
 
1 

 

 

 



 
2 

 

 

 
 
 
SUBJECT: OBJECT ORIENTED ANALYSIS AND DESIGN 
 
Unit 1: System Development - Object Basics - Development Life Cycle - 
Methodologies -Patterns - Frameworks - Unified Approach – UML. 
 
Unit-2: Use-Case Models - Object Analysis - Object relations - Attributes - 
Methods – Class andObject responsibilities - Case Studies. 
 
Unit 3: Design Processes - Design Axioms - Class Design - Object Storage – 
ObjectInteroperability - Case Studies. 
 
Unit-4: User Interface Design - View layer Classes - Micro-Level Processes - 
View LayerInterface - Case Studies. 
 
Unit-5: Quality Assurance Tests - Testing Strategies - Object orientation on testing 
- Test Cases- test Plans - Continuous testing - Debugging Principles - System 
Usability - Measuring UserSatisfaction - Case Studies. 
 
 
Recommended Texts 
(i) Ali Bahrami, Reprint 2009, Object Oriented Systems Development, Tata 
McGraw Hill , International Edition. 
 
 
Reference Books 
(i) G. Booch, 1999, Object Oriented Analysis and design, 2nd Edition, Addison 
Wesley, Boston 
(ii) Roger S.Pressman, 2010, Software Engineering A Practitioner’s approach, 

Seventh Edition, Tata McGraw Hill, New Delhi. 
(iii) Rumbaugh, Blaha, Premerlani , Eddy, Lorensen, 2003, Object Oriented 
Modeling And design , Pearson education, Delhi. 
 
 
 
 
 
 



 
3 

 

 

 
 

TABLE OF CONTENTS 

 

S.NO                                                                         TITLE PAGENO 

   

UNIT I INTRODUCTION  

1.1 System Development 5 

1.2 Object Basics  6 

1.3 Development Life Cycle  16 

1.4 Methodologies  19 

1.5 Patterns  25 

1.6 Frameworks 29 

1.7 Unified Approach  38 

1.8 UML 39 

UNIT II   

2.1 Use-Case Models  52 

2.2 Object Analysis  68 

2.3 Object relations  95 

2.4 Attributes  104 

2.5 Methods  105 

2.6 Class and Object responsibilities  106 

UNIT III   

3.1 Design Processes  114 

3.2 Design Axioms  115 

3.3 Class Design  117 

3.4 Object Storage  126 

3.5 Object Interoperability  127 

UNIT IV   



 
4 

 

 

4.1 User Interface Design. 140 

4.2 View layer Classes  142 

4.3 Micro-Level Processes  145 

4.4 View Layer Interface  147 

UNIT V   

5.1 Quality Assurance Tests  179 

5.2 Testing Strategies  179 

5.3 Object orientation on testing  181 

5.4 Test Cases  189 

5.5 Test Plans  190 

5.6 Continuous testing  191 

5.7 Debugging Principles  192 

5.8 System Usability   193 

5.9 Measuring User Satisfaction  197 

 

UNIT-1 

System Development 

We know that the Object-Oriented Modeling (OOM) technique visualizes things in an 
application by using models organized around objects. Any software development approach 
goes through the following stages − 

 Analysis, 
 Design, and 
 Implementation. 

In object-oriented software engineering, the software developer identifies and organizes the 
application in terms of object-oriented concepts, prior to their final representation in any specific 
programming language or software tools 

Phases in Object-Oriented Software Development 

The major phases of software development using object–oriented methodology are object-
oriented analysis, object-oriented design, and object-oriented implementation. 

 



 
5 

 

 

Object–Oriented Analysis 

In this stage, the problem is formulated, user requirements are identified, and then a model is 
built based upon real–world objects. The analysis produces models on how the desired system 
should function and how it must be developed. The models do not include any implementation 
details so that it can be understood and examined by any non–technical application expert. 

Object–Oriented Design 

Object-oriented design includes two main stages, namely, system design and object design. 

System Design 

In this stage, the complete architecture of the desired system is designed. The system is 
conceived as a set of interacting subsystems that in turn is composed of a hierarchy of interacting 
objects, grouped into classes. System design is done according to both the system analysis model 
and the proposed system architecture. Here, the emphasis is on the objects comprising the system 
rather than the processes in the system. 

Object Design 

In this phase, a design model is developed based on both the models developed in the system 
analysis phase and the architecture designed in the system design phase. All the classes required 
are identified. The designer decides whether − 

 new classes are to be created from scratch, 
 any existing classes can be used in their original form, or 
 new classes should be inherited from the existing classes. 

The associations between the identified classes are established and the hierarchies of classes are 
identified. Besides, the developer designs the internal details of the classes and their associations, 
i.e., the data structure for each attribute and the algorithms for the operations. 

Object–Oriented Implementation and Testing 

In this stage, the design model developed in the object design is translated into code in an 
appropriate programming language or software tool. The databases are created and the specific 
hardware requirements are ascertained. Once the code is in shape, it is tested using specialized 
techniques to identify and remove the errors in the code. 

Object Basics  
The object model visualizes the elements in a software application in terms of objects. In this 
chapter, we will look into the basic concepts and terminologies of object–oriented systems. 

Classes and Objects:  
Nature of Object, Relationships among objects, nature of a class, 



 
6 

 

 

Relationshipamong classes, interplay of classes and objects, Identifying classes 
and objects, Importance of proper classification, Identifying classes and objects, 
Key abstractions and mechanisms 

  
 An object has state, behavior, and identity; the structure and behavior of 
similar objects are defined in their common class; the terms instance and object are 
interchangeable. 
State 

The state of an object encompasses all of the (usually static) properties of the object plus 
the current (usually dynamic) values of each of these properties. 
  

Consider a vending machine that dispenses soft drinks. The usual behavior of such 
objects is thatwhen someone puts money in a slot and pushes a button to make a selection, a 
drink emerges from themachine. What happens if a user first makes a selection and then puts 
money in the slot? Most vendingmachines just sit and do nothing because the user has violated 
the basic assumptions of their operation.Stated another way, the vending machine was in a state 
(of waiting for money) that the user ignored (bymaking a selection first). Similarly, suppose that 
the user ignores the warning light that says, “Correctchange only,” and puts in extra money. 

Most machines are user-hostile; they will happily swallow theexcessmoney. 

Figure:EmployeeClasswith Attributes 

 
 

Figure:EmployeeObjectsTomandKaitlyn 

Behavior 

Behavior is how an object acts and reacts, in terms of its state changeable state of 
object affect itsbehavior. In vending machine, if we don't deposit change 



 
7 

 

 

sufficient for our selection, then the machinewill probably do nothing.So behavior 
of an object is a function of its state as well as the 
operationperformeduponit.Thestateof anobjectrepresentsthecumulativeresultsof 
itsbehavior. 
 Anoperationissomeactionthatoneobjectperformsonanotherinordertoelicitareaction. 
 For example, a client might invoke the operations append and pop to grow 
and shrink a queue object,respectively. A client might also invoke the operation 
length, which returns a value denoting the size 
ofthequeueobjectbutdoesnotalterthestateofthe queue itself. 

 
 Message passing is one part of the equation that defines the behavior of an 
object; our definition 
forbehavioralsonotesthatthestateofanobjectaffectsitsbehavioraswell. 
 
Operations 
 Anoperationdenotes aservicethataclass offerstoitsclients.Aclient 
performs5kinds ofoperationsuponanobject. 
 Inpractice,wehavefoundthataclienttypicallyperformsfivekindsofoperati
onsonanobjectThethreemostcommonkindsof operationsarethefollowing: 
 
 Modifier:Anoperationthataltersthestateofanobject. 
 Selector: An operationthataccessesthestateofanobjectbutdoesnotalter thestate. 
 Iterator: An operation that permits all parts of an object to be accessed in some well 

definedorder. In queue example operations, clear, append, pop, remove) are modifies, const 
functions(length,isempty,frontlocation)areselectors. 

  
 Two other kinds of operations are common; they represent the 
infrastructure necessary to create anddestroyinstancesof aclass. 

 Constructor: Anoperationthat createsanobjectand/or initializes itsstate. 
  Destructor:Anoperationthatfreesthestateofanobjectand/ordestroystheobject

itself. 
 

RolesandResponsibilities 
  
 Aroleisamaskthatanobjectwears andsodefinesa contractbetweenanabstractionandits 
clients. Responsibilities are meant to convey a sense of the purpose of an object and its place in 
thesystem.The responsibilitiesofanobjectare 
alltheservicesitprovidesforallofthecontractsitsupports”. 
  
 The state and behavior of an object collectively define the roles that an 
object may play in the world,whichinturnfulfilltheabstraction’s responsibilities. 

 
Examples: 
1  bank account may have the role of a monetary asset to which the account 
owner may deposit orwithdraw money. However, to a taxing authority, the 
account may play the role of an entity whosedividendsmustbereportedonannually. 



 
8 

 

 

2 To a trader, a share of stock represents an entity with value that may be bought 
or sold; to a lawyer, thesameshare 
denotesalegalinstrumenttowhichareattachedcertainrights. 
3 In the course of one day, the same person may play the role of mother, doctor, 
gardener, and moviecritic. 
 

Identity 
 Identityisthatpropertyofanobjectwhich distinguishesitfromallothers. 
 
 
Example: 
 Consider a class that denotes a display item. A display item is a common abstraction in all 
GUI-centricsystems: It represents the base class of all objects that have a visual representation on 
some window andso captures the structure and behavior common to all such objects. Clients 
expect to be able to 
draw,select,andmovedisplayitems,aswellasquerytheirselectionstateandlocation.Eachdisplayitem 
has locationdesignatedbythe coordinatesx andy. First declaration creates four names and 3 
distinct objects in 4 diff location. Item 1 is the name of adistinct display item object and other 3 
names denote a pointer to a display item objects. Item 4 is no suchobjects, we properly say that 
item 2 points to a distinct display item object, whose name we may properlyrefer to indirectly as 
* item2. The unique identity (but not necessarily the name) of each object inpreserved over the  

lifetime of the object, even when its state is changed. Copying, Assignment, 
andEqualityStructuralsharingtakesplacewhenthe identityofanobjectisaliasedtoasecondname. 
RelationshipsamongObjects 
 Objects contributetothebehaviorofasystembycollaboratingwithoneanother. 
E.g.objectstructureofanairplane. The relationship between any two objects encompasses the 
assumptions that each makes about theother including what operations can be performed. There  



 
9 

 

 

are Two kinds of objects relationships are linksandaggregation. 
 

Links 
 

 Alinkdenotesthespecificassociationthroughwhichoneobject(theclient)appli
estheservicesofanotherobject(thesupplier) orthrough 
whichareobjectmaynavigatetoanother. 

 Alinebetweentwoobject iconsrepresentsthe existenceofpass alongthispath. 
 Messagesareshown 

asdirectedlinesrepresentingthedirectionofmessagepassingbetweentwoobjec
tsis typicallyunidirectional,maybebidirectionaldataflowin 
eitherdirectionacrossalink. 

Asaparticipationinalink,anobjectmayplayone of threeroles: 
 

• Controller: This object can operate on other objects but is not 
peratedon by otherobjects. Insomecontexts,thetermsactiveobject 
andcontroller areinterchangeable. 

• Server:Thisobjectdoesn’toperateonotherobjects;itisonlyoperatedonbyother

objects. 
• Proxy: This object can both operate on other objects and be operated on by 

other objects. Aproxyis usuallycreatedtorepresenta real-worldobjectinthe 
domainof theapplication. 

Object 

An object is a real-world element in an object–oriented environment that may have a physical or 
a conceptual existence. Each object has − 

 Identity that distinguishes it from other objects in the system. 

 State that determines the characteristic properties of an object as well as the values of the 
properties that the object holds. 

 Behavior that represents externally visible activities performed by an object in terms of 
changes in its state. 

Objects can be modelled according to the needs of the application. An object may have a 
physical existence, like a customer, a car, etc.; or an intangible conceptual existence, like a 
project, a process, etc. 

Class 

A class represents a collection of objects having same characteristic properties that exhibit 
common behavior. It gives the blueprint or description of the objects that can be created from it. 
Creation of an object as a member of a class is called instantiation. Thus, object is an instance of 
a class. 



 
10 

 

 

The constituents of a class are − 

 A set of attributes for the objects that are to be instantiated from the class. Generally, 
different objects of a class have some difference in the values of the attributes. 
Attributes are often referred as class data. 

 A set of operations that portray the behavior of the objects of the class. Operations are 
also referred as functions or methods. 

 

Example 

Let us consider a simple class, Circle, that represents the geometrical figure circle in a two–

dimensional space. The attributes of this class can be identified as follows − 

 x–coord, to denote x–coordinate of the center 
 y–coord, to denote y–coordinate of the center 
 a, to denote the radius of the circle 

Some of its operations can be defined as follows − 

 findArea(), method to calculate area 
 findCircumference(), method to calculate circumference 
 scale(), method to increase or decrease the radius 

During instantiation, values are assigned for at least some of the attributes. If we create an object 
my_circle, we can assign values like x-coord : 2, y-coord : 3, and a : 4 to depict its state. Now, if 
the operation scale() is performed on my_circle with a scaling factor of 2, the value of the 
variable a will become 8. This operation brings a change in the state of my_circle, i.e., the object 
has exhibited certain behavior. 

Encapsulation and Data Hiding 

Encapsulation 

Encapsulation is the process of binding both attributes and methods together within a class. 
Through encapsulation, the internal details of a class can be hidden from outside. It permits the 
elements of the class to be accessed from outside only through the interface provided by the 
class. 

Data Hiding 

Typically, a class is designed such that its data (attributes) can be accessed only by its class 
methods and insulated from direct outside access. This process of insulating an object’s data is 

called data hiding or information hiding. 



 
11 

 

 

Example 

In the class Circle, data hiding can be incorporated by making attributes invisible from outside 
the class and adding two more methods to the class for accessing class data, namely − 

 setValues(), method to assign values to x-coord, y-coord, and a 
 getValues(), method to retrieve values of x-coord, y-coord, and a 

Here the private data of the object my_circle cannot be accessed directly by any method that is 
not encapsulated within the class Circle. It should instead be accessed through the methods 
setValues() and getValues(). 

Message Passing 

Any application requires a number of objects interacting in a harmonious manner. Objects in a 
system may communicate with each other using message passing. Suppose a system has two 
objects: obj1 and obj2. The object obj1 sends a message to object obj2, if obj1 wants obj2 to 
execute one of its methods. 

The features of message passing are − 

 Message passing between two objects is generally unidirectional. 
 Message passing enables all interactions between objects. 
 Message passing essentially involves invoking class methods. 
 Objects in different processes can be involved in message passing. 

Inheritance 

Inheritance is the mechanism that permits new classes to be created out of existing classes by 
extending and refining its capabilities. The existing classes are called the base classes/parent 
classes/super-classes, and the new classes are called the derived classes/child classes/subclasses. 
The subclass can inherit or derive the attributes and methods of the super-class(es) provided that 
the super-class allows so. Besides, the subclass may add its own attributes and methods and may 
modify any of the super-class methods. Inheritance defines an “is – a” relationship. 

Example 

From a class Mammal, a number of classes can be derived such as Human, Cat, Dog, Cow, etc. 
Humans, cats, dogs, and cows all have the distinct characteristics of mammals. In addition, each 
has its own particular characteristics. It can be said that a cow “is – a” mammal. 

Types of Inheritance 

 Single Inheritance − A subclass derives from a single super-class. 

 Multiple Inheritance − A subclass derives from more than one super-classes. 



 
12 

 

 

 Multilevel Inheritance − A subclass derives from a super-class which in turn is derived 
from another class and so on. 

 Hierarchical Inheritance − A class has a number of subclasses each of which may have 

subsequent subclasses, continuing for a number of levels, so as to form a tree structure. 

 Hybrid Inheritance − A combination of multiple and multilevel inheritance so as to form 
a lattice structure. 

 The following figure depicts the examples of different types of inheritance. 



 
13 

 

 

 

 Polymorphism 

Polymorphism is originally a Greek word that means the ability to take multiple forms. In object-
oriented paradigm, polymorphism implies using operations in different ways, depending upon 
the instance they are operating upon. Polymorphism allows objects with different internal 
structures to have a common external interface. Polymorphism is particularly effective while 
implementing inheritance. 



 
14 

 

 

Example 

Let us consider two classes, Circle and Square, each with a method findArea(). Though the name 
and purpose of the methods in the classes are same, the internal implementation, i.e., the 
procedure of calculating area is different for each class. When an object of class Circle invokes 
its findArea() method, the operation finds the area of the circle without any conflict with the 
findArea() method of the Square class. 

Generalization and Specialization 

Generalization and specialization represent a hierarchy of relationships between classes, where 
subclasses inherit from super-classes. 

Generalization 

In the generalization process, the common characteristics of classes are combined to form a class 
in a higher level of hierarchy, i.e., subclasses are combined to form a generalized super-class. It 
represents an “is – a – kind – of” relationship. For example, “car is a kind of land vehicle”, or 

“ship is a kind of water vehicle”. 

Specialization 

Specialization is the reverse process of generalization. Here, the distinguishing features of groups 
of objects are used to form specialized classes from existing classes. It can be said that the 
subclasses are the specialized versions of the super-class.The following figure shows an example 
of generalization and specialization. 

 

Links and Association 

Link 

A link represents a connection through which an object collaborates with other objects. 
Rumbaugh has defined it as “a physical or conceptual connection between objects”. Through a 

link, one object may invoke the methods or navigate through another object. A link depicts the 
relationship between two or more objects. 



 
15 

 

 

Association 

Association is a group of links having common structure and common behavior. Association 
depicts the relationship between objects of one or more classes. A link can be defined as an 
instance of an association. 

Degree of an Association 

Degree of an association denotes the number of classes involved in a connection. Degree may be 
unary, binary, or ternary. 

 A unary relationship connects objects of the same class. 

 A binary relationship connects objects of two classes. 

 A ternary relationship connects objects of three or more classes. 

Cardinality Ratios of Associations 

Cardinality of a binary association denotes the number of instances participating in an 
association. There are three types of cardinality ratios, namely − 

 One–to–One − A single object of class A is associated with a single object of class B. 

 One–to–Many − A single object of class A is associated with many objects of class B. 

 Many–to–Many − An object of class A may be associated with many objects of class B 

and conversely an object of class B may be associated with many objects of class A. 

Aggregation or Composition 

Aggregation or composition is a relationship among classes by which a class can be made up of 
any combination of objects of other classes. It allows objects to be placed directly within the 
body of other classes. Aggregation is referred as a “part–of” or “has–a” relationship, with the 
ability to navigate from the whole to its parts. An aggregate object is an object that is composed 
of one or more other objects. 

Example 

In the relationship, “a car has–a motor”, car is the whole object or the aggregate, and the motor is 
a “part–of” the car. Aggregation may denote − 

 Physical containment − Example, a computer is composed of monitor, CPU, mouse, 

keyboard, and so on. 

 Conceptual containment − Example, shareholder has–a share. 

 



 
16 

 

 

Benefits of Object Model 

Now that we have gone through the core concepts pertaining to object orientation, it would be 
worthwhile to note the advantages that this model has to offer. 

The benefits of using the object model are − 

 It helps in faster development of software. 

 It is easy to maintain. Suppose a module develops an error, then a programmer can fix 
that particular module, while the other parts of the software are still up and running. 

 It supports relatively hassle-free upgrades. 

 It enables reuse of objects, designs, and functions. 

 It reduces development risks, particularly in integration of complex systems. 

 
Software Development Life Cycle 

The software development process consists of 

 
(1) Analysis – Translates the user needs into system requirements and responsibilities. 
(2) Design – It begins with a problem statement and ends with a detailed design that can be 
transformed into an operational system. 
(3) Implementation – It regines the detailed design into the system deployment that will satisfy 
the users needs. 
(4) Testing – Two basic approaches to system testing, they are (i) Test according to how it has 
been built for. (ii) What it should do? 
(5) Maintenance. 
Object Oriented Systems Development Life Cycle (SDLC) 
            This is also known as Classic Life Cycle Model (or) Linear Sequential Model (or) 
Waterfall Method.  This model has the following activities. 

 

 System/Information Engineering and Modeling 

As software is always of a large system (or business), work begins by establishing the 
requirements for all system elements and then allocating some subset of these requirements to 
software.  This system view is essential when the software must interface with other elements 
such as hardware, people and other resources.  System is the basic and very critical requirement 
for the existence of software in any entity.  So if the system is not in place, the system should be 
engineered and put in place.  In some cases, to extract the maximum output, the system should be 
re-engineered and spruced up.  Once the ideal system is engineered or tuned, the development 
team studies the software requirement for the system. 



 
17 

 

 

 Software Requirement Analysis 

This process is also known as feasibility study.  In this phase, the development team visits the 
customer and studies their system.  They investigate the need for possible software automation in 
the given system.  By the end of the feasibility study, the team furnishes a document that holds 
the different specific recommendations for the candidate system. It also includes the personnel 
assignments, costs, project schedule, target dates etc..  The requirement gathering process is 
intensified and focused specially on software.  To understand the nature of the program(s) to be 
built, the system engineer or “Analyst” must understand the information domain for the software, 
as well as required function, behavior, performance and interfacing.  The essential purpose of 
this phase is to find the need and to define the problem that needs to be solved. 

System Analysis and Design 

In this phase, the software development process, the software’s overall structure and its nuances 

are defined.  In terms of the client/server technology, the number of tiers needed for the package 
architecture, the database design, the data structure design etc.. are all defined in this phase.  A 
software development model is thus created.  Analysis and Design are very crucial in the whole 
development cycle.  Any glitch in the design phase could be very expensive to solve in the later 
stage of the software development.  Much care is taken during this phase.  The logical system of 
the product is developed in this phase. 

 Code Generation 

The design must be translated into a machine-readable form.  The code generation step performs 
this task.  If the design is performed in a detailed manner, code generation can be accomplished 
without much complication.  Programming tools like compilers, interpreters, debuggers etc.. are 
used to generate the code.  Different high level programming languages like C, C++, Pascal, Java 
are used for coding.  With respect to the type of application, the right programming language is 
chosen. 

 Testing 

Once the code is generated, the software program testing begins. Different testing methodologies 
are available to unravel the bugs that were committed during the previous phases.  Different 
testing tools and methodologies are already available.  Some companies build their own testing 
tools that are tailor made for their own development operations. 

 Maintenance 

The software will definitely undergo change once it is delivered to the customer.  There can be 
many reasons for this change to occur.  Change could happen because of some unexpected input 
values into the system.  In addition, the changes in the system could directly affect the software 



 
18 

 

 

operations.  The software should be developed to accommodate changes that could happen 
during the post implementation period. 

Prototyping Model 
This is a cyclic version of the linear model. In this model, once the requirements analysis is done 
and the design for a prototype is made, the development process gets started.  Once the prototype 
is created, it is given to the customer for evaluation.  The customer tests the package and gives 
his/her feed back to the developer who refines the product according the customer’s exact 

expectation.  After a finite number of iterations, the final software package is given to the 
customer.  In this methodology, the software is evolved as a result of periodic shuttling of 
information between the customer and developer.  This is the most popular development model 
in the contemporary IT industry.  Most of the successful software products have been developed 
using this model – as it is very difficult to comprehend all the requirements of a customer in one 
shot.  There are many variations of this model skewed with respect to the project management 
styles of the companies.  New versions of a software product evolve as a result of prototyping. 
Rapid Application Development (RAD) model 
 The RAD models a linear sequential software development process that emphasizes an 
extremely short development cycle.  The RAD model is a “high speed” adaptation of the linear 

sequential model in which rapid development is achieved by using a component-based 
construction approach.  Used primarily for information systems applications, the RAD approach 
encompasses the following phases, 

 Business modeling, 
 Data modeling, 
 Process modeling, 
 Application generation, 
 Testing and turnover. 

Component Assembly Model 
 Object technologies provide the technical framework for a component based process 
model for software engineering.  The object oriented paradigm emphasizes the creation of 
classes that encapsulate both data and the algorithm that are used to manipulate the data.  If 
properly designed and implemented, object oriented classes are reusable across different 
applications and computer based system architectures.  Component Assembly Model leads to 
software reusability.  The integration/assembly of the already existing software components 
accelerates the development process.  Nowadays many component libraries are available on the 
Internet.  If the right components are chosen, the integration aspect is made much simpler. 

Methodologies 

TheimportanceofModeling: 
A model is a simplification of reality. A model provides the blueprints of a system. Everysystem 
may be described from different aspects using different models, and each model 
isthereforeasemanticallyclosedabstractionofthesystem. 



 
19 

 

 

First:"Thechoiceofwhatmodelstocreatehasaprofoundinfluenceonhowaproblemisattackedandhow
asolution isshaped" 

Fourth:"Nosinglemodelissufficient.Everynontrivialsystemisbestapproachedthroughasmallsetofn
early independentmodels." 

A model may be structural, emphasizing the organization of the system, or it may bebehavioral, 
emphasizing the dynamics of the system. We build models so that we can betterunderstandthe 
system we aredeveloping. 

Throughmodeling,weachievefouraims. 

 Modelshelpustovisualizeasystemasitisoraswewantittobe. 
 Modelspermitusto specifythestructureorbehaviorofasystem. 
 Modelsgiveusatemplatethat guidesusinconstructingasystem. 
 Modelsdocumentthedecisionswehavemade. 

 

Modelingis notfor big systems. Even the software equivalentof a dog house canbenefit from 
some modeling. For example if you want to build a dog house ,you can start with apile of 
lumber, some nails, and a basic tools, such as a hammer,saw,and a tape measure. In 
fewhours,with littlepriorplanning,youwilllikelyend up a with a dog house that's reasonably 
functional. finally your will happy and get a lessdemandingdog. 

if we want to build a house for your family , you can start with a pile of lumber, somenails, 
and a basic tools. But it's going to take you a lot longer, and your family will certainly bemore 
demanding than the dog.If you want to build a quality house that meets the needs ofyourfamily 
andyouwillneedtodraw someblueprints. 

PrinciplesofModeling: 
UMLisbasicallyamodelinglanguage;henceitsprincipleswillalsoberelatedtomodelingconcepts.Here 
are fewbasicprincipalofUML. 

 
In other words ,choose your models well. The right models will brilliantly illuminate themost 
wicked development problems. The wrong models will mislead you, causing you to 
focusonirrelevantissues. 

Second:"Everymodelmaybeexpressedatdifferentlevelsofprecision". 

Bestapproachtoagivenproblemresultsinabestmodel.Iftheproblemiscomplexmechanizedlevelofapp
roach&iftheproblemissimpledecentapproachisfollowed. 

Third: "Thebest modelsareconnectedtoreality." 

Themodelbuiltshouldhavestrongresemblancewiththesystem. 

 



 
20 

 

 

If you constructing abuilding, there is no single set of blueprints that reveal all itsdetails. At the 
very least, you will need floor plans,elevations,electical plans, heating plans, andplumbingplans. 

Object-OrientedModeling: 

Insoftware , there are several waysto approachesa model.Thetwomostcommonwaysare 

1 Algorithmicperspective 
2 Object-Orientedperspective 

Algorithmicperspective: 

Inthisapproach,themainbuildingblocksofallsoftwareistheprocedureorfuncton.This view leads 
developers to focus on issues of control and decomposition of largeralgorithmsintosmallerones. 

Object-Orientedperspective: 
In this approach, the main building blocks of all software is the object or class. Simplyput, an 
object is a thing. A class is a description ofa set of common objects. Every object 
hasidentity,stateandbehavior. 

For example, considera simple a three-tier -architecture for a billing system, involving 
auserinterface,middleware, andadatabase.Intheuserinterface,youwillfindconcreteobjects, such as 
buttons, menus, and dialog boxes. In the database, you will find concreteobjects ,such as tables. 
In the middle layer ,you will find objects such as transitions and businessrules. 

Object modelling develops the static structure of the software system in terms of objects. 
It identifies the objects, the classes into which the objects can be grouped into and the 
relationships between the objects. It also identifies the main attributes and operations that 
characterize each class. 

The process of object modelling can be visualized in the following steps − 

 Identify objects and group into classes 
 Identify the relationships among classes 
 Create user object model diagram 
 Define user object attributes 
 Define the operations that should be performed on the classes 
 Review glossary 

Dynamic Modelling 

After the static behavior of the system is analyzed, its behavior with respect to time and 
external changes needs to be examined. This is the purpose of dynamic modelling. 

Dynamic Modelling can be defined as “a way of describing how an individual object 

responds to events, either internal events triggered by other objects, or external events triggered 
by the outside world”. 



 
21 

 

 

The process of dynamic modelling can be visualized in the following steps − 

 Identify states of each object 
 Identify events and analyze the applicability of actions 
 Construct dynamic model diagram, comprising of state transition diagrams 
 Express each state in terms of object attributes 
 Validate the state–transition diagrams drawn 

Functional Modelling 

Functional Modelling is the final component of object-oriented analysis. The functional 
model shows the processes that are performed within an object and how the data changes as it 
moves between methods. It specifies the meaning of the operations of object modelling and the 
actions of dynamic modelling. The functional model corresponds to the data flow diagram of 
traditional structured analysis. 

 

CommonModelingTechniquesofobjectdiagrams: 
 
ModelingObjectStructures 
Tomodelanobjectstructure, 

 
 Identify the mechanism you'd like to model. A mechanism represents 

some function orbehavior of the part of the system you are modeling that 
results from the interaction ofasocietyofclasses,interfaces,andotherthings. 

 Foreachmechanism,identifytheclasses,interfaces,andotherelementsthatparti
cipateinthiscollaboration;identifythe relationshipsamong thesethings,as 
well. 

 Consider one scenario that walks through this mechanism. Freeze that 
scenario at amomentintime,andrendereachobjectthat 
participatesinthemechanism. 

 Expose the state and attribute values of each such object, as necessary, to 
understandthescenario. 

 Similarly, expose the links among these objects,



 
22 

 

 

 
 
 

For example, Figureshows a setof objectsdrawn from the implementation of 
anautonomous robot. This figure focuses on some of the objects involved in the 
mechanism usedby the robot to calculate a model of the world in which it moves. 
There are many more objectsinvolved in a running system, but this diagram 
focuses on only those abstractions that 
aredirectlyinvolvedincreatingthisworldview. 

As this figure indicates, one object represents the robot itself (r, an instance of 
Robot),and r is currently in the state marked moving. This object has a link to w, 
an instance of 
World,whichrepresentsanabstractionoftherobot'sworldmodel.Thisobjecthasalinkto
amultiobject that consists of instances of Element, which represent entities that 
the robot hasidentified but not yet assigned in its world view. These elements are 
marked as part of therobot'sglobalstate. 

At this moment in time, w is linked to two instances of Area. One of them (a2) 
is shownwith its own links to three Wall and one Door object. Each of these walls 
is marked with 
itscurrentwidth,andeachisshownlinkedtoitsneighboringwalls.Asthisobjectdiagrams
uggests, the robothas recognized this enclosed area, which has walls on three 
sides and adooronthefourth. 

Forward and ReverseEngineering 

Forwardengineering(thecreationofcodefromamodel)anobjectdiagramistheo
retically possible but pragmatically of limited value. In an object-oriented system, 



 
23 

 

 

instancesare things that are created and destroyed by the application during run 
time. Therefore, youcan'texactly instantiatetheseobjects fromtheoutside. 

Reverse engineering (the creation of a model from code) an object 
diagram is a verydifferent thing. In fact, while you are debugging your system, 
this is something that you or yourtools will do all the time. For example, if you 
are chasing down a dangling link, you'll want toliterally or mentally draw an 
object diagram of the affected objects to see where, at a 
givenmomentintime,anobject'sstateoritsrelationshiptootherobjectsisbroken. 

The process of functional modelling can be visualized in the following steps − 

 Identify all the inputs and outputs 
 Construct data flow diagrams showing functional dependencies 
 State the purpose of each function 
 Identify constraints 
 Specify optimization criteria 

Structured Analysis vs. Object Oriented Analysis 

The Structured Analysis/Structured Design (SASD) approach is the traditional approach of 
software development based upon the waterfall model. The phases of development of a system 
using SASD are − 

 Feasibility Study 
 Requirement Analysis and Specification 
 System Design 
 Implementation 
 Post-implementation Review 

Now, we will look at the relative advantages and disadvantages of structured analysis approach 
and object-oriented analysis approach. 

Advantages Disadvantages 

Focuses on data rather than the procedures as 
in Structured Analysis. 

Functionality is restricted within objects. This 
may pose a problem for systems which are 
intrinsically procedural or computational in 
nature. 



 
24 

 

 

The principles of encapsulation and data 
hiding help the developer to develop systems 
that cannot be tampered by other parts of the 
system. 

It cannot identify which objects would generate 
an optimal system design. 

The principles of encapsulation and data 
hiding help the developer to develop systems 
that cannot be tampered by other parts of the 
system. 

The object-oriented models do not easily show 
the communications between the objects in the 
system. 

It allows effective management of software 
complexity by the virtue of modularity. 

All the interfaces between the objects cannot be 
represented in a single diagram. 

It can be upgraded from small to large systems 
at a greater ease than in systems following 
structured analysis. 

 

Advantages/Disadvantages of Object Oriented Analysis 

Advantages/Disadvantages of Structured Analysis 

Advantages Disadvantages 

As it follows a top-down approach in contrast to 
bottom-up approach of object-oriented analysis, it can 
be more easily comprehended than OOA. 

In traditional structured analysis models, 
one phase should be completed before the 
next phase. This poses a problem in design, 
particularly if errors crop up or 
requirements change. 

It is based upon functionality. The overall purpose is 
identified and then functional decomposition is done 
for developing the software. The emphasis not only 
gives a better understanding of the system but also 
generates more complete systems. 

The initial cost of constructing the system 
is high, since the whole system needs to be 
designed at once leaving very little option 
to add functionality later. 



 
25 

 

 

The specifications in it are written in simple English 
language, and hence can be more easily analyzed by 
non-technical personnel. 

It does not support reusability of code. So, 
the time and cost of development is 
inherently high. 

Patterns 

Software development design patterns were started as best practices that were applied 
again and again to similar problems encountered in different contexts. 

Examples of common problems solved by design pattern 

1 How to instantiate an object properly! 
2 How to interact between two objects! 

What is a Design pattern? 

Design pattern is a solution approach to a common problem, It should be an industry standard 
without language dependent 

In software engineering, a design pattern is a general repeatable solution to a commonly occurring 
problem in software design. A design pattern isn’t a finished design that can be transformed 

directly into code. It is a description or template for how to solve a problem that can be used in 
many different situations. 

What are all the benefits of the design pattern? 

The truth is that you might manage to work as a programmer for many years without 
knowing about a single pattern. A lot of people do just that. Even in that case, though, you might 
be implementing some patterns without even knowing it. So why would you spend time learning 
them? 
1 Design patterns can speed up the development process by providing tested, proven 

development paradigms. 

2 Reusing the design patterns helps to prevent subtle issues that can cause major problems and 
it also improves code readability. 

3 Design pattern provides general solutions, documented in a format that doesn’t specifics tied 

to a particular problem. 



 
26 

 

 

4 In addition to that patterns allows developers to communicate well-known, well-understood 
names for software interactions, Common design patterns can be improved over time, 
making them more robust than ad-hoc design. 

5. A standard solution to a common programming problem enables large scale reuse of software. 

Let’s see the classification of design patterns 
 
 
Design Patterns Classification: 
 
Design Pattern can be classified into three types 

 
1. Creational design patterns 
2. Structural design patterns 
3. Behavioral design patterns 



 
27 

 

 

 
Design patterns 



 
28 

 

 

The above image illustrates all classification of design patterns 

Creational Design Patterns: 

Creational design patterns are concerned with the way of creating objects. These design patterns 
are used when a decision must be made at the time of the instantiation of a class (i.e. creating an 
object of a class). 
This pattern can be further divided into class-creation patterns and object-creational patterns. 
While class-creation patterns use inheritance effectively in the instantiation process, object-
creation patterns use delegation effectively to get the job done. 
 
Creational design patterns are mentioned in the above image. 

Structural Design Patterns: 

Structural design patterns are concerned with how classes and objects can be composed, to form 
larger structures. The structural design patterns simplify the structure by identifying relationships. 

These patterns focus on, how the classes inherit from each other and how they are composed of 
other classes. 

Structural class-creation patterns use inheritance to compose interfaces. Structural object-patterns 
define ways to compose objects to obtain new functionality. 

Structural design patterns are mentioned in the above image. 

Behavioral Design Patterns: 

Behavioral design patterns are concerned with the interaction and responsibility of objects. In 
these design patterns, the interaction between the objects should be in such a way that they can 
easily talk to each other and still should be loosely coupled. 

That means the implementation and the client should be loosely coupled to avoid hard coding and 
dependencies. 

Behavioral design patterns are mentioned in the above image. 

As we see the above contents are about introduction to design patterns and its importance in 
software development, Its not necessary to implement all of the design patterns in your software 
development, though you can leverage the appropriate design patterns to your problems in 
software development. 



 
29 

 

 

Object-Oriented Application Frameworks 

Computing power and network bandwidth have increased dramatically over the past decade. 
However, the design and implementation of complex software remains expensive and error-
prone. Much of the cost and effort stems from the continuous re-discovery and re-invention of 
core concepts and components across the software industry. In particular, the growing 
heterogeneity of hardware architectures and diversity of operating system and communication 
platforms makes it hard to build correct, portable, efficient, and inexpensive applications from 
scratch. 

Object-oriented (OO) application frameworks are a promising technology for reifying proven 
software designs and implementations in order to reduce the cost and improve the quality of 
software. A framework is a reusable, ``semi-complete'' application that can be specialized to 
produce custom applications [Johnson:88]. In contrast to earlier OO reuse techniques based on 
class libraries, frameworks are targeted for particular business units (such as data processing or 
cellular communications) and application domains (such as user interfaces or real-time avionics). 
Frameworks like MacApp, ET++, Interviews, ACE, Microsoft's MFC and DCOM, JavaSoft's 
RMI, and implementations of OMG's CORBA play an increasingly important role in 
contemporary software development. 

The primary benefits of OO application frameworks stem from 
the modularity, reusability, extensibility, and inversion of control they provide to developers, as 
described below: 

 Modularity -- Frameworks enhance modularity by encapsulating volatile implementation 
details behind stable interfaces. Framework modularity helps improve software quality by 
localizing the impact of design and implementation changes. This localization reduces the 
effort required to understand and maintain existing software. 

 Reusability -- The stable interfaces provided by frameworks enhance reusability by 
defining generic components that can be reapplied to create new applications. Framework 
reusability leverages the domain knowledge and prior effort of experienced developers in 
order to avoid re-creating and re-validating common solutions to recurring application 
requirements and software design challenges. Reuse of framework components can yield 
substantial improvements in programmer productivity, as well as enhance the quality, 
performance, reliability and interoperability of software. 

 Extensibility -- A framework enhances extensibility by providing explicit hook 
methods [Pree:94] that allow applications to extend its stable interfaces. Hook methods 
systematically decouple the stable interfaces and behaviors of an application domain 
from the variations required by instantiations of an application in a particular context. 
Framework extensibility is essential to ensure timely customization of new application 
services and features. 

 Inversion of control -- The run-time architecture of a framework is characterized by an 
``inversion of control.'' This architecture enables canonical application processing steps to 
be customized by event handler objects that are invoked via the framework's reactive 
dispatching mechanism. When events occur, the framework's dispatcher reacts by 
invoking hook methods on pre-registered handler objects, which perform application-



 
30 

 

 

specific processing on the events. Inversion of control allows the framework (rather than 
each application) to determine which set of application-specific methods to invoke in 
response to external events (such as window messages arriving from end-users or packets 
arriving on communication ports). 

Developers in certain domains have successfully applied OO application frameworks for many 
years. Early object-oriented frameworks (such as MacApp and Interviews) originated in the 
domain of graphical user interfaces (GUIs). The Microsoft Foundation Classes (MFC) is a 
contemporary GUI framework that has become the de facto industry standard for creating 
graphical applications on PC platforms. Although MFC has limitations (such as lack of 
portability to non-PC platforms), its wide-spread adoption demonstrates the productivity benefits 
of reusing common frameworks to develop graphical business applications. 

