
 1

 2

ADVANCED JAVA PROGRAMMING

UNIT – I

SERVLET OVERVIEW

1. Servlet Overview

Java Servlets are programs that run on a Web or Application server and act as a middle

layer between a requests coming from a Web browser or other HTTP client and databases or

applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records

from a database or another source, and create web pages dynamically.

Java Servlets often serve the same purpose as programs implemented using the Common

Gateway Interface (CGI). But Servlets offer several advantages in comparison with the CGI.

 Performance is significantly better.

 Servlets execute within the address space of a Web server. It is not necessary to create a

separate process to handle each client request.

 Servlets are platform-independent because they are written in Java.

 Java security manager on the server enforces a set of restrictions to protect the resources

on a server machine. So servlets are trusted.

 The full functionality of the Java class libraries is available to a servlet. It can

communicate with applets, databases, or other software via the sockets and RMI

mechanisms that you have seen already.

Servlets Architecture

The following diagram shows the position of Servlets in a Web Application.

 3

Servlets Tasks

Servlets perform the following major tasks −

 Read the explicit data sent by the clients (browsers). This includes an HTML form on a

Web page or it could also come from an applet or a custom HTTP client program.

 Read the implicit HTTP request data sent by the clients (browsers). This includes

cookies, media types and compression schemes the browser understands, and so forth.

 Process the data and generate the results. This process may require talking to a database,

executing an RMI or CORBA call, invoking a Web service, or computing the response

directly.

 Send the explicit data (i.e., the document) to the clients (browsers). This document can

be sent in a variety of formats, including text (HTML or XML), binary (GIF images),

Excel, etc.

 Send the implicit HTTP response to the clients (browsers). This includes telling the

browsers or other clients what type of document is being returned (e.g., HTML), setting

cookies and caching parameters, and other such tasks.

Servlets Packages

Java Servlets are Java classes run by a web server that has an interpreter that supports the Java

Servlet specification.

 4

Servlets can be created using the javax.servlet and javax.servlet.http packages, which are a

standard part of the Java's enterprise edition, an expanded version of the Java class library that

supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At the time of writing this

tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After you install the

servlet packages and add them to your computer's Classpath, you can compile servlets with the

JDK's Java compiler or any other current compiler.

2. Servlet Life Cycle

A servlet life cycle can be defined as the entire process from its creation till the destruction. The

following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

a) The init() Method

The init method is called only once. It is called only when the servlet is created, and not called

for any user requests afterwards. So, it is used for one-time initializations, just as with the init

method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet,

but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user

request resulting in a new thread that is handed off to doGet or doPost as appropriate. The init()

method simply creates or loads some data that will be used throughout the life of the servlet.

 5

public void init() throws ServletException {

// Initialization code...

}

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException {

}

public void doGet(HttpServletRequest request, HttpServletResponse response)

The init method definition looks like this −

b) The service() Method

The service() method is the main method to perform the actual task. The servlet

container (i.e. web server) calls the service() method to handle requests coming from the client(

browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.)

and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method −

The service () method is called by the container and service method invokes doGet, doPost,

doPut, doDelete, etc. methods as appropriate. So you have nothing to do with service() method

but you override either doGet() or doPost() depending on what type of request you receive from

the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here

is the signature of these two methods.

c) The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

 6

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Servlet code

}

public void destroy() {

// Finalization code...

}

d) The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and

it should be handled by doPost() method.

e) The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet. This method

gives your servlet a chance to close database connections, halt background threads, write cookie

lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection. The

destroy method definition looks like this −

3. Web Server

Server is a device or a computer program that accepts and responds to the request made

by other program, known as client. It is used to manage the network resources and for

running the program or software that provides services.

There are two types of servers:

a) Web Server

b) Application Server

Web Server

Web server contains only web or servlet container. It can be used for servlet, jsp, struts,

jsf etc. It can't be used for EJB.

throws ServletException, IOException {

// Servlet code

}

 7

It is a computer where the web content can be stored. In general web server can be used

to host the web sites but there also used some other web servers also such as FTP, email, storage,

gaming etc.

Examples of Web Servers are: Apache Tomcat and Resin.

Web Server Working

It can respond to the client request in either of the following two possible ways:

o Generating response by using the script and communicating with database.

o Sending file to the client associated with the requested URL.

The block diagram representation of Web Server is shown below:

Important points

o If the requested web page at the client side is not found, then web server will sends the

HTTP response: Error 404 Not found.

o When the web server searching the requested page if requested page is found then it will

send to the client with an HTTP response.

o If the client requests some other resources then web server will contact to application

server and data is store for constructing the HTTP response.

 8

Application Server

Application server contains Web and EJB containers. It can be used for servlet, jsp,

struts, jsf, ejb etc. It is a component based product that lies in the middle-tier of a server centric

architecture.

It provides the middleware services for state maintenance and security, along with

persistence and data access. It is a type of server designed to install, operate and host associated

services and applications for the IT services, end users and organizations.

The block diagram representation of Application Server is shown below:

4. Simple Servlet

Servlets are Java classes which service HTTP requests and implement

the javax.servlet.Servlet interface. Web application developers typically write servlets that

extend javax.servlet.http.HttpServlet, an abstract class that implements the Servlet interface

and is specially designed to handle HTTP requests.

Sample Code

Following is the sample source code structure of a servlet example to show Hello World

−

 9

 // Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloWorld extends HttpServlet {

private String message;

public void init() throws ServletException {

// Do required initialization

message = "Hello World";

}

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Set response content type

 response.setContentType("text/html");

 10

Compiling a Servlet

Let us create a file with name HelloWorld.java with the code shown above. Place

this file at C:\ServletDevel (in Windows) or at /usr/ServletDevel (in Unix). This path

location must be added to CLASSPATH before proceeding further.

Assuming your environment is setup properly, go in ServletDevel directory and compile

HelloWorld.java as follows −

$ javac HelloWorld.java

If the servlet depends on any other libraries, you have to include those JAR files on your

CLASSPATH as well. I have included only servlet-api.jar JAR file because I'm not using

any other library in Hello World program.

This command line uses the built-in javac compiler that comes with the Sun

Microsystems Java Software Development Kit (JDK). For this command to work

properly, you have to include the location of the Java SDK that you are using in the

PATH environment variable.

If everything goes fine, above compilation would produce HelloWorld.class file

in the same directory. Next section would explain how a compiled servlet would be

deployed in production.

// Actual logic goes here.

PrintWriter out = response.getWriter();

out.println("<h1>" + message + "</h1>");

}

public void destroy() {

// do nothing.

}

}

 11

<servlet>

<servlet-name>HelloWorld</servlet-name>

<servlet-class>HelloWorld</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorld</servlet-name>

<url-pattern>/HelloWorld</url-pattern>

</servlet-mapping>

Servlet Deployment

By default, a servlet application is located at the path <Tomcat-

installationdirectory>/webapps/ROOT and the class file would reside in <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes.

If you have a fully qualified class name of com.myorg.MyServlet, then this

servlet class must be located in WEB-INF/classes/com/myorg/MyServlet.class.

For now, let us copy HelloWorld.class into <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes and create following entries

in web.xml file located in <Tomcat-installation-directory>/webapps/ROOT/WEB-INF/

Above entries to be created inside <web-app>...</web-app> tags available in

web.xml file. There could be various entries in this table already available, but never

mind.

You are almost done, now let us start tomcat server using <Tomcat-

installationdirectory>\bin\startup.bat (on Windows) or <Tomcat-

installationdirectory>/bin/startup.sh (on Linux/Solaris etc.) and finally

 12

type http://localhost:8080/HelloWorld in the browser's address box. If everything goes

fine, you would get the following result

5. Servlet Packages

There are two packages in Java Servlet that provide various features to servlet. These two

packages are javax.servlet and javax.servlet.http.

javax.servlet package: This package contains various servlet interfaces and classes which are

capable of handling any type of protocol.

javax.servlet.http package: This package contains various interfaces and classes which are

capable of handling a specific http type of protocol.

Overview of some important interfaces and classes

javax.servlet package interface

Some of the important interfaces are listed below.

 13

Interface Overview

Servlet This interface is used to create a servlet class. Each servlet class must require to

implement this interface either directly or indirectly.

ServletRequest The object of this interface is used to retrieve the information from the user.

ServletResponse The object of this interface is used to provide response to the user.

ServletConfig ServletConfig object is used to provide the information to the servlet class
explicitly.

ServletContext The object of ServletContext is used to provide the information to the

web application explicitly.

javax.servlet package classes

Some of the important classes are listed below.

Classes Overview

GenericServlet This is used to create servlet class. Internally, it implements the Servlet interface.

ServletInputStream This class is used to read the binary data from user requests.

ServletOutputStream This class is used to send binary data to the user side.

ServletException This class is used to handle the exceptions occur in servlets.

ServletContextEvent If any changes are made in servlet context of web application, this class notifies.

javax.servlet.http package interface

 14

Some of the important interface of this package are listed below:

Interface Overview

HttpServletRequest The object of this interface is used to get the information from the user under

http protocol.

HttpServletResponse The object of this interface is used to provide the response of the request under

http protocol.

HttpSession This interface is used to track the information of users.

HttpSessionAttributeListener This interface notifies if any change occurs in HttpSession attribute.

HttpSessionListener This interface notifies if any changes occur in HttpSession lifecycle.

javax.servlet.http package classes

Some of the important interface of this package are listed below.

Class Overview

HttpServlet This class is used to create servlet class.

Cookie This class is used to maintain the session of the state.

HttpSessionEvent This class notifies if any changes occur in the session of web application.

HttpSessionBindingEvent This class notifies when any attribute is bound, unbound or replaced in a session.

 15

6. Using Cookies

A cookie is a small piece of information that is persisted between the multiple client

requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and

domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add

cookie with response from the servlet. So cookie is stored in the cache of the browser. After that

if request is sent by the user, cookie is added with request by default. Thus, we recognize the

user as the old user.

Types of Cookie

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

 16

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the browser. It is

removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a lot of

useful methods for cookies.

Constructor of Cookie class

Constructor Description

Cookie() constructs a cookie.

Cookie(String name, String value) constructs a cookie with a specified name and value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

 17

Method Description

public void setMaxAge(int expiry) Sets the maximum age of the cookie in seconds.

public String getName() Returns the name of the cookie. The name cannot be changed

after creation.

public String getValue() Returns the value of the cookie.

public void setName(String name) changes the name of the cookie.

public void setValue(String value) changes the value of the cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods provided by other

interfaces.

They are:

1. public void addCookie(Cookie ck):method of HttpServletResponse interface is used to add

cookie

in response object.

2. public Cookie[] getCookies():method of HttpServletRequest interface is used to return all

the cookies from the browser.

How to create Cookie?

Let's see the simple code to create cookie.

 18

1. Cookie ck=new Cookie("user","sonoo jaiswal");//creating cookie object

2. response.addCookie(ck);//adding cookie in the response

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or signout the user.

1. Cookie ck=new Cookie("user","");//deleting value of cookie

2. ck.setMaxAge(0);//changing the maximum age to 0 seconds

3. response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++){

out.print("
"+ck[i].getName()+" "+ck[i].getValue());//printing name and value of coo

kie }

Simple example of Servlet Cookies

In this example, we are storing the name of the user in the cookie object and accessing it

in another servlet. As we know well that session corresponds to the particular user. So if you

access it from too many browsers with different values, you will get the different value.

 19

index.html

<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

<input type="submit" value="go"/>

</form>

FirstServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response){

try{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String n=request.getParameter("userName");

out.print("Welcome "+n);

Cookie ck=new Cookie("uname",n);//creating cookie object

response.addCookie(ck);//adding cookie in the response

//creating submit button

out.print("<form action='servlet2'>");

out.print("<input type='submit' value='go'>");

out.print("</form>");

out.close();

}catch(Exception e){System.out.println(e);}

}

}

 20

SecondServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response){

try{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Cookie ck[]=request.getCookies();

out.print("Hello "+ck[0].getValue());

out.close();

}catch(Exception e){System.out.println(e);}

}

}

web.xml

<web-app>

<servlet>

<servlet-name>s1</servlet-name>

<servlet-class>FirstServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s1</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

 21

<servlet>

<servlet-name>s2</servlet-name>

<servlet-class>SecondServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>s2</servlet-name>

<url-pattern>/servlet2</url-pattern>

</servlet-mapping>

</web-app>

OUTPUT

locafhas 888B/Cookies/ fi

€- C ff Q localhost.atas/cookies/

N Ravi Ma ik

k›caIbosc8888/Cookies/sr x

¥- “ C fl Q localhost:8888/Cookies/servletl

 22

7. Session Tracking in Servlets

Session simply means a particular interval of time.

Session Tracking is a way to maintain state (data) of an user. It is also known as session

management in servlet.

Http protocol is a stateless so we need to maintain state using session tracking techniques. Each

time user requests to the server, server treats the request as the new request. So we need to

maintain the state of an user to recognize to particular user.

HTTP is stateless that means each request is considered as the new request. It is shown in the

figure given below:

Why use Session Tracking?

To recognize the user It is used to recognize the particular user.

Why use Session Tracking?

To recognize the user It is used to recognize the particular user.

Why use Session Tracking?

To recognize the user It is used to recognize the particular user.

Session Tracking Techniques

 23

// Import required java libraries

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

Session Tracking Example

This example describes how to use the HttpSession object to find out the creation time

and the last-accessed time for a session. We would associate a new session with the request if

one does not already exist.

 24

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

// Extend HttpServlet class

public class SessionTrack extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Create a session object if it is already not created.

HttpSession session = request.getSession(true);

// Get session creation time.

Date createTime = new Date(session.getCreationTime());

// Get last access time of this web page.

Date lastAccessTime = new Date(session.getLastAccessedTime());

String title = "Welcome Back to my website";

Integer visitCount = new Integer(0);

String visitCountKey = new String("visitCount");

String userIDKey = new String("userID");

String userID = new String("ABCD");

// Check if this is new comer on your web page.

if (session.isNew()) {

title = "Welcome to my website";

session.setAttribute(userIDKey, userID);

} else {

 25

visitCount = (Integer)session.getAttribute(visitCountKey);

visitCount = visitCount + 1;

userID = (String)session.getAttribute(userIDKey);

}

session.setAttribute(visitCountKey, visitCount);

// Set response content type

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String docType =

"<!doctype html public \"-//w3c//dtd html 4.0 " +

"transitional//en\">\n";

out.println(docType +

"<html>\n" +

"<head><title>" + title + "</title></head>\n" +

"<body bgcolor = \"#f0f0f0\">\n" +

"<h1 align = \"center\">" + title + "</h1>\n" +

"<h2 align = \"center\">Session Infomation</h2>\n" +

"<table border = \"1\" align = \"center\">\n" +

"<tr bgcolor = \"#949494\">\n" +

" <th>Session info</th><th>value</th>

</tr>\n" +

"<tr>\n" +

" <td>id</td>\n" +

" <td>" + session.getId() + "</td>

</tr>\n" +

 26

Compile the above servlet SessionTrack and create appropriate entry in web.xml file.

Now running http://localhost:8080/SessionTrack would display the following result when you

would run for the first time –

"<tr>\n" +

" <td>Creation Time</td>\n" +

" <td>" + createTime + " </td>

</tr>\n" +

"<tr>\n" +

" <td>Time of Last Access</td>\n" +

" <td>" + lastAccessTime + " </td>

</tr>\n" +

"<tr>\n" +

" <td>User ID</td>\n" +

" <td>" + userID + " </td>

</tr>\n" +

"<tr>\n" +

" <td>Number of visits</td>\n" +

" <td>" + visitCount + "</td>

</tr>\n" +

"</table>\n" +

"</body>

</html>"

);

}

}

 27

Welcome to my website

Session Infomation

Session info value

Id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 0

Now try to run the same servlet for second time, it would display following result.

Welcome Back to my website

Session Information

 28

BASIC

servlet-security

info type value

Id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 1

8. Security Issues

The quickstart demonstrates the use of Java EE declarative security to

control access to Servlets and Security in JBoss Enterprise Application Platform Server.

When you deploy this example, two users are automatically created for you:

 user with password and user with

password guestPwd1! . This data is located in the

This quickstart takes the following steps to implement Servlet security:

1. Web Application:

file.

o Adds a security constraint to the Servlet using

 the and annotations.

o Adds a security domain reference to WEB-INF/jboss-web.xml .

o Adds a that sets the to in the

2. Application Server (standalone.xml):

INF/web.xml .

WEB- auth-method login-config

@HttpConstraint @ServletSecurity

src/main/resources/import.sql

guest quickstartPwd1! quickstartUser

 29

elytron

User Name: quickstartUser Password: quickstartPwd1! Role: quickstarts

User Name: guest Password: guestPwd1! Role: notauthorized

o Defines a security domain in the subsystem that uses the JDBC security

realm to obtain the security data used to authenticate and authorize users.

o Defines an in the subsystem that uses the

security domain created in step 1 for BASIC authentication.

o Adds an mapping in the subsystem to

map the Servlet security domain to the HTTP authentication factory defined in

step 2.

3. Database Configuration:

o Adds an application user with access rights to the application.

o Adds another user with no access rights to the application.

9. using JDBC in Servlets

To start with interfacing Java Servlet Program with JDBC Connection:

1. Proper JDBC Environment should set-up along with database creation.

2. To do so, download the mysql-connector.jar file from the internet,

3. As it is downloaded, move the jar file to the apache-tomcat server folder,

4. Place the file in lib folder present in the apache-tomcat directory.

5. To start with the basic concept of interfacing:

 Step 1: Creation of Database and Table in MySQL

As soon as jar file is placed in the folder, create a database and table in MySQL,

mysql> create database demoprj;

Query OK, 1 row affected (4.10 sec)

mysql> use demoprj

undertow application-security-domain

elytron http-authentication-factory

 30

Database changed

mysql> create table demo(id int(10), string varchar(20));

Query OK, 0 rows affected (1.93 sec)

mysql> desc demo;

+ -+- -+- + -+- -+- +

| Field | Type | Null | Key | Default | Extra |

+ -+- -+- + -+- -+- +

| id | int(10) | YES | | NULL | |

| string | varchar(20) | YES | | NULL | |

+ -+- -+- + -+- -+- +

2 rows in set (0.40 sec)

Step 2: Implementation of required Web-pages

Create a form in HTML file, where take all the inputs required to insert data into the database.

Specify the servlet name in it, with the POST method as security is important aspects in

database connectivity.

<!DOCTYPE html>

<html>

<head>

<title>Insert Data</title>

</head>

<body>

 31

<!-- Give Servlet reference to the form as an instances

GET and POST services can be according to the problem statement-->

<form action="./InsertData" method="post">

<p>ID:</p>

<!-- Create an element with mandatory name attribute,

so that data can be transfer to the servlet using getParameter() -->

<input type="text" name="id"/>

<p>String:</p>

<input type="text" name="string"/>

<input type="submit"/>

 32

Step 3: Creation of Java Servlet program with JDBC Connection

To create a JDBC Connection steps are

1. Import all the packages

2. Register the JDBC Driver

3. Open a connection

4. Execute the query, and retrieve the result

5. Clean up the JDBC Environment

Create a separate class to create a connection of database, as it is a lame process to writing the

same code snippet in all the program. Create a .java file which returns a Connection object.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

// This class can be used to initialize the database connection

public class DatabaseConnection {

protected static Connection initializeDatabase()

throws SQLException, ClassNotFoundException

{

// Initialize all the information regarding

// Database Connection

String dbDriver = "com.mysql.jdbc.Driver";

String dbURL = "jdbc:mysql:// localhost:3306/";

 33

// Database name to access

String dbName = "demoprj";

String dbUsername = "root";

String dbPassword = "root";

Class.forName(dbDriver);

Connection con = DriverManager.getConnection(dbURL + dbName,

dbUsername,

dbPassword);

return con;

}

}

 Step 4: To use this class method, create an object in Java Servlet program

Below program shows Servlet Class which create a connection and insert the data in

the demo table,

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.PreparedStatement;

 34

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

// Import Database Connection Class file

import code.DatabaseConnection;

// Servlet Name

@WebServlet("/InsertData")

public class InsertData extends HttpServlet {

private static final long serialVersionUID = 1L;

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

try {

 35

// Initialize the database

Connection con = DatabaseConnection.initializeDatabase();

// Create a SQL query to insert data into demo table

// demo table consists of two columns, so two '?' is used

PreparedStatement st = con

.prepareStatement("insert into demo values(?, ?)");

// For the first parameter,

// get the data using request object

// sets the data to st pointer

st.setInt(1, Integer.valueOf(request.getParameter("id")));

// Same for second parameter

st.setString(2, request.getParameter("string"));

// Execute the insert command using executeUpdate()

// to make changes in database

st.executeUpdate();

// Close all the connections

st.close();

con.close();

 36

// Get a writer pointer

// to display the successful result

PrintWriter out = response.getWriter();

out.println("<html><body>Successfully Inserted"

+ "</body></html>");

}

catch (Exception e) {

e.printStackTrace();

}

}

}

 Step 5: Get the data from the HTML file

To get the data from the HTML file, the request object is used which

calls getParameter() Method to fetch the data from the channel. After successful

insertion, the writer object is created to display a success message.

After insertion operation from Servlet, data will be reflected in MySQL Database

Output:

https://www.geeksforgeeks.org/getparameter-passing-data-from-client-to-jsp/

 37

Result in MySQL Interface

mysql> select * from demo;

+ + -+

| id | string |

+ + -+

| 1 | GeeksForGeeks |

+ + -+

1 row in set (0.06 sec)

This article shows the basic connection of JDBC with Java Servlet Program, to insert

data in large volume then proper validation should be done as if any data which is not in proper

format will encounter an error. All the data inserting in Database should be encrypted.

10. HTML to Servlet Communication

A web resource application is a combination of static as well as dynamic web resource

programs, images, etc. A static web resource resides in server and is executed in client side web

browser, e.g., HTML. A dynamic web resource program resides in server, is executed in context

of server and gives response back to the client, e.g., servlet, JSP. In web application, static web

resource takes data from client side and takes it to the dynamic web resource as per request. The

dynamic web resource processes the data and sends the response back to client in the form of

response.

In HTML to servlet communication, when we open the browser window, the browser page is

empty. First, we enter the HTML (static web resource) that resides in the server. After the

HTML page is downloaded from the server to the client side browser, the client will be able to

enter the data in the HTML form. After submission of the data, request is generated to dynamic

web resource. Hence, we generate request for the server twice in order to get HTML to servlet

communication.

So far we have sent request to servlet program from browser window by typing request

URL in the browser window in this process to send data along with request we need to add

query string to the request URL explicitly. But this work can be done only by technical

people. Non technical end users like civil engineer, chemical engineer, kids can’t do this

work so they need a graphical user interface to generous request with or without data .For that

https://ecomputernotes.com/servlet/intro/servlet
https://ecomputernotes.com/servlet/intro/servlet

 38

purpose we can use either Html form page or hyperlink to generous with or without data.

 39

The form page generated request carries form data as request parameters along with request.

