is that we can give values to only those parameters to which we want to, provided that

the other parameters have default argument values. It assign the value right to left.

Example : It prints default age if it is not passed

Output:

Variable-length arguments:

You may need to process a function for more arguments thanyou specified while

def fun(str): # str is keyword but used argument

nameprint (str)

return;

fun(str = "My string")

def printinfo(name, age = 35):

print("Name: ", name)

print("Age ", age)

printinfo(age=50, name="python")

printinfo(name="phthon")# age is not passed but assigned

default argument age is 35

Name: python

Age 50

Name: python

Age 35

71

defining the function. These arguments are called variable-length arguments and are

not named in the function definition, unlike required and default arguments.

Syntax:

Example:

Output:

The Anonymous Functions:

These functions are called anonymous because they are not declared in the

standard manner by using the def keyword. You canuse the lambda keyword to create

small anonymous functions.

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

def fun(arg1, *vartuple):

print ("Output is: ")

print(arg1) #printed first argument

for var invartuple:

print (var)# it is printing remaining argument

fun(10,20)

fun(70, 60, 50)

Output is:

10

20

Output is:

70

60

50

72

 Lambda forms can take any number of arguments but returnjust one value in the form

of an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C orC++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

The syntax of lambda functions contains only a singlestatement, which is as

follows :

Syntax:

lambda [arg1 [,arg2,............................... argn]]:expression

Following is the example to show how lambda form offunction works :

Output:

Scope of Variables

All variables in a program may not be accessible at alllocations in that program.

This depends on where you have declared a variable. The scope of a variable

determines the portion of the program where you can access a particular identifier.

There are twobasic scopes of variables in Python : They are

 Global variables

 Local variables

Global vs. Local variables:

Variables that are defined inside a function body have a local scope, and those

defined outside have a global scope.

sum1 = lambda arg1, arg2: arg1 + arg2;

print ("Value of total : ", sum1(10, 20))

print ("Value of total : ", sum1(20, 20))

Value of total : 30

Value of total : 40

73

This means that local variables can be accessed only inside the function in

which they are declared, whereas global variables can be accessed throughout the

program body by all functions.

When you call a function, the variables declared inside it arebrought into scope.

Example :

Output:

Inner Functions:

A function contain inside of another function called inner function.The main

advantage of inner functions is that it protect them from anything happening outside of

the function, meaning thatthey are hidden from the global scope.

Example:

total = 0; # This is global variable.

Function definition is here

def sum1(arg1, arg2):

Add both the parameters and return them."

total = arg1 + arg2 # Here total is local variable

45+55=100.

print("Inside the function local total : ", total)

return total

sum1(45, 55)

print ("Outside the function global total : ", total)

Inside the function local total : 100

Outside the function global total : 0 #It print 0 because now

reassigned global variable

74

Output:

Sum of 10 + 20 is 30

Assign functions to variables:

When you assign a function to a variable you don't use the ()but simply the

name of the function.

Example:

Output:

Python recursive functionsDefinition:

 When a function call itself is knows as recursion.

 Recursion works like loop but sometimes it makes more sense to use recursion than

loop. You can convert any loop torecursion.

 You'd imagine such a process would repeat indefinitely if not stopped by some

def calc(x,y):#outer function

def findSum(x,y):#innner function

returnx+y

sum1 = findSum(x,y)

print("Sum of ", x, " + ", y, " is ", sum1)

calc(10,20)

def findSum(x,y):

returnx+y

f1 = findSum(10,20)#function call and assign to f1 variable

print("f1=",f1)

f2 = findSum(40,20)#function call and assign to f2 variable

print("f2=",f2)

f1= 30

f2= 60

75

condition.

 This condition is known as base condition.

 A base condition is must in every recursive programs otherwise it will continue to

execute forever like an infinite loop.

Example:

Factorial is denoted by number followed by (!) sign i.e4!,2!,1!

4! = 4 * 3 * 2 * 1

2! = 2 * 1

1! = 1

Overview of how recursive function works:

1. Recursive function is called by some external code.

2. If the base condition is met then the program do something meaningful and exits.

3. Otherwise, function does some required processing and then call itself to continue

recursion. Here is an example of recursive function used to calculate factorial.

Why use recursion in programming?

We use recursion to break a big problem in small problems and those small

problems into further smaller problems and so on. At the end the solutions of all the

smaller subproblems are collectively helps in finding the solution of the big main

problem.

Example: Factorial using recursive function

Output:

def fact(n):

if n==1:

return n

elif n>1:

return n*fact(n-1)

n=int(input("Enter the number :"))

print("Factorial of ",n ," = ",fact(n))

76

Advantages of recursion:

Recursion makes our program:

1. Easier to write.

2. Readable – Code is easier to read and understand.

3. Reduce the lines of code – It takes less lines of code to solvea problem using recursion.

Disadvantages of recursion:

1. Not all problems can be solved using recursion.

2. If you don’t define the base case then the code would run indefinitely.

3. Debugging is difficult in recursive functions as the function is calling itself in a loop

and it is hard to understand which call is causing the issue.

4. Memory overhead – Call to the recursive function is not memory efficient.

Enter the number :5

Factorial of 5 = 120

77

UNIT III

Reading and Writing Text file What is a file?

File is a named location on disk to store related information. It is used to permanently

store data in a non-volatile memory(e.g. hard disk).

Since, random access memory (RAM) is volatile which losesits data when computer is

turned off, we use files for future use of the data.

When we want to read from or write to a file we need to openit first. When we are done,

it needs to be closed, so that resources that are tied with the file are freed.

Types of file in python:

Text file

 Binary FileText file:

Text files are structured as a sequence of lines, where each line includes a

sequence of characters. Each line is terminated with aspecial character, called the EOL

or End of Line character. There are several types, but the most common is the comma

{,} or newlinecharacter. It ends the current line and tells the interpreter a new one has

begun. A backslash character can also be used, and it tells the

interpreter that the next character – following the slash – should be treated as a new

line. This character is useful when you don’t want tostart a new line in the text itself but

in the code.

Examples: Python source code, HTML file, text file, markdown fileetc.

Binary File

A binary file is any type of file that is not a text file. It is important to note that

inside the disk both types of files are stored as a sequence of 1's and 0's. Because of

their nature, binary files can only be processed by an application that know or

understand the file’s structure.

Example Binary files: executable files, images, audio etc.

File Operation :

1. Open a file

2. Read or write (perform operation)

3. Close the file

1. Opening the file - open() function:

The open() built-in function is used to open the file.

78

Syntax :

open(filename, mode) -> file object

On success, open() returns a file object. On failure, itraises IOError or it's

subclass.

Filename - Absolute or relative path of the file to be opened.

Mode - (optional) mode is a string which refers to the processingmode (i.e read, write,

append etc;) and file type.

The following are the possible values of mode.

Mode Description

r Open the file for reading (default).

w Open the file for writing.

rb Reading in binary format.

wb Writing in binary format.

r+

w+

Open the file for both reading and writing.

Open the file for both reading and writing. Overwrites

thefile if the file exits otherwise creates a new one.

a
Open the file in append mode i.e add new data to the

end ofthe file.

a+ Open a file for both appending and reading.

ab Open a file for appending in binary format.

X Open the file for writing, only if it doesn't already exist.

We can also append t or b to the mode string to indicate the type of the file we

will be working with. The t is used for text file and b for binary files. If neither

specified, t is assumed by default.

The mode is optional, if not specified then the file will beopened as a text file for

reading only.

This means that the following three calls to open() are equivalent:

79

Note that before you can read a file, it must already exist, otherwise open() will

raise FileNotFoundError exception.However, if you open a file for writing (using mode

such as w, a,or r+), Python will automatically create the file for you. If the file already

exists then its content will be deleted. If you want to prevent that open the file in x

mode.

2. Closing a file using close()

When we are done with operations to the file, we need toproperly close the file.

Closing a file will free up the resources that were tied with the file and is done

using Python close() method.

Python has a garbage collector to clean up unreferenced objects but, we must

not rely on it to close the file.

f = open("test.txt",encoding = 'utf-8')

This method is not entirely safe. If an exception occurs when we are performing

some operation with the file, the code exits without closing the file.

A safer way is to use a try...finally block.