Application developers in more complex domains (such as telecommunications, distributed 
medical imaging, and real-time avionics) have traditionally lacked standard ``off-the-shelf'' 
frameworks. As a result, developersin these domains largely build, validate, and maintain 
software systems from scratch. In an era of deregulation and stiff global competition, however, it 
has become prohibitively costly and time consuming to develop applications entirely in-house 
from the ground up. 

Fortunately, the next generation of OO application frameworks are targeting complex business 
and application domains. At the heart of this effort are Object Request Broker (ORB) 
frameworks, which facilitate communication between local and remote objects. ORB 
frameworks eliminate many tedious, error-prone, and non-portable aspects of creating and 
managing distributed applications and reusable service components. This enables programmers 
to develop and deploy complex applications rapidly and robustly, rather than wrestling endlessly 
with low-level infrastructure concerns. Widely used ORB frameworks include CORBA, DCOM, 
and Java RMI. 

Although the benefits and design principles underlying frameworks are largely independent of 
domain to which they are applied, we've found it useful to classify frameworks by their scope, as 
follows: 

 System infrastructure frameworks -- These frameworks simplify the development of 
portable and efficient system infrastructure such as operating system [Campbell-
Islam:93] and communication frameworks [Schmidt:97], and frameworks for user 
interfaces and language processing tools. System infrastructure frameworks are primarily 
used internally within a software organization and are not sold to customers directly. 

 Middleware integration frameworks -- These frameworks are commonly used to integrate 
distributed applications and components. Middleware integration frameworks are 
designed to enhance the ability of software developers to modularize, reuse, and extend 
their software infrastructure to work seamlessly in a distributed environment. There is a 
thriving market for Middleware integration frameworks, which are rapidly becoming 
commodities. Common examples include ORB frameworks, message-oriented 
middleware, and transactional databases. 

http://www.dre.vanderbilt.edu/~schmidt/corba.html
http://www.microsoft.com/oledev/olecom/title.htm
http://chatsubo.javasoft.com/current/doc/tutorial/getstart.doc.html


 
31 

 

 

 Enterprise application frameworks -- These frameworks address broad application 
domains (such as telecommunications, avionics, manufacturing, and financial 
engineering [Birrer:93]) and are the cornerstone of enterprise business activities [Fayad-
Hamu:97]. Relative to System infrastructure and Middleware integration frameworks, 
Enterprise frameworks are expensive to develop and/or purchase. However, Enterprise 
frameworks can provide a substantial return on investment since they support the 
development of end-user applications and products directly. In contrast, System 
infrastructure and Middleware integration frameworks focus largely on internal software 
development concerns. Although these frameworks are essential to rapidly create high 
quality sofware, they typically don't generate substantial revenue for large enterprises. As 
a result, it's often more cost effective to buy System infrastructure and Middleware 
integration frameworks rather than build them in-house [Fayad-Hmau:97]. 

Regardless of their scope, frameworks can also be classified by the techniques used to extend 
them, which range along a continuum from whitebox frameworks to blackbox frameworks. 
Whitebox frameworks rely heavily on OO language features like inheritance and dynamic 
binding to achieve extensibilty. Existing functionality is reused and extended by (1) inheriting 
from framework base classes and (2) overriding pre-defined hook methods using patterns like 
Template Method [Gamma:95]. Blackbox frameworks support extensibility by defining 
interfaces for components that can be plugged into the framework via object composition. 
Existing functionality is reused by (1) defining components that conform to a particular interface 
and (2) integrating these components into the framework using patterns like 
Strategy [Gamma:95] and Functor. 

Whitebox frameworks require application developers to have intimate knowledge of the 
frameworks' internal structure. Although whitebox frameworks are widely used, they tend to 
produce systems that are tightly coupled to the specific details of the framework's inheritance 
hierarchies. In contrast, blackbox frameworks are structured using object composition and 
delegation more than inheritance. As a result, blackbox frameworks are generally easier to use 
and extend than whitebox frameworks. However, blackbox frameworks are more difficult to 
develop since they require framework developers to define interfaces and hooks that anticipate a 
wider range of potential use-cases [Johnson:95]. 

Frameworks are closely related to other approaches to reuse, including: 

 Patterns -- Patterns represent recurring solutions to software development problems 
within a particular context. Patterns and frameworks both facilitate reuse by capturing 
successful software development strategies. The primary difference is that frameworks 
focus on reuse of concrete designs, algorithms, and implementations in a particular 
programming language. In contrast, patterns focus on reuse of abstract designs and 
software micro-architectures. 

Frameworks can be viewed as a concrete reification of families of design patterns that are 
targeted for a particular application-domain. Likewise, design patterns can be viewed as 
more abstract micro-architectural elements of frameworks that document and motivate 
the semantics of frameworks in an effective way. When patterns are used to structure and 



 
32 

 

 

document frameworks, nearly every class in the framework plays a well-defined role and 
collaborates effectively with other classes in the framework. 

 Class libraries -- Frameworks extend the benefits of OO class libraries in the following 
ways: 

o Frameworks define ``semi-complete'' applications that embody domain-specific 
object structures and functionality -- Components in a framework work together 
to provide a generic architectural skeleton for a family of related applications. 
Complete applications can be composed by inheriting from and/or instantiating 
framework components. In contrast, class libraries are less domain-specific and 
provide a smaller scope of reuse. For instance, class library components like 
classes for Strings, complex numbers, arrays, and bitsets are relatively low-level 
and ubiquitous across many application domains. 

o Frameworks are active and exhibit ``inversion of control'' at run-time -- Class 
libraries are typically passive, i.e., they perform their processing by borrowing 
threads of control from self-directed application objects. In contrast, frameworks 
are active, i.e., they control the flow of control within an application via event 
dispatching patterns like Reactor and Observer. The ``inversion of control'' in the 
run-time architecture of a framework is often referred to as The Hollywood 
Principle, i.e., ``Don't call us, we'll call you.'' 

In practice, frameworks and class libraries are complementary technologies. For instance, 
frameworks tyically utilize class libraries like the C++ Standard Template Library (STL) 
internally to simplify the development of the framework. Likewise, application-specific 
code invoked by framework event handlers can utilize class libraries to perform basic 
tasks such as string processing, file management, and numerical analysis. 

 Components -- Components are self-contained instances of abstract data types (ADTs) 
that can be plugged together to form complete applications. Common examples of 
components include VBX controls and CORBA Object Services. In terms of OO design, 
a component is a blackbox that defines a cohesive set of operations, which can be reused 
based solely upon knowledge of the syntax and semantics of its interface. Compared with 
frameworks, components are less tightly coupled and can support binary-level reuse. For 
example, applications can reuse components without having to subclass from existing 
base classes. 

The relationship between frameworks and components is highly synergistic, with neither 
subordinate to the other. Frameworks can be used to develop components, whereby the 
component interface provides a Facade for the internal class structure of the framework. 
Likewise, components can be used as pluggable strategies in blackbox frameworks. In 
general, frameworks are often used to simplify the development of infrastructure and 
middleware software, whereas components are often used to simplify the development of 
end-user application software. Naturally, components are also effective for developing 
infrastructure and middleware, as well. 

When used in conjunction with patterns, class libraries, and components, OO application 
frameworks can significantly increase software quality and reduce development effort. However, 



 
33 

 

 

a number of challenges must be addressed in order to employ frameworks effectively. 
Companies attempting to build or use large-scale reusable framework often fail unless they 
recognize and resolve challenges such as development effort, learning 
curve, integratability, maintainability, validation and defect removal, efficiency, and lack of 
standards, which are outlined below: 

 Development effort -- While developing complex software is hard enough, developing 
high quality, extensible, and reusable frameworks for complex application domains is 
even harder. The skills required to produce frameworks successfully often remain locked 
in the heads of expert developers. One of the goals of this theme issue is to demystify the 
software process and design principles associated with developing and using frameworks. 

 Learning curve -- Learning to use an OO application framework effectively requires 
considerable investment of effort. For instance, it often takes 6-12 months become highly 
productive with a GUI framework like MFC or MacApp, depending on the experience of 
developers. Typically, hands-on mentoring and training courses are required to teach 
application developers how to use the framework effectively. Unless the effort required 
to learn the framework can be amortized over many projects, this investment may not be 
cost effective. Moreover, the suitability of a framework for a particular application may 
not be apparent until the learning curve has flattened. 

 Integratability -- Application development will be increasingly based on the integration 
of multiple frameworks (e.g. GUIs, communication systems, databases, etc.) together 
with class libraries, legacy systems, and existing components. However, many earlier 
generation frameworks were designed for internal extension rather than for integration 
with other frameworks developed externally. Integration problems arise at several levels 
of abstraction, ranging from documentation issues [Fayad-Hamu 97], to the 
concurrency/distribution architecture, to the event dispatching model. For instance, while 
inversion of control is an essential feature of a framework, integrating frameworks whose 
event loops are not designed to interoperate with other frameworks is hard. 

 Maintainability -- Application requirements change frequently. Therefore, the 
requirements of frameworks often change, as well. As frameworks invariably evolve, the 
applications that use them must evolve with them. 

Framework maintenance activities include modification and adaptation of the framework. 
Both modification and adaptation may occur on the functional level (i.e., certain 
framework functionality does not fully meet developers' requirements), as well as on 
the non-functional level (which includes more qualitative aspects such as portability or 
reusability). 

Framework maintenance may take different forms, such as adding functionality, 
removing functionality, and generalization. A deep understanding of the framework 
components and their interrelationships is essential to perform this task successfully. In 
some cases, the application developers and/or the end-users must rely entirely on 
framework developers to maintain the framework. 



 
34 

 

 

 Validation and defect removal -- Although a well-designed, modular framework can 
localize the impact of software defects, validating and debugging applications built using 
frameworks can be tricky for the following reasons: 

o Generic components are harder to validate in the abstract -- A well-designed 
framework component typically abstracts away from application-specific details, 
which are provided via subclassing, object composition, or template 
parameterization. While this improves the flexibility and extensibility of the 
framework, it greatly complicates module testing since the components cannot be 
validated in isolation from their specific instantiations. 

Moreover, it is usually hard to distinguish bugs in the framework from bugs in 
application code. As with any software development, bugs are introduced into a 
framework from many possible sources, such as failure to understand the 
requirements, overly coupled design, or an incorrect implementation. When 
customizing the components in framework to a particular application, the number 
of possible error sources will increase. 

o Inversion of control and lack of explicit control flow -- Applications written with 
frameworks can be hard to debug since the framework's ``inverted'' flow of 
control oscillates between the application-independent framework infrastructure 
and the application-specific method callbacks. This increases the difficulty of 
``single-stepping'' through the run-time behavior of a framework within a 
debugger since the control flow of the application is driven implicitly by callbacks 
and developers may not understand or have access to the framework code. This is 
similar to the problems encountered trying to debug a compiler lexical analyser 
and parser written with LEX and YACC. In these applications, debugging is 
straightforward when the thread of control is in the user-defined action routines. 
Once the thread of control returns to the generated DFA skeleton, however, it is 
hard to trace the program's logic. 

 Efficiency -- Frameworks enhance extensibility by employing additional levels of 
indirection. For instance, dynamic binding is commonly used to allow developers to 
subclass and customize existing interfaces. However, the resulting generality and 
flexibility often reduce efficiency. For instance, in languages like C++ and Java, the use 
of dynamic binding makes it impractical to support Concrete Data Types (CDTs), which 
are often required for time-critical software. The lack of CDTs yields (1) an increase in 
storage layout (e.g., due to embedded pointers to virtual tables), (2) performance 
degradation (e.g. due to the additional overhead of invoking a dynamically bound method 
and the inability to inline small methods), and (3) a lack of flexibility (e.g., due to the 
inability to place objects in shared memory). 

 Lack of standards -- Currently, there are no widely accepted standards for designing, 
implementing, documenting, and adapting frameworks. Moreover, emerging industry 
standard frameworks (such as CORBA, DCOM, and Java RMI) currently lack the 
semantics, features, and interoperability to be truly effective across multiple application 
domains. Often, vendors use industry standards to sell proprietary software under the 
guise of open systems. Therefore, it's essential for companies and developers to work 
with standards organizations and middleware vendors to ensure the emerging 



 
35 

 

 

specifications support true interoperability and define features that meet their software 
needs. 

Over the next several years, we expect the following framework-related topics will receive 
considerable attention by researchers and developers: 

 Reducing framework development effort -- Traditionally, reusable frameworks have been 
developed by generalizing from existing systems and applications. Unfortunately, this 
incremental process of organic development is often slow and unpredictable since core 
framework design principles and patterns must be discovered ``bottom-up.'' However, 
since many good framework exemplars now exist, we expect that the next generation of 
developers will leverage this collective knowledge to conceive, design, and implement 
higher quality frameworks more rapidly. 

 Greater focus on domain-specific enterprise frameworks -- Existing frameworks have 
focused largely on system infrastructure and middleware integration domains (such as 
user interfaces [Gamma:95,Pree:94] and OS/communication 
systems [Schmidt:97,Johnson:95,Cambell-Islam:93]). In contrast, there are relatively few 
widely documented exemplars of enterprise frameworks for key business domains such 
as manufacturing, banking, insurance, and medical systems. As more experience is 
gained developing frameworks for these business domains, however, we expect that the 
collective knowledge of frameworks will be expanded to cover an increasing wide range 
of domain-specific topics and an increasing number of Enterprise application frameworks 
will be produced. As a result, benefits of frameworks will become more immediate to 
application programmers, as well as to infrastructure developers. 

 Blackbox frameworks -- Many framework experts [Johnson:88] favor black-box 
frameworks over white-box frameworks since black-box frameworks emphasize dynamic 
object relationships (via patterns like Bridge and Strategy Gamma:95) rather than static 
class relationships. Thus, it is easier to extend and reconfigure black-box frameworks 
dynamically. As developers become more familiar with techniques and patterns for 
factoring out common interfaces and components, we expect that an increasing 
percentage of black-box frameworks will be produced. 

 Framework documentation -- Accurate and comprehensible documentation is crucial to 
the success of large-scale frameworks. However, documenting frameworks is a costly 
activity and contemporary tools often focus on low-level method-oriented documentation, 
which fails to capture the strategic roles and collaborations among framework 
components. We expect that the advent of tools for reverse-engineering the structure of 
classes and objects in complex frameworks will help to improve the accuracy and utility 
of framework documentation. Likewise, we expect to see an increase in the current 
trend [Johnson:95,Schmidt:97] of using design patterns to provide higher-level 
descriptions of frameworks. 

 Processes for managing framework development -- Frameworks are inherently abstract 
since they generalize from a solution to a particular application challenge to provide a 
family of solutions. This level of abstraction makes it difficult to engineer their quality 
and manage their production. Therefore, it is essential to capture and articulate 
development processes that can ensure the successful development and use of 
frameworks. We believe that extensive prototyping and phased introduction of 



 
36 

 

 

framework technology into organizations is crucial to reducing risk and helping to ensure 
successful adoption. 

 Framework economics -- The economics of developing framework includes activities 
such as the following: 

o Determining effective framework cost metrics -- which measure the savings of 
reusing framework components vs. building applications from scratch; 

o Cost estimation -- which is the activity of accurately forecasting the cost of 
buying, building, or adapting a particular framework; 

o Investment analysis and justification -- which determines the benefits of applying 
frameworks in terms of return on investment; 

We expect that the focus on framework economics will help to bridge the gap among the 
technical, managerial, and financial aspects of making, buying, or adapting 
frameworks [Hamu-Fayad:97]. 

The articles in this theme issue describe how OO application frameworks provide a powerful 
vehicle for reuse, as well as a way to capture the essence of successful patterns, architectures, 
components, policies, services, and programming mechanisms. The feature articles lead off with 
``Framework Development for Large Systems'' by Dirk Baumer, Guido Gryczan, Rolf Knoll, 
Carola Lilienthal, Dirk Riehle, and Heinz Zullighoven. These authors draw on their experience 
developing large-scale industrial banking projects to present concepts and techniques for domain 
partitioning, framework layering and framework construction. The second feature article on 
"Evolving Custom-Made Applications into Domain-Specific Frameworks" by WimCodenie, 
Koen De Hondt, Patrick Steyaert, Arlette Vercammen discusses solutions to common framework 
development challenges such as avoiding the proliferation of versions, estimating effort, and 
alleviating the tendency towards ``architectural drift.'' 

The Theme section also contains several short articles, starting with "Frameworks = (Patterns + 
Components)/2" by Ralph Johnson, which compares and contrasts frameworks with other object-
oriented reuse techniques such as patterns and components. The second short article is "An 
Adaptive Framework for Developing Multimedia Software Components" by Edward Posnak, 
Greg Lavender, and Harrick Vin describes a framework that simplifies the development of 
dynamically adaptive multimedia software components by promoting the reuse of code, design 
patterns, and domain expertise. The next short article is "Frameworks Design by Systematic 
Generalization with Hot Spots and Patterns" by Hans Albrecht Schmid, which presents a 
systematic method for designing frameworks based on identifying "hot spots," which capture key 
sources of variation in an application domain. Serge Demeyer, Theo Meijler, Oscar Nierstrasz, 
and Patrick Steyaert also focus on hot spots in their article on "Design Guidelines for Tailorable 
Frameworks," which presents design guidelines to develop frameworks for open systems. 

Several case studies are also covered in the theme issues, including "The Framework Life Span: 
a Case Study for Flexible Manufacturing Systems" by A. Aarsten, DavideBrugali, and G. 
Menga, which highlights the relationships between application frameworks, patterns, and pattern 
languages in the domain of manufacturing systems. Likewise, the SEMATECH CIM 
Framework, by David Doscher and Robert Hodges describes the structure of a framework for 
computer integrated manufacturing of semiconductors. In addition, Adele Goldberg, Steve Abell, 



 
37 

 

 

and David Leibs describe LearningWorks, which is a framework for exploring ideas about 
computing and software system construction. 

Finally, the theme section contains three sidebars: "Achieve Bottom-Line Improvements with 
Enterprise Frameworks" by Hamu and Fayad, "Framework Integration problems, Causes, and 
Solutions by M. Mattsson et al., and "Lessons Learned Building Reusable OO Frameworks for 
Distributed Software" by Schmidt and Fayad. 

The articles in this theme issue reinforce our believe that object-oriented application frameworks 
will be at the core of leading-edge software technology in the twenty-first century. As software 
systems become increasingly complex, object-oriented application frameworks are becoming 
increasingly important for industry and academia. The extensive focus on application 
frameworks in the object-oriented community offers software developers an important vehicle 
for reuse and a means to capture the essence of successful patterns, architectures, components, 
and programming mechanisms. 

The good news is that framework are becoming mainstream and developers at all levels are 
increasingly adopting and succeeding with framework technologies. However, OO application 
frameworks are ultimately only as good as the people who build and use them. Creating robust, 
efficient, and reusable application frameworks requires development teams with a wide range of 
skills. We need expert analysts and designers who have mastered patterns, software 
architectures, and protocols in order to alleviate the inherent and accidental complexities of 
complex software. Likewise, we need expert middleware developers who can implement these 
patterns, architectures, and protocols within reusable frameworks. In addition, we need 
application programmers who have the motivation, skills, and training to learn how to use these 
frameworks effectively. We encourage you to get involved with others working on frameworks 
by attending conferences, participating in online mailing lists and newsgroups, and contributing 
your insights and experience. 

Unified Approach 

UML as the name suggests has come this far through the process of unification and thus 
combines ideas of leading thinkers and gives access to their methodology of modeling in 
consistency with that of the others.  Now we are planning to get down a level further and to 
represent these modeling methodologies on the same canvas. 
To bring these entities under the same frame of reference we need first to look for a commonality 
that is not far stretched or bolted out of blue sky. Such point of joining between the static logical 
view and the dynamic interaction view is in terms of objects in the interaction view as also the 
object view that materialize as instances of classifiers (classes) in the logical view (class 
diagram). 
  The unified approach to software development revolves around the following processes 
and concepts. The processes are, 

1. Object oriented analysis 3. Object oriented design 
2. Testing   4. Developing and Prototyping 



 
38 

 

 

Object oriented analysis: Analysis is the first stage of the development process.  It is also the 
first step in producing high-performance software.  Analysis is central to the performance tuning 
process.The analysis part having these below steps – 
  

 

OOA process consists of the following steps: 

 Identify the actors 
 Develop a simple business process model using UML Activity diagram 
 Develop the usecase 
 Develop interaction diagrams 
 Identify classes 

Object-Oriented Design 
  Object – oriented design plays a major role in the performance process.  While there are 
many factors that contribute to a good design, and all of them are important, there is one concept 
that is especially critical to creating high-performance systems. This concept is called 
encapsulation.  
Making encapsulation part of your design from the start enables you to: 

 Quickly evaluate different algorithms and data structures to see which is most efficient. 
 Easily evolve your design to accommodate new or changed requirements. 

 
  

OOD process consist of 



 
39 

 

 

 Designing classes, their attributes, methods, associations, structures and protocols, apply 
design axioms 

 Design the Access Layer 
 Design the prototype user interface 
 User satisfaction and usability tests based on the usage/use cases 
 Iterate and refine the design 

Iterative development and continuous testing: 
  Iterate and Reiterate until you are satisfied with the system.  Testing uncovers the design 
weaknesses or provides additional information.  Repeat the entire process, taking what you 
have learned and reworking you design more onto re-prototyping and retesting.  

 

UML 

Unified Approach encourages integration testing from the day 1 of the project usage scenarios 
can become test scenarios.  Therefore use cases will drive the usability testing. 
Modeling based on the Unified Modeling Language: 
      UML is becoming the universal language for modeling systems; it is intended to be used to 
express models of many different kinds and purposes.  UML has become the standard notation 
for object oriented modeling systems. 
The Unified Approach uses the UML to describe and model the analysis and design phases of 
system development. 
Unified Approach Proposed Repository: 
      Best practice sharing eliminates duplication of problem solving.  It must be applied to 
application development, if quality and productivity are to be added.  The idea promoted here is 
to create a repository that allows the maximum reuse of previous experience and previously 
defined objects, patterns, frameworks etc in an easily accessible manner.  It should be accessible 
to many people. 
Advantages: 

 If your organization has done projects in the past, objects in the repositories from those 
projects might be useful. 

 Creating additional applications will require no more than assembling components from 
the library. 

 Applying lessons learned from the part will increase the quality of the product and reduce 
the cost and development time. 

Layered Approach to Software Development: 
  Three layered approaches, 

 Business Layer:  



 
40 

 

 

  The business layer contains all the objects that represent the business. 
 The responsibilities of business layer are very straightforward. 
  “Model the objects of the business and how they interact to accomplish the business 

processes.” 
  A business model captures the static and dynamic relationships among a collection of 
business objects. 
  These objects should not be responsible for Displaying details and Data Access details. 

 View Layer / User Interface Layer: 

It consists of objects with which the user interacts as well as the objects needed to 
manage or control the interface. 
  There objects are identified during the object oriented design phase. 
 This layer is responsible for 2 major aspects. They are, 
  Responding to user interaction and displaying business objects 

 

Access Layer: 
 It contains objects that know how to communicate with the place where the data actually reside, 
whether it be a relational database, mainframe, Internet or file. 
It has two major responsibilities, Translate request and Translate result. 

TounderstandtheUML,we needtoform 
aconceptualmodelofthelanguage,andthisrequireslearning threemajor elements: 

* BasicBuildingblocksoftheUML 
* RulesoftheUML 
* Common mechanisms intheUML. 

 

**BasicBuildingBlocksoftheUML: 

ThevocabularyoftheUMLencompassesthreekindsofbuildingblocks: 

1.1 ThingsintheUML 
1.2 RelationshipsintheUML 
1.3 Diagramsinthe UML 

1 ThingsintheUML:- 
Thingsaretheabstractionsthatarefirst-

classcitizensinamodel.TherearefourkindsofthingsintheUML: 

1.1 Structuralthings 
1.2 Behavioralthings 
1.3 Groupingthings 
1.4 Annotationalthings 
1.5  



 
41 

 

 

1 Structuralthings: 
Structuralthingsarethe 

nounsofUMLmodels.Thesearethemostlystaticpartsofamodel.Thereareseven 
kindsofstructural things.They area.Class 

1.b Interface 
1.c Collaboration 
1.d Usecase 
1.e ActivityClass 
1.f Component 
1.g Node 

 
a Class: 

Aclass is a description of a set of objects that share the same 
attributes, operations,relationships, and semantics. A class implements one or more 
interfaces. Graphically, a class 
isrenderedasarectangle,usuallyincludingitsname,attributes,andoperations. 

 
 
 
 
 
 

b Interface: 
Aninterfaceisacollectionofoperationsthatspecifyaserviceofaclassorcomponent. 

Graphically,aninterfaceisrenderedasacircletogetherwithitsname. 

 

C)Collaboration: 

Collaboration defines an interaction and is a society of roles and other elements 
thatwork together to provide some cooperative behavior that's bigger than the sum of all 
theelements.Graphically,acollaborationisrenderedasanellipsewithdashedlines,usuallyincludi
ngonlyitsname.



 

42 
 

 
 

d Usecase: 
Ause case is a description of set of sequence of actions that a system 

performs thatyields an observable result of value to a particular actor. A use case 
is used to structure thebehavioral things in a model. A use case is realized by a 
collaboration. Graphically, a use case isrenderedasanellipsewithsolidlines, 
usuallyincludingonlyitsname. 

e Activeclass 
An active class is a class whose objects own one or more processes or 

threads andtherefore can initiate control activity.Graphically, an active class is 
rendered just like a class, butwithheavylines,usuallyincluding itsname, 
attributes,andoperations. 

f Component: 
A Componentis a physicalandreplaceable partof a system that conformsto 

andprovidestherealizationof asetofinterfaces.Graphically,acomponentisrendered 
asarectanglewithtabs, usuallyincluding onlyitsname. 

 
g Node: 

A node is a physical element that exists at run time and 
represents a 
computationalresource,generallyhavingatleastsomememoryand,often,processingca
pability.Graphically,anodeisrenderedas acube, usuallyincludingonlyitsname. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

43 
 

 
Behavioralthings: 

Behavioral things are the dynamic parts of UML models. These 
are the verbs of a model,representing behavior over time and space. 
There are two primary kinds of behavioral things.Theyare 

1.a Interaction 
1.b Statemachine 

 
a Interaction 

Interaction is a abehavior that comprises a set of 
messages exchanged among a set ofobjects within a particular context 
to accomplish specific purpose. An interaction involves anumber of 
other elements, including messages, action sequences (the behavior 
invoked by amessage), and links (the connection between objects). 
Graphically, a message is rendered as 
adirectedline,almostalwaysincludingthe nameofitsoperation. 

 
b Statemachine 

A State machine   a number of other elements, 
including states, transitions (the flowfrom state to state), events (things 
that trigger a transition), and activities (the response to 
atransition).Graphically, a state is rendered as a rounded rectangle, 
usually including its nameanditssubstates. 

 
2 Groupingthings: 

Grouping things are the organizational parts of UML models. 
These are the boxes intowhich a model can be decomposed. There is 
one primary kind of groupingthing, namely,packages. 

package: 

Apackageisageneral-
purposemechanismfororganizingelementsintogroups.Structuralthings,b
ehavioralthings,andevenothergroupingthingsmaybeplacedinapackage.G
raphically, a package is rendered as a tabbed folder, usually including 
only its nameand,sometimes, itscontents. 

Annotationalthings: 

Annotational things are the explanatory parts of UML models. 
These are the commentsyou may apply to describe, illuminate, and 
remark about any element in a model. There is 
oneprimarykindofannotationalthing,calleda note. 

Note: 



 

44 
 

Anoteissimplyasymbolforrenderingconstraintsandcommentsattac
hedtoanelement or a collection of elements. Graphically, a note is 
rendered as a rectangle with a dog-earedcorner,togetherwith 
atextualorgraphicalcomment. 

 
 
 
 

 

 

 

 

 

 

1 Relationships intheUML: 
 

Relationshipsareusedtoconnectthings.Therearefourkindsofrelati
onshipsintheUML: 

1.1 Dependency 
1.2 Association 
1.3 Generalization 
1.4 Realization 

1 Dependency: 
 

A dependency is a semantic relationship between two things in 
which a change to onething (the independent thing) may affect the 
semantics of the other thing (the 
dependentthing).Graphically,adependencyisrenderedasadashedline,poss
iblydirected,andoccasionallyincludingalabel. 

 
2 Association: 

 

An association is a structural relationship that describes a set of 
links, a link being 
aconnectionamongobjects.Aggregationisaspecialkindofassociation,repr
esentingastructural relationship between a whole and its parts. 
Graphically, an association is rendered 
asasolidline,possiblydirected,occasionallyincludingalabel,andoftencont
ainingotheradornments,suchas multiplicityand rolenames. 



 

45 
 

 
3 Generalization: 

 
A Generalization is a specialization/generalization relationship 

in which objects of thespecialized element (the child) are substitutable 
for objects of the generalized element 
(theparent).Inthisway,thechildsharesthestructureandthebehaviorofthepar
ent.Graphically,ageneralizationrelationshipis 
renderedasasolidlinewithahollowarrowheadpointingtotheparent. 

 
 
 
 
 
 
 

4 Realization: 
ARealizationisasemanticrelationshipbetweenclassifiers

,whereinoneclassifierspecifies a contract that another classifier 
guarantees to carry out. Graphically, a 
realizationrelationshipisrenderedasacrossbetweenageneralizationandade
pendencyrelationship 

 

3 Diagrams in theUML:- 
 

Adiagramisthegraphicalpresentationofasetofelem
ents,mostoftenrendered as a connected graph of vertices (things) and 
arcs (relationships). The UMLincludesninesuch diagrams: 

1. Classdiagram 2.Objectdiagram 
3.Use casediagram 4.Sequencediagram 

5.Collaborationdiagram 6.Statechartdiagram 

7.Activitydiagram 8.Componentdiagram 

9.Deploymentdiagram 

1 Class diagram: 
Aclassdiagramshowsasetofclasses,interfaces,andcollaborationsan

dtheirrelationships.Thesediagramsarethemostcommondiagramfoundinm
odelingobject-orientedsystems.Class diagrams addressthestatic 
designviewofasystem. 

2 Objectdiagram: 
Anobjectdiagramshowsasetofobjectsandtheirrelationships.Object

diagramsrepresent static snapshotsof instances ofthethingsfound in 



 

46 
 

class diagrams.These diagrams addressthestatic designview orstatic 
process view of asystem . 

3 usecasediagram: 
A use case diagram shows a set of use cases and actors 

(a special kind of class) and theirrelationships. Use case diagrams 
address the static use case view of a system. These diagrams 
areespeciallyimportantinorganizingandmodeling 
thebehaviorsofasystem. 

4 Sequence diagram: 
A sequence diagram is an interaction diagram that emphasizes 

the time-ordering of messages;Interaction 
diagramsaddressthedynamicview ofasystem.Sequencediagramsand 
collaborationdiagramsareisomorphic,meaningthatyoucantakeoneandtra
nsformit intothe other. 

 
5 collaborationdiagram: 

A collaboration diagram is an interaction diagram that 
emphasizes the structural organization ofthe objects that send and 
receive messages. Interaction diagrams address the dynamic view of a 
system.Sequence diagrams and collaboration diagrams are isomorphic, 
meaning that you can take one andtransformitintotheother. 

 
6 statechartdiagram: 

Astatechartdiagramshowsa state machine, consistingof 
states,transitions,events,andactivities.Statechartdiagramsaddressthedyn
amicview ofasystem. 

7 Activitydiagram 
An activity diagram is a special kind of a state chart diagram that 

shows the flow fromactivitytoactivity 
withinasystem.Activitydiagramsaddressthedynamicview ofasystem. 

8 componentdiagram: 
Acomponentdiagramshowstheorganizationsanddependenciesamo

ngasetofcomponents.Componentdiagramsaddressthestaticimplementati
onviewofasystem. 

9 deployment diagram:A deployment diagram shows the 
configuration of run-time 
processingnodesandthecomponentsthatliveonthem.Deploymentdiagram
saddressthestaticdeploymentview ofarchitecture. 

 

 

 

 



 

47 
 

Rulesof the UML:- 

Like any language, the UML has a number of rules that specify what a well-formed 
model should look like. A well-formed model is one that is semantically self-
consistentandinharmonywithallitsrelatedmodels.TheUMLhassemanticrulesfor 

 Names:Whatyoucancall things,relationships,anddiagrams 
 Scope :Thecontextthatgivesspecificmeaningtoaname 
 Visibility:Howthose names canbeseenandusedbyothers 
 Integrity: Howthingsproperlyandconsistentlyrelatetooneanother 
 Execution:Whatitmeansto runorsimulateadynamicmodel 

Models built during the development of a software-intensive system tend to 
evolve and may beviewed by many stakeholders in different ways and at 
different times. For this reason, it is common forthedevelopmentteamtonot only 
buildmodels thatare well-formed,butalsoto buildmodels thatare 

o ElidedCertainelementsarehiddentosimplifytheview 
o IncompleteCertainelementsmaybemissing 
o Inconsistenttheintegrity of themodelisnotguaranteed. 

CommonMechanismsintheUML: 

UMLismadesimplerbythepresenceoffourcommonmechanisms
thatapplyconsistentlythroughout thelanguage.They are: 

1 Specifications 
2 Adornments 
3 Commondivisions 
4 Extensibilitymechanisms 

1 Specifications 
TheUMLismorethanjustagraphicallanguage.Rather,behindever

ypartofitsgraphical notation there is a specification that provides a textual 
statement of the syntax 
andsemanticsofthatbuildingblock.Forexample,behindaclassiconisaspecificationth
atprovides the full set of attributes, operations (including their full signatures), 
and behaviors thattheclassembodies; 

2 Adornments 
 

Most elements in the UML have a unique and direct graphical notation 
that provides avisual representation of the most important aspects of the 
element. A class's specification 
mayincludeotherdetails,suchaswhetheritisabstractorthevisibilityofitsattributesand
operations. Many of these details can be rendered as graphical or textual 
adornments to theclass'sbasicrectangular notation. 

 
 
 
 
 
 
 

 



 

48 
 

 

 

 

 

 

 

 

 

 

 

 

 

For example, Figure shows a class, adorned to indicate that it is an abstract 
class withtwo public, one protected, and one private operation.Every element in the 
UML's notationstarts with a basic symbol, to which can be added a variety of 
adornments specific to thatsymbol. 

CommonDivisions 
Inmodelingobject-orientedsystems,theworldoftengetsdividedinatleastacoupleofways. 

 

classandobject: 

A class is an abstraction; an object is one concrete manifestation of that abstraction.  

In this figure, there is one class, named Customer, together with three objects: 
Jan(which ismarked explicitly as being a Customer object), :Customer (an 
anonymous Customerobject),and Elyse (which in its specification ismarked as being 
a kind of Customer object,although it‘snot shown explicitly here).Graphically, the 
UML distinguishes an object by using thesamesymbolas 
itsclassandthensimplyunderlyingtheobject's name. 

Interfaceandimplementation.: 
Aninterfacedeclaresacontract,andanimplementationrepresentsoneconcretereal

izationof thatcontract, responsible 
forfaithfullycarryingouttheinterface'scompletesemantics. In the UML, you can model 
both interfaces and their implementations, as shown inFigure 

 
 
 
 
 



 

49 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this figure, there is one component named spellingwizard.dll that 
implements twointerfaces,IUnknownandIspelling. 

                    4.ExtensibilityMechanisms 
 

The UML provides a standard language for writing software blueprints, 
but it is notpossible for one closed language to ever be sufficient to express all 
possible nuances of 
allmodelsacrossalldomainsacrossalltime.TheUML'sextensibilitymechanisms 
include 

1 Stereotypes 
2 Taggedvalues 
3 Constraints 

A stereotype extends the vocabulary of the UML, allowing you to create 
new kinds ofbuilding blocks that are derived from existing ones but that are 
specific to your problem.Forexample, if you are workingin a 
programminglanguage, such asJavaor C++, you will 
oftenwanttomodelexceptions.Intheselanguages,exceptionsarejustclasses,Youcan
makeexceptions first class citizens in your models, meaning that they are treated 
like basic 
buildingblocks,bymarkingthemwithanappropriatestereotype,asfortheclassOverfl
owinFigure. 

  



 

50 
 

Taggedvalues 

A tagged value extends the properties of a UML building block, allowing 
you to createnew information in that element's specification. For example, if you 
want to specify the 
versionandauthorofcertaincriticalabstractions.Versionandauthorarenotprimitive 
UMLconcepts. 

o Forexample,theclassEvent 
Queueisextendedbymarkingitsversionandauthorexplicitl
y. 

3.2 Constraints 
A constraint extends the semantics of a UML building block, 

allowing you to add newrules or modify existing ones. For example, 
you mght want to constrain the EventQueue class sothat all additions 
are done in order. As Figure shows, you can add a constraint that 
explicitlymarksthese fortheoperationadd. 

UNIFIED PROCESS (UP) 

 The Unified Process has emerged as a popular iterative 
software development process for building object oriented systems. 
The Unified Process (UP) combines commonly accepted best 
practices, such as an iterative lifecycle and risk-driven development, 
into a cohesive and welldocumented description. The best-known and 
extensively documented refinement of the Unified Process is the 
Rational Unified Process(RUP). Reasons to use UP • UP is an 

iterative process • UP practices provide an example structure to talk 

about how to do, and how to learn OOA/D. Best Practices and Key 
Concepts in UP • Tackle high-risk and high-value issues in early 
iterations • Engage users continuously for evaluation, feedback, and 
requirements • Build a cohesive, core architecture in early iterations • 

Apply use cases • Provides visual modeling using UML • Practice 

change request and configuration management. UP PHASES There 
are 4 phases in Unified Process, 1. Inception 2. Elaboration 3. 
Construction 4. Transition INCEPTION Inception is the initial stage 
of the project. Inception is not a requirements phase but it is a 
feasibility phase where complete investigation takes place to support a 
decision to continue or stop .It deals with • Approximate vision • 

Business case • Scope • Vague estimates. 

 
 
 

 

 



 

51 
 

 

OBJECT ORIENTED ANALYSIS AND DESIGN 

UNIT II-OBJECT ORIENTED ANALYSIS 

2.1 USE CASE MODEL 

A use-case model is a model of how different types of users interact with the system to solve a 
problem.  As such, it describes the goals of the users, the interactions between the users and the 
system, and the required behavior of the system in satisfying these goals. 

A use-case model consists of a number of model elements.  The most important model elements 
are: use cases, actors and the relationships between them. 

A use-case diagram is used to graphically depict a subset of the model to simplify communications.  
There will typically be several use-case diagrams associated with a given model, each showing a 
subset of the model elements relevant for a particular purpose.  The same model element may be 
shown on several use-case diagrams, but each instance must be consistent.  If tools are used to 
maintain the use-case model, this consistency constraint is automated so that any changes to the 
model element (changing the name for example) will be automatically reflected on every use-case 
diagram that shows that element. 

The use-case model may contain packages that are used to structure the model to simplify analysis, 
communications, navigation, development, maintenance and planning. 

Much of the use-case model is in fact textual, with the text captured in the Use-Case Specifications 
that are associated with each use-case model element. These specifications describe the flow of 
events of the use case. 

The use-case model serves as a unifying thread throughout system development. It is used as the 
primary specification of the functional requirements for the system, as the basis for analysis and 
design, as an input to iteration planning, as the basis of defining test cases and as the basis for user 
documentation   

Basic model elements 

The use-case model contains, as a minimum, the following basic model elements. 

Actor 

A model element representing each actor. Properties include the actors name and brief description. 
See Concept: Actor for more information. 

Use Case 

A model element representing each use case. Properties include the use case name and use case 
specification. See Artifact: Use Case and Concept: Use Case for more information. 

Associations 

Associations are used to describe the relationships between actors and the use cases they participate 
in. This relationship is commonly known as a “communicates-association”. 

Advanced model elements 

The use-case model may also contain the following advanced model elements. 



 

52 
 

Subject 

A model element that represents the boundary of the system of interest.   

Use-Case Package 

A model element used to structure the use case model to simplify analysis, communications, 
navigation, and planning.  If there are many use cases or actors, you can use use-case packages to 
further structure the use-case model in much the same manner you use folders or directories to 
structure the information on your hard-disk. 