Hyperlink based web page to servlet communication

In this section, we will learn about HTML to servlet communication by

using Hyperlink. For establishing this type of interaction, we have to pass the URL pattern of

the servlet as a value of “href attribute” of the “action tag”. It is to be noted that when we are

using hyperlink, the request is submitted to the servlet using “http get method”. Hyperlink are

favorable for either of inter or intra linking between the pages, but not for communication

between active resources. In other words, only static data can be passed from HTML to servlet

and not the dynamic data

Example 1: Click Here to go to servlet program

Example 2: Login </ a>

In second example, the static data UName=King and Pass=Queen will be send to servlet.

Generally the hyperlink generated request is blank request that means it can not carry

any data along with the request.

html files of web application must be placed parallel to WEB-INF folder in deployment

directory structure of web application there is no need of configure then in web.xml file.

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

 40

Example Application (hyperlink-based HTML to servlet program communication)

• WishSrv servlet program generates the wish message based on the server machine current

time.

• .html-based web page are always static pages, whereas servlet and JSP program based web

pages can be static or dynamic pages.

Step 1: Prepare the deployment directory structure of web application.

Deployment Directory Structure

Step 2: Develop the source code of above servlet program or webApplication

• Place servlet program request URL with URL pattern as the value of href attribute.

ABC.HTML

<!– Web page having hyper links –>

GET WISHING

WishSrv.java

import javax.servlet.*;

import javax.servlet.http.*;

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

 41

import java.io.*;

import Java.util.*;

public class wishsrv extends HttpServlet

{

public void service(HttpServletRequest req,HttpServletResponse res) throws ServletException ,

IOException

{

//get the printwriter object

printWriter pw=res.getWriter();

res.setContentType(“text/html”);

//set the mime type response

Calendar cl=Calendar.getInstance();

//give curent date and time

//get cuurent hour of day

int h=cl.get(Calendar.HOUR_OF_DAY);

if(h<=12)

pw.println(“<center> GOOD MORNING

</CENTER>”)’ ;

else if (h>17)

pw.println(“<center> GOOD AFTERNOON

</CENTER>”) ;

else

pw.println(.,”<center> GOOD NIGHT </CENTER>”) ;

 42

pw.println (“<center> <a href=’ https://ecomputernotes.com :2020/

Wishapp/home.html’> HOME</CENTER>”);

pw,close() ;

}//end of service

}/ / end of class

web.xml

<web-app>

<servlet>

<servlet-name>abc</servlet-name>

<servlet-class>wishSrv</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>abc</servlet-name>

<url-pattern>/wurl</url-pattern>

</servlet-mapping>

</web-app>

Explanation of the above Program

In this program our aim is to click on a link so that it points to a servlet program and we have to

include that link within the HTML page by using the href attribute of HTML. Within

this hrcf tag we pass the URL pattern of the servlet program.

ABC.html:

First we design the HTML page that is displayed on the browser window. In the HTML

program we use the href attribute, and within this we pass the URL pattern of the servlet

program as follows:

<a hrer=http://loclahost :2020!WishApp/WurbGETWISHING

http://loclahost/
http://loclahost/

 43

When we click on the GETWISHING link at that time the request goes to the servlet program.

WishSrv.java:

• In the above program first one needs to import all the packages like javax.

servlet. * I j avax.servlet.http. * | java.io.* and java.util. *. Our class WishServ extends from

the HttpServlet class within this class the life cycle method, i.e, service(_,_) is overridden.

• printWriter pw;res.getWriter();

With the help of the PrintWriter class the response print on the browser window.

• res.setContentType(“text/html”);

With the help of the setContentType(” _ “)of the ServletResponse interface set the format of the

browser window.

• Calendar cl=Calendar.getlnstance();

Here we use the Calendar class which is present within the java.util package that is why

java.util package is imported. getInstance() is a static method of the Calendar class. Hence this

method is invoked through the class name, i.e., “Calendar class”. The return type of the

getInstance() is the object of the Calendar class. So by mentioning” Calendar

cl=Calendm·.getInstance();” we can create the object of the Calendar class. This getInstance()

gives the current date and time.

• int h=cl.get(Calendar.HOUR_OF_DAY);

In order to get the current hour of the day we use the constant of the Calendar class, i.e.,

HOUR_OF_DAY which is invoked through the class name. Then by using the get() of the

Calendar class we retrieve the current hour of the day and assign it to the variable “h” of int

type.

• if(h<=12)

By using the if conditional statement, i.e., if we compare that if(h<=12) if this condition is

satisfied then control enter into the if block and print the message “GOOD MORNING” on the

browser window otherwise the control goes to the elseif block. If the condition of the elseif

block is not satisfied then at last the control moves to the else block and print the “GOOD

 44

NIGHT” message and also print the message “HOME”. As in this case within the href attribute

we pass the URL pattern of the home.htm!. When we click on HOME, the home page is

opened.

• pw.close();

Then by calling the close() of the PrintWriter class close the PrintWriter stream class.

Step 3: Compile the source files of all servlet programs.

Step 4: Configure all the four servlet programs in web.xml file having four different URL

patterns.

Step 5: Start the server (Tomcat)

Step 6: Deploy the web application.

Copy WishApp folder to Tomcat_home \ webapps folder.

11. Applet to servlet communication

HTML exhibits high performance by taking less time to load in the browser. However, when

we use HTML page for important user details, by default, all the parameters that are passed

appended in the URL. This compromises with the security. On the other hand, applet takes more

time to load but there is no problem with Java security. This is an advantage of this technique.

Applet is a compiled Java class that can be sent over the network. Applets are an alternative

to HTML form page for developing websites. HTML form gives good performance, takes less

time to load but has poor security. Whereas, Applets give poor performance, take time to load

but have good security.

There are two types of Applets:

1. Untrusted Applets: It cannot interact with files and file system, so writing malicious codes is

not possible. Applets are untrusted.

2. Trusted Applets: It can interact with files and file system so can write malicious codes.

Difference between applet and servlet

https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language
https://ecomputernotes.com/servlet/intro/servlet

 45

APPLET SERVLET

Used to develop client side web-resource

program to generate static web page.

Used to develop server side web-resource

program to generate dynamic web-page.

Needs browser windw or appletviewer for

execution.

Needs servlet container for execution.

Applet program comes to browser window

from server for execution.

Servlet program reside and execute in web

resource.

The life cycle methods are init(), start(), stop()

and destroy().

The life cycle methods are init(-), Service(-,-)

and destroy().

Similar to HTML-to-servlet communication we need to perform applet-to servlet

communication. In HTML-to-servlet communication the browser window automatically forms

request URL and automatically forms query string having form data, when submit button is

clicked. In applet-to-servlet communication all these activities should be taken care of by the

programmers manually or explicitly as event handling operation.

Example on Application of Applet to Servlet Communication

Frame is a logical partition of the web page. Frame with name is called Named ,

Frame.

 46

Step 1: Prepare the deployment directory structure of web application.

Request url http://localhost:2020/ AtoSApp/Main.html

Step 2: Develop the source code of above servlet program or web Application.

Source Code

MyApplet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import Java.util.*;

public class wishsrv extends HttpServlet {

public void service(HttpServletRequest req,HttpServletResponse res)

throws ServletException , IOException {

//general settings

PrintWriter.pw=res.getWriter{);

setContentType("text/html") ;

//read form data

String name=req.getParameter("uname") i

//generate wish message

Calendar cl=Calendar.getlnstance();

int h=cl.get(Calendar.HOUR_OF_DAY);

if (h<=12)

pw. println ("Good Morning :"+name) i

elseif(h<=16}

pw.println("Good Afternoon: "+name);

elseif(h<=20}

pw.println("Good Evening :"+name);

else

 47

pw.println("Good Night :"+name);

//close stream obj

pw.close();

}//doGet

} / /class

<> javac MyServlet.java

web.xml

Configure MyServletprogram with /testurl url pattern and also configure Main.html as welcome

file.

<web-app>

<servlet>

<servlet-name>abc</servlet-name>

<servlet-class>MyServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>abc</servlet-name>

<url-pattern>/testurl</url-pattren>

</servlet-mapping>

<welcome-file-list>

<welcome-file>Main.html</welcome-file>

</welcome-file-list>

</web-app>

Main.html

<frameset rows = "40% , *">

<frame name = "f1" SYC = "Form.html">

<frame = "f2" />

</frameset>

 48

MyApplet.java

// MyApplet. Java

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

import java.net.*;

public class MyApplet extends Applet implements ActionListener {

Button b;

TextField tfl;

Label l1;

public void init () {

l1 = new Label ("User name :");

add(l1) ;

tfl = new TextField(10);

add(tf1) ;

b=new Button("Send");

b.addActionListener(this) ;

add(b) ;

}

public void actionPerformed(ActionEvent ae) {

try{

//read text value

String name=tfl.getText().replace();

//frame query String

String qrystr=(“?uname=”+name) ;

//frame request url having query String

String url=(“https://ecomputernotes.com:2020/AtoSApp/testurl”+qrystr);

//create URL class object

URL requrl = new URL (ur1);

//getAppletContext obj

AppletContext apc=getAppletContext();

} catch(Exception ee)

 49

{}

{}

Form.html

<applet code= "MyApplet.class" width= "500" height= "500">

</applet>

Step 3: Compile the source files of all servlet programs.

Step 4: Configure all the four servlet programs in web.xml file having four different url

patterns.

Step 5: Start the server (Tomcat).

Step 6: Deploy the web application.

Copy AutoSApp folder Tomcat_home \ webapps folder.

Step 7: Test the web application.

Open browser window type this url-https://ecomputernotes.com:2020/ AtoSApp/ Main.html

ADVANCED JAVA PROGRAMMING

UNIT-II

JAVA BEANS

The Software Component Assembly Model

Components and Containers

JavaBeans are Java software components that are designed for maximum reuse. They are often

visible GUI components, but can also be invisible algorithmic components. They support the

software component model pioneered by Microsoft's Visual Basic and Borland's Delphi. This

model focuses on the use of components and containers.

Components are specialized, self•contained software entities that can be replicated, customized,

and inserted into applications and applets. Containers are simply components that contain other

components. A container is used as a framework for visually organizing components. Visual

development tools allow components to be dragged and dropped into a container, resized, and

positioned.

 50

You are familiar with the concept of components and containers from your study of the AWT.

The components and containers of the JavaBeans component model are similar in many ways to

the Component and Container classes of the AWT.

• Components come in a variety of different implementations and support a wide range of

functions.

• Numerous individual components can be created and tailored for different applications.

• Components are contained within containers.

• Components can also be containers and contain other components.

• Interaction with components occurs through event handling and method invocation.

In other ways, the components and containers of JavaBeans extend beyond the Component and

Container classes of the AWT.

• JavaBeans components and containers are not restricted to the AWT. Almost any kind of

Java object can be implemented as a JavaBean.

• Components written in other programming languages can be reused in Java software

development via special Java interface code. You'll learn how to use non•Java

components, such as Component Object Model (COM) objects in Chapter 54, "Dirty

Java."

• Components written in Java can be used in other component implementations, such as

ActiveX, via special interfaces referred to as bridges. You'll also study bridges in Chapter

54, "Dirty Java."

The important point to remember about JavaBeans components and containers is that they

support a hierarchical software development approach where simple components can be

assembled within containers to produce more complex components. This capability allows

software developers to make maximum reuse of existing software components when creating

new software or improving existing software.

Introspection and Discovery

Component interfaces are well•defined and may be discovered during a component's execution.

This feature, referred to as introspection, allows visual programming tools to drag and drop a

component onto an application or applet design and dynamically determine what component

interface methods and properties are available. Interface methods are public methods of a bean

 51

that are available for use by other components. Properties are attributes of a bean that are

implemented by the bean class's field variables and accessed via accessor methods.

JavaBeans support introspection at multiple levels. At a low level, introspection can be

accomplished using the reflection capabilities of the java.lang.reflect package. These capabilities

allow Java objects to discover information about the public methods, fields, and constructors of

loaded classes during program execution. Reflection allows introspection to be accomplished for

all beans. All you have to do is declare a method or variable as public and it can be discovered

using reflection.

An intermediate level introspection capability provided by JavaBeans utilizes design patterns.

Design patterns are method naming conventions that are used by the introspection classes of

java.beans to infer information about reflected methods based on their names. For example,

design patterns can be used by visual design tools to identify a bean's event generation and

processing capabilities by looking for methods that follow the naming conventions for event

generation and event listening. Design tools can use design patterns to obtain a great deal of

information about a bean in the absence of explicitly provided information.

Design patterns are a low overhead approach to supporting introspection in component

development. All you have to do is adhere to the naming convention of design patterns and

visual design tools will be able to make helpful inferences about how your components are used.

At the highest level, JavaBeans supports introspection through the use of classes and interfaces

that provide explicit information about a bean's methods, properties, and events. By explicitly

providing this information to visual design tools, you can add help information and extra levels

of design documentation that will be automatically recognized and presented in the visual design

environment.

Persistence

The property sheets of visual design tools are used to tailor the properties of components for

specific applications. The modified properties are stored in such a manner that they remain with

the component from design to execution. The capability to store changes to a component's

properties is known as persistence. Persistence allows components to be customized for later use.

For example, during design, you can create two button beans••one with a blue background color

and a yellow foreground color and another with a red background color and a white foreground

color. The color modifications are stored along with instances of each bean object.

 52

When the beans are displayed during a program's execution, they are displayed using the

modified colors.

JavaBeans supports persistence through object serialization. Object serialization is the capability

to write a Java object to a stream in such a way that the definition and current state of the object

are preserved. When a serialized object is read from a stream, the object is initialized and in

exactly the same state it was in when it was written to the stream. Figure 24.5 summarizes how

object serialization supports persistence. Chapter 40, "Using Object Serialization and

JavaSpaces," covers object serialization.

Events

[[

Visual development tools allow components to be dragged and dropped into a container, resized,

and positioned. The visual nature of these tools greatly simplifies the development of user

interfaces. However, component•based visual development tools go beyond simple screen layout.

They also allow component event handling to be described in a visual manner.

You should be familiar with events, having worked with event handling code in most of the

examples in this book. In general, events are generated in response to certain actions, such as the

user clicking or moving the mouse or pressing a keyboard key. The event is handled by an event

handler. Beans can handle events that occur local to them. For example, a button•based bean is

required to handle the clicking of a button. Beans can also call upon other beans to complete the

handling of an event. For example, a button bean can handle the button•clicked event by causing

a text string to be displayed in a status•display bean. Visual development tools support the

connection of event sources (for example, the button bean) with event listeners (for example, the

status•display bean) using graphical design tools. In many cases, event handling can be

performed without having to write event•handling code. You'll see a concrete example of this

when you use the BDK in the next chapter. This code is automatically generated by the visual

design tools. Figure 24.6 graphically depicts the relationship between event sources and event

listeners.

Visual Design
[[

One of the ultimate benefits of using a component•based approach to software development is

that you can use visual design tools to support your software development efforts. These tools

greatly simplify the process of complex software development. They also allow you to develop

higherquality software, more quickly, and at a lower cost. Some of the features typically found in

component•based visual design tools are as follows:

 53

• Components and containers can be dragged onto a visual design worksheet.

• Components can be dragged into containers and assembled into more complex,

higher•level components.

• Visual layout tools can be used to organize components within containers.

• Property sheets can be used to tailor component properties for different applications.

• Component interaction editors can be used to connect the events generated by one

component with the interface methods of other components.

• Code can be automatically generated to implement visual interface designs.

• Traditional software development tools, such as source code editors, compilers,

debuggers, and version control managers can be integrated within the visual design

environment.

The JavaBeans Development Kit

Inside the BDK

The BDK provides several examples of JavaBeans, a tutorial, and supporting documentation. But

most important, it provides a tool, referred to as the BeanBox, that can be used to display,

customize, and test the beans that you'll develop. The BeanBox also serves as a primit ive visual

development tool. You'll use the BeanBox to see the important aspects of visual

component•based software development as it applies to JavaBeans. Download and install the

BDK before continuing on to the next section. Once you've installed the BDK, restart your

system to make sure that all installation changes take effect.

Using the BeanBox

The BeanBox of the BDK is an example of a simple visual development tool for JavaBeans. It is

located in the c:\bdk\beanbox directory. Change to this directory and start the BeanBox as

follows: c:\bdk\beanbox>run

The BeanBox application loads and displays three windows labeled ToolBox, BeanBox, and

PropertySheet, as shown in Figures 25.1, 25.2, and 25.3.

The ToolBox window contains a list of available Java beans. These beans are components that

can be used to build more complex beans, Java applications, or applets.

 54

Visual software development tools, such as the BeanBox, allow beans to be visually organized

by placing them at the location where you want them to be displayed.

Understanding the Example Beans

You should be impressed by how easy it was to develop an interesting (or at least entertaining)

application using the BeanBox and JavaBeans. In fact, you didn't have to write a single line of

code to create the application. That's the power of component•based software development.

Given a good stock of beans, you can quickly and easily assemble a large variety of useful

applications.

In the example of the previous section, you learned how to use the OurButton and Juggler beans.

The ToolBox that comes with the BeanBox lists 16 beans. I recommend that you play around

with these beans to familiarize yourself with how they work. You studied the theory behind

componentbased software in the previous chapter. Now is the time to get some practical

experience to back up your theoretical understanding. Try to see how the BeanBox and the

example beans support the component•based model described in Chapter 24.

Just to whet your appetite, what follows is a short description of the beans that are in the

ToolBox.

• BlueButton••A simple blue button with background, foreground, label, and font

properties

• OrangeButton••A simple orange button with background, foreground, label, and font

properties

• OurButton••A gray button with additional font properties

• ExplicitButton••A simple gray button with background, foreground, label, and font

properties

• EventMonitor••A text area that is used to view events as they happen

• JellyBean••A jelly bean that is associated with a cost

• Juggler••A juggler animation

• TickTock••An interval timer

• Voter••A component that maintains a yes or no state

 55

• ChangeReporter••A text field

• Molecule••A graphical field for displaying 3D pictures of molecules

• QuoteMonitor••A component that displays stock quotes received from a quote server

• JDBC SELECT••An SQL interface to a database

• SorterBean••An animation of a bubble sort

• BridgeTester••A bean used to test bean bridges (refer to Chapter 28, "Using Bridges")

• TransitionalBean••A button that changes colors

Now fire up the BeanBox and try out some of these beans. You'll learn how the java.beans

packages support the implementation of the capabilities that you observe with the BeanBox.

Developing Beans

Customizable and Persistent Properties

Properties are attributes of a bean that can be modified to change the appearance or behavior of a

bean. They are accessed through special methods, referred to as accessor methods. Visual

development tools allow properties to be changed through the use of property sheets, lists of

properties that can be specified for a bean. Visual building tools, like the BeanBox, display a

property sheet in response to a bean's selection. You used property sheets to change the

animationRate property of the Juggler bean and the label property of the OurButton bean.

In addition to the simple property editing capabilities exhibited by the BeanBox example,

individual beans can define custom property editors that allow properties to be edited using

specialized dialog boxes. These custom property editors are implemented as special classes that

are associated with the bean's class. The custom property editors are available to visual

development tools, but because they are not part of the bean's class, they do not need to be

compiled into applications or applets. This lets you provide extra design capabilities for a bean

without having to develop bloated applications. Suppose that you are using a bean that provides

extensive customization support. You change the bean's background color to red and its

foreground color to white, change a label associated with the bean, and alter a few other

properties. You may wonder what happens to the property changes. How are the changes

packaged along with the bean's class?

 56

Beans store any property changes so that new property values come into effect and are displayed

when the modified bean is used in an application. The capability to permanently store property

changes is known as persistence. JavaBeans implement persistence by serializing bean objects

that are instances of a bean class. Serialization is the process of writing the current state of an

object to a stream. Because beans are serialized, they must implement the java.io.Serializable or

java.io.Externalizable interfaces. Beans that implement java.io.Serializable are automatically

saved. Beans that implement java.io.Externalizable are responsible for saving themselves.

When a bean object is saved through serialization, all of the values of the variables of the object

are saved. In this way, any property changes are carried along with the object. The only

exceptions to this are variables that are identified as transient. The values of transient variables

are not serialized.

Bean Properties

Beans support a few different types of properties. In the BeanBox tutorial, you saw examples of

simple properties. The animationRate property of the Juggler bean used a simple numeric value,

and the label property of the OurButton bean used a text value.

An indexed property is a property that can take on an array of values. Indexed properties are used

to keep track of a group of related values of the same type. For example, an indexed property

could be used to maintain the values of a scrollable list.

A bound property is a property that alerts other objects when its value changes. For example, you

could use a bound property to implement a temperature control dial. Whenever the user changes

the control, notification of the change is propagated to objects that regulate temperature.

A constrained property differs from a bound property in that it notifies other objects of an

impending change. Constrained properties give the notified objects the power to veto a property

change. You could use a constrained property to implement a bean that fires a missile under

twoperson control. When one person initiates a missile launch, a notification is sent to a second

user, who could either confirm or deny the launch.

Accessor Methods

All properties are accessed through accessor methods. There are two types of accessor methods:

getter methods and setter methods. Getter methods retrieve the values of properties, and setter

methods set property values. The names of getter methods begin with get and are followed by the

 57

name of the property to which they apply. The names of setter methods begin with set and are

followed by the property name.

Methods Used with Simple Properties

If a bean has a property named fooz of type foozType that can be read and written, it should have

the following accessor methods:

public foozType getFooz() public void

setFooz(foozType foozValue)

A property is read•only or write•only if one of the preceding accessor methods are missing.

Methods Used with Indexed Properties

A bean that has an indexed property will have methods that support the reading and writing of

individual array elements as well as the entire array. For example, if a bean has an indexed

widget property in which each element of the array is of type widgetType, it will have the

following accessor methods:

public widgetType getWidget(int index) public

widgetType[] getWidget()

public void setWidget(int index, widgetType widgetValue) public void

setWidget(widgetType[] widgetValues)

Methods Used with Bound Properties

Beans with bound properties have getter and setter methods, as previously identified, depending

upon whether the property values are simple or indexed. Bound properties require certain objects

to be notified when they change. The change notification is accomplished through the generation

of a PropertyChangeEvent. Objects that want to be notified of a property change to a bound

property must register as listeners. Accordingly, the bean that's implementing the bound property

supplies methods of the form:

public void addPropertyChangeListener(PropertyChangeListener l) public void

removePropertyChangeListener(PropertyChangeListener l)

The preceding listener registration methods do not identify specific bound properties. To

register listeners for the PropertyChangeEvent of a specific property, the following

 58

methods must be provided: public void

addPropertyNameListener(PropertyChangeListener l)

public void removePropertyNameListener(PropertyChangeListener l)

In the preceding methods, PropertyName is replaced by the name of the bound property.

Objects that implement the PropertyChangeListener interface must implement the

propertyChange() method. This method is invoked by the bean for all of its registered listeners to

inform them of a property change.