This way, we are guaranteed that the file is properly closed even if an

exception is raised, causing program flow to stop. The best way to do this is using the

with statement. This ensures that the file is closed when the block inside with is exited.

Don't need to explicitly call the close() method. It is done internally.

f = open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in text mode

f = open("img.bmp",'r+b') # read and write in binary mode

perform file operations

f.close()

try:

f = open("test.txt",encoding = 'utf-8')

perform file operations

finally:

f.close()

80

3. Reading files using read(), readline() and readlines():

To read a file in Python, we must open the file in reading mode. There are

various methods available for this purpose.To read data, the file object provides the

following methods:

Method Argument

read([n])

Reads and returns n bytes or less (if there aren't

enough characters to read) from the file as a string.

Ifn not specified, it reads the entire file as a string

andreturns it.

readline()

readlines()

Reads and returns the characters until the end of

theline is reached as a string.

Reads and returns all the lines as a list of strings.

When the end of the file (EOF) is reached the read() and readline() methods

returns an empty string, while readlines() returnsan empty list ([]).

To create a text file and save example.txt

Example:

f.close()

Output:

with open("test.txt",encoding = 'utf-8') as f:

perform file operations

example.txt

1 Welcome to python

2 This is text file

3 god bless you

f = open("example.txt", "r")

print(f.read(3)) # read the first 3 characters

print(f.read()) # read the remaining characters in the file.

print(f.readline()) # End of the file (EOF) is reached

81

f = open("example.txt", "r")

print(f.read(3)) # read the first 3 characters

print(f.read()) # read the remaining characters in the file.

print(f.readline()) # End of the file (EOF) is reached

print("current file position=",f.tell())# get the current file

position

f.seek(0)

print("seek() method - to bring file cursor to initial position

again")

print(f.read())

f.close()

Seek() and tell() method:

seek() - change our current file cursor (position) using theseek() method.

Tell() - the tell() method returns our current position (innumber of bytes)

Output:

Writing Data using write() and writelines():

In order to write into a file in Python, we need to open it in write 'w', append 'a'

or exclusive creation 'x' mode. Writing a string or sequence of bytes (for binary files)

Wel

come to python

This is text file

god bless you

Wel

come to python

This is text file

god bless you

current file position= 51

seek() method - to bring file cursor to initial position again

Welcome to python

This is text file

god bless you

82

is done using write() method. This method returns the number of characters written to

the file. We need to be careful with the 'w' mode as it will overwrite into the file if it

already exists. All previous data are erased.

Method Description

write(s) Writes the string sto the file and returns the

numbercharacters written.

writelines(s) Writes all strings in the sequence sto the file.

Example:

Output example.txt

This program will create a new file named 'example.txt' if it does not exist. If it

does exist, it is overwritten. We must include the newline characters ourselves to

distinguish different lines.

Append : Append the content at the end of the already existing file.

Example:

f = open("example.txt", "w")

f.write("new content written\n")

f.write("god is great\n\n")

f.writelines("health is wealth")

f.close()

new content written

god is great

health is wealth

83

f = open("example.txt", "a")

f.write("\nnew content append\n")

f.write("happy\n\n")

f.writelines("welcome")

f.close()

data = open("example.txt").read()

print(data)

f.close()

Output: example.txt

new content written

god is great

health is wealth

new content append

happy

welcome

Python File Methods:

There are various methods available with the file object.

Some of them have been used in above examples.

Here is the complete list of methods in text mode with a briefdescription.

Python File Methods:

Method Description

close() Close an open file. It has no effect if the

fileis already closed.

detach() Separate the underlying binary buffer

fromthe TextIOBase and return it.

fileno() Return an integer number (file descriptor)

ofthe file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read atmost n characters form the file.

Readstill end of file if it is negative or

84

 None.

readable() Returns True if the file stream can be

readfrom.

readline(n=-1) Read and return one line from the file.

Readsin at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file.

Reads in at most n bytes/characters if

specified.

seek

(offset,from=SEE

Change the file position to offset bytes,

inreference to from (start, current, end).

K_SET)

seekable() Returns True if the file stream supports

random access.

tell() Returns the current file location.

truncate

(size=None)

writable()

write(s)

Resize the file stream to size bytes. If size

isnot specified, resize to current location.

Returns True if the file stream can be

writtento.

Write string s to the file and return the

number of characters written.

writelines(lines) Write a list of lines to the file.

String processing in Python

Strings are sequences of characters. It contains enclosing characters in quotes.

Python treats single quotes the same as doublequotes. There are numerous algorithms

for processing strings, including for searching, sorting, comparing and transforming.

Python strings are "immutable" which means they cannot be changed after they are

created . To create a string, put the sequence of characters inside either single quotes,

double quotes, or triple quotes.

Eample:

85

Output:

Access characters in a string:

In order ot access characters from String, use the square brackets [] for slicing

along with the index or indices to obtain your characters. Python String index starts

from 0.

Example:

Output:

print('Hellow World!')

print("Hellow World!")

print("""Sunday

Monday

Tuesday""")

Hellow World!

Hellow World!

Sunday

Monday

Tuesday

str = 'Hellow World!'

print(str [0])

print(str [7])

print(str [0:6])

print(str [7:12])

86

Updating Strings:The "update" an existing string by (re)assigning a variable to

another string. The new value can be related to its previous value or to a completely

different string altogether.

Example:

Output:

String Special Operators:

Assume string variable a = 'Hello' and variable b ='Python', then

Operator Description Example

+ Concatenation - Adds values on

either side of the operator

a + b will give

HelloPython

* Repetition - Creates new strings,

concatenating multiple copies of

the same string

a*2 will give -

HelloHello

[] Slice - Gives the character from

thegiven index

a[1] will give e

[:] Range Slice - Gives the

charactersfrom the given range

a[1:4] will give ell

H

W

Hellow

World

var1 = 'Hello World!'

print("Current String:",var1)

print ("After Updated at 6 th position of the String : ",

var1[:6] + 'Python')

Current String: Hello World!

After Updated at 6 th position of the String : Hello Python

87

In Membership - Returns true if a

character exists in the given

string

H in a will give 1

not in Membership - Returns true if a

character does not exist in the

givenstring

M not in a will

give 1

r/R Raw String - Suppresses
actual

print r'\n' prints \n

meaning of Escape characters.
The

and print

syntax for raw strings is exactly
the

R'\n'prints \n

same as for normal strings with
the

exception of the raw
string

operator, the letter "r,"
which

precedes the quotation marks.
The

"r" can be lowercase (r) or

uppercase (R) and must be
placed

immediately preceding the first

quote mark.

% Format

formatting

- Performs String See at next section

String Formatting Operator:

One of Python's coolest features is the string format operator

%. This operator is unique to strings and makes up for the pack ofhaving functions

from C's printf() family.

Example :

Output:

Here is the list of complete set of symbols which can be usedalong with % −

Format Symbol Conversion

print ("My name is %s and weight is %d kg!"%('Zara',21))

My name is Zara and weight is 21 kg!

88

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

String Built in Methods:

Method Description

capitalize() Converts the first character to upper case

center() Returns a centered string

count()
Returns the number of times a specified value

occurs in a string

find() Searches the string for a specified value and

returns

 the position of where it was found

islower()
Returns True if all characters in the string are

lower case

isupper()
Returns True if all characters in the string are

upper case

join()
Joins the elements of an iterable to the end of

thestring

ljust() Returns a left justified version of the string

89

lower() Converts a string into lower case

split()
Splits the string at the specified separator, and

returns a list

swapcase()
Swaps cases, lower case becomes upper case

andvice versa

title()
Converts the first character of each word to

uppercase

Example:

Python String Concatenation: Concatenation is the operation of joining stuff

together. Python Strings can join using theconcatenation operator +.

Example:

Output:

Do you see this, $$?

Let’s take another example.

Output:

1010

Multiplying ‘a’ by 2 returned 1010, and not 20, because ‘10’ is a string, not a

number. You cannot concatenate a string to a number.

a) len(): The len() function returns the length of a string.

Output:

a='10'

print(2*a)

a='Do you see this, '

b='$$?'

print(a+b)

a='book'

print(len(a))

90

4

You can also use it to find how long a slice of the string is.

Output: 2

b) str(): This function converts any data type into a string.