You can partition a use-case model into use-case packages for several reasons, including: 

To reflect the order, configuration, or delivery units in the finished system thus supporting iteration 
planning. 

To support parallel development by dividing the problem into bite-sized pieces. 

To simplify communication with different stakeholders by creating packages for containing use 
cases and actors relevant to a particular stakeholder. 

Generalizations 

A relationship between actors to support re-use of common properties. 

Dependencies 

A number of dependency types between use cases are defined in UML. In particular, <<extend>> 
and <<include>>. 

<<extend>> is used to include optional behavior from an extending use case in an extended use 
case. 

<<include>> is used to include common behavior from an included use case into a base use case in 
order to support re-use of common behavior. 

The latter is the most widely used dependency and is useful for: 

Factoring out behavior from the base use case that is not necessary for the understanding of the 
primary purpose of the use case to simplify communications. 

Factoring out behavior that is in common for two or more use cases to maximize re-use, simplify 
maintenance and ensure consistency. 

2.1.1 USE CASES UNDER THE MICROSCOPE 

Use Case Driven 

A use case is a sequence of actions, performed by one or more actors (people or non-human entities 
outside of the system) and by the system itself, that produces one or more results of value to one or 
more of the actors. One of the key aspects of the Unified Process is its use of use cases as a driving 
force for development. The phrase use case driven refers to the fact that the project team uses the 
use cases to drive all development work, from initial gathering and negotiation of requirements 
through code. (See "Requirements" later in this chapter for more on this subject.) 

 

Use cases are highly suitable for capturing requirements and for driving analysis, design, and 
implementation for several reasons. 



 

53 
 

 

Use cases are expressed from the perspective of the system's users, which translates into a higher 
comfort level for customers, as they can see themselves reflected in the use case text. It's relatively 
difficult for a customer to see himself or herself in the context of requirements text. 

 

Use cases are expressed in natural language (English or the native language of the customers). 
Well-written use cases are also intuitively obvious to the reader. 

 

Use cases offer a considerably greater ability for everyone to understand the real requirements on 
the system than typical requirements documents, which tend to contain a lot of ambiguous, 
redundant, and contradictory text. Ideally, the stakeholders should regard use cases as binding 
contracts between customers and developers, with all parties agreeing on the system that will be 
built. 

 

Use cases offer the ability to achieve a high degree of traceability of requirements into the models 
that result from ongoing development. By keeping the use cases close by at all times, the 
development team is always in touch with the customers' requirements. 

 

Use cases offer a simple way to decompose the requirements into chunks that allow for allocation of 
work to sub teams and also facilitate project management. (See "Use Case Model" in Chapter 2 for 
information about breaking use cases up into UML packages.) This is not the same as functional 
decomposition, though; see Use Case Driven Object Modeling with UML (Rosenberg and Scott, 
1999) for an explanation of the difference 

2.1.2 EXTENDS AND USES ASSOCIATIONS 

 

Extend relationships 

In UML modelling, you can use an extend relationship to specify that one use case (extension) 
extends the behaviour of another use case (base). This type of relationship reveals details about a 
system or application that are typically hidden in a use case. 

The extend relationship specifies that the incorporation of the extension use case is dependent on 
what happens when the base use case executes. The extension use case owns the extend 
relationship. You can specify several extend relationships for a single base use case. 

While the base use case is defined independently and is meaningful by itself, the extension use case 
is not meaningful on its own. The extension use case consists of one or several behaviour sequences 
(segments) that describe additional behaviour that can incrementally augment the behaviour of the 
base use case. Each segment can be inserted into the base use case at a different point, called an 
extension point. 



 

54 
 

The extension use case can access and modify the attributes of the base use case; however, the base 
use case is not aware of the extension use case and, therefore, cannot access or modify the attributes 
and operations of the extension use case. 

You can add extend relationships to a model to show the following situations: 

 A part of a use case that is optional system behaviour 
 A sub flow is executed only under certain conditions 
 A set of behaviour segments that may be inserted in a base use case 

Extend relationships do not have names. 

As the following figure illustrates, an extend relationship is displayed in the diagram editor as a 
dashed line with an open arrowhead pointing from the extension use case to the base use case. The 
arrow is labelled with the keyword «extend». 

 
Example 

You are developing an e-commerce system in which you have a base use case called Place Online 
Order that has an extending use case called Specify Shipping Instructions. An extend relationship 
points from the Specify Shipping Instructions use case to the Place Online Order use case to 
indicate that the behaviours in the Specify Shipping Instructions use case are optional and only 
occur in certain circumstances. 

2.1.3 IDENTIFYING THE ACTORS 

Use Case Analysis: How to Identify Actors? 

Identify Candidate Actors for Use Cases 

Primary vs Supporting Actors 

Actor Identification Process 

Actor Role Description 

Identifying actors is one of the first steps in use case analysis. Each type of external entities with 
which the system must interact is represented by an actor. For example, the operating environment 
of a software system consists of the users, devices, and programs that the system interacts with. 
These are called actors which has the following characteristics: 

 

An actor in use case modeling specifies a role played by a user or any other system that interacts 
with the subject. 



 

55 
 

An Actor models a type of role played by an entity that interacts with the subject (e.g., by 
exchanging signals and data), but which is external to the subject. 

Actors may represent roles played by human users, external hardware, or other subjects. 

Actors do not necessarily represent specific physical entities but merely particular facets (i.e., 
“roles”) of some entities that are relevant to the specification of its associated use cases. 

A single physical instance may play the role of several different actors and a given actor may be 
played by multiple different instances. 

Types of actors include: 

Users 

database systems 

clients and servers 

cloud platforms 

devices 

Types of Actors 

Identify Candidate Actors for Use Cases 

Candidate actors include groups of users who will require help from the system to perform their 
tasks and run the system’s primary or secondary functions, as well as external hardware, software, 

and other systems. 

Define each candidate actor by naming it and writing a brief description. Includes the actor’s area of 

responsibility and the goals that the actor will attempt to accomplish when using the system. 
Eliminate actor candidates who do not have any goals. 

These questions are useful in identifying actors: 

Which user groups require help from the system to perform their tasks? 

Which user groups are needed to execute the system’s most obvious main functions? 

Which user groups are required to perform secondary functions, such as system maintenance and 
administration? 

Will the system interact with any external hardware or software system? 

Any individual, group or phenomenon that fits one or more of these categories is a candidate for an 
actor. 

Primary vs Supporting Actors 



 

56 
 

Primary actor of a use case is the stakeholder that calls on the system to deliver one of its services. 
It has a goal with respect to the system – one that can be satisfied by its operation. The primary 
actor is often, but not always, the actor who triggers the use case. 

Supporting Actors: A supporting actor in a use case in an external actor that provides a service to 
the system under design. 

Note That: 

Supporting actors may or may not have goals that they expect to be satisfied by the use case, the 
primary actor always has a goal, and the use case exists to satisfy the primary actor. It might be an 
external server or a web service. 

A primary actor initiates an interaction with the system. 

The system initiates interactions with secondary actors. 

Here are a few questions to guide the identification of primary and secondary actors: 

Who are the primary actors? 

What roles do they play in the application domain? 

What are their roles? What tasks must they perform? 

How will they interact with the system? GUI? Telephone? Web? 

Who are the secondary actors? 

What services do they provide? 

How will the system communicate with them? Network? Port? 

What specific APIs do secondary actors provide for communication and services? 

Actor Identification Process 

To define what will be handled by the system and what will be handled outside the system (system 
scope, i.e. manual or automated procedure). 

To define who (actors) and what (the functionalities needed) will interact with the system. 

To outline the functionality of the system (help to identify use cases) 

Actor Role Description 

Define each actor by writing a brief description that includes the actor’s area of responsibility, and 

what the actor needs the system for. Because actors represent things outside the system, you need 
not describe them in detail. You can basically make list all your actors with their role description 
and their objectives in a tabular format as shown below: 

Actor / Role Name Role Description and Objective 



 

57 
 

Actor  

Briefly describe the role of the actor to the system and how the actor will use the system 

What is the actor’s goal? 

What does the actor need from the system? 

What is the expected outcome of the system? 

Customer Customers will place food orders and may or may not order juice. When the order is 
served, the customer will eat his/her meal and pay the check. 

Waiter The waiter will receive the food order from the customer and confirm the order with the 
cook and serve food to the customer. 

Use Case Description example: 

A user clicks the search button on an application’s user interface. The application sends an SQL 
query to a database system. The database system responds with a result set. The application formats 
and displays the result set to the user. 

In this scenario: 

The user is a primary actor because he initiates the interaction with the system (application). 

The database system is a secondary actor because the application initiates the interaction by sending 
an SQL query. 

Once you have identified your actors and their goals, you have now created your initial list of high-
level use cases. Remember, effective use cases must have understandable actors and goals 

2.1.4  GUIDELINES FOR FINDING USE CASES 

Before we can produce a use case diagram we must first identify the groups of related scenarios - 
the use cases. In addition we need to identify the initiators of the use cases - the actors. Recall from 
the previous sections, actors reside outside of the system and interact with it; use cases describe the 
functionality that helps actors achieve their goals. There are many approaches to identifying actors 
and use cases. In this section we present a method for doing this. 

To identify use cases we will take the following steps: 

Step 1: Identify candidate system actors. 

Step 2: Identify the goals of the actors. 

Step 3: Identify the candidate use cases. 

Step 4: Identify the start point for each use case. 

Step 5: Identify the end point for each use case. 

Step 6: Refine and scope units of interaction. 



 

58 
 

 

Now we discuss each of these steps in more detail. 

 

Step 1: Identify candidate system actors. 

Read through the requirements documentation and make a note of all the candidate system actors. 
Remember an actor is not just a person but may also be an external system such as a credit card 
verification service. Actors interact with the system and reside outside of it. If you find that multiple 
terms have been used to describe the same actor, group these terms together and use a generic term. 
Be aware, it is crucial that you are certain that these terms are describing the same actor. 

Activity: Identify the Actors in the Case Study 

Learning Objective: This exercise will give you some insight into the process of identifying the 
system actors that are responsible for initiating uses cases. 

Read through the UWEFlix case study and identify the actors. Remember from the previous section, 
actors are external to the system and not part of it. They are not necessarily human and can be 
external systems such as credit card verification services. For example, Manager could be an actor. 
Any others? 

Step 2: Identify the goals of the actors. 

Use cases describe the functionality required of the system in order for actors to achieve their goals. 
Therefore you need to identify what the goals of your candidate actors are. At this stage you may 
find that you have multiple actors requiring the same or similar system functionality, at this stage do 
not worry about this. For example, the manager needs to decide what films to shown in which 
screens. 

Step 3: Identify the candidate use cases. 

Now that you have identified the candidate actors and the goals of these actors we can identify the 
candidate list of use cases. Remember a use case represents a substantial piece of system 
functionality, not just a single method in software. Use cases cover a group of related scenarios, for 
example, a use case called "purchase ticket" will include the scenario where payment is 
unsuccessful in addition to the typical payment success scenario. Using the actors goals try and 
identify the text in the requirements document that corresponds to these goals. Choose an initial 
name to describe the candidate use case and paste the textual commentary from the requirements 
document underneath the use case name. At this point do not worry about common functionality in 
multiple use cases. 

Activity: Identify the Use Cases in the Case Study 

 

Learning Objective: This exercise will give you some insight into the process of identifying the uses 
cases that represent the required system functionality. 

Read through the case study and identify the use cases. Remember from the previous section that 
use cases are groups of related scenarios. For example, we may have a use case for deleting film. 



 

59 
 

Step 4: Identify the start point for each use case. 

You may have already started to do this when producing your list of candidate use cases but you 
need to identify the start point for each use case. To do this, look for an actor and an initial event. 
You will find this is easier to do with some use cases rather than others. For example, with the 
"DeleteFilm" use case, the initial event may be to choose a film. 

Step 5: Identify the end point for each use case. 

In a manner similar to that of step 2, you need to identify the beneficial result of the use case, the 
end point. The purpose of this step is to allow you to refine the size of use cases, ensuring that a 
candidate use case is neither too small nor too big. 

Step 6: Refine and scope units of interaction. 

At this point all of the functionality described in the requirements document needs to be covered by 
at least one candidate use case. You now need to work through the list of candidate use cases 
refining size and scope. Remember after completing this step you are not after a fixed final list of 
actors and use cases, it is still possible to refine this later. 

2.1.5  HOW DETAILED USE CASE MUST BE? 

Detail the Flow of Events of the Use Case To top of page 

You should already have a short, step-by-step description of the use-case flow of events. This is 
created in the Activity: Find Actors and Use Cases. Use this step-by-step description as a starting 
point, and gradually make it more detailed. 

Describe use cases according to the standards decided for the project (documented in the Artifact: 
Use-Case Modeling Guidelines). Decide on the following points before describing the use cases so 
that you are consistent across use cases: 

How does the use case start? The start of the use case must clearly describe the signal that activates 
the use case. Write, for example, "The use case can start when … happens." 

How does the use case terminate? You should clearly state whatever happens in the course of the 
flow to terminate the use case. Write, for example, "When … happens, the use case terminates." 

How does the use case interact with actors? To minimize any risk of misunderstanding say exactly 
what will reside inside the system, and what will reside outside the system. Structure the description 
as a series of paragraphs, in which each paragraph expresses an action in the format: "When the 
actor does …, the system does …." You can also emphasize interaction by writing that the use case 
sends and receives signals from actors, for example: "The use case starts when it receives the signal 
'start' from the Operator." 

How does the use case exchange data with an actor? If you like, you can refer to the arguments of 
the signals, but it might be better to write, for example, "The use case starts when the User logs into 
the system by giving his name and password." 

How does the use case repeat some behavior? You should try to express this in natural language. 
However, in exceptional cases, it might be worthwhile to use code-like constructs, such as 
"WHILE-END WHILE," "IF-THEN-ELSE," and "LOOP-END LOOP," if the corresponding 



 

60 
 

natural language terms are difficult to express. In general, however, you should avoid using such 
code-like constructs in use-case descriptions because they are hard to read and maintain. 

Are there any optional situations in a use case's flow of events? Sometimes an actor is presented 
with several options. Team members should write this in the same way. For example: 

"The actor chooses one of the following, one or more times 

How should the use case be described so that the customer and the users can understand it? The use 
of methodology-specific terminology, such as use case, actor, and signal, might make the text 
unnecessarily hard to grasp. To make the text easier to read, you might enumerate the actions, or 
adopt some other strategy. Whatever strategy you use should be specified in the general use-case-
modeling guidelines so that you keep it in mind during the entire activity of describing use cases. 

Concentrate on describing what is done in the use case, not how specific problems internal to the 
system should be solved. When working with object models, you may have to complement the 
description with details about how things work, so do not make the description overly detailed at 
this point. Describe only what you believe will be stable later on. 

 

If a use case's flow of events has become too encompassing or complex, or if it appears to have 
parts that are independent of one another, split it into two or more use cases. 

 

When you write the descriptive text, refer to the glossary. As fresh terms evolve from new concepts, 
include them in the glossary. Do not change the definition of a term without informing the 
appropriate project members. 

The Content of a Flow of Events Description 

A flow of events description explores: 

How and when the use case starts. 

Example: 

"The use case can start when the function 'Administer Order' is activated by a user." 

When the use case interacts with the actors, and what data they exchange. 

Example: 

"To create a new order, the user activates the function 'New' and then specifies the following 
mandatory data concerning the order: name, network elements (at least one), and type of 
measurement function. Optional data can also be specified concerning the order: a comment (a 
small textual description). The user then activates the function 'Ok,' and a new order is created in 
the system." 

 



 

61 
 

Note: You must be explicit regarding the data exchanged between the actors and the use case; 
otherwise, the customer and the users will probably not understand the use-case description. 

How and when the use case uses data stored in the system, or stores data in the system. 

Example: 

"The user activates the function 'Modify' to modify an existing order, and specifies an order number 
(small integer). The system then initializes an order form with the name of the order, its network 
elements, and its type of measurement function. This data is retrieved from a secondary storage 
device." 

How and when the use case ends. 

Example: 

"The use case ends when the function 'Exit' is activated by the Orderer." 

You should also describe odd or exceptional flows of events. An exceptional flow is a subflow of 
the use case that does not adhere to the use case's normal or basic behavior. This flow may 
nevertheless be necessary in any complete description of the use case's behavior. A typical example 
of an exceptional flow is the one given in the first example. If the use case receives some 
unexpected data (that the actor is not the one expected in that particular context) it terminates. 
Having the wrong actor and terminating prematurely are not in the typical flow of events. 

Other "do's and don'ts" to consider when you describe a use case include: 

Describe the flow of events, not just the use case's functionality or purpose. 

Describe only flows that belong to the use case, not what is going on in other use cases that work in 
parallel with it. 

Do not mention actors who do not communicate with the use case in question. 

Do not provide too much detail when you describe the use case's interaction with any actor. 

If the order of the subflows described for the use case does not have to be fixed, do not describe it 
as if it does have to be fixed. 

Use the terms in the common glossary and consider the following in writing the text: 

Use straightforward vocabulary. Don't use a complex term when a simple one will do. 

Write short, concise sentences. 

Avoid adverbs, such as very, more, rather, and the like. 

Use correct punctuation. 

Avoid compound sentences. 

For more information, see Guidelines: Use Case, the discussions on contents and style of the flow 
of events. 



 

62 
 

Structure the Flow of Events of the Use Case To top of page 

A use case's flow of events can be divided into several subflows. When the use case is activated the 
subflows can combine in various ways if the following holds true: 

The use case can proceed from one of several possible paths, depending on the input from a given 
actor, or the values of some attribute or object. For example, an actor can decide, from several 
options, what to do next, or, the flow of events may differ if a value is less or greater than a certain 
value. 

Example: 

Part of the description of the use case Withdraw Money in an automated teller machine system 
could be "The amount of money the client wants to withdraw from the account is compared to the 
balance of the account. If the amount of money exceeds the balance, the client is informed and the 
use case terminates. Otherwise, the money is withdrawn from the account." 

The use case can perform some subflows in optional sequences. 

The use case can perform several subflows at the same time. 

You must describe all these optional or alternative flows. It is recommended that you describe each 
subflow in a separate supplement to the Flow of Events section, and should be mandatory for the 
following cases: 

Subflows that occupy a large segment of a given flow of events. 

Exceptional flows of events. This helps the use case's basic flow of events to stand out more clearly. 

Any subflow that can be executed at several intervals in the same flow of events. 

If a subflow involves only a minor part of the complete flow of events, it is better to describe it in 
the body of the text. 

Example: 

"This use case is activated when the function 'administer order' is called for by either of the actors 
Orderer or Performance Manager Administrator. If the signal does not come from one of these 
actors, the use case will terminate the operation and display an appropriate message to the user. 
However, if the actor is recognized, the use case proceeds by....." 

You can illustrate the structure of the flow of events with an activity diagram, see Guidelines: 
Activity Diagram in the Use-Case Model. 

For more information, see Guidelines: Use Case, structure of the flow of events. 

Illustrate Relationships with Actors and Other Use Cases To top of page 

Create use-case diagrams showing the use case and its relationships to actors and other use cases. A 
diagram of this type functions as a local diagram of the use case, and should be related to it. Note 
that this kind of local use-case diagram is typically of little value, unless the use case has use-case 
relationships that need to be explained, or if there is an unusual complexity among the actors 
involved. 



 

63 
 

For more information, see Guidelines: Use-Case Diagram. 

Describe the Special Requirements of the Use Case To top of page 

Any requirements that can be related to the use case, but that are not taken into consideration in the 
Flow of Events of the use case, should be described in the Special Requirements of the use case. 
Such requirements are likely to be nonfunctional.For more information, see Guidelines: Use Case, 
special requirements. 

Describe Communication Protocols To top of page 

Develop a communication protocol if the actor is another system or external hardware. The 
description of the use case should state if some existing protocol (maybe even a standardized one) is 
to be used. If the protocol is new, you must fully describe it during object-model development. 

Describe Preconditions of the Use Case To top of page 

A precondition on a use case explains the state the system must be in order for the use case to be 
possible to start. 

Example: 

In order for an ATM system to be able to dispense cash, the following preconditions must be 
satisfied: 

The ATM network must be accessible. 

The ATM must be in a state ready to accept transactions. 

The ATM must have at least some cash on hand that it can dispense. 

The ATM must have enough paper to print a receipt for at least one transaction. 

These would all be valid preconditions for the use case Dispense Cash. 

Take care to describe the system state; avoid describing the detail of other incidental activities that 
may have taken place prior to this use case. 

Preconditions are not used to create a sequence of use cases. There will never be a case where you 
have to first perform one use case, then another, in order to have a meaningful flow of events. If you 
feel there is a need to do this, it is likely that you have decomposed the use-case model too much. 
Correct this problem by combining the sequentially dependent use cases into a single use case. If 
this makes the resulting  use case too complex, consider techniques for structuring use cases, as 
presented in Structure the Flow of Events of the Use Case above, or in the Activity: Structure the 
Use-Case Model. 

For more information, see Guidelines: Use Case, Preconditions and Postconditions. 

Describe Postconditions of the Use Case To top of page 

A postcondition on a use case lists possible states the system can be in at the end of the use case. 
The system must be in one of those states at the end of the execution of the use case. It is also used 



 

64 
 

to state actions that the system performs at the end of the use case, regardless of what occurred in 
the use case. 

Example:If the ATM always displays the ‘Welcome’ message at the end of a use case, this could be 

documented in the postcondition of the use case. 

Similarly, if the ATM always closes the customer’s transaction at the end of a use case like 
Withdraw Cash, regardless of the course of events taken, that fact should be recorded as a 
postcondition for the use case. 

Postconditions are used to reduce the complexity and improve the readability of the flow-of-events 
of the use case. 

2.1.6  DIVIDING USE CASES INTO PACKAGES 

Guidelines:  Use-Case Package 

Use-Case Package A use-case package is a collection of use cases, actors, relationships, 
diagrams, and other packages; it is used to structure the use-case model by dividing it into smaller 
parts. 

A model structured into smaller units is easier to understand. It is easier to show relationships 
among the model's main parts if you can express them in terms of packages. A package is either the 
top-level package of the model, or stereotyped as a use-case package. You can also let the customer 
decide how to structure the main parts of the model. 

If there are many use cases or actors, you can use use-case packages to further structure the use-case 
model. A use-case package contains a number of actors, use cases, their relationships, and other 
packages; thus, you can have multiple levels of use-case packages (packages within packages). 

The top-level package contains all top-level use-case packages, all top-level actors, and all top-level 
use cases. 

Use To top of page 

You can partition a use-case model into use-case packages for many reasons: 

You can use use-case packages to reflect order, configuration, or delivery units in the finished 
system. 

Allocation of resources and the competence of different development teams may require that the 
project be divided among different groups at different sites. Some use-case packages are suitable for 
a group, and some for one person, which makes packages a naturally efficient way to proceed with 
development. You must be sure, however, to define distinct responsibilities for each package so that 
development can be performed in parallel. 

You can use use-case packages to structure the use-case model in a way that reflects the user types. 
Many change requirements originate from users. Use-case packages ensure that changes from a 
particular user type will affect only the parts of the system that correspond to that user type. 

In some applications, certain information should be accessible to only a few people. Use-case 
packages let you preserve secrecy in areas where it is needed. 



 

65 
 

2.1.7  NAMING A USE CASE 

The first step in writing the use cases for a project is to define the scope of the project. One way to 
do that is to list the use case names that define all of the user goals that are in scope. To do that, you 
need to know how to write good use case names. Good use case names also serve as a great 
reference and provide context and understanding throughout the life of the project. 

Goals of Use Case Naming 

Use case names are also known as use case titles. When creating names, we have a set of goals: 

Clearly indicate the user goal represented by the use case. 

Avoid specifying the design of the system. 

Make people want to read the use case, not dread reading it. 

Allow for evolution of use cases across releases. 

Define the scope of the project. 

Write consistently 

Common Use Case Mistakes 

We identified the top ten use case mistakes in a couple of articles about a year ago. They still hold 
true today: 

From Top Five Use Case Blunders: 

Inconsistency 

Incorrectness 

Wrong Priorities 

Implementation Cues 

Broken Traceability 

From Top Ten Use Case Mistakes: 

Unanticipated Error Conditions 

Overlooking System Responses 

Undefined Actors 

Impractical Use Cases 

Out of Scope Use Cases 



 

66 
 

Writing good use case names will help avoid errors in consistency, implementation cues, scope 
management, and traceability. They will also help us make people want to read the use cases. Think 
of the use case name as the headline of a magazine article – does it make you want to read it, or 
avoid it? 

Good use case names also serve as reminders of what a particular use case does. Weeks after we’ve 

written a use case, a quick scan of the title will remind us of what the use case represents. On a 
large project with dozens of use cases, this is invaluable. 

Tips For Writing Good Use Case Names 

Here are the best practices we’ve adopted, and some we’ve collected from around the internet. 

Good Use Case Names Reflect User Goals. A good use case name reflects the goal of the user (or 
external system). A name like “Process Invoices” doesn’t tell us what’s being done – is it 
collections, organization, auditing, or some other function? A more insightful name would be 
“Collect Late Payments From Customers.” The goal in this example is to collect payments from 

delinquent customers. The second name does a much better job of defining what the user is trying to 
do when they perform the use case. 

Good Use Case Names are As Short As Possible. Some people suggest 5 words, or even two words. 
There are just too many examples that make setting specific word-count limits impractical. In the 
previous example, “Collect Late Payments From Customers,” which words would you remove 

without losing meaning? This name is as short as we can make it without losing clarity. This short 
name is better than “Collect Late Payments From Customers Who Are Past-Due.” 

Good Use Case Names Use Meaningful Verbs. Usually people will suggest that we should prefer 
strong verbs to weak verbs. That is effective advice for general writing. For writing use cases, we 
can be more specific. A meaningless verb is one that, while indicating action, does not specify the 
action with enough detail. “Process the Order” can be improved with a more meaningful verb. 
“Validate the Ordered Items” makes it much more clear what the user is trying to achieve.  

Good Use Case Names Use An Active Voice. A call to action is a hallmark of good writing. Using 
an active voice will inspire action more than a passive voice. “Calculate Profitability” is more 

inspiring than “Profitability is Calculated.” 

Good Use Case Names Use The Present Tense. “Create New Account” is in the present tense. “New 

Account Was Created” is in the past tense. The present tense implies what the user is trying to do, 
not something that has already been done. 

Good Use Case Names Don’t Identify The Actor. Some people prefer to name the actor in the use 

case, because it is more specific. We like the idea of using evolutionary use cases to manage the 
delivery of functionality across releases. When we do this, we are often releasing the first version of 
the use case for one actor, and the next version for another actor. For example, “Rank Employee 

Performance” might be our use case. In the first release, we want to enable the functionality for 
supervisors – who can rank their direct employees. In the second release, we want to add the ability 
for managers to rank the employees that report to multiple supervisors. We prefer having two 
versions of the same use case over having two use cases (Rank Direct/Indirect Employee 
Performance). 

Good Use Case Names Are Consistent. We should always apply the same set of rules across all of 
our use case names. Inconsistent application of the names will create a sense of discord for our 



 

67 
 

readers. Consistent names will make it more comfortable for readers, and provide a sense of 
cohesion for the overall project 

2.2   OBJECT ANALYSIS: CLASSIFICATION 

2.2.1  INTRODUCTION 

Classification 

Classification is the means whereby we order knowledge. In object-oriented design, recognizing the 
sameness among things allows us to expose the commonality within key abstractions and 
mechanisms and eventually leads us to smaller applications and simpler architectures. 
Unfortunately, there is no golden path to classification. To the reader accustomed to finding 
cookbook answers, we unequivocally state that there are no simple recipes for identifying classes 
and objects. There is no such thing as the “perfect” class structure, nor the “right” set of objects. As 
in any engineering discipline, our design choices are a compromise shaped by many competing 
factors 

2.2.2  CLASSIFICATIONS  THEORY 

The Theory of Classification 

Object-oriented programming languages were originally developed in advance of any formal theory 
of classification and, as a result, their treatment of class was muddled and ill-founded. Strongly-
typed languages assumed that the notion of class was equated with type, and behavioural 
compatibility could be described using a terminology of types and subtyping, which strictly did not 
apply. The type systems of languages affected by such misunderstandings were sometimes 
incorrect. Other languages assumed that objects have class and type independently, relegating the 
notion of class to a mere implementation construct. 

To counter this confusion, a mathematical theory of classification was developed, which 
encompassed other approaches to type abstraction, such as "type constructors", "generic 
parameters", "classes", "inheritance" and "polymorphism". The theory extended earlier work on F-
bounded polymorphism by providing second- and higher-order typed record combination for 
objects modelled as records of functions. The theory captures notions such as single, multiple and 
mixin inheritance and unifies the treatment of generic polymorphism with inheritance-based 
polymorphism. Object-oriented languages such as Smalltalk, C++, Eiffel and Java may be 
explained within the theory, which also shows how the syntactic treatment of type polymorphism 
may be simplified in future object-oriented languages. 

Project History 

This project grew out of a personal dissatisfaction with the various ad-hoc typing mechanisms used 
to express polymorphism in object-oriented programming languages. Inspired by Cook's account of 
how a strongly-typed object-oriented language violated mathematical subtyping, by permitting 
covariant specialisation of method argument types [1], work started on an object-oriented language, 
which was to support strict subtyping (Simons, 1991) and whose subtyping rules also regulated the 
permissible refinements of pre- and postconditions (Simons, 1994a). 

Subsequently, the type system of this language, Brunel, was completely redesigned to accommodate 
Cook's new theory of F-bounded polymorphism, which treated a class as a second-order construct 
in the function-bounded polymorphic λ-calculus [2], [3]. From this, an initial approach was 
developed to unify the object-oriented notion of inclusion polymorphism with more traditional 



 

68 
 

notions of parametric polymorphism and type constructors (Simons and Cowling, 1992). The 
unified theory of classification was summarised in (Simons, 1996a) and was presented as tutorials 
at ECOOP and OOPSLA (Simons, 1993a, 1993b, 1994b), in which the consequences of adopting an 
F-bounded type system were explored. A class is a function-bounded second-order construct in the 
λ-calculus, whereas an object type is the least fixed point, a first-order construct. Different 
parametric type checking rules apply, which permit the covariant specialisation of method argument 
types, as object-oriented languages intuitively seem to require. 

Distinguishing the notion of class from type 

The unified theory of classification was the subject of the PhD thesis (Simons, 1995a), which also 
described the Brunel 2.0 language as an exemplar of the new type system. This presented a unified 
treatment of inheritance and genericity (templates), showing how the interactions of different kinds 
of extension and specialisation by inheritance and by parametric specialisation and substitution are 
confluent. This eventually extended Cook's model from second-order to higher-order, but could be 
approximated by dependent second-order types some of the time, such as the treatment of mixins in 
(Simons, 1995b). The impact of the theory upon another object-oriented language, Eiffel, was 
described in (Simons, 1995c, 1995d). This provided an alternative second-order, F-bounded 
solution to the type-failure problem, which Cook had addressed earlier using first-order subtyping 
[1]. The revised solution permitted covariant method argument specialisation, as found in Eiffel, but 
also replaced three different syntactic mechanisms for expressing polymorphism (conformance, 
anchored types, constrained genericity) by a single mechanism. The popular impact of the theory of 
classification upon language terminology and design notation was discussed in (Simons, 1996b). 

Most recently, the Theory of Classification has reached a much wider audience, through the 
publication of an invited series of articles in the Journal of Object Technology. This is a popular 
monograph, serialised in 20 parts (Simons, 2002 - 2005). This material has over 100 citations and is 
collated on a number of specialist websites, such as the community weblog for programming 
language research, Lambda the Ultimate. The material has formed the basis for a number of courses 
on object-oriented type theory at the Universities of Berne (Switzerland), Sheffield (UK) and 
others. 

2.2.3  APPROACHES FOR IDENTIFYING CLASSES 

1 Identification of Classes 

2 Object Oriented Analysis (OOA) OOA is process by which we identify classes that play role in 
achieving system goals & requirements. Classification is the process of checking to see if an object 
belongs to a category or a class which guides us in making decisions about modularization. 

3 Approaches for identifying classes & their behaviours in problem domain Noun phrase approach 
Common class patterns Use–case driven approach Classes, Responsibilities and Collaboration 
(CRC) approach 

4 Noun Phrase Approach Read through the requirements or use cases looking for noun phrases. 
Nouns in textual description are considered to be classes & verbs to be methods of classes. As a 
whole, classes are grouped in to three categories: Relevant classes, Fuzzy classes and Irrelevant 
classes. 

5 The series of steps in this approach are as follows: 1.Identifying Tentative Classes: Following are 
guidelines for selecting classes in an application Look for nouns, and noun phrases in use cases 
Some classes are implicit or taken from general knowledge All classes must make sense in 
application domain Avoid computer implementation classes – defer them to the design stage 



 

69 
 

6  Selecting Classes form Relevant & Fuzzy Categories: Following guidelines help in selecting 
candidate classes from relevant & fuzzy categories of classes in problem domain Redundant 
classes: If more than one word is being used to describe same idea, select one that is most 
meaningful in the context of system. This part of building a common vocabulary for the system as a 
whole. Adjectives classes: Adjectives can be in many ways. An adjective can suggest a different 
kind of object, different use of the same object or it could be utterly irrelevant Attribute classes: 
Tentative objects that are used only as values should be defined or restated as attributes and not as a 
class Irrelevant classes: Each class must have a purpose and every class should be clearly defined 
and necessary. Classes which cannot be given statement of purpose are eliminated 

7  Elimination& Refining: The process of eliminating redundant classes & refining remaining 
classes is not sequential. It can be done forth & back among steps as of wish. 

8 Example Case study ( ATM) The following section provides a description of the ATM system 
requirements. 
from his or her accounts using the touch screen at the bank atm. Each transaction must be recorded 
and the client must be able to review all transactions performed against a giv

client will interact with the bank system by going through the approval process. After the approval 
process, the client can perform the transaction. The steps involved in transaction are: a)Insert ATM 
card b)Perform approval process c)Ask type of transaction d)Enter type e)Perform transaction 
f)Eject card g)Take card 

9  Initially the client enters the PIN code that consists of 4 digits. If PIN is valid the clients account 

savings account can have a negative balance. If the balance in saving account is less than the 
withdrawal amount requested, the transaction will stop and the client will be notified. 

10 Solution: List of nouns identified are: Account Account balance Amount Atm card Bank Bank 
client Card Checking account Client Clients account Four digits Invalid PIN Message PIN PIN code 
Savings Savings account Transaction Transaction history Touch Screen 

11 Eliminate irrelevant classes Account Account balance Amount Atm card Bank Bank client Card 
Checking account Client Clients account Four digits Invalid PIN Message PIN PIN code Savings 
Savings account Transaction Transaction history Touch Screen 

12 Reviewing the redundant classes and building a common vocabulary Client, Bank client = Bank 
client Account, Client’s Account = Account PIN, PIN code = PIN Checking, Checking Account= 

Checking Account Savings, Savings Account =Savings Account 

13 Here is the revised list of classes Account Account balance Amount Atm card Bank Bank client 
Card Checking account Client Clients account Four digits Invalid PIN Message PIN PIN code 
Savings Savings account Transaction Transaction history 

14 Reviewing the classes containing adjectives In this example, we have no classes containing 
adjectives that we can eliminate. 

15 Reviewing the Possible Attribute Amount -A value not a class Account Balance -An attribute of 
the Account class. Invalid PIN -only a value, not class Transaction history - attribute of transaction 
class PIN -attribute of Bank client class Password: An attribute of Bank Client class 



 

70 
 

16 Revised list after eliminating the attributes Account Account balance Amount Atm card Bank 
Bank client Card Checking account Client Clients account Four digits Invalid PIN Message PIN 
PIN code Savings Savings account Transaction Transaction history 

17 Review the class purpose: ATM card class Bank client class: Details about client Account class: 
abstract class Savings and checking account: inherits account class. Transaction class: keeps track 
of the records. 

18 Common Class Patterns Approach It is based on a knowledge base of common classes that have 
been proposed by various researchers. They have compiled & listed the following patterns for 
finding the candidate class & object Concept class: It encompasses principles that are not tangible 
but used to organize or keep track of business activities or communications. Eg: Performance is an 
concept class object Events class: These are points in time that must be recorded. Associated with 
things remembered are attributes such as who, what, when, where, how or why. Eg: Landing 
Organization class: It is collection of people, resources, facilities or groups to which users belong; 
their capabilities have a defined mission, whose existence is independent of individuals People 
class: It represent different roles users play in interacting with application. It is also known as 
person, roles and roles played class divided into 2 – users & non-users information Places class: 
Places are physical locations that system must keep information about. Eg: Stores Tangible things 
& devices class: This class includes physical objects or groups of objects that are tangible & devices 
with which application interacts. Eg: cars, pressure sensors 

19 CRC Approach The Classes, Responsibilities and Collaborators process consists of three steps 1. 
Identify classes’ responsibilities (and identify classes) 2. Assign responsibilities 3. Identify 
collaborators Classes are identified & grouped by common attributes, which also provides 
candidates for super classes. Responsibilities are distributed; they should be as general as possible 
& placed as high as possible in inheritance hierarchy. The idea in locating collaborators is to 
identify how classes interact.  

2.2.4  NOUN PHRASE APPROACH 

            Noun phrase approach: 

Nouns in the textual description are considered to be classes and verbs to be methods of the classes. 
All plurals are changed to singular, the nouns are listed and the list divided into relevant classes, 
fuzzy classes and irrelevant class. 

Look for the noun phrases through the use cases. 

Three categories: 

Relevant classes. 

Fuzzy classes. 

Irrelevant classes. 

Identifying tentative classes. 

Look for noun phrases and nouns in the use cases. 

Some classes are implicit or taken from general knowledge. 



 

71 
 

All classes must make sense in the application domain. 

Carefully choose and define class names. 

Selecting classes from the relevant and fuzzy classes. 

Redundant classes. 

Adjective classes. 

Attribute classes. 

Irrelevant classes. 

Guide lines for selecting classes in all application: 

 

Carefully choose and define class names. 

All classes must make sense in the application domain, avoid computer implementation classes – 
defer there to the design stage. 

Look for nouns and noun-phrases in the use cases. 

Some classes are implicit or taken from general knowledge. 

Example: Bank ATM system: Identifying classes by using noun phrase approach: 

Initial list of Noun phrases candidate classes 

Account 

Account Balance 

Amount 

Approval process 

ATM card 

ATM machine 

Bank 

Bank client 

Card 

Cash 

Check 



 

72 
 

Checking 

Checking Account 

Client 

Client’s Account 

Currency 

Dollar 

Envelope 

Four digits 

Fund 

Savings 

Savings Account 

Step 

System 

Transaction 

Transaction history 

Invalid PIN 

Message 

Money 

Password 

PIN 

Pin Code 

Record 

            The following irrelevant classes are removed from the above list: 

 

Envelope   

Four Digits 



 

73 
 

Step 

            Reviewing the Redundant classes and Building a common vocabulary: 

            Client, Bank client                 à Bank client 

            Account, Client’s Account    à Account 

            PIN, PIN code                     à PIN 

            Checking, Checking Accountà Checking Account 

            Savings, Savings Account     à Savings Account 

            Fund, Money                        à Fund 

            ATM card, card                   à ATM card 

            Reviewing the classes containing adjectives 

                        In this example, we have no classes containing adjectives that we can eliminate. 

            Reviewing the Possible Attribute 

            Amount                à A value not a class 

            Account Balance  à An attribute of the Account class 

            Invalid PIN           à It is only a value, not class 

            Password              à An attribute for Bank client class 

            Transaction history à An attribute of transaction class 

            PIN                       à An attribute of Bank client class 

            Reviewing the class purpose 

            The final candidate classes are: 

 

ATM machine class 

ATM card class 

Bank client 

Bank class 

Account class 



 

74 
 

Checking Account class 

Savings Account class 

Transaction class 

2.2.4.1  IDENTIFYING TENTATIVE CLASSES 

Identifying tentative classes. 

1.Look for noun phrases and nouns in the use cases. 