Methods Used with Constrained Properties

The previously discussed methods used with simple and indexed properties also apply to

constrained properties. In addition, the following event registration methods are provided:

public void addVetoableChangeListener(VetoableChangeListener l) public void

removeVetoableChangeListener(VetoableChangeListener l) public void

addPropertyNameListener(VetoableChangeListener l) public void

removePropertyNameListener(VetoableChangeListener l)

Objects that implement the VetoableChangeListener interface must implement the

vetoableChange() method. This method is invoked by the bean for all of its registered listeners to

inform them of a property change. Any object that does not approve of a property change can

throw a

PropertyVetoException within its vetoableChange() method to inform the bean whose

constrained property was changed that the change was not approved.

Introspection

In order for beans to be used by visual development tools, the beans must be able to dynamically

inform the tools of their interface methods and properties and also what kind of events they may

generate or respond to. This capability is referred to as introspection. The Introspector class of

java.beans provides a set of static methods for tools to obtain information about the properties,

methods, and events of a bean.

 59

The Introspector supports introspection in the following ways:

• Reflection and design patterns••The java.lang.reflect package provides the capability to

identify the fields and methods of a class. The Introspector uses this capability to review

the names of the methods of a bean's class. It identifies a bean's properties by looking at

the method names for the getter and setter naming patterns, identified in previous sections

of this chapter. It identifies a bean's event generation and processing capabilities by

looking for methods that follow the naming conventions for event generation and event

listening. The Introspector automatically applies reflection and design (naming) patterns

to a bean class to obtain information for design tools in the absence of explicitly provided

information.

• Explicit specification••Information about a bean may be optionally provided by a special

bean information class that implements the BeanInfo interface. The BeanInfo interface

provides methods for explicitly conveying information about a bean's methods,

properties, and events. The Introspector recognizes BeanInfo classes by their name. The

name of a BeanInfo class is the name of the bean class followed by BeanInfo. For

example, if a bean was implemented via the MyGizmo class, the related BeanInfo class

would be named MyGizmoBeanInfo.

Connecting Events to Interface Methods

Beans, being primarily GUI components, generate and respond to events. Visual development

tools provide the capability to link events generated by one bean with event• handling methods

implemented by other beans. For example, a button component may generate an event as the

result of the user clicking on that button. A visual development tool would enable you to connect

the handling of this event to the interface methods of other beans. The bean generating the event

is referred to as the event source. The bean listening for (and handling) the event is referred to as

the event listener.

Inside java.beans

Now that you have a feel for what beans are, how they are used, and some of the mechanisms

they employ, let's take a look at the classes and interfaces of the java.beans packages. These

classes and interfaces are organized into the categories of design support, introspection support,

and change event•handling support.

 60

Design Support

The classes in this category help visual development tools to use beans in a design environment.

The Beans class provides seven static methods that are used by application builders:

• instantiate()••Creates an instance of a bean from a serialized object.

• isInstanceOf()••Determines if a bean is of a specified class or interface.

• getInstanceof()••Returns an object that represents a particular view of a bean.

• isDesignTime()••Determines whether beans are running in an application builder

environment.

• setDesignTime()••Identifies the fact that beans are running in an application builder

environment.

• isGuiAvailable()••Determines whether a GUI is available for beans.

• setGuiAvailable()••Identifies the fact that a GUI is available for beans.

The Visibility interface is implemented by classes that support the capability to answer questions

about the availability of a GUI for a bean. It provides the avoidingGui(), dontUseGui(),

needsGui(), and okToUseGui() methods. The VisibilityState interface provides the

isOkToUseGui()method. The methods of the PropertyEditor interface are implemented by

classes that support custom property editing. These methods support a range of property editors,

from simple to complex. The setValue() method is used to identify the object that is to be edited.

The getValue() method returns the edited value. The isPaintable() and paintValue() methods

support the painting of property values on a Graphics object. The getJavaInitializationString()

method returns a string of Java code that is used to initialize a property value. The setAsText()

and getAsText() methods are used to set and retrieve a property value as a String object. The

getTags() method returns an array of String objects that are acceptable values for a property. The

supportsCustomEditor() method returns a boolean value indicating whether a custom editor is

provided by a PropertyEditor. The getCustomEditor() method returns an object that is of a

subclass of Component and is used as a custom editor for a bean's property. The

addPropertyChangeListener() and removePropertyChangeListener() methods are used to register

event handlers for the PropertyChangeEvent associated with a property.

The PropertyEditorManager class provides static methods that help application builders find

property editors for specific properties. The registerEditor() method is used to register an editor

 61

class for a particular property class. The getEditorSearchPath() and setEditorSearchPath()

methods support package name lists for finding property editors. The findEditor() method finds a

property editor for a specified class. Unregistered property editors are identified by the name of

the property followed by Editor.

The PropertyEditorSupport class is a utility class that implements the PropertyEditor interface. It

is subclassed to simplify the development of property editors.

The methods of the Customizer interface are implemented by classes that provide a graphical

interface for customizing a bean. These classes are required to be subclasses of

java.awt.Component so that they can be displayed in a panel. The addPropertyChangeListener()

method is used to enable an object that implements the PropertyChangeListener interface as an

event handler for the PropertyChangeEvent of the object being customized. The

removePropertyChangeListener() method is used to remove a PropertyChangeListener. The

setObject() method is used to identify the object that is to be customized.

Introspection Support

The classes and interfaces in this category provide information to application builders about the

interface methods, properties, and events of a bean.

The Introspector Class

The Introspector class provides static methods that are used by application builders to obtain

information about a bean's class. The Introspector gathers this information using information

explicitly provided by the bean designer whenever possible and uses reflection and design

patterns when explicit information is not available. The getBeanInfo() method returns

information about a class as a BeanInfo object. The getBeanInfoSearchPath() method returns a

String array to be used as a search path for finding BeanInfo classes. The

setBeanInfoSearchPath() method updates the list of package names used to find BeanInfo

classes. The decapitalize() method is used to convert a String object to a standard variable name

in terms of capitalization.

The BeanInfo Interface

The methods of the BeanInfo interface are implemented by classes that want to provide

additional information about a bean. The getBeanDescriptor() method returns a BeanDescriptor

 62

object that provides information about a bean. The getIcon() method returns an Image object that

is used as an icon to represent a bean. It uses the icon constants defined in BeanInfo to determine

which type of

icon should be returned. The getEventSetDescriptors() method returns an array of

EventSetDescriptor objects that describe the events generated (fired) by a bean. The

getDefaultEventIndex() method returns the index of the most commonly used event of a bean.

The getPropertyDescriptors() method returns an array of PropertyDescriptor objects that support

the editing of a bean's properties. The getDefaultPropertyIndex() method returns the most

commonly

updated property of a bean. The getMethodDescriptors() method returns an array of

MethodDescriptor objects that describe a bean's externally accessible methods. The

getAdditionalBeanInfo() method returns an array of objects that implement the BeanInfo

interface.

The SimpleBeanInfo Class

The SimpleBeanInfo class provides a default implementation of the BeanInfo interface. It is

subclassed to implement BeanInfo classes.

The FeatureDescriptor Class and Its Subclasses

The FeatureDescriptor class is the top•level class of a class hierarchy that is used by BeanInfo

objects to report information to application builders. It provides methods that are used by its

subclasses for information gathering and reporting.

The BeanDescriptor class provides global information about a bean, such as the bean's class and

its Customizer class, if any. The EventSetDescriptor class provides information on the events

generated by a bean. The PropertyDescriptor class provides information on a property's accessor

methods and property editor. It is extended by the IndexedPropertyDescriptor class, which

provides access to the type of the array implemented as an indexed property and information

about the property's accessor methods.

The MethodDescriptor and ParameterDescriptor classes provide information about a bean's

methods and parameters.

 63

Change Event•Handling Support

The PropertyChangeEvent is generated by beans that implement bound and constrained

properties as the result of a change in the values of these properties. The PropertyChangeListener

interface is implemented by those classes that listen for the PropertyChangeEvent. It consists of a

single method, propertyChange(), that is used to handle the event.

The VetoableChangeListener interface is implemented by classes that handle the

PropertyChangeEvent and throw a VetoableChangeEvent in response to certain property

changes. The vetoableChange() method is used to handle the PropertyChangeEvent.

The PropertyChangeSupport class is a utility class that can be subclassed by beans that implement

bound properties. It provides a default implementation of the addPropertyChangeListener(),

removePropertyChangeListener(), and firePropertyChange() methods.

The VetoableChangeSupport class, like the PropertyChangeSupport class, is a utility class that

can be subclassed by beans that implement constrained properties. It provides a default

implementation of the addVetoableChangeListener(), removeVetoableChangeListener(), and

fireVetoableChange() methods.

Aggregation

The Aggregate interface has been added in JDK 1.2 as a means of aggregating several objects

into a single bean. It is extended by the Delegate interface, which provides methods for accessing

Aggregate objects. The AggregateObject class is an abstract class that implements the Delegate

interface and provides a foundation for creating other aggregate classes. Note that aggregation

has nothing to do with inheritance. It is just a way of combining multiple objects into a single

bean.

The java.beans.beancontext Package

JDK 1.2 introduces the java.beans.beancontext package, which provides classes and interfaces

for enabling beans to access their execution environment, referred to as their bean context. The

BeanContextChild interface provides methods for getting and setting this context and for

managing context•related event listeners. BeanContextChild is extended by the BeanContext

interface, which provides methods by which beans can access resources and services that are

available within their context. Objects that implement BeanContext function as containers for

other beans.

 64

The BeanContextMemberShipListener interface provides an event listener interface for events

that occur as the result of changes to the beans that are members of a bean context. The

DesignMode interface of java.beans provides the capability for a BeanContext object to

determine whether it is being executed in a design or execution mode.

In addition to the interfaces described in the previous paragraph, the java.beans.beancontext

package provides the following six classes:

• BeanContextEvent••Events of this class are fired when the state of a bean context

changes.

• BeanContextMembershipEvent••Extends BeanContextEvent to support changes in the

membership of a bean context.

• BeanContextAddedEvent••Events of this class are fired when a bean is added to a bean

context. This class extends BeanContextMembershipEvent.

• BeanContextRemovedEvent••Events of this class are fired when a bean is removed from

a bean context. This class extends BeanContextMembershipEvent.

• BeanContextSupport••Provides an implementation of the BeanContext interface.

• BeanContextSupport.BCSChildInfo••Used to maintain information on the beans that are

contained within a bean context.

The easiest way to implement a bean context is to extend the BeanContextSupport class.

BeanContextSupport provides numerous methods for managing beans that are contained within a

particular context.

Developing Beans

A Gauge Bean

When you studied all of the classes and interfaces of java.beans in previous sections, you might

have been left with the impression that beans are complicated and hard to develop. In fact, the

opposite is true. You can easily convert existing classes to beans with minimal programming

overhead.

It contains the code for a bean that displays a simple gauge. The gauge is displayed as a 3D•style

box that is filled somewhere between its minimum and maximum values. The color of the

 65

gauge's border and its fill color are both configurable. So are its dimensions and

horizontal/vertical orientation.

THE Gauge.java BEAN.

import java.io.Serializable;

import java.beans.*; import

java.awt.*; import

java.awt.event.*;

public class Gauge extends Canvas implements Serializable {

// Set constants and default values public static

final int HORIZONTAL = 1; public static final int

VERTICAL = 2; public static final int WIDTH =

100; public static final int HEIGHT = 20; public

int orientation = HORIZONTAL; public int width

= WIDTH; public int height = HEIGHT; public

double minValue = 0.0; public double maxValue

= 1.0; public double currentValue = 0.0; public

Color gaugeColor = Color.lightGray; public Color

valueColor = Color.blue; public Gauge() {

super(); }

public Dimension getPreferredSize() {

return new Dimension(width,height); }

// Draw bean

public synchronized void paint(Graphics g) {

g.setColor(gaugeColor);

g.fill3DRect(0,0,width-1,height-1,false); int

border=3;

int innerHeight=height-2*border; int

innerWidth=width-2*border;

double scale=(double)(currentValue-minValue)/

 66

(double)(maxValue-minValue); int

gaugeValue;

g.setColor(valueColor); if(orientation==HORIZONTAL){

gaugeValue=(int)((double)innerWidth*scale);

g.fillRect(border,border,gaugeValue,innerHeight); }else{

gaugeValue=(int)((double)innerHeight*scale);

g.fillRect(border,border+(innerHeight-ÂgaugeValue),innerWidth,gaugeValue);

}

}

// Methods for accessing bean properties

public double getCurrentValue(){ return

currentValue;

}

public void setCurrentValue(double newCurrentValue){

if(newCurrentValue>=minValue && newCurrentValue<=maxValue)

currentValue=newCurrentValue;

}

public double getMinValue(){ return

minValue;

}

public void setMinValue(double newMinValue){

if(newMinValue<=currentValue) minValue=newMinValue;

}

public double getMaxValue(){ return

maxValue;

}

public void setMaxValue(double newMaxValue){

if(newMaxValue >= currentValue) maxValue=newMaxValue;

}

 67

public int getWidth(){ return

width;

}

public void setWidth(int newWidth){

if(newWidth > 0){ width=newWidth;

updateSize();

}

}

public int getHeight(){ return

height;

}

public void setHeight(int newHeight){

if(newHeight > 0){ height=newHeight;

updateSize();

}

}

public Color getGaugeColor(){

return gaugeColor;

}

public void setGaugeColor(Color newGaugeColor){

gaugeColor=newGaugeColor;

} public Color getValueColor(){

return valueColor;

}

public void setValueColor(Color newValueColor){

valueColor=newValueColor;

}

 68

public boolean isHorizontal(){

if(orientation==HORIZONTAL) return true; else

return false;

}

public void setHorizontal(boolean newOrientation){ if(newOrientation){

if(orientation==VERTICAL) switchDimensions();

}else{

if(orientation==HORIZONTAL) switchDimensions();

orientation=VERTICAL;

}

updateSize();

}

void switchDimensions(){

int temp=width;

width=height; height=temp;

}

void updateSize(){ setSize(width,height);

Container container=getParent();

if(container!=null){ container.invalidate();

container.doLayout();

}

}

}

To see how the bean works, copy the Gauge.jar file from your ch26 directory to the

\bdk\jars directory and then start up the BeanBox using the following commands: copy

Gauge.jar \bdk\jars cd \bdk\beanbox run

The BeanBox opens and displays the ToolBox, BeanBox, and PropertySheet windows. You will

notice a new bean at the bottom of the ToolBox.

 69

Click the Gauge bean's ToolBox icon and then click in the BeanBox. The bean is displayed as a

horizontal 3D box.

The bean's property sheet displays a number of properties that may be changed to alter the bean's

appearance. The foreground, background, and font properties are the default properties of visible

beans. These properties reflect the getForeground(), setForeground(), getBackground(),

setBackground(), getFont(), and setFont() methods of the Component class.

The minValue and maxValue properties identify the minimum and maximum values associated

with the gauge. The currentValue property identifies the current value of the gauge.

The width and height properties control the gauge's dimensions. The horizontal property takes on

boolean values. When set to True, the gauge is displayed horizontally. When set to False, the

gauge is displayed vertically. When the orientation of a gauge is switched, so are its width and

height.

The gaugeColor and valueColor properties identify the color of the gauge's border and the color

to be displayed to identify the gauge's current value.

To see how the gauge's properties work, make the following changes:

• Change the currentValue property to .7.

• Change the horizontal property to False.

• Change the height property to 200.

• Change the gaugeColor property to green.

• Change the valueColor property to orange.

How the Gauge Bean Works

The first thing that you'll notice about the Gauge bean's source code is that it imports

java.io.Serializable. All bean classes implement Serializable or Externalizable. These interfaces

support bean persistence, allowing beans to be read from and written to permanent storage (for

 70

example, hard disk). When a bean implements Serializable, serialization of the bean's data is

performed automatically by Java, meaning you don't have to figure out how to write objects to

streams or read them back in. When a bean implements Externalizable, the bean is responsible

for performing all the serialization overhead. Serializable is obviously the easiest to implement

of the two interfaces. All you have to do is add Serializable to your class's implements clause and

poof!•serialization is automatically supported. Chapter 40, "Using Object Serialization and

JavaSpaces," covers object serialization.

Besides serialization, you won't notice anything bean•specific about the rest of the Gauge class.

In fact, it looks just like any other custom AWT class. Gauge extends Canvas so that it can draw

to a Graphics object. It defines a few constants for use in initializing its field variables. You

should note that these field variables correspond to the Gauge bean's properties.

The getPreferredSize() method is an important method for visible beans to implement. It tells

application builder tools how much room is needed to display a bean. All of your visible beans

should implement getPreferredSize().

The paint() method draws the bean on a Graphics object. Visible beans need to implement paint()

in order to display themselves. The paint() method of Gauge works by drawing a 3D rectangle

using the gaugeColor and then drawing an inner rectangle using the valueColor. The dimensions

of the inner rectangle are calculated based on the value of currentValue and the orientation

variables.

Gauge provides getter and setter methods for each of its properties. These methods adhere to the

naming conventions used for bean properties. The Introspector class of java.beans automatically

reports the properties corresponding to these methods to application builder tools, such as the

BeanBox.

The switchDimensions() method is used to switch the values of width and height when the bean's

orientation is switched.

The updateSize() method is invoked when the bean changes its size. It invokes setSize() to

inform a layout manager of its new size. It invokes the invalidate() method of its container to

invalidate the container's layout and doLayout() to cause the component to be redisplayed.

 71

The GaugeBeanInfo Class

You may be wondering, "What about all of those other classes and interfaces of java.beans?" For

simple beans, you don't really need them. However, we created a GaugeBeanInfo class so that

the bean's icon can be displayed.

THE GaugeBeanInfo CLASS.

import java.beans.*; import

java.awt.*;

public class GaugeBeanInfo extends SimpleBeanInfo {

// Return icon to be used with bean

public Image getIcon(int size) {

switch(size){ case

ICON_COLOR_16x16:

return loadImage("gauge16c.gif"); case

ICON_COLOR_32x32:

return loadImage("gauge32c.gif"); case

ICON_MONO_16x16:

return loadImage("gauge16m.gif");

case ICON_MONO_32x32: return

loadImage("gauge32c.gif");

}

return null;

}

}

The GaugeBeanInfo class extends the SimpleBeanInfo class and implements one

method••getIcon(). The getIcon() method is invoked by application builders to obtain an icon for

a bean. It uses the constants defined in the BeanInfo interface to select a color or monochrome

icon of size 16¥16 or 32¥32 bits.

 72

The Gauge.mf Manifest File

The Gauge.mf manifest file is used to build the Gauge.jar file. It identifies the Gauge.class file

as a bean. To create the Gauge.jar file, use the following command: jar cfm Gauge.jar

Gauge.mf Gauge*.class gauge*.gif

All the files that you need for this example are installed in your ch26 directory. Remember to

copy your beans' .jar files from the ch26 directory to the \bdk\jars directory to have them loaded

by the BeanBox. The contents of the Gauge.mf file are as follows:

Manifest-Version: 1.0

Name: Gauge.class

Java-Bean: True

Notable Beans

The HotJava HTML Component

One of the most powerful bean sets on the market is the HotJava HTML Component from

JavaSoft. This product consists of several beans that can be used to add Web•browsing support to

window applications. It parses and renders HTML files that are loaded from the Web and

includes the following features:

• HTML 3.2 support

• HTTP 1.1 compatibility

• Frames and tables support

• The ability to use cookies

• Multimedia support

• JAR file support

• Implementation of the FTP, Gopher, SMTP, and SOCKS protocols

 73

A trial version can be downloaded from http://java.sun.com/products/hotjava/bean/index.html.

Go ahead and download it now so you can work along with the example in this section.

Installing the HotJava HTML Component

The HotJava HTML Component is easy to install. The Microsoft Windows version comes as a

.zip file. UnZip the file to a temporary directory and copy the HotJavaBean.jar and TextBean.jar

files to your \bdk\jars directory.

Running the HotJava HTML Component in the BeanBox

After installing HotJavaBean.jar and TextBean.jar, run your BeanBox. You will notice the

following five beans have been added to the ToolBox:

• TextBean••A text field for entering the URL of a document to be browsed.

• HotJavaDocumentStack••A bean that keeps track of the URLs that have been browsed.

• AuthenticatorBean••An invisible bean that supports user authentication.

• HotJavaBrowserBean••An HTML•rendering bean.

• HotJavaSystemState••An invisible bean that maintains configuration information about

the HotJava HTML Component.

Using InfoBus

How InfoBus Works

Normally, all beans that are loaded from the same classloader are visible to each other. Beans

can find each other by searching the container•component hierarchy or their bean context. They

can then use reflection and design patterns to determine which services are provided by other

beans. However, this approach is often cumbersome and prone to error. The software engineers

at Lotus Development Corporation and JavaSoft recognized that a standard approach to data

http://java.sun.com/products/hotjava/bean/index.html
http://java.sun.com/products/hotjava/bean/index.html

 74

exchange between beans was needed and collaborated to simplify inter•bean communication.

The InfoBus is the result of this effort.

The InfoBus is analogous to a PC system bus. Data producers and consumers connect to an

InfoBus in the same way that PC cards connect to a PC's system bus. Data producers use the bus

to send data items to data consumers. The InfoBus is asynchronous and symmetric. This means

that the producer and consumer do not have to synchronize to exchange data, and any member of

the bus can send data to any other member of the bus.

The InfoBus operates as follows:

• Beans, components, and other objects join the InfoBus by implementing the

InfoBusMember interface, obtaining an InfoBus instance, and using an appropriate

method to join the instance.

• Data producers implement the InfoBusDataProducer interface, and data consumers

implement the InfoBusDataConsumer interface. These interfaces define methods for

handling events required for data exchange.

• Data producers signal that named data items are available on an InfoBus object by

invoking the object's fireItemAvailable() method.

• Data consumers get named data items from an InfoBus object by invoking the

requestDataItem() method of the InfoBusItemAvailableEvent event received via the

InfoBusDataConsumer interface.

This list summarizes the typical usage of the InfoBus. However, the InfoBus is flexible and

provides additional usage options, which you'll learn about in the next section. The advantage of

InfoBus is that it eliminates the need for inference and discovery on the part of beans. Instead, it

provides a standard, structured mechanism for named data items to be exchanged.

The InfoBus API

The InfoBus is a standard extension API consisting of the javax.infobus package, which defines

14 classes and 17 interfaces that support all aspects of InfoBus operation. The InfoBus class is

the primary class of the package, supporting bus membership and communication between bus

members. The InfoBusMember interface is the interface required of all bus members. The

InfoBusMemberSupport class provides a default implementation of this interface.

 75

Data producers implement InfoBusDataProducer, and consumers implement

InfoBusDataConsumer. The InfoBusDataController interface is implemented by members that

control the operation of the InfoBus. By default, no bus controllers are required.

The DataItem interface is used to provide descriptive information about a data item. The data

provided by a data item can be accessed through the following InfoBus access interfaces:

• ImmediateAccess••Used to access String or other objects.

• ArrayAccess••Used to access arrays.

• DbAccess••Used to provide access to a database.

• RowsetAccess••Used to access the rows of a database.