Example:

Output:

c) lower() and upper():

These methods return the string in lowercase anduppercase, respectively.

Example:

Output:

d) trip(): It removes whitespaces from the beginning and end ofthe string.

a='book'

print(len(a[2:]))

1.print(str(2+3j))

print (str(['red','green','blue']))

(2+3j)

[‘red’, ‘green’, ‘blue’]

a='BOOK is Python'

print(a.lower())

print(a.upper())

book is python

BOOK IS PYTHON

91

Output:

Book

e) isdigit(): Returns True if all characters in a string are digits.Otherwise return False.

Example:

Output:

f) isalpha(): Returns True if all characters in a string are charactersfrom an alphabet.

Otherwise return false.

Example:

Output:

g) isspace(): Returns True if all characters in a string are spaces.Otherwise return false.

a=' Book '

print(a.strip())

a='777'

print(a.isdigit())

b='77a'

print(b.isdigit())

True

False

a='abc'

print(a.isalpha())

b='ab7'

print(b.isalpha())

True

False

92

Example:

Output:

h) startswith(): It takes a string as an argument, and returns True isthe string it is applied

on begins with the string in the argument.Otherwise return False.

Example:

Output:

i) endswith(): It takes a string as an argument, and returns True if

the string it is applied on ends with the string in the argument.Otherwise return False.

Example:

Output:

j) find(): It takes an argument and searches for it in the string on which it is applied. It

then returns the index of the substring. If the string doesn’t exist in the main string,

then the index it returns is -1.

a=' '
print(a.isspace())

b=' \' '

print(b.isspace())

True

False

a='union'

print(a.startswith('un'))

print(a.startswith('io'))

True

False

a='therefore'

print(a.endswith('fore'))

print(a.endswith('the'))

True

False

93

Example:

print('homeowner'.find('meow'))

print('homeowner'.find('wow'))

Output:

2

-1

k) replace(): It takes two arguments. The first is the substring to bereplaced. The second

is the substring to replace with.

Example: print('banana'.replace('na','ha'))

Output: bahaha

l) split(): It takes one argument. The string is then split aroundevery occurrence of the

argument in the string.

Example: print('No. Okay. Why?'.split('.'))

Output: ['No', ' Okay', ' Why?']

m) join(): It takes a list as an argument and joins the elements in thelist using the string it

is applied on.

Example: print("*".join(['red','green','blue']))

Output: red*green*blue

Escape Characters:

Following table is a list of escape or non-printable characters that can be

represented with backslash notation. An escape character gets interpreted; in a single

quoted as well as double quoted strings.

 ackslash

notation

exadecimal

character
Description

\a 0x07 Bell or alert

94

\b 0x08 Backspace

\n 0x0a Newline

\nnn
 Octal notation, where n is in the

range 0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn
 Hexadecimal notation, where n is

in the range 0-9, a-f, or A-F

Simple program: To check given string is palindrome or not

Output:

Exception

A Python program terminates as soon as it encountersan error.

Types of error :

Syntax error .

An exception error .

string = input("Enter the String : ")

print("Length of string is:",len(string))

if(string == string[:: - 1]):

print(string," is a Palindrome")

else:

print(string," is Not a Palindrome")

Enter the String :amma

Length of string is: 4

amma is a Palindrome

Enter the String :hai

Length of string is: 3

hai is Not a Palindrome

95

Syntax Errors: Syntax errors occur when the parser detects anincorrect statement.

Observe the following Example:

print0/0) # Here Missing parentheses in call to 'print'

Output error:

Exception error: This type of error occurs whenever syntactically correct Python

code results in an error. The last line of the message indicated what type of exception

error you ran into.

Print (0/0) # division by zero

Output:

Instead of showing the message exception error, Python details what type of

exception error was encountered. In this case, itwas a ZeroDivisionError.

Python comes with various built-in exceptionsas well as the possibility to create

self-defined exceptions.

What is Exception?

An exception is an event, which occurs during the execution of a program that

disrupts the normal flow of the program's instructions. In general, when a Python

script encounters a situation that it cannot cope with, it raises an exception. An

exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception

immediately otherwise it terminates and quits moral

File "D:\workspace\HelloWorld\gayathri\exceptionh.py",

line 1

print 0/0)

^

SyntaxError: Missing parentheses in call to 'print'. Did you

mean print(0/0))?

Traceback (most recent call last):

File "D:\workspace\HelloWorld\gayathri\exceptionh.py", line

1, in <module>

print (0/0)

ZeroDivisionError: division by zero

96

Example:

Output:

Handling Exceptions using try and except:

Exception handling is a concept used in Python to handle the exceptions and

errors that occur during the execution of any program. Exceptions are unexpected

errors that can occur during code execution.

For handling exceptions in Python we use two types of blocks:

try block

except block.

try block:

The tryblock is used to put the whole code that is to be executed in the

program(which you think can lead to exception), if any exception occurs during

execution of the code inside the tryblock, then it causes the execution of the code to be

directed to the exceptblock and the execution that was going on in the tryblock is

interrupted. But, if no exception occurs, then the whole tryblock is executed and the

exceptblock is never executed.

except block :

The try block is generally followed by the except block which holds the

exception cleanup code(exception has occurred, how to effectively handle the

situation) like some print statement to print some message or may be trigger some

a = 10

b = 0

print("Result of Division: " + str(a/b))

Traceback (most recent call last):

File "D:\workspace\HelloWorld\gayathri\exceptionh.py", line

3, in <module>

print("Result of Division: " + str(a/b))

ZeroDivisionError: division by zero

97

event or store something in the database etc.

except block, along with the keyword except we can also provide the name of

exception class which is expected to occur. In case we do not provide any exception

class name, it catches all the exceptions, otherwise it will only catch the exception of

the type which is mentioned.

Syntax: try....except...else blocks −

Here are few important points about the above-mentionedsyntax :

 A single try statement can have multiple except statements. This is useful when the try

block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handlesany exception.

 After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need thetry: block's protection.

Example:

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

98

Output:

You have divided a number by zero, which is not allowed.

The except Clause with No Exceptions:

This kind of a try-except statement catches all the exceptions that occur. Using

this kind of try-except statement is not considered a good programming practice

though, because it catches all exceptions but does not make the programmer identify the

root causeof the problem that may occur.

Syntax:

Example:

try:

a = 10

b = 0

print("Result of Division: ",a/b)

except:

print("You have divided a number by zero, which is not

allowed.")

try:

You do your operations here;

......................

except:

If there is any exception, then execute this block.

......................

else:

If there is no exception then execute this block.

99

Output:

The except Clause with Multiple Exceptions:

If think code may generate different exceptions in different situations and want

to handle those exceptions individually, then have multiple except blocks. try to handle

multiple possible exception cases using multiple except blocks. Mostly exceptions

occur when user inputs are involved.

try:

a = int(input("Enter A value:"))

b = int(input("Enter B value:"))

c= a/b

except:

print("You have divided a number by zero, which is not

allowed.")

else:

print("Result of Division: ",c)

Enter A value:4

Enter B value:2

Result of Division: 2.0

Enter A value:4

Enter B value:0

You have divided a number by zero, which is not allowed.

100

So let's take a simple example where we will ask user for twonumbers to perform

division operation on them and show them the result.

Example:

Output:

try:

Youdo your operations here;

......................

except(Exception1[,Exception2[,...ExceptionN]]]):

If there is any exception from the given exception list,

then execute this block.

......................

else:

If there isno exception then execute this block.

try:

a = int(input("Enter A value: "))

b = int(input("Enter B valuer: "))

print("Result of Division: ",a/b)

except block handling division by zero

except(ZeroDivisionError):

print("You have divided a number by zero, which is not

allowed.")

except block handling wrong value type

except(ValueError):

print("You must enter integer value")

101

The try-finally Clause:

The finally code block is also a part of exception handling. When we handle

exception using the try and except block, we can include a finally block at the end. It

cannot use else clause as well along with a finally clause.

Syntax:

Enter A value: 4

Enter B valuer: 2

Result of Division: 2.0

Enter A value: 4

Enter B valuer: 0

You have divided a number by zero, which is not allowed.

Enter A value: 4

Enter B valuer: x

You must enter integer value

try:

Youdo your operations here;

......................