2.Some classes are implicit or taken from general knowledge. 

3.All classes must make sense in the application domain. 

4.Carefully choose and define class names 

2.2.4.2.  THE VIANET BANK ATM SYSTEM 

The ViaNet Bank ATM System: Identifying Classes by Using Classes, Responsibilities, and 
Collaborators We already identified the initial classes of the bank system. The objective of this 
example is to identify objects' responsibilities such as attributes and methods in that system. 
Account and Transaction provide the banking model. Note that Transaction assumes an active role 
while money is being dispensed and a passive role thereafter. The class Account is responsible 
mostly to the BankClient class and it collaborates with several objects to fulfill its responsibilities. 
Among the responsibilities of the Account class to the BankClient class is to keep track of the 
BankClient balance, account number, and other data that need to be remembered. These are the 
attributes of the Account class. Furthermore, the Account class provides certain services or 
methods, such as means for BankClient to deposit or withdraw an amount and display the account's 
Balance (see Figure ). Classes, Responsibilities, and Collaborators encourages team members to 
pick up the card and assume a role while "executing" a scenario. It is not unusual to see a designer 
with a card in each hand, waving them about, making a strong identification with the objects while 
describing their collaboration. Ward Cunningham writes: Classes, 
Responsibilities,andCollaboratorscards work by taking people through 
programmingepisodestogether.  

150 As cardsare written for familiar objects, all participants pick up the same context and ready 
themselves for decision making. Then, by waving cards and pointing fingers and yelling statements 
like, "no, this guy should do that," decisions are made. Finally, the group starts to relax as 
consensus has been reached and the issue becomes simply finding the right words to record a 
decision as a responsibility on a card. In similar fashion other cards for the classes that have been 
identified earlier in this chapter must be created, with the list of their responsibilities and their 
collaborators. As you can see from Figure , this process is iterative. Start with few cards (classes) 
then proceed to play "what if." If the situation calls for a responsibility not already covered by one  
of the   objects, either add the responsibility to an object or create a new object to address that 
responsibility. 

2.2.4.3  INITIAL LIST OF NOUN PHRASES 

Initial list of Noun phrases candidate classes 

Account 



 

75 
 

Account Balance 

Amount 

Approval process 

ATM card 

ATM machine 

Bank 

Bank client 

Card 

Cash 

Check 

Checking 

Checking Account 

Client 

Client’s Account 

Currency 

Dollar 

Envelope 

Four digits 

Fund 

Savings 

Savings Account 

Step 

System 

Transaction 

Transaction history 

Invalid PIN 



 

76 
 

Message 

Money 

Password 

PIN 

Pin Code 

Record 

2.2.4.4  REVIEWING THE CLASSES CONTAINING ADJECTIVES 

Analysis is an attempt to build a model that describes the application domain -- developers do this 

Takes place after (or during) requirements specification 

The analysis model will typically consist of all three types of models discussed before: 

Functional model (denoted with use cases) 

Analysis object model (class and object idagrams) 

Dynamic model 

At this level, note that we are still looking at the application domain. 

This is not yet system design 

However, many things discovered in analysis could translate closely into the system design 

Goal is to completely understand the application domain (the problem at hand, any constraints that 
must be adhered to, etc.) 

New insights gained during analysis might cause requirements to be updated. 

Analysis activities include: 

Identifying objects (often from use cases as a starting point) 

Identfying associations between objects 

Identifying general attributes and responsibilities of objects 

Modeling interactions between objects 

Modeling how individual objects change state -- helps identify operations 

Checking the model against requirements, making adjustments, iterating through the process more 
than once 



 

77 
 

Finding the objects 

We often think of objects in code as mapping to some object we want to represent in the real world. 
Although this isn't always the case. 

Here are some categories of objects to look for: 

Entity objects -- these represent persistent information tracked by a system. This is the closest 
parallel to "real world" objects. 

Boundary objects -- these represent interactions between user and system. (For instance, a button, a 
form, a display) 

Control objects -- usually set up to manage a given usage of the system. Often represent the control 
of some activity performed by a system 

UML diagrams can include a label known as a stereotype, above the class name in a class diagram. 
This would be placed inside <<>> marks, like this: 

<<entity>> 

<<boundary>> 

<<control>> 

Note: Different sources and/or "experts" will give other categorizations of types of objects 

There are some different popular techniques for identifying objects. Two traditional and popular 
ones that we will discuss are: 

natural language analysis (i.e. parts of speech) 

CRC cards 

It also helps to interact with domain experts -- these are people who are already well-versed in the 
realm being studied. 

Note that the goal in the analysis phase is NOT to find implementation specific objects, like 
HashTable or Stack. 

This stage still models the application domain 

Using natural language analysis 

Pioneered by Russell Abbott (1983), popularized by Grady Booch 

Not perfect, but coupled with other techniques, it's a good start 

This can be done from a general problem description, or better, from a use case or scenario 

Map parts of speech to object model components. 

nouns usually map to classes, objects, or attributes 



 

78 
 

verbs usually map to operations or associations 

 

Part of speech model component Examples 

Proper noun Instance (object) Alice, Ace of Hearts 

Common noun Class (or attribute) Field Officer, PlayingCard, value 

Doing verb Operation Creates, submits, shuffles 

Being verb Inheritance Is a kind of, is one of either 

Having verb Aggregation/Composition Has, consists of, includes 

Modal verb Constraint Must be 

Adjective Helps identify an attribute a yellow ball (i.e. color) 

Identifying different object types 

Finding Entity Objects 

Some things to look for. These may be candidates for objects, or they may help identify objects: 

Terms that are domain-specific in use cases 

Recurring nouns 

Real-world entities and activities tracked by system 

Use good naming conventions. Good to use names from the application domain -- they understand 
their own terminology best 

Example: In a ReportEmergency use case -- "A field officer sumits information to the system by 
filling out a form and pressing the 'Send Report' button" 

FieldOfficer is a real world entity that interacts with the system 

This is also likely an actor from the use case 

As an actor, FieldOfficer is an external entity 

But we see that the field officer submits information -- here's data to be tracked 

We'll create the entity object type EmergencyReport, as that's the more common name for the 
information the officer submits (according to client) 

Finding Boundary Objects 

Identify general user interface controls that initiate a use case 



 

79 
 

Note: Don't bother with the visual details here. This will evolve later 

Identify forms or windows for entering data into a system 

Identify messages used by system to respond to a user 

Finding Control Objects 

Control objects can help manage communication and interaction of other objects 

If a use case is conplex and involves many objects, create a control object to manage the use case 

Identify one control object per actor involved in a use case 

Life span of control object should last through the use case 

2.2.4.5   REVIEWING THE POSSIBLE ATTRIBUTES 

A set of attributes for the objects that are to be instantiated from the class. Generally, different 
objects of a class have some difference in the values of the attributes. Attributes are often referred 
as class data. A set of operations that portray the behavior of the objects of the class 

According to some research on object-oriented analysis, there are usually four types of attributes  

([2], [7], [10]): (a) descriptive, (b) naming, (c)  

state information, and (d) referential: 

• Descriptive Attributes: Descriptive  

attributes are facts that are intrinsic to  

each entity. If the value of a descriptive  

attribute changes, it only means that  

some aspects of an entity (instance) have  

changed. From a problem-domain  

perspective, it is still the same entity. For  

example, if Hassan gains one pound,  

from nearly all problem-domain  

perspectives, Hassan is still a person.  

More importantly, Hassan is still the  

same person as before when he gained  



 

80 
 

one pound. 

• Naming Attributes: These are used to  

name or label an entity/object. Typically,  

they are somewhat arbitrary and  

frequently used as identifiers or as part of 

an identifier. If the value of a naming  

attribute changes, it only means that a  

new name has been given to the same  

entity/object. In fact, naming attributes  

do not have to be unique. For example, if  

Hassan changes his name to Ali, all that  

changes; yet, his weight, height, etc. are  

still the same. 

• State-Information Attributes: They are  

used to keep a history of the entity. These  

are usually needed to capture the states of  

the finite state machines used to  

implement the dynamic aspect of the  

behavior of objects. For example, the  

attribute ‘speed’ of a “Car” is used to  

control the different states of the object.  

The State-Information attributes are  

important to build simulation  

software [26]. 

• Referential-Information Attributes:  

They are some facts that connect one  



 

81 
 

object to another so as to capture  

relationships. For example, assume that  

“Driver” and “Car” object. Then, we can  

define the attribute ‘driver’ for “Car”  

object.  

Coad and Yourdon (1991) put it very well when  

they said [5]: "Make each attribute capture an  

atomic concept". The atomic concept means that  

an attribute will contain a single value or a  

tightly-related grouping of values that some  

applications treat as a whole. In this respect,  

attributes of objects are divided into individual  

attributes and composite attributes:  

-Value Attribute: They are  

Downloaded from ijiepr.iust.ac.ir at 15:45 IRDT on Wednesday April 21st 2021346 Hassan Rashidi 
& Fereshteh Azadi  

Parand 

On Attributes of Objects in Object-Oriented Software  

Analysis 

International Journal of Industrial Engineering & Production Research, September 2019, Vol. 30, 
No. 3  

individual attributes such as ‘age’,  

‘salary’, and ‘weight’ of an object  

“Person”. 

-Values Attribute: They are  

composite data items such as legal  

‘name’, ‘address’, and ‘birth date’ for an  



 

82 
 

object “Person”. 

Some attributes of an object are dependent on  

other attributes. In fact, the attributes can be  

calculated from other attributes and are generally  

used to increase the performance of an  

application. In this aspect, attributes can be  

classified into the following categories:  

 

that adheres to an object such as  

‘birthday’, ‘salary’, and ‘weight’ of a  

“Person”. 

 

based on the basic attributes such as  

‘age’ that can be calculated from the  

current year and the ‘birthday’ of the  

object “Person”. 

3-3. Eliminating incorrect attributes 

Attributes are rarely fully described in a  

requirements document. Fortunately, they seldom  

affect the basic structure of the model of objectorientation. Analysts must draw upon their  

knowledge of the application domain and the real  

world to find them. Because most guidelines for  

identifying attributes do not help differentiate  

between incorrect attributes and real attributes,  

the following suggestions help eliminate  

incorrect attributes ([8],[9], [15] ): 



 

83 
 

 

the attribute is more important than its  

value, then the attribute is an object and  

there needs to be a link to it. For  

example, consider a “Person” object, an  

instance of the class person, in an  

application of Staff Administration. The  

‘address’ or ‘city’ in which the Person  

lives is an attribute. In this application, if  

analysts do not manipulate the ‘address’  

without knowing to which person the  

address belongs, then it is an attribute.  

However, if analysts manipulate the  

‘address’ as an entity itself, like Military  

Service application, then the ‘address’ or  

‘city’ should be an object with a link  

between it and Person. 

 

depends on a particular context such as  

Sport or Police, then we must consider it  

as a qualifier. For example, the  

badgeNumber of Player/Police is not  

really his/her attribute. It really qualifies  

as a link "plays/works" between the  

object Player/Police and the object  

Club/Police-Center.  



 

84 
 

 

attribute when it does not depend on the  

context. For example, a ‘person’ name is  

an attribute of “Person”. Note that an  

attribute, as in a person's name, does not  

have to be unique. However, names are  

usually qualifiers and not attributes. They  

usually either define a role in an  

association or define a subclass or  

superclass abstraction. For example,  

‘parent’ and ‘teacher’ are not attributes of  

the object “Person”. Both are probably  

roles for associations. Another example  

is a male person and a female person.  

There are two ways to capture this: we  

must (a) consider ‘gender’ as an attribute  

of the object “Person” or (b) make two  

subclasses. 

 

the unique identifiers that object-oriented  

languages need for making an  

unambiguous reference to an object. This  

is implicitly assumed to be part of the  

model; however, the application domain  

identifiers are listed. For example, in  

most accounting applications, an  



 

85 
 

‘account code’ is an attribute of an object  

“Account”, whereas a transaction  

identifier is probably not an attribute of  

the “Account”. 

 

object depends on the presence of a link,  

then it is an attribute of the link and not  

of the objects in the link. We must  

consider the link as an associative object  

and make the proposed attribute as one of  

its attributes. For example, assume that  

Ali is married to Maryam. The date of  

their marriage is an attribute of the  

“is_married” association and not an  

attribute of Ali or Maryam. 

 

attributes that do not affect the methods.  

For example, in the application of student  

registration in university, the number of  

brothers/sister of a student must be  

removed from the list of attributes of the  

student. 

2.2.5  COMMON CLASS PATTERNS APPROACH 

2.2.5.1  VIANET BANK ATM SYSTEM: IDENTIFYING CLASSES BY USING COMMON 
CLASS PATTERNS 

The ViaNet Bank ATM System: Identifying Classes by Using Classes, Responsibilities, and 
Collaborators We already identified the initial classes of the bank system. The objective of this 
example is to identify objects' responsibilities such as attributes and methods in that system. 



 

86 
 

Account and Transaction provide the banking model. Note that Transaction assumes an active role 
while money is being dispensed and a passive role thereafter. The class Account is responsible 
mostly to the BankClient class and it collaborates with several objects to fulfill its responsibilities. 
Among the responsibilities of the Account class to the BankClient class is to keep track of the 
BankClient balance, account number, and other data that need to be remembered. These are the 
attributes of the Account class. Furthermore, the Account class provides certain services or 
methods, such as means for BankClient to deposit or withdraw an amount and display the account's 
Balance (see Figure ). Classes, Responsibilities, and Collaborators encourages team members to 
pick up the card and assume a role while "executing" a scenario. It is not unusual to see a designer 
with a card in each hand, waving them about, making a strong identification with the objects while 
describing their collaboration. Ward Cunningham writes: Classes, 
Responsibilities,andCollaboratorscards work by taking people through 
programmingepisodestogether.  

150 As cardsare written for familiar objects, all participants pick up the same context and ready 
themselves for decision making. Then, by waving cards and pointing fingers and yelling statements 
like, "no, this guy should do that," decisions are made. Finally, the group starts to relax as 
consensus has been reached and the issue becomes simply finding the right words to record a 
decision as a responsibility on a card. In similar fashion other cards for the classes that have been 
identified earlier in this chapter must be created, with the list of their responsibilities and their 
collaborators. As you can see from Figure , this process is iterative. Start with few cards (classes) 
then proceed to play "what if." If the situation calls for a responsibility not already covered by one  
of the   objects, either add the responsibility to an object or create a new object to address that 
responsibility. 

2.2.6  USE CASE DRIVEN APPROACH 

Use Case Driven 

A use case is a sequence of actions, performed by one or more actors (people or non-human 
entities outside of the system) and by the system itself, that produces one or more results of value to 
one or more of the actors. One of the key aspects of the Unified Process is its use of use cases as a 
driving force for development. The phrase use case driven refers to the fact that the project team 
uses the use cases to drive all development work, from initial gathering and negotiation of 
requirements through code. (See "Requirements" later in this chapter for more on this subject.) 

Use cases are highly suitable for capturing requirements and for driving analysis, design, and 
implementation for several reasons. 

 Use cases are expressed from the perspective of the system's users, which translates into a 
higher comfort level for customers, as they can see themselves reflected in the use case text. 
It's relatively difficult for a customer to see himself or herself in the context of requirements 
text. 

 Use cases are expressed in natural language (English or the native language of the 
customers). Well-written use cases are also intuitively obvious to the reader. 

 Use cases offer a considerably greater ability for everyone to understand the real 
requirements on the system than typical requirements documents, which tend to contain a lot 
of ambiguous, redundant, and contradictory text. Ideally, the stakeholders should regard use 
cases as binding contracts between customers and developers, with all parties agreeing on 
the system that will be built. 



 

87 
 

 Use cases offer the ability to achieve a high degree of traceability of requirements into the 
models that result from ongoing development. By keeping the use cases close by at all 
times, the development team is always in touch with the customers' requirements. 

 Use cases offer a simple way to decompose the requirements into chunks that allow for 
allocation of work to subteams and also facilitate project management. (See "Use Case 
Model" in Chapter 2 for information about breaking use cases up into UML packages.) This 
is not the same as functional decomposition, though; see Use Case Driven Object Modeling 
with UML (Rosenberg and Scott, 1999) for an explanation of the difference. 

2.2.6.1  IMPLEMENTATION OF SCENARIOS 

Use Cases and Scenarios 

Once you have developed an initial set of Functional Requirements during the Requirements 
Gathering phase you will have a good understanding of the intended behavior of the system. You 
will understand what functionality is desired, what constraints are imposed, and what business 
objectives will be satisfied. However, one shortcoming of a traditional 'laundry-list' of requirements 
is that they are static and don't concern themselves with the different business processes that need 
be supported by one feature. 

For example, in our fictitious online library system, the functionality for managing returns would 
need to handle the separate situations where a borrower returns a book early and when he/she 
returns it late. Although the same functionality is involved, they are different situations and the 
system would need to handle the separate conditions in each use case. Therefore use-cases are a 
valuable way of uncovering implied functionality that occurs due to different ways in which the 
system will be used. Also use-cases provide a great starting point for the test cases that will be used 
to test the system. 

 

A use case is a definition of a specific business objective that the system needs to accomplish. A 
use-case will define this process by describing the various external actors (or entit ies) that 
exist outside of the system, together with the specific interactions they have with the system in the 
accomplishment of the business objective 

2.2.6.2  THE VIANET BANK ATM SYSTEMS 

An automated teller machine (ATM) or the automatic banking machine (ABM) is 
a banking subsystem (subject) that provides bank customers with access to financial transactions 

http://www.inflectra.com/Ideas/Topic/Requirements-Gathering.aspx
http://www.inflectra.com/Ideas/Topic/Requirements-Gathering.aspx
http://www.inflectra.com/Ideas/Topic/Test-Cases.aspx
https://www.inflectra.com/GraphicsViewer.aspx?url=~/Ideas/Topics/use-cases.doc&name=wordml://03000001.png


 

88 
 

in a public space without the need for a cashier, clerk, or bank teller. ... Customer may need some 
help from the ATM. 

 

(Click on a use case above to go to the flow of events for that use case) 

 

Flows of Events for Individual Use Cases 

 

System Startup Use Case 

The system is started up when the operator turns the operator switch to the "on" position. The 
operator will be asked to enter the amount of money currently in the cash dispenser, and a 
connection to the bank will be established. Then the servicing of customers can begin. 

[ Interaction Diagram ] 

 

System Shutdown Use Case 

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Startup


 

89 
 

The system is shut down when the operator makes sure that no customer is using the machine, and 
then turns the operator switch to the "off" position. The connection to the bank will be shut down. 
Then the operator is free to remove deposited envelopes, replenish cash and paper, etc. 

[ Interaction Diagram ] 

Session Use Case 

A session is started when a customer inserts an ATM card into the card reader slot of the machine. 
The ATM pulls the card into the machine and reads it. (If the reader cannot read the card due to 
improper insertion or a damaged stripe, the card is ejected, an error screen is displayed, and the 
session is aborted.) The customer is asked to enter his/her PIN, and is then allowed to perform one 
or more transactions, choosing from a menu of possible types of transaction in each case. After each 
transaction, the customer is asked whether he/she would like to perform another. When the 
customer is through performing transactions, the card is ejected from the machine and the session 
ends. If a transaction is aborted due to too many invalid PIN entries, the session is also aborted, 
with the card being retained in the machine. 

The customer may abort the session by pressing the Cancel key when entering a PIN or choosing a 
transaction type. 

[ Interaction Diagram ] 

 

Transaction Use Case 

Note: Transaction is an abstract generalization. Each specific concrete type of transaction 
implements certain operations in the appropriate way. The flow of events given here describes the 
behavior common to all types of transaction. The flows of events for the individual types of 
transaction (withdrawal, deposit, transfer, inquiry) give the features that are specific to that type of 
transaction. 

A transaction use case is started within a session when the customer chooses a transaction type from 
a menu of options. The customer will be asked to furnish appropriate details (e.g. account(s) 
involved, amount). The transaction will then be sent to the bank, along with information from the 
customer's card and the PIN the customer entered. 

If the bank approves the transaction, any steps needed to complete the transaction (e.g. dispensing 
cash or accepting an envelope) will be performed, and then a receipt will be printed. Then the 
customer will be asked whether he/she wishes to do another transaction. 

If the bank reports that the customer's PIN is invalid, the Invalid PIN extension will be performed 
and then an attempt will be made to continue the transaction. If the customer's card is retained due 
to too many invalid PINs, the transaction will be aborted, and the customer will not be offered the 
option of doing another. 

If a transaction is cancelled by the customer, or fails for any reason other than repeated entries of an 
invalid PIN, a screen will be displayed informing the customer of the reason for the failure of the 
transaction, and then the customer will be offered the opportunity to do another. 

The customer may cancel a transaction by pressing the Cancel key as described for each individual 
type of transaction below. 

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Shutdown
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Session


 

90 
 

All messages to the bank and responses back are recorded in the ATM's log. 

[ Interaction Diagram ] 

 

Withdrawal Transaction Use Case 

A withdrawal transaction asks the customer to choose a type of account to withdraw from (e.g. 
checking) from a menu of possible accounts, and to choose a dollar amount from a menu of possible 
amounts. The system verifies that it has sufficient money on hand to satisfy the request before 
sending the transaction to the bank. (If not, the customer is informed and asked to enter a different 
amount.) If the transaction is approved by the bank, the appropriate amount of cash is dispensed by 
the machine before it issues a receipt. (The dispensing of cash is also recorded in the ATM's log.) 

A withdrawal transaction can be cancelled by the customer pressing the Cancel key any time prior 
to choosing the dollar amount. 

[ Interaction Diagram ] 

 

Deposit Transaction Use Case 

A deposit transaction asks the customer to choose a type of account to deposit to (e.g. checking) 
from a menu of possible accounts, and to type in a dollar amount on the keyboard. The transaction 
is initially sent to the bank to verify that the ATM can accept a deposit from this customer to this 
account. If the transaction is approved, the machine accepts an envelope from the customer 
containing cash and/or checks before it issues a receipt. Once the envelope has been received, a 
second message is sent to the bank, to confirm that the bank can credit the customer's account - 
contingent on manual verification of the deposit envelope contents by an operator later. (The receipt 
of an envelope is also recorded in the ATM's log.) 

A deposit transaction can be cancelled by the customer pressing the Cancel key any time prior to 
inserting the envelope containing the deposit. The transaction is automatically cancelled if the 
customer fails to insert the envelope containing the deposit within a reasonable period of time after 
being asked to do so. 

[ Interaction Diagram ] 

 

Transfer Transaction Use Case 

A transfer transaction asks the customer to choose a type of account to transfer from (e.g. checking) 
from a menu of possible accounts, to choose a different account to transfer to, and to type in a dollar 
amount on the keyboard. No further action is required once the transaction is approved by the bank 
before printing the receipt. 

A transfer transaction can be cancelled by the customer pressing the Cancel key any time prior to 
entering a dollar amount. 

[ Interaction Diagram ] 

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Transaction
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Withdrawal
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Deposit
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Transfer


 

91 
 

 

 

Inquiry Transaction Use Case 

An inquiry transaction asks the customer to choose a type of account to inquire about from a menu 
of possible accounts. No further action is required once the transaction is approved by the bank 
before printing the receipt. 

An inquiry transaction can be cancelled by the customer pressing the Cancel key any time prior to 
choosing the account to inquire about. 

[ Interaction Diagram ] 

 

Invalid PIN Extension 

An invalid PIN extension is started from within a transaction when the bank reports that the 
customer's transaction is disapproved due to an invalid PIN. The customer is required to re-enter the 
PIN and the original request is sent to the bank again. If the bank now approves the transaction, or 
disapproves it for some other reason, the original use case is continued; otherwise the process of re-
entering the PIN is repeated. Once the PIN is successfully re-entered, it is used for both the current 
transaction and all subsequent transactions in the session. If the customer fails three times to enter 
the correct PIN, the card is permanently retained, a screen is displayed informing the customer of 
this and suggesting he/she contact the bank, and the entire customer session is aborted. If the 
customer presses Cancel instead of re-entering a PIN, the original transaction is cancelled. 

2.2.7  CLASSES, RESPONSIBILITIES AND COLLABORATORS 

Class-responsibility-collaboration (CRC) cards are a brainstorming tool used in the design 
of object-oriented software. They were originally proposed by Ward Cunningham and Kent Beck as 
a teaching tool,[1] but are also popular among expert designers[2] and recommended by extreme 
programming supporters.[3] Martin Fowler has described in his book about UML that if you want to 
explore multiple alternative interactions quickly, you may be better off with CRC cards, as that 
avoids a lot of drawing and erasing. It's often handy to have a CRC card session to explore design 
alternatives and then use sequence diagram to capture any interactions that you want to refer to 
later. CRC cards are part of the design phase within system/software development and gives a good 
overview if you go from use case descriptions to CRC cards and then to class diagrams. This allows 
a smoother transition with a greater overview and allows the developer to easier implement a 
system with low binding and high cohesion. CRC cards are used after use case descriptions and 
before class diagrams within software development but can be skipped for smaller projects. 

 
CRC cards are usually created from index cards. Members of a brainstorming session will write up 
one CRC card for each relevant class/object of their design. The card is partitioned into three 
areas:[1][2] 

1 On top of the card, the class name 
2 On the left, the responsibilities of the class 
3 On the right, collaborators (other classes) with which this class interacts to fulfill its 

responsibilities 

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Inquiry
https://en.wikipedia.org/wiki/Brainstorming
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Ward_Cunningham
https://en.wikipedia.org/wiki/Kent_Beck
https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card#cite_note-beck-1
https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card#cite_note-fowler-2
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card#cite_note-xp-3
https://en.wikipedia.org/wiki/Martin_Fowler_(software_engineer)
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Index_card
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card#cite_note-beck-1
https://en.wikipedia.org/wiki/Class-responsibility-collaboration_card#cite_note-beck-1


 

92 
 

 

 

2.2.7.1  CRC PROCESS 

CRC Process 

One of the most valuable techniques in coming up with a good OO design is to explore object 
interactions, because it focuses on behaviour rather than data. 

Once you have a reasonable list of candidate classes in your OO design you can further evaluate 
their place in a particular system by identifying their responsibilities - what they do, and who they 
need to work with to do this - their collaborations. The process is referred to as the Classes 
Responsibilities and Collaborations process or more commonly as the CRC process. 

Put simply, the idea is that by establishing what the responsibilities of a particular class are and who 
that class will collaborate with it is possible to justify the existence of that class in the system. 
Classes that have no responsibilities can be removed because they do not add value to the system, 
they are superfluous. By concentrating on the responsibilities of a class, the encapsulation of the 
candidate class is reinforced. The set of responsibilities of the class yields the class role - also 
known as its "stereotypical" behaviour. 

The idea of responsibility driven analysis of classes originated with Rebecca Wirfs-Brock in the 
book "Designing Object-Oriented Software" (1994). Rebecca also originated the simple but 
practical, highly effective idea of CRC cards, where each candidate class is captured on its own 
CRC card (or piece of paper) as shown below. 

 

CRC cards are used as part of a role-play that will help you validate class selection. The idea is that 
following the initial phases of class elimination you write the names of all remaining candidate 
classes on a series of cards. Then you work through the textual narrative of the system 
requirements, i.e. the use case descriptions assigning responsibilities to classes. Responsibilities 
include determining doing something, knowing something and decision making. 

Wherever possible you should work in a group to carry out this process as you will typically find 
you will get better results if you have to justify decisions to peers. You should divide up the cards 
equally between members of the group and work through the requirements of the system, 
annotating cards during this process. As with the other parts of class elimination you will find the 
CRC process to be recursive 

2.2.7.2  THE VIANET BANK ATM SYSTEMS 



 

93 
 

THE VIANET BANK ATM SYSTEM:  Scenario with a Sequence Diagram: Object behavior 
Analysis A sequence diagram represents the sequence and interactions of a given use case or 
scenario. Sequence diagrams are among the most popular UML diagrams and, if used with an 
object model or class diagram, can capture most of the information about a system . Most object-to-
object interactions and operations are considered events, and events include signals, inputs, 
decisions, interrupts, transitions, and actions to or from users or external devices. An event also is 
considered to be any action by an object that sends  information. The event line represents a 
message sent from one object to another, in which the "from" object is requesting an operation be 
performed by the "to" object. The "to" object performs the operation using a method that its class 
contains. Developing sequence or collaboration diagrams requires us to think about objects that 
generate these events and therefore will help us in identifying classes. To identify objects of a 
system, we further analyze the lowest level use cases with a sequence and collaboration diagram 
pair (actually, most CASE tools such as SA/Object allow you to create only one, either a sequence 
or a collaboration diagram, and the system generates the other one). Sequence and collaboration 
diagrams represent the order in which things occur and how the objects in the system send messages 
to one another. These diagrams provide a macro-level analysis of the dynamics of a system. Once 
you start creating these diagrams, you may find that objects may need to be added to satisfy the 
particular sequence of events for the given use case.  

 You can draw sequence diagrams to model each scenario that exists when a BankClient withdraws, 
deposits, or needs information on an account. By walking through the steps, you can determine 
what objects are necessary for those steps to take place. Therefore, the process of creating sequence 
or collaboration diagrams can assist you in identifying classes or objects of the system. This 
approach can be combined with noun phrase and class categorization for the best results. We 
identified the use cases for the bank system. The following are the low level (executable) use cases: 
Deposit Checking Deposit Savings Invalid PIN Withdraw Checking Withdraw More from 
Checking Withdraw Savings Withdraw Savings Denied Checking Transaction History Savings 
Transaction History Let us create a sequence/collaboration diagram for the following use cases: 
.Invalid PIN use case .Withdraw Checking use case .Withdraw More from Checking use case 
Sequence/collaboration diagrams are associated with a use case. For example, to model the 
sequence/collaboration diagrams in SA/Object, you must first select a use case, such as the Invalid 
PIN use case, then associate a sequence or collaboration child process.  

You can draw sequence diagrams to model each scenario that exists when a BankClient withdraws, 
deposits, or needs information on an account. By walking through the steps, you can determine 
what objects are necessary for those steps to take place. Therefore, the process of creating sequence 
or collaboration diagrams can assist you in identifying classes or objects of the system. This 
approach can be combined with noun phrase and class categorization for the best results. We 
identified the use cases for the bank system. The following are the low level (executable) use cases: 
Deposit Checking Deposit Savings Invalid PIN Withdraw Checking Withdraw More from 
Checking Withdraw Savings Withdraw Savings Denied Checking Transaction History Savings 
Transaction History 

2.2.8  NAMING CLASSES 

Why Naming Matters 

Here are some of the benefits of proper class naming and naming conventions: 

 You know what to expect from a certain class without looking at code or documentation, 
even if you aren’t the person who created it or if it was written a long time ago. 

 It’s easy to search and navigate a codebase. 
 It’s easier to talk to your team when discussing problems/improvements. 



 

94 
 

 It makes onboarding newcomers easier, quicker, and less confusing. 

A properly used MVP with an established naming convention is usually a good example of working 
naming expectations. If the class is named UseCase/Interactor, you’d expect it to contain business 

logic. But let’s say that we have a convention to use UseCase for a single piece of logic 
and Interactor to put in similar UseCases. Let’s also pretend we have a catalog application about all 

different kinds of monsters. You can have your own collection of monsters you have encountered, 
add them to favorites, and keep track of 

limited edition monsters. By combining those two knowledge aspects (MVP + the monster app), 
you can tell, without even checking inside that: 

GetAllMonstersUseCase — returns a collection of all monsters. GetMonsterByIdUseCase — 
requires that you pass an ID to get a Monster. 

And if you find MonsterFilteringInteractor, you shouldn’t be surprised to find methods such 

as getMonstersForArea(area) or getMonstersLargerThen(size) inside of it. 

Now imagine you are looking for a method, which, for example, returns all carnivorous monsters. 
To do this, check in the filtering interactor, and if this method doesn’t exist, you will at least have a 

nice idea about where the proper place to add it is. 

Enough explanation for now; let’s get to the naming itself, along with some important tips to keep 

in mind. 

2.3  IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES AND METHODS 

2.3.1  INTRODUCTION 

In an object-oriented environment, objects take on an active role in a system.  

Of course, objects do not exist in isolation but interact with each other.  

Indeed, these interactions and relationships are the application. 

Relationships in UML are used to represent a connection between structural, behavioral, or 
grouping things. It is also called a link that describes how two or more things can relate to each 
other during the execution of a system. 

an attribute is a specification that defines a property of an object, element, or file. It may also refer 
to or set the specific value for a given instance of such. For clarity, attributes should more correctly 
be considered metadata 

A method in object-oriented programming (OOP) is a procedure associated with a message and an 
object. ... This allows the sending objects to invoke behaviors and to delegate the implementation of 
those behaviors to the receiving object. A method in Java programming sets the behavior of a class 
object 

2.3.2  ASSOCIATIONS 

In UML diagrams, an association class is a class that is part of an association relationship 
between two other classes. ... For example, a class called Student represents a student and has 
an association with a class called Course, which represents an educational course 



 

95 
 

In UML diagrams, an association class is a class that is part of an association relationship between 
two other classes. You can attach an association class to an association relationship to provide 
additional information about the relationship. An association 

class is identical to other classes and can contain operations, attributes, as well as other associations. 

For example, a class called Student represents a student and has an association with a class called 
Course, which represents an educational course. The Student class can enroll in a course. An 
association class called Enrollment further defines the relationship between the Student and Course 
classes by providing section, grade, and semester information related to the association relationship. 

As the following figure illustrates, an association class is connected to an association by a dotted 
line. 

 

2.3.3  GUIDELINES FOR IDENTIFYING ASSOCIATION 

Guidelines:  Association 

 

Association 

An association models a bi-directional 
semantic connection among instances 

Associations  

Associations represent structural relationships between objects of different classes; they represent 
connections between instances of two or more classes that exist for some duration. Contrast this 
with transient links that, for example, exist only for the duration of an operation. These latter 
situations can instead be modeled using collaborations, in which the links exist only in particular 
limited contexts. 

You can use associations to show that objects know about another objects. Sometimes, objects must 
hold references to each other to be able to interact, for example send messages to each other; thus, 
in some cases associations may follow from interaction patterns in sequence diagrams or 
collaboration diagrams. 

Association Names  

Most associations are binary (exist between exactly two classes), and are drawn as solid paths 
connecting pairs of class symbols. An association may have either a name or the 
association roles may have names. Role names are preferable, as they convey more information. In 

https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/modguide/md_assoc.htm#Roles
https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/modguide/md_assoc.htm#Top


 

96 
 

cases where only one of the roles can be named, roles are still preferable to association names so 
long as the association is expected to be uni-directional, starting from the object to which the role 
name is associated. 

Associations are most often named during analysis, before sufficient information exists to properly 
name the roles. Where used, association names should reflect the purpose of the relationship and be 
a verb phrase. The name of the association is placed on, or adjacent to the association path. 

Example 

In an ATM, the Cash Drawer provides the money that the Cash Dispenser dispenses. In order for 
the Cash Dispenser to be able to dispense funds, it must keep a reference to the Cash 
Drawer object; similarly, if the Cash Drawer runs out of funds, the Cash Dispenser object must 
be notified, so the Cash Drawer must keep a reference to the Cash Dispenser. An association 
models this reference. 

 

An association between the Cash Dispenser and the Cash Drawer, named supplies Value. 

Association names, if poorly chosen, can be confusing and misleading. The following example 
illustrates good and bad naming. In the first diagram, association names are used, and while they are 
syntactically correct (using verb phrases), they do not convey much information about the 
relationship. In the second diagram, role names are used, and these convey much more about the 
nature of the participation in the association. 

 

Examples of good and bad usage of association and role names 

Roles  

Each end of an association is a role specifying the face that a class plays in the association. Each 
role must have a name, and the role names opposite a class must be unique. The role name should 
be a noun indicating the associated object's role in relation to the associating object. A suitable role 
name for a Teacher in an association with a Course Section would, for instance, be lecturer; avoid 
names like "has" and "contains", as they add no information about what the relationships are 
between the classes. 

Note that the use of association names and role names is mutually exclusive: one would not use 
both an association name and a role name. Role names are preferable to 

association names except in cases where insufficient information exists to name the role 
appropriately (as is often the case in analysis; in design role names should always be used). Lack of 
a good role name suggests an incomplete or ill-formed model. 

The role name is placed next to the end of the association line. 

https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/modguide/md_assoc.htm#Top


 

97 
 

Example 

Consider the relationships between classes in an order entry system. A Customer can have two 
different kinds of Addresses: an address to which bills are sent, and a number of addresses to which 
orders may be sent. As a result, we have two associations between Customer and Address, as shown 
below. The associations are labeled with the role the associated address plays for the Customer. 

 

2.3.4  COMMON ASSOCIATION PATTERNS 

Association patterns provide guidance for modeling the associations that occur among objects 
within both the real world and the solution domains of computer applications. The patterns help the 
designer better understand and more precisely define the semantics of these associations, which 
allows them to be more easily and properly implemented. This paper describes a number of 
association patterns using Object Relationship Notation (ORN) and by doing so provides evidence 
for the effectiveness of this notation. It also shows how the development of database systems can be 
improved by an approach that uses association patterns to build a database model and then 
implements the model by mapping it to an ORN-extended database definition that is supported by a 
DBMS. The feasibility of this approach and the applicability of our association patterns have been 
validated by DBMS research prototypes and by the modeling, implementing, and testing of 
numerous associations. The common class patterns approach is based on a knowledge base of 
the common classes that have been proposed researchers. 

2.3.5  SUPER – SUB CLASS RELATIONSHIPS 

Super class–subclass relationship also known as generalization hierarchy, allow objects to be built 
from other objects. ... The super-sub class hierarchy is a relationship between classes, where one 
class is the parent (super or ancestor) class of another (derived) class 

The other aspect of classification is identification of super-sub relations among classes. 

For the most part, a class is part of a hierarchy of classes, where the top class is the most general 
one and from it descend all other, more specialized classes.  



 

98 
 

The super-sub class relationship represents the inheritance relationships between related classes, 
and the class hierarchy determines the lines of inheritance between class. 

Superclass-subclass relationships, also known as generalization hierarchy, allow objects to be built 
from other objects. 

Such relationships allow us to implicitly take advantage of the commonality of objects when 
constructing new classes.  

The super-sub class hierarchy is a relationship between classes, where one class is the parent class 
of another (derived) class that the parent class also is known as the base or super class or ancestor. 

The real advantage of using this technique is that we can build on what we already have and, more 
important, reuse what we already have.  

Inheritance allows classes to share and reuse behaviors and attributes. 

2.3.6  A- PART-OF RELATIONSHIP-AGGREGATION 

Aggregation or composition is a relationship among classes by which a class can be made up of 
any combination of objects of other classes. It allows objects to be placed directly within the body 
of other classes. 

Aggregation is a special form of association. It is a relationship between two classes like 
association, however its a directional association, which means it is strictly a one way association. It 
represents a HAS-A relationship. 

Aggregation Example: 

It's important to note that the aggregation link doesn't state in any way that Class A owns Class 
B nor that there's a parent-child relationship (when parent deleted all its child's are being deleted 
as a result) between the two. Actually, quite the opposite! The aggregation link is usually used to 
stress the point that Class A instance is not the exclusive container of Class B instance, as in fact the 
same Class B instance has another container/s. 

 

An aggregation is a collection, or the gathering of things together. This relationship is represented 
by a “has a” relationship. In other words, aggregation is a group, body, or mass composed of many 
distinct parts or individuals For example, phone number list is an example of aggregation. 

2.3.7  CASE STUDY 

2.3.7.1  IDENTIFYING CLASSES RELATIONSHIPS 
In object-oriented software design (OOD), classes are templates for defining the characteristics and 
operations of an object. Often, classes and objects are used interchangeably, one synonymous with 
the other. In actuality, a class is a specification that an object implements. 



 

99 
 

Identifying classes can be challenging. Poorly chosen classes can complicate the application’s 

logical structure, reduce reusability, and hinder maintenance. This article provides a brief overview 
of object-oriented classes and offers tips and suggestions to identify cohesive classes. 

Note: The following class diagrams were modeled using Enterprise Architect. Many other modeling 
tools exist. Use the one that is best suited for your purpose and project. 