• ScrollableRowsetAccess••Used to access a set of database rows.

The DataItemView interface provides a two•dimensional database view. The RowsetValidate is

used to validate the contents of a row of a database.

The DefaultPolicy class provides a default InfoBus security policy implementation. It

implements the InfoBusPolicyHelper interface, which is required of InfoBus security policies.

The InfoBus supports two event hierarchies. The InfoBusEvent class is the base event class used

with InfoBus communication. It is extended by InfoBusItemAvailableEvent,

InfoBusItemRequestedEvent, and InfoBusItemRevokedEvent. The InfoBusEventListener

interface is used to handle these events. The DataItemChangeEvent class is used to inform bus

members about the availability and changes to a data item. It is extended by

DataItemAddedEvent, DataItemDeletedEvent, DataItemRevokedEvent,

DataItemValueChangedEvent, and RowsetCursorMovedEvent. The DataItemChangeListener

interface handles these events.

The InfoBusPropertyMap interface is used with InfoBus 1.1 to support the

DataItemChangeEvent. The DataItemChangeManager interface is used to manage multiple

DataItemChangeListeners.

Glasgow Developments

The JavaBeans improvements resulting from Glasgow can be grouped into the following three

functional areas:

• The Extensible Runtime Containment and Services Protocol••A protocol that lets beans

find out information about their container and the services that it provides.

 76

• The JavaBeans Activation Framework (JAF)••A framework for mapping data to beans

based on the data's types.

• The Drag and Drop Subsystem••The Drag and Drop API

Each of these three areas greatly enhances the capabilities of JavaBeans. The Extensible Runtime

Containment and Services Protocol allows beans to be constructed in a hierarchical fashion, with

bean containers providing direct services to their bean components. The JAF allows beans to be

activated during execution time to process data of a variety of types. The Drag and Drop API

allows JavaBeans to provide the same GUI capabilities as other component frameworks.

The Extensible Runtime Containment and Services Protocol

As described in "The Software Component Assembly Model," the overall objective of

componentbased software development is to develop software components that can be used to

assemble software on a component•by•component basis. In this model, existing components are

used to assemble new components, which may be used to develop even more complex

components. These components are then assembled into applets or applications via visual

programming tools.

The JavaBeans implementation provided with JDK 1.1 allowed beans to be assembled into

component hierarchies, with parent beans containing one or more child beans. However, the JDK

 JavaBeans implementation did not provide any facilities for child beans to learn about their

parent containers or the services they provide. As a result, child beans were not able to interact

with their parents (or siblings) or make use of their (family) environment. For example, suppose

that you want to use a multimedia bean as a container for part of an application, and you want to

add custom bean controls to the multimedia bean. The bean controls have no way of obtaining

information about their container or the multimedia services it provides.

The Extensible Runtime Containment and Services Protocol solves the lack of communication

between child beans and their parent containers. This protocol adds the following capabilities to

JDK 1.1 JavaBeans:

• Specifies the environment, or context, in which a bean executes.

• Allows services to be dynamically added to a bean's environment.

• Provides a mechanism for beans to interrogate their environment, discover which services

are provided, and make use of those services.

 77

These capabilities are provided through the java.beans.beancontext package, which is introduced

in "Developing Beans." This package provides classes and interfaces for enabling beans to

access their execution environment, referred to as their bean context. The BeanContextChild and

BeanContext interfaces implement this concept.

The BeanContextChild interface provides methods for getting and setting this context, and for

managing context•related event listeners. All context•aware beans must implement this interface.

BeanContextChild is extended by the BeanContext interface, which provides methods by which

beans can access resources and services that are available within their context. Objects that

implement BeanContext function as containers for other beans (which implement

BeanChildContext). When a child bean that implements BeanChildContext is added to a parent

bean container that implements BeanContext, the parent invokes the setBeanContext() method of

its child. When the child wants to access its environment (BeanContext), it invokes its

getBeanContext() method.

A bean can access its environment through its BeanContext. A BeanContext may or may not

expose its services to the beans that it contains. The BeanContextServicesSupport interface

extends the BeanContext interface to provide child beans with access to the services of their

BeanContext. A bean that provides services to its children must implement this interface. The

getCurrentServiceClasses(), hasServices(), and getService() methods are invoked by the child

beans to access these services. The BeanContextServiceProvider interface is implemented by

objects that provide instances of a particular service. The BeanContextContainer interface is

implemented by BeanContext objects that are associated with AWT containers.

The BeanContextChildSupport class provides a default implementation of the BeanContextChild

interface.

The BeanContextSupport class extends BeanContextChildSupport to provide an implementation

of the BeanContext interface. This class provides variables and methods for managing the beans

that are contained in the context. It defines two inner classes: BeanContextSupport.BCSChild

and BeanContextSupport.BCSIterator. These classes are used to maintain information on the

beans that are contained within a bean context.

The BeanContextServicesSupport class extends BeanContextSupport and imple• ments the

BeanContextServices interface. It defines two inner classes:

 78

BeanContextServicesSupport.BCSSChild and BeanContextServicesSupport.

BCSSServiceProvider.

BeanContextServicesSupport.BCSSChild extends BeanContextSupport.BCSChild, and

BeanContextServicesSupport. BCSSServiceProvider is used to access

BeanContextServiceProvider objects.

BeanContext Event Handling

The Extensible Runtime Containment and Services Protocol allows a beans's BeanContext to

change during a program's execution. It provides events and event handling interfaces to deal

with changes in a bean's BeanContext. The BeanContextEvent class is the superclass of all

BeanContextrelated events. It is extended by BeanContextMembershipEvent,

BeanContextServiceAvailableEvent, and BeanContextServiceRevokedEvent. The

BeanContextMembershipEvent class defines events that occur as the result of changes in a

bean's membership in a BeanContext. It is extended by BeanContextAddedEvent and

BeanContextRemovedEvent. The BeanContextServiceAvailableEvent reports changes in the

availability of services, and BeanContextServiceRevokedEvent reports the revocation of

services.

The BeanContextMemberShipListener interface is used to handle the

BeanContextMembershipEvent event. The BeanContextServicesListener interface is used to

handle the BeanContextServiceAvailableEvent event. The BeanContextServiceRevokedListener

interface is used to handle the BeanContextServiceRevokedEvent event.

The JavaBeans Activation Framework

In many applications, software is called upon to process data of arbitrary types. The application

is required to determine the type of data that it is to process, determine which operations can be

performed on the data, and instantiate software components for performing those operations. For

example, consider a Web browser that displays data loaded from a URL. Some URLs reference

HTML files, some reference image files, and others may reference files containing scripting data.

The Web browser determines the type of data contained in the file using MIME type information

provided by Web servers. It then selects external or internal components that display the file's

data, launches instances of those components, and feeds the file data to those components for

display.

 79

The JavaBeans Activation Framework is used to support this type of data processing by

associating beans with the types of data that they support. It provides the following capabilities:

• A mechanism for associating data types with different types of data.

• The capability to determine the operations supported by data of a particular type.

• A mapping of data operations to the beans that support those operations.

• The capability to instantiate beans to support specific data operations.

The JAF API is implemented by the javax.activation package, which is a standard API extension.

This package consists of the following classes and interfaces:

• DataHandler••This class provides a standard interface to data of different types. It is the

entry point to the JAF.

• DataSource••An interface that provides encapsulated access to data of different types. It

reports the data's type and provides access to the data via input and output streams.

• FileDataSource••Extends DataSource to provide access to file data.

• URLDataSource••Extends DataSource to provide access to data that is accessible via a

URL.

• DataContentHandler••Used by DataHandler to convert DataSource objects to the objects

they represent, and to convert objects to byte streams of a particular MIME type.

• DataContentHandlerFactory••A factory for creating DataContentHandler objects for

specific MIME types.

• CommandMap••Provides access to the commands (operations) supported for a particular

MIME type, and maps these commands to objects that support those commands.

• MailcapCommandMap••Extends CommandMap to support mailcap (RFC 1524) files.

• CommandObject••An interface implemented by JavaBeans to make them JAF•aware. It

allows the beans to respond to commands and access the DataHandler associated with the

data they are commanded to process.

• CommandInfo••Used by CommandMap to return the results of commands that have been

made of JAF•aware beans.

• MimeType••Encapsulates a MIME type.

• FileTypeMap••Associated files with MIME types.

 80

• MimetypesFileTypeMap••Extends FileTypeMap to identify a file's MIME type based on

its extension.

• MimeTypeParameterList••Encapsulates the parameter list of a MIME type.

• ActivationDataFlavor••Extends java.awt.datatransfer.DataFlavor to provide better MIME

type processing.

Before the JAF can be used, a CommandMap must be created that maps MIME types, and

operations on those types, to bean classes. This is typically accomplished using the

MailcapCommandMap class. External mailcap files can be used to set up the mapping, or it can

be set up during program initialization. Once the CommandMap has been created, the JAF is

ready for use.

The JAF is used by creating a DataSource for data that is to be processed. This data is typically

stored in a file or referenced by a URL. A DataHandler is then constructed from the DataSource.

The getContentType() method of DataHandler is used to retrieve the MIME type associated with

the

DataSource. This MIME type is used to retrieve a CommandInfo array from the CommandMap.

The CommandInfo array presents the list of operations that are supported by the DataSource. A

selected CommandInfo object is passed to the getBean() method of DataHandler to create an

instance of a bean that supports a specific operation on a MIME type. The bean is added to the

applet or application's GUI, and the bean's setCommandContext() method is invoked to cause the

bean to perform the desired operation on the data contained in the DataSource.

JAF•compliant beans are required to implement the CommandObject interface. This interface

consists of the single setCommandContext() method.

The JAFApp program in the next section illustrates the use of the interfaces and classes

described in the previous paragraphs.

 81

ADVANCED JAVA PROGRAMMING

UNIT-III

EJB

EJB stands for Enterprise Java Beans. EJB is an essential part of a J2EE platform. J2EE

platform has component based architecture to provide multi-tiered, distributed and highly

transactional features to enterprise level applications.

EJB provides an architecture to develop and deploy component based enterprise applications

considering robustness, high scalability, and high performance. An EJB application can be

deployed on any of the application server compliant with the J2EE 1.3 standard specification.

1. EJB architecture

The EJB stands for Enterprise Java beans that is a server-based architecture that follows the

specifications and requirements of the enterprise environment. EJB is conceptually based on the

Java RMI(Remote Method Invocation) specification. In EJB, the beans are run in a container

having four-tier architecture.

The EJB architecture has two main layers, i.e., Application Server and EJB

Container, based on which the EJB architecture exist.

The EJB architecture consists of three main components: enterprise beans (EJBs), the EJB

container, and the Java application server. EJBs run inside an EJB container, and the EJB

container runs inside a Java application server

2. EJB requirements

3. DESIGNS AND IMPLEMENTATION:

Designing Enterprise JavaBeans

These sections discuss design options for WebLogic Server Enterprise JavaBeans (EJBs), bean

behaviors to consider during the design process, and recommended design patterns.

https://www.javatpoint.com/ejb-tutorial

 82

 Choosing the Right Bean Type

 Persistence Management Alternatives

 Transaction Design and Management Options

 Satisfying Application Requirements with WebLogic Server EJBs

Choosing the Right Bean Type

When you choose the bean type for a processing task, consider the different natures and

capabilities of the various bean types.

Bean types vary in terms of the bean's relationship with its client. Some bean types stick with a

client throughout a series of processes, serving as a sort of general contractor—acquiring and

orchestrating services for the client. There are other bean types that act like subcontractors, they

deliver the same single function to multiple client-oriented general contractor beans. A client-

oriented bean keeps track of client interactions and other information associated with the client

process, throughout a client session—a capability referred to as maintaining state. Beans that

deliver commodity services to multiple client-oriented beans do not maintain state.

Persistence Management Alternatives

 Persistence management strategy determines how an entity bean's database access is

performed.

 Configure the persistence management strategy—either container-managed or bean-

managed—for an entity bean in the persistence-type element in ejb-jar.xml.

Transaction Design and Management Options

A transaction is a unit of work that changes application state—whether on disk, in memory or in

a database—that, once started, is completed entirely, or not at all.

Understanding Transaction Demarcation Strategies and Performance

Transactions can be demarcated—started, and ended with a commit or rollback—by the EJB

container, by bean code, or by client code.

Demarcating Transactions at the Server Level is Most Efficient

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134213
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1135256
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1135364
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1124161

 83

Transactions are costly application resources, especially database transactions, because they

reserve a network connection for the duration of the transaction. In a multi-tiered architecture—

with database, application server, and Web layers—you optimize performance by reducing the

network traffic "round trip." The best approach is to start and stop transactions at the application

server level, in the EJB container.

Container-Managed Transactions Are Simpler to Develop and Perform Well

Container-managed transactions (CMTs) are supported by all bean types: session, entity, and

message-driven. They provide good performance, and simplify development because the

enterprise bean code does not include statements that begin and end the transaction.

Each method in a CMT bean can be associated with a single transaction, but does not have to be.

In a container-managed transaction, the EJB container manages the transaction, including start,

stop, commit, and rollback. Usually, the container starts a transaction just before a bean method

starts, and commits it just before the method exits.

For information about the elements related to transaction management in ejb-

jar.xml and weblogic-ejb-jar.xml, see Container-Managed Transactions Elements.

Satisfying Application Requirements with WebLogic Server EJBs

WebLogic Server offers a variety of value-added features for enterprise beans that you can

configure to meet the requirements of your application. They are described in WebLogic Server

Value-Added EJB Features.

FEATURES AND DESIGN PATTERN

Availability and reliability Failover for Clustered EJBs Increases Reliability

Load Balancing Among Clustered EJBs Increases Scalability

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1150417
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1129015
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1129016

 84

Scalability Stateless Beans Offer Performance and Scalability Advantages

Data Consistency Use Container-Managed Persistence (CMP) for Productivity and Portability

Use Read-Write Beans for Higher Data Consistency.

Transaction Isolation: A Performance vs. Data Consistency Choice

Keep Bean-Managed Transactions Short

Developer and Administrator

Productivity

Use Container-Managed Persistence (CMP) for Productivity and Portability

Container-Managed Transactions Are Simpler to Develop and Perform Well

Performance Choosing bean types and design patterns:

Combine Read-Only and Read-Write Beans to Optimize Performance

Use Read-Only Beans to Improve Performance If Stale Data Is Tolerable

Use Session Facades to Optimize Performance for Remote Entity Beans

Avoid the Use of Transfer Objects

Stateless Beans Offer Performance and Scalability Advantages

Clustering features:

Load Balancing Among Clustered EJBs Increases Scalability

Pooling and caching:

Performance-Enhancing Features for WebLogic Server EJBs

Transaction management:

Container-Managed Transactions Are Simpler to Develop and Perform Well

Demarcating Transactions at the Server Level is Most Efficient

Transaction Isolation: A Performance vs. Data Consistency Choice

Costly Option: Distributing Transactions Across Databases

Keep Bean-Managed Transactions Short

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134234
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134771
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134258
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1135017
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136784
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134771
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136636
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134263
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1135222
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134266
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136168
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1134234
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1129016
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1141688
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136636
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136350
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1135017
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136667
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#i1136784

 85

Implementing Enterprise JavaBeans

The sections that follow describe the EJB implementation process, and provide guidance for how

to get an EJB up and running in WebLogic Server.

It is assumed that you understand WebLogic Server's value-added EJB features, have selected a

design pattern for your application, and have made key design decisions.

For a review of WebLogic Server EJB features, see WebLogic Server Value-Added EJB

Features.

For discussion of design options for EJBs, factors to consider during the design process, and

recommended design patterns see Designing Enterprise JavaBeans.

 Overview of the EJB Development Process

 Create a Source Directory

 Create EJB Classes and Interfaces

 Programming the EJB Timer Service

 Declare Web Service References

 Compile Java Source

 Generate Deployment Descriptors

 Edit Deployment Descriptors

 Generate EJB Wrapper Classes, and Stub and Skeleton Files

 Package

 Deploy

 Solving Problems During Development

 WebLogic Server Tools for Developing EJBs

Overview of the EJB Development Process

This section is a brief overview of the EJB development process. It describes the key

implementation tasks and associated results.

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1118652
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1118652
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/design_best_practices.htm#g1148250
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1177044
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1179400
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1137296
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1195737
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1199526
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1136139
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1195953
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1194963
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1136108
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1136075
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1136194
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1174421
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#i1174174

 86

Create EJB Classes and Interfaces

The classes required depend on the type of EJB you are developing, as described in EJB

Components..

Oracle offers productivity tools for developing class and interface files. The EJBGen command

line utility automates the process of creating class and interface files, and also generates

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1125968
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/understanding.htm#i1125968

 87

deployment descriptor files for the EJB. For more information and instructions for using these

tools see EJBGen Reference.

The sections that follow provide tips and guidelines for using WebLogic Server-specific EJB

features.

Programming the EJB Timer Service

WebLogic Server supports the EJB timer service defined in the EJB 2.1 Specification and EJB

 Specification. The EJB timer service is an EJB-container provided service that

allows you to create timers that schedule callbacks to occur when a timer object expires.

Timer objects can be created for entity beans, message-driven beans, and stateless

session beans. Timer objects expire at a specified time, after an elapsed period of time, or

at specified intervals. For instance, you can use the timer service to send out notification

when an EJB remains in a certain state for an elapsed period of time.

The WebLogic EJB timer service is intended to be used as a coarse-grained timer service. Rather

than having a large number of timer objects performing the same task on a unique set of data,

Oracle recommends using a small number of timers that perform bulk tasks on the data. For

example, assume you have an EJB that represents an employee's expense report. Each expense

report must be approved by a manager before it can be processed. You could use one EJB timer

to periodically inspect all pending expense reports and send an email to the corresponding

manager to remind them to either approve or reject the reports that are waiting for their approval

Declare Web Service References

This release of WebLogic Server complies with the EJB 2.1 requirements related to declaring

and accessing external Web Services. Web Service references, declared in an EJB's deployment

descriptor, maps a logical name for a Web Service to an actual Web Service interface, which

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/ejbgen.htm#g1180890

 88

ejb-jar.xml,

allows you to refer to the Web Service using a logical name. The bean code then performs a

JNDI lookup using the Web Service reference name.

For more information, see Getting Started With JAX-WS Web Services for Oracle WebLogic

Server.

Compile Java Source

For a list of tools that support the compilation process, see Table 4-1.

For information on the compilation process, see Developing Applications for Oracle WebLogic

Server.

Generate Deployment Descriptors

If you annotate your Bean class file with JDK 1.5 annotations, you can use EJBGen to generate

the Remote and Home classes and the deployment descriptor files for an EJB application.

Oracle recommends that you use EJBGen to generate deployment descriptors. For more

information, see Appendix E, "EJBGen Reference."

Edit Deployment Descriptors

Elements in weblogic-ejb-jar.xml, and for container-managed persistence entity

beans, weblogic-cmp-jar.xml, control the run-time characteristics of your application.

If you need to modify a descriptor element, you can edit the descriptor file with any plain text

editor. However, to avoid introducing errors, use a tool designed for XML editing. Descriptor

elements that you can edit with the WebLogic Server Administration Console are listed in Table

4-1.

The following sections are a quick reference to WebLogic Server-specific deployment elements.

Each section contains the elements related to a type of feature or behavior. The table in each

section defines relevant elements in terms of the behavior it controls, the bean type it relates to

(if bean type-specific), the parent element in weblogic-ejb-jar.xml that contains the element,

https://docs.oracle.com/cd/E17904_01/web.1111/e13758/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13758/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#g1212971
https://docs.oracle.com/cd/E17904_01/web.1111/e13706/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13706/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/ejbgen.htm#g1180890
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#g1212971
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/implementing.htm#g1212971

 89

and the behavior you can expect if you do not explicitly specify the element in weblogic-ejb-

jar.xml.

Generate EJB Wrapper Classes, and Stub and Skeleton Files

Container classes include the internal representation of the EJB that WebLogic Server uses and

the implementation of the external interfaces (home, local, and/or remote) that clients use. You

can use Oracle Workshop for WebLogic Platform or appc to generate container classes.

Container classes are generated in according to the descriptor elements in weblogic-ejb-jar.xml.

For example, if you specify clustering elements, appc creates cluster-aware classes that will be

used for deployment. You can use appc directly from the command line by supplying the

required options and arguments. See appc for more information.

The following figure shows the container classes added to the deployment unit when the EAR or

JAR file is generated.

Figure 4-2 Generating EJB Container Classes

https://docs.oracle.com/cd/E17904_01/web.1111/e13719/appc_ejbc.htm#i1151899

 90

appc and Generated Class Name Collisions

Although infrequent, when you generate classes with appc, you may encounter a generated class

name collision which could result in a ClassCastException and other undesirable behavior. This

is because the names of the generated classes are based on three keys: the bean class name, the

bean class package, and the ejb-name for the bean. This problem occurs when you use an EAR

file that contains multiple JAR files and at least two of the JAR files contain an EJB with both

the same bean class, package, or classname, and both of those EJBs have the same ejb-name in

their respective JAR files. If you experience this problem, change the ejb-name of one of the

beans to make it unique.

Because the ejb-name is one of the keys on which the file name is based and the ejb-name must

be unique within a JAR file, this problem never occurs with two EJBs in the same JAR file.

Also, because each EAR file has its own classloader, this problem never occurs with two EJBs in

different EAR files.

Package

Oracle recommends that you package EJBs as part of an enterprise application. For more

information, see "Deploying and Packaging from a Split Development Directory" in Developing

Applications for Oracle WebLogic Server.

Packaging Considerations for EJBs with Clients in Other Applications

WebLogic Server supports the use of ejb-client.jar files for packaging the EJB classes that a

programmatic client in a different application requires to access the EJB.

Specify the name of the client JAR in the ejb-client-jar element of the bean's ejb-jar.xml file.

When you run the appc compiler, a JAR file with the classes required to access the EJB is

generated.

Make the client JAR available to the remote client. For Web applications, put the ejb-

client.jar in the /lib directory. For non-Web clients, include ejb-client.jar in the client's

classpath.

https://docs.oracle.com/cd/E17904_01/web.1111/e13706/splitdeploy.htm#WLPRG232

 91

Deploy

Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You

can deploy an EJB using one of several procedures, depending on your environment and whether

or not your EJB is in production.

For general instructions on deploying WebLogic Server applications and modules, including

EJBs, see Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment

issues and procedures, see Chapter 8, "Deployment Guidelines for Enterprise JavaBeans" in this

book — Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Solving Problems During Development

The following sections describe WebLogic Server features that are useful for checking out and

debugging deployed EJBs.

Adding Line Numbers to Class Files

If you compile your EJBs with appc, you can use the appc -lineNumbers command option to

add line numbers to generated class files to aid in debugging. For information, see Appendix D,

"appc Reference."

Monitoring Data

WebLogic Server collects a variety of data about the run-time operation of a deployed EJB. This

data, which you can view in the Deployments node of the Administration Console, can be useful

in determining if an EJB has completed desired processing steps. To access EJB run-time

statistics, expand the Deployment node in the Administration Console, navigate to the JAR EAR

that contains the bean, and select the Monitoring tab.