Due to any exception,this may be skipped.

finally:

This would always be executed.

......................

102

Example:

Output:

Exception Handling : raise Keyword

While the try and except block are for handling exceptions,the raise keyword

on the contrary is to raise an exception.

Syntax:

raise EXCEPTION_CLASS_NAME

We want to add a new validation for restricting user from inputting negative

values. Then we can simply add a new conditionand use the raise keyword to raise an

exception which is already handled.

Example:

try:

a = int(input("Enter A value: "))

b = int(input("Enter B value: "))

print("Result of Division: ",a/b)

except block handling division by zero

except(ZeroDivisionError):

print("You have divided a number by zero, which is not
allowed.")

finally:

print("Code execution Wrap up!")

outside the try-except block

print("Will this get printed?")

Enter A value: 4

Enter B value: 0

You have divided a number by zero, which is not allowed.

Code execution Wrap up!

Will this get printed?

103

Output:

User-defined Exceptions

Programmers may name their own exceptions by creating a new exception

class. Exceptions need to be derived from the Exception class, either directly or

indirectly. Although not mandatory, most of the exceptions are named as names that

end in “Error” similar to naming of the standard exceptions in python.

Example:

a = int(input("Enter A value:"))

b = int(input("Enter B value:"))

try:

condition for checking for negative values

if a <0or b <0:

raising exception using raise keyword

raiseZeroDivisionError

print(a/b)

exceptZeroDivisionError:

print("Please enter valid integer value")

Enter A value:-1

Enter B value:0

Please enter valid integer value

104

Output:

A New Exception occurred: 6

CONTROL STRUCTURES

 A control structure is just a decision that the computer makes.

 A control structure (or flow of control) is a block of programming that analyses

variables and chooses a directionin which to go based on given parameters.

 It is the basic decision-making process in programming and flow of control determines

how a computer program will respond when given certain conditions and parameters.

 A control structure is just a decision that the computer makes.

 There are two basic aspects of computer programming: dataand instructions.

 To work with data, you need to understand variables and data types; to work with

instructions, you need to understand control structures and statements.

 Flow of control three basic types of control structures:

1. Sequential.

2. Selection .

3. Repetition.

Sequential

Sequential execution is when statements are executed oneafter another in

order.

Selection

Selection used for decisions, branching - choosing between 2or more alternative

paths.

1. if

2. if...else

3. switch

Repetition

Repetition used for looping, i.e. repeating a piece of codemultiple times in a

row.

105

1. while loop

2. do..while loop

3. for loop

Boolean Expression:

Boolean represent one of two values: True or False.

Evaluate any expression will get one of two answers True or

False.

Example:

When you run a condition in an if statement, Pythonreturns True or

False:

Example:

Output:

b is not greater than a

Evaluate Values and Variables:

The bool() function allows you to evaluate any value, andgive you True or

False in return,

print(10>9)

print(10 == 9)

print(10<9)

True

False

False

a=20

b=10

if b>a:

print("b is greater than a")

else:

print("b is not greater than a")

106

Example:

Output:

Most Values are True:

Almost any value is evaluated to True if it has some sort ofcontent.

 Any string is True, except empty strings.

 Any number is True, except 0.

 Any list, tuple, set, and dictionary are True, except emptyones.

The following example will return True:

Output:

Some Values are False:

In fact, there are not many values that evaluates to False, except empty values,

such as (), [], {}, "", the number 0, and the value None. And of course the value False

evaluates to False.

The following Example will return False:

print(bool("abc"))

print(bool(123))

print(bool(["apple", "cherry", "banana"]))

print(bool("Hello"))

print(bool(15))

True

True

True

True

True

107

OUTPUT

Selection Control Statement

 The selection statements are also known as decision making statements or branching

statements or Conditional Statements.

 The selection statements are used to select a part of the program to be executed based

on a condition.

 It require one or more conditions to be evaluated or tested by the program statement or

statements to be executed if the condition is true or false. Python provides the

following selection statements.

1. if statements

2. if else statements

3. if..elif..else statements

4. nested if statements

5. not operator in if statement

6. and operator in if statement

7. in operator in if statement

if statement

 If statement evaluates the test expression

insideparenthesis.

print(bool(False))

print(bool(None))

print(bool(0))

print(bool(""))

print(bool(()))

print(bool([]))

print(bool({}))

False

False

False

False

False

False

108

 If test expression is evaluated to true (nonzero) ,statements inside the body of if is

executed.

 If test expression is evaluated to false (0) , statementsinside the body of if is

skipped.

Syntax:

Example:

Output:

X is bigger In this

program we have two variables x and y. x is assigned
as the value 20 and y is 10. In next line, the if statement evaluate the

expression (x>y) is true or false. In this case the x > y is true becausex=20 and y=10,

then the control goes to the body of if block and print the message "X is bigger". If the

condition is false then the control goes outside the if block.

Python if..else statements

The else statement is to specify a block of code to be executed, if the condition

in the if statement is false. Thus, the else clause ensures that a sequence of statements

is executed.

Syntax:

Example:

if expression:

statements

x=20

y=10

if x >y :

print(" X is bigger ")

if expression:

statements

else:

statements

109

Output

Y is bigger

In the above code, the if stat evaluate the expression is true or false. In this case the x >

y is false, then the control goes to the body

of else block , so the program will execute the code inside elseblock.

Indentation in Python

 Indentation in Python refers to the (spaces and tabs) that areused at the beginning of a

statement.

 The statements with the same indentation belong to the samegroup called a suite.

 By default, Python uses four spaces for indentation, and theprogrammer can manage

it.

Consider the example of a correctly indented Python codestatement

mentioned below.

Example

Output:

x=10

y=20

if x >y :

print(" X is bigger ")

else :

print(" Y is bigger ")

a=int(input("Enter a 1 or 2 value:"))

if a==1:

print("one")

if a==2:

print("two")

print('end')

110

In the above code, the first and last line of the statement is related to the same

suite because there is no indentation in front of them. So after executing first "if

statement", the Python interpreter will go into the next statement. If the condition is

not true, it will execute the last line of the statement.

Multi Way Selection (if..elif..else statements:)

 The most commonly used multiple selection technique is acombination of if and

if…else statements.

 This form of selection is often called a selection tree becauseof its resemblance to the

branches of a tree.

 In this case, you follow a particular path to obtain a desiredresult.

 The elif is short for else if and is useful to avoid excessiveindentation.

Syntax:

In the above case Python evaluates each expression one by one and if a true

condition is found the statement(s) block under thatexpression will be executed. If no

true condition is found the statement(s) block under else will be executed.

Example:

Enter a 1 or 2 value:1

one

end

if expression:

statements

elif expression:

statements

else:

statements

111

Output:

X is 500

Nested if statements:

In some situations you have to place an if statement insideanother statement.

Syntax:

Example:

x=500

if x >500 :

print(" X is greater than 500 ")

elif x <500 :

print(" X is less than 500 ")

elif x == 500 :

print(" X is 500 ")

else :

print(" X is not a number ")

if condition:

if condition:

statements

else:

statements

else:

statements

112

Output:

You got B Grade !! not

operator in if statement:

By using Not keyword we can change the meaning of theexpressions,

moreover we can invert an expression.

Example:

Output:

mark is 100

Write same code using "!=" operator.

Example:

mark = 72

if mark >50:

if mark >=80:

print ("You got A Grade !!")

elif mark>=60and mark<80 :

print ("You got B Grade !!")

else:

print ("You got C Grade !!")

else:

print("You failed!!")

mark = 100

ifnot (mark == 100):

print("mark is not 100")

else:

print("mark is 100")

113

Output:

mark is 100

In operator in if statement:Example

Output:

Red is in the list

UNIT IV

Iteration Control

 Iteration statements or loop statements allow us to execute ablock of statements as

long as the condition is true.

 Loops statements are used when we need to run same codeagain and again, each time

with a different value.

 Loops are one of the most important features in computerprogramming languages.

 It offer a quick and easy way to do something repeated until acertain condition is

reached.