Object-oriented classes support the object-oriented principles of abstraction, encapsulation, 
polymorphism and reusability. They do so by providing a template, or blueprint, that defines the 
variables and the methods common to all objects that are based on it. Classes specify knowledge 
(attributes) - they know things - and behavior (methods) - they do things. 

Classes are specifications for objects. 

Derived from the Use Cases, classes provide an abstraction of the requirements and provide the 
internal view of the application. 

Identifying classes 

Identifying object-oriented classes is both a skill and an art. It’s a process that one gets better at 

over time. For example, it’s not unusual for inexperienced designers to identify too many classes. 
Modeling too many classes results in poor performance, unnecessary complexity and increased 
maintenance. On the other hand, too few classes tend to increase couplings, and make classes larger 
and unwieldy. In general, strive for class cohesiveness where behavior is shared between multiple, 
related classes rather than one very large class. 

Cohesive classes reduce coupling, enable extensibility and increase maintainability. 

Moreover, classes that seem obvious wind up being poor choices and classes that are initially 
hidden or that rely on problem domain knowledge wind up as the best choices. 

Therefore, begin class modeling by identifying candidate classes - an initial list of classes from 
which the actual design classes will emerge. Design classes are the classes that are modeled. 
Candidate classes exist for the sole purpose of deriving the design classes. Initially, there will be a 
lot of candidate classes – that’s good. However, through analysis, their number will be reduced as 

they are dropped, combined and merged. 

Candidate classes provide the initial impetus to produce cohesive classes. 

Candidate classes can be discovered in a variety of ways. Here are three: 

1 Noun and noun phrases: Identify the noun and noun phrases, verbs (actions) and adjectives 
(attributes) from the Use Cases, Actor-Goal List, Application Narrative and Problem 
Description. 

2 CRC cards: an informal, group approach to object modeling. 

3 GRASP: A formal set of principles that assign responsibilities. 

Each of these methods will yield a list candidate classes. The list won’t be complete nor will every 

class be appropriate and there will likely be a mix of business and system oriented classes; 
i.e.; Student and StudentRecord, for example. That’s fine. The goal is to identify the major classes - 
the obvious ones. Other classes will become apparent as the design process continues. 

Once the list has been created, analyze the candidate classes for associations with other classes. 
Look for collaborating classes. How does each relate to each other and to the business process? 

http://www.sparxsystems.com.au/ea.htm
http://www.codeproject.com/gen/design/pusecase.asp
http://en.wikipedia.org/wiki/Noun
http://alistair.cockburn.us/crystal/articles/ucrcc/usingcrccards.html
http://cis.gsu.edu/~cstucke/cis3310/3310.3.a.pdf


 

100 
 

Sometimes, it’s helpful to ask, “Why keep this class?” In other words, assume the class is redundant 

or unnecessary. Keep it only if it plays a collaborating role. Often you’ll find the class’ functionality 

is accomplished by another class or within the context of another class. 

2.3.7.2  DEVELOPING A UML DIAGRAM BASED ON THE USE CASE ANALYSIS 
UML is a way of visualizing a software program using a collection of diagrams. The notation has 
evolved from the work of Grady Booch, James Rumbaugh, Ivar Jacobson, and the Rational 
Software Corporation to be used for object-oriented design, but it has since been extended to cover 
a wider variety of software engineering projects. Today, UML is accepted by the Object 
Management Group (OMG) as the standard for modeling software deTypes of UML Diagrams 

The current UML standards call for 13 different types of diagrams: class, activity, object, use case, 
sequence, package, state, component, communication, composite structure, interaction overview, 
timing, and deployment. 

These diagrams are organized into two distinct groups: structural diagrams and behavioral or 
interaction diagrams. 

Structural UML diagrams 

 Class diagram 

 Package diagram 

 Object diagram 

 Component diagram 

 Composite structure diagram 

 Deployment diagram 

Package diagrams organize elements of a system into related groups to minimize dependencies 
between packages. 

 
Object Diagram 
Object diagrams describe the static structure of a system at a particular time. They can be used to 
test class diagrams for accuracy. 



 

101 
 

 

Composite Structure Diagram: Composite structure diagrams show the internal part of a class. 

Use Case Diagram 
Use case diagrams model the functionality of a system using actors and use cases.  

 

2.3.7.3  DEFINING ASSOCIATION RELATIONSHIPS 

An association relationship can be represented as one-to-one, one-to-many, or many-to-many (also 
known as cardinality). Essentially, an association relationship between two or more objects 
denotes a path of communication (also called a link) between them so that one object can send a 
message to another 

Association is a relationship between two objects. In other words, association defines the 
multiplicity between objects. You may be aware of one-to-one, one-to-many, many-to-one, many-
to-many all these words define an association between objects 

2.3.7.4  DEFINING SUPER-SUB RELATIONSHIPS 

https://www.smartdraw.com/use-case-diagram/


 

102 
 

 
A subclass is a class derived from the superclass. It inherits the properties of the superclass and also 
contains attributes of its own. An example is: 

Car, Truck and Motorcycle are all subclasses of the superclass Vehicle. They all inherit common 
attributes from vehicle such as speed, colour etc. while they have different attributes also i.e 
Number of wheels in Car is 4 while in Motorcycle is 2. 

 

 

Car, Truck and Motorcycle are all subclasses of the superclass Vehicle. They all inherit common 
attributes from vehicle such as speed, colour etc. while they have different attributes also i.e 
Number of wheels in Car is 4 while in Motorcycle is 2. 

Superclasses 

A superclass is the class from which many subclasses can be created. The subclasses inherit the 
characteristics of a superclass. The superclass is also known as the parent class or base class. 

In the above example, Vehicle is the Superclass and its subclasses are Car, Truck and Motorcycle. 

2.3.7.5  IDENTIFYING THE AGGREGATION/a-PART OF RELATIONSHIP 

In UML models, an aggregation relationship shows a classifier as a part of or subordinate to another 
classifier. 

An aggregation is a special type of association in which objects are assembled or configured 
together to create a more complex object. An aggregation describes a group of objects and how you 
interact with them. Aggregation protects the integrity of an assembly of objects by defining a single 
point of control, called the aggregate, in the object that represents the assembly. Aggregation also 
uses the control object to decide how the assembled objects respond to changes or instructions that 
might affect the collection. 

Data flows from the whole classifier, or aggregate, to the part. A part classifier can belong to more 
than one aggregate classifier and it can exist independently of the aggregate. For example, a 
Department class can have an aggregation relationship with a Company class, which indicates that 
the department is part of the company. Aggregations are closely related to compositions. 

You can name an association to describe the nature of the relationship between two classifiers; 
however, names are unnecessary if you use association end names. As the following figure 



 

103 
 

illustrates, an aggregation association appears as a solid line with an unfilled diamond at the 
association end, which is connected to the classifier that represents the aggregate. Aggregation 
relationships do not have to be unidirectional. 

Aggregation is referred as a “part–of” or “has–a” relationship, with the ability to navigate from the 

whole to its parts. An aggregate object is an object that is composed of one or more other objects. 

.  

Aggregation is a part of an association relationship.  

Aggregation is considered as a weak type of association.  

In an aggregation relationship, objects that are associated with each other can remain in the 
scope of a system without each other. 

 

Linked objects are not dependent upon the other object.  

In UML Aggregation, deleting one element does not affect another associated element.  

Example: A car needs a wheel, but it doesn't always require the same wheel. A car can 
function adequately with another wheel as well.  

2.4  CLASS RESPONSIBILITY 

Class responsibilities are the class's attributes and methods. Clearly, they represent the class's state 
and behaviour. Collaborators represent the associations the class has with other classes. 
... 
Class-Responsibility-Collaborator cards 

 Identify the classes. 

 List responsibilities. 

 List collaborators 

Class responsibilities are the class's attributes and methods. Clearly, they represent the class's state 
and behaviour. Collaborators represent the associations the class has with other classes. 

2.4.1  GUIDELINES FOR DEFINING ATTRIBUTES 

an attribute is a specification that defines a property of an object, element, or file. It may also refer 
to or set the specific value for a given instance of such. For clarity, attributes should more correctly 
be considered metadata. An attribute describes a range of values for that data definition. A classifier 
can have any number of attributes or none at all. Attributes describe the structure and value of an 
instance of a class. 



 

104 
 

Entities contain attributes , which are characteristics or modifiers, qualities, amounts, or features. 
An attribute is a fact or nondecomposable piece of information about an entity. Later, when you 
represent an entity as a table, its attributes are added to the model as new columns. 

To identify attributes: 

  

·          choose a class from the evolving object model and look for the properties associated with it, 

  

·          select a property candidate (e.g., from a problem statement or a requirements document) and 
look for the class that it describes.  

  

Use the Parse Requirements technique to help identify attributes.  They are likely adjectives, or 
nouns that describe a property of the class, such as date of car reservation, or enumerated lists of 
nouns and adjectives provided for illustration or detail.  For example, in the expression “types of car 

rentals include day, weekend, and long term” the terms day, weekend, and long term may be 

attributes of a class CarRental. 

  

Because attributes are less often described in the problem statement or requirements documents, 
they are more difficult to discover than classes.  Apply knowledge of the problem domain, and other 
analysis techniques for Data Gathering, such as, interviewing and workshops, to identify attributes.  

Attributes in concrete classes must be defined via either binding or computation. The choice is 
made in ODL by either listing an attribute as `` <>'', meaning that the value must be bound at 
construction, or defining it in `` {...}'' brackets, meaning that it is computed. 

Bound (or ``stored'') attributes differ from computed ones in that they may be rebound (if non-
 fixed) and/or unbound (if opt). For simplicity and conformance to most implementation languages, 
we require that computationally defined attributes and operations not have their definitions rebound, 
unbound, or otherwise dynamically modified. The only way in which their values may change over 
time is by internally accessing properties of one or more mutable objects. The effects of rebinding 
may be had in this way, but the logistics are a bit harder. 

Examples 

  

Objects such as MailingLabels simply maintain several loosely related attributes. The classes 
consist of set/get interfaces, with a value reporter and a value replacer operation for each property 
listed in the analysis model: 

http://blogs.ittoolbox.com/eai/implementation/archives/better-requirements-parsing-21002


 

105 
 

 

2.5  OBJECT RESPONSIBILITY 

The Object-Oriented Thought Process, is intended for someone just learning an object-oriented 
language and wants to understand the basic concepts before jumping into the code or someone who 
wants to understand the infrastructure behind an OOP language they are already using. Click here to 
start at the beginning of the series. 

In keeping with the code examples used in the previous articles, Java will be the language used to 
implement the concepts in code. One of the reasons that I like to use Java is because you can 
download the Java compiler for personal use at the Sun Microsystems Web 
site http://java.sun.com/. You can download the J2SE 1.4.2 SDK (software development kit) to 
compile and execute these applications and I will provide the code listings for all examples in this 
article. I have the SDK 1.4.0 loaded on my machine. I will also provide figures and the output 
(when appropriate) for these examples. See the previous articles in this series for detailed 
descriptions for compiling and running all the code examples in this series. 

In the last column, you explored the history and evolution of object-oriented languages—to provide 
a basic understanding of how object-oriented languages developed. In earlier columns, you explored 
a number of issues relating to the development of object-oriented systems and provided a basis for 
underlying fundamental object-oriented concepts. In this article, you will explore one of the 
fundamental characteristics that make for good class design. Remember that it is the class that 
provides the blueprint for all object-oriented design. 

An Object Must be Responsible for Itself 

One of the most important mantras used in object-oriented design is that of “an object must be 
responsible for itself“. I first heard this phrase while taking my first class in object-oriented 
programming class in Smalltalk. Because I had never programmed in an object-oriented language 
before, I was curious as to what this really meant. 

While there are many ways to approach this point, it really boils down to the concept of 
encapsulation, just as everything does when dealing with properly designed classes. The whole 
concept of an object is that it contains both attributes and behaviors. In structured programming, 
there is code and there is data, and the two are thought of as separate entities. The power of an 
object is that these two separate entities are encapsulated together to form a single, atomic entity. It 
is in this fundamental concept of an encapsulated, atomic entity that you come to realize how and 
why an object is responsible for itself. 

A straightforward definition for object-responsibility is this: An object must contain the data 
(attributes) and code (methods) necessary to perform any and all services that are required by the 
object. This means that the object must have the capability to perform required services itself or at 
least know how to find and invoke these services. Rather than attempt to further refine the 
definition, take a look at an example that illustrates this responsibility concept 

http://www.developer.com/tech/article.php/3304881
http://java.sun.com/
http://java.sun.com/j2se/1.4.2/download.html


 

106 
 

The UML defines a responsibility as “a contract or obligation of a classifier” [OMG01]. 
Responsibilities are related to the obligations of an object in terms of its behavior. Basically, these 
responsibilities are of the following two types: 

 knowing 

 doing 

Doing responsibilities of an object include: 

 doing something itself, such as creating an object or doing a calculation 

 initiating action in other objects 

 controlling and coordinating activities in other objects 

Knowing responsibilities of an object include: 

 knowing about private encapsulated data 

 knowing about related objects 

 knowing about things it can derive or calculate 

2.6  CASE STUDY 

2.6.1  DEFINING ATTRIBUTES FOR VIA NET BANK OBJECTS 

Automated Teller Machine (ATM) also known as ABM (Automated Banking Machine) is a 
banking system. This baking system allows customers or users to have access to financial 
transactions. These transactions can be done in public space without any need for a clerk, cashier, or 
bank teller. Working and description of the ATM can be explained with the help of the Use Case 
Diagram. 

We will understand about designing the use case diagram for the ATM system. Some scenarios of 
the system are as follows. 

 Step-1: 
The user is authenticated when enters the plastic ATM card in a Bank ATM. Then enters the 
user name and PIN (Personal Identification Number). For every ATM transaction, a 
Customer Authentication use case is required and essential. So, it is shown as include 
relationship. 
Example of use case diagram for Customer Authentication is shown below: 

https://www.oreilly.com/library/view/applying-uml-and/0130925691/0130925691_gloss01.html#gloss01entry65
https://www.oreilly.com/library/view/applying-uml-and/0130925691/0130925691_biblio01.html#biblio01entry86


 

107 
 

 

 Step-2: 
User checks the bank balance as well as also demands the mini statement about the bank 
balance if they want. Then the user withdraws the money as per their need. If they want to 
deposit some money, they can do it. After complete action, the user closes the session. 
Example of the use case diagram for Bank ATM system is shown below: 

 
 

 

 Step-3: 
If there is any error or repair needed in Bank ATM, it is done by an ATM technician. ATM 
technician is responsible for the maintenance of the Bank ATM, upgrades for hardware, 



 

108 
 

firmware or software, and on-site diagnosis. 
Example of use case diagram for working of ATM technician is shown below: 

 

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for 

SDE interviews with the CS Theory Course at a student-friendly price and become industry ready 

2.6.1.1  DEFINING ATTRIBUTES FOR ACCOUNT AND TRANSCATION CLASS 

The accounts attribute contains a list of objects for each account linked to the Identity Manager 
user. Each account object contains the values of the account attributes retrieved from the 
resource. The name of each account object is typically the name of the associated resource. 

Account and Transaction provide the banking model. Note that Transaction assumes an active role 
while money is being dispensed and a passive role thereafter. The class Account is responsible 
mostly to the BankClient class and it collaborates with several objects to fulfill its responsibilities. 
Among the responsibilities of the Account class to the BankClient class is to keep track of the 
BankClient balance, account number, and other data that need to be remembered. These are the 
attributes of the Account class. Furthermore, the Account class provides certain services or 
methods, such as means for BankClient to deposit or withdraw an amount and display the account's 
Balance (see Figure ). Classes, Responsibilities, and Collaborators encourages team members to 
pick up the card and assume a role while "executing" a scenario. It is not unusual to see a designer 
with a card in each hand, waving them about, making a strong identification with the objects while 
describing their collaboration. Ward Cunningham writes: Classes, 
Responsibilities,andCollaboratorscards work by taking people through 
programmingepisodestogether. 

2.6.1.2  DEFINING ATTRIBUTES FOR ATM MACHINE CLASS 

The ATM is given the utmost security in terms of technology because its a stand alone system and 
easily prone to malicious attacks. 
 
The Below diagrams are has come up in Mumbai University MCA exams.. 
 
 
 

https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1


 

109 
 

 
 
 
 
 
Class Diagram for ATM Machine 

 
 
 
 
Use Case Diagram ATM Machine 

 
 
 
Activity Diagram for ATM Machine 1 

http://2.bp.blogspot.com/-t40LLtJ85z4/T5Yqv-XbxlI/AAAAAAAAATk/cfvOmqCyuRw/s1600/class+diagram+ATM.JPG
http://1.bp.blogspot.com/-zM9ToDlaWaU/T5Y39Gf1fLI/AAAAAAAAAWM/EycHo2NGwU4/s1600/Use+Case+Diagram+ATM.JPG


 

110 
 

 
Activity Diagram for ATM Machine 2 

http://4.bp.blogspot.com/-uzCy2dnucC8/T5YqudQi8cI/AAAAAAAAATc/tyyGtc5EPt8/s1600/activity+diagram+ATM.JPG


 

111 
 

 
 
 
Activity Diagram for Overall ATM Machine:- 

http://2.bp.blogspot.com/-8bwAoRpHS-k/T5Yqs-tYzoI/AAAAAAAAATU/umHmqaXd5xE/s1600/activity+diagram+2+ATM.JPG


 

112 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

http://4.bp.blogspot.com/-1dgKPFnx_m0/T5Y3tShgSmI/AAAAAAAAAUs/ztfDINmOsWk/s1600/Activity+diagram+overall+ATML.JPG


 

113 
 

UNIT III- OBJECT ORIENTED DESIGN 

3.1 DESIGN PROCESS 

3.1.1 INTRODUCTION 

Object Oriented Design (OOD) serves as part of the object oriented programming (OOP) 
process of lifestyle. ... This technique enables the implementation of a software based on the 
concepts of objects. Additionally, it is a concept that forces programmers to plan out their code 
in order to have a better flowing program 

the conceptual model is developed further into an object-oriented model using object-oriented 
design (OOD). In OOD, the technology-independent concepts in the analysis model are 
mapped onto implementing classes, constraints are identified, and interfaces are designed, 
resulting in a model for the solution domain. In a nutshell, a detailed description is constructed 
specifying how the system is to be built on concrete technologies 

The stages for object–oriented design can be identified as − 

Definition of the context of the system 

Designing system architecture 

Identification of the objects in the system 

Construction of design models 

Specification of object interfaces 

3.1.2 THE OBJECT ORIENTED DESIGN PROCESS 

Process of Object Oriented Design: 

Understanding the process of any type of software related activity simplifies its development 
for the software developer, programmer and tester. Whether you are executing functional 
testing, or making a test report, each and every action has a process that needs to be followed 
by the members of the team. Similarly, Object Oriented Design (OOD) too has a defined 
process, which if not followed rigorously, can affect the performance as well as the quality of 
the software. Therefore, to assist the team of software developers and programmers, here is the 
process of Object Oriented Design (OOD): 

1. To design classes and their attributes, methods, associations, structure, and even protocol, 
design axiom is applied. 

o The static UML class diagram is redefined and completed by adding details. 

o Attributes are refined. 

o Protocols and methods are designed by utilizing a UML activity diagram to represent the 
methods algorithm. 

o If required, redefine associations between classes, and refine class hierarchy and design with 
inheritance. 

o Iterate and refine again. 



 

114 
 

2. Design the access layer. 

o Create mirror classes i.e., for every business class identified and created, create one access 
class. 

3. Identify access layer class relationship. 

4. Simplify classes and their relationships. The main objective here is to eliminate redundant 
classes and structures. 

o Redundant Classes: Programmers should remember to not put two classes that perform 
similar translate requests and translate results activities. They should simply select one and 
eliminate the other. 

o Method Classes: Revisit the classes that consist of only one or two methods, to see if they 
can be eliminated or combined with the existing classes. 

5. Iterate and refine again. 

6. Design the view layer classes. 

o Design the macro level user interface, while identifying the view layer objects. 

o Design the micro level user interface. 

o Test usability and user satisfaction. 

o Iterate and refine. 

7. At the end of the process, iterate the whole design. Re-apply the design axioms, and if re-
quired repeat the preceding steps again 

3.2  DESIGN AXIOMS 

The design axioms give designers, engineers, product managers, and anyone else who 
influences the creation of software design, a simple-but-essential core set of rules for building 
effective interfaces 

3.2.1  OBJECT ORIENTED DESIGN AXIOMS 

Axiom: 

An axiom is a fundamental truth that always is observed to be valid and for which there is no 
counterexample or exception. The axioms cannot be proven or derived but they cannot be 
invalidated by counterexamples or exceptions. There are two design axioms applied to object-
oriented design. Axiom 1 deals with relationships between system components and Axiom 2 
deals with the complexity of design. 

Axiom 1: The independence axiom. Maintain the independence of components. 

Axiom 2: The information axiom. Minimize the information content of the design. 

Axiom 1 States that, during the design process, as we go from requirement and use - case to a 
system component, each component must satisfy that requirement, without affecting other 
requirements Axiom 2  Concerned with simplicity. Rely on a general rule known as Occam‟s 

razor. Occam‟s razor rule of simplicity in OO terms : The best designs usually involve the 



 

115 
 

least complex code but not necessarily the fewest number of classes or methods. Minimizing 
complexity should be the goal, because that produces the most easily maintained and enhanced 
application. In an object-oriented system, the best way to minimize complexity is to use 
inheritance and the system‟s built-in classes and to add as little as possible to what already is 
there. 

3.2.2  COROLLARIES 

Corollaries May be called Design rules , and all are derived from the two basic axioms :The 
origin of collaries as shown in figure 2. Corollaries 1,2 and 3 are from both axioms, whereas 
corollary 4 is from axiom 1 and corollaries 5 & 6 are from axiom 2 

Origin of corollaries 

Corollary 1: 

Uncoupled design with less information content. 

 

one object or software component to another. 

 

t is important for design because a change in one component should have a minimal 

impact on the other components. 

 

complexity of information transmitted between them. 

esign has 2 types of coupling : 

o Interaction coupling and Inheritance coupling. 

Interaction coupling 

 

 

n object 

 

Inheritance coupling 

-and subclasses 

 

 

lass should not inherit lots of unrelated & unneeded 

methods & attributes 

 



 

116 
 

o Cohesion ► reflects the‟single-purposeness‟ of an object ( see corollaries 2&3 ) 

o Method cohesion ► a method should carry only one function. 

o A method carries multiple functions is undesirable 

Corollary 2 : Single purpose . 

 

 

Corollary 3 : Large number of simple classes. 

 

 

system 

 

asses, the better are your chances of reusing them 
inother projects. Large & complex classes are too specialized to be reused. 

 

reuse rather than building anew 

enefit of sw reusability ► Higher prpductivity 

Corollary 4 : Strong mapping. 

 

 

mentation, more detailed is added. 

Corollary 5 : Standardization. 

 

classes or components 

dge, 

document it, and store it in a repository that can be shared and reused in different 

applications 

Corollary 6 : Design with inheritance. 

 

-subclass structure must make logical sense. 

3.3  CLASSES DESIGN 

3.3.1 INTRODUCTION 



 

117 
 

 In general class design is a process to add details to the class 

diagrams defined in the analysis phase and making fine decisions 

 You choose how to implement your classes considering 

 Minimization of execution time, memory and other cost measures 

 Choice of algorithms implementing methods 

 Braking complex operation ito simpler operations 

 OO design is an iterative process 

 When one level of abstraction is complete you should design the nextlower level of abstraction 

 For each level you may 

 add new operations, attributes, and classes 

 Revise relations between classes 

The Essence of Design is… 

6 System modelling – Fabrizio Maria Maggi 

 To build a bridge across the gap between: 

 Desired features 

 Use cases 

 Application commands 

 System operations 

 System services 

 Available resources 

 Operating system infrastructure 

 Class libraries 

 Previous applications 

3.3.2  THE OBJECT ORIENTED DESIGN PHILOSOPHY 

As a part of an overall strategy of agile and adaptive programming, a number of object-oriented 
design principles were proposed for the design and programming of computer software system 
that is easy to maintain and extend over time. These principles are guidelines intended for 
programmers to apply while working on software to remove "code smells" (potentially buggy 
code) by refactorizing the source code until it is both legible and extensible. In this page, we 
introduce the SOLID principles, that is, Single responsibility, Open-closed, Liskov 
substitution, Interface segregation and Dependency inversion. The following information was 
integrated from various sources on the Web. 

Single Responsibility Principle (SRP) 



 

118 
 

The SRP requires that a class should have only a single responsibility. 

Example: If a class SalesOrder keeps information about a sales order, and in addition has a 
method saveOrder() that saves the SaleOrder in a database and a method exportXML() that 
exports the SalesOrder in XML format, this design will violate the SRP because there will be 
different types of users of this class and different reasons for making changes to this class. A 
change made for one type of user, say change the type of database, may require the re-test, 
recompilation, and re-linking of the class for the other type of users. 

A better design will be to have the SalesOrder class only keeps the information about a sales 
order, and have different classes to save order and to export order, respectively. Such a design 
will confirm to SRP. 

Open-Closed Principle (OCP) 

The OCP requires that each software entity should be open for extension, but closed for 
modification. 

Example: Suppose an OrderValidation class has a method validate(Order order) that is 
programmed to validate an order based on a set of hard-coded rules. This design violates the 
OCP because if the rules change,  the OrderValidation class has to be modified, tested, and 
compiled. 

A better design will be to let the OrderValidation class  contain a collection 
of ValidationRule objects each of which has a validate(Order order) method (perhaps defined 
in a Validation interface) to validate an Order using a specific rule, and the validate(Order 
order) method of OrderValidation class  can simply iterate through 
those ValidationRule objects to validate the order. The new design will satisfy the OCP, 
because if the rules change,  we can just create a new ValidationRule object and add it to 
an OrderValidation instance at run time (rather than to the class definition itself). 

This is can also be achieved by using  subclasses of a base class AbstractValidationRule that 
has an override-able function validate(Order order). Subclasses can implement the method 
differently without changing the base class functionality. 

Liskov Substitution Principle (LSP) 

The LSP requires that objects in a program should be replaceable with instances of their 
subclasses without altering the correctness of that program. 

The users must be able to use objects of subclasses via references to base classes without 
noticing any difference. When using an object through its base class interface, the object of a 
subclass must not expect the user to obey preconditions that are stronger than those required by 
the base class. 

Example: Suppose a Rectangle class has two instance variables height and width, and a 
method setSize(int a, int b), which set height to a and width to b. Suppose Square is a subclass 
of Rectangle and it overrides the inherited method by setting both height and width to a. This 
design will violate LSP. To see this, consider a client uses a reference variable of 
type Rectangle to call the setSize() method to assign different values of a and b, and then 
immediately verify if the sizes were set correctly or the area is correctly computed. The results 
will be different if the variable references to a Rectangle object than to a Square object.   



 

119 
 

It turns out that in OO programming, a Square is not a Rectangle at all because it behaves 
differently from a Rectangle. 

Interface Segregation Principle (ISP) 

The ISP requires that clients should not be forced to depend on interfaces that they do not use. 

Example: Suppose a Vehicle interface shown in the figure is designed for clients to use 

 
This violates ISP because clients are forced to depend on methods they do not 
use: HighWay does not use stopRadio() or ejectCD(), and ParkingLot does not 
need accelerate() or ejectCD(). 
 
A better design is to design smaller interfaces for different types of clients as shown in the 
following figure 



 

120 
 

 
 
 

Dependency Inversion Principle (DIP) 

The DIP requires that high level modules should not depend on low level modules, both should 
depend on abstraction. Also, abstraction should not depend on details, details should depend on 
abstractions. 

Example: Making a class Button associate to another class Lamp (because a Lamp has 
a Button) is a violation of DIP. A better design will be associate an AbstractButton with an 
AbstractButtonClient, and define Button as a subclass of the AbstractButton and a Lamp a 
subclass of the AbstractButtonClient. 

3.3.3  DESIGNING CLASSES: THE PROCESS 

1. Designing Classes1. Designing classes2. Designing protocols and class visibility3. The UML 
object Constraint language4. Designing methods 

2. Introduction• Designer has to know – Specification of the class – interaction of that class 
with other classes 

3. Object oriented design philosophy• Designing class with reusability in mind -> more gain in 
productivity and reduce the time for developing new application 

4. UML Object Constraint Language(OCL)• The rules and semantics of UML are expressed 

using OCL• OCL – Specification language – Uses simple logic to specify the properties of the 
system• UML modeling constructs requires expression. some example as follow – Item.selector 
• Item -> object • Selector -> attribute • Ex : kathir.regno – Item.selextor[qualifier-value] • 



 

121 
 

Qualifier is uesd to select related values • Ex: – Kathir.phone[2] – Set->select ( Boolean 
expression) • Company.employee->salary>20000 

5. Designing classes : process• Apply design axioms to design calsses , their atribute, methods 

and association , structures, amd protocols – Refine and complete the static uml class diagrams 
by adding details to that design • Refine attribute • Design methods and protocols – Uses uml 
activity diagram to represent algorithm • Refine the association bw classes • Refine class 
hierarchy and design with inheritance – Iterate and refine 

6. Class visibility: desiging well defined public , private and protected protocols• 2 problems in 

designing methods or attributes of class – Protocol or interface to the class operation and its 
visibility – How it is implemented• Protocol layers – Private protocol – Protected protocol – 
Public protocol 

7. Internal layer• Defines the implementation of the object• Apply axioms and corollaries ( 

corollary 1) to decide what to private• Private protocol – Includes messages that should not be 
sent from other objects – Accessible to only operations of that class• Protected protocol – 
Methods and attributes can be used by class itself or its subclass 

8. External layer• Design the functionality of the object• Public protocol – Defined to pass 
message bw associated classes – Interpretation and implementation of each message is up to the 
individual classes 

9. Encapsulation leakage• lack of well designed protocol leads to this problem• Encapsulation 
leakage occurs when details about classes internal implementation are disclosed through the 
interface 

10. Refining attribute• Attribute – Represents the state of the object• Analysis phase -> name of 
the attribute is sufficient• Design phase -> detailed information must be added• Attribute types 

– Single valued attribute • Ex: dob of the student – Multiplicity or multivalue attribute • 

Subjects handled by the staff – Reference to another object or instance connection • Person 

hold the account 

11. UML attribute presentation• OCL is used in the design phase to define the class attributes• 

Attribute presentation – Visibility name : type-expression = initial-value – Visibility • Public 

visibility : + • Protected visibility : # • Private visibility : - – Type expression • Language 

dependent specification of the type – Initial value • Language dependent expression for the 

initial value 

12. Designing methods and protocols• Specifying the algorithm for methods – By using formal 
structure (ex uml activity diag) with OCL• Types of methods – Constructor – Destructor – 
Conversion method – Copy method – Attribute set – Attribute get – IO methods – Domain 
specific 

13. Design issues : avoiding pitfalls• Better to have Large set of simple classes than few large , 

complex classes – Initially class might be too big – Apply design axioms and corollary • to 

reduce the size • Improve reusability 

3.3.4  DESIGN ISSUES 

Using object-oriented methodologies, discuss design solutions for the following problem. 
Describe what classes you would need and define the relationships between these classes 



 

122 
 

create both “is a” and “has a” relationships. State any assumptions you make concerning 

functional requirements. 

1.   Flight Simulator 

Design a flight simulator. Consider what must be displayed to have a view from the cockpit of 
a small airplane, periodically updating this view to reflect motion. The world in which flights 
take place must show mountains, rivers, lakes, roads, bridges, a radio tower and of course a 
runway. Control inputs are form two joysticks. The left joystick operators the rudder and 
engine. The right one controls ailerons and elevator. Make the simulator as realistic as possible 
without making it too complex. 

2.   Make Simulator 

Prepare a design for a system that automatically executes actions needed to build a software 
system from its components, similar to the UNIX Make facility. The system reads a file which 
describes what must be done in the form of dependency rules. Each rule has one or more 
targets, one or more sources, and an optional action. Targets and sources are names of files. If 
any of the sources of a rule are newer than any of its targets, the action of the rule is executed 
by the system to rebuild the targets from the sources. 

3.   Tic Tac Toe Player 

Design a system that plays tic-tac-toe. Inputs and outputs are provided through a dedicated 
hardware interface. The user indicates moves by pressing membrane switches, one for each of 
the nine squares. X’s and O’s are displayed by a liquid crystal display. The user may select a 
level of skill and who is to go first. 

4.   Pilot Training 

Design a system that would allow for training of a glider pilot. The simulator is for one glider 
with wings and rudder only. Effects of the wind and forces generated by the body of the 

glider must be considered. Details of the user interface to the simulator are should also be part 
of this design. 

Gliders have several associated lifting surfaces, in this case two wings and a rudder. The wings 
provide lift and the rudder is used to steer. Methods would be provided to perform simulation – 
for example, the force on each surface would be calculated from its attribute values and the 
orientation, velocity and rotational rate of the glider. The force on the rudder would also 
depend on its deflection. The translational acceleration would be computed by retrieving the 
results of force calculations and masses of associated surfaces. The accelerations would be 
numerically integrated to update position, orientation, velocity, and rotational rate. 

5.   Integrated Circuits 

Design a system for a portable tester for integrated circuits. The tester will have several 
different types of sockets. An integrated circuit will be tested by placing it in the socket that 
matches its pin configuration and identifying the type of circuit. The tester will then run 
through a series of tests, applying power and signals to the appropriate pins and measuring the 
response of the circuit. The same signal can be applied to more than one pin. Each pin may 
receive signals from several test cases. 



 

123 
 

6.   Parser 

Design a parser for the C programming language that has data types, operators, conditional 
expressions, loops, and functions. Take this design and apply it the next step to C++’s class 

constructs, inheritance, and if possible add to this dynamic binding. 

7.   Airline Reservation System 

Design an airline reservation system. There could be a ternary relationship between the flight, 
seats, and passengers. Seats are assigned zero or one passengers. A passenger may travel on 
many flights but must have exactly one seat on a traveled flight and must be sitting in it  

during the flight. How would you change your design if you allowed passengers to reserve (and 
pay for) multiple seats (maybe they are want that extra elbow room?). 

8.   Automated Home 

Design a system that would allow our homes to be automated by a central processor that 
controls lights, heat, oven, alarm, coffee maker, vcr, etc. (use your imagination). Allow users to 
access the controls directly from a keypad or remotely from the phone (given a passcode), or 
from a wireless remote control unit. 

9.   Drilling! 

Design a system that automates drilling of holes in rectangular metal plates. The size and 
location of the holes is described interactively using a graphical editor. When the user is 
satisfied with a particular drawing, a peripheral device on the personal computer punches a 
numerical control tape which can be used by commercially available drilling machines which 
have moving drill heads and that can change drill sizes. You are concerned only with the 
editing of the drawings and the punching of the tapes. The tapes contain a sequence of 
instructions to move the drill head, change drills, and drill. Since it takes some time to move the 
drill between holes, and even longer to change drills, the system should determine a reasonably 
efficient drilling sequence. It is not necessary to achieve the absolute minimum time, the 
system should not be grossly inefficient either. The drill head is controlled independently in the 
x and y directions, so the time it takes to move between holes is proportional to the larger of the 
required displacements in the x and the y directions. 

3.3.5  UML OPERATION PRESENTATION 

The Unified Modeling Language (UML) is a graphical language for OOAD that gives a 
standard way to write a software system’s blueprint. It helps to visualize, specify, construct, 

and document the artifacts of an object-oriented system. It is used to depict the structures and 
the relationships in a complex system. 

Brief History 

It was developed in 1990s as an amalgamation of several techniques, prominently OOAD 
technique by Grady Booch, OMT (Object Modeling Technique) by James Rumbaugh, and 
OOSE (Object Oriented Software Engineering) by Ivar Jacobson. UML attempted to 
standardize semantic models, syntactic notations, and diagrams of OOAD. 

Systems and Models in UML 



 

124 
 

System − A set of elements organized to achieve certain objectives form a system. Systems are 

often divided into subsystems and described by a set of models. 

Model − Model is a simplified, complete, and consistent abstraction of a system, created for 
better understanding of the system. 

View − A view is a projection of a system’s model from a specific perspective. 

Conceptual Model of UML 

The Conceptual Model of UML encompasses three major elements − 

 Basic building blocks 

 Rules 

 Common mechanisms 

Basic Building Blocks 

The three building blocks of UML are − 

 Things 

 Relationships 

 Diagrams 

Things 

There are four kinds of things in UML, namely − 

 Structural Things − These are the nouns of the UML models representing the static elements 
that may be either physical or conceptual. The structural things are class, interface, collabora-
tion, use case, active class, components, and nodes. 

 Behavioral Things − These are the verbs of the UML models representing the dynamic be-
havior over time and space. The two types of behavioral things are interaction and state ma-
chine. 

 Grouping Things − They comprise the organizational parts of the UML models. There is on-

ly one kind of grouping thing, i.e., package. 

 Annotational Things − These are the explanations in the UML models representing the 

comments applied to describe elements. 

Relationships 

Relationships are the connection between things. The four types of relationships that can be 
represented in UML are − 

 Dependency − This is a semantic relationship between two things such that a change in one 

thing brings a change in the other. The former is the independent thing, while the latter is the 
dependent thing. 

 Association − This is a structural relationship that represents a group of links having common 
structure and common behavior. 



 

125 
 

 Generalization − This represents a generalization/specialization relationship in which sub-

classes inherit structure and behavior from super-classes. 

 Realization − This is a semantic relationship between two or more classifiers such that one 
classifier lays down a contract that the other classifiers ensure to abide by. 

Diagrams 

A diagram is a graphical representation of a system. It comprises of a group of elements 
generally in the form of a graph. UML includes nine diagrams in all, namely − 

 Class Diagram 

 Object Diagram 

 Use Case Diagram 

 Sequence Diagram 

 Collaboration Diagram 

 State Chart Diagram 

 Activity Diagram 

 Component Diagram 

 Deployment Diagram 

Rules 

UML has a number of rules so that the models are semantically self-consistent and related to 
other models in the system harmoniously. UML has semantic rules for the following − 

 Names 

 Scope 

 Visibility 

 Integrity 

 Execution 

Common Mechanisms 

UML has four common mechanisms − 

 Specifications 

 Adornments 

 Common Divisions 

 Extensibility Mechanisms 

Specifications 



 

126 
 

In UML, behind each graphical notation, there is a textual statement denoting the syntax and 
semantics. These are the specifications. The specifications provide a semantic backplane that 
contains all the parts of a system and the relationship among the different paths. 

Adornments 

Each element in UML has a unique graphical notation. Besides, there are notations to represent 
the important aspects of an element like name, scope, visibility, etc. 

Common Divisions 

Object-oriented systems can be divided in many ways. The two common ways of division are − 

 Division of classes and objects − A class is an abstraction of a group of similar objects. An 

object is the concrete instance that has actual existence in the system. 

 Division of Interface and Implementation − An interface defines the rules for interaction. 

Implementation is the concrete realization of the rules defined in the interface. 

Extensibility Mechanisms 

UML is an open-ended language. It is possible to extend the capabilities of UML in a 
controlled manner to suit the requirements of a system. The extensibility mechanisms are − 

 Stereotypes − It extends the vocabulary of the UML, through which new building blocks can 

be created out of existing ones. 

 Tagged Values − It extends the properties of UML building blocks. 

 Constraints − It extends the semantics of UML building blocks. 

 

 

 

3.4  OBJECT STORAGE AND OBJECT INTEROPERABILITY 

3.4.1  INTRODUCTION 

Interoperability quality enables a software system to work with other software systems [13]. 
Interoperability of things and services in a WoT system is important to facilitate their 
composition and provisioning. Interoperability is also critical from infrastructure perspective 
that is used to host the services in a WoT system. For example, if heterogeneous IaaS cloud 
infrastructures are used to host the services, their capability to host the IoT subsystems 
constituting a WoT system is important so that an appropriate IaaS cloud, which matches the 
security and reliability constraints can be chosen. A number of architecture tactics can be 
adopted in the IoT subsystems architectures and the corresponding WoT system architecture to 
support interoperability. For example, proxies and services' facades can hide the internal details 
of how the subsystems are deployed and migrated among IaaS clouds during their life-cycle 
[14]. Autonomous conversion of information associated with an IoT service semantics into 
service syntax can facilitate services' interoperability [15]. Adopting a layered architecture 
approach can be useful to compartmentalise the IoT subsystems' services and to provide 



 

127 
 

interoperability among the services belonging to similar layers of the federated clouds [16]. A 
strategy to delegate tasks to the optimal services configuration and dynamically allocating 
hosting IaaS cloud resources can facilitate the process of achieving interoperability 

Interoperability is the ability of equipment and systems from different vendors to operate 
together. Interoperability is a must as smart objects emerge as a large-scale technology. 
Interoperability is essential both between smart objects from different manufacturers and 
between smart objects and existing infrastructures. 