For information about the data available, see these pages in Oracle WebLogic Server

Administration Console Help:

 "Deployments-->EJB --> Monitoring --> Stateful Session EJBs"

 "Deployments-->EJB-->Monitoring-->Stateless EJBs"

 "Deployments-->EJB --> Monitoring--> Message-Driven EJBs"

 "Deployments-->EJB --> Monitoring --> Entity EJBs"

https://docs.oracle.com/cd/E17904_01/web.1111/e13702/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/deploy.htm#g1094009
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/appc_ejbc.htm#g1172593
https://docs.oracle.com/cd/E17904_01/web.1111/e13719/appc_ejbc.htm#g1172593
https://docs.oracle.com/cd/E17904_01/apirefs.1111/e13952/pagehelp/J2EEappdeploymentsmonitorejbstatefultitle.html
https://docs.oracle.com/cd/E17904_01/apirefs.1111/e13952/pagehelp/J2EEappdeploymentsmonitorejbstatelesstitle.html
https://docs.oracle.com/cd/E17904_01/apirefs.1111/e13952/pagehelp/J2EEappdeploymentsmonitorejbmessagedriventitle.html
https://docs.oracle.com/cd/E17904_01/apirefs.1111/e13952/pagehelp/J2EEappdeploymentsmonitorejbentitytitle.html

 92

Creating Debug Messages

For instructions on how to create messages in your application to help you troubleshoot and

solve bugs and problems, see Configuring Log Files and Filtering Log Messages for Oracle

WebLogic Server.

WebLogic Server Tools for Developing EJBs

This section describes Oracle tools that support the EJB development process. For a comparison

of the features available in each tool

Oracle JDeveloper

Oracle JDeveloper is a full-featured Java IDE that can be used for end-to-end development of

EJBs. For more information, see the Oracle JDeveloper online help. For information about

installing JDeveloper, see Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

Oracle Enterprise Pack for Eclipse

Oracle Enteprise Eclipse (OEPE) rovides a collection of plug-ins to the Eclipse IDE platform

that facilitate development of WebLogic Web services. For more information, see the Eclipse

IDE platform online help.

Administration Console

In the Administration Console, you can view, modify, and persist to the descriptor file within the

EJB a number of deployment descriptor elements. Descriptors are modified in the

Administration Server copy of the EJB as well as in any deployed copies of the EJB (after

deployment). When you modify descriptors, changes are made to your (the user's) original copy

of the EJB (prior to deployment).

4 . EJB SESSION BEAN

A session bean is an EJB 3.0 or EJB 2.1 enterprise bean component created by a client for the

duration of a single client/server session. A session bean performs operations for the client.

Although a session bean can be transactional, it is not recoverable should a system failure occur.

Session bean objects are either stateless (see "What is a Stateless Session Bean?") or stateful:

maintaining conversational state across method calls and transactions (see "What is a Stateful

https://docs.oracle.com/cd/E17904_01/web.1111/e13739/toc.htm
https://docs.oracle.com/cd/E17904_01/web.1111/e13739/toc.htm
https://docs.oracle.com/cd/E17904_01/install.1111/e13666/toc.htm
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/undejbs002.htm#CIHDIBJG
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/undejbs002.htm#CIHCFJGC

 93

Session Bean?"). If a session bean maintains state, then OC4J manages this state if the object

must be removed from memory ("When Does Stateful Session Bean Passivation Occur?").

However, the session bean object itself must manage its own persistent data.

From a client's perspective, a session bean is a nonpersistent object that implements some

business logic running on the application server. For example, in an on-line store application,

you can use a session bean to implement a ShoppingCartBean that provides a Cart interface that

the client uses to invoke such methods as purchaseItem and checkout.

Each client is allocated its own session object. A client does not directly access instances of the

session bean's class: a client accesses a session object through the session bean's home

("Implementing the Home Interfaces") and component ("Implementing the Component

Interfaces") interfaces. The client of a session bean may be a local client, a remote client, or a

Web service client (stateless session bean only), depending on the interface provided by the bean

and used by the client.

5. EJB ENTITY BEANS

An entity bean is an EJB 2.1 enterprise bean component that manages persistent data, performs

complex business logic, potentially uses several dependent Java objects, and can be uniquely

identified by a primary key.

Entity beans persist business data using one of the two following methods:

Automatically by the container using an entity bean with container-managed persistence

Programmatically through methods implemented in an entity bean with bean-managed

persistence

For information on choosing between container-managed persistence and container-managed

persistence architectures

Entity beans are persistent because their data is stored persistently in some form of data storage,

such as a database: entity beans survive a server failure, failover, or a network failure. When an

entity bean is reinstantiated, the state of the previous instance is automatically restored. OC4J

manages this state if the entity bean must be removed from memory

https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/undejbs002.htm#CIHCFJGC
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/undejbs002.htm#CIHHEDBI
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/ses21imp003.htm#i1011807
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/ses21imp004.htm#i1005894
https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/ses21imp004.htm#i1005894

 94

A entity bean models a business entity or multiple actions within a single business process.

Entity beans are often used to facilitate business services that involve data and computations on

that data. For example, you might implement an entity bean to retrieve and perform computation

on items within a purchase order. Your entity bean can manage multiple, dependent, persistent

objects in performing its tasks.

A common design pattern pairs entity beans with a session bean that acts as the client interface.

The entity bean functions as a coarse-grained object that encapsulates functionality and

represents persistent data and relationships to dependent (typically, find-grained) objects. Thus,

you decouple the client from the data so that if the data changes, the client is not affected. For

efficiency, the session bean can be collocated with entity beans and can coordinate

between multiple entity beans through their local interfaces. This is known as a session facade

design.

6. EJB clients

 clients interacts with Enterprise Beans instances through proxy objects (generated by

tools provided by container provider). Commonly, the communication is based on IIOP

protocol and proxy objects are regular CORBA stubs

 the presence of the container wrapping the bean is completely hidden to the client

 the passivation and activation of bean instances is completely transparent to the client

 the reference to the bean is acquired from the factory (called "home interface") which is

specific for each bean type. The factory is capable for creating new bean instances and

finding the existing ones (based on some searching criteria). The reference to the factory

itself is obtained using the Java Naming and Directory (JNDI) interface

 due to selection IIOP as the communication protocol, the bean may also integrate with

RMI/IIOP application or even the client written in any programming language supported

by CORBA

7. DEPLOYMENT TIPS, TRICKS, AND TRAPS, FOR BUILDING DISTRIBUTED AND

OTHER SYSTEM

8. Implementation and future directions of EJB

 95

9. variables in perl

Variables are the reserved memory locations to store values. This means that when you create a

variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be

stored in the reserved memory. Therefore, by assigning different data types to variables, you

can store integers, decimals, or strings in these variables.

We have learnt that Perl has the following three basic data types −

 Scalars

 Arrays

 Hashes

Accordingly, we are going to use three types of variables in Perl. A scalar variable will precede

by a dollar sign ($) and it can store either a number, a string, or a reference. An array variable

will precede by sign @ and it will store ordered lists of scalars. Finaly, the Hash variable will

precede by sign % and will be used to store sets of key/value pairs.

Perl maintains every variable type in a separate namespace. So you can, without fear of conflict,

use the same name for a scalar variable, an array, or a hash. This means that $foo and @foo are

two different variables.

10. Perl control structures and operators

Control Structures

Perl is an iterative language in which control flows from the first statement in the program to the

last statement unless something interrupts. Some of the things that can interrupt this linear flow

are conditional branches and loop structures. Perl offers approximately a dozen such constructs,

which are described below. The basic form will be shown for each followed by a partial

example.

statement block

Statement blocks provide a mechanism for grouping statements that are to be executed as

a result some expression being evaluated. They are used in all of the control structures

 96

discussed below. Statement blocks are designated by pairs of curly braces.

Form: BLOCK

Example:

{

stmt_1;

stmt_2;

stmt_3;

}

if statement

Form: if (EXPR) BLOCK

Example:

if (expression) {

true_stmt_1;

true_stmt_2;

true_stmt_3;

}

if/else statement

Form: if (EXPR) BLOCK else BLOCK

Example:

if (expression) {

true_stmt_1;

true_stmt_2;

true_stmt_3;

 97

} else {

false_stmt_1;

false_stmt_2;

false_stmt_3;

}

if/elseif/else statement

Form: if (EXPR) BLOCK elseif (EXPR) BLOCK . . . else BLOCK

Example:

if (expression_A) {

A_true_stmt_1;

A_true_stmt_2;

A_true_stmt_3;

} elseif (expression_B) {

B_true_stmt_1;

B_true_stmt_2;

B_true_stmt_3;

} else {

false_stmt_1;

false_stmt_2;

false_stmt_3;

}

while statement

Form: LABEL: while (EXPR) BLOCK

The LABEL in this and the following control structures is optional. In addition to

description, it also provides function in the quasi-goto statements: last, next, and redo.

Perl conventional practice calls for labels to be expressed in uppercase to avoid confusion

with variables or key words.

 98

Example:

ALABEL: while (expression) {

stmt_1;

stmt_2;

stmt_3;

}

until statement

Form: LABEL: until (EXPR) BLOCK

Example:

ALABEL: until (expression) { # while not

stmt_1;

stmt_2;

stmt_3;

}

for statement

Form: LABEL: for (EXPR; EXPR; EXPR) BLOCK

Example:

ALABEL: for (initial exp; test exp; increment exp) { # e.g., ($i=1; $i<5; $i++)

stmt_1;

stmt_2;

stmt_3;

}

foreach statement

 99

Form: LABEL: foreach VAR (EXPR) BLOCK

Example:

ALABEL: foreach $i (@aList) {

stmt_1;

stmt_2;

stmt_3;

}

last operator

The last operator, as well as the next and redo operators that follow, apply only to loop

control structures. They cause execution to jump from where they occur to some other

position, defined with respect to the block structure of the encompassing control

structure. Thus, they function as limited forms of goto statements.

Last causes control to jump from where it occurs to the first statement following the

enclosing block.

Example:

ALABEL: while (expression) {

stmt_1;

stmt_2;

last;

stmt_3;

}

last jumps to here

If last occurs within nested control structures, the jump can be made to the end of an

outer loop by adding a label to that loop and specifying the label in the last statement.

 100

Example:

ALABEL: while (expression) {

stmt_1;

stmt_2;

BLABEL: while (expression) {

stmt_a;

stmt_b;

last ALABEL;

stmt_c;

}

stmt_3;

}

last jumps to here

next operator

The next operator is similar to last except that execution jumps to the end of the block,

but remains inside the block, rather than exiting the block. Thus, iteration continues

normally.

Example:

ALABEL: while (expression) {

stmt_1;

stmt_2;

next;

stmt_3;

next jumps to here

}

As with last, next can be used with a label to jump to an outer designated loop.

redo operator

The redo operator is similar to next except that execution jumps to the top of the block

 101

without re-evaluating the control expression.

Example:

ALABEL: while (expression) {

redo jumps to here

stmt_1;

stmt_2;

redo;

stmt_3;

}

As with last, next can be used with a label to jump to an outer designated loop.

Table of Contents

 1 Numeric operators

o 1.1 Arithmetic operators

o 1.2 Bitwise Operators

o 1.3 Comparison operators for numbers

 2 String operators

o 2.1 String comparison operators

o 2.2 String concatenation operators

o 2.3 The chomp() operator

 3 Logical operators

Numeric operators

Perl provides numeric operators to help you operate on numbers including arithmetic, Boolean

and bitwise operations. Let’s examine the different kinds of operators in more detail.

Arithmetic operators

Perl arithmetic operators deal with basic math such as adding, subtracting, multiplying, diving,

etc. To add (+) or subtract (-) numbers, you would do something as follows:

https://www.perltutorial.org/perl-operators/#Numeric_operators
https://www.perltutorial.org/perl-operators/#Arithmetic_operators
https://www.perltutorial.org/perl-operators/#Bitwise_Operators
https://www.perltutorial.org/perl-operators/#Comparison_operators_for_numbers
https://www.perltutorial.org/perl-operators/#String_operators
https://www.perltutorial.org/perl-operators/#String_comparison_operators
https://www.perltutorial.org/perl-operators/#String_concatenation_operators
https://www.perltutorial.org/perl-operators/#The_chomp_operator
https://www.perltutorial.org/perl-operators/#Logical_operators
https://www.perltutorial.org/perl-numbers/

 102

#!/usr/bin/perl

use warnings;

use strict;

print 10 + 20, "\n"; # 20

print 20 - 10, "\n"; # 10

To multiply or divide numbers, you use divide (/) and multiply (*) operators as follows:

#!/usr/bin/perl

use warnings;

use strict;

print 10 * 20, "\n"; # 200

print 20 / 10, "\n"; # 2

When you combine adding, subtracting, multiplying, and dividing operators together, Perl will

perform the calculation in an order, which is known as operator precedence.

The multiply and divide operators have higher precedence than add and subtract operators,

therefore, Perl performs multiplying and dividing before adding and subtracting. See the

following example:

print 10 + 20/2 - 5 * 2 , "\n"; # 10

Perl performs 20/2 and 5*2 first, therefore you will get 10 + 10 – 10 = 10.

You can use brackets () to force Perl to perform calculation based on precedence you want as

shown in the following example:

print (((10 + 20)/2 - 5) * 2); # 20;

To raise one number to the power of another number, you use exponentiation operator (**) e.g.,

2**3 = 2 * 2 * 2. The following example demonstrates the exponentiation operators:

#!/usr/bin/perl

use warnings;

 103

use strict;

print 2**3, "\n"; # = 2 * 2 * 2 = 8.

print 3**4, "\n"; # = 3 * 3 * 3 * 3 = 81.

To get the remainder of the division of one number by another, you use modulo operator (%).

It is handy to use the modulo operator (%) to check if a number is odd or even by dividing it by 2

to get the remainder. If the remainder is zero, the number is even, otherwise, the number is odd.

See the following example:

#!/usr/bin/perl

use warnings;

use strict;

print 4 % 2, "\n"; # 0 even

print 5 % 2, "\n"; # 1 odd

Bitwise Operators

Bitwise operators allow you to operate on numbers one bit at a time. Think a number as a series

of bits e.g., 125 can be represented in binary form as 1111101. Perl provides all basic bitwise

operators including and (&), or (|), exclusive or (^) , not (~) operators, shift right (>>) and shift

left (<<) operators.

The bitwise operators perform from right to left. In other words, bitwise operators perform from

rightmost bit to the left most bit.

The following example demonstrates all bitwise operators:

#!/usr/bin/perl

use warnings;

use strict;

my $a = 0b0101; # 5

my $b = 0b0011; # 3

 104

print $c, "\n";

print $c, "\n";

print $c, "\n";

print $c, "\n";

print $c, "\n";

my $c = $a & $b; # 0001 or 1

print $c, "\n";

$c = $a | $b; # 0111 or 7

$c = $a ^ $b; # 0110 or 6

$c = ~$a; # 11111111111111111111111111111010 (64bits computer) or 4294967290

$c = $a >> 1; # 0101 shift right 1 bit, 010 or 2

$c = $a << 1; # 0101 shift left 1 bit, 1010 or 10

If you are not familiar with bitwise operations, we are highly recommended you check it

out bitwise operations on Wikipedia.

Comparison operators for numbers

Perl provides all comparison operators for numbers as listed in the following table:

http://en.wikipedia.org/wiki/Bitwise_operation

 105

All the operators in the table above are obvious except the number comparison

operator <=> which is also known as spaceship operator.

The number comparison operator is often used in sorting numbers. See the code below:

$a <=> $b

The number operator returns:

 1 if $a is greater than $b

 0 if $a and $b are equal

 -1 if $a is lower than $b

Take a look at the following example:

#!/usr/bin/perl

use warnings;

use strict;

my $a = 10;

my $b = 20;

Equality Operators

Equal ==

Not Equal !=

Comparison <=>

Less than <

Greater than >

Less than or equal <=

Greater than or equal >=

 106

print $a <=> $b, "\n";

$b = 10;

print $a <=> $b, "\n";

$b = 5;

print $a <=> $b, "\n";

String operators

String comparison operators

Perl provides the corresponding comparison operators for strings. Let’s take a look a the table

below:

Equality Operators

Equal eq

Not Equal ne

Comparison cmp

Less than lt

Greater than gt

Less than or equal le

Greater than or equal ge

String concatenation operators

Perl provides the concatenation (.) and repetition (x) operators that allow you to manipulate

strings. Let’s take a look at the concatenation operator (.) first:

print "This is" . " concatenation operator" . "\n";

The concatenation operator (.) combines two strings together.

 107

A string can be repeated with the repetition (x) operator:

print "a message " x 4, "\n";

The chomp() operator

The chomp() operator (or function) removes the last character in a string and returns a number of

characters that was removed. The chomp() operator is very useful when dealing with user’s

input, because it helps you remove the new line character \n from the string that user entered.

#!/usr/bin/perl

use warnings;

use strict;

my $s;

chomp($s = <STDIN>);

print $s;

The <STDIN> is used to get input from users.

Logical operators

Logical operators are often used in control statements such as if, while, given, etc., to control the

flow of the program. The following are logical operators in Perl:

 $a && $b performs logical AND of two variables or expressions. The logical && operator

checks if both variables or expressions are true.

 $a || $b performs logical OR of two variables or expressions. The logical || operator checks

either a variable or expression is true.

 !$a performs logical NOT of the variable or expression. The logical ! operator inverts the

value of the followed variable or expression. In the other words, it

converts true to false or false to true.

You will learn how to use logical operators in the conditional statements such

as if, while and given.

https://www.perltutorial.org/perl-subroutine/
https://www.perltutorial.org/perl-if/
https://www.perltutorial.org/perl-while/
https://www.perltutorial.org/perl-given/
https://www.perltutorial.org/perl-if/
https://www.perltutorial.org/perl-while/
https://www.perltutorial.org/perl-given/

 108

In this tutorial, you’ve learned some basic Perl operators. These operators are very important so

make sure that you get familiar with them.

11. Functions and scope

FUNCTIONS

SCOPE/ BENEFITS

The important benefits of EJB −

 Simplified development of large-scale enterprise level application.

 Application Server/EJB container provides most of the system level services like

transaction handling, logging, load balancing, persistence mechanism, exception

handling, and so on. Developer has to focus only on business logic of the application.

 EJB container manages life cycle of EJB instances, thus developer needs not to worry

about when to create/delete EJB objects.

ADVANCED JAVA PROGRAMMING

UNIT-IV

RMI

 109

RMI Overview

RMI stands for Remote Method Invocation. It is a mechanism that allows an object residing in

one system (JVM) to access/invoke an object running on another JVM.

RMI is used to build distributed applications; it provides remote communication between Java

programs. It is provided in the package java.rmi.

Architecture of an RMI Application

In an RMI application, we write two programs, a server program (resides on the server) and

a client program (resides on the client).

 Inside the server program, a remote object is created and reference of that object is made

available for the client (using the registry).

 The client program requests the remote objects on the server and tries to invoke its

methods.

The following diagram shows the architecture of an RMI application.

Let us now discuss the components of this architecture.

 Transport Layer − This layer connects the client and the server. It manages the existing

connection and also sets up new connections.

 110

 Stub − A stub is a representation (proxy) of the remote object at client. It resides in the

client system; it acts as a gateway for the client program.

 Skeleton − This is the object which resides on the server side. stub communicates with

this skeleton to pass request to the remote object.

 RRL(Remote Reference Layer) − It is the layer which manages the references made by

the client to the remote object.

Working of an RMI Application

The following points summarize how an RMI application works −

 When the client makes a call to the remote object, it is received by the stub which

eventually passes this request to the RRL.

 When the client-side RRL receives the request, it invokes a method called invoke() of

the object remoteRef. It passes the request to the RRL on the server side.

 The RRL on the server side passes the request to the Skeleton (proxy on the server)

which finally invokes the required object on the server.

 The result is passed all the way back to the client.

Marshalling and Unmarshalling

Whenever a client invokes a method that accepts parameters on a remote object, the parameters

are bundled into a message before being sent over the network. These parameters may be of

primitive type or objects. In case of primitive type, the parameters are put together and a header

is attached to it. In case the parameters are objects, then they are serialized. This process is

known as marshalling.

At the server side, the packed parameters are unbundled and then the required method is

invoked. This process is known as unmarshalling.

RMI Registry

RMI registry is a namespace on which all server objects are placed. Each time the server creates

an object, it registers this object with the RMIregistry (using bind() or reBind() methods).

These are registered using a unique name known as bind name.

 111

To invoke a remote object, the client needs a reference of that object. At that time, the client

fetches the object from the registry using its bind name (using lookup() method).

The following illustration explains the entire process −

Goals of RMI

Following are the goals of RMI −

 To minimize the complexity of the application.

 To preserve type safety.

 Distributed garbage collection.

 Minimize the difference between working with local and remote objects. Pr

 112

import java.rmi.Remote;

import java.rmi.RemoteException;

// Creating Remote interface for our application

public interface Hello extends Remote {

void printMsg() throws RemoteException;

}

Developing applications by RMI

To write an RMI Java application, you would have to follow the steps given below −

 Define the remote interface

 Develop the implementation class (remote object)

 Develop the server program

 Develop the client program

 Compile the application

 Execute the application

Defining the Remote Interface

A remote interface provides the description of all the methods of a particular remote object. The

client communicates with this remote interface.

To create a remote interface −

 Create an interface that extends the predefined interface Remote which belongs to the

package.

 Declare all the business methods that can be invoked by the client in this interface.

 Since there is a chance of network issues during remote calls, an exception

named RemoteException may occur; throw it.

Following is an example of a remote interface. Here we have defined an interface with the

name Hello and it has a method called printMsg().

Developing the Implementation Class (Remote Object)

 113

// Implementing the remote interface

public class ImplExample implements Hello {

// Implementing the interface method

public void printMsg() {

System.out.println("This is an example RMI program");

We need to implement the remote interface created in the earlier step. (We can write an

implementation class separately or we can directly make the server program implement this

interface.)

To develop an implementation class −

 Implement the interface created in the previous step.

 Provide implementation to all the abstract methods of the remote interface.

Following is an implementation class. Here, we have created a class named ImplExample and

implemented the interface Hello created in the previous step and provided body for this method

which prints a message.

 114

import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Server extends ImplExample {

public Server() {}

public static void main(String args[]) {

try {

// Instantiating the implementation class

ImplExample obj = new ImplExample();

Developing the Server Program

An RMI server program should implement the remote interface or extend the implementation

class. Here, we should create a remote object and bind it to the RMIregistry.

To develop a server program −

 Create a client class from where you want invoke the remote object.

 Create a remote object by instantiating the implementation class as shown below.

 Export the remote object using the method exportObject() of the class

named UnicastRemoteObject which belongs to the package java.rmi.server.

 Get the RMI registry using the getRegistry() method of the LocateRegistry class which

belongs to the package java.rmi.registry.

 Bind the remote object created to the registry using the bind() method of the class

named Registry. To this method, pass a string representing the bind name and the object

exported, as parameters.