Every loop has 3 parts:

 Initialization

 Condition

 Updation

mark = 100

if (mark != 100):

print("mark is not 100")

else:

print("mark is 100")

color = ['Red','Blue','Green']

selColor = "Red"

ifselColorin color:

print("Red is in the list")

else:

print("Not in the list")

114

In Python Iteration (Loops) statements are of three type :-

1. While Loop

2. For Loop

3. Nested For Loops

Loops

The loop construct in Python allows you to repeat a body ofcode several times.

There are two types of loops :

 Definite loops

 Indefinite loops.

Definite loops :

You use a definite loop when you know a priory how many times you will be

executing the body of the loop. You use key wordfor to begin such a loop.

Indefinite loop :

In an indefinite loop is the number of times it is going to execute is not known

in advance and it is going to be executed until some condition is satisfied. Use the

keyword while to begin indefinite loops.

while Statement(Infinite loop)

 while loop is a control flow statement that allows code to beexecuted repeatedly based

on a given Boolean condition.

 While loop tells the computer to do something as long as thecondition is met.

 It consists of condition/expression and a block of code.

 The condition/expression is evaluated, and if the condition/expression is true, the code

within the block is executed.

 This repeats until the condition/expression becomes false.

Syntax:

Initialize the value of a variable and set the condition, test the condition in while

clause, if it holds true, the body of the loop is executed. While executing the body of

loop it can update the statement inside while loop. After updating, the condition is

checked again. This process is repeated as long as the condition is true and once the

condition becomes false the program breaks out of the loop.

Example:

while (condition) :

statement(s)

115

Output:

Here the conditional of x < =5 (while(x < =5):) and x was previously declared

and set equal to 1 (x=1). So, the first item printed out was 1 (print(x)), which makes

sense. In the next line x+=1 means x = x+1, now the value of x = 2. After updating x ,

thecondition is checked again. This process is repeated as long as the condition is true

and once the condition becomes false the program breaks out of the loop . Of course,

once a becomes equal to 5, we will no longer run through the loop.

break and continue:

Python provides two keywords that terminate a loop iterationprematurely: break

and continue.

1. break leaves a loop.

2. continue jumps to the next iteration.

break statement in Python while loop:

Sometimes it's necessary to exit from a Python while loop before the loop has

finished fully iterating over all the step values. This is typically achieved by a "break"

statement.

Example:

n=int(input("Enter the n value:"))

i=1

while(i<=n):

print(i)

i+=1

Enter the n value:5

1

2

3

4

5

116

Output:

10

 12

 14

 16

 18

 20

 After Break

In the above example, when the condition x>20, the break statement executed

and immediately terminated the while loop and the program control resumes at the next

statement.

continue statement in Python while loop:

The continue statement in Python while loop is used when we want to skip one

or more statements in loop's body and to transfer the control to the next iteration.

x=10

whileTrue:

print (x)

x+=2;

if x >20:

break

print("After Break")

117

Example:

Output:

In the above example, we can see in the output the 30 is missing. It is because

when the condition x==30 the loop encounter the continue statement and control go

back to start of the loop.

for Loop (Definite loop)

x=0

while x <50:

x+=10

if x==30:

continue

print (x)

print("Loop Over")

10

20

40

50

Loop Over

118

A loop is a fundamental programming idea that is commonly used in writing

computer programs. It is a sequence of instructions that is repeated until a certain

condition is reached. A for loop has two sections: a header specifying the iterating

conditions, and a bodywhich is executed once per iteration. The header often declares

an explicit loop counter or loop variable, which allows the body to know which

iteration is being executed.

Syntax:

for loop range() function:

The range function in for loop is actually a very powerful mechanism when it

comes to creating sequences of integers. It can take one, two, or three parameters. It

returns or generates a list of integers from some lower bound(zero, by default) up to

(but not including) some upper bound , possibly in increments (steps) of some other

number (one, by default). Note for Python 3 users: There are no separate range and

xrange()functions in Python 3, there is just range, which follows the design of Python

2's xrange.

range(stop)

1. range(start,stop)

2. range(start,stop,step)

It is important to note that all parameters must be integersand can be positive

or negative.

Python range() function with one parameters:Syntax

range(stop) stop:

for item in sequence:

statements(s)

119

Generate numbers up to, but not including this number.

Output:

Python range() function with two parametersSyntax:

range(start,stop)

start: Starting number of the sequence.

stop: Generate numbers up to, but not including this number.

Example:

Output:

The range(start,stop) generates a sequence with numbersstart, start + 1, ..., stop -

1. The last number is not included.

Python range() function with three parameters:

1. start: Starting number of the sequence.

2. stop: Generate numbers up to, but not including this number.

for n inrange(5):

print(n)

0

1

2

3

4

for n inrange(5,10):

print(n)

5

6

7

8

9

120

3. step: Difference between each number in the sequence.

Example:

Output:

Here the start value is 0 and end values is 10 and step is 3. This means that the

loop start from 0 and end at 10 and the increment value is 3.

Python Range() function can define an empty sequence, like range(-10) or

range(10, 4). In this case the for-block won't beexecuted:

Example:

The above code won't be executed.

Also, you can use Python range() for repeat some actionseveral times:

Example:

Output:

Decrementing for loops:

for n inrange(0,10,3):

print(n)

0

3

6

9

foriinrange(-10):

print('Python range()')

foriinrange(2 ** 2):

print('Python range()!!')

Python range()!!

Python range()!!

Python range()!!

Python range()!!

121

If you want a decrementing for loops, you need to give therange a -1 step

Example:

Output:

Accessing the index in 'for' loops in Python:

Python's built-in enumerate function allows developers to loop over a list and

retrieve both the index and the value of each item in the containing list. It reduces the

visual clutter by hiding the accounting for the indexes, and encapsulating the iterable

into another iterable that yields a two-item tuple of the index and the item that the

original iterable would provide.

Example:

Output:

foriinrange(5,0,-1):

print (i)

5

4

3

2

1

months = ["January", "February", "March", "April", "May",

"June", "July","August", "September", "October",

"November", "December"]

foridx, mNameinenumerate(months, start=1):

print("Months {}: {}".format(idx, mName))

Months 1: January

Months 2: February

Months 3: March

Months 4: April

Months 5: May

Months 6: June

122

Note: The start=1 option to enumerate here is optional. If we didn't specify this, we'd start

counting at 0 by default. Python enumerate function perform an iterable where each

element is a tuple that contains the index of the item and the originalitem value.

So, this function is meant for:

1. Accessing each item in a list (or another iterable).

2. Also getting the index of each item accessed.

Iterate over two lists simultaneously:

In the following Python program we're looping over two listsat the same time

using indexes to look up corresponding elements.

Example:

Output:

Using Python zip() in for loop:

The Python zip() function takes multiple lists and returns an iterable that

Months 7: July

Months 8: August

Months 9: September

Months 10: October

Months 11: November

Months 12: December

grades = ["High", "Medium", "Low"]

values = [0.75, 0.50, 0.25]

fori, grade in enumerate(grades):

value = values[i]

print("{}% {}".format(value * 100, grade)

75.0% High

50.0% Medium

25.0% Low

123

provides a tuple of the corresponding elements of each list as we loop over it.

Example:

Output:

Nested for loop in Python:

A for loop contain inside of another for loop that is callednested for loop.

Syntax:

Example:

Output:

grades = ["High", "Medium", "Low"]

values = [0.75, 0.50, 0.25]

for grade, value inzip(grades, values):

print("{}% {}".format(value * 100, grade))

75.0% High

50.0% Medium

25.0% Low

for iterating_var in sequence:

for iterating_var in sequence:

statements(s)

statements(s)

n=int(input("Enter the number:"))

foriin range(1,n+1):

for j in range(1,int(i)+1):

print(i, end=' ')

print("\n")

124

Infinite Loops

An Infinite Loop in Python is a continuous repetitive conditional loop that gets

executed until an external factor interfere in the execution flow, like insufficient CPU

memory, a failed feature/ error code that stopped the execution, or a new feature in the

other legacy systems that needs code integration. There are a few types of Infinite

Loop in Python, that includes, the While statement, the If statement, the Continue

statement and the Break statement.

When are Infinite Loops Necessary?