For smart objects, interoperability is as multifaceted as standardization. Smart objects must 
interoperate from the physical layer up to the application or integration layer. Physical layer 
interoperability occurs when equipment from different vendors physically communicates with 
each other. At the physical level, smart objects must agree on matters such as the physical 
frequencies at which communication takes place, what type of modulation the physical signals 
should carry, and the rate at which information is transferred. At the network level, nodes must 
agree on the format of the information that is sent and received over the physical channel and 
how nodes are addressed, as well as how messages should be transported through a network of 
smart objects. At the application or integration level, smart objects must share a common view 
on how data should be entered or extracted from a smart object network, as well as how the 
smart objects should be reached from outside systems. 

The challenges of interoperability are in the technical definition of smart objects as well as the 
standardization and implementation and testing processes. To achieve interoperability, it is 
imperative that the technical architecture of smart objects is defined to ease interoperability. If 
the architecture either disallows interoperability or makes interoperability cumbersome, it is 
very difficult to achieve interoperability later. Likewise, the standardization process must make 
interoperability a primary concern. To do this, smart object standards cannot be tied to any 
particular hardware or communication technology. After standardization is complete, a testing 
or certification procedure helps to achieve and ensure interoperability between different devices 
and vendors. 

As with standardization, interoperability poses several challenges for smart objects. First, the 
technical architecture for smart objects is still an open issue. In this book, we choose one such 
architecture for smart objects: the IP architecture. Second, although some of the standards for 
smart objects are still under development, those standards that already exist can be reused. We 
return to this ongoing standardization process in Part II. Third, interoperability test suites and 
conformance tests are still an open issue. Ideally, such interoperability test suites should test 
many levels of interoperability such as physical, networking, and application levels.  

3.4.2  DATABASE MANAGEMENT SYSTEM 

An object-oriented database management system (OODBMS) is a database management 
system that supports the creation and modeling of data as objects. OODBMS also includes 
support for classes of objects and the inheritance of class properties, and incorporates methods, 
subclasses and their objects. Most of the object databases also offer some kind of query 
language, permitting objects to be found through a declarative programming approach. 

An object-oriented database management system represents information in the form of objects 
as used in object-oriented programming. OODBMS allows object-oriented programmers to 
develop products, store them as objects and replicate or modify existing objects to produce new 

https://www.sciencedirect.com/topics/computer-science/achieve-interoperability
https://www.sciencedirect.com/topics/computer-science/standardization-process


 

128 
 

ones within OODBMS. OODBMS allows programmers to enjoy the consistency that comes 
with one programming environment because the database is integrated with the programming 
language and uses the same representation model. Certain object-oriented databases are 
designed to work with object-oriented programming languages such as Delphi, Python, Java, 
Perl, Objective C and Visual Basic .NET. 

An object-oriented database management system (OODBMS), sometimes shortened 
to ODBMS for object database management system, is a database management system 
(DBMS) that supports the modelling and creation of data as objects. This includes some kind of 
support for classes of objects and the inheritance of class properties and methods by subclasses 
and their objects. 

There is no widely agreed-upon standard for what constitutes an OODBMS, although the 
Object Data Management Group (ODMG) published The Object Data Standard ODMG 3.0 in 
2001 which describes an object model as well as standards for defining and querying objects. 
The group has since disbanded. 

Currently, Not Only SQL (NoSQL) document database systems are a popular alternative to the 
object database.  Although they lack all the capabilities of a true ODBMS, NoSQL document 
databases provide key-based access to semi-structured data as documents, typically using 
JavaScript Object Notation (JSON). 

Features of an ODBMS 

In their influential paper, The Object-Oriented Database Manifesto, Malcolm Atkinson and 
others define an OODBMS as follows: 

An object-oriented database system must satisfy two criteria: it should be a DBMS, and it 
should be an object-oriented system, i.e., to the extent possible, it should be consistent with the 
current crop of object-oriented programming languages. 

The first criterion translates into five features: persistence, secondary storage management, 
concurrency, recovery and an ad hoc query facility. 

The second one translates into eight features: complex objects, object identity, encapsulation, 
types or classes, inheritance, overriding combined with late binding, extensibility and 
computational completeness. 

3.4.3  DATABASE MODELS 

Types of database models 

There are many kinds of data models. Some of the most common ones include: 

 Hierarchical database model 

 Relational model 

 Network model 

 Object-oriented database model 

 Entity-relationship model 

https://searchsqlserver.techtarget.com/definition/database-management-system
https://searchapparchitecture.techtarget.com/definition/object
https://whatis.techtarget.com/definition/class
https://whatis.techtarget.com/definition/inheritance
https://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
https://theserverside.techtarget.com/definition/JSON-Javascript-Object-Notation


 

129 
 

 Document model 

 Entity-attribute-value model 

 Star schema 

 The object-relational model, which combines the two that make up its name 

You may choose to describe a database with any one of these depending on several factors. The 
biggest factor is whether the database management system you are using supports a particular 
model. Most database management systems are built with a particular data model in mind and 
require their users to adopt that model, although some do support multiple models. 

In addition, different models apply to different stages of the database design process. High-
level conceptual data models are best for mapping out relationships between data in ways that 
people perceive that data. Record-based logical models, on the other hand, more closely reflect 
ways that the data is stored on the server. 

Selecting a data model is also a matter of aligning your priorities for the database with the 
strengths of a particular model, whether those priorities include speed, cost reduction, usability, 
or something else. 

Let’s take a closer look at some of the most common database models. 

Relational model 

The most common model, the relational model sorts data into tables, also known as relations, 
each of which consists of columns and rows. Each column lists an attribute of the entity in 
question, such as price, zip code, or birth date. Together, the attributes in a relation are called a 
domain. A particular attribute or combination of attributes is chosen as a primary key that can 
be referred to in other tables, when it’s called a foreign key. 

Each row, also called a tuple, includes data about a specific instance of the entity in question, 
such as a particular employee. 

The model also accounts for the types of relationships between those tables, including one-to-
one, one-to-many, and many-to-many relationships. Here’s an example: 

 

Within the database, tables can be normalized, or brought to comply with normalization rules 
that make the database flexible, adaptable, and scalable. When normalized, each piece of data is 
atomic, or broken into the smallest useful pieces. 

Relational databases are typically written in Structured Query Language (SQL). The model was 
introduced by E.F. Codd in 1970. 

Hierarchical model 

The hierarchical model organizes data into a tree-like structure, where each record has a single 
parent or root. Sibling records are sorted in a particular order. That order is used as the physical 
order for storing the database. This model is good for describing many real-world relationships. 



 

130 
 

 

This model was primarily used by IBM’s Information Management Systems in the 60s and 70s, 

but they are rarely seen today due to certain operational inefficiencies. 

Network model 

The network model builds on the hierarchical model by allowing many-to-many relationships 
between linked records, implying multiple parent records. Based on mathematical set theory, 
the model is constructed with sets of related records. Each set consists of one owner or parent 
record and one or more member or child records. A record can be a member or child in 
multiple sets, allowing this model to convey complex relationships. 

It was most popular in the 70s after it was formally defined by the Conference on Data Systems 
Languages (CODASYL). 

 

Object-oriented database model 

This model defines a database as a collection of objects, or reusable software elements, with 
associated features and methods. There are several kinds of object-oriented databases: 

A multimedia database incorporates media, such as images, that could not be stored in a 
relational database. 

A hypertext database allows any object to link to any other object. It’s useful for organizing 

lots of disparate data, but it’s not ideal for numerical analysis. 

The object-oriented database model is the best known post-relational database model, since it 
incorporates tables, but isn’t limited to tables. Such models are also known as hybrid database 

models. 

Object-relational model 

This hybrid database model combines the simplicity of the relational model with some of the 
advanced functionality of the object-oriented database model. In essence, it allows designers to 
incorporate objects into the familiar table structure. 

Languages and call interfaces include SQL3, vendor languages, ODBC, JDBC, and proprietary 
call interfaces that are extensions of the languages and interfaces used by the relational model. 

Entity-relationship model 

This model captures the relationships between real-world entities much like the network model, 
but it isn’t as directly tied to the physical structure of the database. Instead, it’s often used for 

designing a database conceptually. 

Here, the people, places, and things about which data points are stored are referred to as 
entities, each of which has certain attributes that together make up their domain. The 
cardinality, or relationships between entities, are mapped as well. 



 

131 
 

 

A common form of the ER diagram is the star schema, in which a central fact table connects to 
multiple dimensional tables. 

Other database models 

A variety of other database models have been or are still used today. 

Inverted file model 

A database built with the inverted file structure is designed to facilitate fast full text searches. 
In this model, data content is indexed as a series of keys in a lookup table, with the values 
pointing to the location of the associated files. This structure can provide nearly instantaneous 
reporting in big data and analytics, for instance. 

This model has been used by the ADABAS database management system of Software AG 
since 1970, and it is still supported today. 

Flat model 

The flat model is the earliest, simplest data model. It simply lists all the data in a single table, 
consisting of columns and rows. In order to access or manipulate the data, the computer has to 
read the entire flat file into memory, which makes this model inefficient for all but the smallest 
data sets. 

Multidimensional model 

This is a variation of the relational model designed to facilitate improved analytical processing. 
While the relational model is optimized for online transaction processing (OLTP), this model is 
designed for online analytical processing (OLAP). 

Each cell in a dimensional database contains data about the dimensions tracked by the database. 
Visually, it’s like a collection of cubes, rather than two-dimensional tables. 

Semistructured model 

In this model, the structural data usually contained in the database schema is embedded with 
the data itself. Here the distinction between data and schema is vague at best. This model is 
useful for describing systems, such as certain Web-based data sources, which we treat as 
databases but cannot constrain with a schema. It’s also useful for describing interactions 

between databases that don’t adhere to the same schema. 

Context model 

This model can incorporate elements from other database models as needed. It cobbles together 
elements from object-oriented, semistructured, and network models. 

Associative model 

This model divides all the data points based on whether they describe an entity or an 
association. In this model, an entity is anything that exists independently, whereas an 
association is something that only exists in relation to something else. 



 

132 
 

The associative model structures the data into two sets: 

 A set of items, each with a unique identifier, a name, and a type 

 A set of links, each with a unique identifier and the unique identifiers of a source, verb, and 
target. The stored fact has to do with the source, and each of the three identifiers may refer ei-
ther to a link or an item. 

Other, less common database models include: 

 Semantic model, which includes information about how the stored data relates to the real 
world 

 XML database, which allows data to be specified and even stored in XML format 

 Named graph 

 Triplestore 

NoSQL database models 

In addition to the object database model, other non-SQL models have emerged in contrast to 
the relational model: 

The graph database model, which is even more flexible than a network model, allowing any 
node to connect with any other. 

The multivalue model, which breaks from the relational model by allowing attributes to 
contain a list of data rather than a single data point. 

The document model, which is designed for storing and managing documents or semi-
structured data, rather than atomic data. 

Databases on the Web 

Most websites rely on some kind of database to organize and present data to users. Whenever 
someone uses the search functions on these sites, their search terms are converted into queries 
for a database server to process. Typically, middleware connects the web server with the 
database. 

The broad presence of databases allows them to be used in almost any field, from online 
shopping to micro-targeting a voter segment as part of a political campaign. Various industries 
have developed their own norms for database design, from air transport to vehicle 
manufacturing. 

3.4.4  DATABASE INTERFACE 

User-friendly interfaces provide by DBMS may include the following: 

1. Menu-Based Interfaces for Web Clients or Browsing – 
These interfaces present the user with lists of options (called menus) that lead the user through 
the formation of a request. Basic advantage of using menus is that they removes the tension of 
remembering specific commands and syntax of any query language, rather than query is basi-
cally composed step by step by collecting or picking options from a menu that is basically 
shown by the system. Pull-down menus are a very popular technique in Web based interfaces. 



 

133 
 

They are also often used in browsing interface which allow a user to look through the contents 
of a database in an exploratory and unstructured manner. 

2. Forms-Based Interfaces – 
A forms-based interface displays a form to each user. Users can fill out all of the form entries 
to insert a new data, or they can fill out only certain entries, in which case the DBMS will re-
deem same type of data for other remaining entries. This type of forms are usually designed or 
created and programmed for the users that have no expertise in operating system. Many 
DBMSs have forms specification languages which are special languages that help specify such 
forms. 
Example: SQL* Forms is a form-based language that specifies queries using a form designed in 
conjunction with the relational database schema.b> 

3. Graphical User Interface – 
A GUI typically displays a schema to the user in diagrammatic form.The user then can specify 
a query by manipulating the diagram. In many cases, GUI’s utilize both menus and forms. Most 

GUIs use a pointing device such as mouse, to pick certain part of the displayed schema dia-
gram. 

 

4. Natural language Interfaces – 
These interfaces accept request written in English or some other language and attempt to under-
stand them. A Natural language interface has its own schema, which is similar to the database 
conceptual schema as well as a dictionary of important words. 

The natural language interface refers to the words in its schema as well as to the set of standard 
words in a dictionary to interpret the request.If the interpretation is successful, the interface 
generates a high-level query corresponding to the natural language and submits it to the DBMS 
for processing, otherwise a dialogue is started with the user to clarify any provided condition or 
request. The main disadvantage with this is that the capabilities of this type of interfaces are not 
that much advance. 

5. Speech Input and Output – 
There is an limited use of speech say it for a query or an answer to a question or being a result 
of a request it is becoming commonplace Applications with limited vocabularies such as inquir-
ies for telephone directory, flight arrival/departure, and bank account information are allowed 
speech for input and output to enable ordinary folks to access this information. 

The Speech input is detected using a predefined words and used to set up the parameters that 
are supplied to the queries. For output, a similar conversion from text or numbers into speech 
take place. 

6. Interfaces for DBA – 
Most database system contains privileged commands that can be used only by the DBA’s staff. 

These include commands for creating accounts, setting system parameters, granting account au-
thorization, changing a schema, reorganizing the storage structures of a databases 

3.4.5  DATABASE SCHEMA AND DATA DEFINITION LANGUAGE 



 

134 
 

A database schema represents the logical configuration of all or part of a relational database. It 
can exist both as a visual representation and as a set of formulas known as integrity constraints 
that govern a database. These formulas are expressed in a data definition language, such as 
SQL. As part of a data dictionary, a database schema indicates how the entities that make up 
the database relate to one another, including tables, views, stored procedures, and more. 

Typically, a database designer creates a database schema to help programmers whose 
software will interact with the database. The process of creating a database schema is 
called data modeling. When following the three-schema approach to database design, this step 
would follow the creation of a conceptual schema. Conceptual schemas focus on an 
organization’s informational needs rather than the structure of a database. 

There are two main kinds of database schema: 

1. A logical database schema conveys the logical constraints that apply to the stored da-
ta. It may define integrity constraints, views, and tables. 

2. A physical database schema lays out how data is stored physically on a storage system 
in terms of files and indices. 

At the most basic level, a database schema indicates which tables or relations make up the 
database, as well as the fields included on each table. Thus, the terms schema 
diagram and entity-relationship diagram are often interchangeable. 

A data definition language (DDL) is a computer language used to create and modify the 
structure of database objects in a database. These database objects include views, schemas, 
tables, indexes, etc. 
 
This term is also known as data description language in some contexts, as it describes the fields 
and records in a database table. 

A DDL is a language used to define data structures and modify data. For example, DDL 
commands can be used to add, remove, or modify tables within in a database. DDLs used in 
database applications are considered a subset of SQL, the Structured Query Language. 
However, a DDL may also define other types of data, such as XML. 

A Data Definition Language has a pre-defined syntax for describing data. For example, to build 
a new table using SQL syntax, the CREATE command is used, followed by parameters for the 
table name and column definitions. The DDL can also define the name of each column 

3.4.6  DATA MANIPULATION LANGUAGE(DML) 

A data manipulation language (DML) is a family of computer languages including commands 
permitting users to manipulate data in a database. This manipulation involves inserting data 
into database tables, retrieving existing data, deleting data from existing tables and modifying 
existing data. DML is mostly incorporated in SQL databases. 

DML resembles simple English language and enhances efficient user interaction with the 
system. The functional capability of DML is organized in manipulation commands like 
SELECT, UPDATE, INSERT INTO and DELETE FROM, as described below: 

 

https://www.lucidchart.com/pages/database-diagram/database-models
https://www.lucidchart.com/pages/database-diagram/database-design


 

135 
 

 

SELECT: This command is used to retrieve rows from a table. The syntax is SELECT [column 
name(s)] from [table name] where [conditions]. SELECT is the most widely used DML 
command in SQL. 

 

UPDATE: This command modifies data of one or more records. An update command syntax is 
UPDATE [table name] SET [column name = value] where [condition]. 

 

INSERT: This command adds one or more records to a database table. The insert command 
syntax is INSERT INTO [table name] [column(s)] VALUES [value(s)]. 

 

DELETE: This command removes one or more records from a table according to specified 
conditions. Delete command syntax is DELETE FROM [table name] where [condition] 

3.4.7  CONCURRENCY POLICY 

The Concept of Concurrency 

Concurrency is a property of a system in which several behaviors can overlap in time – the 
ability to 

perform two or more tasks at once. In the sequential paradigm, the next step in a process can be 

performed only after the previous has completed; in a concurrent system some steps are 
executed in 

parallel. 

UML and Concurrency 

UML supports concurrency, and makes it possible to represent the concept in different kinds of 

diagrams. This article covers the three most commonly used – the activity diagram, sequence 

diagram, and state machine diagram. Note that the OCUP 2 Foundation level examination 
covers 

concurrency only in the activity diagram; concurrency in sequence and state machine diagrams 
is 

covered at the Intermediate and Advanced levels. 

Activity diagram 

In activity diagrams, concurrent execution can be shown implicitly or explicitly. If there are 
two or 

more outgoing edges from an action it is considered an implicit split. Two or more incoming 
edges 



 

136 
 

signify an implicit join.  

The action at an implicit join will not execute until at least one token is offered on every 
incoming 

control flow. When the action begins execution, it will consume all tokens offered on all 
incoming 

control flows. 

Concurrent execution can also be drawn explicitly using fork and join nodes: 

 Explicit concurrency using fork and join nodes 

Sequence diagram 

Concurrency can be shown in a sequence diagram using a combined fragment with the par 
operator 

or using a coregion area. A coregion can be used if the exact order of event occurrences on one 

lifeline is irrelevant or unknown. Coregion is shorthand for parallel combined fragment within 
a single 

lifeline. 

3.4.8  OBJECT RELATIONAL SYSTEMS 

Object Relational System 

A large portion of the information State manipulates lies inside of a PostgreSQL database. 
Anybody that's used a database knows that saving and pulling data is largely a repetitive 
process. In State, this task is much easier because much of time we're only pulling data from a 
single row of information, rarely using data from joins in our actual work. In order to make 
State easier to debug and operate I've created a simple Object Relational System to handle 
saving and loading data from the database. For each of object types we define a field mapping 
with all of the fields we're pulling into the object from our queries and their various properties. 
There are then a few methods which takes queries and these field mappings and create or save 
objects to the database. 

 

Peers 

A Peer is just a table in the database. If you've studied any Object Relational Systems you 
know'll recognize the term. Peer's manage objects of a specific type. It's the peer that stores the 
field mapping and other details that help us manage the objects in a specific table. 

 

SQL Backend 

In a few areas we allow the ORS to generate the SQL we need, but only in simple situations 
where the SQL is very simple. Most of the time we have to write the SQL ourselves. 



 

137 
 

Fortunately, the ORS helps us in the larger, more common case. Maybe someday we'll expand 
this, but right now things seem fine. 

 

You may have noticed that there is a single library, libsos where all of the SQL lies. This is by 
design, to make any future changes easier to make maintaining the code easier. Any changes to 
the database will require changes to this library, and everything else should work just fine. 
Unless of course you change a field name or add new fields, then you'll have to use those fields 
and that will almost always happen outside of the sos library. 

3.4.9  MULTIDATABASE SYSTEM 

In a multidatabase system, multiple users simultaneously access various component systems. 
Heterogeneous transactio~ management deals with the problem of maintaining the consistency 
of each component system individually and ofthemultidatabase system as a whole 

A multidatabase system (MDBS) is a facility that allows users access to data located in 
multiple autonomous database management systems (DBMSs). In such a system,global 
transactions are executed under the control of the MDBS. ... Each local DBMS integrated by 
the MDBS may employ a different transaction management scheme. 

A multidatabase system (MDBS) is a facility that allows users access to data located in 
multiple autonomous database management systems (DBMSs). In such a system,global 
transactions are executed under the control of the MDBS. Independently,local transactions are 
executed under the control of the local DBMSs. Each local DBMS integrated by the MDBS 
may employ a different transaction management scheme. In addition, each local DBMS has 
complete control over all transactions (global and local) executing at its site, including the 
ability to abort at any point any of the transactions executing at its site. Typically, no design or 
internal DBMS structure changes are allowed in order to accommodate the MDBS. 
Furthermore, the local DBMSs may not be aware of each other and, as a consequence, cannot 
coordinate their actions. Thus, traditional techniques for ensuring transaction atomicity and 
consistency in homogeneous distributed database systems may not be appropriate for an MDBS 
environment. The objective of this article is to provide a brief review of the most current work 
in the area of multidatabase transaction management. We first define the problem and argue 
that the multidatabase research will become increasingly important in the coming years. We 
then outline basic research issues in multidatabase transaction management and review recent 
results in the area. We conclude with a discussion of open problems and practical implications 
of this research. 

3.4.10  OPEN DATABASE CONNECTIVITY (ODBC) 

Open Database Connectivity—or ODBC—is an application programming interface (API) that 
lets software connect with database management systems while remaining independent of 
them. This is important, because it allows applications to interact with multiple databases 
simultaneously using SQL (Structured Query Language). 

 



 

138 
 

For organizations that have multiple data streams and must store them on separate databases, 
ODBC offers a solution that lets them use the software they need without having to worry 
about which database management system they have to use. 

 

It’s useful to think of ODBC as a peripheral driver which lets specific tools connect to a 
program. Much like printers require the specific instructions to allow them to connect with 
multiple different computers and devices, ODBC is a bridge between applications and the 
databases they require. Additionally ODBC allows organizations to centralize their data 
streams into a single application or dashboard more efficiently. 

For organizations that use multiple database management systems and streams, ODBC is one of 
the easiest ways to centralize and manage data without having to use multiple systems at the 
same time. One of the clearest use cases for ODBC is for creating dashboards. 

 

For most organizations, dashboards—even specific ones—tend to draw data from multiple 
internal and sometimes external sources. As such, using an ODBC connector can improve 
several areas of the analytics process. 

 

Open Database Connectivity lets developers connect their existing data visualization tools to 
any database, greatly increasing their accuracy and depth. Companies that must constantly 
interact with multiple databases simultaneously for analytics can also optimize their querying 
ability and draw information from a broader range of sources, as well as create more granular 
reports. 

 

Additionally, ODBC allows companies to sort and store their data more efficiently. Instead of 
forcing a single database management system to handle data it may not be optimally suited for, 
organizations can instead mash up multiple sources without worrying about their compatibility 
or accessibility. 

Open Database Connectivity (ODBC) is a specification for an application programming 
interface (API) that enables applications to access multiple database management systems 
using Structured Query Language (SQL). Using the ODBC interface in your COBOL 
applications, you can dynamically access databases and file systems that support the ODBC 
interface. 

 

ODBC permits maximum interoperability: a single application can access many different 
database management systems. This interoperability enables you to develop, compile, and ship 
an application without targeting a specific type of data source. Users can then add the database 
drivers, which link the application to the database management systems of their choice. 

 



 

139 
 

When you use the ODBC interface, your application makes calls through a driver manager. The 
driver manager dynamically loads the necessary driver for the database server to which the 
application connects. The driver, in turn, accepts the call, sends the SQL to the specified data 
source (database), and returns any result. 

Your COBOL applications that use embedded SQL for database access must be processed by a 
precompiler or coprocessor for a particular database and need to be recompiled if the target 
database changes. Because ODBC is a call interface, there is no compile-time designation of 
the target database as there is with embedded SQL. Not only can you avoid having multiple 
versions of your application for multiple databases, but your application can dynamically 
determine which database to target. 

 

Some of the advantages of ODBC are: 

 

ODBC provides a consistent interface regardless of the kind of database server used. 

You can have more than one concurrent connection. 

Applications do not have to be bound to each database on which they will run. Although 
COBOL for AIX does this bind for you automatically, it binds automatically to only one 
database. If you want to choose which database to connect to dynamically at run time, you must 
take extra steps to bind to a different database. 

 

 

  



 

140 
 

Unit4 
Userinterfacedesign 
The visual part of a computer application or 
operatingsystemthroughwhichaclientinteractswithacomputeror software. It determines how 
commands are given tothe computer or the program and how data is displayedonthescreen 

User interface is the front-end application view to which user 
interactsinordertousethesoftware.Usercanmanipulateandcontrolthesoftware as well as hardware 
by means of user interface. Today, userinterface is found at almost every place where digital 
technology exists,right from computers, mobile phones, cars, music players, airplanes,ships etc. 

User interface is part of software and is designed such a way that it 
isexpectedtoprovidetheuserinsightofthesoftware.UIprovidesfundamentalplatform forhuman-
computerinteraction. 

UIcanbegraphical,text-based,audio-videobased,dependingupontheunderlying hardware and 
software combination. UI can be hardware orsoftwareoracombinationofboth. 
 

Thesoftwarebecomesmorepopular ifitsuserinterfaceis: 
 

 Attractive 
 Simpletouse 
 Responsiveinshorttime 
 Cleartounderstand 
 Consistent on all interfacing screensUIisbroadly dividedintotwocategories: 

 Command Line InterfaceGraphical 

UserInterface 

User interface is the front-end application view to which user interactsin order to use the 
software. The software becomes more popular if itsuserinterfaceis: 

 Attractive 
 Simpletouse 
 Responsiveinshorttime 
 Cleartounderstand 
 Consistentonallinterfacescreens 

User,task,environmentalanalysis,andmodeling:Initially,thefocusisbasedonthepr
ofileofuserswhowillinteractwiththesystem,i.e.understanding,skillandknowledge,ty
peofuser,etc,basedontheuser’sprofileusersaremadeintocategories.Fromeachcategor

yrequirementsaregathered.Basedontherequirementsdeveloperunderstandhowtodev
eloptheinterface.Oncealltherequirementsaregatheredadetailedanalysisisconducted.
Intheanalysispart,thetasksthattheuserperformstoestablishthegoalsofthesystemareid
entified,describedandelaborated.Theanalysisoftheuserenvironmentfocusesontheph



 

141 
 

Graphicaluserinterfaces(GUIs)—Usersinteractwithvisual 
representationsondigitalcontrolpanels.Acomputer’sdesktopisa 
GUI. 

Voice-controlled interfaces (VUIs)—Users interact with 
thesethrough their voices. Most smart assistants—e.g., Siri on 
iPhone andAlexaonAmazon devices—are VUIs. 

Gesture-based interfaces—Users engage with 3D design 
spacesthroughbodily motions:e.g.,ingames. 

ysicalworkenvironment.Amongthequestionstobeaskedare: 

1 InterfaceDesign: 
2 Thegoalofthisphaseistodefinethesetofinterfaceobjectsandactions
i.e.Controlmechanismsthatenabletheusertoperformdesiredtasks.Indicatehowthesec
ontrolmechanismsaffectthesystem.Specifytheactionsequenceoftasksandsubtasks,al
socalledauserscenario.Indicatethestateofthesystemwhentheuserperformsaparticula
rtask.AlwaysfollowthethreegoldenrulesstatedbyTheoMandel.Designissuessuchasr
esponsetime,commandandactionstructure,errorhandling,andhelpfacilitiesareconsid
eredasthedesignmodelisrefined.Thisphaseservesasthefoundationfortheimplementa
tionphase. 
 

DesigningUserInterfacesforUsers  

 
 

TodesignUIsbest,youshouldconsider:  

 
AimUserinterface (UI)designistheprocessdesigners usetbuild interfaces in 
software or computerized devices, focusing on looksor style. Designersto create 
interfaces which users find easy to useand pleasurable. 

 Allowtheusertoputthecurrenttaskintoameaningfulcontext:Manyinterfaceshaved
ozensofscreens.Soitisimportanttoprovideindicatorsconsistentlysothattheuserknowaboutt
hedoingwork.Theusershouldalsoknowfromwhichpagehasnavigatedtothecurrentpageandf
romthecurrentpagewherecannavigate. 
 Maintainconsistencyacrossafamilyofapplications:Thedevelopmentofsomesetof

applicationsallshouldfollowandimplementthesamedesign,rulessothatconsistencyismainta
inedamongapplications. 
 Ifpastinteractivemodelshavecreateduserexpectationsdonotmakechangesunlesst

hereisacompellingreason. 
 User interface is a design for softwares and machinessuchas 

User interfaces are the access points where users interact with 
designs.They come in three formats: 



 

142 
 

computers,mobiledevices etc. 
 Itisthefirstimpressionofasoftwarewhereuserinteractswithacomputerorasof

twaresystem. 
 Asoftwaremustfulfilltherequirementofauser. 
 Userinterfacedetermineshowtheinformationisdisplayedon thescreen. 
 Poor user interface design causes a user to make fatalerrorsand asoftware 

systemnever used. 
 
TherearethreetypesofUserInterfaces: 
 
1 Commandlanguage 
2 Menus 
3 GraphicalUserInterface(GUI) 

VIEWLAYERCLASSES 

View layer is the only exposed objects of an application with whichusers can interact. 
Represents the set of operations in the business thatusers must perform to complete their tasks. 
View layer objects areresponsiblefortwomajoraspestsofapplication 
 
 

 
 
 



 

143 
 

Designing view layer classes• UI layer consists of – objects with whichuser interacts – Objects 
needed to manage or control UI• Responsibilityof view layer objects – Input :responding to 
user interaction •Translatinguser'sactionintoanappropriateresponse–Output 
:displayingorprintingbusinessobjects 

Main goal of UI is to display and obtain needed information in 
anaccessible,efficientmannerUIdesign is acreativeprocess 

UI layer consists ofobjects with which user interactsObjects needed 
tomanageorcontrolUIResponsibilityofview layerobjectsInput 
:responding to user interactionTranslating user’s action into 

anappropriateresponseOutput:displayingorprintingbusinessobjects 

It has 4 major activitiesMacro level UI design process: (identifying viewlayer object)Takes 
place during analysis phaseIdentifying classes thatinteract with human actors by analysing use 
casessequence andcollaboration diagram helps to identify UI classesMicro level UI 
designactivitiesDesigningtheviewlayerobjectsbyapplyingdesignaxiomsandcorollariesDecide 
how to use and extend the components so they bestsupport application specific functions and 
provide the most usableinterfacePrototyping the view layer interfaceUseful in the early 
designprocessTesting usability and user satisfactionRefining and iterating thedesign 

Presentation layer - this is the User Interface layer. The screens areusing information both 
from components and from data stored in legacysystem. 

The micro process is concerned with specific analysis and designtechniques—the techniques 
you use to get from requirements toimplementation, and the choice of analysis and design 
techniques (e.g.,structured,object-oriented,andsoon)affectsthemicro process.. 

. To control what data users see, the owner of a hosted feature layerview, or an administrator, 
can define what fields or features areavailable in the view. You can also limit the hosted 
feature layer view toa specificareabydefiningaspatialextent. 

Hosted feature layer views allow you create multiple uniquewindows into your data, and 
customize them to fit youraudience. For a while now you've been able to create a copy ofa 
layer and modify its symbology and other basic properties,but copied layers are only used to 
customize the presentationofdata 

Tocontrol whatdatauserssee,theownerofahostedfeaturelayerview, or an administrator, can 
define what fields or features are availablein the view. You can also limit the hosted feature 
layer view to a specificareabydefiningaspatialextent.Thesedefinitionsaresavedwiththehosted 
feature layer view and allow you more control over what contentpeoplesee. 
 
For example, you might create multiple different views of a hostedfeature layer 
containing customer information, and set differentdefinitions for each view 
depending on the intended users. For a viewyou share with a group that will 
perform spatial analysis, you might 
hidethefieldsthatstorecustomernames,astheanalysts don'tneedtoknowthis 
information. For another view that you share with a group concernedwith routing 



 

144 
 

deliveries, you would define the view to show only featuresrepresenting customers who 
purchased a product that had not yet beendelivered. 

 
MACROLEVELPROCESS 
Themacrodevelopmentprocessconsistsofthefollowingsteps: 

1 Conceptualization. Establish the core requirements and develop 
aprototype. 
2 Analysisanddevelopmentofthemodel.... 
3 Designorcreatethesystemarchitecture.... 
4 Evolution or implementation-5. 
Software Development Macro Process (SDMaP): this is the overallsoftware 
development lifecycle. In this process model we define ourrequirements, we 
execute analysis, design, implementation, test and 
wedeploythesoftwareintoproduction. 
 

Themacrodevelopmentprocessconsistsofthefollowingsteps: 
 Conceptualization 

Establishthecorerequirementsanddevelopaprototype. 
 Analysisanddevelopmentofthemodel 

Use the class diagram to describe the roles and responsibilities of objects. 
Usetheobjectdiagramto describethedesiredbehaviorofthesystem. 
 Designorcreatethesystemarchitecture. 

Use the class diagram to decide what classes exist and how they relate to 
eachother, the object diagram to decide what mechanisms are used, the 
modulediagram to map out where each class and object should be declared, and 
theprocessdiagramto determineto whichprocessor toallocateaprocess.  

 Evolutionorimplementation- 

Refinethesystemthroughmuchiteration. 
 
Themacrodevelopmentprocessconsistsofthefollowingsteps: 

Conceptualization 

Establishthecorerequirementsanddevelopaprototype. 

Analysisand developmentofthemodel 

Use the class diagram to describe the roles and responsibilities of objects. Use 
theobjectdiagram to describethedesiredbehaviorof thesystem. 

Designorcreatethesystemarchitecture. 



 

145 
 

Use the class diagram to decide what classes exist and how they relate to 
eachother,theobjectdiagramtodecidewhatmechanismsareused,themodulediagramto 
map out where each class and object should be declared, and the processdiagramto 
determinetowhich processortoallocateaprocess. 

Evolutionorimplementation- 

Refinethesystemthroughmuchiteration. 

Maintenance-Make localized changes to the system to add new 
requirementsandeliminatebugs. 

 
MacroLevel DesignProcessMicroDevelopmentprocess 

The micro process is a description of the day-to-day activities by a single 
orsmallgroupofsoftware developers. 
Itconsistsofthefollowingsteps. 
 

 Identifyclassesandobjects. 
 Identifyclassandobjectsemantics. 
 Identifyclassandobjectrelationships. 
 Identifyclassandobjectinterfaceandimplementation 

 
 

Themacrodevelopmentprocessconsistsofthefollowingsteps: 

Conceptualization 

Establishthecorerequirementsanddevelopaprototype. 

Analysisanddevelopmentofthemodel 

Use the class diagram to describe the roles and responsibilities of objects. Use 
theobjectdiagram to describethedesiredbehaviorof thesystem. 

Designorcreatethesystemarchitecture. 

Use the class diagram to decide what classes exist and how they relate to eachother, 
the object diagram to decide what mechanisms are used, the module 
diagramtomapout where each 
classandobjectshouldbedeclared,andtheprocessdiagramto determinetowhich 
processortoallocateaprocess. 

Evolutionorimplementation- 

Refinethesystemthroughmuch iteration. 



 

146 
 

Maintenance-Make localized changes to the system to add new 
requirementsandeliminatebugs. 

 
MacroLevel DesignProcess



 

147 
 

 
  



 

148 
 

MicroDevelopmentprocess 

The micro process is a description of the day-to-day activities by a single 
orsmallgroupofsoftware developers. 
Itconsistsofthefollowingsteps. 
 

 Identifyclassesandobjects. 
 Identifyclassandobjectsemantics. 
 Identifyclassandobjectrelationships. 
 Identifyclassandobjectinterfaceandimplementation. 

 

MicroLevel DesignProcess 
 
 
 
 
 
 

 
 



 

149 
 

Designingviewlayerobjects: 

o Effectiveinterfacedesignisfollowingthesetofrules. 
o Italsoinvolvesearlyplanningoftheinterfaceandcontinuedworkthrough 
thesoftwaredevelopmentprocess. 
o Theprocessofdesigningtheuserinterfaceinvolves, 
 Classifyingthespecificneedoftheapplication. 
 Identifytheusecasesandinterfaceobjects. 

 Devisingthedesign thatbestmeetsuser’sneeds 

 UIDesign Rules: 
Rule1:Makingtheinterfacesimple 

Rule2:Makingtheinterfacetransparentandnatural. 
Rule3:Allowingusers tobeincontrol atthesoftware. 
 
Rule1:Making theinterfacesimple 
EachUIclassmusthaveasingle,clearly definedpurpose. 
Factorsforaffecting Designapplication: 
 
 Deadlines may require you to deliver a product to market with a 

minimaldesignprocess. 
 
Comparativeevaluationsmayforceyoutoconsider additionalfeatures. Rule 2: Making the 
interface transparent andnatural. 

There showed be strong mapping between the user’s view ofdoingthingsandUI classes. 

Example: Billing, Insurance, Inventory and Bankingapplications can represent forms 
that are visually equivalent tothepaperforms users are accustomedtoseeing. 

UIDesign: 

 UI should not make users focus on the mechanism of anapplication. 
 A good user interface doesn’t bother the user withmechanics. 
 A goal of user interface design is to make the userinteraction with the 

computer as simple and natural aspossible. 

Rule3:Allowinguserstobeincontrolat thesoftware. 
Users always should “feel in control of the 

software”ratherthan“feelingcontrolledbythesoftware”. 

Rule: 
UI object should represent, at most, one business object,perhaps that someservices 



 

150 
 

ofthatbusinessobject. 
 Main idea is to avoid creating a single UI class forseveral business 

objects, since it makes the UI lessflexible and faces the user to perform tasks in 
amonolithicway. 

Waysto put usersin control: 

o Maketheinterfaceforgiving 
o Maketheinterface visual. 
o Provideimmediatefeedback 
o Avoidmodeslike, 
 Modal dialog 
 Spring-loadedmodes. 
 Tool-drivenmodes. 
 Maketheinterfaceconsistent. 

 
IDENTIFYINGVIEWCLASSESBYANALYZINGUSECASE 
Use case analysis is a technique used to identify the requirements of asystem (normally 
associated with software/process design) and theinformation used to both define 
processes used and classes (which area collection of actors and processes) which will 
be used both in the usecase diagramandthe overallusecase 
 

 Analysis is an attempt to build a model that describes 
theapplicationdomain--developersdothis 

 Takesplace after(orduring)requirementsspecification 
 The analysis model will typically consist of all three types 

ofmodelsdiscussed before: 
o Functionalmodel(denotedwithusecases)Analysisobject 
model(classandobjectidagrams) 
o Dynamicmodel 

 Atthislevel,notethatwearestilllookingattheapplicationdomain. 
o Thisisnotyetsystemdesign 
o However, many things discovered in analysis 
couldtranslateclosely into thesystemdesign 

 Goal is to completely understand the application domain 
(theproblemathand,anyconstraintsthatmustbeadheredto,etc.) 

oNewinsightsgainedduringanalysismightcauserequirement
sto beupdated. 