Following is an example of an RMI server program.

}

}

 115

Developing the Client Program

Write a client program in it, fetch the remote object and invoke the required method using this

object.

To develop a client program −

 Create a client class from where your intended to invoke the remote object.

 Get the RMI registry using the getRegistry() method of the LocateRegistry class which

belongs to the package java.rmi.registry.

 Fetch the object from the registry using the method lookup() of the class Registry which

belongs to the package java.rmi.registry.

To this method, you need to pass a string value representing the bind name as a

parameter. This will return you the remote object.

// Exporting the object of implementation class

// (here we are exporting the remote object to the stub)

Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);

// Binding the remote object (stub) in the registry

Registry registry = LocateRegistry.getRegistry();

registry.bind("Hello", stub);

System.err.println("Server ready");

} catch (Exception e) {

System.err.println("Server exception: " + e.toString());

e.printStackTrace();

}

}

}

 116

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client {

private Client() {}

public static void main(String[] args) {

try {

// Getting the registry

Registry registry = LocateRegistry.getRegistry(null);

// Looking up the registry for the remote object

Hello stub = (Hello) registry.lookup("Hello");

// Calling the remote method using the obtained object

stub.printMsg();

// System.out.println("Remote method invoked");

} catch (Exception e) {

System.err.println("Client exception: " + e.toString());

e.printStackTrace();

}

}

}

 The lookup() returns an object of type remote, down cast it to the type Hello.

 Finally invoke the required method using the obtained remote object.

Following is an example of an RMI client program.

Compiling the Application

To compile the application −

 117

 Compile the Remote interface.

 Compile the implementation class.

 Compile the server program.

 Compile the client program.

Or,

Open the folder where you have stored all the programs and compile all the Java files as shown

below.

Javac *.java

Executing the Application

Step 1 − Start the rmi registry using the following command.

start rmiregistry

This will start an rmi registry on a separate window as shown below.

 118

Step 2 − Run the server class file as shown below.

Java Server

Step 3 − Run the client class file as shown below.

java Client

Verification − As soon you start the client, you would see the following output in the server.

 119

Declaring and Implentation

Implementing a Remote Interface

This section discusses the task of implementing a class for the compute engine. In general, a

class that implements a remote interface should at least do the following:

 Declare the remote interfaces being implemented

 Define the constructor for each remote object

 Provide an implementation for each remote method in the remote interfaces

An RMI server program needs to create the initial remote objects and export them to the RMI

runtime, which makes them available to receive incoming remote invocations. This setup

procedure can be either encapsulated in a method of the remote object implementation class itself

or included in another class entirely. The setup procedure should do the following:

 Create and install a security manager

 Create and export one or more remote objects

 Register at least one remote object with the RMI registry (or with another naming

service, such as a service accessible through the Java Naming and Directory Interface) for

bootstrapping purposes

The complete implementation of the compute engine follows. The engine.ComputeEngine class

implements the remote interface Compute and also includes the main method for setting up the

compute engine. Here is the source code for the ComputeEngine class:

https://docs.oracle.com/javase/tutorial/rmi/examples/engine/ComputeEngine.java

 120

package engine;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;

import compute.Compute;

import compute.Task;

public class ComputeEngine implements Compute {

public ComputeEngine() {

super();

}

public <T> T executeTask(Task<T> t) {

return t.execute();

}

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Compute engine = new ComputeEngine();

Compute stub =

(Compute) UnicastRemoteObject.exportObject(engine, 0);

Registry registry = LocateRegistry.getRegistry();

registry.rebind(name, stub);

System.out.println("ComputeEngine bound");

} catch (Exception e) {

System.err.println("ComputeEngine exception:");

e.printStackTrace();

 121

}

}

}

The following sections discuss each component of the compute engine implementation.

Declaring the Remote Interfaces Being Implemented

The implementation class for the compute engine is declared as follows:

public class ComputeEngine implements Compute

This declaration states that the class implements the Compute remote interface and therefore can

be used for a remote object.

The ComputeEngine class defines a remote object implementation class that implements a single

remote interface and no other interfaces. The ComputeEngine class also contains two executable

program elements that can only be invoked locally. The first of these elements is a constructor

for ComputeEngine instances. The second of these elements is a main method that is used to

create a ComputeEngine instance and make it available to clients.

Defining the Constructor for the Remote Object

The ComputeEngine class has a single constructor that takes no arguments. The code for the

constructor is as follows:

public ComputeEngine() {

super();

}

This constructor just invokes the superclass constructor, which is the no-argument constructor of

the Object class. Although the superclass constructor gets invoked even if omitted from

the ComputeEngine constructor, it is included for clarity.
Providing Implementations for Each Remote Method

The class for a remote object provides implementations for each remote method specified in the

remote interfaces. The Compute interface contains a single remote method, executeTask, which

is implemented as follows:

 122

public <T> T executeTask(Task<T> t) {

return t.execute();

}

This method implements the protocol between the ComputeEngine remote object and its clients.

Each client provides the ComputeEngine with a Task object that has a particular implementation

of the Task interface's execute method. The ComputeEngine executes each client's task and

returns the result of the task's execute method directly to the client.

Passing Objects in RMI

Arguments to or return values from remote methods can be of almost any type, including local

objects, remote objects, and primitive data types. More precisely, any entity of any type can be

passed to or from a remote method as long as the entity is an instance of a type that is a primitive

data type, a remote object, or a serializable object, which means that it implements the

interface java.io.Serializable.

Some object types do not meet any of these criteria and thus cannot be passed to or returned from

a remote method. Most of these objects, such as threads or file descriptors, encapsulate

information that makes sense only within a single address space. Many of the core classes,

including the classes in the packages java.lang and java.util, implement the Serializable interface.

The rules governing how arguments and return values are passed are as follows:

 Remote objects are essentially passed by reference. A remote object reference is a stub,

which is a client-side proxy that implements the complete set of remote interfaces that the

remote object implements.

 Local objects are passed by copy, using object serialization. By default, all fields are

copied except fields that are marked static or transient. Default serialization behavior can

be overridden on a class-by-class basis.

Passing a remote object by reference means that any changes made to the state of the object by

remote method invocations are reflected in the original remote object. When a remote object is

passed, only those interfaces that are remote interfaces are available to the receiver. Any methods

defined in the implementation class or defined in non-remote interfaces implemented by the class

are not available to that receiver.

 123

For example, if you were to pass a reference to an instance of the ComputeEngine class, the

receiver would have access only to the compute engine's executeTask method. That receiver

would not see the ComputeEngine constructor, its main method, or its implementation of any

methods of java.lang.Object.

In the parameters and return values of remote method invocations, objects that are not remote

objects are passed by value. Thus, a copy of the object is created in the receiving Java virtual

machine. Any changes to the object's state by the receiver are reflected only in the receiver's

copy, not in the sender's original instance. Any changes to the object's state by the sender are

reflected only in the sender's original instance, not in the receiver's copy.

Implementing the Server's main Method

The most complex method of the ComputeEngine implementation is the main method.

The main method is used to start the ComputeEngine and therefore needs to do the necessary

initialization and housekeeping to prepare the server to accept calls from clients. This method is

not a remote method, which means that it cannot be invoked from a different Java virtual

machine. Because the main method is declared static, the method is not associated with an object

at all but rather with the class ComputeEngine.

Creating and Installing a Security Manager

The main method's first task is to create and install a security manager, which protects access to

system resources from untrusted downloaded code running within the Java virtual machine. A

security manager determines whether downloaded code has access to the local file system or can

perform any other privileged operations.

If an RMI program does not install a security manager, RMI will not download classes (other

than from the local class path) for objects received as arguments or return values of remote

method invocations. This restriction ensures that the operations performed by downloaded code

are subject to a security policy.

Here's the code that creates and installs a security manager:

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

 124

Making the Remote Object Available to Clients

Next, the main method creates an instance of ComputeEngine and exports it to the RMI runtime

with the following statements:

Compute engine = new ComputeEngine();

Compute stub =

(Compute) UnicastRemoteObject.exportObject(engine, 0);

The static UnicastRemoteObject.exportObject method exports the supplied remote object so that

it can receive invocations of its remote methods from remote clients. The second argument,

an int, specifies which TCP port to use to listen for incoming remote invocation requests for the

object. It is common to use the value zero, which specifies the use of an anonymous port. The

actual port will then be chosen at runtime by RMI or the underlying operating system. However,

a non-zero value can also be used to specify a specific port to use for listening. Once

the exportObject invocation has returned successfully, the ComputeEngine remote object is

ready to process incoming remote invocations.

The exportObject method returns a stub for the exported remote object. Note that the type of the

variable stub must be Compute, not ComputeEngine, because the stub for a remote object only

implements the remote interfaces that the exported remote object implements.

The exportObject method declares that it can throw a RemoteException, which is a checked

exception type. The main method handles this exception with its try/catch block. If the exception

were not handled in this way, RemoteException would have to be declared in the throws clause

of the main method. An attempt to export a remote object can throw a RemoteException if the

necessary communication resources are not available, such as if the requested port is bound for

some other purpose.

Before a client can invoke a method on a remote object, it must first obtain a reference to the

remote object. Obtaining a reference can be done in the same way that any other object reference

is obtained in a program, such as by getting the reference as part of the return value of a method

or as part of a data structure that contains such a reference.

 125

The system provides a particular type of remote object, the RMI registry, for finding references

to other remote objects. The RMI registry is a simple remote object naming service that enables

clients to obtain a reference to a remote object by name. The registry is typically only used to

locate the first remote object that an RMI client needs to use. That first remote object might then

provide support for finding other objects.

The java.rmi.registry.Registry remote interface is the API for binding (or registering) and

looking up remote objects in the registry. The java.rmi.registry.LocateRegistry class provides

static methods for synthesizing a remote reference to a registry at a particular network address

(host and port). These methods create the remote reference object containing the specified

network address without performing any remote communication. LocateRegistry also provides

static methods for creating a new registry in the current Java virtual machine, although this

example does not use those methods. Once a remote object is registered with an RMI registry on

the local host, clients on any host can look up the remote object by name, obtain its reference,

and then invoke remote methods on the object. The registry can be shared by all servers running

on a host, or an individual server process can create and use its own registry.

The ComputeEngine class creates a name for the object with the following statement:

String name = "Compute";

The code then adds the name to the RMI registry running on the server. This step is done later

with the following statements:

Registry registry = LocateRegistry.getRegistry();

registry.rebind(name, stub);

This rebind invocation makes a remote call to the RMI registry on the local host. Like any

remote call, this call can result in a RemoteException being thrown, which is handled by

the catch block at the end of the main method.

Note the following about the Registry.rebind invocation:

 126

 The no-argument overload of LocateRegistry.getRegistry synthesizes a reference to a

registry on the local host and on the default registry port, 1099. You must use an overload

that has an int parameter if the registry is created on a port other than 1099.

 When a remote invocation on the registry is made, a stub for the remote object is passed

instead of a copy of the remote object itself. Remote implementation objects, such as

instances of ComputeEngine, never leave the Java virtual machine in which they were

created. Thus, when a client performs a lookup in a server's remote object registry, a copy

of the stub is returned. Remote objects in such cases are thus effectively passed by

(remote) reference rather than by value.

 For security reasons, an application can only bind, unbind, or rebind remote object

references with a registry running on the same host. This restriction prevents a remote

client from removing or overwriting any of the entries in a server's registry. A lookup,

however, can be requested from any host, local or remote.

Once the server has registered with the local RMI registry, it prints a message indicating that it is

ready to start handling calls. Then, the main method completes. It is not necessary to have a

thread wait to keep the server alive. As long as there is a reference to the ComputeEngine object

in another Java virtual machine, local or remote, the ComputeEngine object will not be shut

down or garbage collected. Because the program binds a reference to the ComputeEngine in the

registry, it is reachable from a remote client, the registry itself. The RMI system keeps

the ComputeEngine's process running. The ComputeEngine is available to accept calls and won't

be reclaimed until its binding is removed from the registry and no remote clients hold a remote

reference to the ComputeEngine object.

The final piece of code in the ComputeEngine.main method handles any exception that might

arise. The only checked exception type that could be thrown in the code is RemoteException,

either by the UnicastRemoteObject.exportObject invocation or by the registry rebind invocation.

In either case, the program cannot do much more than exit after printing an error message. In

some distributed applications, recovering from the failure to make a remote invocation is

possible. For example, the application could attempt to retry the operation or choose another

server to continue the operation.

 127

Stubs and Skeleton

The RMI (Remote Method Invocation) is an API that provides a mechanism to create distributed

application in java. The RMI allows an object to invoke methods on an object running in another

JVM.

The RMI provides remote communication between the applications using two

objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's understand

the stub and skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are routed

through it. It resides at the client side and represents the remote object. When the caller invokes

method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),

3. It waits for the result
4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming requests

are routed through it. When the skeleton receives the incoming request, it does the following

tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

 128

In the Java 2 SDK, an stub protocol was introduced that eliminates the need for

skeletons.

Understanding requirements for the distributed applications

If any application performs these tasks, it can be distributed application.

.
1. The application need to locate the remote method

2. It need to provide the communication with the remote objects, and

3. The application need to load the class definitions for the objects.

The RMI application have all these features, so it is called the distributed application.

Java RMI Example

The is given the 6 steps to write the RMI program.

1. Create the remote interface

2. Provide the implementation of the remote interface

3. Compile the implementation class and create the stub and skeleton objects using the rmic

tool

 129

4. Start the registry service by rmiregistry tool

5. Create and start the remote application

6. Create and start the client application

RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application. The client

application need only two files, remote interface and client application. In the rmi application,

both client and server interacts with the remote interface. The client application invokes methods

on the proxy object, RMI sends the request to the remote JVM. The return value is sent back to

the proxy object and then to the client application.

1) create the remote interface

For creating the remote interface, extend the Remote interface and declare the RemoteException

with all the methods of the remote interface. Here, we are creating a remote interface that

extends the Remote interface. There is only one method named add() and it declares

RemoteException.

 130

1. import java.rmi.*;

2. public interface Adder extends Remote{

3. public int add(int x,int y)throws RemoteException;

4. }

2) Provide the implementation of the remote interface

Now provide the implementation of the remote interface. For providing the implementation of

the Remote interface, we need to

o Either extend the UnicastRemoteObject class,

o or use the exportObject() method of the UnicastRemoteObject class

In case, you extend the UnicastRemoteObject class, you must define a constructor that declares

RemoteException.

1. import java.rmi.*;

2. import java.rmi.server.*;

3. public class AdderRemote extends UnicastRemoteObject implements Adder{

4. AdderRemote()throws RemoteException{

5. super();

6. }

7. public int add(int x,int y){return x+y;}

8. }

3) create the stub and skeleton objects using the rmic tool.

Next step is to create stub and skeleton objects using the rmi compiler. The rmic tool invokes the

RMI compiler and creates stub and skeleton objects.

1. rmic AdderRemote

4) Start the registry service by the rmiregistry tool

Now start the registry service by using the rmiregistry tool. If you don't specify the port number,

it uses a default port number. In this example, we are using the port number 5000.

 131

1. rmiregistry 5000

5) Create and run the server application

Now rmi services need to be hosted in a server process. The Naming class provides methods to

get and store the remote object. The Naming class provides 5 methods.

public static java.rmi.Remote lookup(java.lang.String) throws

java.rmi.NotBoundException, java.net.MalformedURLException,

java.rmi.RemoteException;

It returns th

object.

public static void bind(java.lang.String, java.rmi.Remote) throws

java.rmi.AlreadyBoundException, java.net.MalformedURLException,

java.rmi.RemoteException;

It binds the

given name.

public static void unbind(java.lang.String) throws java.rmi.RemoteException,

java.rmi.NotBoundException, java.net.MalformedURLException;

It destroys t

bound with

public static void rebind(java.lang.String, java.rmi.Remote) throws

java.rmi.RemoteException, java.net.MalformedURLException;

It binds the

name.

public static java.lang.String[] list(java.lang.String) throws java.rmi.RemoteException,

java.net.MalformedURLException;

It returns an

remote obje

In this example, we are binding the remote object by the name sonoo.

1. import java.rmi.*;

2. import java.rmi.registry.*;

3. public class MyServer{

4. public static void main(String args[]){

5. try{

6. Adder stub=new AdderRemote();

7. Naming.rebind("rmi://localhost:5000/sonoo",stub);

 132

8. }catch(Exception e){System.out.println(e);}

9. }

10. }

6) Create and run the client application

At the client we are getting the stub object by the lookup() method of the Naming class and

invoking the method on this object. In this example, we are running the server and client

applications, in the same machine so we are using localhost. If you want to access the remote

object from another machine, change the localhost to the host name (or IP address) where the

remote object is located.

1. import java.rmi.*;

2. public class MyClient{

3. public static void main(String args[]){

4. try{

5. Adder stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");

6. System.out.println(stub.add(34,4));

7. }catch(Exception e){}

8. }

9. }

download this example of rmi

1. For running this rmi example,

2.

3. 1) compile all the java files

4.

5. javac *.java

6.

https://static.javatpoint.com/src/rmi/rmi1.zip

 133

7. 2)create stub and skeleton object by rmic tool

8.

9. rmic AdderRemote

10.

11. 3)start rmi registry in one command prompt

12.

13. rmiregistry 5000

14.

15. 4)start the server in another command prompt

16.

17. java MyServer

18.

19. 5)start the client application in another command prompt

20.

21. java MyClient

Output of this RMI example

C:\Windows\system32\cmd.exe - rmiregistry 5000

 134

C:\Windows’eystem32\cmd.exe - java MyServez

 135

Meaningful example of RMI application with database

Consider a scenario, there are two applications running in different machines. Let's say

MachineA and MachineB, machineA is located in United States and MachineB in India.

MachineB want to get list of all the customers of MachineA application.

Let's develop the RMI application by following the steps.

1) Create the table

First of all, we need to create the table in the database. Here, we are using Oracle10 database.

2) Create Customer class and Remote interface

File: Customer.java

1. package com.javatpoint;

2. public class Customer implements java.io.Serializable{

3. private int acc_no;

4. private String firstname,lastname,email;

5. private float amount;

6. //getters and setters

7. }

 Note: Customer class must be Serializable.

File: Bank.java

 136

1. package com.javatpoint;

2. import java.rmi.*;

3. import java.util.*;

4. interface Bank extends Remote{

5. public List<Customer> getCustomers()throws RemoteException;

6. }

3) Create the class that provides the implementation of Remote interface

File: BankImpl.java

1. package com.javatpoint;

2. import java.rmi.*;

3. import java.rmi.server.*;

4. import java.sql.*;

5. import java.util.*;

6. class BankImpl extends UnicastRemoteObject implements Bank{

7. BankImpl()throws RemoteException{}

8.

9. public List<Customer> getCustomers(){

10. List<Customer> list=new ArrayList<Customer>();

11. try{

12. Class.forName("oracle.jdbc.driver.OracleDriver");

13. Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","system",

"oracle");

14. PreparedStatement ps=con.prepareStatement("select * from customer400");

15. ResultSet rs=ps.executeQuery();

16.

17. while(rs.next()){

18. Customer c=new Customer();

19. c.setAcc_no(rs.getInt(1));

20. c.setFirstname(rs.getString(2));

21. c.setLastname(rs.getString(3));

22. c.setEmail(rs.getString(4));

23. c.setAmount(rs.getFloat(5));

24. list.add(c);

 137

25. }

26.

27. con.close();

28. }catch(Exception e){System.out.println(e);}

29. return list;

30. }//end of getCustomers()

31. }

4) Compile the class rmic tool and start the registry service by rmiregistry tool

5) Create and run the Server

File: MyServer.java

1. package com.javatpoint;

2. import java.rmi.*;

3. public class MyServer{

4. public static void main(String args[])throws Exception{

5. Remote r=new BankImpl();

6. Naming.rebind("rmi://localhost:6666/javatpoint",r);

7. }}

 138

6) Create and run the Client

File: MyClient.java

1. package com.javatpoint;

2. import java.util.*;

3. import java.rmi.*;

4. public class MyClient{

5. public static void main(String args[])throws Exception{

6. Bank b=(Bank)Naming.lookup("rmi://localhost:6666/javatpoint");

7.

8. List<Customer> list=b.getCustomers();

9. for(Customer c:list){

10. System.out.println(c.getAcc_no()+" "+c.getFirstname()+" "+c.getLastname()

11. +" "+c.getEmail()+" "+c.getAmount());

12. }

13.

14. }}

 139

WRITING RMI CLIENTS

To develop a client program −

 Create a client class from where your intended to invoke the remote object.

 Get the RMI registry using the getRegistry() method of the LocateRegistry class which

belongs to the package java.rmi.registry.

 Fetch the object from the registry using the method lookup() of the class Registry which

belongs to the package java.rmi.registry.

To this method, you need to pass a string value representing the bind name as a

parameter. This will return you the remote object.

 The lookup() returns an object of type remote, down cast it to the type Hello.

 Finally invoke the required method using the obtained remote object.

Following is an example of an RMI client program.

 140

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client {

private Client() {}

public static void main(String[] args) {

try {

// Getting the registry

Registry registry = LocateRegistry.getRegistry(null);

// Looking up the registry for the remote object

Hello stub = (Hello) registry.lookup("Hello");

// Calling the remote method using the obtained object

stub.printMsg();

// System.out.println("Remote method invoked");

} catch (Exception e) {

System.err.println("Client exception: " + e.toString());

e.printStackTrace();

}

}

}

Compiling the Application

To compile the application −

 Compile the Remote interface.

 Compile the implementation class.

 Compile the server program.

 Compile the client program.

Or,

 141

Open the folder where you have stored all the programs and compile all the Java files as shown

below.

Javac *.java

Executing the Application

Step 1 − Start the rmi registry using the following command.

start rmiregistry

This will start an rmi registry on a separate window as shown below.

 142

Step 2 − Run the server class file as shown below.

Java Server

Step 3 − Run the client class file as shown below.

java Client

Verification − As soon you start the client, you would see the following output in the server.

 143

ORB PROTOCOL

The ORB

This description of the Object Request Broker (ORB) provides background information to help

you understand how the ORB works.

The IBM® ORB that is provided with this release is used by WebSphere® Application Server. It

is one of the enterprise features of the Java™ Standard Edition. The ORB is both a tool and a

runtime component. It provides distributed computing through the CORBA Internet Inter-Orb

Protocol (IIOP) communication protocol. The protocol is defined by the Object Management

Group (OMG). The ORB runtime environment consists of a Java implementation of a CORBA

ORB. The ORB toolkit provides APIs and tools for both the Remote Method Invocation (RMI)

programming model and the Interface Definition Language (IDL) programming model.

 CORBA

The Common Object Request Broker Architecture (CORBA) is an open, vendor-

independent specification for distributed computing. It is published by the Object

Management Group (OMG).

 RMI and RMI-IIOP

This description compares the two types of remote communication in Java; Remote

Method Invocation (RMI) and RMI-IIOP.

 Java IDL or RMI-IIOP?