An infinite loop may be useful in client/server programming where the server

needs to run with continuity so that the client programs may communicate with the

server program whenever the necessity arises. It may also be helpful if a new

connection needs to be created. There is the utility of a while loop in gaming

application or an application where we enter some sort of main event loop which

continues to run until the user selects an action to break that infinite loop. Also, if one

has to play a game and wishes the game to reset after each session. Iterations are the

process of doing a repetitive taskand computer programs have always mastered this art.

How would we Run an Infinite Loop by Mistake?

It is a very simple program but loop may surely miss out onthese basic steps

and have an infinite loop running in their program.

Example:

Output:

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

i=0

whilei<10:

print("Welcome")

125

As there is no code to increment the value of the integer, itwill continue to

print that until we terminate the program.

So, to avoid the unintentional loop, we add the following lineto the code.

Example:

Output:

Definite Loop Vs Indefinite Loop

 A loop is a block of code that would repeat for a specified number of times or until

some condition is satisfied.

 A definite loop is a loop in which the number of times it isgoing to execute is known

in advance before entering the loop.

 In an indefinite loop is the number of times it is going to execute is not known in

advance and it is going to beexecuted until some condition is satisfied.

What is a Definite Loop?

A definite loop is a loop in which the number of times it is going to execute is

known in advance before entering the loop. The number of iterations it is going to

repeat will be typically provided through an integer variable. In general, for loops are

considered to bedefinite loops.

Welcome

Welcome

Welcome

Welcome #non stop printing Welcome

i=0

whilei<3:

print("Welcome")

i=i+1

Welcome

Welcome

Welcome

126

What is an Indefinite Loop?

In an indefinite loop, the number of times it is going to execute is not known in

advance. Typically, an indefinite loop is going to be executed until some condition is

satisfied. While loops and do-while loops are commonly used to implement indefinite

loops. Even though there is no specific reason for not using for loops for constructing

indefinite loops, indefinite loops could be organizedneatly using while loops. Some of

common examples that you wouldneed to implement indefinite loops are prompting for

reading an input until user inserts a positive integer, reading a password until the user

inserts the same password twice in a row, etc.

What is the difference between Definite Loop and Indefinite Loop?

A definite loop is a loop in which the number of times it is going to execute is

known in advance before entering the loop, while an indefinite loop is executed until

some condition is satisfied and the number of times it is going to execute is not known

in advance. Often, definite loops are implemented using for loops and indefiniteloops

are implemented using while loops and do-while loops. But there is no theoretical

reason for not using for loops for indefinite loops and while loops for definite loops.

But indefinite loops could be neatly organized with while loops, while definite loops

could be neatly organized with for loops.

Boolean Flags And Indefinite LoopBoolean Flags:

Flag variable is used as a signal in programming to let the program know that a

certain condition has met. It usually acts as a boolean variable indicating a condition to

be either true or false.

Indefinite loops:

The number of iterations is not known before we start to execute the body of the

loop, but depends on when a certain condition becomes true (and this depends on what

happens in the body of the loop)

Example:

While the user does not decide it is time to stop, printout a * and ask the user whether

wants to stop.

 In Python, While Loops is used to execute a block of statements repeatedly until a

given condition is satisfied.

 And when the condition becomes false, the line immediately after the loop in the

program is executed. While loop falls under the category of indefinite iteration.

 Indefinite iteration means that the number of times the loop is executed isn’t specified

explicitly in advance.

Example: To find given number is prime or not

127

Output:

n = int(input("Enter any number: "))

flag=True

foriinrange(2, n):

if (n%i)==0:

while flag:

flag=False

break

else:

flag=True

if flag==False:

print(n, " is a not a prime number")

else:

print(n, "is a prime number")

Enter any number: 6

6 is a not a prime number

Enter any number: 11

11 is a prime number

128

UNIT V

PYTHON NAMESPACE AND VARIABLE SCOPE RESOLUTION

What is Name in Python?

Name (also called identifier) is simply a name given toobjects.

Everything in Python is an object.

Name is a way to access the underlying object.

For example, when we do the assignment a = 2, 2 is an object storedin memory and a is

the name we associate it with. We can get the address (in RAM) of some object through

the built-in function id().

Example:

Note: You may get different values for the ida = 2

print('id(2) =', id(2))

print('id(a) =', id(a))

Output:

id(2) = 9302208

id(a) = 9302208

Here, both refer to the same object 2, so they have the sameid(). Let's make

things a little more interesting.

Example:

Note: You may get different values for the ida = 2

print('id(a) =', id(a))a = a+1

print('id(a) =', id(a))

print('id(3) =', id(3))b = 2

print('id(b) =', id(b))

print('id(2) =', id(2))

Output:

id(a) = 9302208

id(a) = 9302240

id(3) = 9302240

id(b) = 9302208

129

id(2) = 9302208

What is happening in the above sequence of steps? Let's use a diagram to

explain this:

Initially, an object 2 is created and the name a is associated with it, when we do

a = a+1, a new object 3 is created and now a is associated with this object.

Note that id(a) and id(3) have the same values.

Furthermore, when b = 2 is executed, the new name b gets associated with the

previous object 2.

What is Python Namespace?

A namespace is a system to have a unique name for each andevery object in Python.

Python namespaces are containers to map names to objects.

An object might be a variable or a method.

In Python, everything is an object and we specify a name to the object so that we can

access it later on.

Python itself maintains a namespace in the form of a Pythondictionary.

You can think of namespace as a dictionary of key-value pairs where the key is the

variable name and the value is theobject associated with it.

Real-time example, the role of a namespace is like a surname. One might not

find a single “Alice” in the class there might be multiple “Alice” but when you

particularly ask for “Alice Lee” or“Alice Clark” (with a surname), there will be only

one (time being don’t think of both first name and surname are same for multiple

students).

On the similar lines, Python interpreter understands what exact method or

variable one is trying to point to in the code, depending upon the namespace. So, the

division of the word itself gives little more information. Its Name (which means name,

an unique identifier) + Space(which talks something related to scope). Here, a name

might be of any Python method or variable and space depends upon the location from

where is trying to access a variableor a method.

Example:

130

namespace = {"name1":object1, "name2":object2}

In Python, multiple independent namespaces can exist at thesame time.

 The variable names can be reused in these namespaces.

function_namespace = {"name1":object1, "name2":object2}for_loop_namespace =

{"name1":object3, "name2":object4}

Let’s look at a simple example where we have multiplenamespaces.

Namespace Types and LifecycleTypes of namespaces

Python namespaces can be divided into four types:

1. Built-In

2. Global

3. Enclosing

4. Local

 These have differing lifetimes.

 As Python executes a program, it creates namespaces asnecessary and deletes them

when they’re no longer needed.

 Typically, many namespaces will exist at any given time.

131

1. Local Namespace:

 A function, for-loop, try-except block are some examples ofa local namespace.

 The local namespace is deleted when the function or the codeblock finishes its

execution.

2. Enclosed Namespace:

 When a function is defined inside a function, it creates anenclosed namespace.

 Its lifecycle is the same as the local namespace.

3. Global Namespace:

 The global namespace contains any names defined at the level of the main program.

 Python creates the global namespace when the main programbody starts, and it remains

in existence until the interpreter terminates.

 Strictly speaking, this may not be the only global namespacethat exists.

 The interpreter also creates a global namespace for anymodule that your program loads

with the import statement.

For further reading on main functions and modules in Python,see these

resources:

 Defining Main Functions in Python

 Python Modules and Packages

4. Built-in Namespace:

The built-in namespace contains the names of all ofPython’s built-in objects.

These are available at all times when Python is running.

You can list the objects in the built-in namespace with the following command:

built-in functions like max() and len(), andobject types like int and str.

132

Example:

>>> dir(builtins)

['ArithmeticError', 'AssertionError', 'AttributeError',

'BaseException','BlockingIOError', 'BrokenPipeError',

'BufferError',

'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError',

'ConnectionError','ConnectionRefusedError', 'ConnectionResetError',

'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError','Exception', 'False',

'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning',

'GeneratorExit', 'IOError','ImportError', 'ImportWarning', 'IndentationError',

'IndexError',

'InterruptedError', 'IsADirectoryError', 'KeyError',

'KeyboardInterrupt',

'LookupError', 'MemoryError', 'ModuleNotFoundError',

'NameError', 'None',

'NotADirectoryError', 'NotImplemented', 'NotImplementedError','OSError',

'OverflowError', 'PendingDeprecationWarning', 'PermissionError',

'ProcessLookupError', 'RecursionError', 'ReferenceError',

'ResourceWarning',

Lifetime Namespace

A lifetime of a namespace depends upon the scope of objects,if the scope of an

object ends, the lifetime of that namespaces comes to an end.