 

151 
 

 Analysisactivitiesinclude: 
o Identifying objects (often from use cases as a 

startingpoint) 
o Identfyingassociationsbetweenobjects 
o Identifying general attributes and responsibilities 

ofobjects 
o Modelinginteractionsbetweenobjects 
o Modeling how individual objects change state -- 

helpsidentifyoperations 
o Checking the model against requirements, 

makingadjustments,iteratingthroughtheprocessmoretha
nonce 

 We often think of objects in code as mapping to some object we 
want torepresentin therealworld.Although thisisn'talwaysthecase. 

 Herearesomecategoriesofobjectstolookfor: 
o Entity objects -- these represent persistent information tracked 

by asystem.Thisis theclosestparallelto"realworld"objects. 
o Boundary objects -- these represent interactions between user 

andsystem.(For instance,abutton,aform,adisplay) 
o Control objects -- usually set up to manage a given usage of 

thesystem.Oftenrepresentthecontrolofsomeactivityperformedbya
system 

 UML diagrams can include a label known as a stereotype, above the 
classname in a class diagram. This would be placed inside <<>> 
marks, likethis: 

o <<entity>> 
o <<boundary>> 

 <<control>> 

 Note: Different sources and/or "experts" will give other categorizations 
oftypes ofobjects 

 There are some different popular techniques for identifying objects. 
Twotraditionalandpopularonesthatwewilldiscussare: 

o naturallanguageanalysis(i.e.partsofspeech) 
o CRCcards 

 It also helps to interact with domain experts -- these are people who 
arealready well-versedinthe realmbeingstudied. 

 NotethatthegoalintheanalysisphaseisNOTtofindimplementationspec
ificobjects, like HashTableor Stack. 

oThisstagestillmodelstheapplicationdomain 
 
 



 

152 
 

 

TheDesignSolution 

User interfaces should be simple and allow the users to enter dataquickly 
and, where possible, without the need to go back and correcttheir mistakes. 
As best you can, you should stretch to predict the variouscombinations of 
possible entered words and numbers and target typos.In other words, you 
need to build some flexibility into your system, 
some‘smart’featurethataffordsthisunpredictabilityandacceptsvariations. 
You need to show the users you’re listening to them while they’re 

makingtheirwaythroughthe pages you’vecreatedfor them. 
 

Therefore, there must be a 'Forgiving Format' in your user 
interfacedesignthat allows users to make mistakes, while correcting them 
ontheir behalf, or performing the desired function without the need 
forcorrective measures. You need a fluid design—happily, you can get 
theinformation you need from your users without having to resort to a 
rigidkey-and-keyhole approach that will tend to frustrate them when 
theystumble. 

 

There are many small tasks in the majority of user experiences; if userswere 
forced to correct all of the mistakes or slip-ups they made along theway, they 
would soon abandon the user interface for a much 
lessdemoralizingexperience. Manyuserswill encounterourdesignsin 
rushed circumstances, or environments where they don’t have the luxuryof 
sitting down and focusing entirely. Even when they do have a 
quietmomentinacomfortableseat—mistakescanhappenalltooeasily;users’ 
 

 
 

‘job descriptions’, as far as we’re concerned, don’t involve 
proofreading.In fact, they don’t have any ‘job description’ as far as the 
interfaces wedesign are concerned—that would involve work on their 
part, remember.Any work they must do has to be entirely focused on the 
other side of thescreen with the intent they have to complete a task (e.g., 
paying a bill orbooking a flight with the organizations we’re working for), 
not on thedesign itself. So, the user interface design must allow users to 
carry outtheir tasks in a free and easy fashion, cleaning up after them as 
they goalongtoensure theydonot havetomake continualbackwardsteps. 

https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design


 

153 
 

MAKETHEINTERFACEVISUAL 

 
User interface is the front-end application view to which user interacts 
inorder to use the software. User can manipulate and control the softwareas 
well as hardware by means of user interface. Today, user interface isfound at 
almost every place where digital technology exists, right 
fromcomputers,mobilephones,cars,music players,airplanes,shipsetc. 

User interface is part of software and is designed such a way that it 
isexpectedtoprovidetheuserinsightofthesoftware.UIprovidesfundamentalplatf
orm forhuman-computerinteraction. 

UIcanbegraphical,text-based,audio-videobased,dependingupontheunderlying 
hardware and software combination. UI can be hardware 
orsoftwareoracombinationofboth. 

Thesoftwarebecomesmorepopularifitsuserinterfaceis: 
 
 

 Attractive 
 Simpletouse 

 Responsiveinshorttime 
 Cleartounderstand 

 Consistent on all interfacing 
screensUIisbroadly 
dividedintotwocategories:



 

154 
 

 CommandLineInterface 
 GraphicalUserInterface 

 
CommandLineInterface(CLI) 

CLI has been a great tool of interaction with computers until thevideo 
displaymonitorscameintoexistence.CLIisfirstchoiceofmanytechnicalusersandprogrammers.C
LIisminimuminterfacea software canprovideto itsusers. 

CLI provides a command prompt, the place where the user types the command andfeeds to 
the system. The user needs to remember the syntax of command and itsuse.EarlierCLI 
werenotprogrammedtohandletheusererrorseffectively. 

Acommandisatext-
basedreferencetosetofinstructions,whichareexpectedtobeexecutedbythesystem.Therearemeth
odslikemacros,scriptsthatmakeiteasyfortheuser tooperate. 

CLIuseslessamountofcomputerresourceascomparedtoGUI. 

 
 

UserInterfaceDesign 

Thevisualpartofacomputerapplicationoroperatingsystemthrough which a 
client interacts with a computer or software.It determines how commands are 
given to the computer ortheprogramandhowdataisdisplayedonthescreen. 

TypesofUser Interface 

There are twomaintypesofUserInterface: 
 

o Text-BasedUserInterfaceorCommandLineInterface 

o GraphicalUserInterface(GUI) 

Text-Based User Interface: This method relies primarily 
onthekeyboard.Atypical exampleofthisisUNIX. 

AVOIDMODELS 

Theobject-orientedparadigmtookitsshapefromtheinitialconceptofanewprogramming 
approach, while the interest in design and analysis methods camemuchlater.



 

155 
 

 Thefirstobject–
orientedlanguagewasSimula(Simulationofrealsystems)thatwasdevelopedin1960byres
earchersattheNorwegianComputingCenter. 

 In 1970, Alan Kay and his research group at Xerox PARK created a 
personalcomputer named Dynabook and the first pure object-oriented 
programminglanguage(OOPL)-Smalltalk, forprogrammingthe Dynabook. 

 In the 1980s, Grady Booch published a paper titled Object Oriented Designthat 
mainly presented a design for the programming language, Ada. In theensuing 
editions, he extended his ideas to a complete object–oriented designmethod. 

 Inthe1990s,Coadincorporatedbehavioralideastoobject-orientedmethods. 

TheothersignificantinnovationswereObjectModellingTechniques(OMT)byJamesRumbaugha
ndObject-OrientedSoftwareEngineering(OOSE)byIvarJacobson. 

 
Object-OrientedAnalysis 

Object–
OrientedAnalysis(OOA)istheprocedureofidentifyingsoftwareengineeringrequirementsanddev
elopingsoftwarespecificationsintermsofasoftwaresystem’sobjectmodel, which 

comprisesofinteractingobjects. 

The main difference between object-oriented analysis and other forms of analysis isthat in 
object-oriented approach, requirements are organized around objects, 
whichintegratebothdataandfunctions.Theyaremodelledafterreal-
worldobjectsthatthesysteminteractswith.Intraditionalanalysismethodologies,thetwoaspects-
functionsanddata-areconsideredseparately. 

Grady Booch has defined OOA as, “Object-oriented analysis is a method of 
analysisthatexaminesrequirementsfromtheperspectiveoftheclassesandobjectsfoundinthevoca
bularyofthe problemdomain”. 

Theprimarytasksinobject-orientedanalysis(OOA)are− 

 
 Identifyingobjects 
 Organizingtheobjectsbycreatingobjectmodeldiagram 
 Definingtheinternalsoftheobjects,orobjectattributes 
 Definingthebehavioroftheobjects,i.e.,objectactions 
 Describinghowtheobjectsinteract 

ThecommonmodelsusedinOOAareusecasesandobjectmodels. 

 
Object-OrientedDesign 

Object–Oriented Design (OOD) involves implementation of the conceptual modelproduced 
during object-oriented analysis. In OOD, concepts in the analysis 
model,whicharetechnology−independent,aremappedontoimplementingclasses,constraints are 



 

156 
 

identified and interfaces are designed, resulting in a model for thesolution domain, i.e., a 
detailed description of how the system is to be built onconcretetechnologies.



 

157 
 

Theimplementationdetailsgenerallyinclude− 

 
 Restructuringtheclassdata(ifnecessary), 
 Implementationofmethods,i.e.,internaldatastructuresandalgorithms, 
 Implementationofcontrol,and 
 Implementationofassociations. 

GradyBoochhasdefinedobject-orienteddesignas 
“amethodofdesignencompassingtheprocessofobject-
orienteddecompositionandanotationfordepictingbothlogicalandphysicalaswellasstaticanddy
namicmodelsofthesystemunderdesign”. 

 
Object-OrientedProgramming 

Object-
orientedprogramming(OOP)isaprogrammingparadigmbaseduponobjects(havingbothdataand
methods)thataimstoincorporatetheadvantagesofmodularityand reusability. Objects, which are 
usually instances of classes, are used to interactwith one anothertodesignapplicationsand 
computerprograms. 

Theimportantfeaturesofobject–orientedprogrammingare− 

 
 Bottom–upapproachinprogramdesign 
 Programsorganizedaroundobjects,groupedinclasses 
 Focusondata withmethodstooperateuponobject’sdata 
 Interactionbetweenobjectsthroughfunctions 
 Reusabilityofdesignthroughcreationofnewclassesbyaddingfeaturestoexisting 

classes 

Someexamplesofobject-orientedprogramminglanguagesareC++,Java,S 

 
 

The framework just presented provides a list of generic activitiescommon to 
most models of the software process. However, each modeltreats the activities 
differently, and each model is suitable for 
differentprojectsandfordifferentteams. 

It is important to realise that the activities outlined in the 
processmodelsgivenbelow shouldbe modified,based on: 

 Theproblemhavingtobesolved. 
 Thecharacteristicsoftheproject. 
 Thenatureof thedevelopment team. 
 Theorganisationalculture.



 

158 
 

Prescriptiveandagilemodels 

 
Prescriptive software models are those which prescribe the componentswhich 
make up a software model, including the activities, the inputs andoutputs of the 
activities, how quality assurance is performed, howchange is managed, and so 
on. A prescriptive model also describes howeach of these elements are related 
to one another (note that in thissense, “prescriptive” is not meant to indicate 

that these methods admitno modificationto them,as wepreviouslyused theword). 

Ontheotherhand,agilesoftwaremodels haveaheavyfocus 
on change in the software engineering process. Agile methods note thatnot only 
do the software requirements change, but so do teammembers, the technology 
being used, and so on. We will discuss agilemethods laterin this chapter. 

 
 

MAKETHEINTERFACECONSITENT 

Consistency occurs when the stimuli / usage pairs for UI elements 
arethesameasthoseforother UIelementsthat alreadyexist.We 
achieve consistency when an interaction with a user interface 
(UI)elementmatchesusers' expectations 

Userinterfaceisthefirstimpressionofasoftwaresystemfromtheuser’spointofview.

Thereforeanysoftwaresystemmustsatisfytherequirementofuser. 
UImainlyperformstwofunctions− 

 Acceptingtheuser’sinput 

 Displayingtheoutput 

User interface plays a crucial role in any software system. It is 
possiblytheonlyvisible aspectofasoftwaresystemas– 

 Userswillinitiallyseethearchitectureofsoftwaresystem’sexternaluserinterfa

cewithoutconsideringitsinternalarchitecture. 

 A good user interface must attract the user to use the softwaresystem 
without mistakes. It should help the user to understand thesoftware 
system easily without misleading information. A bad 
UImaycausemarketfailureagainstthecompetitionofsoftwaresystem.



 

159 
 

 UIhasitssyntaxandsemantics.Thesyntaxcomprisescomponenttypes such 
as textual, icon, button etc. and usability summarizesthe semantics of UI. 
The quality of UI is characterized by its lookandfeel(syntax)and 
itsusability(semantics). 

 Therearebasicallytwomajorkindsofuserinterface−a)Textualb)Graphical.  

 Software in different domains may require different style of its 
userinterface for e.g. calculator need only a small area for 
displayingnumericnumbers,butabigareaforcommands,Awebpageneedsfor
ms,links,tabs,etc. 

 
 

DesignofUserInterface 
 

It starts with task analysis which understands the user’s primary 

tasksandproblemdomain.ItshouldbedesignedintermsofUser’sterminologyandout

setofuser’s jobratherthanprogrammer’s. 

 To perform user interface analysis, the practitioner needs to 
studyandunderstandfourelements− 

o Theuserswhowillinteractwiththesystemthroughtheinterface 

o Thetasksthatendusersmustperformtodotheirwork 

o Thecontentthatispresentedaspartoftheinterface 

o Thework environmentin which these tasks will
 beconducted 

 ProperorgoodUIdesignworksfromtheuser’scapabilitiesandlimitationsnotthe machines. 

While designing the UI, knowledge of the nature of the user'sworkandenvironmentis 
also critical. 

 The task to be performed can then be divided which are assigned to the useror 
machine, based on knowledge of the capabilities and limitations of 
each.Thedesignofa userinterface isoftendividedintofourdifferent levels− 

o The conceptual level − It describes the basic entities considering 
theuser'sviewofthesystemandtheactionspossible uponthem. 

o Thesemanticlevel 
−Itdescribesthefunctionsperformedbythesystemi.e.descriptionofthefunctionalr
equirementsofthesystem,butdoesnotaddress howtheuserwill 
invokethefunctions. 

o Thesyntacticlevel−Itdescribesthesequencesofinputsandoutputsrequiredtoinvo
ke thefunctions described.



 

160 
 

o Thelexicallevel−Itdetermineshowtheinputsandoutputsareactuallyformedfromp
rimitive hardware operations. 

 User interface design is an iterative process, where all the iteration explainsand 
refines the information developed in the preceding steps. General stepsforuser 
interface design 

o Definesuserinterfaceobjectsandactions(operations). 

o Definesevents(useractions)thatwillcausethestateoftheuserinterfaceto change. 

o Indicateshowtheuserinterpretsthestateofthesystemfrominformationprovided 
throughtheinterface. 

o Describeeachinterfacestate 
asitwillactuallylookto theenduser. 

 

 

 

 

 

 

 
 

 Interfaceanalysis 
 

 Itconcentratesorfocusesonusers,tasks,content,andworkenvironmentwhowi
llinteractwiththesystem.Definesthehuman -and computer-oriented tasks 
that are required to achieve systemfunction. 

 Interfacedesign 
 Itdefinesasetofinterfaceobjects,actions,andtheirscreenrepresentations that 

enable a user to perform all defined tasks in 
amannerthatmeetseveryusabilityobjectivedefinedforthesystem. 

 Interfaceconstruction 
 Itstartswithaprototypethatenablesusagescenariostobeevaluated and 

continues with development tools to complete theconstruction. 
 Interfacevalidation 
 Itfocusesontheabilityoftheinterfacetoimplementeveryusertaskcorrectly,ac

commodatealltaskvariations,toachieveallgeneral



 

161 
 

userrequirements,andthedegreetowhichtheinterfaceiseasytouseandeasytol
earn. 

 

UserInterfaceModels 

Whenauserinterfaceisanalyzedanddesignedfollowingfourmodelsareused− 
Userprofilemodel 

 Created by a user or software engineer, which establishes theprofile of 
theend-usersof the systembased on age, gender,physicalabilities, 
education,motivation, goals,andpersonality. 

 Considerssyntacticandsemanticknowledgeoftheuserandclassifiesusersasn
ovices,knowledgeableintermittent,andknowledgeablefrequent users. 

Designmodel 

 Createdbyasoftwareengineerwhichincorporatesdata,architectural,interface,
andproceduralrepresentationsofthesoftware. 

 Derived from the analysis model of the requirements and controlled by 
theinformation in the requirements specification which helps in defining the 
userofthe system. 

Viewlayerinterface 

GUIDELINESFORDESIGININGFORMSANDDATAENT
RY WINDOWS 

 
4.1 Fields in data entry screens contain default values whenappropriate and 

show the structure of the data and the fieldlength. 
4.2 When a task involves source documents (such as a paperform), the 

interface is compatible with the characteristics ofthe sourcedocument.  
4.3 The site automatically enters field formatting data (e.g.currency symbols, 

commas for 1000s, trailing or 
leadingspaces).Usersdonotneedtoentercharacterslike£or%.. 

4.4 Fieldlabelsonformsclearlyexplainwhatentriesaredesired.



 

162 
 

4.5 Text boxes on forms are the right length for the expectedanswer. 
4.6 There is a clear distinction between "required" and 

"optional"fieldsonforms. 
4.7 The same form is used for both logging in and 

registering(i.e.it'slikeAmazon). 
4.8 Forms pre-warn the user if external information is needed 

forcompletion(e.g. apassportnumber). 
4.9 Questions on forms are grouped logically, and each group hasaheading. 
4.10 Fields on forms contain hints, examples or model answers todemonstrate 

theexpectedinput. 
4.11 When field labels on forms take the form of questions, thequestionsare 

stated inclear,simplelanguage. 
4.12 Pull-down menus, radio buttons and check boxes are used inpreference to 

text entry fields on forms (i.e. text entry fieldsare notoverused). 
4.13 With data entry screens, the cursor is placed where the inputis needed.  
4.14 Data formats are clearly indicated for input (e.g. dates) andoutput(e.g. 

unitsof values). 
4.15 Users can complete simple tasks by entering just essentialinformation 

(with the system supplying the non-essentialinformationbydefault). 
4.16 Forms allow users to stay with a single interaction methodfor as long 

as possible (i.e. users do not need to 
makenumerousshiftsfromkeyboardtomousetokeyboard). 

4.17 Theusercanchangedefaultvaluesinformfields. 
4.18 Text entry fields indicate the amount and the format of 

datathatneedstobeentered. 
4.19 Formsarevalidatedbeforetheformissubmitted. 
4.20 With data entry screens, the site carries out field-

levelcheckingandform-levelcheckingattheappropriatetime. 
4.21 The site makes it easy to correct errors (e.g. when a form isincomplete, 

positioning the cursor at the location where correctionis required). 
4.22 Thereisconsistencybetweendataentryanddatadisplay. 
4.23 Labels are close to the data entry fields (e.g. labels are rightjustified)



 

163 
 

It should serve specific purpose effectively such as storing, recording,and 
retrieving the information. It ensures proper completion withaccuracy. It 
should be easy to fill and straightforward. It should focus 
onuser'sattention,consistency,andsimplicity. 

Guidelinesfordesigningdialog boxes and errormessages 
n the message of an Error alert box, explain what happened, the 
causeoftheproblem, andwhatthe usercando aboutit. Keep 
the message brief and use terms that are familiar to users. 
Ifappropriate, provide a Help button to open a separate 
onlinehelpwindowthatgivesbackgroundinformationabouttheerror. 

 
Dialog boxes can be modal or modeless. A modal dialog boxprevents users 
frominteracting with the application until the dialog box is dismissed. However, 
userscan move a modal dialog box and interact with other applications while the 
modaldialogbox isopen.Thisbehaviorissometimescalled"application-modal." 

 
A modeless dialog boxdoes not prevent users from interacting with 
theapplication they are in or with any other application. Users can go back and 
forthbetween amodelessdialogbox and other applicationwindows. 

 
Use modeless dialog boxes whenever possible. The order in which 

usersperform tasks might vary, or users might want to check information in 
otherwindows before dismissing the dialog box. Users might also want to go 
back andforthbetweenthedialogboxand theprimary window. 

 
Use modal dialog boxes when interaction with the application cannot 

proceedwhile the dialog box is displayed. For example, a progress dialog box that 
appearswhileyourapplication isloadingitsdatashouldbeamodaldialogbox. 

 
 

A dialog boxis a temporary, secondary window in which users perform a 
taskthat is supplemental to the task in the primary window. For example, a 
dialogboxmightenableusersto 
setpreferencesorchooseafilefromtheharddisk.Adialog box can contain panes 
and panels, text, graphics, controls (such ascheckboxes,radio 
buttons,orsliders),andoneormorecommand buttons.

http://ptitben2000.chez.com/info/lookandfeel/higq.htm#51672
http://ptitben2000.chez.com/info/lookandfeel/higq.htm#51680
http://ptitben2000.chez.com/info/lookandfeel/higq.htm#51361


 

164 
 

Dialog boxes use the native window frame of the platform on which they 
arerunning. 

 

Dialog BoxDesign 

The following figure illustrates dialog box design guidelines for the Javalook and 
feel. The dialog box has a title in the window's title bar, a series ofuser interface 
elements, and a row of command buttons. The defaultcommand button is the OK 
button, indicated by its heavy border. Theunderlined letters are mnemonics, which 
remind users how to activatecomponents by pressing the Alt key and the 
appropriate character key. Thenoneditable Ruler Units combo box has initial 
keyboard focus, indicatingthattheuser'snextkeystrokeswilltake effectin 
thatcomponent. 

 
 

Use the form "Application Name: Title" for the title of the dialog box (which 
isdisplayed inthetitlebar). 

 
Includemnemonicsforalluserinterfaceelementsexceptthedefaultbuttonand 

theCancelbutton. 

 
When opening a dialog box, provide initial keyboard focus to the 

componentthat you expect users to operate first. This focus is especially 
important for userswho must use a keyboard to navigate your application (for 
example, users withvisualandmobilityimpairments). 

 
Consider the effect of internationalization on your design. Use a layoutmanager, 

which allows for text strings to become bigger or smaller when translatedto 
another language. 

 
Formoreinformationoninternationalization,seePlanningforInternationalization and 
Localization. For details on keyboard support forAstrength of an iterative and 
incremental development process is that the resultsof a prior iteration can feed 
into the beginning of the next iteration (see Figure ).Thus, subsequent analysis 
and design results are continually being refined andenhanced from prior 
implementation work. For example, when the code initeration N deviates from 
the design of iteration N (which it inevitably will), thefinal design based on the 
implementation can be input to the analysis and designmodels of iteration N 
navigating through dialog boxes, see Table 17. Forinformation on how to 

http://ptitben2000.chez.com/info/lookandfeel/higf.htm#36131
http://ptitben2000.chez.com/info/lookandfeel/higf.htm#36131
http://ptitben2000.chez.com/info/lookandfeel/higf.htm#36131
http://ptitben2000.chez.com/info/lookandfeel/appendix.htm#42738


 

165 
 

capitalize text in dialog boxes, see Capitalization of Textinthe Interface. 
 

Errormessage 

Exceptionhandlinghasbeenignoredsofarinthedevelopmentofasolution. This 
was intentional to focus on the basic questions 
ofresponsibilityassignmentand objectdesign. However,inapplication 
development, it is wise to consider exception 
handlingduringdesignwork,andcertainlyduringimplementation. 

Briefly, in the UML, exceptions are illustrated as 
asynchronousmessagesininteractiondiagram 

Error handling refers to the routines in a program that respond toabnormal 
input or conditions. The quality of such routines is based onthe clarity of the 
error messages and the options given to users forresolvingtheproblem. 

 
Take advantage of language specific semantics and represent whensomething 
exceptional has happened. Exceptions are thrown andcaught so the code can 
recover and handle the situation and not enteran error state. Exceptions can 
be thrown and caught so the applicationcanrecoverorcontinue gracefully. 

 
Thetrystatementallowsyouto definea blockofcodetobetested 
for errors while it is being executed. The catch statement allows you todefinea 
blockofcodetobeexecuted,if anerroroccursinthetryblock. 

 
Exception handling has been ignored so far in the development of 
asolution. This was intentional to focus on the basic questions 
ofresponsibility assignment and object design. However, in 
applicationdevelopment, it is wise to consider exception handling during 
designwork,andcertainlyduring implementation. 

 
Briefly, in the UML, exceptions are illustrated as 
asynchronousmessagesininteractiondiagrams

http://ptitben2000.chez.com/info/lookandfeel/higg.htm#63760
http://ptitben2000.chez.com/info/lookandfeel/higg.htm#63760


 

166 
 

Syntaxerrors 
Runtimeerrors 
Logicalerrors 
Error handling refers to the anticipation, detection, andresolution of 

programming, application, andcommunicationserrors. 
Specializedprograms, 
callederror handlers,areavailableforsomeapplicationsAn 
example is the lack of sufficient memory to run an application 
oramemoryconflictwithanotherprogram. 

 

 
 
 

 

CommandButtons:DesignGuidelines 

1 Totherightofandtop-alignedwiththeother control. 
2 Belowandleft-alignedwiththeothercontrol. 
3 Between controls that interoperate (such as Add 

andRemovebuttonsbetweentwointeroperatinglistboxes) 
 

 
clicking a command button immediately performs an action, such 
asopeninganothersurface. 

 Use command buttons for user-initiated actions. That is,clicking a 
command button results in the immediateperformance of an action. Such 
actions might include closingor extending a surface, applying changes, 
opening a dialogbox,andsoon. 

 When another control interoperates with a command button,such as the 
pairing of a text box and Browse button, denotethe relationship by placing 
the command button in one ofthreeplaces: 

o Totherightofandtop-alignedwiththeother control

Errors or mistakes in a program are often referred to as bugs. They arealmost always the 
fault of the programmer. The process of finding andeliminating errors is called debugging. 
Errors can be classified into threemajorgroups: 



 

167 
 

o Belowandleft-alignedwiththeothercontrol 
o Between controls that interoperate (suchas Add and Remove 

buttons between twointeroperatinglist boxes) 
If multiple command buttons interoperate with thesame control, lay them out 

horizontally, left-alignedunderthecontrolortop-aligned toitsright.   ina 
secondarywindow,right-
alignthestandardwindowcommandbuttons(OK, Cancel, etc.) in a row 
along the bottom as shown. Do not use othertypes of controls besides 
command buttons in this row, and only usecommandbuttonsthataffectthe 
entirewindow.For example, 
a Help command button should open Help about the entire window 
andnotaboutaspecificcontrolinthewindow. 

 
Class Design In Class Design , the focus is on fleshing out the detailsof a 
particular class (for example, what operations and classes need tobe added to 
support, and how do they collaborate to support, theresponsibilities 
allocatedtotheclass). 

 
 

GUIDELINESFORDESIGININGAPPLICATIONWINDOWS 

User interface is the front-end application view to which user interacts inorder 
to use the software. User can manipulate and control the softwareas well as 
hardware by means of user interface. Today, user interface isfound at almost 
every place where digital technology exists, right 
fromcomputers,mobilephones,cars,musicplayers, airplanes,shipsetc. 

User interface is part of software and is designed such a way that it 
isexpectedtoprovidetheuserinsightofthesoftware.UIprovidesfundamentalplatfor
m forhuman-computerinteraction.



 

168 
 

UIcanbegraphical,text-based,audio-videobased,dependingupontheunderlying 
hardware and software combination. UI can be hardware 
orsoftwareoracombinationofboth. 

Thesoftwarebecomesmorepopularifitsuserinterfaceis: 
 

Window - An area where contents of application are displayed.Contents 
in a window can be displayed in the form of icons or lists, if thewindow 
represents file structure. It is easier for a user to navigate in thefile system in an 
exploring window. Windows can be minimized, 
resizedormaximizedtothesizeofscreen.Theycanbemovedanywhereonthe 

screen. A window may contain another window of the same 
application,calledchildwindow. 

 
GraphicalUserInterface 

Graphical User Interface provides the user graphical means to 
interactwiththesystem.GUIcanbecombinationofbothhardwareandsoftware.Usin
gGUI,userinterpretsthesoftware. 

Typically,GUIismoreresourceconsumingthanthatofCLI.Withadvancing 
technology, the programmers and designers create complexGUI 
designsthatworkwithmoreefficiency,accuracyandspeed. 

 
User InterfaceDesignActivities 

There are a number of activities performed for designing user 
interface.TheprocessofGUIdesignandimplementationisalikeSDLC.Anymodelca
n be used for GUI implementation among Waterfall, Iterative or SpiralModel. 

A model used for GUI design and development should fulfill these 
GUIspecificsteps. 

 GUIRequirementGathering -Thedesignersmayliketohavelistofallfunctional 
and non-functional requirements of GUI. This can betakenfrom 
userandtheirexistingsoftwaresolution. 

 UserAnalysis -Thedesignerstudieswhoisgoingtousethesoftware GUI. The 
target audience matters as the design detailschange according to the 
knowledge and competency level of 
theuser.Ifuseristechnicalsavvy,advancedandcomplexGUIcanbe



 

169 
 

incorporated. For a novice user, more information is included onhow-to 
ofsoftware. 

 Task Analysis - Designers have to analyze what task is to be doneby the 
software solution. Here in GUI, it does not matter how it willbe done. 
Tasks can be represented in hierarchical manner takingone major task 
and dividing it further into smaller sub-tasks. 
TasksprovidegoalsforGUIpresentation.Flowofinformationamongsub-
tasks determinesthe flowofGUIcontentsinthesoftware. 

 GUI Design & implementation - Designers after having informationabout 
requirements, tasks and user environment, design the GUIand 
implements into code and embed the GUI with working ordummy 
software in the background. It is then self-tested by thedevelopers. 

 Testing-GUItestingcanbedoneinvariousways.Organizationcanhave in-
house inspection, direct involvement of users and releaseof beta version 
are few of them. Testing may include usability,compatibility, 
useracceptanceetc. 

 
GUIImplementationTools 

There are several tools available using which the designers can createentire 
GUI on a mouse click. Some tools can be embedded into 
thesoftwareenvironment(IDE). 

GUI implementation tools provide powerful array of GUI controls. 
Forsoftwarecustomization,designerscanchangethecodeaccordingly. 

TherearedifferentsegmentsofGUItoolsaccordingtotheirdifferentuseandplatform. 
 

Example 

 
MobileGUI,ComputerGUI,Touch-ScreenGUIetc.Hereisalistoffewtoolswhich 

comehandyto buildGUI: 
 

 FLUID 

 AppInventor(Android) 
 LucidChart 
 Wavemaker 
 VisualStudio



 

170 
 

 

GenericGuidelines andStandards 

 
Specific color guidelines and standards all differ with respect to the 
exactwordingoftheir requirements,butthegraphicproblemsthattheyaddress have 
a lot of overlap. Most fall into three general categories:discrimination and 
identification; luminance contrast; and generalproblemsofcolordesign. 

 
These pages include our generic restatements of specific color guidelinesand 
standards that we have reviewed, with illustrations and links to 
therelatedinformationinourwebsite:GuidelinesaboutDiscriminationandIdentificati
on  of  
ColorsGuidelinesaboutLuminanceContrastGuidelinesaboutGeneralColorDesign 

 
AboutColorGuidelinesandStandards 

 
In this section we briefly discuss some of the reasons why we haveguidelines 
and standards. We also discuss and illustrate some problemsof guidelines and 
standards as a means for assurance of quality of colorusage, and suggest some 
research directions toward solving theproblems. 

 
SpecificColorGuidelines andStandards 

 
This page includes a listing of aerospace and non-aerospace guidelinesand 
standards that include colorusageABOUT COLOR 
GUIDELINESANDSTANDARDS 

 
WhydoweneedColorGuidelinesandStandards? 

 
The consequences of poor color design are minimal in someapplications 
(e.g., personal webpages), but in others the consequencescan be life-
threatening (e.g., flight critical displays in cockpits, air trafficcontrol 
displays, launch-control displays). When poor design hasimportant costs, the 
community needs some means of assuringsufficient 
usabilityandconformitytoconventions. 

 
The only reliable way to assure quality of color design is to ensure 
thathumanfactorsengineeringisproperlyintegratedintothedesign,

https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_discrim_id.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php
https://colorusage.arc.nasa.gov/guidelines_ov_design.php


 

171 
 

development and testing of the product that gets deployed. This requiresthat: 
 

- adequatespecializedcolorandhumanfactorsexpertiseisusedthroughoutt
hedesignandtestingoftheapplication 
- thoseexpertsaregivenadequatedesign authority,and 
- resources (time and money) for design and testing are sufficient inspite 
of(nearly inevitable)budgetproblems andscheduledelays. 

 
In this process color guidelines can provide the human factorsprofessionals 
with a checklist of the important usability concerns relatedto color. They can 
also be used to focus interactions with colorconsultants. 

 
For applications that involve public safety there is sometimes anotherrole for 
standards. Standards can represent community agreement onuniform practices 
where they are needed. Universal use of green, yellowor amber, and red to label 
safety status, for example, allows users tounderstand their meaning in multiple 
environments with minimal need fortraining. 

 
Proper integration of human factors expertise has not happened onsome 
projects, for a variety of cultural and practical reasons. In lieu ofthat expensive 
process, color guidelines and standards are sometimesexpected to provide a 
human factors shortcut, i.e., to allow graphicsdevelopers and design reviewers 
with limited knowledge of applied 
colorsciencetoavoidseriousmistakesincolordesign. 

 
That's too much to expect from any document, regardless of size andquality. 
Color perception is complicated. Perception of even simplepatterns in the 
laboratory is only partly understood by color scientists.Color perception in 
natural work environments is far more complicatedand less understood, and 
information displays continue to get morecomplex. It's unreasonable to 
expect that any short training course orguidelines document can replace years 
of specialized professionaltraining and experience in applied color 
perception, color science andcolordesign. 

 
  



 

172 
 

The Status of Existing Color Guidelines 
andStandards 
The degree of difficulty in getting effective colors for information 
displaydepends on the complexity of the graphics. Until recently most 
datadisplays in military and domestic command and control applicationswere 
very simple. When display quality, computational power, andcommunication 
bandwidth were expensive and scarce, the displayswere usually limited to 
stroke and alphanumeric graphics on uniformbackgrounds. For such simple 
displays it may be possible to describemost of the likely serious color design 
errors with a reasonably compactsetofstandards. 

 
This situation has changed dramatically over the past several 
years.Inexpensive display systems are now capable of routinely 
computing,transmitting, and displaying graphics as complicated as dynamic 
maps,photos, and video. Products with advanced graphics are 
nowcommonplace in office and home environments. These capabilities 
arestarting to appear in command and control applications--in cars, planesand 
industrialcontrol settingswherepublicsafetyisanissue. 

 
To safely exploit the full potential of these new capabilities we will needto 
adjust our approach to color standards. Conventional color standardsare 
limited with respect to complicated graphics. Most suffer from eithervagueness 
orover-restriction: 

 
Some set desirable usability goals but are too abstract to provide 
usefulguidanceto designerswithlimitedappliedcolortrainingandexperience. 

 

Forexample: 

Thecontrastbetweentextanditsbackgroundshallbesufficientlyhightoensurereadabi
lityofthetext. 
[Source:DODHCISGV2.0, 1992]FAAHFDS, p8-61. 

 
"...In all cases the luminance contrast and/or color differences betweenall 
symbols, characters, lines, or all backgrounds shall be sufficient topreclude 
confusion or ambiguity as to information content of 
anydisplayedinformation." 
Society of Automotive Engineers, AS8034 Minimum 
PerformanceStandards for Airborne Multipurpose Electronic Displays, 
SAE,Warrendale,Pennsylvania:1993,p.7. 

 
These "performance-based" guidelines set excellent goals, but how 
aretheytobeachieved?



 

173 
 

Other standards place constraints on specific graphic elements. Theseoften set 
parametric requirements that can be verified by eye orinstrument. 

 
Forexample: 

The minimum level of luminance for characters on a VDT, regardless 
ofwavelength,shallbe70cdperm2(20f-L). 
NASA-STD-3000/T, 9.4.2.3.3.9 Visual Display Terminal 
DesignRequirements 

 
Indicator Contrast - The luminance contrast within the indicator shall beat 
least50.0percent.. 
NASA-STD-3000/T,9.4.2.3.3.9DisplayContrastDesignRequirements 

 
"An adequate contrast of at least 7:1 should be maintained 
betweenforeground and background colors to enhance color perception 
andperceivedimageresolution." 
[Source:CTA,1996]FAAHumanFactorsDesignStandard,p 8-61. 

 
These are more easily verified, but are generally too simple and rigid toallow 
optimal design solutions in complicated graphic contexts. Forexample, if all 
graphic elements are required to have high luminancecontrast the information 
density that can be achieved is unnecessarilylimitedbythe 
resultingclutter.Anotherexampleisuse ofblue: 

 
Pure blue shall not be used on a dark background for text, thin lines, orhigh 
resolution information. [Source: DOE-HFAC 1, 1992] FAA 
HumanFactorsDesignStandard,p8-58 

 
8.6.2.2.7Blue.Blueshould 
notbeusedastheforegroundcolorifresolutionoffinedetailsisrequired.



 

174 
 

 
 
 
 

Color can set the basic mood, tone, concept, and connotation for abrand or 
product. Research conducted by the Institute for Color showsthat users take 
about 90 seconds to assess the quality of onlineproducts. From 62% to 90% of 
all product assessments that peoplemake are color-influenced on the 
subconscious level. It then follows thatchoosing the correct colors for your 
logo, brand, and product packagingshouldneverbe done onawhim. 

 
 
 

Choosethe Right Color inthe ProperPattern 

Different UI design colors signal various concepts to the senses. 
Ideally,youwanttochoosetherightoneattherighttime and inthe right pattern.They 
must be aimed toward the correct users, and you should 
choosethemtotargettheproper goals. 

If your wish is to use color in UI design wisely, firstly understand 
colors’meaning, that they provoke the right emotions in your customers 
andhelptogetthedesired response.0 

 
Let’s start with emotions colors can bring and differences in 

itsperception: 
 

he red refers to what we call warm colors. Those would be red, orange,and 
yellow. These warm colors bring about emotions having to do withwarmth and 
comfort. However, they might mean anger, hostility, orpassion to some 
individuals as well. The famous brand that uses red asmain company color to 
call for comfort and warm emotions is for surewell-knowCoca-Cola. 

 
 Blue means security, trust, and safety. Numerous studies showthat blue 

has positive connotations for many different segments ofthe population. 
Blue is everywhere, including in many naturalsettings. Hundreds of 
prominent brands feature it, including 
SkypeandMicrosoftWord,andmentionedabovecompanies. 

 Green brings calm feelings of renewal. These emotions fit well withsuch 
brand asTropicanathatusesgreen asmainlogocolor 

 
 
 



 

175 
 

And here, i suggest use single color scheme. Color contrast is also apractical 
method of color in UI design. Contrast can evoke 
variousemotionalresponsefromusers. Colorson oppositesidesof 
the color wheel can generate the strongest contrast, like black andwhite. 

 
UI guidelines are common design concepts that are used to 
buildengaginganduniqueuserexperiences.Following 
theseguidelines helps you to enhance usability and beauty of 
yourproducts. For more detailed rules of UX guidelines, refer to 
UserInterfaceDesignGuidelines 

 Brightness 

 Create dark color variants through increasing saturation and turningdown the brightness. If 
your product would be better served with brightercolorvariations,youmustdotheopposite. 

 
 Contrast 

 
Contrast is another form of UI design that is considered to be 
practicalmethodology. This is what you would employ if you were trying to 
deviseasimpleinterface.It’saneasywaytoevokeemotionaluserresponses 

 
GUIDELINESFORUSINGFONT  

 

 

WhatFontShouldIUse?5 
Principles for Choosing and UsingTypefaces  

 
Formanybeginners,thetaskofpickingfonts isamystifying 

process. There seem to be endless choices — from 
normal,conventional-
lookingfontstonoveltycandycanefontsandbunnyfonts — with no way 
of understanding the options, only never-
endinglistsofcategoriesandrecommendations. 

Selecting the right typeface is a mixture of firm rules and 
looseintuition, and takes years of experience to develop a feeling 
for.Here are five guidelines for picking and using fonts that 
I’vedevelopedinthecourseof usingandteachingtypography 

 



 

176 
 

For better or for worse, picking a typeface is more like getting dressed inthe 
morning. Just as with clothing, there’s a distinction between typefacesthat are 

expressive and stylish versus those that are useful and appropriateto many 
situations, and our job is to try to find the right balance for theoccasion. While 
appropriateness isn’t a sexy concept, it’s the acid testthat 

shouldguideourchoiceof font. 
 