There are circumstances in which you might choose to use RMI-IIOP and others in which

you might choose to use Java IDL.

 RMI-IIOP limitations

You must understand the limitations of RMI-IIOP when you develop an RMI-IIOP

application, and when you deploy an existing CORBA application in a Java-IIOP

environment.

 Examples of client–server applications

CORBA, RMI (JRMP), and RMI-IIOP approaches are used to present three client-server

example applications. All the applications use the RMI-IIOP IBM ORB.

https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_corba.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_rmi_rmiiiop.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_idl_rmiiiop.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_rmiiiop_limit.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_examples.html

 144

 How the ORB works

This description tells you how the ORB works, by explaining what the ORB does

transparently for the client. An important part of the work is performed by the server side

of the ORB.

 Additional features of the ORB

Portable object adapter, fragmentation, portable interceptors, and Interoperable Naming

Service are described.

 Using the ORB

To use the Object Request Broker (ORB) effectively, you must understand the properties

that control the behavior of the ORB.

 ORB problem determination

One of your first tasks when debugging an ORB problem is to determine whether the

problem is in the client-side or in the server-side of the distributed application. Think of a

typical RMI-IIOP session as a simple, synchronous communication between a client that

is requesting access to an object, and a server that is providing it.

 CORBA support

The Java Platform, Standard Edition (JSE) supports, at a minimum, the specifications that

are defined in the compliance document from Oracle. In some cases, the IBM JSE ORB

supports more recent versions of the specifications.

ADVANCED JAVA PROGRAMMING

UNIT-V

JSP

INTRODUCTION JSP

JSP Tutorial

https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_workings.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_extras.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/understanding/orb_using.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/diag/problem_determination/orbpd.html
https://www.ibm.com/docs/en/SSYKE2_8.0.0/com.ibm.java.80.doc/user/corba.html

 145

JSP technology is used to create web application just like Servlet technology. It can be thought

of as an extension to Servlet because it provides more functionality than servlet such as

expression language, JSTL, etc.

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier to maintain than

Servlet because we can separate designing and development. It provides some additional features

such as Expression Language, Custom Tags, etc.

Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:

1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features of the Servlet

in JSP. In addition to, we can use implicit objects, predefined tags, expression language and

Custom tags in JSP, that makes JSP development easy.

2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with presentation

logic. In Servlet technology, we mix our business logic with the presentation logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The Servlet code

needs to be updated and recompiled if we have to change the look and feel of the application.

4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL, custom tags, etc. that reduces the code.

Moreover, we can use EL, implicit objects, etc.

The Lifecycle of a JSP Page

The JSP pages follow these phases:

 146

o Translation of JSP Page

o Compilation of JSP Page

o Classloading (the classloader loads class file)

o Instantiation (Object of the Generated Servlet is created).

o Initialization (the container invokes jspInit() method).

o Request processing (the container invokes _jspService() method).

o Destroy (the container invokes jspDestroy() method).

 Note: jspInit(), _jspService() and jspDestroy() are the life cycle methods of JSP.

As depicted in the above diagram, JSP page is translated into Servlet by the help of JSP

translator. The JSP translator is a part of the web server which is responsible for translating the

JSP page into Servlet. After that, Servlet page is compiled by the compiler and gets converted

into the class file. Moreover, all the processes that happen in Servlet are performed on JSP later

like initialization, committing response to the browser and destroy.

 147

Creating a simple JSP Page

To create the first JSP page, write some HTML code as given below, and save it by .jsp

extension. We have saved this file as index.jsp. Put it in a folder and paste the folder in the web-

apps directory in apache tomcat to run the JSP page.

index.jsp

Let's see the simple example of JSP where we are using the scriptlet tag to put Java code in the

JSP page. We will learn scriptlet tag later.

1. <html>

2. <body>

3. <% out.print(2*5); %>

4. </body>

5. </html>

It will print 10 on the browser.

How to run a simple JSP Page?

Follow the following steps to execute this JSP page:

o Start the server

o Put the JSP file in a folder and deploy on the server

o Visit the browser by the URL http://localhost:portno/contextRoot/jspfile, for example,

http://localhost:8888/myapplication/index.jsp

Do I need to follow the directory structure to run a simple JSP?

No, there is no need of directory structure if you don't have class files or TLD files. For example,

put JSP files in a folder directly and deploy that folder. It will be running fine. However, if you

are using Bean class, Servlet or TLD file, the directory structure is required.

 148

The Directory structure of JSP

The directory structure of JSP page is same as Servlet. We contain the JSP page outside the

WEB-INF folder or in any directory.

EXAMINING MVC AND JSP

MVC in JSP

1. MVC in JSP

2. Example of following MVC in JSP

MVC stands for Model View and Controller. It is a design pattern that separates the business

logic, presentation logic and data.

Controller acts as an interface between View and Model. Controller intercepts all the incoming

requests.

Model represents the state of the application i.e. data. It can also have business logic.

View represents the presentaion i.e. UI(User Interface).

https://www.javatpoint.com/MVC-in-jsp
https://www.javatpoint.com/MVC-in-jsp#mvcex

 149

Advantage of MVC (Model 2) Architecture

1. Navigation Control is centralized

2. Easy to maintain the large application

MVC Example in JSP

In this example, we are using servlet as a controller, jsp as a view component, Java Bean class as

a model.

In this example, we have created 5 pages:

o index.jsp a page that gets input from the user.

o ControllerServlet.java a servlet that acts as a controller.

o login-success.jsp and login-error.jsp files acts as view components.

o web.xml file for mapping the servlet.

File: index.jsp

1. <form action="ControllerServlet" method="post">

2. Name:<input type="text" name="name">

3. Password:<input type="password" name="password">

4. <input type="submit" value="login">

5. </form>

If you new to MVC, please visit Model1 vs Model2 first.

https://www.javatpoint.com/model-1-and-model-2-mvc-architecture

 150

File: ControllerServlet

1. package com.javatpoint;

2. import java.io.IOException;

3. import java.io.PrintWriter;

4. import javax.servlet.RequestDispatcher;

5. import javax.servlet.ServletException;

6. import javax.servlet.http.HttpServlet;

7. import javax.servlet.http.HttpServletRequest;

8. import javax.servlet.http.HttpServletResponse;

9. public class ControllerServlet extends HttpServlet {

10. protected void doPost(HttpServletRequest request, HttpServletResponse response)

11. throws ServletException, IOException {

12. response.setContentType("text/html");

13. PrintWriter out=response.getWriter();

14.

15. String name=request.getParameter("name");

16. String password=request.getParameter("password");

17.

18. LoginBean bean=new LoginBean();

19. bean.setName(name);

20. bean.setPassword(password);

21. request.setAttribute("bean",bean);

22.

23. boolean status=bean.validate();

24.

25. if(status){

26. RequestDispatcher rd=request.getRequestDispatcher("login-success.jsp");

27. rd.forward(request, response);

28. }

29. else{

30. RequestDispatcher rd=request.getRequestDispatcher("login-error.jsp");

31. rd.forward(request, response);

32. }

 151

33.

34. }

35.

36. @Override

37. protected void doGet(HttpServletRequest req, HttpServletResponse resp)

38. throws ServletException, IOException {

39. doPost(req, resp);

40. }

41. }

File: LoginBean.java

1. package com.javatpoint;

2. public class LoginBean {

3. private String name,password;

4.

5. public String getName() {

6. return name;

7. }

8. public void setName(String name) {

9. this.name = name;

10. }

11. public String getPassword() {

12. return password;

13. }

14. public void setPassword(String password) {

15. this.password = password;

16. }

17. public boolean validate(){

18. if(password.equals("admin")){

19. return true;

20. }

21. else{

22. return false;

23. }

 152

24. }

25. }

File: login-success.jsp

1. <%@page import="com.javatpoint.LoginBean"%>

2.

3. <p>You are successfully logged in!</p>

4. <%

5. LoginBean bean=(LoginBean)request.getAttribute("bean");

6. out.print("Welcome, "+bean.getName());

7. %>

File: login-error.jsp

1. <p>Sorry! username or password error</p>

2. <%@ include file="index.jsp" %>

File: web.xml

1. <?xml version="1.0" encoding="UTF-8"?>

2. <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3. xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd"

4. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-

app_3_0.xsd"

5. id="WebApp_ID" version="3.0">

6.

7. <servlet>

8. <servlet-name>s1</servlet-name>

9. <servlet-class>com.javatpoint.ControllerServlet</servlet-class>

10. </servlet>

11. <servlet-mapping>

12. <servlet-name>s1</servlet-name>

13. <url-pattern>/ControllerServlet</url-pattern>

14. </servlet-mapping>

15. </web-app>

download this example (developed using eclipse IDE)

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-
http://java.sun.com/xml/ns/javaee/web-
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
https://static.javatpoint.com/src/jsp/mvceclipse.zip

 153

[°jloc alh o st:9999.•‘mvc.•‘

localhost:9999 ’n .‘c

laote. Son oo Jaiswal

Output

WIFI

 154

You are snccessfu8y logged iii!.

JSP directives

1. JSP directives

1. page directive

2. Attributes of page directive

The jsp directives are messages that tells the web container how to translate a JSP page

into the corresponding servlet.

There are three types of directives:

o page directive

o include directive

o taglib directive

Syntax of JSP Directive

1. <%@ directive attribute="value" %>

JSP page directive

The page directive defines attributes that apply to an entire JSP page.

Syntax of JSP page directive

1. <%@ page attribute="value" %>

Attributes of JSP page directive

o import

o contentType

o extends

o info

https://www.javatpoint.com/jsp-page-directive
https://www.javatpoint.com/jsp-page-directive#page
https://www.javatpoint.com/jsp-page-directive#pageattr

 155

o buffer

o language

o isELIgnored

o isThreadSafe

o autoFlush

o session

o pageEncoding

o errorPage

o isErrorPage

1) import

The import attribute is used to import class,interface or all the members of a package.It is similar to

import ke interface.

Example of import attribute

1. <html>

2. <

bod

y>

3.

4. <%@ page import="java.util.Date" %>

5. Today is: <%= new Date() %>

 156

6.

7. </body>

8. </html>

2) contentType

The contentType attribute defines the MIME(Multipurpose Internet Mail Extension) type of the

HTTP response.The default value is "text/html;charset=ISO-8859-1".

Example of contentType attribute

1. <html>

2. <body>

3.

4. <%@ page contentType=application/msword %>

5. Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

3) extends

The extends attribute defines the parent class that will be inherited by the generated servlet.It is

rarely used.

4) info

This attribute simply sets the information of the JSP page which is retrieved later by using

getServletInfo() method of Servlet interface.

Example of info attribute

1. <html>

 157

2. <body>

3.

4. <%@ page info="composed by Sonoo Jaiswal" %>

5. Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

The web container will create a method getServletInfo() in the resulting servlet.For example:

1. public String getServletInfo() {

2. return "composed by Sonoo Jaiswal";

3. }

5) buffer

The buffer attribute sets the buffer size in kilobytes to handle output generated by the JSP

page.The default size of the buffer is 8Kb.

Example of buffer attribute

1. <html>

2. <body>

3.

4. <%@ page buffer="16kb" %>

5. Today is: <%= new java.util.Date() %>

6.

7. </body>

8. </html>

 158

6) language

The language attribute specifies the scripting language used in the JSP page. The

default value is "java".

7) isELIgnored

We can ignore the Expression Language (EL) in jsp by the isELIgnored attribute. By default its

value is false Language is enabled by default. We see Expression Language later.

1. <%@ page isELIgnored="true" %>//Now EL will be ignored

8) isThreadSafe

Servlet and JSP both are multithreaded.If you want to control this behaviour of JSP page, you can

use isThrea page directive.The value of isThreadSafe value is true.If you make it false, the web

container will serialize th

i.e. it will wait until the JSP finishes responding to a request before passing another request to it.If

you make t isThreadSafe attribute like:

<%@ page isThreadSafe="false" %>

The web container in such a case, will generate the servlet as:

1. public class SimplePage_jsp extends HttpJspBase

2. implements

SingleThreadModel{ 3.

.......

4. }

9) errorPage

The errorPage attribute is used to define the error page, if exception occurs in the

current page, it will be redirected to the error page.

 159

Example of errorPage attribute

1. //index.jsp

2. <html>

3. <body>

4.

5. <%@ page errorPage="myerrorpage.jsp" %>

6.

7. <%= 100/0 %>

8.

9. </body>

10. </html>

10) isErrorPage

The isErrorPage attribute is used to declare that the current page is the error page.

 Note: The exception object can only be used in the error page.

Example of isErrorPage attribute

1. //myerrorpage.jsp

2. <html>

3. <body>

4.

5. <%@ page isErrorPage="true" %>

6.

7. Sorry an exception occured!

8. The exception is: <%= exception %>

9.

10. </body>

11. </html>

 160

Exception Handling in JSP

1. Exception Handling in JSP

2. Example of exception handling in jsp by the elements of page directive

3. Example of exception handling in jsp by specifying the error-page element in web.xml

file

The exception is normally an object that is thrown at runtime. Exception Handling is the process

to handle the runtime errors. There may occur exception any time in your web application. So

handling exceptions is a safer side for the web developer. In JSP, there are two ways to perform

exception handling:

1. By errorPage and isErrorPage attributes of page directive

2. By <error-page> element in web.xml file

Example of exception handling in jsp by the elements of page directive

In this case, you must define and create a page to handle the exceptions, as in the error.jsp page.

The pages where may occur exception, define the errorPage attribute of page directive, as in the

process.jsp page.

There are 3 files:

o index.jsp for input values

o process.jsp for dividing the two numbers and displaying the result

o error.jsp for handling the exception

index.jsp

1. <form action="process.jsp">

2. No1:<input type="text" name="n1" />

3. No1:<input type="text" name="n2" />

4. <input type="submit" value="divide"/>

5. </form>

https://www.javatpoint.com/exception-handling-in-jsp
https://www.javatpoint.com/exception-handling-in-jsp#jspexcepex1
https://www.javatpoint.com/exception-handling-in-jsp#jspexcepex2
https://www.javatpoint.com/exception-handling-in-jsp#jspexcepex2
https://www.javatpoint.com/exception-handling-in-jsp#jspexcepex2

 161

process.jsp

1. <%@ page errorPage="error.jsp" %>

2. <%

3.

4. String num1=request.getParameter("n1");

5. String num2=request.getParameter("n2");

6.

7. int a=Integer.parseInt(num1);

8. int b=Integer.parseInt(num2);

9. int c=a/b;

10. out.print("division of numbers is: "+c);

11.

12. %>

error.jsp

1. <%@ page isErrorPage="true" %>

2.

3. <h3>Sorry an exception occured!</h3>

4.

5. Exception is: <%= exception %>

download this example

Output of this example:

https://static.javatpoint.com/src/jsp/ex1.zip

 162

 163

” :J””t”p” Tutorial -.jax’at”p oint ” ’” I o calhost:8888/ 'pro cess..:

t • IRCTC Online p asse... Java.| History | Featu... $g' Zero Account openi:..

Sort an exception secured!

Excepdon is: Jm•a.tang.Aritb ieticExceptiori: ,'' by zero

lac alh ost:8888/exe

; a¿ ”IRCTC OnIiñe”Passe.:'. O °•va” | Hist”oiy” | Fea”tu... @ Z ro”Acc”âunt openi...

dived

 164

Example of exception handling in jsp by specifying the error-page element in web.xml file

This approach is better because you don't need to specify the errorPage attribute in each jsp page.

Specifying the single entry in the web.xml file will handle the exception. In this case, either

specify exception-type or error-code with the location element. If you want to handle all the

exception, you will have to specify the java.lang.Exception in the exception-type element. Let's

see the simple example:

There are 4 files:

o web.xml file for specifying the error-page element

o index.jsp for input values

o process.jsp for dividing the two numbers and displaying the result

o error.jsp for displaying the exception

1) web.xml file if you want to handle any exception

1. <web-app>

2.

3. <error-page>

4. <exception-type>java.lang.Exception</exception-type>

5. <location>/error.jsp</location>

6. </error-page>

7.

8. </web-app>

This approach is better if you want to handle any exception. If you know any specific error code

and you want to handle that exception, specify the error-code element instead of exception-type

as given below:

1) web.xml file if you want to handle the exception for a specific error code

1. <web-app>

2.

3. <error-page>

 165

4. <error-code>500</error-code>

5. <location>/error.jsp</location>

6. </error-page>

7.

8. </web-app>

2) index.jsp file is same as in the above example

3) process.jsp

Now, you don't need to specify the errorPage attribute of page directive in the jsp page.

1. <%@ page errorPage="error.jsp" %>

2. <%

3.

4. String num1=request.getParameter("n1");

5. String num2=request.getParameter("n2");

6.

7. int a=Integer.parseInt(num1);

8. int b=Integer.parseInt(num2);

9. int c=a/b;

10. out.print("division of numbers is: "+c);

11.

12. %>

4) error.jsp file is same as in the above example

With this example we are going to demonstrate how to use a Bean in a JSP page. JavaServer

Pages (JSP) is a server-side programming technology that enables the creation of dynamic,

platform-independent method for building Web-based applications. JSP have access to the entire

family of Java APIs, including the JDBC API to access enterprise databases. In short, to use a

Bean in a JSP page you should:

USING JAVA BEANS IN JSP

 166

useBean

<%code fragment%>

 Create a Java Bean. The Java Bean is a specially constructed Java class that provides a

default, no-argument constructor, implements the Serializable interface and it has getter and

setter methods for its properties.

 Create a jsp page, using the scriptlet. It can contain any number of

JAVA language statements, variable or method declarations, or expressions that are valid in

the page scripting language.

 Use the action to declare the JavaBean for use in the JSP page. Once declared, the

bean becomes a scripting variable that can be accessed by both scripting elements and other

custom tags used in the JSP.

 Use the

methods of the bean.

action to access get methods and action to access set setProperty getProperty

 167

Let’s take a look at the code snippets of a sample Bean and a JSP page that uses it, below:

SampleBean.java

01 package com.javacodegeeks.snippets.enterprise;

02

03 import java.util.Date;

04

05 public class

SampleBean { 06

07 private String param1;

08 private Date param2 =

new Date(); 09

10 public String getParam1() {

11 return

param1; 12 }

13 public void setParam1(String param1) {

14 this.param1 =

param1; 15 }

16

17 public Date getParam2() {

18 return

param2; 19 }

20 public void setParam2(Date param2) {

21 this.param2 =

param2; 22 }

23

24 @Override

25 public String toString() {

26 return "SampleBean [param1=" + param1 + ", param2=" +

param2 + "]"; 27 }

28

29 }

UseBean.jsp

01 <%@ page language="java" contentType="text/html;charset=UTF-8" %>

 168

Sample Bean: SampleBean [param1=value1, param2=Thu Nov 17 21:28:03 EET 2011]

param1: value1 param2: Thu Nov 17 21:28:03 EET 2011

02 <%@ page import="com.javacodegeeks.snippets.enterprise.SampleBean"%>

03

04 <html>

05

06 <head>

07 <title>Java Code Geeks Snippets - Use a Bean in JSP

Page</title> 08 </head>

09

10 <body> 11

12 <jsp:useBean id="sampleBean" class="com.javacodegeeks.snippets.enterprise.SampleBean"
scope="se

13

14

15

16

17

18

19

20

21

22

URL:

<%-- intialize bean properties --%>

<jsp:setProperty name="sampleBean" property="param1" value="value1" />

</jsp:useBean>

Sample Bean: <%= sampleBean %>

param1: <jsp:getProperty name="sampleBean" property="param1" />

param2: <jsp:getProperty name="sampleBean" property="param2" />

</body>

Output:

http://myhost:8080/jcgsnippets/UseBean.jsp

 169

<%@ page import = "java.io.*,java.util.*,javax.mail.*"%>

<%@ page import = "javax.mail.internet.*,javax.activation.*"%>

<%@ page import = "javax.servlet.http.*,javax.servlet.*" %>

In this chapter, we will discuss how to send emails using JSP. To send an email using a JSP,

you should have the JavaMail API and the Java Activation Framework (JAF) installed on

your machine.

 You can download the latest version of JavaMail (Version 1.2) from the Java's standard

website.

 You can download the latest version of JavaBeans Activation Framework JAF (Version

1.0.2) from the Java's standard website.

Download and unzip these files, in the newly-created top-level directories. You will find a

number of jar files for both the applications. You need to add the mail.jar and

the activation.jar files in your CLASSPATH.

Send a Simple Email

Here is an example to send a simple email from your machine. It is assumed that

your localhost is connected to the Internet and that it is capable enough to send an email. Make

sure all the jar files from the Java Email API package and the JAF package are available in

CLASSPATH.

working with java mail

https://java.sun.com/products/javamail/
https://www.oracle.com/technetwork/java/javase/jaf-136260.html
https://www.oracle.com/technetwork/java/javase/jaf-136260.html
https://www.oracle.com/technetwork/java/javase/jaf-136260.html

 170

<%

String result;

// Recipient's email ID needs to be mentioned.

String to = "abcd@gmail.com";

// Sender's email ID needs to be mentioned

String from = "mcmohd@gmail.com";

// Assuming you are sending email from localhost

String host = "localhost";

// Get system properties object

Properties properties = System.getProperties();

// Setup mail server

properties.setProperty("mail.smtp.host", host);

// Get the default Session object.

Session mailSession = Session.getDefaultInstance(properties);

try {

// Create a default MimeMessage object.

MimeMessage message = new MimeMessage(mailSession);

// Set From: header field of the header.

message.setFrom(new InternetAddress(from));

// Set To: header field of the header.

message.addRecipient(Message.RecipientType.TO,

new InternetAddress(to));

mailto:abcd@gmail.com
mailto:mcmohd@gmail.com

 171

// Set Subject: header field

message.setSubject("This is the Subject Line!");

// Now set the actual message

message.setText("This is actual message");

// Send message

Transport.send(message);

result = "Sent message successfully. .. ";

} catch (MessagingException mex) {

mex.printStackTrace();

result = "Error: unable to send message. .. ";

}

%>

<html>

<head>

<title>Send Email using JSP</title>

</head>

<body>

<center>

<h1>Send Email using JSP</h1>

</center>

<p align = "center">

<%

out.println("Result: " + result + "\n");

%>

</p>

</body>

 172

void addRecipients(Message.RecipientType type, Address[] addresses)

throws MessagingException

Let us now put the above code in SendEmail.jsp file and call this JSP using the

URL http://localhost:8080/SendEmail.jsp. This will help send an email to the given email

ID abcd@gmail.com. You will receive the following response −

Send Email using JSP

Result: Sent message successfully....

If you want to send an email to multiple recipients, then use the following methods to specify

multiple email IDs −

Here is the description of the parameters −

 type − This would be set to TO, CC or BCC. Here CC represents Carbon Copy and BCC

represents Black Carbon Copy. Example Message.RecipientType.TO

 addresses − This is the array of email ID. You would need to use the InternetAddress()

method while specifying email IDs

Send an HTML Email

Here is an example to send an HTML email from your machine. It is assumed that

your localhost is connected to the Internet and that it is capable enough to send an email. Make

sure all the jar files from the Java Email API package and the JAF package are available in

CLASSPATH.