Hence it is not possible to access inner namespaces’s objectfrom an outer

namespace.

133

Example:

var1 is in the global namespacevar1 = 5

def some_func():

var2 is in the local namespacevar2 = 6

def some_inner_func():

var3 is in the nested local# namespace

var3 = 7

global variablecount = 5

def some_method():

global count count = count + 1print(count)

some_method()

Output:

6

134

Python Scopes

A variable is only available from inside the region it is created. This is called scope.

In the context of Python namespaces, a “scope” is the collection of names associated

with a particular environment.

A scope defines the hierarchical order in which the namespaces have to be searched in

order to obtain the mappings of name-to-object(variables).

It is a context in which variables exist and from which they are referenced.

 It defines the accessibility and the lifetime of a variable.

Python has the following scopes:

When a name is referenced in Python, the interpreter searches for it in the

namespaces starting from the smallest scope in the above diagram, and progressively

moves outward until Python either finds the name or raises a NameError exception.

Python Variable Scope

A scope is the portion of a program from where a namespacecan be accessed

directly without any prefix.

At any given moment, there are at least three nested scopes.

1. Scope of the current function which has local names

2. Scope of the module which has global names

3. Outermost scope which has built-in names

When a reference is made inside a function, the name is searched in the local

135

namespace, then in the global namespace and finally in the built-in namespace.

a. Local Scope

 Local scope refers to variables defined in current function.Always, a function will first

look up for a variable name in its local scope.

 Only if it does not find it there, the outer scopes are checked.

Example

A variable created inside a function is available insidethat function:

Example:

def myfunc():x = 300

print(x)myfunc()

Output:

300

b. Global Scope

 A variable created in the main body of the Python code is aglobal variable and

belongs to the global scope.

 Global variables are available from within any scope, globaland local.

A variable created outside of a function is global and canbe used by anyone.

Example:

x = 300

def myfunc():print(x) myfunc()

print(x)

Output:

300

300

c. Naming Variables

If you operate with the same variable name inside and outside of a function,

Python will treat them as two separate variables, one available in the global scope

(outside the function)and one available in the local scope (inside the function):

Example:The function will print the local x, and then thecode will print the

global x:

x = 300

def myfunc():x = 200

136

print(x)myfunc()print(x)

Output:

200

300

d. Global Keyword

 If you need to create a global variable, but are stuck in thelocal scope, you can use

the global keyword.

 The global keyword makes the variable global.

Example: If you use the global keyword, the variable belongs tothe global scope:

def myfunc():

global xx = 300

myfunc()print(x)

Output:

300

 Use the global keyword if you want to make a change to aglobal variable inside a

function.

 To change the value of a global variable inside a function,refer to the variable by

using the global keyword.

Example

x = 300

def myfunc():global x

x = 200

myfunc()print(x)

Output:

200

Example of Scope and Namespace in Python

def outer_function():a = 20

def inner_function():a = 30

print('a =', a) inner_function()print('a =', a)

a = 10

137

outer_function()print('a =', a)

Output:

a = 30

a = 20

a = 10

Scope resolution via LEGB rule

 In Python, the LEGB rule is used to decide the order in which the namespaces are to

be searched for scope resolution.

The scopes are listed below in terms of hierarchy(highest to lowest/narrowest to

1.

broadest):

Local(L): Defined inside function/class

2. Enclosed(E): Defined inside enclosing functions(Nested function concept)

3. Global(G): Defined at the uppermost level

4. Built-in(B): Reserved names in Python builtin modules

 Local → Enclosed → Global → Built-in

 This is also called LEGB rule for variable scope resolution.

Python Variable Scope Resolution – LEGB Rule

 If a name is not found in the namespace hierarchy,NameError is raised.

138

 When we create an object or import a module, we create aseparate namespace for

them.

 We can access their variables using the dot operator.

Local and Global Scopes :

If a variable is not defined in local scope, then, it is checkedfor in the higher

scope, in this case, the global scope.

Example:

Global Scope

pi = 'global pi variable'def inner():

pi = 'inner pi variable'print(pi)

inner() print(pi)

Output:

inner pi variable global pi variable

 Therefore, as expected the program prints out the value in thelocal scope on execution

of inner().

 It is because it is defined inside the function and that is the first place where the

variable is looked up. The pi value in global scope is printed on execution of print(pi)

on line 9.

Local, Enclosed and Global Scopes :

For the enclosed scope, we need to define an outer function enclosing the inner

function, comment out the local pi variable of inner function and refer to pi using the

nonlocal keyword.

Example:

pi = 'global pi variable'def outer():

pi = 'outer pi variable'def inner():

local pi

print(pi)

inner()

outer()

print(pi)

variable'nonlocal pi

print(pi)

Output:

139

outer pi variable global pi variable

Local,Enclosed,Global and Built-in Scopes :

The final check can be done by importing pi from math module and

commenting the global, enclosed and local pi variablesas shown below:

Example:

Built-in Scope from math import pi

pi = 'global pi variable'def outer():

pi = 'outer pi variable'def inner():

pi = 'inner pi variable'print(pi)

inner()

outer()

Output:

3.141592653589793

Since, pi is not defined in either local, enclosed or global scope, the built-in

scope is looked up i.e the pi value imported frommath module.

The program is able to find the value of pi in the outermost scope, the following

output is obtained.

Python eval()

140

eval() is a built-in function or methodused in python, towhich we pass an

expression.

It parses this expression and runs

Uses of Python:

1. To allow users to enter own script to allow customization of acomplex system’s

behavior.

2. To evaluate mathematical expressions in application insteadof writing an expression

parser.

To evaluate a string based expression, python’s eval functionruns the following steps:

Parse expression

Compile it to bytecode

Evaluate it as a python expression

Return the result of the evaluation

In simple eval() is, when we pass any python expression as a string to the eval

function, it evaluates the expression and returns theresult as an integer or float.

Syntax:

eval(expression, global, local)where,

expression- a string that will be evaluated as python code. global- Optional, a dictionary

contains global parameters. local-Optional, a dictionary contains local parameters.

Example 1: passing expression to add two local variables

a=20b=30

res=eval(‘a+b’)print(res)

Output:

50

In this example , we have passed an expression ‘a+b’ to the eval() function in

order to add two local variables: a,b.

Example 2: python eval() function with user input

Num1=int(input()) Num2=int(input()) Mult=eval(‘num1*num2’)

Print(‘multiplication:’,mult)

141

Output:

30

20

Multiplication: 600

In this example, we have accepted the input from the user and assigned the

same to the variables. Further, it passed the expression for the multiplication of those

two input values.