Most people only experience a font in its final context, whether they’rereading a 

billboard or typing a document. In this way, we experience fontsmuch like we 
experience a car—most of us are concerned mainly with 
howitdrivesandhowitlooks,butthere’sa lotgoing onunder thehood. 

A font is software that is made up of both data and code, both of whichinteract 
with each other as well as the applications and operating system inwhich the font 
is installed. The data includes items like the contours ofglyphs, metrics such as 
advance widths or vertical spacing, or text stringssuchasfontfamilyandstylenames 
orcopyrightandtrademark strings. 

The code can include aspects of the font like TrueType instructions orhinting, 
and the OpenType line layout code which helps ‘shape’ text toproduce the 

correct order and combination of glyphs from a set of inputstrings. 

 
1 Typeface vs. Font 

“Typeface”and“Font”meandifferentthings, 

 typefaceisthedesign(e.g.shape)ofacollectionofletters, 
numbers and symbols (also called glyphs),whereas 

 fontisaspecificsize,weight,orstyle(e.g.regular,bold,itali
c)ofatypeface. 

 
 

 

 2.CommonFontCategories 

 Typefaces come in all different shapes, and there is 
nosingleclassificationsystem.Belowareafewofthemostcomm



 

177 
 

body{ 
font-family:'custom-font',fallback1,fallback2; 

} 

onlyseencategories. 

 2.1Serif 

 
 A “serif” is a small stroke attached to the ends of 

letters,givingthematraditionalfeel.The“serif”categoryincludesa 
few sub-categories such as Old Style, Classical, Neo-
Classical,Transitional,Clarendon,etc.Thesetypefacesaremostlyu
sedinbooksandnewspapers. 

 
 
 
 
 

 Whereis thecustom-fontcoming from?Well,itcouldbe 
fromeitheryourOSifyouhaveitinstalled(e.g.SegoeUIonWindows,orRobotoonAndroid),or
athirdpartysuchas Google Fonts, Adobe Fontsetc. In the later case, youmost likely 
need to tell the browser to download it byincluding the<link>tagintheheadof 
yourpage,likebelow 

 
 

Mosttypefacescanbeclassifiedintooneof four basic groups: those with serifs,those without serifs, 
scripts anddecorativestyles. 

U1designrule3 

Rule 3: Allowing the users to be in Control of the software. (Application 

feedback (feedbackshouldbegivenforallchoices) 
 

 commandline(cli) 

 graphicaluserinterface(GUI) 
 menudriven(mdi) 

 

https://fonts.google.com/
https://fonts.adobe.com/
https://fonts.adobe.com/


 

178 
 

continuetoqualityassurance testing 

A numberofschemesare usedfortestingpurposes   Another 
important aspect is the fitness of purpose of a program that ascertainswhether 
the program serves the purpose which it aims for. The 
fitnessdefinesthesoftwarequality. 

 
 

Software QualityAssurance 

SoftwareQuality 
 

Schulmeyer and McManus have defined software quality as “the fitnessfor use 

of the total software product”. A good quality software 

doesexactlywhatitissupposedtodoandisinterpretedintermsofsatisfactionofthereq
uirementspecificationlaiddownbythe user. 

 
QualityAssurance 

 
Software quality assurance is a methodology that determines the extentto 
which a software product is fit for use. The activities that are 
includedfordeterminingsoftwarequalityare− 

 
 Auditing 
 Developmentofstandardsandguidelines 

 Productionofreports 

 Reviewofqualitysystem 
 

QualityFactors 

 Correctness− Correctness determines whether the
 softwarerequirementsareappropriatelymet. 

 Usability−Usabilitydetermineswhetherthesoftwarecanbeusedbydifferentc
ategoriesofusers(beginners,non-technical,andexperts). 

 Portability 
−Portabilitydetermineswhetherthesoftwarecanoperateindifferentplatform
swithdifferent hardwaredevices. 

 Maintainability −Maintainabilitydeterminestheeaseatwhicherrorscan 
becorrectedandmodulescan beupdated. 



 

179 
 

 Reusability − Reusability determines whether the modules 
andclassescanbereusedfordevelopingothersoftwareproducts. 

 

 

 SoftwareQualityAssurancePlan 
 Abbreviated as SQAP, the software quality assurance plancomprises 

of the procedures, techniques, and tools that areemployed to make 
sure that a product or service aligns with therequirements defined in 
the SRS(software requirementspecification).



 

180 
 

Products must be tested in different ways, with different users anddifferent 
scenarios to make sure that the software that end-users receiveis 
aconsistent,high-qualityexperienceinarangeofsituations.  

While testing and quality are inextricably linked, it’s important tounderstand 

that quality assurance testing and software testing aren’t onein the same. Part of 

quality assurance is finding a solution to thechallengeandimplementingit. 

QA’sprocesstendstolooksomethinglikethis: 
 

1 Generatingrequirements 
 

2 Makingestimations 
 

3 Developingaplan 
 

4 Documentation 
 

5 Day-to-daysprintexecution 
 

6 Definingwhatneedstohappenbeforeaproductisconsidered 
“finished.” 

 
7 Testing 

Where the process was once defined by contracts, checklists, 
andcontrol,today’sQAteamisembeddedalongsidedevelopers. 
Agile QA testing is less about performing the tests, and instead brings adeep 
understanding of the consumer into the fold, functioning as 
anadvocateformeeting expectations. 

 
Conclusion 
Onceaprogramcodeiswritten,itmustbetestedtodetectandsubsequently handle all 
errors in it. A number of schemes are used fortestingpurposes. 

Another important aspect is the fitness of purpose of a program 
thatascertainswhethertheprogramservesthepurposewhichitaimsfor.Thefitness 
definesthesoftwarequality.



 

 

 
 
 

TestingObject-OrientedSystems 

Testing is a continuous activity during software 
development. In object-
orientedsystems,testingencompassesthreelevels,namel
y,unittesting,subsystemtesting,andsystemtesting. 

UnitTesting 

In unit testing, the individual classes are tested. It is 
seen whether 
theclassattributesareimplementedasperdesignandwhet
herthemethodsand the interfaces are error-free. Unit 
testing is the responsibility of 
theapplicationengineerwhoimplementsthe structure. 

SubsystemTesting 

This involves testing a particular module or a 
subsystem and is theresponsibility of the subsystem 
lead. It involves testing the 
associationswithinthesubsystemaswellastheinteractio
nofthesubsystemwiththeoutside.Subsystemtestscanbe
usedasregressiontestsforeachnewlyreleasedversionoft
hesubsystem 

 
 

softwareQuality 

SchulmeyerandMcManushavedefinedsoftware
qualityas“thefitness for use of the total 

software product”. A good 

qualitysoftwaredoesexactlywhatitissupposedto
doandisinterpretedintermsofsatisfactionofthere
quirementspecificationlaiddownbytheuser. 

QualityAssurance 
 

Software quality assurance is a methodology that 
determines the extentto which a software product is 
fit for use. The activities that are 



 

 

includedfordeterminingsoftwarequalityare− 
 

                                         UNIT V 

SOFTWARE QUALITY 

INTRODUCTION: 
Schulmeyer and McManus have defined software quality as “the fitness for use 

of the total software product”. A good quality software does exactly what it is 

supposed to do and is interpreted in terms of satisfaction of the requirement 
specification laid down by the user 

QUALITY ASSURANCE TESTS: 

                                                            Software quality assurance is a 
methodology that determines the extent towhich a software product is fit for 
use. The activities that are included fordetermining software quality are −  
• Auditing  

• Development of standards and guidelines  

• Production of reports  

• Review of quality system  
 
Quality Factors: 
                                 • Correctness − Correctness determines whether the 

software requirements are appropriately met.  

                                 • Usability − Usability determines whether the software can 

be used bydifferent categories of users (beginners, non-technical, and experts).  

                                 • Portability − Portability determines whether the software 
can operate indifferent platforms with different hardware devices.  

                                 • Maintainability − Maintainability determines the ease at 

which errors can becorrected and modules can be updated.  

                                 • Reusability − Reusability determines whether the 

modules and classes can bereused for developing other software products.  
 
 
TESTING STRATEGIES: 
 
BLACK BOX TESTING:                                                                                                                                                                                                       
Black box testing involves testing a system with no prior knowledge of its 



 

 

internal workings. A tester provides an input, and observes the output generated 
by the system under test. This makes it possible to identify how the system 
responds to expected and unexpected user actions, its response time, usability 
issues and reliability issues.  
 
Black box testing is a powerful testing technique because it exercises a system 
end-to-end. Just like end-users “don’t care” how a system is coded or 

architected, and expect to receive an appropriate response to their requests, a 
tester can simulate user activity and see if the system delivers on its promises. 
Along the way, a black box test evaluates all relevant subsystems, including 
UI/UX, web server or application server, database, dependencies, and integrated 
systems.  
 
An example of a security technology that performs black box testing is 
Dynamic Application Security Testing (DAST), which tests products in staging 
or production and provides feedback on compliance and security issues.  
 
Black box testing can be done in following ways:  
1. Syntax Driven Testing – This type of testing is applied to systems that can 
be syntactically represented by some language. For example- 
compilers,language that can be represented by context free grammar. In this, the 
test cases are generated so that each grammar rule is used at least once.  
 
2. Equivalence partitioning– It is often seen that many type of inputs work 
similarly so instead of giving all of them separately we can group them together 
and test only one input of each group. The idea is to partition the input domain 
of the system into a number of equivalence classes such that each member of 
class works in a similar way, i.e., if a test case in one class results in some error, 
other members of class would also result into same error.  
 
The technique involves two steps:  
 
1. Identification of equivalence class – Partition any input domain into minimum  
two sets: valid values and invalid values. For example, if the valid range is 0 to 
100 then select one valid input like 49 and one invalid like 104.  
2. Generating test cases –  
(i) To each valid and invalid class of input assign unique identification number.  
(ii) Write test case covering all valid and invalid test case considering that no 
two invalid inputs mask each other. 
 
Black Box Testing is a software testing method in which the internal structure/ 
design/ implementation of the item being tested is not known to the tester. 



 

 

White Box Testing is a software testing method in which the internal structure/ 
design/ implementation of the item 
 
 
White box testing: 
White box testing is a testing technique, that examines the program structure 
and derives test data from the program logic/code. The other names of glass 
box testing are clear box testing, open box testing, logic driven testing or path 
driven testing or structural testing. 
 
g tested is known to the tester 
 
White Box Testing Techniques: 
 

 Statement Coverage - This technique is aimed at exercising all 
programming statements with minimal tests.  

 Branch Coverage - This technique is running a series of tests to ensure 
that all branches are tested at least once  

 
 Path Coverage - This technique corresponds to testing all possible paths 

 
 

Advantages of White Box Testing: 

• Forces test developer to reason carefully about implementation.  

• Reveals errors in "hidden" code.  

• Spots the Dead Code or other issues with respect to best programming 

practices.  
 
Disadvantages of White Box Testing:  
 

• Expensive as one has to spend both time and money to perform white box 
testing.  

• Every possibility that few lines of code are missed accidentally.  

• In-depth knowledge about the programming language is necessary to perform 
white box testing. 

• which means that each statement and branch is covered.  
 
 



 

 

• White Box Testing is software testing technique in which internal structure, 
design and coding of software are tested to verify flow of input-output and to 
improve design, usability and security. In white box testing, code is visible to 
testers so it is also called Clear box testing, Open box testing, Transparent box 
testing, Code-based testing and Glass box testing.  
 
• It is one of two parts of the Box Testing approach to software testing. Its 

counterpart, Blackbox testing, involves testing from an external or end-user type 
perspective. On the other hand, White box testing in software engineering is 
based on the inner workings of an application and revolves around internal 
testing.  
 
• The term "WhiteBox" was used because of the see-through box concept. The 
clear box or WhiteBox name symbolizes the ability to see through the software's 
outer shell (or "box") into its inner workings. Likewise, the "black box" in 
"Black Box Testing" symbolizes not being able to see the inner workings of the 
software so that only the end-user experience can be tested.  
 
White box testing techniques analyze the internal structures the used data 
structures, internal design, code structure and the working of the software rather 
than just the functionality as in black box testing. It is also called glass box 
testing or clear box testing or structural testing. 
 
Working process of white box testing: 
 
• Input: Requirements, Functional specifications, design documents, source 
code.  
• Processing: Performing risk analysis for guiding through the entire process.  
• Proper test planning: Designing test cases so as to cover entire code. Execute 
rinse-repeat until error-free software is reached. Also, the results are 
communicated.  
• Output: Preparing final report of the entire testing process. 
 
Testing techniques:  
                                 Statement coverage: In this technique, the aim is to traverse 
all statement at least once. Hence, each line of code is tested. In case of a 
flowchart, every node must be traversed at least once. Since all lines of code are 
covered, helps in pointing out faulty code.  
White box testing refers to a scenario where (as opposed to black box testing), 
the tester deeply understands the inner workings of the system or system 
component being tested.  



 

 

Gaining a deep understanding of the system or component is possible when the 
tester understands these at program- or code-level. So almost all the time, the 
tester needs to either understand or have access to the source code that makes up 
the system – usually in the form of specification documents.  
Armed with the level of technical detail that is normally visible only to a 
developer, a Tester will then be able to design and execute test cases that cover 
all possible scenarios and conditions that the system component is designed to 
handle.  
We’ll see how this is done in our example later.  
By performing testing at the most granular level of the system, you are able to 
build a robust system that works exactly as expected, and ensure it will not 
throw up any surprises whatsever. 
The key principles that assist you in executing white box tests successfully are:  
Statement Coverage – ensure every single line of code is tested. White-box 
testing (also known as clear box testing, glass box testing, transparent box 
testing, and structural testing) is a method of software testing that tests internal 
structures or workings of an application, as opposed to its functionality (i.e. 
black-box testing). In white-box testing an internal perspective of the system, as 
well as programming skills, are used to design test cases. The tester chooses 
inputs to exercise paths through the code and determine the expected outputs. 
This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT). 
White-box testing can be applied at the unit, integration and system levels of the 
software testing process. Although traditional testers tended to think of white-
box testing as being done at the unit level, it is used for integration and system 
testing more frequently today. It can test paths within a unit, paths between 
units during integration, and between subsystems during a system–level test. 
Though this method of test design can uncover many errors or problems, it has 
the potential to miss unimplemented parts of the specification or missing 
requirements. Where white-box testing is design-driven,[1] that is, driven 
exclusively by agreed specifications of howeach component of software is 
required to behave (as in DO-178C and ISO 26262 processes) then white-box 
test techniques can accomplish assessment for unimplemented or missing 
requirements.  
White-box test design techniques include the following code coverage criteria: 
 
• Control flow testing 
• Data flow testing  
• Branch testing  
• Statement coverage  
• Decision coverage  
• Modified condition/decision coverage  
• Prime path testing  



 

 

• Path testing  
If we go by the definition, “White box testing” (also known as clear, glass box 

or structural testing) is a testing technique which evaluates the code and the 
internal structure of a program.  
White box testing involves looking at the structure of the code. When you know 
the internal structure of a product, tests can be conducted to ensure that the 
internal operations performed according to the specification. And all internal 
components have been adequately exercised. 
 
TOP DOWN TESTING: 
Top-down integration testing is an integration testing technique used in order 
to simulate the behaviour of the lower-level modules that are not yet integrated. 
Stubs are the modules that act as temporary replacement for a called module 
and give the same output as that of the actual product. 
 
Top-down testing is a type of incremental integration testing approach in 
which testing is done by integrating or joining two or more modules by moving 
down from top to bottom through control flow of architecture structure. In 
these, high-level modules are tested first, and then low-level modules are tested. 
Then, finally, integration is done to ensure that system is working properly. 
Stubs and drivers are used to carry out this project. This technique is used to 
increase or stimulate behavior of Modules that are not integrated into a lower 
level. 
 

 
Processing : 
Following are the steps that are needed to be followed during processing 
1Upper models or high levels modules should be tested properly to maintain 
quality and for processing lower-level modules or stubs of top-down testing. 
 
 
 
 
1. As we know that in this type of pf testing, stubs temporarily replace a lower-
level module, but data do not move upwards with this replacement. Due to this, 
testing cannot be done on time which results in delays in testing.  
2. Due to replacement, stubs might become more and more complex after each 
replacement.  
3. Losing control over correspondence between specific tests and specific 
modules is main problem that might arises during process.  



 

 

4. Sometimes, modules at lower levels are tested inadequately (unsatisfactory 
that lacks quality) 

Advantages : 

• There is no need to write drivers.  
• Interface errors are identified at an early stage and fault localization is also 

easier.  
• Low-level utilities that are not important are not tested well and high-level 
testers are tested well in an appropriate manner.  
• Representation of test cases is easier and simple once Input-Output functions 
are added  
 
Disadvantages : 
 
• It requires a lot of stubs and mock objects.  
• Representation of test cases in stubs can be not easy and might be difficult 

before Input-Output functions are added.  
• Low-level utilities that are important are also not tested well.  
Top Down --> BIG SYSTEM to smaller components  
Top-down approach is simple and not data intensive 

 

Bottom up testing: 

A type of integration testing, bottom-up approach is a testing strategy in which 
the modules at the lower level are tested with higher modules until all the 
modules and aspects of the software are tested properly. This approach is also 
known as inductive reasoning, and in many cases is used as a synonym of 
synthesis.                                                                                                                     

Bottom-Up approach is an immensely beneficial approach, used more often 
than its counterpart and the well-known testing technique, top down approach. 
This approach of integration testing is utilized when off-the-shelf or existing 
components are selected and integrated into the product. 

 
Advantages: 

It is appropriate for applications where bottom-up design methodology is 

used. 

 Test conditions can be created easily. 



 

 

 If the low level modules and their combined functions are often invoked 

by other modules, then it is more useful to test them first so that 

meaningful effective integration of other modules can be done. 

 Always starting at the bottom of the hierarchy again means that the 

critical modules are generally built and tested first and therefore any 

errors or mistakes in these forms of modules are identified early in the 

process. 

 Advantageous if major flaws occur towards the bottom of the program. 

Disadvantage: 

 Test engineers cannot observe system level functions from a 

partly integrated system. 

 They cannot observe the system level functions until the top 

level test driver is in place. 

 The program as an entity does not exist until the last module is 

added. 

 One big disadvantage of bottom up strategy is that, in this sort 

of testing no working model can be represented as far as several 

modules have been built. 

 This approach is driven by the existing infrastructure instead of 

the business processes. 

  



 

 

Impact of object orientation on testing: 

In the object-oriented model, interaction errors can be uncovered by scenario-

based testing. This form of Object oriented-testing can only test against the 

client's specifications, so interface errors are still missed. Class Testing Based 

on Method Testing: This approach is the simplest approach to test classes. 

 Impact of inheritance in testing: 

If all the methods of a class are assumed to be equally complex, then a class 
with more methods is more complex and thus more susceptible to errors. 
Inheritance Structure − Systems with several small inheritance lattices are 
more well–structured than systems with a single large inheritance lattice. 

 
  
 Object-oriented Software Systems present a particular challenge to the software 
testing community. This review of the problem points out the particular aspects 
of object-oriented systems which makes it costly to test them. The flexibility 
and reusability of such systems is described from the negative side which 
implies that there are many ways to u... 

 Software typically undergoes many levels of testing, from unit testing to 
system or acceptance testing. Typically, in-unit testing, small “units”, or 



 

 

modules of the software, are tested separately with focus on testing the code of 
that module. In higher, order testing (e.g, acceptance testing), the entire system 
(or a subsystem) is tested with the focus on testing the functionality or external 
behavior of the system. 

As information systems are becoming more complex, the object-oriented 
paradigm is gaining popularity because of its benefits in analysis, design, and 
coding. Conventional testing methods cannot be applied for testing classes 
because of problems involved in testing classes, abstract classes, inheritance, 
dynamic binding, message, passing, polymorphism, concurrency, etc. 

Testing classes is a fundamentally different problem than testing functions. A 
function (or a procedure) has a clearly defined input-output behavior, while a 
class does not have an input-output behavior specification. We can test a 
method of a class using approaches for testing functions, but we cannot test the 
class using these. 

REUSABILITY OF TESTS: 

Re-usability in software testing can save you the time and effort from repetitive 
tasks of test creation and its execution. You can easily achieve test and 
application stability by leveraging the work you have already done in the past, 
with a little smartness upfront. 

In today’s fast-paced world where there is a constant need to build software 
effectively, all disciplines are constantly on the look-out to maximize their 
productivity and minimize re-work. One of the buzz words amongst all of them 
is “Re-usability”. 

In computer science and software engineering, reusability is the use of existing 
assets in some form within the software product development process; these 
assets are products and by-products of the software development life cycle and 
include code, software components, test suites, designs and documentation. 

Reusability in OOP achieves through the features of C++ where it possible to 
extend or reuse the properties of parent class or super class or base class in a 
subclass and in addition to that, adding extra more features or data members in 
the subclass or child class or derived class. 

Introduction. Software reuse is the process of implementing or updating 
software systems using existing software components. A good software reuse 
process facilitates the increase of productivity, quality, and reliability, and the 
decrease of costs and implementation time. 



 

 

Reusability is a major contributor to the development goal of achieving high 
speed, low cost and quality. Usually, it is better and faster to employ proven off-
the-shelf designs rather than specially-crafted designs that might have problems.  
 
The concept of reusability is widely used in order to reduce cost, effort, and 
time of software development. Reusability also increases the productivity, 
maintainability, portability, and reliability of the software products. That is the 
reusable software components are evaluated several times in other systems 
before. 

GUIDELINES FOR DEVELOPING QUALITY ASSURANCE 
TEST CASES: 

quality assurance of methods and processes is a prerequisite for delivering 
quality statistics. The scope of the guidelines under development is the quality 
assurance of new or redesigned methods and processes. 

State the test cases for developing quality assurance 

.1 First analyze, what are the features and services our test attempts 
to cover. 

.2 Test object’s interactions and the messages sent among them. 

.3 Boundary conditions need to be test. 

.4 Specify the methods which are included to testing. 

.5 Test the normal use of the object’s methods. 

.6 Test the abnormal use of the object’s methods, but the abnormal 

to be reasonable. 
.7 Test the abnormal use of the object’s methods, but the abnormal 

to be unreasonable. 
.8 Document the cases, when the revisions have been made. 
.9 Our test case is based on use case then we can refer it with use-

case name. 
.10 Assess the internal quality, reusability and extendability of 

software. 

Once a program code is composed, it must be tried to test hence handle all 
blunders in it. Various plans are utilized for testing purposes.Another vital 
viewpoint is the wellness of motivation behind a program that finds out 
whether the program fills the need which it goes for. The wellness 
characterizes the product quality. 
 

     Software quality assurance (SQA) is a process which assures that all 
software          engineering processes, methods, activities and work items are 



 

 

monitored and  comply against the defined standards. These defined standards 
could be one or a  combination of any like ISO 9000, CMMI model, ISO15504, 
etc. SQA incorporates all software development processes starting from 
defining requirements to coding until release. Its prime goal is to ensure quality. 
 
GUIDELINES FOR DEVELOPING TEST PLANS: 
 

 Analyze the Product. The first step towards creating a test plan is to 
analyze the product, its features and functionalities to gain a deeper 
understanding. ... 

 
 Develop Test Strategy….. 

 
 Define Scope. ...  

 
 Develop a Schedule. ...  

 
 Define Roles and Responsibilities. ... 

 
 Anticipate Risks 

 
The important points that should be under consideration during test includes 
Scope of the testing, money, timeline, Risk analysis etc. A Good Test plan 
ensures less hurdles during execution phase and helps it in making smoother. 
 
Test plan can be defined as a document for a software project which defines the 
approach, scope, and intensity on the effort of software testing. The test 
strategy is a set of instructions or protocols which explain the test design and 
determine how the test should be performed. 
 
Reliability requirements for test are derived several sources, typically described 
in Supplementary Specifications, User-Interface Guidelines, Design Guidelines, 
and Programming Guidelines. 
 
Review these artifacts and pay especial attention to statements that include the 
following: 
 
 

 statements reliability or resistance to failure, run-time errors (such as 
memory leaks)  

 statements indicating code integrity and structure (compliance to 
language and syntax)  

 statements regarding resource usage  



 

 

 
At least one requirement for test should be derived from each statement in the 
artifacts that reflects information listed above. 
 
 
Successful testing requires that the test effort successfully balance factors such 
as resource constraints and risks. To accomplish this, the test effort should be 
prioritized so that the most important, significant, or riskiest use cases or 
components are tested first. To prioritize the test effort, a risk assessment and 
operational profile are performed and used as the basis for establishing the test 
priority 
 
The following sections describe how to determine test priority.  
 
Continuous testing: 
Continuous Testing is the process of executing automated tests as part of the 
software delivery pipeline in order to obtain feedback on the business risks 
associated with a software release candidate as rapidly as possible. 
 
Continuous Testing in DevOps is a software testing type that involves testing 
the software at every stage of the software development life cycle. The goal of 
Continuous testing is evaluating the quality of software at every step of the 
Continuous Delivery Process by testing early and testing often. 
 
The Continuous Testing process in DevOps involves stakeholders like 
Developer, DevOps, QA and Operational system. 
 
Continuous testing is the process of checking if the software meets the business 
needs and that there is no risk involved in the release of the software. 
Continuous testing provides a safety net to the entire software development and 
deployment by ensuring that there are no untoward incidents. 
 
Unlike the old times, today continuous testing is embedded in the development 
process of the software development lifecycle. It is an integrated software 
delivery pipeline which more and more enterprises today are implementing in 
order to get the best out of their software. The only requirement of the 
continuous testing is that the entire environment has to be stable and there 
should be valid test data for every test iteration. 
 
It is about facilitating the pipeline so that the right set of tests is executed at the 
right time in the delivery pipeline so that there are no roadblocks. The entire 
framework of CT is based on getting the actionable feedback for the various 



 

 

stages. The entire layer of the modern software architecture is being evaluated 
with the Continuous Testing at the right stages of the delivery pipeline. 
 
DEBUGGING PRINCIPLES: 
 
The conceptual framework of object–oriented systems is based upon the object 
model. There are two categories of elements in an object-oriented system – 
 
Major Elements − By major, it is meant that if a model does not have any one 
of these elements, it ceases to be object oriented. The four major elements are – 
 
 

 Abstraction 
 Encapsulation  
 Modularity 
 Hierarchy  

 
Minor Elements − By minor, it is meant that these elements are useful, but not 
indispensable part of the object model. The three minor elements are – 
 
 
 Typing  
  Concurrency  
  Persistence  
  Structure. A good argument must meet the fundamental structural 

requirements of a well-formed argument. ...  
  Relevance. ...  
  Acceptability. ...  
  Sufficiency. ...  
 Rebuttal. 

 
 Object-Oriented Principles. Encapsulation, inheritance, and polymorphism 
are usually given as the three fundamental principles of object-oriented 
languages (OOLs) and object-oriented methodology. These principles depend 
somewhat on the type of the language. 
 
 
• Single Responsibility principle.  

• Open/Closed principle.  

• Liskov Substitution principle.  



 

 

• Interface Segregation principle.  

• Dependency Inversion principle. 
 

SYSTEM USABILITY AND MEASURING USER 
SATISFACTION 

 
User satisfaction test• Process of quantifying usability test with measurable 
attributes of the test such as functionality, cost or ease of use – Ex: 90 5 of the 
people should know to withdraw money from ATM without training or error. 

        Usability should be a subset of s/w quality characteristics. This means 
usability must be place at same level as other characteristics such as reliability, 
correctness and maintainability o Usability testing deal with how well the 
interface of s/w fits the use cases, which are reflections of users’ needs and 

expectations. To ensure user satisfaction, we must measure it throughout system 
development with user satisfaction tests. It forms comm., vehicle between 
designers and end users Usability Testing: - o ISO defines usability as 
effectiveness, efficiency and satisfaction with which a specified set of users can 
achieve a specified set of tasks in particular environments. It requires i. 
Defining tasks. What are the tasks? ii. Defining users. Who are the users? iii. A 
means for measuring effectiveness, efficiency and satisfaction. How do we 
measure usability? o Usability testing measures the ease of use as well as degree 
of comfort and satisfaction users have with the s/w. Usability test cases begin 
with identification of use cases that can specify the target audience, tasks and 
test goals. When designing test, focus on use cases or tasks The main advantage 
is that all design traces directly back to user requirements.Use cases and usage 
scenarios can become test scenarios; and therefore, the use case will drive 
usability, user satisfaction & quality assurance test cases p Guidelines for 
developing usability testing Usability testing should include all of a s/w’s 

components Usability testing need not be very expensive or elaborate All tests 
need not involve many subjects. Typically, quick, iterative tests with small, 
welltargeted sample of 6 – 10 participants can identify 80 – 90 percent of most 
design problems User’s experience also as part of s/w usability. 80 – 90 percent 
of most design problems can be studied with target few users of single skill 
level of users, such as novices or intermediate level Apply usability testing early 
and often 
 
 
Recording the Usability Test: A quiet location, free from distractions 
environment is best for conducting test and intervention yields better results. It 
is done with test data along with guides or hints around a problem. Always 



 

 

records techniques & search patterns users employ when attempting to work 
though a difficulty & number and type of hints provided to them   
 
USABILTY TESTING 
Usability testing, a non-functional testing technique that is a measure of how 
easily the system can be used by end users. It is difficult to evaluate and 
measure but can be evaluated based on the below parameters: Level of Skill 
required to learn/use the software. ... Time required to get used to in using the 
software. 
 
Usability Testing is a type of testing, that is done from an end user’s 

perspective to determine if the system is easily usable. Usability testing is 
generally the practice of testing how to easy design is to use on a group of 
representative users. A very common mistake in usability testing is conducting a 
study too late in the design process and If you wait until right before your 
product is released, you won’t have the time or money to fix any issues – and 
you’ll have wasted a lot of effort developing your product the wrong way. 
 
Needs of Usability Testing: 
Usability testing provides some benefits and the main benefits and purpose of 
usability testing are to identify usability problems with a design as early as 
possible, so they can be fixed before the design is implemented or mass 
produced and then such, usability testing is often conducted on prototypes rather 
than finished products, with different levels of fidelity depending on the 
development phase. 
Phases of usability testing: 
There are five phases in usability testing which are followed by the system 
when usability testing is performed.These are given below: 
 
 

1 Prepare your product or design to test: 
In the first phase of usability testing is choosing a product and then prepare 
the product for usability testing. For usability testing more function and 
operation are required then this phase provided that type of requirement. 
Hence a this is one of most important phase in usability testing.  

 
 

2 Write a test plan: 
This is the third phases of usability testing. The plan is one of the 

first steps in each round of usability testing is to develop a plan for the test. 
The main purpose of the plan is to document what you are going to do, how 
you are going to conduct the test, what metrics you are going to find, the 



 

 

number of participants you are going to test, and what scenarios you will 
use.  

 
GIDELINES FOR DEVELOPING USABILITY TESTING 

 
Usabilityis the glue that sticks your user to your web and mobile designs. Well 
executed user interface (UI) design does not mean much if your users do not 
know how to engage with it. It needs to be usable, useful and credible as well as 
desirable. If the UX-factor is not enough of an incentive, think of it this way: 
optimising your usability pays off. A usable web or mobile application can 
boost conversion rates, lower support costs and reduce design and development 
rework. 
 
Luckily, it is possible to optimise your usability. By performing a usability test, 
you can assess how easily your users can connect with your UI. These studies 
help you adjust your design strategy to benefit the user and encourage them to 
return to your website and convert. 
 
A usability test is how UX researchers evaluate how easy or difficult a task is to 
complete. In web design, usability research involves evaluating the way a user 
interacts with the UI, by observing and listening to users complete typical tasks 
such as completing a purchase or subscribing to a newsletter.  
 
Studies are performed early on during the design process so that errors can be 
corrected as soon as possible and do not affect the fabric of the final product. In 
the worstcase scenario, you will have plenty of time to start over and improve 
the overall user experience. 
 
Usability tests can be split into two categories: 

 
 
• Qualitative tests, or ‘qual’ research: These involve direct observation and 

assessment of how test participants engage with specific UI elements to 
determine which components are problematic.  
 
 
• Quantitative tests, or ‘quant’ research: These consist of an indirect 

assessment of the UI design, either based on participants’ performance of tasks 

or their perception of usability (e.g. a survey or poll).  
 
For a usability test, it is recommended that both quantitative and qualitative data 
is gathered. 
 



 

 

Once the usability test is complete, the UX team will go back to the drawing 
board, or indeed wireframe or prototype, and correct the usability errors based 
on the participants’ behaviour and interactions. 
 
RECORDING THE USEABILITY TEST 
One of the most important parts of conducting usability tests is communicating 
the results. This means you should share the most valuable findings in ways that 
people can easily understand. One way to do this is to share recordings of the 
actual tests. There aren't many requirements for recording other than having 
access to a device that can record the study and asking your participants if you 
can record them. 
 
 
• Recruiting unsuitable participants. ...  

• Not testing early and often during the project lifecycle. ...  
• Following too rigid a test plan. ...  
• Not rehearsing your setup. ...  

• Using a one-way mirror. ...  
• Not meeting participants in reception. ...  

• Asking leading questions. ...  

• Interrupting the participant.  
 
SATISFACTION TEST 
User satisfaction testing:  
It is the process of quantifying the usability test with some measurable 
attributes of the test, such as functionality, cost, or ease of use. User 
satisfaction cycle: Create a user satisfaction test for your own project. 
Conduct test regularly and frequently. 
User satisfaction testing: It is the process of quantifying the usability test with 
some measurable attributes of the test, such as functionality, cost, or ease of use. 
User satisfaction cycle: 
 
 
• Create a user satisfaction test for your own project  
• Conduct test regularly and frequently  
• Read the comments very carefully, especially if they express a strong feeling.  
• Use the information from user satisfaction test, usability test, reactions to 
prototypes, interviews recorded, and other comments to improve the product.  
 



 

 

Important benefit of user satisfaction testing is you can continue using it even 
after the product is delivered.   
 
•Format of every user satisfaction test is basically the same, but its context’s 

different for each project.  
• Use cases provide excellent source of information throughout this process.  
• Work with users (or) clients to find out what attributes should be included in 
the test.  
• Ask the users to select limited numbers (5 to 10) of attributes by which the 
final product can be evaluated. 
 
Principal objectives of the user satisfaction:   
 
 
1. As a communication vehicle between designers as well as between users  
 and designers.  
2. To detect and evaluate changes during theDEBUGGING design process.  
3. To provide a periodic indication of divergence of opinion about the  

current design.  
4. To provide a periodic indication of divergence of opinion about the  

current design.  
5. To enable pinpointing specific areas of dissatisfaction for remedy.  
6. To provide a clear understanding of just how the completed design is to  

be evaluated.  
 
EXAMPLE 
 Steps:  

• Develop test objectives.  
• Develop test cases.  
• Analyze the tests. 

 
GUIDELINES FOR DEVELOPING USER SATISFACTION 
TESTING   
 
User satisfaction testing:  
Conduct test regularly and frequently. Read the comments very carefully, 
especially if they express a strong feeling. Use the information from user 
satisfaction test, usability test, reactions to prototypes, interviews recorded, 
and other comments to improve the product 
 



 

 

User satisfaction test Process of quantifying usability test with measurable 
attributes of the test such as functionality, cost or ease of use – Ex: 90 5 of the 
people should know to withdraw money from ATM without training or error 
 
7. A TOOL FOR ANALYZING USER SATISFACTION 
 
Usability testing, a non-functional testing technique that is a measure of how 
easily the system can be used by end users. It is difficult to evaluate and 
measure but can be evaluated based on the below parameters: Level of Skill 
required to learn/use the software. ... Time required to get used to in using the 
software. 

 
 
• Guerillatesting. ...  
•  Lab usability testing. ...  
•  Unmoderated remote usability testing. ...  
•  Contextual inquiry. ...  
•  Phone interview. ...  
•  Card sorting. ...  
•  Session recording.  
• Usability testing permeates product development. ...  
•  Usability testing involves studying real users as they use the product. ...  
•  Usability testing involves setting measurable goals anddetermining 

whether the product meets them.  
 

****** 
 

 
 

 
 

 

 


	Phases in Object-Oriented Software Development
	Object–Oriented Analysis
	Object–Oriented Design
	Object–Oriented Implementation and Testing
	An object has state, behavior, and identity; the structure and behavior of similar objects are defined in their common class; the terms instance and object are interchangeable.
	State
	Operations
	Examples:
	Identity

	RelationshipsamongObjects
	Objects contributetothebehaviorofasystembycollaboratingwithoneanother. E.g.objectstructureofanairplane. The relationship between any two objects encompasses the assumptions that each makes about theother including what operations can be performed. Th...
	are Two kinds of objects relationships are linksandaggregation.
	Links


	Object
	Class

	Encapsulation and Data Hiding
	Encapsulation
	Data Hiding

	Message Passing
	Inheritance
	Types of Inheritance

	Generalization and Specialization
	Generalization
	Specialization

	Links and Association
	Link
	Association
	Degree of an Association
	Cardinality Ratios of Associations

	Aggregation or Composition
	Benefits of Object Model
	TheimportanceofModeling:
	PrinciplesofModeling:

	Dynamic Modelling
	Functional Modelling
	CommonModelingTechniquesofobjectdiagrams:
	ModelingObjectStructures


	Structured Analysis vs. Object Oriented Analysis
	Advantages/Disadvantages of Object Oriented Analysis
	Advantages/Disadvantages of Structured Analysis

	What is a Design pattern?
	What are all the benefits of the design pattern?
	Creational Design Patterns:
	Structural Design Patterns:
	Behavioral Design Patterns:
	Object-Oriented Application Frameworks
	2 Groupingthings:
	1 Relationships intheUML:
	2 Association:
	3 Generalization:
	4 Realization:

	3 Diagrams in theUML:-
	2 Objectdiagram:
	3 usecasediagram:
	4 Sequence diagram:
	5 collaborationdiagram:

	6 statechartdiagram:
	7 Activitydiagram
	8 componentdiagram:
	2 Adornments
	CommonDivisions
	4.ExtensibilityMechanisms



	Extend relationships
	Example
	Class Diagram for ATM Machine
	Use Case Diagram ATM Machine
	Activity Diagram for ATM Machine 1
	Activity Diagram for ATM Machine 2
	Activity Diagram for Overall ATM Machine:-
	1 InterfaceDesign:

	MACROLEVELPROCESS
	Themacrodevelopmentprocessconsistsofthefollowingsteps:
	Conceptualization
	Analysisanddevelopmentofthemodel
	Designorcreatethesystemarchitecture.
	Evolutionorimplementation-
	MicroLevel DesignProcess
	Rule1:Making theinterfacesimple
	Factorsforaffecting Designapplication:
	Rule3:Allowinguserstobeincontrolat thesoftware.
	Rule:
	UI object should represent, at most, one business object,perhaps that someservices ofthatbusinessobject.
	Waysto put usersin control:


	IDENTIFYINGVIEWCLASSESBYANALYZINGUSECASE
	MAKETHEINTERFACEVISUAL
	CommandLineInterface(CLI)
	Object-OrientedAnalysis
	Object-OrientedDesign
	Object-OrientedProgramming
	l Interfacedesign
	l Interfaceconstruction
	l Interfacevalidation
	UserInterfaceModels
	Userprofilemodel
	Designmodel


	Viewlayerinterface
	Guidelinesfordesigningdialog boxes and errormessages
	Errormessage
	CommandButtons:DesignGuidelines
	GUIDELINESFORDESIGININGAPPLICATIONWINDOWS
	GraphicalUserInterface
	User InterfaceDesignActivities
	GUIImplementationTools
	The Status of Existing Color Guidelines andStandards
	The degree of difficulty in getting effective colors for information displaydepends on the complexity of the graphics. Until recently most datadisplays in military and domestic command and control applicationswere very simple. When display quality, co...
	Forexample:
	Choosethe Right Color inthe ProperPattern
	WhatFontShouldIUse?5
	l 2.CommonFontCategories


	Mosttypefacescanbeclassifiedintooneof four basic groups: those with serifs,those without serifs, scripts anddecorativestyles.
	l commandline(cli)



	Conclusion
	TestingObject-OrientedSystems
	UnitTesting
	SubsystemTesting