This example is very similar to the previous one, except that here we are using

the setContent() method to set content whose second argument is "text/html" to specify that

the HTML content is included in the message.

Using this example, you can send as big an HTML content as you require.

</html>

mailto:abcd@gmail.com

 173

<%@ page import = "java.io.*,java.util.*,javax.mail.*"%>

<%@ page import = "javax.mail.internet.*,javax.activation.*"%>

<%@ page import = "javax.servlet.http.*,javax.servlet.*" %>

<%

String result;

// Recipient's email ID needs to be mentioned.

String to = "abcd@gmail.com";

// Sender's email ID needs to be mentioned

String from = "mcmohd@gmail.com";

// Assuming you are sending email from localhost

String host = "localhost";

// Get system properties object

Properties properties = System.getProperties();

// Setup mail server

properties.setProperty("mail.smtp.host", host);

// Get the default Session object.

Session mailSession = Session.getDefaultInstance(properties);

try {

// Create a default MimeMessage object.

MimeMessage message = new MimeMessage(mailSession);

// Set From: header field of the header.

message.setFrom(new InternetAddress(from));

mailto:abcd@gmail.com
mailto:mcmohd@gmail.com

 174

// Set To: header field of the header.

message.addRecipient(Message.RecipientType.TO, new InternetAddress(to));

// Set Subject: header field

message.setSubject("This is the Subject Line!");

// Send the actual HTML message, as big as you like

message.setContent("<h1>This is actual message</h1>", "text/html");

// Send message

Transport.send(message);

result = "Sent message successfully. .. ";

} catch (MessagingException mex) {

mex.printStackTrace();

result = "Error: unable to send message. .. ";

}

%>

<html>

<head>

<title>Send HTML Email using JSP</title>

</head>

<body>

<center>

<h1>Send Email using JSP</h1>

</center>

<p align = "center">

<%

 175

<%@ page import = "java.io.*,java.util.*,javax.mail.*"%>

<%@ page import = "javax.mail.internet.*,javax.activation.*"%>

<%@ page import = "javax.servlet.http.*,javax.servlet.*" %>

<%

String result;

// Recipient's email ID needs to be mentioned.

String to = "abcd@gmail.com";

// Sender's email ID needs to be mentioned

String from = "mcmohd@gmail.com";

// Assuming you are sending email from localhost

String host = "localhost";

// Get system properties object

Properties properties = System.getProperties();

// Setup mail server

properties.setProperty("mail.smtp.host", host);

Let us now use the above JSP to send HTML message on a given email ID.

Send Attachment in Email

Following is an example to send an email with attachment from your machine −

out.println("Result: " + result + "\n");

%>

</p>

</body>

</html>

mailto:abcd@gmail.com
mailto:mcmohd@gmail.com

 176

// Get the default Session object.

Session mailSession = Session.getDefaultInstance(properties);

try {

// Create a default MimeMessage object.

MimeMessage message = new MimeMessage(mailSession);

// Set From: header field of the header.

message.setFrom(new InternetAddress(from));

// Set To: header field of the header.

message.addRecipient(Message.RecipientType.TO, new InternetAddress(to));

// Set Subject: header field

message.setSubject("This is the Subject Line!");

// Create the message part

BodyPart messageBodyPart = new MimeBodyPart();

// Fill the message

messageBodyPart.setText("This is message body");

// Create a multipart message

Multipart multipart = new MimeMultipart();

// Set text message part

multipart.addBodyPart(messageBodyPart);

// Part two is attachment

messageBodyPart = new MimeBodyPart();

 177

String filename = "file.txt";

DataSource source = new FileDataSource(filename);

messageBodyPart.setDataHandler(new DataHandler(source));

messageBodyPart.setFileName(filename);

multipart.addBodyPart(messageBodyPart);

// Send the complete message parts

message.setContent(multipart);

// Send message

Transport.send(message);

String title = "Send Email";

result = "Sent message successfully. .. ";

} catch (MessagingException mex) {

mex.printStackTrace();

result = "Error: unable to send message. .. ";

}

%>

<html>

<head>

<title>Send Attachment Email using JSP</title>

</head>

<body>

<center>

<h1>Send Attachment Email using JSP</h1>

</center>

<p align = "center">

 178

String to = request.getParameter("to");

String from = request.getParameter("from");

String subject = request.getParameter("subject");

String messageText = request.getParameter("body");

Let us now run the above JSP to send a file as an attachment along with a message on a given

email ID.

User Authentication Part

If it is required to provide user ID and Password to the email server for authentication purpose,

then you can set these properties as follows −

props.setProperty("mail.user", "myuser");

props.setProperty("mail.password", "mypwd");

Rest of the email sending mechanism will remain as explained above.

Using Forms to Send Email

You can use HTML form to accept email parameters and then you can use the request object to

get all the information as follows −

Once you have all the information, you can use the above mentioned programs to send email.

JavaMail Tutorial

1. Java Mail API

2. Protocols used in JavaMail API

3. SMTP

4. POP

5. IMAP

6. MIME

<%out.println("Result: " + result + "\n");%>

</p>

</body>

</html>

https://www.javatpoint.com/java-mail-api-tutorial
https://www.javatpoint.com/java-mail-api-tutorial#mailprotocols
https://www.javatpoint.com/java-mail-api-tutorial#mailsmtp
https://www.javatpoint.com/java-mail-api-tutorial#mailpop
https://www.javatpoint.com/java-mail-api-tutorial#mailimap
https://www.javatpoint.com/java-mail-api-tutorial#mailmime

 179

7. NNTP and Others

1. Java Mail Architecture

2. Java Mail API Core Classes

The JavaMail is an API that is used to compose, write and read electronic messages (emails).

The JavaMail API provides protocol-independent and plateform-independent framework for

sending and receiving mails.

The javax.mail and javax.mail.activation packages contains the core classes of JavaMail API.

The JavaMail facility can be applied to many events. It can be used at the time of registering the

user (sending notification such as thanks for your interest to my site), forgot password (sending

password to the users email id), sending notifications for important updates etc. So there can be

various usage of java mail api.

Do You Know ?

o How to send and receive email using JavaMail API ?

o How to send email through gmail server ?
o How to send and receive email with attachment ?

o How to send email with html content including images?

o How to forward and delete the email ?

Protocols used in JavaMail API

There are some protocols that are used in JavaMail API.

o SMTP

o POP

o IMAP

o MIME

o NNTP and others

https://www.javatpoint.com/java-mail-api-tutorial#mailnntp
https://www.javatpoint.com/java-mail-api-tutorial#mailarch
https://www.javatpoint.com/java-mail-api-tutorial#mailclasses

 180

SMTP

SMTP is an acronym for Simple Mail Transfer Protocol. It provides a mechanism to deliver the

email. We can use Apache James server, Postcast server, cmail server etc. as an SMTP server.

But if we purchase the host space, an SMTP server is bydefault provided by the host provider.

For example, my smtp server is mail.javatpoint.com. If we use the SMTP server provided by the

host provider, authentication is required for sending and receiving emails.

POP

POP is an acronym for Post Office Protocol, also known as POP3. It provides a mechanism to

receive the email. It provides support for single mail box for each user. We can use Apache

James server, cmail server etc. as an POP server. But if we purchase the host space, an POP

server is bydefault provided by the host provider. For example, the pop server provided by the

host provider for my site is mail.javatpoint.com. This protocol is defined in RFC 1939.

IMAP

IMAP is an acronym for Internet Message Access Protocol. IMAP is an advanced protocol for

receiving messages. It provides support for multiple mail box for each user ,in addition to,

mailbox can be shared by multiple users. It is defined in RFC 2060.

MIME

Multiple Internet Mail Extension (MIME) tells the browser what is being sent e.g. attachment, format of the

known as mail transfer protocol but it is used by your mail program.

NNTP and Others

There are many protocols that are provided by third-party providers. Some of them are Network

News Transfer Protocol (NNTP), Secure Multipurpose Internet Mail Extensions (S/MIME) etc.

JavaMail Architecture

The java application uses JavaMail API to compose, send and receive emails. The JavaMail API

uses SPI (Service Provider Interfaces) that provides the intermediatory services to the java

application to deal with the different protocols. Let's understand it with the figure given below:

 181

JavaMail API Core Classes

There are two packages that are used in Java Mail API: javax.mail and javax.mail.internet

package. These packages contains many classes for Java Mail API. They are:

o javax.mail.Session class

o javax.mail.Message class

o javax.mail.internet.MimeMessage class

o javax.mail.Address class

o javax.mail.internet.InternetAddress class

o javax.mail.Authenticator class

 182

o javax.mail.PasswordAuthentication class

o javax.mail.Transport class

o javax.mail.Store class

o javax.mail.Folder class etc.

We will know about these class one by one when it is getting used.

JMS Tutorial

JMS (Java Message Service) is an API that provides the facility to create, send and read

messages. It provides loosely coupled, reliable and asynchronous communication.

JMS is also known as a messaging service.

Understanding Messaging

Messaging is a technique to communicate applications or software components.

JMS is mainly used to send and receive message from one application to another.

Requirement of JMS

Generally, user sends message to application. But, if we want to send message from one

application to another, we need to use JMS API.

Consider a scenario, one application A is running in INDIA and another application B is running

in USA. To send message from A application to B, we need to use JMS.

Advantage of JMS

 183

1) Asynchronous: To receive the message, client is not required to send request. Message will

arrive automatically to the client.

2) Reliable: It provides assurance that message is delivered.

Messaging Domains

There are two types of messaging domains in JMS.

1. Point-to-Point Messaging Domain

2. Publisher/Subscriber Messaging Domain

1) Point-to-Point (PTP) Messaging Domain

In PTP model, one message is delivered to one receiver only. Here, Queue is used as a message

oriented middleware (MOM).

The Queue is responsible to hold the message until receiver is ready.

In PTP model, there is no timing dependency between sender and receiver.

2) Publisher/Subscriber (Pub/Sub) Messaging Domain

 184

In Pub/Sub model, one message is delivered to all the subscribers. It is like broadcasting.

Here, Topic is used as a message oriented middleware that is responsible to hold and deliver

messages.

In PTP model, there is timing dependency between publisher and subscriber.

JMS Programming Model

 185

JMS Queue Example
To develop JMS queue example, you need to install any application server. Here, we are

using glassfish3 server where we are creating two JNDI.

1. Create connection factory named myQueueConnectionFactory

2. Create destination resource named myQueue

After creating JNDI, create server and receiver application. You need to run server and receiver

in different console. Here, we are using eclipse IDE, it is opened in different console by default.

1) Create connection factory and destination resource

Open server admin console by the URL http://localhost:4848

Login with the username and password.

Click on the JMS Resource -> Connection Factories -> New, now write the pool name and

select the Resource Type as QueueConnectionFactory then click on ok button.

 186

Click on the JMS Resource -> Destination Resources -> New, now write the JNDI name and

physical destination name then click on ok button.

2) Create sender and receiver application

Let's see the Sender and Receiver code. Note that Receiver is attached with listener which will be

invoked when user sends message.

File: MySender.java

1. import java.io.BufferedReader;

2. import java.io.InputStreamReader;

3. import javax.naming.*;

4. import javax.jms.*;

 187

6. public class MySender {

7. public static void main(String[] args)

8. try

9. { //Create and start connection

10. InitialContext ctx=new InitialContext();

11. QueueConnectionFactory f=(QueueConnectionFactory)ctx.lookup("myQueueConnection

Factory");

12. QueueConnection con=f.createQueueConnection();

13. con.start();

14. //2) create queue session

15. QueueSession ses=con.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

16. //3) get the Queue object

17. Queue t=(Queue)ctx.lookup("myQueue");

18. //4)create QueueSender object

19. QueueSender sender=ses.createSender(t);

20. //5) create TextMessage object

21. TextMessage msg=ses.createTextMessage();

22.

23. //6) write message

24. BufferedReader b=new BufferedReader(new InputStreamReader(System.in));

25. while(true)

26. {

27. System.out.println("Enter Msg, end to terminate:");

28. String s=b.readLine();

29. if (s.equals("end"))

30. break;

31. msg.setText(s);

32. //7) send message

33. sender.send(msg);

34. System.out.println("Message successfully sent.");

35. }

36. //8) connection close

37. con.close();

 188

38. }catch(Exception e){System.out.println(e);}

39. }

40. }

File: MyReceiver.java

1. import javax.jms.*;

2. import javax.naming.InitialContext;

3.

4. public class MyReceiver {

5. public static void main(String[] args) {

6. try{

7. //1) Create and start connection

8. InitialContext ctx=new InitialContext();

9. QueueConnectionFactory f=(QueueConnectionFactory)ctx.lookup("myQueueConnection

Factory");

10. QueueConnection con=f.createQueueConnection();

11. con.start();

12. //2) create Queue session

13. QueueSession ses=con.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

14. //3) get the Queue object

15. Queue t=(Queue)ctx.lookup("myQueue");

16. //4)create QueueReceiver

17. QueueReceiver receiver=ses.createReceiver(t);

18.

19. //5) create listener object

20. MyListener listener=new MyListener();

21.

22. //6) register the listener object with receiver

23. receiver.setMessageListener(listener);

24.

25. System.out.println("Receiver1 is ready, waiting for messages...");

26. System.out.println("press Ctrl+c to shutdown...");

 189

27. while(true){

28. Thread.sleep(1000);

29. }

30. }catch(Exception e){System.out.println(e);}

31. }

32.

33. }

File: MyListener.java

1. import javax.jms.*;

2. public class MyListener implements MessageListener {

3.

4. public void onMessage(Message m) {

5. try{

6. TextMessage msg=(TextMessage)m;

7.

8. System.out.println("following message is received:"+msg.getText());

9. }catch(JMSException e){System.out.println(e);}

10. }

11. }

Run the Receiver class first then Sender class.

JMS Topic Example

It is same as JMS Queue, but you need to change Queue to Topic, Sender to Publisher and

Receiver to Subscriber.

You need to create 2 JNDI named myTopicConnectionFactory and myTopic.

File: MySender.java

 190

1. import java.io.BufferedReader;

2. import java.io.InputStreamReader;

3. import javax.naming.*;

4. import javax.jms.*;

5.

6. public class MySender {

7. public static void main(String[] args) {

8. try

9. { //Create and start connection

10. InitialContext ctx=new InitialContext();

11. TopicConnectionFactory f=(TopicConnectionFactory)ctx.lookup("myTopicConnectionF

actory");

12. TopicConnection con=f.createTopicConnection();

13. con.start();

14. //2) create queue session

15. TopicSession ses=con.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

16. //3) get the Topic object

17. Topic t=(Topic)ctx.lookup("myTopic");

18. //4)create TopicPublisher object

19. TopicPublisher publisher=ses.createPublisher(t);

20. //5) create TextMessage object

21. TextMessage msg=ses.createTextMessage();

22.

23. //6) write message

24. BufferedReader b=new BufferedReader(new InputStreamReader(System.in));

25. while(true)

26. {

27. System.out.println("Enter Msg, end to terminate:");

28. String s=b.readLine();

29. if (s.equals("end"))

30. break;

 191

31. msg.setText(s);

32. //7) send message

33. publisher.publish(msg);

34. System.out.println("Message successfully sent.");

35. }

36. //8) connection close

37. con.close();

38. }catch(Exception e){System.out.println(e);}

39. }

40. }

File: MyReceiver.java

1. import javax.jms.*;

2. import javax.naming.InitialContext;

3.

4. public class MyReceiver {

5. public static void main(String[] args) {

6. try {

7. //1) Create and start connection

8. InitialContext ctx=new InitialContext();

9. TopicConnectionFactory f=(TopicConnectionFactory)ctx.lookup("myTopicConnectionF

actory");

10. TopicConnection con=f.createTopicConnection();

11. con.start();

12. //2) create topic session

13. TopicSession ses=con.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

14. //3) get the Topic object

15. Topic t=(Topic)ctx.lookup("myTopic");

16. //4)create TopicSubscriber

17. TopicSubscriber receiver=ses.createSubscriber(t);

18.

19. //5) create listener object

 192

20. MyListener listener=new MyListener();

21.

22. //6) register the listener object with subscriber

23. receiver.setMessageListener(listener);

24.

25. System.out.println("Subscriber1 is ready, waiting for messages...");

26. System.out.println("press Ctrl+c to shutdown...");

27. while(true){

28. Thread.sleep(1000);

29. }

30. }catch(Exception e){System.out.println(e);}

31. }

32.

33. }

File: MyListener.java

1. import javax.jms.*;

2. public class MyListener implements MessageListener {

3.

4. public void onMessage(Message m) {

5. try{

6. TextMessage msg=(TextMessage)m;

7.

8. System.out.println("following message is received:"+msg.getText());

9. }catch(JMSException e){System.out.println(e);}

10. }

11. }

	a) The init() Method
	b) The service() Method
	c) The doGet() Method
	d) The doPost() Method
	e) The destroy() Method
	Important points
	Application Server
	Compiling a Servlet
	Servlet Deployment
	Overview of some important interfaces and classes javax.servlet package interface
	javax.servlet package classes
	javax.servlet.http package interface
	javax.servlet.http package classes
	How Cookie works
	Types of Cookie
	Non-persistent cookie
	Persistent cookie
	Advantage of Cookies
	Disadvantage of Cookies
	Cookie class
	Useful Methods of Cookie class
	Other methods required for using Cookies
	How to create Cookie?
	How to delete Cookie?
	How to get Cookies?
	Simple example of Servlet Cookies
	index.html
	FirstServlet.java
	SecondServlet.java
	web.xml
	OUTPUT
	Why use Session Tracking?
	Session Tracking Techniques
	Session Tracking Example
	8. Security Issues
	9. using JDBC in Servlets
	5. To start with the basic concept of interfacing:
	Step 2: Implementation of required Web-pages
	Step 3: Creation of Java Servlet program with JDBC Connection
	 Step 5: Get the data from the HTML file
	Output:
	Hyperlink based web page to servlet communication
	Example Application (hyperlink-based HTML to servlet program communication)
	Deployment Directory Structure
	WishSrv.java
	web.xml
	Explanation of the above Program
	ABC.html:
	WishSrv.java:

	• printWriter pw;res.getWriter();
	• res.setContentType(“text/html”);
	• Calendar cl=Calendar.getlnstance();
	• int h=cl.get(Calendar.HOUR_OF_DAY);
	There are two types of Applets:
	Example on Application of Applet to Servlet Communication
	Source Code
	MyApplet.java
	web.xml
	Main.html
	MyApplet.java
	Form.html

	Components and Containers
	Introspection and Discovery
	Persistence
	Events
	Visual Design
	The JavaBeans Development Kit Inside the BDK
	Using the BeanBox
	Understanding the Example Beans
	Developing Beans
	Bean Properties
	Accessor Methods
	Methods Used with Simple Properties
	Methods Used with Indexed Properties
	Methods Used with Bound Properties
	Methods Used with Constrained Properties
	Introspection
	Connecting Events to Interface Methods
	Inside java.beans
	Design Support
	Introspection Support
	The Introspector Class
	The BeanInfo Interface
	The SimpleBeanInfo Class
	The FeatureDescriptor Class and Its Subclasses

	Change Event•Handling Support
	Aggregation
	The java.beans.beancontext Package
	Developing Beans A Gauge Bean
	How the Gauge Bean Works
	The GaugeBeanInfo Class
	The Gauge.mf Manifest File

	Notable Beans
	Installing the HotJava HTML Component
	Running the HotJava HTML Component in the BeanBox
	Using InfoBus
	The InfoBus API
	Glasgow Developments
	The Extensible Runtime Containment and Services Protocol
	BeanContext Event Handling
	The JavaBeans Activation Framework
	Choosing the Right Bean Type
	Persistence Management Alternatives
	Transaction Design and Management Options
	Container-Managed Transactions Are Simpler to Develop and Perform Well
	Satisfying Application Requirements with WebLogic Server EJBs
	FEATURES AND DESIGN PATTERN
	Figure 4-2 Generating EJB Container Classes

	Package
	4 . EJB SESSION BEAN
	10. Perl control structures and operators
	Table of Contents
	11. Functions and scope FUNCTIONS
	Developing applications by RMI
	Declaring and Implentation
	Declaring the Remote Interfaces Being Implemented
	Defining the Constructor for the Remote Object
	Providing Implementations for Each Remote Method
	Passing Objects in RMI
	Implementing the Server's main Method
	Creating and Installing a Security Manager
	Making the Remote Object Available to Clients
	Stubs and Skeleton
	Understanding stub and skeleton
	stub
	skeleton
	1) create the remote interface
	2) Provide the implementation of the remote interface
	3) create the stub and skeleton objects using the rmic tool.
	4) Start the registry service by the rmiregistry tool
	5) Create and run the server application
	6) Create and run the client application
	Output of this RMI example
	1) Create the table
	2) Create Customer class and Remote interface
	Note: Customer class must be Serializable.
	3) Create the class that provides the implementation of Remote interface
	4) Compile the class rmic tool and start the registry service by rmiregistry tool
	6) Create and run the Client

	WRITING RMI CLIENTS
	ORB PROTOCOL
	Advantages of JSP over Servlet
	1) Extension to Servlet
	2) Easy to maintain
	3) Fast Development: No need to recompile and redeploy
	4) Less code than Servlet

	The Lifecycle of a JSP Page
	Note: jspInit(), _jspService() and jspDestroy() are the life cycle methods of JSP.

	Creating a simple JSP Page
	index.jsp
	How to run a simple JSP Page?
	Do I need to follow the directory structure to run a simple JSP?
	The Directory structure of JSP
	EXAMINING MVC AND JSP
	Advantage of MVC (Model 2) Architecture

	MVC Example in JSP
	29. else{
	19. return true;
	21. else{
	Output

	JSP directives
	Syntax of JSP Directive
	JSP page directive
	Syntax of JSP page directive
	Attributes of JSP page directive
	1) import
	Example of import attribute
	2) contentType
	Example of contentType attribute
	3) extends
	4) info
	Example of info attribute
	5) buffer
	Example of buffer attribute
	6) language
	7) isELIgnored
	8) isThreadSafe
	9) errorPage
	Example of errorPage attribute
	10) isErrorPage
	Note: The exception object can only be used in the error page.

	Exception Handling in JSP
	Example of exception handling in jsp by the elements of page directive
	index.jsp
	process.jsp
	error.jsp

	Output of this example:
	1) web.xml file if you want to handle any exception
	1) web.xml file if you want to handle the exception for a specific error code
	2) index.jsp file is same as in the above example
	4) error.jsp file is same as in the above example

	SampleBean.java
	UseBean.jsp
	URL:
	Output:
	Send Email using JSP
	JavaMail Tutorial
	Protocols used in JavaMail API
	SMTP
	POP
	IMAP
	MIME
	NNTP and Others
	JavaMail API Core Classes
	JMS Tutorial
	1) Create connection factory and destination resource
	2) Create sender and receiver application

	8. try
	25. while(true)
	30. break;
	8. try
	25. while(true)
	30. break;
	6. try {