	SYLLABUS
	UNIT - I
	UNIT - II
	UNIT - III
	UNIT - IV
	UNIT - V
	UNIT I PROGRAMMING LANGUAGE INTRODUCTION
	What is computation?
	COMPUTATIONAL PROBLEM
	Limits of Computational Problem Solving
	COMPUTER ALGORITHM
	For example:Task:
	Algorithm:
	What is Computer Algorithm?
	Characteristics of an Algorithm:
	Computer Hardware
	Fundamental Hardware Components:
	Computer Software
	I. System Software
	I. System Software (1)
	1. Syntax
	Print(“hello world!!”)
	“prnt(“hello world”)”
	2. Semantics
	3. Program Translation
	The three main types of translators
	II. Application Software
	Application Software Type Examples
	The Process of Computational Problem Solving
	Fig 1.5 Process of problem solving
	2. Program design Data and algorithm
	Travelling salesman- data table Describing the Needed Algorithms
	3. Program implementation
	4. Program testing
	Definition:
	Why Learn Python?
	Some of the key advantages of Python:
	Characteristics of Python:
	Features of Python:
	Some other features:
	Applications of Python:
	Printing and Reading in python Printing to the Screen:
	Example:
	Reading Keyboard Input:
	The raw_input Function:
	Example: (1)
	The input Function :
	Example: (2)
	Data Types
	Types of datatypes :
	Example Program:
	2. Sequences :
	Example program :
	b) Python list :
	Example Program: (1)
	Output:
	c) Python Tuple :
	Example Program for a tuple :
	3. Python Sets :
	Example Program: (2)
	Output :
	b) Frozen Sets :
	4. Python mapping :Python Dictionary
	Example Program :
	Python Typecasting
	Literals
	1. Numeric Literal:
	Variable
	To assigning different
	Assigning Values to Variables:
	For example
	Multiple Assignment:
	Constants
	Assigning value to a constant in Python:
	Output: (1)
	Rules and naming convention for variables and constants:
	Identifier
	Rules naming conventions for Python identifiers:
	Operators
	Types of Operator
	1. Arithmetic Operators:
	Example Program: CALCULATOR - USING ARITHMATICOPERATOR
	2. Comparison or Relational Operators:
	Example Program: BIGGEST OF TWO NUMBERS
	3. Assignment Operators:
	Example Program: Arithmetic Operation using ShorthandAssignment Operator
	4. Logical Operators:
	Logical OR :
	Logical AND :
	Logical NOT :
	Example Program: To Find given year is Leaf Year Or NotUsing logical operator
	5. Bitwise Operators:
	6. Membership Operators :
	Example Program: (3)
	Example Program : (1)
	Expressions
	Ex: c=a+b
	Output: (2)
	Dictionary comprehension:
	Generator expression:
	Example: (3)
	Example: (4)
	LIST
	Defining a Python list:
	Creating List:
	Accessing List Values:
	Example 1:
	Example 2:
	Basic List Operations:
	Example: (5)
	Example: (6)
	Example: (7)
	Indexing, Slicing, and Matrixes:
	Example 1 :
	Example 2: (1)
	Built-in List Functions & Methods:
	Example: (8)
	Python includes following other valuable list methods are:
	Example: (9)
	Example: (10)
	Example: (11)
	Example: (12)
	Example: (13)
	Example: (14)
	Example: (15)
	Example: (16)
	Output: (3)
	Example: (17)
	Example: (18)
	Example: (19)
	PYTHON OBJECTS
	Python Classes and Objects
	Some points on Python class:
	Software Objects:
	An object consists of :
	UNIT II
	Modules in python
	Import modules in Python
	import sample
	Rename the module:
	Python from...import statement
	Import all names
	LOCATING MODULES
	PYTHON MODULES:
	Modules and Namespaces
	FUNCTIONS
	What is a Python Main Function?
	What is a function in Python?
	Types of Functions:
	 Built-in functions
	User-defined functions:
	Advantages of user-defined functions:
	Defining a Function:
	Syntax:
	Example: (20)
	Calling a Function:
	Example: (21)
	Output: (4)
	Python Function Parameters calling values:
	Returning a Value:
	Syntax: (1)
	Output: (5)
	Function Calling Non-value- Returning Function:
	Example: (22)
	Example: (23)
	Example: (24)
	Required arguments:
	Example: (25)
	Output: (6)
	Keyword arguments:
	Example: (26)
	Default arguments:
	Output: (7)
	Syntax: (2)
	Output: (8)
	Syntax: (3)
	Output: (9)
	Global vs. Local variables:
	Example :
	Inner Functions:
	Example: (27)
	Assign functions to variables:
	Example: (28)
	Python recursive functionsDefinition:
	Example: (29)
	Overview of how recursive function works:
	Why use recursion in programming?
	Output: (10)
	Disadvantages of recursion:
	UNIT III
	Types of file in python: Text file
	Binary File
	File Operation :
	1. Opening the file - open() function:
	Syntax :
	2. Closing a file using close()
	3. Reading files using read(), readline() and readlines():
	Output: (11)
	Writing Data using write() and writelines():
	Example: (30)
	Example: (31)
	Eample:
	Access characters in a string:
	Example: (32)
	Output: (12)
	String Formatting Operator:
	Example : (1)
	String Built in Methods:
	Example: (33)
	Output: (13)
	Output: (14)
	Output: 2
	Example: (34)
	c) lower() and upper():
	Example: (35)
	Output: (15)
	Example: (36)
	Example: (37)
	Example: (38)
	Example: (39)
	Example: (40)
	Simple program: To check given string is palindrome or not
	Exception
	Types of error :
	print0/0) # Here Missing parentheses in call to 'print'
	Print (0/0) # division by zero
	What is Exception?
	Example: (41)
	Handling Exceptions using try and except:
	try block:
	except block :
	event or store something in the database etc.
	Syntax: try....except...else blocks −
	Example: (42)
	The except Clause with No Exceptions:
	Syntax: (4)
	Output: (16)
	Example: (43)
	The try-finally Clause:
	Syntax: (5)
	Output: (17)
	Syntax: (6)
	Example: (44)
	User-defined Exceptions
	Example: (45)
	CONTROL STRUCTURES
	Sequential
	Selection
	Repetition
	Boolean Expression:
	Example: (46)
	False:
	Output: (18)
	Evaluate Values and Variables:
	Example: (47)
	Most Values are True:
	Output: (19)
	The following Example will return False:
	Selection Control Statement
	if statement
	Syntax: (7)
	Output: (20)
	Python if..else statements
	Syntax: (8)
	Output
	Indentation in Python
	Example
	Multi Way Selection (if..elif..else statements:)
	Syntax: (9)
	Example: (48)
	Nested if statements:
	Syntax: (10)
	Output: (21)
	Example: (49)
	Example: (50)
	In operator in if statement:Example
	UNIT IV
	Every loop has 3 parts:
	In Python Iteration (Loops) statements are of three type :-
	Loops
	Definite loops :
	Indefinite loop :
	while Statement(Infinite loop)
	Syntax: (11)
	Example: (51)
	break and continue:
	break statement in Python while loop:
	Example: (52)
	continue statement in Python while loop:
	Example: (53)
	for Loop (Definite loop)
	Syntax: (12)
	Python range() function with one parameters:Syntax
	Output: (22)
	Example: (54)
	Python range() function with three parameters:
	Example: (55)
	Example: (56)
	Example: (57)
	Decrementing for loops:
	Example: (58)
	Accessing the index in 'for' loops in Python:
	Example: (59)
	Iterate over two lists simultaneously:
	Example: (60)
	Using Python zip() in for loop:
	Example: (61)
	Nested for loop in Python:
	Syntax: (13)
	Output: (23)
	When are Infinite Loops Necessary?
	How would we Run an Infinite Loop by Mistake?
	Example: (62)
	Example: (63)
	Definite Loop Vs Indefinite Loop
	What is a Definite Loop?
	What is an Indefinite Loop?
	What is the difference between Definite Loop and Indefinite Loop?
	Boolean Flags And Indefinite LoopBoolean Flags:
	Indefinite loops:
	Example: (64)
	Example: To find given number is prime or not
	UNIT V
	What is Name in Python?
	Example: (65)
	Output: (24)
	Example: (66)
	Output: (25)
	What is Python Namespace?
	Example: (67)
	Let’s look at a simple example where we have multiplenamespaces.
	1. Built-In
	3. Enclosing
	1. Local Namespace:
	2. Enclosed Namespace:
	3. Global Namespace:
	For further reading on main functions and modules in Python,see these resources:
	4. Built-in Namespace:
	Example: (68)
	Lifetime Namespace
	Example: (69)
	Output: (26)
	Python Scopes
	Python has the following scopes:
	Python Variable Scope
	a. Local Scope
	Example (1)
	Example: (70)
	b. Global Scope
	Example: (71)
	Output: (27)
	c. Naming Variables
	Example:The function will print the local x, and then thecode will print the global x:
	Output: (28)
	d. Global Keyword
	Output: (29)
	Example (2)
	Output: (30)
	Example of Scope and Namespace in Python
	Output: (31)
	Scope resolution via LEGB rule
	Python Variable Scope Resolution – LEGB Rule
	Local and Global Scopes :
	Example: (72)
	Output: (32)
	Local, Enclosed and Global Scopes :
	Example: (73)
	Output: (33)
	Local,Enclosed,Global and Built-in Scopes :
	Example: (74)
	Output: (34)
	Python eval()
	Uses of Python:
	Syntax: (14)
	Example 1: passing expression to add two local variables
	Output: (35)
	Output: (36)

